WO2008075710A1 - 永久磁石及び永久磁石の製造方法 - Google Patents

永久磁石及び永久磁石の製造方法 Download PDF

Info

Publication number
WO2008075710A1
WO2008075710A1 PCT/JP2007/074405 JP2007074405W WO2008075710A1 WO 2008075710 A1 WO2008075710 A1 WO 2008075710A1 JP 2007074405 W JP2007074405 W JP 2007074405W WO 2008075710 A1 WO2008075710 A1 WO 2008075710A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered magnet
phase
permanent magnet
magnet
processing chamber
Prior art date
Application number
PCT/JP2007/074405
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nagata
Kyuzo Nakamura
Takeo Katou
Atsushi Nakatsuka
Ichirou Mukae
Masami Itou
Ryou Yoshiizumi
Yoshinori Shingaki
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to CN2007800478011A priority Critical patent/CN101568980B/zh
Priority to JP2008550165A priority patent/JP5275043B2/ja
Priority to US12/519,878 priority patent/US8262808B2/en
Priority to DE112007003122T priority patent/DE112007003122T5/de
Publication of WO2008075710A1 publication Critical patent/WO2008075710A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Definitions

  • the present invention relates to a permanent magnet and a method for producing the permanent magnet, and in particular, a permanent magnet having a high magnetic property obtained by diffusing Dy and Tb in a crystal grain boundary phase of an Nd—Fe—B sintered magnet.
  • the present invention relates to a method for manufacturing the permanent magnet.
  • Nd-Fe-B sintered magnets are inexpensive because they are made of a combination of iron and Nd and B elements that are inexpensive, abundant in resources, and can be stably supplied.
  • the maximum energy product is about 10 times that of ferrite magnets
  • it is used in various products such as electronic equipment.
  • motors and generators for hybrid cars have been used. Adoption is also progressing.
  • the Curie temperature of the sintered magnet is as low as about 300 ° C, the temperature may rise above a predetermined temperature depending on the usage condition of the product to be used. There is a problem of demagnetization.
  • the sintered magnet when used in a desired product, the sintered magnet may be processed into a predetermined shape, and this processing may cause defects (cracks, etc.) or distortions in the crystal grains of the sintered magnet. This causes a problem that the magnetic properties are significantly deteriorated.
  • a first object of the present invention is to provide a permanent magnet having an extremely high coercive force and high magnetic properties.
  • the second object of the present invention is to provide a method for producing a permanent magnet which can produce a permanent magnet having extremely high V, coercive force and high magnetic properties with high productivity.
  • the method of manufacturing a permanent magnet according to claim 1 is characterized in that at least one of Dy and Tb is adhered to at least a part of the surface of an iron-boron rare earth sintered magnet.
  • Production of a permanent magnet including one step and a second step in which at least one of Dy and Tb adhering to the surface of the sintered magnet is subjected to heat treatment at a predetermined temperature to diffuse into the grain boundary phase of the sintered magnet.
  • a main phase alloy mainly composed of RTB phase
  • Transition force consisting mainly of at least one rare earth element mainly composed of R force Nd, T force S and Fe ) And liquid phase alloys (mainly R-rich phase with a higher R content than RTB phase)
  • the obtained mixed powder is pressed in a magnetic field, and the compact is sintered in a vacuum or an inert gas atmosphere. It is used.
  • a sintered magnet produced by a so-called two-alloy method in which a main phase alloy and a liquid phase alloy are separately pulverized and then molded and sintered has a large crystal grain and a round shape.
  • the rare earth (Nd) rich phase present in the grain boundary with good orientation characteristics increases in dispersibility (that is, it is nonmagnetic and magnetically insulates the main phase)
  • the rare earth-rich layer that increases the coercive force is more than twice as dispersed as that produced by the so-called one-alloy method.
  • the diffusion rate of the Dy and Tb metal atoms into the rare earth-rich phase at the crystal grain boundary is increased, and the diffusion can be efficiently diffused in a short time.
  • the concentration of Dy and Tb can be effectively increased in the rare earth-rich phase with good dispersibility, a permanent magnet with higher coercivity and high magnetic properties can be obtained.
  • the sintered magnet is disposed in the processing chamber and heated, and the evaporation material containing at least one of Dy and Tb disposed in the same or another processing chamber is heated and evaporated, and the evaporated evaporation material
  • the adhering evaporation material Dy and Tb metal atoms are attached to the surface of the sintered magnet before the thin film made of the evaporation material is formed on the sintered magnet surface. It is preferable to perform the first step and the second step by diffusing into the crystal grain boundary phase.
  • the evaporated evaporation material (Dy, Tb metal atoms and molecules) is supplied to and adhered to the surface of the sintered magnet heated to a predetermined temperature.
