WO2008081999A1 - 分離型磁気シールド装置 - Google Patents

分離型磁気シールド装置 Download PDF

Info

Publication number
WO2008081999A1
WO2008081999A1 PCT/JP2007/075416 JP2007075416W WO2008081999A1 WO 2008081999 A1 WO2008081999 A1 WO 2008081999A1 JP 2007075416 W JP2007075416 W JP 2007075416W WO 2008081999 A1 WO2008081999 A1 WO 2008081999A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic shield
magnetic
side wall
shield side
cylindrical space
Prior art date
Application number
PCT/JP2007/075416
Other languages
English (en)
French (fr)
Inventor
Ichiro Sasada
Toshikazu Takeda
Original Assignee
Kyushu University, National University Corporation
Nippon Steel Composite Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, National University Corporation, Nippon Steel Composite Co., Ltd. filed Critical Kyushu University, National University Corporation
Priority to EP07860611.8A priority Critical patent/EP2099277B8/en
Priority to US12/521,423 priority patent/US8031039B2/en
Publication of WO2008081999A1 publication Critical patent/WO2008081999A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0046Arrangements of imaging apparatus in a room, e.g. room provided with shielding or for improved access to apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0047Housings or packaging of magnetic sensors ; Holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials

Definitions

  • the present invention relates to a separation-type magnetic shield device, for example, an electron beam exposure device, an environmental magnetic field countermeasure for an electron microscope, and in the field of measurement, human brain magnetic field, cardiac magnetic field measurement, and animal biomagnetism. Documents that can be used for measurement, and in the nanobio region, where magnetic beads are used as labels.
  • the magnetic field emitted from the human body from the brain and heart is important real-time biological information and contains a lot of information.
  • the cardiac magnetic field is detected by a magnetocardiograph, eg, a SQUID magnetometer, 6 4 channels, the electrophysiological function of the heart can be two-dimensionally mapped.
  • a magnetocardiograph eg, a SQUID magnetometer
  • 6 4 channels the electrophysiological function of the heart can be two-dimensionally mapped.
  • diagnostic information such as the temporal and spatial information of the current vector flowing through the stimulus conduction system, compared to the method based on ECG waveform analysis.
  • Acute myocardial infarction which is a typical ischemic heart disease, is considered to be the cause of three major Japanese deaths.
  • expensive high-tech medical technology is used for the treatment, but if accurate diagnosis is possible at an early stage, a significant reduction in medical costs will have a significant effect on lifesaving.
  • One of the causes is a room-type magnetic sheet made of expensive and inconvenient permalloy. Located in the Ludo room. Magnetic shielding performance does not have to be as high as required for brain magnetic field measurement, and a flexible magnetic shielding device that can carry the patient with each bed and measure it is strongly desired.
  • Non-Patent Document 1 Magnetic shaking technology
  • Non-Patent Document 2 Suppression of leaking magnetic field
  • Non-Patent Documents 3 and 4 Suppression of magnetic noise originating from the outside
  • carbon fiber reinforced plastic the magnetic shield is integrally formed with a laminated structure using (C FR P) (Patent Document 1).
  • Fig. 12 shows an example of a split shield device 100 having a structure in which split bodies are arranged on the left and right sides and joined at the vertical position.
  • the split shield device 100 is configured such that at least one of two magnetic shield split bodies 10 1 (1 0 1 A, 1 0 IB) formed symmetrically is movable, and is installed in the buttock space.
  • the structure is such that the patient can be carried along with the bed.
  • Patent Document 1 Japanese Patent Application No. 2 0 0 5— 8 0 7 7 5
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 00 4-1 7 9 5 50
  • Non-Patent Document 1 Ichiro Hamada, Research on Magnetic Shielding Type Magnetic Shield for Measurement of Weak Magnetic Field, Journal of Japan Society of Applied Magnetics, 2 7, 8 5 5— 8 6 1 (2 0 0 3)
  • Non-Patent Document 2 Nakashima Y, Kiraura T, Sasada I, Magnetic field leakage from a 45 ° angle magnetic shell and a reduction method for a high-performance magnetic shield, IEEE Trans. On Magn. 42 (10) 3545-3547 (2006)
  • Non-Patent Document 3 Takuji Saito, Akihisa Tashiro, Ichiro Hamada, Multi-passive with passive seal: Active compensation effect in r-shield, Japan Society of Applied Magnetics, 2 9, 5 6 7-5 7 0 (2 0 0 5)
  • Non-Patent Document 4 Yusuke Umeda, Akihisa Tashiro, Ichiro Hamada, Application of Active Cancellation to Cylindrical Magnetic Shield, IEEJ A, 1 2 3, (8), 7 9 0 — 7 9 6 (2 0 0 3) Disclosure of the invention
  • the present invention is intended to solve the above-described problem of the split shield device having the configuration shown in FIG.
  • the magnetic field that is actively generated is deflected so that the disturbance magnetic field does not enter the space to be shielded, while the actively generated magnetic field is prevented from entering the space to be shielded. Therefore, it is intended to provide a simple and high-performance magnetic shield configured by partially arranging magnetic materials.
  • a method often used when creating a space with a low magnetic flux density in a field where magnetic flux exists uniformly is to place a conductor in the space and pass a current in the direction of expelling the magnetic flux.
  • An example of optimization using this method is shown in Fig. 11 (a).
  • conductors 1 0 (1 0 a, 1 0 b, 1 0 c, 1 0 d) are arranged vertically and horizontally symmetrically at predetermined intervals, and conductors 1 0 a, 1 0 c is a current from the front side to the back side in the drawing, and conductors 1 0 b and 10 d are a current from the back side to the front side in the drawing.
  • the horizontal magnetic flux H passing from the left side to the right side is a space enclosed by four conductors 10 (1 0 a, 1 0 b, 1 0 c, 1 0 d).
  • the density of the magnetic flux lines is thin, and it can be seen that a magnetic shield is provided.
  • FIG. 11 (b) shows a configuration in which four magnetic plates A, B, C, and D are arranged in a rectangular shape with a gap G at positions adjacent to each other. In this configuration, most of the magnetic flux passes through the center, and the shielding effect cannot be obtained.
  • Fig. 11 (c) is a combination of the configuration of Fig. 11 (a) and the configuration of Fig. 11 (b). As shown in Fig. 11 (c), in this configuration, a place where the density of the magnetic flux lines is low is formed in the center S of the space surrounded by the four magnetic plates A, B, C, D. It can be seen that a high shield ratio is obtained which is not even expected at all.
  • the present invention is based on the novel knowledge of the present inventor that the magnetic shield can be achieved extremely effectively by combining the action of the current and the action of the magnetic material.
  • An object of the present invention is to provide a separation type magnetic shield apparatus that has high accessibility to a magnetic shield space and that can achieve magnetic shielding extremely effectively. Means for solving the problem
  • the separation type magnetic shield apparatus according to the present invention.
  • a plurality of magnetic shield side wall bodies extending in the longitudinal direction are provided, and the plurality of magnetic shield side wall bodies are combined with each other around a longitudinal axis extending in the horizontal direction.
  • the separation type magnetic shield device that forms a substantially cylindrical space, and at least one of the magnetic shield side wall main bodies is movable and separated from the remaining magnetic shield side wall main bodies.
  • Each of the plurality of magnetic shield side wall bodies includes a magnetic shield outer wall provided with a magnetic body that is combined with each other to form the cylindrical space therein, and the cylinder from both longitudinal end edges of the magnetic shield outer wall.
  • a magnetic shield side wall having a magnetic body protruding outward in the radial direction with respect to the shaped space, and
  • a conductor extending along the longitudinal axis direction of the cylindrical space is provided on the magnetic shield outer wall of the magnetic shield side wall main body, a current is passed, and the magnetic shield side wall main body on one side passes the current on the other side.
  • Magnetic shield side wall book Disturbing magnetic flux arriving in the horizontal direction to the body is deflected upward or downward by a magnetic field generated around the conductor to prevent the magnetic flux from flowing into the cylindrical space.
  • a separate magnetic shield device is provided.
  • a plurality of partition magnetic shield members having magnetic bodies are disposed between the opposing magnetic shield side walls facing each other of the adjacent magnetic shield side wall main bodies.
  • the magnetic shield outer wall and the joint magnetic shield side wall are formed by providing a magnetic body on a support.
  • the partition magnetic shield member is formed by providing a magnetic body on a support.
  • a coil is wound in a toroidal shape in the longitudinal direction with respect to each magnetic shield side wall main body, and a magnetic shaking current is passed.
  • a magnetic shield flange member is provided at each longitudinal end opening of each of the magnetic shield side wall main bodies, and from the both longitudinal end openings of the magnetic shield side wall main body to the cylindrical space. This prevents the flow of magnetic flux.
  • the magnetic shield flange member is formed by providing a magnetic body on a support.
  • a coil is installed on the magnetic shield flange member to pass an electric current, and the magnetic flux flows into the cylindrical space from the openings at both longitudinal ends of the magnetic shield side wall body. Stop.
  • the magnetic shield side wall adjacent to each other is surrounded by the joint magnetic shield side wall disposed opposite to each other, and the coil is wound along the axial direction to pass a current. Adjacent magnetic shield side The magnetic flux is prevented from flowing into the cylindrical space from the gap formed between the side walls of the joint magnetic shield arranged opposite to each other on the wall body.
  • the cylindrical space is formed by being surrounded by two, four, six, or eight magnetic shield side wall bodies. .
  • the magnetic shield side wall main bodies surrounding the cylindrical space have the same size and shape.
  • the first magnetic shield side wall main body and the second magnetic shield side wall main body are provided, and the first magnetic shield side wall main body and the second magnetic shield side wall main body are arranged to face each other.
  • a substantially cylindrical space is formed around the longitudinal axis extending horizontally in the interior, and at least one of the magnetic shield side wall bodies can be moved and separated from the other magnetic shield side wall body. In the separated magnetic shield device,
  • Each of the first and second magnetic shield side wall main bodies includes a curved magnetic shield outer wall provided with a magnetic body that forms the cylindrical space in an opposed state, and a curved magnetic shield outer wall.
  • a magnetic shield side wall that includes magnetic bodies that protrude in a vertical direction from upper and lower edge portions and face each other in a state of being opposed to each other;
  • the curved magnetic shield outer wall of the first magnetic shield side wall body is provided with first and second conductors extending along the longitudinal axis direction, and a current is passed therethrough.
  • the curved magnetic shield outer wall of the second magnetic shield side wall main body is provided with first and second conductors extending along the longitudinal axis direction, and a current is passed therethrough.
  • Disturbing magnetic flux arriving in the horizontal direction from the first magnetic shield side wall body to the second magnetic shield side wall body is generated around the first and second conductors.
  • a separation type magnetic shield device is provided that is deflected in the vertical direction by a magnetic field to prevent the magnetic flux from flowing into the cylindrical space.
  • the first magnetic shield side wall main body and the second magnetic shield side wall main body have a symmetrical shape with respect to a vertical plane passing through the longitudinal axis of the cylindrical space.
  • a plurality of magnetic shield members each having a magnetic material are disposed between the two magnetic shield sidewalls facing each other of the first and second magnetic shield sidewall bodies.
  • the curved magnetic shield outer wall and the joint magnetic shield side wall are formed by providing a magnetic body on a support.
  • the partition magnetic shield member is formed by providing a magnetic body on a support.
  • a coil is wound in a toroidal shape in the axial direction with respect to the first and second magnetic shield side wall bodies, and a magnetic seeking current is passed.
  • a magnetic shield flange member is provided at both axial opening portions of the first and second magnetic shield side wall bodies, and both axial opening ends of the first and second magnetic shield side wall bodies are provided. Prevents magnetic flux from flowing into the cylindrical space.
  • the magnetic shield flange member is formed by providing a magnetic body on a support.
  • a coil is disposed on the magnetic shield flange member to pass an electric current, and the magnetic flux flows into the cylindrical space from both axial opening ends of the first and second magnetic shield side wall bodies. To prevent.
  • the joint magnetic shield side walls disposed opposite to each other of the first and second magnetic shield side wall bodies are enclosed, and are along the axial direction.
  • the coil is wound to pass a current, and the magnetic flux flows into the cylindrical space from the gap formed between the joint magnetic shield side walls opposed to the first and second magnetic shield side walls. Stop.
  • the separation type magnetic shield device of the present invention has high accessibility to the magnetic shield space, and the magnetic shield is achieved very effectively.
  • FIG. 1 (a) is an overall configuration diagram of an embodiment of a separation type magnetic shield device according to the present invention
  • FIG. 1 (b) is a schematic configuration diagram of the separation type magnetic shield device.
  • FIG. 2 is a view showing a state where one magnetic shield side wall main body is removed in the separation type magnetic shield device of FIG.
  • FIG. 3 is an overall configuration diagram of another embodiment of the separation type magnetic shield apparatus according to the present invention.
  • FIG. 4 is a schematic configuration diagram for explaining a specific configuration of the separation-type magnetic shield device according to the present invention.
  • FIG. 5 is a diagram for explaining the configuration of the magnetic shield side wall main body
  • Fig. 5 (b) is a diagram for explaining the configuration of the partition magnetic shield member
  • Fig. 5 (c) is a view for explaining the configuration of a magnetic shield flange member.
  • FIGS. 6 (a) and 6 (b) are diagrams for explaining the configuration of another embodiment of the magnetic shield side wall body.
  • FIG. 7 (a) is an overall configuration diagram of an embodiment for explaining the configuration of the characteristic part of the separation type magnetic shield device according to the present invention, and FIG. It is a figure for demonstrating the determination method of the electric current to flow.
  • FIG. 8 is a magnetic flux diagram in accordance with the configuration of the present invention.
  • FIG. 9 is a magnetic flux diagram when the configuration of the present invention is not searched.
  • FIGS. 10 (a), (b), and (c) are overall configuration diagrams for explaining another embodiment of the separation type magnetic shield apparatus according to the present invention.
  • FIGS. 11 (a) to (c) are magnetic flux diagrams for explaining the principle of the present invention.
  • FIG. 12 is an overall configuration diagram showing an example of a conventional separation-type magnetic shield device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 (a) is an overall configuration diagram showing an embodiment of a separation-type magnetic shield device 1 according to the present invention.
  • FIG. 1 (b) is a schematic configuration diagram showing only a main part for explaining the overall configuration of the separation-type magnetic shield device 1 shown in FIG. 1 (a).
  • the separable magnetic shield device 1 of the present invention is arranged so that the longitudinal direction of the entire structure is horizontal, and has a plurality of magnetic shield side wall bodies 2 extending in the longitudinal direction.
  • the magnetic shield side wall body 2 has a first magnetic shield side wall body 2A and a second magnetic shield side wall body 2B extending in the longitudinal direction.
  • the first magnetic shield side wall body 2A and the second magnetic shield side wall body 2B are arranged in an opposed state as shown in the drawing.
  • a substantially cylindrical space S is formed around the longitudinal axis Y—Y extending in the horizontal direction.
  • the first magnetic shield side wall body 2 ⁇ and the second magnetic shield side wall body 2 B are not limited to this, but are preferably in a vertical plane V p passing through the longitudinal axis Y—Y of the cylindrical space S.
  • the shape is symmetrical.
  • the first magnetic shield side wall body 2 A and the second magnetic shield side wall body 2 B are also symmetrical with respect to a horizontal plane H p passing through the longitudinal axis Y—Y of the cylindrical space S. .
  • the separation-type magnetic shield device 1 is similar to the separation-type magnetic shield device 100 described with reference to FIG. 12 and the first magnetic shield side wall body 2 A and the second magnetic shield side wall. Either the main body 2 B or both magnetic shield side wall main bodies 2 A and 2 B can be movable. In the present embodiment, the first magnetic shield side wall body 2A is movable, and the second magnetic shield side wall body 2B is fixed. However, the present invention is not limited to this, and the reverse configuration is also possible.
  • the movable magnetic shield side wall main body 2 A may swing around one end in the longitudinal direction as indicated by a one-dot chain line in FIG. As shown by the alternate long and short dash line in (b), it may be configured to move parallel to the other magnetic shield side wall body 2B in the horizontal direction.
  • FIG. 2 shows a state in which the first magnetic shield side wall body 2 A is removed to show the inside of the separation type magnetic shield device 1.
  • the magnetocardiograph 20 0 for example, SQUID, which is located at a substantially central portion in the longitudinal direction of the separation type magnetic shield device 1 and has a substantially cylindrical shape from above the device.
  • a magnetometer is inserted into the internal space S of the separate magnetic shield device 1 and attached.
  • a bed 20 1 for placing the subject is provided at a predetermined distance from the lower end of the magnetocardiograph 200.
  • the bed 20 1 may be fixed to the fixed second magnetic shield side wall body 2 B.
  • the separation type magnetic shield apparatus 1 itself may not be provided with a fixed bed, and the bed carrying the subject may be carried into the separation type magnetic shield apparatus 1.
  • the separation-type magnetic shield device 1 of the present embodiment the subject, or the subject and the bed, separated the first magnetic shield side wall body 2A and the second magnetic shield side wall body 2B. It can be carried into the separate magnetic shield device 1 in the state, which is very convenient.
  • the magnetic shield side wall body 2 (2A, 2B) will be described.
  • the first magnetic shield side wall main body 2 A and the second magnetic shield side wall main body 2 B are preferably left-right and vertically symmetrical in this embodiment.
  • the first and second magnetic shield side wall bodies 2 A and 2 B will be collectively referred to as the magnetic shield side wall body 2 unless it is particularly necessary to distinguish them. '
  • the magnetic shield side wall body 2 includes a magnetic shield outer wall 3 that is curved in this embodiment to form a cylindrical space S of the separation type magnetic shield device 1, and It has flat joint magnetic shield side walls 4 (4 a, 4 b) that protrude vertically upward and downward from the upper and lower edges of the curved magnetic shield outer wall 3.
  • the first and second magnetic shield side wall main bodies 2 A and 2 B are formed to have left-right and up-down symmetrical shapes. Therefore, the junction magnetic shield side walls 4a and 4b are also the same size and shape.
  • the inner peripheral surface side that is a concave surface is referred to as the inner side
  • the outer peripheral surface side that is the convex surface is referred to as the outer side.
  • the magnetocardiograph 200 is connected to the inside of the separation type magnetic shield device 1 from the gap portion of the magnetic shield side walls 4a, 4a formed at the substantially central portion in the longitudinal direction of the separation type magnetic shield device 1. Installed by inserting into the head.
  • the gap between the magnetic shield side walls 4 a and 4 a located at the upper side should be narrow as will be described in detail later. For this reason, as understood with reference to FIG. 1 and FIG.
  • the gaps between the magnetic shield side walls 4a and 4a of both joints extend in the longitudinal direction of the separation type magnetic shield device 1, and the partition magnets are positioned at approximately the same height as the magnetic shield side walls 4a and 4a.
  • a plurality of shield members 5 are arranged at equal intervals (wl) in the present embodiment.
  • Magnetic shield Side wall 4 Curved to the side of side a, and attached opening 8 for magnetocardiograph 2 0 0 Form.
  • a place where the density of the magnetic flux lines is the thinnest is formed in the substantially central portion of the cylindrical space portion s of the separation-type magnetic shield device 1.
  • the shape is symmetrical in the horizontal and vertical directions so that the gradient is substantially zero.
  • the magnetocardiograph 200 is not installed, and the gaps of both joint magnetic shield side walls 4b and 4b disposed below are also installed.
  • the separation type magnetic shield device 1 extends in the longitudinal direction and has a plurality of partition magnetic shield members 5 at the same height as the joint magnetic shield side walls 4 b, 4 b, two in this embodiment. Are arranged at equal intervals (wl).
  • the partition magnetic shield member 5 is curved in a U-shape and has an opening 8 corresponding to the position of the magnetocardiograph. a is produced.
  • magnetic shield flange members 6 can be provided at the openings in the axial direction both ends of the first and second magnetic shield side wall bodies 2.
  • flange members 6 having a predetermined width are provided at both ends in the longitudinal direction of the curved magnetic shield outer wall 3 so as to protrude into the cylindrical space S in the radial direction.
  • This flange member 6 also has a function to reinforce the magnetic shield side wall body 2, and in particular, by providing the flange member 6, a disturbance magnetic field coming from the Y—Y axis (see FIG. 1 (b)) direction. However, it has a function of preventing flow into the cylindrical space S. Further, as will be described later, a coil 41 can be wound around the flange member 6 to allow a current to flow, and a disturbance magnetic field coming from the Y-Y axis direction can be suppressed.
  • the magnetic shield side wall body 2 (2A, 2B) composed of the curved magnetic shield outer wall 3 and the upper and lower joint magnetic shield side walls 4a, 4b
  • the outer surface 3 of the shield and on the support 21 having the same shape as the upper and lower magnetic shield side walls 4 (4a, 4b), and the surface (outer surface and inner surface) of the support 21 It can be constituted by the arranged magnetic body 22.
  • magnetic bodies 22 are arranged in layers only on the outer surface to form a magnetic layer.
  • the support 21 includes a curved member 2 1 a that is curved, and a joining member 2 1 b that projects vertically from the curved member 2 1 a in the vertical direction, and the outer peripheral surface of the curved member 2 1 a.
  • the magnetic layer 22 is disposed on the outer surface of the joining member 21b.
  • the partition magnetic shield member 5 is also formed by arranging the magnetic body 22 on the surface (inner surface and / or outer surface) of the support 24 having the same shape as the member 5 as shown in FIG. 5 (b). .
  • the magnetic layer 22 is provided on both sides.
  • the magnetic shield flange member 6 is also disposed on the support 21c having the same shape as the member 6 and the surface (outer surface and inner surface) of the support 21c.
  • the magnetic body 22 can be constituted.
  • magnetic bodies 22 are arranged in a layered manner only on the outer surface to form a magnetic layer.
  • the support 21c is integrated with the curved member support 21a of the curved magnetic shield outer wall 3.
  • paper, resin, FR P, nonmagnetic metal, and other various materials can be preferably used.
  • a magnetic material such as permalloy can be used as the magnetic body 22.
  • a magnetic material such as permalloy
  • the magnetic body 22 for the purpose of reducing the weight, the magnetic body 22.
  • the magnetic layer constituting the magnetic body 22 is preferably formed by laminating the magnetic ribbons as described above in layers.
  • the magnetic layer 22 will be described in detail later, but in the same manner as the configuration described later, it is preferable that a plurality of magnetic layers each having a thickness of 20 mm or more and 5 0 ⁇ ⁇ ⁇ or less are stacked. Structured.
  • FIG. 6 (a) only the upper part of the first and second magnetic shield side wall bodies 2A, 2B is shown, and the lower part is omitted. However, a similar structure can be formed in the lower part. In this case, the disturbance magnetic field coming from below passes through the gaps in the magnetic shield side walls 4 b and 4 b of both joints and enters the cylindrical space S. It is possible to effectively prevent the inflow.
  • a magnetic body 22 is disposed to form a magnetic layer.
  • the magnetic body 2 2 is composed of an inner magnetic layer 2 2 A disposed in the vicinity of the support 21 and an outer side of the inner magnetic layer 2 2 A, for example, an epoxy resin adhesive. And outer magnetic layer 2 2 B bonded with agent 25 or the like.
  • the inner magnetic layer 2 2 A and the outer magnetic layer 2 2 B themselves may be made of, for example, 20 to 30 m thick magnetic ribbons, or depending on the size of the side wall body to be produced. Laminate the above number of layers, and also these Laminates can be constructed by overlapping double or triple layers.
  • the inner magnetic layer 2 2 A is composed of a magnetic layer 2 2 A a fixedly disposed on the bending member 2 1 a of the support 2 1, and the magnetic layer 2 2 A a. And a magnetic layer 2 2 Ab that is fixedly disposed so as to extend to the upper part of the bonding member 21 b of the support.
  • the outer magnetic layer 2 2 B is composed of the magnetic layer 2 2 B a fixedly disposed on the magnetic layer 2 2 A a of the inner magnetic layer 2 2 A with an adhesive 25, and the magnetic layer 2 2 B b extending upward from the inner magnetic layer 2 2 A, the magnetic layer 2 2 A b fixed to the magnetic layer 2 2 A b by the adhesive 2 5, and the inner magnetic layer
  • the magnetic layer 2 2 A b of the layer 2 2 A is formed of a magnetic layer 2 2 B c fixedly disposed in the upper portion of the bonding member 2 1 b where the magnetic layer 2 2 A b is not fixedly disposed.
  • the disturbance magnetic field that flows from above into the cylindrical space S through the gaps between the magnetic shield side walls 4a and 4a of the joints is firstly formed on the outer magnetic layer 2 2 formed on the magnetic bond side walls 4a.
  • B is attracted by the magnetic layer 2 2 B c and flows through the magnetic layer 2 2 B b to the magnetic layer B a, that is, flows through the outer magnetic layer 2 2 B to the cylindrical space S. Inflow is prevented.
  • the disturbance magnetic field flowing into the cylindrical space S is attracted by the magnetic layer 2 2 Ab of the inner magnetic layer 2 2 A formed on the bonded magnetic shield side wall 4 a, and the magnetic layer 2 2 A It flows to a, that is, to the inner magnetic layer 2 2 A, and is prevented from flowing into the cylindrical space S.
  • the same structure can be applied to the lower part of the first and second magnetic shield side wall bodies 2A and 2B.
  • the disturbance magnetic field coming from below is applied to both joints. It is possible to efficiently prevent the magnetic shield side walls 4 b and 4 b from flowing into the cylindrical space S through the gaps.
  • a magnetic shaking current can flow through at least the curved magnetic shield outer wall 3 of the magnetic shield side wall body 2.
  • a magnetic material having a rectangular magnetization characteristic can be used as the magnetic body 22.
  • the above-described Co-based amorphous magnetic ribbon for example, Metglass 2705M is preferably used.
  • a magnetic ribbon that is, for example, a glass glass 2 7 0 5M having a width of 50.8 mm and a thickness of 0.02 mm is provided on the support 2 1
  • the curved member 21a is continuously wound around the inner and outer peripheral surfaces of the bending member 21a, and the inner and outer surfaces of the joining member 21b.
  • the layered magnetic body 2 2 that is, the magnetic body layers 2 2 a and 2 2 b are formed surrounding the support 21.