  • the sintered magnet was heated to a temperature at which an optimum diffusion rate was obtained, and the amount of evaporated material supplied to the surface of the sintered magnet was adjusted.
  • Sequentially diffused into the grain boundary phase of the sintered magnet that is, the supply of Dy, Tb, etc. to the surface of the sintered magnet and the diffusion of the sintered magnet into the grain boundary phase are performed in a single process. (Vacuum steam treatment)).
  • the surface state of the permanent magnet is substantially the same as the state before the above treatment, and the manufactured permanent magnet surface is prevented from being deteriorated (surface roughness is deteriorated).
  • Magnetized surface Dy and Tb are prevented from diffusing excessively in the grain boundaries close to, which eliminates the need for a separate post-process and achieves high productivity.
  • the grain boundary phase has a rich phase of Dy and Tb (phase containing Dy and Tb in the range of 5 to 80%), and Dy and Tb diffuse only near the surface of the crystal grain. By doing so, it becomes a permanent magnet with high magnetic properties. Furthermore, when a defect (crack) is generated in the crystal grains near the surface of the sintered magnet during processing of the sintered magnet, a rich phase of Dy and Tb is formed inside the crack, and magnetization and coercive force are formed. Can be recovered.
  • a defect crack
  • the specific surface area of the evaporating material arranged in the processing chamber is changed to increase or decrease the evaporation amount at a constant temperature, for example, the supply amount of Dy and Tb to the sintered magnet surface is increased or decreased. easily adjust the supply amount to the surface of the sintered magnet without changing the configuration of the equipment, such as installing separate parts in the processing chamber.
  • the inside of the processing chamber Prior to heating the processing chamber containing the sintered magnet in order to remove dirt, gas and water adsorbed on the surface of the sintered magnet before diffusing Dy and Tb into the grain boundary phase, It is preferable that the inside of the processing chamber is held at a predetermined pressure.
  • the oxide film on the surface of the sintered magnet is removed before Dy and Tb are diffused into the grain boundary phase.
  • the sintering by plasma is performed prior to heating the processing chamber containing the sintered magnet. It is preferable to clean the magnet surface.
  • Dy or Tb is diffused in the grain boundary phase of the sintered magnet and then heat treatment is performed to remove the distortion of the permanent magnet at a predetermined temperature lower than the above temperature, magnetization and coercive force can be obtained.
  • a permanent magnet with improved magnetic properties and improved magnetic properties can be obtained.
  • a permanent magnet may be produced by diffusing Dy or Tb in the grain boundary phase of the sintered magnet and then cutting it to a predetermined thickness in a direction perpendicular to the magnetic field orientation direction. Good. This Compared with the case where the vacuum vapor treatment is performed after the block-shaped sintered magnet having a predetermined size is cut into a plurality of thin pieces and stored in this state in the processing chamber, for example, the sintered magnet to the processing chamber Thus, the preparation for performing the vacuum vapor treatment can be facilitated and the productivity can be improved.
  • the permanent magnet according to claim 10 is a sintered magnet having a main phase alloy (mainly composed of an RTB phase, wherein R is at least one type mainly composed of Nd. of
  • Transition metal alloys mainly composed of rare earth elements, T force Fe) and liquid phase alloys (more than R T B phase)
  • Each powder with a high content is mainly composed of R-rich phase) is mixed at a predetermined mixing ratio, and the resulting mixed powder is pressure-molded in a magnetic field, and the compact is vacuumed or inert.
  • this sintered magnet is placed in a processing chamber and heated, and an evaporation material containing at least one of Dy and Tb placed in the same or another processing chamber is used.
  • the method for producing a permanent magnet according to the present invention can efficiently diffuse Dy and Tb adhering to the surface of a sintered magnet into a grain boundary phase, and has high productivity and high magnetic properties.
  • the permanent magnet of the present invention has an effect that it has a higher coercive force and a high magnetic property.
  • the permanent magnet M of the present invention is processed into a predetermined shape.
  • the vaporized material V containing at least one of Dy and Tb is evaporated and attached to the surface of the Nd-Fe-B sintered magnet S, and the Dy and Tb metal atoms of the attached evaporated material are attached. It is produced by simultaneously performing a series of treatments (vacuum vapor treatment) for diffusing into the grain boundary phase of the sintered magnet S and spreading it uniformly.
  • the Nd-Fe-B-based sintered magnet S which is a starting material, is produced as follows by a known so-called two-alloy method. That is, the main phase alloy (mainly composed of R T B phase, R is Nd
  • the main phase alloy is prepared by mixing Fe, B, and Nd at a predetermined composition ratio to produce an alloy raw material