  • the thickness of the magnetic layer 22 is 1 im or more. However, it is usually 2 mm or less from the viewpoint of weight and cost.
  • the magnetic layer 22 preferably has a multilayer structure in which a plurality of magnetic layers having a thickness of 20 ⁇ or more and 500 ⁇ m or less are stacked.
  • a coil 30 for magnetic shaking is wound.
  • the coil 30 is wound in a toroidal manner so as to wind at least a part of the magnetic layer 22.
  • the coil wire may be wound around the outer magnetic layer, that is, wound around the outer layer 2 2 a of the magnetic layer 22 and the support 21 in the axial direction.
  • the coil winding method is not limited to this.
  • the coil wire is wound around the inner magnetic layer 2 2 b, that is, the inner layer 2 2 of the magnetic layer 2 2. It is also possible to wind it so that b and the support 2 1 are surrounded in the axial direction.
  • the shaking current generating coil 30 of each magnetic shield side wall body 2 has a shaking current so as to give the magnetic layer 22 2 a shaking time of, for example, 50 Hz or more of commercial frequency and 10 KHz or less. Supplied.
  • the magnetic shield side wall body 2 uses a 5 mm thick carbon fiber reinforced resin composite (CFRP) as the support 2 1, and a mate glass with a width of 50.8 mm and a thickness of 0.02 mm 2 7 0 5M
  • CFRP carbon fiber reinforced resin composite
  • the inner surface and the outer peripheral surface of the bending member 21a in the support 21 and the inner surface and the outer surface of the joining member 21b are continuously covered so as to cover the entire surface of the support 21. I tightened it.
  • Curved magnetic shield inner diameter of shield outer wall 3 (D) 60 cm Curved magnetic shield outer wall 3 axial length (L) 1 80 cm Bonded magnetic shield, width of shield sidewall 4 (HI) 2 0 C m junction magnetic sheath, —Separation interval between side walls 4 and 4 (W) 3 0 C m partition magnetic sheath, width of shield member 5 (H 2) 2 0 C m partition magnetic sheath, shield member 5 Installation interval (w 1) 1 0 C m Partition magnetic casing, width of opening 8 of shield member 5 (w 2) 2 8 C m Partition magnetic casing, width of opening 8 of shield member 5 (w 3) 2 8 C m
  • the curved magnetic shield outer walls 3 of the first and second magnetic shield side wall bodies 2A, 2B, Conductors 10 (1 0 a, 1 0 b, 1 0 c, 1 0 d) are arranged on the outer peripheral surface 3 (inner peripheral surface as required). Further, according to this embodiment, the conductors 10 a and 10 b and the conductors 10 c and 10 d are connected and coiled, and are predetermined by a power source 50 (50 A, 5 OB). Current i is supplied.
  • the conductors 1 0 a and 1 0 b and the conductors 1 0 c and 1 0 d are supplied with the same current i from the power source 5 0 (5 0 A, 5 0 B). It can be changed accordingly.
  • the conductors 10 a, 10 b, 10 c, and 10 d can be connected to different power sources, and the energization current can be adjusted to the optimum value.
  • conductors 1 0 a, 1 0 b, 1 0 c, 1 0 d are arranged at predetermined intervals in the vertical and laterally symmetrical positions, and the conductors 1 0 a, 1 0 c Current flows from the near side to the far side in the drawing, and the conductors 10 b and 10 d flow from the far side to the near side in the drawing.
  • the conductors a and b, and the conductors c and d are each composed of a coil of 20 turns, and a total current of 10 to 20 A flows through each coil. Good results could be obtained.
  • the curved magnetic shield outer wall 3 of the first magnetic shield side wall body 2 A has a horizontal plane H p passing through the longitudinal axis Y—Y of the cylindrical space S.
  • first and second conductors 10 a and 10 b that extend along the longitudinal axis are provided at symmetrical positions.
  • the curved magnetic shield outer wall 3 of the second magnetic shield side wall body 2 B is also vertically symmetrical with respect to the horizontal plane H p passing through the longitudinal axis Y—Y of the cylindrical space S.
  • First and second conductors 10 c and 10 d extending along the axial direction are provided.
  • the magnetic flux (H) formed in the horizontal direction from the first magnetic shield side wall main body 2A to the second magnetic shield side wall main body 2B is transferred to the first and second conductors 10a, 10b. , And extended by the magnetic field generated around the conductors 10 c and 10 d to prevent the magnetic flux from flowing into the cylindrical space S.
  • the X axis is perpendicular to the shield side wall extending in the horizontal direction
  • the Y axis is the cylindrical axis direction (ie, the longitudinal axis Y ⁇ direction of the cylindrical space S in FIG. 1B).
  • the vertical axis is in the vertical direction.
  • the magnetic field sensor 300 can be a fluxgate orthogonal magnetic field sensor or the like.
  • a magnetic field sensor combined with three axes orthogonal to X, ⁇ , and ⁇ , that is, a three-axis magnetic field sensor is used. Using.
  • magnetic field sensors 3 0 0 (3 0 0 ⁇ , 3 00 ⁇ , 3 0 0 C, 3 0 0 D) are connected to the magnetic shield side walls of the separation type magnetic shield device 1.
  • the magnetic field sensor 300 can be set at two appropriate locations above and below.
  • each magnetic field sensor 300 The sum of each component measured by each magnetic field sensor 300 is taken and averaged. For example, the value of each magnetic field sensor 300 in the X axis direction, xl, x2, x3, x4 From the average value, the currents of the side conductors (coils) 10 a, 10 b, 10 c, and 10 d can be determined. Since a technique for controlling the current of each conductor based on the measured value of each magnetic field sensor 300 using, for example, a PID control system is well known to those skilled in the art, further explanation is omitted.
  • FIG. 8 is a magnetic flux diagram showing the magnetic shielding effect according to the present invention when the conductors 10 a, 10 b, 10 c and 10 d are energized.
  • the optimum positions of the conductors 10 a, 10 b, 10 c, and 10 d are determined by experiments or the like depending on the configuration of the separate magnetic shield device 1. Normally, as shown in FIG. 8, the position of 30 ° to 60 °, usually 45 °, with respect to the horizontal plane Hp, with respect to the longitudinal axis center Ot of the separation type magnetic shield device 1 is preferable. However, it is not limited to this.
  • the magnetic flux (H) coming from left to right in FIG. 8 is generated from the conductors 10 0 a, 1 0 b, and the conductors 1 0 c, 1 0. It is deflected in the vertical direction by the magnetic field generated by d and does not pass through the outer wall 3 of the curved magnetic shield.
  • the shielding effect is achieved by the configuration of the present invention.
  • the relative magnetic permeability 10 00 0 0 (the same applies to the configuration of FIG. 9), the thickness of the magnetic body 2 2, 2 mm Diameter (D) 60 cm, upper and lower joint magnetic shield side wall 4 (4 a, 4 b) width (HI) 20 cm (in this embodiment, partition magnetic shield member 5 is not provided), joint A shield ratio of 100 or more was achieved when the magnetic shield sidewall 4 (4 a 4 b) was 30 cm apart. Furthermore, according to the configuration in which magnetic shaking is performed, the relative permeability reaches 5 0 0, 0 0 0, so these values are extremely realistic.
  • the external far magnetic field (H) is 1 G
  • the gap G of the junction magnetic shield side wall 4 (4a, 4b) is 0.1 G
  • the cylindrical space S is It was less than lm G.
  • the magnetic flux in the axial direction of the cylindrical space S ie, the cylindrical axial direction (perpendicular to the paper surface)
  • the magnetic flux from the vertical direction are described in Non-Patent Document 2 above.
  • the coil 4 1 is installed on the flange member 6, and the coil 4 2 is installed around the magnetic shield side walls 4 and 4, and the antiphase It is possible to easily compensate for the performance with a magnetic field.
  • the coils 4 1 and 4 2 are detachably connected.
  • the present invention effectively combines the action of attracting the magnetic flux of the ferromagnetic material and the action of repelling the magnetic flux of the current to forcibly bypass the magnetic flux at the discontinuous point even if the magnetic substance is not continuous. Realizing magnetic shield performance.
  • the high-performance separated magnetic shield device of the present invention provides high accessibility to the shield space and can be applied in a wide range of fields.
  • an electron beam exposure apparatus in the industry an environmental magnetic field countermeasure of an electron microscope in a large size, a human brain magnetic field, a cardiac magnetic field measurement in a measurement field, an animal biomagnetic measurement, It can be used for measurement in the nanobio region where magnetic beads are used as labels.
  • the separation type magnetic shield device 1 is arranged so that the longitudinal direction of the entire structure is horizontal, and the magnetic shield side wall body 2 is the first magnetic shield side wall extending in the longitudinal direction.
  • Body 2 A and second magnetic shield The description has been made assuming that the side wall body 2 B is composed of two divided bodies.
  • the separation-type magnetic shield device 1 of the present invention has, for example, a case where the size of the device is increased, or when it is desired that an opening is formed on the side, for example, FIG.
  • the magnetic shield side wall body 2 can be composed of four, six or eight, or even more.
  • the separation-type magnetic shield device 1 of the present invention has a plurality of magnetic shield side wall main bodies extending in the longitudinal direction, and the plurality of magnetic shield side wall main bodies are combined with each other and have a longitudinal axis extending in the horizontal direction inside.
  • a substantially cylindrical space is formed around the at least one magnetic shield side wall main body, and the magnetic shield side wall main body can be configured to move away from the remaining magnetic shield side wall main body.
  • the separable magnetic shield device 1 shown in FIG. 10 (a) has four magnetic shield side wall bodies 2 (2 A 2 B, 2 C, 2 D), and has four magnetic shield side wall bodies 2. Are combined with each other to form a substantially cylindrical space S around a longitudinal axis extending horizontally in the interior.
  • the separation type magnetic shield device 1 shown in FIG. 10 (b) it has six magnetic shield side wall bodies 2 (2 A, 2 B, 2 C, 2 D, 2 E, 2 F), The six magnetic shield side wall bodies 2 are combined with each other to form a substantially cylindrical space S around the longitudinal axis extending in the horizontal direction inside. Further, in the separated type magnetic shield device 1 shown in FIG. 10 (c), the eight magnetic shield side wall bodies 2 (2 A, 2 B, 2 C, 2 D, 2 E, 2 F, 2 G, 2 H), and the eight magnetic shield side wall bodies 2 are combined with each other to form a substantially cylindrical space S around a longitudinal axis extending in the horizontal direction inside.
  • each magnetic shield side wall body 2 is the same as that in Example 1.
  • the magnetic shield outer wall 3 and the magnetic shield outer wall 3 having the same structure as the magnetic shield side wall body 2 described in the above, each having a magnetic material that is combined with each other to form a cylindrical space S inside.
  • a junction magnetic shield side wall 4 (4a, 4b) provided with a magnetic body projecting radially outward from the both ends in the longitudinal direction with respect to the cylindrical space S.
  • the magnetic shield outer wall 3 of the magnetic shield side wall body 2 is arranged in the longitudinal axis direction of the cylindrical space S in the embodiment of FIG.
  • the conductor 1 0 (1 0 (1 0 a to 1 0 d) extending along the longitudinal axis direction of the cylindrical space S is provided.
  • 1 0 a to 1 0 f) a conductor 1 0 (1 0 a to 1 0 h) extending along the longitudinal axis direction of the cylindrical space S is provided.
  • a current is passed through these conductors in a predetermined direction, and the disturbance magnetic flux arriving in the horizontal direction from the magnetic shield side wall body on one side to the other side is increased by the magnetic field generated around the conductor. It deflects in the direction or downward, preventing the flow of magnetic flux into the cylindrical space S.
  • the conductors 10 a and 10 c are connected from the front side of the drawing to the back side, and the conductors 10 b and 10 d are connected to the back side.
  • the conductors 1 0 a and 1 0 d are from the front side to the back side in the drawing, and the conductors 1 0 c and 1 0 f are from the back side to the front side.
  • the conductors 10 b and 10 e can be determined as appropriate depending on the direction of the disturbance magnetic field. If the disturbance magnetic field is completely horizontal, the current flow can be stopped.
  • the conductors 10 0 a, 1 0 b, 1 0 e, 1 0 f have conductors 10 0 c, 10 0 d, In 1 0 g and 1 O h, current flows from the back side to the front side.
  • the direction of the current is an example, and may be changed as appropriate according to the installation environment of the device. be able to.
  • the magnetic shield outer wall 3, the joint magnetic shield side wall 4, and the partition magnetic shield member 5 are formed by providing a magnetic body on the support as in the case of the first embodiment.
  • each magnetic shield side wall body 2 can be the structure shown in FIG. 6 (a).
  • Fig. 6 (b) it is also possible to pass a magnetic shaking current by winding the coil in a toroidal shape in the longitudinal direction.
  • the magnetic shield flange member 6 shown in FIG. 5 is provided at both ends in the longitudinal direction of the magnetic shield side wall body 2, and this flange member is further provided.
  • a coil can be installed to allow current to flow and prevent the magnetic flux from flowing into the cylindrical space from both ends in the longitudinal direction of the magnetic shield side wall body.
  • the magnetic shield side walls 4 adjacent to each other of the adjacent magnetic shield side wall bodies 2 are surrounded, and along the axial direction. From the gap formed between the magnetic shield side walls 4 (4 a, 4 a; 4 b, 4 b) facing each other in the adjacent magnetic shield side wall body 2 by winding a coil to pass current It is possible to prevent the magnetic flux from flowing into the cylindrical space S.
  • Each magnetic shield side wall body 2 surrounding the cylindrical space S has the same size and shape, and as described in the first embodiment, the circle of the separation type magnetic shield device 1 is used.
  • a space where the density of the magnetic flux lines is the thinnest and the magnetic gradient is substantially zero can be provided in the substantially central portion of the cylindrical space portion s.
  • the magnetic shield side wall body 2 that is, the magnetic shield outer wall 3 has been described as a curved shape, but in some cases, it may be linear (ie, flat) and You can also

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

本発明の目的は、磁気シールド空間への高いアクセス性を有し、磁気シールドが極めて有効に達成される分離型磁気シールド装置を提供することである。分離型磁気シールド装置において、第1磁気シールド側壁本体2Aの湾曲磁気シールド外側壁3には、円筒状空間Sの長手軸線を通る水平面Hpに対して上下対称位置に、長手軸線方向に沿って延在する第1及び第2導体10a、10bを設け、電流を流し、第2磁気シールド側壁本体2Bの湾曲磁気シールド外側壁3には、円筒状空間Sの長手軸線を通る水平面Hpに対して上下対称位置に、長手軸線方向に沿って延在する第1及び第2導体10c、10dを設け、電流を流し、第1磁気シールド側壁本体2Aから第2磁気シールド側壁本体2Bへと水平方向に形成される磁束Hを、第1及び第2導体10a、10b、10c、10dの回りに発生する磁界により、上下方向へと偏向し、円筒状空間Sへの磁束の流れ込みを阻止する。

Description

分離型磁気シールド装置 技術分野
本発明は、 分離型磁気シールド装置に関するものであり、 例えば、 電 子ビーム露光装置、 電子顕微鏡明の環境磁界対策、 また、 計測分野では人 の脳磁界、 心臓磁界計測、 更には、 動物生体磁気計測、 更には、 磁気ビ —ズを標識として用いるナノバイォ領域での計測などに利用することが 書
できる。 背景技術
例えば、 脳や心臓からの人の身体から発せられる磁界は、 重要なリア ルタイム生体情報で、 しかも多くの情報を含んでいる。 例えば心臓磁界 を心磁計、 例えば S Q U I D磁束計 6 4チャンネルで検出すれば、 心臓 の電気生理学的機能を 2次元マップすることが可能である。 また、 その 刺激伝導系を伝って流れる電流べク トルの時間的空間的情報など、 心電 図の波形分析による方法に比べ圧倒的に的確で多様な診断情報の獲得が 可能である。
虚血性心疾患の典型である急性心筋梗塞は、 日本人の 3大死亡原因と されている。 そして、 その治療には高額なハイテクの医療技術が用いら れているが、 的確な診断が早期に可能であれば医療費の大幅な軽減は元 より救命に大きな効果があるものと思われる。
心磁計の開発はまだ日も浅いこともあり、 上記のような多くの可能性 を秘めながら普及はあまり進んでいない。
この原因の 1つは高価で不便なパーマロイでできた部屋型の磁気シー ルドルームにある。 磁気遮蔽性能は脳磁界計測に要求されるほど高い必 要はなく、 べッ ドごと患者を運び込んで計測できるような融通のきく磁 気シールド装置が強く望まれている。
つまり、 健常者はもちろん、 寝たきりの患者からも、 その身体から発 せられる、 例えば、 心臓磁界のよ うな生体磁気の計測に無理なく使用で きる、 部屋形ではない、 分離可動式の高性能な磁気シールド装置の開発 が希求されている。
そこで、 本発明者は、 円筒型で軽量高性能な磁気シールド装置の開発 のために多くの要素技術を開発してきた。 磁気シ イキング技術 (非特 許文献 1)、 シエイキング磁界の漏洩抑制 (非特許文献 2)、 開口端から 侵入する外部起因の磁気雑音の抑制 (非特許文献 3、 4)、 さらには炭素 繊維強化プラスチック (C FR P) を用いた積層構造による磁気シール ドの一体成形 (特許文献 1 ) などである。
一般には、 室内に部屋型シールド装置を後から設置すると床面の高さ が異なり、 べッ ドごと被検者を装置内に運び込むことは容易ではない。 そこで、 特許文献 2に記載するように、 円筒シール ドを単純に 2分割 して可動式にすることが提案されている。 図 1 2に、 左右に分割体を配 置し、 上下位置にて接合する構造とされる分割型シールド装置 1 00の 一例を示す。
本例によると、 分割型シールド装置 1 00は、 左右対称に形成された 2つの磁気シール ド分割体 10 1 (1 0 1 A、 1 0 I B) の少なく とも 一方を可動式とし、 內部空間にべッ ドごと被検者を運び込むことが可能 な構造とされる。
しかしながら、この構成だけでは磁気シールドの機能を維持できなレ、。 なぜならば、 分割型シールド装置 1 00では、 S QU I D磁束計 200 を設置することが必要であり、 2つの分割体 1 0 1 A、 1 0 I Bの間の 接合部には空間が形成される。 従って、 この空間部を渡る磁束 (即ち、 接合部に直交する磁束) を連続的に通すことができず、 そのために、 磁 気シールド効果が破綻するからである。
特許文献 1 :特願 2 0 0 5— 8 0 7 7 5号
特許文献 2 :特開 2 0 0 4— 1 7 9 5 5 0号公報
非特許文献 1 : 笹田一郎、 微弱磁界計測用磁気シニイキング方式磁気シ 一ルドの研究、 日本応用磁気学会誌、 2 7、 8 5 5— 8 6 1 (2 0 0 3) 非特許文 2: Nakashima Y, Kiraura T, Sasada I, Magnetic field leakage from a 45° angle magnetic shell and a reduction method for a high-performance magnetic shield, IEEE Trans. on Magn. 42(10) 3545-3547(2006)
非特許文献 3 : 斎藤拓司、 田代晋久、 笹田一郎、 パッシブシヱル付マル チシ: rルシールドにおける能動捕償効果、 日本応用磁気学会詰、 2 9、 5 6 7 - 5 7 0 (2 0 0 5)
非特許文献 4 : 梅田祐介、 田代晋久、 笹田一郎、 円筒形磁気シールドへ のアクティブ · キャンセルの適用、 電気学会 A、 1 2 3、 ( 8)、 7 9 0 — 7 9 6 (2 0 0 3) 発明の開示
発明が解決しようとする課題
本発明は、 図 1 2に示すような構成の分割型シールド装置が有する上 記問題を解決せんとするものである。 同時にまた、 能動的に発生させた 磁束によって外乱磁界がシールドするべき空間に入らないように偏向さ せ、 一方、 この能動的に発生させた磁界がシールドすべき空間に侵入す るのを抑止するために磁性体を部分的に配置して構成される簡便且つ高 性能な磁気シールドを提供せんとするものである。 一般に、 磁束が一様に存在する場で磁束密度の低い空間を作り出す時 に良く用いられる方法は、 空間に導体を配置して磁束を追い出す向きに 電流を流すことである。 この方法で最適化した一例を図 1 1 (a ) に示 す。
本例では、 4本の導体 1 0 (1 0 a、 1 0 b、 1 0 c、 1 0 d ) が所 定の間隔にて、 上下、 左右対称位置に配置され、 導体 1 0 a、 1 0 cは 図面上、 手前側から奥側へと、 導体 1 0 b、 1 0 dは図面上、 奥側から 手前側へと、 電流が流される。 図 1 1 ( a ) にて、 左側より右側へと通 る水平磁束 Hは、 4本の導体 1 0 ( 1 0 a、 1 0 b、 1 0 c、 1 0 d) で囲包された空間の中心部 Sでは、 磁束線の密度が薄くなつており、 磁 気シールドがなされていることが分かる。
一方、 図 1 1 (b ) には、 4枚の磁性体板 A、 B、 C、 Dを、 互いに 隣接する位置では隙間 Gを設けて矩形状に配置した構成を示す。 この構 成では、ほとんどの磁束が中心部を通過し、シールド効果が得られない。
しかし、 図 1 1 ( c ) は、 図 1 1 ( a ) の構成と図 1 1 (b) の構成 を組み合わせた構成とされる。 図 1 1 ( c ) に示すように、 この構成で は、 4枚の磁性体板 A、 B、 C、 Dで囲包された空間の中心部 Sに磁束 線の密度の薄い場所が形成され、 全く予想さえしない高いシールド比が 得られていることが分かる。
これは、 導体 1 0 a、 1 0 b、 1 0 c、 1 0 dを流れる電流で磁束を 追い出すと共に、 シールドしたい空間 (中心部 S)側には磁性体 A、 B、 C、 Dによって不要な磁束がはみ出さないように抑制したからである。 このように、 電流と磁性体の関係を上手く設計することによって、 電 流が磁束を排除する効果を特定の方向に局在化できることが分かった。 つまり、 図 1 1 ( c ) に示す構成では、 上部に設けられた二つの導体 1 0 a、 1 0 じ と磁性体板 、 Cとの組合せ構造が磁束線 Hを上方へ、 また、 下部に設けられた二つの導体 1 0 b、 1 0 dと磁性体板 B、 Dと の組合せ構造が磁束線 Hを下方へと排除した結果、 中央に広い磁気シー ルド空間 Sが生み出されたのである。
本発明は、 このよ うな、 電流の作用と磁性体の作用を上手く組み合わ せることによって磁気シールドが極めて有効に達成されるといった本発 明者の新規な知見に基づく ものである。
本発明の目的は、 磁気シールド空間への高いアクセス性を有し、 磁気 シールドが極めて有効に達成される分離型磁気シールド装置を提供する ことである。 課題を解決するための手段
上記目的は本発明に係る分離型磁気シールド装置にて達成される。 要 約すれば、 本発明によれば、 長手方向に延在する磁気シールド側壁本体 を複数有し、 前記複数の磁気シールド側壁本体は、 互いに組み合わされ て内部に水平方向に延びる長手軸線の回りに略円筒状の空間を形成し、 少なくともいずれか一つの前記磁気シールド側壁本体は、 残りの前記磁 気シールド側壁本体に対して移動して離間可能とされる分離型磁気シー ルド装置において、
前記複数の磁気シール ド側壁本体は、 それぞれ、 互いに組み合わされ て内部に前記円筒状空間を形成する磁性体を備えた磁気シールド外側壁 と、 前記磁気シールド外側壁の長手方向両端縁部から前記円筒状空間に 対して半径方向外方へと突出した磁性体を備えた接合部磁気シールド側 壁と、 を備え、
前記磁気シールド側壁本体の前記磁気シールド外側壁には、 前記円筒 状空間の前記長手軸線方向に沿って延在する導体を設け、 電流を流し、 一側の前記磁気シールド側壁本体から他側の前記磁気シールド側壁本 体へと水平方向に到来する外乱磁束を、 前記導体の回りに発生する磁界 により、 上方向又は下方向へと偏向し、 前記円筒状空間への磁束の流れ 込みを阻止することを特徴とする分離型磁気シールド装置が提供される。 本発明の一実施態様によれば、 隣り合った前記磁気シールド側壁本体 の対向した両前記接合部磁気シールド側壁の間に複数の、 磁性体を備え た仕切磁気シールド部材を配置する。
本発明の他の実施態様によれば、 前記磁気シールド外側壁及び前記接 合部磁気シールド側壁は、 支持体に磁性体を設けることにより形成され る。
本発明の他の実施態様によれば、 前記仕切磁気シールド部材は、 支持 体に磁性体を設けることにより形成される。
本発明の他の実施態様によれば、 各前記磁気シールド側壁本体に対し て、 前記長手方向にトロイダル状にコイルを卷回し、 磁気シエイキング 電流を流す。
本発明の他の実施態様によれば、 各前記磁気シールド側壁本体の長手 方向両端開口部に、 磁気シールドフランジ部材を設け、 前記磁気シール ド側壁本体の長手方向両端開口部から前記円筒状空間への磁束の流れ込 みを阻止する。
本発明の他の実施態様によれば、 前記磁気シールドフランジ部材は、 支持体に磁性体を設けることにより形成される。
本発明の他の実施態様によれば、 前記磁気シールドフランジ部材にコ ィルを設置して電流を流し、 前記磁気シールド側壁本体の長手方向両端 開口部から前記円筒状空間への磁束の流れ込みを阻止する。
本発明の他の実施態様によれば、 隣り合った前記磁気シールド側壁本 体の対向配置された前記接合部磁気シールド側壁を囲包して、 軸線方向 に沿ってコイルを卷回して電流を流し、 隣り合つた前記磁気シールド側 壁本体の対向配置された前記接合部磁気シールド側壁間に形成された空 隙部から前記円筒状空間への磁束の流れ込みを阻止する。
本発明の他の実施態様によれば、 前記円筒状空間は、 2個、 4個、 6 個、 又は、 8個の前記磁気シールド側壁本体にて囲包されることによつ て形成される。
本発明の他の実施態様によれば、 前記円筒状空間を囲包する各前記磁 気シールド側壁本体は、 同じ寸法、 形状とされる。
好ましい本発明の一態様によれば、 第 1磁気シールド側壁本体と第 2 磁気シールド側壁本体を有し、 前記第 1磁気シールド側壁本体と第 2磁 気シールド側壁本体は、 対向配置された状態にて内部に水平方向に延び る長手軸線の回りに略円筒状の空間を形成し、 少なく ともいずれかの前 記磁気シールド側壁本体は、 他方の磁気シールド側壁本体に対して移動 して離間可能とされる分離型磁気シールド装置において、
前記第 1及び第 2磁気シールド側壁本体は、 それぞれ、 対向配置され た状態にて内部に前記円筒状空間を形成する磁性体を備えた湾曲磁気シ ールド外側壁と、 前記湾曲磁気シールド外側壁の上下端縁部から垂直方 向に突出し、 対向配置された状態にて互いに離間して対面する磁性体を 備えた接合部磁気シールド側壁と、 を備え、
前記第 1磁気シールド側壁本体の前記湾曲磁気シールド外側壁には、 前記長手軸線方向に沿って延在する第 1及び第 2導体を設け、 電流を流 し、
前記第 2磁気シールド側壁本体の前記湾曲磁気シールド外側壁には、 前記長手軸線方向に沿って延在する第 1及び第 2導体を設け、 電流を流 し、
前記第 1磁気シールド側壁本体から前記第 2磁気シールド側壁本体へ と水平方向に到来する外乱磁束を、 前記第 1及び第 2導体の回りに発生 する磁界により、 上下方向へと偏向し、 前記円筒状空間への磁束の流れ 込みを阻止することを特徴とする分離型磁気シールド装置が提供される。 好ましくは、 一実施態様によれば、 前記第 1磁気シールド側壁本体と 第 2磁気シールド側壁本体は、 前記円筒状空間の前記長手軸線を通る垂 直平面に対して左右対称形状とされる。
他の実施態様によれば、 前記第 1及び第 2磁気シールド側壁本体の対 向した两前記接合部磁気シールド側壁の間に複数の、 磁性体を備えた仕 切磁気シールド部材を配置する。
他の実施態様によれば、 前記湾曲磁気シールド外側壁及び前記接合部 磁気シールド側壁は、 支持体に磁性体を設けることにより形成される。 他の実施態様によれば、 前記仕切磁気シールド部材は、 支持体に磁性 体を設けることにより形成される。
他の実施態様によれば、 前記第 1及び第 2磁気シール 'ド側壁本体に対 して、 前記軸線方向にトロイダル状にコイルを卷回し、 磁気シヱイキン グ電流を流す。
他の実施態様によれば、 前記第 1及び第 2磁気シールド側壁本体の軸 線方向両端開口部に、 磁気シールドフランジ部材を設け、 前記第 1及び 第 2磁気シールド側壁本体の軸線方向両端開口部から前記円筒状空間へ の磁束の流れ込みを阻止する。
他の実施態様によれば、 前記磁気シールドフランジ部材は、 支持体に 磁性体を設けることにより形成される。
他の実施態様によれば、 前記磁気シールドフランジ部材にコイルを設 置して電流を流し、 前記第 1及び第 2磁気シールド側壁本体の軸線方向 両端開口部から前記円筒状空間への磁束の流れ込みを阻止する。
他の実施態様によれば、 前記第 1及び第 2磁気シールド側壁本体の対 向配置された前記接合部磁気シールド側壁を囲包して、 軸線方向に沿つ てコイルを卷回して電流を流し、 前記第 1及び第 2磁気シールド側壁本 体の対向配置された前記接合部磁気シールド側壁間に形成された空隙部 から前記円筒状空間への磁束の流れ込みを阻止する。 発明の効果
本発明の分離型磁気シールド装置は、 磁気シールド空間への高いァク セス性を有し、 磁気シールドが極めて有効に達成される。 図面の簡単な説明
図 1 (a ) は、 本発明に係る分離型磁気シールド装置の一実施例の全 体構成図であり、 図 1 (b ) は、 分離型磁気シールド装置の概略構成図 である。
図 2は、 図 1の分離型磁気シールド装置にて一方の磁気シールド側壁 本体を除去した状態を示す図である。
図 3は、 本発明に係る分離型磁気シールド装置の他の実施例の全体構 成図である。
図 4は、 本発明に係る分離型磁気シールド装置の具体的構成を説明す るための概略構成図である。
図 5 (a ) は、 磁気シールド側壁本体の構成を説明するための図であ り、 図 5 (b ) は、 仕切磁気シールド部材の構成を説明するための図で あり、 図 5 ( c ) は、 磁気シールドフランジ部材の構成を説明するため の図である。
図 6 (a )、 (b) は、 磁気シール ド側壁本体の他の実施例の構成を説 明するための図である。
図 7 (a) は、 本発明に係る分離型磁気シールド装置の特徴部の構成 を説明するための一実施例の全体構成図であり、 図 7 (b) は、 導体に 流す電流の決定方法を説明するための図である。
図 8は、 本発明の構成に従った場合の磁束線図である。
図 9は、 本発明の構成を探用しない場合の磁束線図である。
図 1 0 (a )、 (b)、 ( c ) は、 本発明に係る分離型磁気シールド装置 の他の実施例を説明する全体構成図である。
図 1 1 ( a ) 〜 ( c) は、 本発明の原理を説明するための磁束線図で ある。
図 1 2は、 従来の分離型磁気シールド装置の一例を示す全体構成図で ある。 発明を実施するための最良の形態
以下、 本発明に係る分離型磁気シールド装置を図面に則して更に詳し く説明する。
実施例 1
(分離型磁気シールド装置の全体構成)
図 1 (a) は、 本発明に係る分離型磁気シール ド装置 1の一実施例を 示す全体構成図である。 図 1 (b) は、 図 1 (a ) に示す分離型磁気シ ールド装置 1の全体構成を説明するための主要部のみを示す概略構成図 である。
本発明の分離型磁気シールド装置 1は、 その全体構造の長手方向が水 平となるように配置されており、 長手方向に延在する磁気シールド側壁 本体 2を複数有する。 図 1 (a )、 (b ) に示す本実施例によると、 磁気 シールド側壁本体 2は、 長手方向に延在した第 1磁気シールド側壁本体 2 Aと第 2磁気シールド側壁本体 2 Bを有する。
本実施例によると、 第 1磁気シールド側壁本体 2 Aと第 2磁気シール ド側壁本体 2 Bは、 図示するように、 対向配置された状態にて、 内部に 水平方向に延びる長手軸線 Y— Yの回りに略円筒状の空間 Sを形成する。 第 1磁気シールド側壁本体 2 Αと第 2磁気シールド側壁本体 2 Bは、 これに限定されるものではないが、 好ましくは、 円筒状空間 Sの長手軸 線 Y— Yを通る垂直平面 V pに対して左右対称形状とされる。 又、 好ま しくは、 第 1磁気シールド側壁本体 2 Aと第 2磁気シールド側壁本体 2 Bは、 円筒状空間 Sの長手軸線 Y— Yを通る水平面 H pに対しても上下 対称形状とされる。
本実施例のように、 第 1磁気シールド側壁本体 2 Aと第 2磁気シール ド側壁本体 2 Bを、 左右及び上下対称形状とした場合には、 詳しくは、 後述するように、 分離型磁気シールド装置 1の円筒形状をした空間部 S の略中央部に磁束線の密度の最も薄い場所が形成される。 また、 この場 合には、 磁気勾配が実質的にゼロとなる空間を提供することができる。 本実施例にて、 分離型磁気シールド装置 1は、 図 1 2を参照して説明 した分離型磁気シールド装置 1 0 0と同様に、 第 1磁気シールド側壁本 体 2 Aと第 2磁気シールド側壁本体 2 Bのいずれか、 或いは、 両磁気シ ールド側壁本体 2 A、 2 Bとも可動とすることができる。本実施例では、 第 1磁気シールド側壁本体 2 Aが可動とされ、 第 2磁気シールド側壁本 体 2 Bが固定とされる。 ただ、 これに限定されるものではなく、 その逆 の構成としても良い。
また、 離間態様としては、 例えば、 可動の磁気シールド側壁本体 2 A は、 図 1 ( a ) に一点鎖線にて示すように、 長手方向一端を中心として 揺動しても良く、 或いは、 図 1 ( b ) に一点鎖線にて図示するように、 他方の磁気シールド側壁本体 2 Bに対して水平方向に平行に移動する構 成とすることもできる。
図 2には、 分離型磁気シールド装置 1 の内部を示すために、 第 1磁気 シールド側壁本体 2 Aを除去した状態を示す。 図 1及ぴ図 2に示すように、 本実施例では、 分離型磁気シールド装置 1の長手方向略中央部に位置して、 装置上方から略円筒形状をした心磁 計 2 0 0、 例えば S Q U I D磁束計が分離型磁気シールド装置 1の内部 空間 Sへと挿入して取り付けられる。 また、 心磁計 2 0 0の下方端から 所定の距離離間して、 被検者を載置するためのべッ ド 2 0 1が設けられ る。 ベッ ド 2 0 1は、 固定の第 2磁気シールド側壁本体 2 Bに固定して も良い。 場合によっては、 分離型磁気シールド装置 1 自体には固定のベ ッ ドを設けずに、 被検者を載せたべッドを分離型磁気シールド装置 1内 へと運び込む構成とすることもできる。 本実施例の分離型磁気シールド 装置 1によれば、 被検者、 或いは、 被検者とベッ ドは、 第 1磁気シール ド側壁本体 2 Aと第 2磁気シールド側壁本体 2 Bとを離間した状態にて 分離型磁気シールド装置 1の内へと運び込むことができ、 極めて好便で める。
(磁気シールド側壁本体)
次に、 磁気シールド側壁本体 2 ( 2 A、 2 B ) について説明する。 上述のように、 第 1磁気シールド側壁本体 2 Aと第 2磁気シールド側 壁本体 2 Bは、 本実施例では、 好ましくは、 左右及ぴ上下対称形状とさ れるので、 以下の説明では、 第 1及び第 2磁気シールド側壁本体 2 A、 2 Bを、 特に、 区別することを必要としない場合には、 磁気シールド側 壁本体 2と総称して説明する。'
図 1及び図 2を参照すると、 磁気シールド側壁本体 2は、 分離型磁気 シールド装置 1の円筒状空間 Sを形成するための、 本実施例では湾曲状 とされる磁気シールド外側壁 3と、 この湾曲磁気シールド外側壁 3の上 下端縁部より上方及び下方へと垂直方向に突出した平板状の接合部磁気 シールド側壁 4 ( 4 a、 4 b ) とを有する。 上述したように、 第 1及び 第 2磁気シールド側壁本体 2 A、 2 Bは、 左右及び上下対称形状とされ るので、 接合部磁気シールド側壁 4 a、 4 b も又、 同じ寸法形状とされ る。
なお、 本明細書にて便宜上、 湾曲磁気シールド外側壁 3にて、 凹面と される内周面側を内側と呼び、 凸面とされる外周面側を外側と呼ぶ。 上記構成の第 1磁気シールド側壁本体 2 A及び第 2磁気シールド側壁 本体 2 Bを互いに対向させて配置した場合、 両湾曲磁気シールド外側壁 3、 3が対向配置されて、 内部に、 水平方向に延在する長手軸線 Y— Y の回りに略円筒状の空間部 Sを形成する。 また、 このとき、 湾曲磁気シ ールド外側壁 3の上方位置に設けられた両接合磁気シールド側壁 4 ( 4 a、 4 a ) は、 所定の距離 (w ) (図 4参照) だけ離間して配置される。 従って、 心磁計 2 0 0は、 分離型磁気シールド装置 1の長手方向略中 央部に形成される両接合部磁気シールド側壁 4 a、 4 aの空隙部から分 離型磁気シールド装置 1 の内部へと挿入して取り付けられる。
なお、 上方に位置した両接合部磁気シールド側壁 4 a、 4 a の空隙部 は、 詳しくは後述するように狭い方が良く、 そのために、 図 1及び図 4 を参照すると理解されるように、 両接合部磁気シールド側壁 4 a、 4 a の空隙部には分離型磁気シールド装置 1 の長手方向に延在して、 接合部 磁気シールド側壁 4 a、 4 aと略同じ高さ位置に仕切磁気シールド部材 5が複数枚、 本実施例では、 2枚が等間隔 (w l ) にて配置される。 こ の仕切磁気シールド部材を設けることにより、 Y— Y軸 (図 1 ( b ) 参 照) 方向から来る外乱磁界が、 円筒状空間へと流れ込むのを阻止する働 きがある。
ただ、心磁計 2 0 0を分離型磁気シールド装置 1に取り付けるために、 図 1、 図 4をも参照するとより良く理解されるように、 心磁計設置位置 においては、 仕切磁気シールド部材 5は、 コ字状に接合部磁気シールド 側壁 4 a側へと湾曲して作製され、 心磁計 2 0 0のための装着開口 8を 形成する。
又、 本実施例では、 上述したように、 分離型磁気シールド装置 1の円 筒形状をした空間部 sの略中央部に磁束線の密度の最も薄い場所が形成 されるように、 又、 磁気勾配が実質的にゼロとなるように、 左右方向及 ぴ上下方向において対称形状とされる。
従って、 本実施例では、 図 1及び図 2に示すように、 心磁計 2 0 0を 設置することのない、下方に配置された両接合部磁気シールド側壁 4 b、 4 bの空隙部にも、 分離型磁気シールド装置 1 の長手方向に延在して、 接合部磁気シールド側壁 4 b、 4 bと略同じ高さ位置に仕切磁気シール ド部材 5が複数枚、 本実施例では、 2枚が等間隔 (w l ) にて配置され る。 また、 上方の両接合部磁気シールド側壁 4 a、 4 aの空隙部の構造 と同様に、 心磁計設置位置に対応して、 仕切磁気シールド部材 5は、 コ 字状に湾曲して開口部 8 aが作製される。
変更実施例
本実施例の変更実施例として、 図 3に示すように、 第 1及び第 2磁気 シ一ルド側壁本体 2の軸線方向両端開口部に、 磁気シールドフランジ部 材 6を設けることができる。 つまり、 湾曲磁気シールド外側壁 3の長手 方向両端に所定幅のフランジ部材 6が円筒状空間部 Sへと半径方向へと 突出して設けられる。
このフランジ部材 6は、 磁気シールド側壁本体 2を補強する機能をも 有しているが、特に、 フランジ部材 6を設けることにより、 Y— Y軸(図 1 ( b ) 参照) 方向から来る外乱磁界が、 円筒状空間 Sへと流れ込むの を阻止する機能を有している。 また、 後述するように、 このフランジ部 材 6にコイル 4 1を巻回して電流を流すことが可能となり、 更に、 Y— Y軸方向から来る外乱磁界を抑制することができる。
(磁気シールド側壁本体の具体的構造) 次に、 磁気シールド側壁本体 2の具体的構造について説明する。
図 5 (a) に示すように、 湾曲磁気シールド外側壁 3及び上、 下接合 部磁気シールド側壁 4 a、 4 bにて構成される磁気シールド側壁本体 2 (2A、 2 B) は、 湾曲磁気シールド外側壁 3及び上、 下接合部磁気シ 一ルド側壁 4 (4 a , 4 b) と同形状をした支持体 2 1と、 この支持体 2 1の表面 (外面及ぴノ又は内面) に配置された磁性体 2 2にて構成す ることができる。 図 5 ( a) には、 外面にのみ層状に磁性体 2 2が配置 され、 磁性体層を形成している。 即ち、 支持体 2 1は、 湾曲した湾曲部 材 2 1 a と、 湾曲部材 2 1 aより上下に垂直方向に突出した接合部材 2 1 bとを備えており、 湾曲部材 2 1 aの外周面及び接合部材 2 1 bの外 面に、 磁性体層 2 2が配置される。
仕切磁気シールド部材 5もまた、 図 5 (b ) に示すように、 部材 5と 同形状をした支持体 24の表面 (内面及び/又は外面) に磁性体 2 2を 配置することにより形成される。 本実施例では、 磁性体層 2 2が両面に 設けられる。
磁気シールドフランジ部材 6もまた、 図 5 ( c ) に示すように、 部材 6と同形状をした支持体 2 1 cと、 この支持体 2 1 cの表面 (外面及ぴ ノ又は内面) に配置された磁性体 2 2にて構成することができる。 図 5 (c) には、 外面にのみ層状に磁性体 2 2が配置され、 磁性体層を形成 している。 また、 支持体 2 1 cは、 上記湾曲磁気シールド外側壁 3の湾 曲部材支持体 2 1 a と一体とされる。
支持体 2 1、 24としては、 好ましくは、 紙、 樹脂、 FR P、 非磁性 金属、 その他の種々の材料が使用可能である。 本実施例では、 炭素繊維 強化樹脂複合材 (C FR P) にて作製した。
また、 磁性体 2 2としては、 パーマロイのような磁性材料を使用する ことが可能であるが、 軽量化のために、 磁性体 2 2としては、 C o系ァ モルファス磁性薄帯、 例えば、 メッ トグラス 2 7 0 5 Mが好適に使用さ れる。
磁性体 2 2を構成する磁性体層は、 上述のような磁性薄帯を層状に積 層して構成するのが好ましい。 磁性体層 2 2としては、 詳しくは後述す るが、 後述の構成と同様に、 好ましくは、 2 0 ΠΙ以上、 5 0 θ ί ΐη以 下とされる磁性体層を、 複数層積層した積層構造とされる。
変更実施例
また、 図 6 ( a ) に示すような積層構造とすることにより、 上方から 来る外乱磁界が、 両接合部磁気シールド側壁 4 a、 4 a の空隙部を通り 円筒状空間 Sへと流れ込むのを効率よく阻止することができる。
なお、 図 6 ( a ) には、 第 1及び第 2磁気シールド側壁本体 2 A、 2 Bの上方部のみが示されており、 下方部は省略されている。 しかし、 下 方部においても同様の構造とすることができ、 この場合には、 下方から 来る外乱磁界が、 両接合部磁気シールド側壁 4 b、 4 bの空隙部を通り 円筒状空間 Sへと流れ込むのを効率よく阻止することができる。
図 6 ( a ) を参照して、 第 1及び第 2磁気シールド側壁本体 2 A、 2 Bの上方部の積層構造についてのみ説明する。 本実施例によれば、 湾曲 磁気シールド外側壁 3及び上、 下接合部磁気シールド側壁 4 ( 4 a、 4 a ) と同形状をした支持体 2 1の表面、 本実施例では外面に層状に磁性 体 2 2が配置され、 磁性体層を形成している。
本実施例によると、 磁性体 2 2は、 支持体 2 1に近接して配置された 内側磁性体層 2 2 Aと、 この内側磁性体層 2 2 Aの外側に、 例えば、 ェ ポキシ樹脂接着剤 2 5などにて接着された外側磁性体層 2 2 Bとにて構 成される。 内側磁性体層 2 2 A及び外側磁性体層 2 2 B自体も、 例えば 2 0 m厚の磁性薄帯を 1 0層〜 3 0層、 或いは、 作製される側壁本体 のサイズによっては、 更にそれ以上の層数を積層し、 更にまた、 これら 積層体を二重、 三重に重ね合わせて構成することができる。 更に説明すると、 本実施例では、 内側磁性体層 2 2 Aは、 支持体 2 1 の湾曲部材 2 1 aに固定配置された磁性体層 2 2 A a と、 磁性体層 2 2 A aから、 支持体の接合部材 2 1 bに対して上方途中まで延在して固定 配置された磁性体層 2 2 A bとにて形成される。
一方、 外側磁性体層 2 2 Bは、 内側磁性体層 2 2 Aの磁性体層 2 2 A aに接着剤 2 5にて固定配置された磁性体層 2 2 B a と、 磁性体層 2 2 B aから上方へと延在し、 内側磁性体層 2 2 Aの磁性体層 2 2 A bに接 着剤 2 5にて固定配置された磁性体層 2 2 B bと、 内側磁性体層 2 2 A の磁性体層 2 2 A bが固定配置されていない更に上方の接合部材 2 1 b 部分に固定配置された磁性体層 2 2 B c とにて形成される。
従って、 上方から両接合部磁気シールド側壁 4 a、 4 aの空隙部を通 り円筒状空間 Sへと流れ込む外乱磁界は、 先ず、 接合磁気シールド側壁 4 aに形成された外側磁性体層 2 2 Bの磁性体層 2 2 B cにて引き付け られ、 磁性体層 2 2 B bを介して磁性体層 B aへと、 つまり、 外側磁性 体層 2 2 Bを流れ、 円筒状空間 Sへの流れ込みが阻止される。 更に、 円 筒状空間 Sへと流れ込む外乱磁界は、 接合磁気シールド側壁 4 aに形成 された内側磁性体層 2 2 Aの磁性体層 2 2 A bにて引き付けられ、 磁性 体層 2 2 A aへと、 つまり、 内側磁性体層 2 2 Aへと流れ、 円筒状空間 Sへの流れ込みが阻止される。
上述のように、 第 1及ぴ第 2磁気シールド側壁本体 2 A、 2 Bの下方 部においても同様の構造とすることができ、 この場合には、 下方から来 る外乱磁界が、 両接合部磁気シールド側壁 4 b、 4 bの空隙部を通り円 筒状空間 Sへと流れ込むのを効率よく阻止することができる。
変更実施例
また、 他の変更実施例によると、 更に好ましくは、 従来技術にて記載 した、 特許文献 1に記載するように、 磁気シールド側壁本体 2の少なく とも湾曲磁気シールド外側壁 3に磁気シ イキング電流を流すことがで きる。
この場合には、 磁性体 2 2としては、 特に、 角形磁化特性を有する磁 性材料が使用可能である。 また、 このような磁性体としては、 上述の C o系アモルファス磁性薄帯、 例えば、 メッ トグラス 2 7 0 5Mが好適に 使用される。
この実施態様では、 特に、 図 6 (b) に示すように、 磁性薄帯、 即ち、 例えば幅 5 0. 8 mm、厚み 0. 0 2 mmのメッ トグラス 2 7 0 5Mを、 支持体 2 1における湾曲部材 2 1 aの内周面及び外周面、 更には、 接合 部材 2 1 bの内面及ぴ外面に全表面を覆うようにして連続的に巻き付け て配設する。 これにより、 支持体 2 1の回りを囲包して、 層状の磁性体 2 2、 即ち、 磁性体層 2 2 a、 2 2 bが形成される。 磁性体層 2 2の厚 さとしては、 1 i m以上とされる。 ただ、 通常は、 重量及びコス トの観 点から 2 mm以下とされる。また、磁性体層 2 2としては、好ましくは、 2 0 μ πι以上、 5 0 0 μ m以下とされる磁性体層を、 複数層積層した積 層構造とされる。
更に、 図 6 (b ) に示すように、 磁気シエイキングのためのコイル 3 0が巻回される。 コイル 3 0は、 磁性体層 2 2の少なく とも一部を卷回 するようにしてトロイダル状に卷回される。
つまり、 コイル線材が、 外側の磁性体層を卷回するようにし、 即ち、 磁性体層 2 2の外層 2 2 a と支持体 2 1を軸線方向に取り巻くようにし て巻回すればよい。 コイルの卷回方法は、 これに限定されるものではな く、 例えば、 コイル線材が、 内側の磁性体層 2 2 bを卷回するようにし て、 即ち、 磁性体層 2 2の内層 2 2 bと支持体 2 1 とを軸線方向に取り 巻くようにして卷回することもできる。 各磁気シールド側壁本体 2のシエイキング磁界発生用コイル 3 0には、 磁性体層 2 2に、 例えば商用周波数の 5 0 H z以上、 1 0 KH z以下の シエイキング時間を与えるように、 シエイキング電流が供給される。
(分離型磁気シールド装置の具体的寸法)
次に、 本実施例にて作製した分離型磁気シールド装置 1の具体的寸法 は、 次の通りであった。
磁気シールド側壁本体 2は、 支持体 2 1 として厚さ 5 mmの炭素繊維 強化樹脂複合材 (C F R P) を使用し、 幅 5 0. 8 mm、 厚み 0. 0 2 mmのメッ トグラス 2 7 0 5Mを、 支持体 2 1における湾曲部材 2 1 a の内周面及び外周面、 更には、 接合部材 2 1 bの内面及び外面に、 支持 体 2 1の全表面を覆うようにして連続的に卷き付けた。
具体例
作製した磁気シールド側壁本体 2の具体的寸法は、次の通りであった。 図 4を参照して、
湾曲磁気シ、ールド外側壁 3の内径 (D) 6 0 c m 湾曲磁気シ'一ルド外側壁 3の軸線方向長さ (L) 1 8 0 c m 接合磁気シ、 —ルド側壁 4の幅 (H I ) 2 0 C m 接合磁気シ、 —ルド側壁 4、 4の離間間隔 (W) 3 0 C m 仕切磁気シ、 —ルド部材 5の幅 (H 2 ) 2 0 C m 仕切磁気シ、 —ルド部材 5の設置間隔 ( w 1 ) 1 0 C m 仕切磁気シ、 —ルド部材 5の開口 8の幅 (w 2) 2 8 C m 仕切磁気シ、 —ルド部材 5の開口 8の幅 (w 3) 2 8 C m
(磁気シールド)
次に、 本発明の特徴をなす分離型磁気シールド装置 1における磁気シ 一ルドについて説明する。 本発明は、 先に図 1 1 ( c ) を参照して説明 したシールド作用の原理を利用するものである。
本発明によると、 図 7 (a ) に示すように、 上記構成の分離型磁気シ 一ルド装置 1において、 第 1及び第 2磁気シールド側壁本体 2 A、 2 B の湾曲磁気シールド外側壁 3、 3の外周面 (必要に応じて内周面) に導 体 1 0 ( 1 0 a、 1 0 b、 1 0 c、 1 0 d) が配置される。 また、 本実 施例によると、 導体 1 0 a、 1 0 b及び導体 1 0 c、 1 0 dは、 接続さ れてコイル状とされ、 電源 5 0 ( 5 0 A、 5 O B) により所定の電流 i が供給される。
本実施例では、 導体 1 0 a、 1 0 b及び導体 1 0 c、 1 0 dは、 電源 5 0 (5 0 A、 5 0 B) より同じ大きさの電流 iが流されるが、 必要に 応じて変えることも可能である。つまり、導体 1 0 a、 1 0 b、 1 0 c、 1 0 dをそれぞれ異なる電源に接続し、 通電電流を最適値に調整するこ とができる。
なお、 本実施例では、 4本の導体 1 0 a、 1 0 b、 1 0 c、 1 0 dが 所定の間隔にて、 上下、 左右対称位置に配置され、 導体 1 0 a、 1 0 c は図面上、 手前側から奥側へと、 導体 1 0 b、 1 0 dは図面上、 奥側か ら手前側へと、 電流が流される。
また、 本実施例では、 導体 a、 b、 及ぴ、 導体 c、 dは、 それぞれ、 2 0 t u r nのコィルにて構成され、 各コイルには、 全体で 1 0〜 20 Aの電流を流し、 良好な結果を得ることができた。
つまり、 本実施例によると、 図 8をも参照すると、 第 1磁気シールド 側壁本体 2 Aの湾曲磁気シールド外側壁 3には、 円筒状空間 Sの長手軸 線 Y— Yを通る水平面 H pに対して上下対称位置に、 長手軸線方向に沿 つて延在する第 1及ぴ第 2導体 1 0 a、 1 0 bを設ける。 同様に、 第 2 磁気シールド側壁本体 2 Bの湾曲磁気シールド外側壁 3にも、 円筒状空 間 Sの長手軸線 Y— Yを通る水平面 H pに対して上下対称位置に、 長手 軸線方向に沿って延在する第 1及び第 2導体 1 0 c、 1 0 dを設ける。 そして、 導体 1 0 a、 1 0 cに同じ方向に電流を流し、 導体 1 0 b、 1 0 dに同じ方向に電流を流す。 このとき、 導体 1 0 a、 1 0 cに流れ る電流と、 導体 1 0 b、 1 0 dに流れる電流は方向が異なる。
これによつて、 第 1磁気シールド側壁本体 2 Aから第 2磁気シールド 側壁本体 2 Bへと水平方向に形成される磁束 (H) を、 第 1及び第 2導 体 1 0 a、 1 0 b , 及ぴ、 導体 1 0 c、 1 0 dの回りに発生する磁界に より、 上下方向へと偏向し、 円筒状空間 Sへの磁束の流れ込みを阻止す る。
(電流の決定方法)
ここで、 図 7 (b ) を参照して、 電流の決定方法の一例を説明する。 本実施例にて、 X軸は、 水平方向に延在するシールド側壁に垂直方向 であり、 Y軸は、 円筒軸方向 (即ち、 図 1 (b) における円筒状空間 S の長手軸線 Y— 向) であり、 Ζ軸は、 鉛直方向であるとする。
磁界センサ 3 0 0としては、 フラックスゲート直交磁界センサなどと することができ、 本実施例では、 X、 Υ、 Ζ軸の直交 3軸に組合わさつ た磁界センサ、 即ち、 3軸磁界センサを用いた。
また、本実施例では、 4個の磁界センサ 3 0 0 ( 3 0 0 Α、 3 00 Β、 3 0 0 C、 3 0 0 D) を、 分離型磁気シールド装置 1の接合部磁気シー ルド側壁 4 a、 4 aにて形成される上方空隙部に、 本実施例では、 長手 方向両端部近傍に、 2箇所、 そして、 接合部磁気シールド側壁 4 b、 4 bにて形成される下方空隙部にも同様に 2箇所に設置する。 磁界センサ 3 0 0は、 場合によっては、 上方及び下方の適当な 2箇所とすることも 可能である。
各磁界センサ 3 0 0にて測定された各成分の和を取って平均する。 例 えば、 各磁界センサ 3 0 0の X軸方向の値、 x l、 x 2、 x 3、 x 4の 平均値から側面導体 (コイル) 1 0 a、 1 0 b、 1 0 c、 1 0 dの電流 を決定することができる。 各磁界センサ 3 0 0の測定値に基づき、 例え ば P I D制御系などを用いて各導体の電流を制御する技術は、 当業者に は周知であるので、 これ以上の説明は省略する。
(磁気シールド効果)
図 8は、 導体 1 0 a、 1 0 b、 1 0 c、 1 0 dに通電した場合の、 本 発明による磁気シールド効果を示す磁束線図である。
導体 1 0 a、 1 0 b、 1 0 c、 1 0 dの位置は、 適宜、 それぞれ分離 型磁気シールド装置 1の構成により、 最適の位置が実験等により決定さ れる。 通常、 図 8に示すように、 分離型磁気シール ド装置 1の長手方向 軸線中心 O tを中心として、 水平面 H pに対して 3 0° 〜 6 0° 、 通常 45° の位置が好ましい。 ただ、 これに限定されるものではない。
上記構成とすることにより、 図 8にて理解されるように、 図 8にて左 から右へやってくる磁束 (H) は、 導体 1 0 a、 1 0 b、 及び、 導体 1 0 c、 1 0 dにより発生する磁界により上下方向へと偏向され、 湾曲磁 気シールド外側壁 3を通り抜けることはない。 本発明の構成によって、 シールド効果が達成されている。
一方、 先に説明したように、 導体 1 0 a、 1 0 b、 1 0 c、 1 0 dを 設置しない構成では、図 9に示すように、磁束 Hは、左から右へ通過し、 シールド効果が得られない。
本実施例に従った構成の分離型磁気シールド装置 1によれば、 比透磁 率 1 0 0 0 0 (図 9の構成においても同じ)、 磁性体 2 2の厚さ 2 mm, 中心部の直径(D) 6 0 c m、上下の接合部磁気シールド側壁 4 (4 a、 4 b) の幅 (H I ) 2 0 c m (この実施例では、 仕切磁気シールド部材 5は設けていない)、 接合部磁気シールド側壁 4 (4 a 4 b) の離隔距 離 3 0 c mでシールド比 1 0 0 0以上が達成できた。 更に、 磁気シエイキングを行う構成によれば比透磁率は 5 0 0, 0 0 0に達するので、 これらの数値は極めて現実的である。
図 8に示す本実施例にて、 外部遠方磁場 (H ) は 1 Gで、 接合部磁気 シールド側壁 4 ( 4 a、 4 b ) の空隙部 Gは 0 . 1 G、 円筒状空間 Sに おいては、 l m G以下であった。
また、 図 8にて、 円筒状空間 Sの軸線方向 (即ち、 円筒軸方向 (紙面 垂直)) の磁束、 及び、 上下方向からの磁束、 に対しては、 上記非特許文 献 2に記載する技術を応用することにより、つまり、図 3に示すように、 フランジ部材 6にコイル 4 1を設置し、 また、 接合部磁気シールド側壁 4、 4を取り巻いてコイル 4 2を設置して、 逆位相磁界により容易に能 動補償できる。 なお、 第 1及び第 2磁気シールド側壁本体 2 A、 2 Bを 分離可能とするために、各コイル 4 1、 4 2は、分離自在に接続される。 本発明は、 強磁性体の磁束を引き込む作用と、 電流の磁束を反発する 作用とを効果的に組み合わせて、 磁性体が連続していなく とも不連続点 で磁束を強制的に迂回させ、 高い磁気シールド性能を実現することがで ぎる。
従って、 本発明の高性能な分離型磁気シールド装置は、 シールド空間 への高いアクセス性を提供し、 広い分野で応用が見込める。
つまり、 上述したように、 例えば、 産業界では電子ビーム露光装置、 大型では電子顕微鏡の環境磁界対策、 計測分野では人の脳磁界、 心臓磁 界計測、 更には、 動物生体磁気計測、 更には、 磁気ビーズを標識として 用いるナノバイオ領域での計測などに利用することができる。
その他の実施例
上記実施例 1 では、 分離型磁気シールド装置 1は、 その全体構造の長 手方向が水平となるように配置されており、磁気シールド側壁本体 2は、 長手方向に延在した第 1磁気シールド側壁本体 2 Aと第 2磁気シールド 側壁本体 2 Bを有する 2分割体にて構成されるものとして説明した。 しかしながら、 本発明の分離型磁気シールド装置 1は、 例えば、 装置 が大型化した場合、 或いは、 側部に開口部が形成されることが望まれる 場合などには、例えば、 図 1 0 ( a )、 (b )、 ( c ) に示すように、 4個、 6個又は 8個、 更には、 それ以上の個数の磁気シールド側壁本体 2にて 構成することも可能である。
つまり、 本発明の分離型磁気シールド装置 1は、 長手方向に延在する 磁気シールド側壁本体を複数有し、 複数の磁気シールド側壁本体は、 互 いに組み合わされて内部に水平方向に延びる長手軸線の回りに略円筒状 の空間を形成し、少なく ともいずれか一つのの磁気シールド側壁本体は、 残りの磁気シールド側壁本体に対して移動して離間可能に構成すること ができる。
図 1 0 ( a ) に示す分離型磁気シールド装置 1においては、 4個の磁 気シールド側壁本体 2 ( 2 A 2 B、 2 C、 2 D) を有し、 4個の磁気 シールド側壁本体 2は、 互いに組み合わされて内部に水平方向に延びる 長手軸線の回りに略円筒状の空間 Sを形成している。
また、 図 1 0 ( b ) に示す分離型磁気シールド装置 1においては、 6 個の磁気シールド側壁本体 2 ( 2 A、 2 B、 2 C、 2 D、 2 E、 2 F) を有し、 6個の磁気シール ド側壁本体 2は、 互いに組み合わされて内部 に水平方向に延びる長手軸線の回りに略円筒状の空間 Sを形成している。 更に、 図 1 0 ( c ) に示す分離型磁気シールド装置 1においては、 8 個の磁気シールド側壁本体 2 ( 2 A、 2 B、 2 C、 2 D、 2 E、 2 F、 2 G、 2 H) を有し、 8個の磁気シールド側壁本体 2は、 互いに組み合 わされて内部に水平方向に延びる長手軸線の回りに略円筒状の空間 Sを 形成している。
これらの実施例においても、 各磁気シールド側壁本体 2は、 実施例 1 で説明した磁気シール ド側壁本体 2と同様の構成とされ、 それぞれ、 互 いに組み合わされて内部に円筒状空間 Sを形成する磁性体を備えた磁気 シールド外側壁 3と、 磁気シールド外側壁 3の長手方向両端縁部から円 筒状空間 Sに対して半径方向外方へと突出した磁性体を備えた接合部磁 気シールド側壁 4 (4 a、 4 b) と、 を備えている。
更に、 本実施例においても、 実施例 1 と同様に、 磁気シールド側壁本 体 2の磁気シールド外側壁 3には、 図 1 0 ( a ) の実施例では、 円筒状 空間 Sの長手軸線方向に沿って延在する導体 1 0 ( 1 0 a〜 1 0 d) を 設け、 図 1 0 (b) の実施例では、 円筒状空間 Sの長手軸線方向に沿つ て延在する導体 1 0 ( 1 0 a〜 1 0 f ) を設け、 図 1 0 ( c ) の実施例 では、 円筒状空間 Sの長手軸線方向に沿って延在する導体 1 0 ( 1 0 a 〜 1 0 h) を設け、 これらの導体には所定の方向に電流を流し、 一側の 磁気シールド側壁本体から他側の磁気シールド側壁本体へと水平方向に 到来する外乱磁束を、 導体の回りに発生する磁界により、 上方向又は下 方向へと偏向し、 円筒状空間 Sへの磁束の流れ込みを阻止する。
一例を挙げれば、 図 1 0 ( a ) の実施例では、 導体 1 0 a、 1 0 cに は、 図面上手前側から奥側へと、 また、 導体 1 0 b、 1 0 dには、 奥側 から手前側へと電流を流す。 図 1 0 (b) の実施例では、 導体 1 0 a、 1 0 dには、 図面上手前側から奥側へと、 また、 導体 1 0 c、 1 0 f に は、 奥側から手前側へと電流を流す。 また、 導体 1 0 b、 1 0 eには、 外乱磁界の方向により、 適宜決定することができる。 外乱磁界が完全に 水平である場合には、 電流の流れを停止することも可能である。
図 1 0 ( c ) の実施例では、 導体 1 0 a、 1 0 b、 1 0 e、 1 0 f に は、 図面上手前側から奥側へと、 また、 導体 1 0 c、 1 0 d、 1 0 g、 1 O hには、 奥側から手前側へと電流を流す。
上記電流の方向は、 一例であり、 装置の設置環境により適宜変更する ことができる。
また、 上記各実施例にて、 隣り合った磁気シールド側壁本体 2の対向 した両接合部磁気シールド側壁 4 ( 4 a、 4 a ; 4 b、 4 b ) の間には、 実^例 1の場合と同様に、 複数の、 磁性体を備えた仕切磁気シールド部 材 5を配置する。
磁気シールド外側壁 3、 接合部磁気シールド側壁 4、 及び、 仕切磁気 シールド部材 5は、 実施例 1 の場合と同様に、 支持体に磁性体を設ける ことにより形成される。
又、 本実施例においても、 実施例 1と同様に、 各磁気シールド側壁本 体 2の構造を図 6 ( a ) に示す構造とすることもでき、 又、 各磁気シー ルド側壁本体 2に対しては、 図 6 ( b ) に示すように、 長手方向にトロ ィダル状にコイルを卷回し、 磁気シエイキング電流を流すことも可能で ある。
図示してはいないが、 本実施例においても、 実施例 1 と同様に、 磁気 シールド側壁本体 2の長手方向両端開口部に、 図 5に示す磁気シールド フランジ部材 6を設け、 更に、 このフランジ部材にコイルを設置して電 流を流し、 磁気シールド側壁本体の長手方向両端開口部から円筒状空間 への磁束の流れ込みを阻止することができる。
更には、 実施例 1 の場合と同様に、 図 3に示すように、 隣り合った磁 気シールド側壁本体 2の対向配置された接合部磁気シールド側壁 4を囲 包して、 軸線方向に沿ってコイルを巻回して電流を流し、 隣り合った磁 気シールド側壁本体 2の対向配置された接合部磁気シールド側壁 4 ( 4 a、 4 a ; 4 b、 4 b ) 間に形成された空隙部から円筒状空間 Sへの磁 束の流れ込みを阻止することができる。
円筒状空間 Sを囲包する各磁気シールド側壁本体 2は、 同じ寸法、 形 状とし、 実施例 1にて説明したように、 分離型磁気シールド装置 1 の円 筒形状をした空間部 sの略中央部に磁束線の密度の最も薄く、 かつ、 磁 気勾配が実質的にゼロとなる空間を提供することができる。
上記実施例 1及ぴその他の実施例では、 磁気シールド側壁本体 2、 即 ち、 磁気シールド外側壁 3は、 湾曲した形状として説明したが、 場合に よっては、 直線状 (即ち、 平板状) とすることもできる。

Claims

請求の範囲
1 . 長手方向に延在する磁気シールド側壁本体を複数有し、 前記複数 の磁気シール ド側壁本体は、 互いに組み合わされて内部に水平方向に延 びる長手軸線の回りに略円筒状の空間を形成し、 少なく ともいずれか一 つの前記磁気シールド側壁本体は、 残りの前記磁気シールド側壁本体に 対して移動して離間可能とされる分離型磁気シールド装置において、 前記複数の磁気シールド側壁本体は、 それぞれ、 互いに組み合わされ て内部に前記円筒状空間を形成する磁性体を備えた磁気シールド外側壁 と、 前記磁気シールド外側壁の長手方向両端縁部から前記円筒状空間に 対して半径方向外方へと突出した磁性体を備えた接合部磁気シールド側 壁と、 を備え、
前記磁気シールド側壁本体の前記磁気シールド外側壁には、 前記円筒 状空間の前記長手軸線方向に沿って延在する導体を設け、 電流を流し、
—側の前記磁気シールド側壁本体から他側の前記磁気シールド側壁本 体へと水平方向に到来する外乱磁束を、 前記導体の回りに発生する磁界 により、 上方向又は下方向へと偏向し、 前記円筒状空間への磁束の流れ 込みを阻止することを特徴とする分離型磁気シールド装置。
2 . 隣り合った前記磁気シールド側壁本体の対向した両前記接合部磁 気シールド側壁の間に複数の、 磁性体を備えた仕切磁気シールド部材を 配置することを特徴とする請求項 1の分離型磁気シールド装置。
3 . 前記磁気シールド外側壁及び前記接合部磁気シールド側壁は、 支 持体に磁性体を設けることにより形成されることを特徴とする請求項 1 の分離型磁気シールド装置。
4 . 前記仕切磁気シールド部材は、 支持体に磁性体を設けることによ り形成されることを特徴とする請求項 2の分離型磁気シールド装置。
5 . 各前記磁気シールド側壁本体に対して、 前記長手方向にトロイダ ル状にコイルを卷回し、 磁気シヱイキング電流を流すことを特徴とする 請求項 1〜 4のいずれかの項に記載の分離型磁気シールド装置。
6 . 各前記磁気シールド側壁本体の長手方向両端開口部に、 磁気シー ルドフランジ部材を設け、 前記磁気シールド側壁本体の長手方向両端開 口部から前記円筒状空間への磁束の流れ込みを阻止することを特徴とす る請求項 1〜 5のいずれかの項に記載の分離型磁気シールド装置。
7 . 前記磁気シールドフランジ部材は、 支持体に磁性体を設けること により形成されることを特徵とする請求項 6 の分離型磁気シールド装置。
8 . 前記磁気シールドフランジ部材にコイルを設置して電流を流し、 前記磁気シールド側壁本体の長手方向両端開口部から前記円筒状空間へ の磁束の流れ込みを阻止することを特徴とする請求項 6又は 7の分離型 磁気シールド装置。
9 . 隣り合った前記磁気シールド側壁本体の対向配置された前記接合 部磁気シールド側壁を囲包して、 軸線方向に沿ってコイルを卷回して電 流を流し、 隣り合った前記磁気シールド側壁本体の対向配置された前記 接合部磁気シールド側壁間に形成された空隙部から前記円筒状空間への 磁束の流れ込みを阻止することを特徴とする請求項 1〜 8のいずれかの 項に記載の分離型磁気シールド装置。
1 0 . 前記円筒状空間は、 2個、 4個、 6個、 又は、 8個の前記磁気 シールド側壁本体にて囲包されることによって形成されることを特徴と する請求項 1〜 9のいずれかの項に記載の分離型磁気シールド装置。
1 1 . 前記円筒状空間を囲包する各前記磁気シールド側壁本体は、 同 じ寸法、 形状とされることを特徴とする請求項 1〜 1 0のいずれかの項 に記載の分離型磁気シールド装置。
1 2 . 第 1磁気シールド側壁本体と第 2磁気シールド側壁本体を有し、 前記第 1磁気シールド側壁本体と第 2磁気シールド側壁本体は、 対向配 置された状態にて内部に水平方向に延びる長手軸線の回りに略円筒状の 空間を形成し、 少なく ともいずれかの前記磁気シールド側壁本体は、 他 方の磁気シールド側壁本体に対して移動して離間可能とされる分離型磁 気シールド装置において、
前記第 1及び第 2磁気シールド側壁本体は、 それぞれ、 対向配置され た状態にて内部に前記円筒状空間を形成する磁性体を備えた湾曲磁気シ ールド外側壁と、 前記湾曲磁気シールド外側壁の上下端縁部から垂直方 向に突出し、 対向配置された状態にて互いに離間して対面する磁性体を 備えた接合部磁気シールド側壁と、 を備え、
前記第 1磁気シールド側壁本体の前記湾曲磁気シールド外側壁には、 前記長手軸線方向に沿って延在する第 1及び第 2導体を設け、 電流を流 し、
前記第 2磁気シールド側壁本体の前記湾曲磁気シールド外側壁には、 前記長手軸線方向に沿って延在する第 1及び第 2導体を設け、 電流を流 し、
前記第 1磁気シールド側壁本体から前記第 2磁気シールド側壁本体へ と水平方向に到来する外乱磁束を、 前記第 1及び第 2導体の回りに発生 する磁界により、 上下方向へと偏向し、 前記円筒状空間への磁束の流れ 込みを阻止することを特徴とする分離型磁気シールド装置。
1 3 . 前記第 1磁気シールド側壁本体と第 2磁気シール ド側壁本体は、 前記円筒状空間の前記長手軸線を通る垂直平面に対して左右対称形状と されることを特徴とする請求項 1 2の分離型磁気シールド装置。
1 4 . 前記第 1及び第 2磁気シールド側壁本体の対向した两前記接合 部磁気シールド側壁の間に複数の、 磁性体を備えた仕切磁気シールド部 材を配置することを特徴とする請求項 1 2又は 1 3の分離型磁気シール ド装置。
1 5 . 前記湾曲磁気シールド外側壁及び前記接合部磁気シールド側壁 は、 支持体に磁性体を設けることにより形成されることを特徴とする請 求項 1 2〜 1 4のいずれかの項に記載の分離型磁気シールド装置。
1 6 . 前記仕切磁気シールド部材は、 支持体に磁性体を設けることに より形成されることを特徴とする請求項 1 4の分離型磁気シールド装置。
1 7 . 前記第 1及び第 2磁気シールド側壁本体に対して、 前記軸線方 向にトロイダル状にコイルを巻回し、 磁気シエイキング電流を流すこと を特徴とする請求項 1 2〜 1 6のいずれかの項に記載の分離型磁気シー ルド装置。
1 8 . 前記第 1及び第 2磁気シールド側壁本体の軸線方向両端開口部 に、 磁気シールドフランジ部材を設け、 前記,第 1及び第 2磁気シールド 側壁本体の軸線方向両端開口部から前記円筒状空間への磁束の流れ込み を阻止することを特徴とする請求項 1 2〜 1 7のいずれかの項に記載の 分離型磁気シールド装置。
1 9 . 前記磁気シールドフランジ部材は、 支持体に磁性体を設けるこ とにより形成されることを特徴とする請求項 1 8の分離型磁気シールド 装置。
2 0 . 前記磁気シールドフランジ部材にコイルを設置して電流を流し、 前記第 1及び第 2磁気シールド側壁本体の軸線方向両端開口部から前記 円筒状空間への磁束の流れ込みを阻止することを特徴とする請求項 1 8 又は 1 9の分離型磁気シールド装置。
2 1 . 前記第 1及ぴ第 2磁気シールド側壁本体の対向配置された前記 接合部磁気シールド側壁を囲包して、 軸線方向に沿ってコイルを巻回し て電流を流し、 前記第 1及び第 2磁気シールド側壁本体の対向配置され た前記接合部磁気シールド側壁間に形成された空隙部から前記円筒状空 間への磁束の流れ込みを阻止することを特徴とする請求項 1 2〜 2 0の いずれかの項に記載の分離型磁気シールド装置。
PCT/JP2007/075416 2006-12-28 2007-12-27 分離型磁気シールド装置 WO2008081999A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07860611.8A EP2099277B8 (en) 2006-12-28 2007-12-27 Separable magnetic shield device
US12/521,423 US8031039B2 (en) 2006-12-28 2007-12-27 Separate type magnetic shield apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-356666 2006-12-28
JP2006356666A JP5076161B2 (ja) 2006-12-28 2006-12-28 分離型磁気シールド装置

Publications (1)

Publication Number Publication Date
WO2008081999A1 true WO2008081999A1 (ja) 2008-07-10

Family

ID=39588661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/075416 WO2008081999A1 (ja) 2006-12-28 2007-12-27 分離型磁気シールド装置

Country Status (4)

Country Link
US (1) US8031039B2 (ja)
EP (1) EP2099277B8 (ja)
JP (1) JP5076161B2 (ja)
WO (1) WO2008081999A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136085A (ja) * 2009-12-28 2011-07-14 Kyushu Univ 分離型磁気シールド装置
CN112786324A (zh) * 2021-01-29 2021-05-11 北京双杰电气股份有限公司 一种低压直流断路器灭弧室及断路器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2699068B1 (en) * 2011-04-11 2016-08-17 Sosnytskyy, Volodymyr Mykolayovych Device for screening a touch-sensitive magnetocardiograph unit
JP5983919B2 (ja) * 2012-06-28 2016-09-06 国立大学法人九州大学 分離型磁気シールド装置
JP2017152573A (ja) * 2016-02-25 2017-08-31 国立大学法人九州大学 磁気シールド装置および磁気シールドの能動補償方法
CN113325564B (zh) * 2021-05-13 2022-10-18 广东佰林电气设备厂有限公司 一种潜望读表式便利型电表箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279607A (ja) * 1986-05-28 1987-12-04 Fuji Electric Co Ltd 均一磁場マグネツトの磁気シ−ルド
JP2004179550A (ja) 2002-11-28 2004-06-24 Sangaku Renkei Kiko Kyushu:Kk 分割型円筒磁気シールド装置
JP2005080775A (ja) 2003-09-05 2005-03-31 Keakomu:Kk ナースコール装置用押ボタン式子機
JP2006075372A (ja) * 2004-09-10 2006-03-23 Hitachi High-Technologies Corp 磁場遮蔽装置及び生体磁場計測装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466499A (en) * 1967-03-27 1969-09-09 Atomic Energy Commission Cancellation of external magnetic fields by inner and outer cylindrical current sheets
US3671902A (en) * 1971-05-25 1972-06-20 Gen Electric Shielded inductive device
US4152745A (en) * 1977-04-11 1979-05-01 Eul Edward A Magnetic shield device
DE3347597A1 (de) * 1983-12-30 1985-07-18 Philips Patentverwaltung Gmbh, 2000 Hamburg Hochfrequenz-spulenanordnung zum erzeugen und/oder empfangen von wechselmagnetfeldern
US4646046A (en) * 1984-11-21 1987-02-24 General Electric Company Shielded room construction for containment of fringe magnetic fields
JPS63307711A (ja) * 1987-06-10 1988-12-15 Toshiba Corp 磁石装置
JP3268034B2 (ja) * 1992-11-27 2002-03-25 科学技術振興事業団 磁気シールド開口端の漏洩磁界補償方法
JP3020169B1 (ja) * 1999-05-10 2000-03-15 九州大学長 磁気シ―ルド装置
JP3454246B2 (ja) * 2000-10-30 2003-10-06 株式会社日立製作所 磁場計測装置
JP2005093452A (ja) * 2003-09-11 2005-04-07 Kyushu Univ 磁気シールド装置
JP4700287B2 (ja) * 2004-03-29 2011-06-15 一郎 笹田 アクティブ磁気シールド装置
JP4832005B2 (ja) * 2005-06-10 2011-12-07 株式会社日立ハイテクノロジーズ 磁場遮蔽装置及び磁場計測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279607A (ja) * 1986-05-28 1987-12-04 Fuji Electric Co Ltd 均一磁場マグネツトの磁気シ−ルド
JP2004179550A (ja) 2002-11-28 2004-06-24 Sangaku Renkei Kiko Kyushu:Kk 分割型円筒磁気シールド装置
JP2005080775A (ja) 2003-09-05 2005-03-31 Keakomu:Kk ナースコール装置用押ボタン式子機
JP2006075372A (ja) * 2004-09-10 2006-03-23 Hitachi High-Technologies Corp 磁場遮蔽装置及び生体磁場計測装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ICHIRO SASADA: "study on magnetic shaking type magnetic shield for measuring weak magnetic fields", JOURNAL OF JAPAN APPLIED MAGNETISM SOCIETY, vol. 27, 2003, pages 855 - 861
NAKASHIMA Y; KIMURA T; SASADA I: "Magnetic field leakage from a 45° angle magnetic shell and a reduction method for a high-performance magnetic shield", IEEE TRANS. ON MAGN., vol. 42, no. 10, 2006, pages 3545 - 3547, XP011149253, DOI: doi:10.1109/TMAG.2006.879765
SAITO T; TASHIRO N; SASADA I: "Active compensation effect in multi-shell shield with passive shell", JOURNAL OF JAPAN APPLIED MAGNETISM, vol. 29, 2005, pages 567 - 570
See also references of EP2099277A4
UMEDA Y; TASHIRO N; SASADA I: "Application of active cancellation to cylindrical magnetic shield", ELECTRICITY SOCIETY A, vol. 123, no. 8, 2003, pages 790 - 796

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136085A (ja) * 2009-12-28 2011-07-14 Kyushu Univ 分離型磁気シールド装置
CN112786324A (zh) * 2021-01-29 2021-05-11 北京双杰电气股份有限公司 一种低压直流断路器灭弧室及断路器

Also Published As

Publication number Publication date
JP2008166618A (ja) 2008-07-17
EP2099277A1 (en) 2009-09-09
EP2099277A4 (en) 2012-03-21
JP5076161B2 (ja) 2012-11-21
EP2099277B1 (en) 2013-08-28
US8031039B2 (en) 2011-10-04
EP2099277B8 (en) 2013-10-02
US20100321138A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
WO2008081999A1 (ja) 分離型磁気シールド装置
JP4347847B2 (ja) 開放型磁気シールド構造及びその磁性体フレーム
US20220349975A1 (en) Ferromagnetic augmentation for magnetic resonance imaging
JP2645314B2 (ja) 磁気遮蔽器
JPH0475008B2 (ja)
JP5328599B2 (ja) 複合型磁気シールド構造及びシステム
JP5505694B2 (ja) 分離型磁気シールド装置
JP2007534340A (ja) 内部アクティブ磁場キャンセレーションを有する磁気遮蔽ルーム及びその使用
JP4110950B2 (ja) 磁気シールド装置及び生体磁場計測装置
JP2000077890A (ja) 磁気シールドルーム
KR20120062858A (ko) 자기에 의해 안내되는 캡슐 내시경을 위한 솔레노이드 시스템
JP5930400B2 (ja) 導体回路付き開放型磁気シールド構造
JP5983919B2 (ja) 分離型磁気シールド装置
JP4391129B2 (ja) 環境磁気雑音遮蔽装置
JP2892093B2 (ja) 磁気遮へい方法
JP5592193B2 (ja) 外乱磁場の複合型磁気シールド構築方法
JPS63260116A (ja) 磁気共鳴イメ−ジング装置の磁気シ−ルド
JP6628407B2 (ja) 低漏洩シェイキング式開放型磁気シールド構造
JPH10135027A (ja) 超電導磁石装置
Sasada et al. A new method of magnetic shielding: Combination of flux repulsion and backing up magnetic pathways
JP5271143B2 (ja) 磁気シールド体及びその角筒体
JP6599258B2 (ja) シェイキング式の開放型磁気シールド構造
JPH01278680A (ja) 磁気遮蔽室の扉
JPH02206101A (ja) 超伝導体による磁化低減方法
JPH09214166A (ja) 磁気シールド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007860611

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12521423

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE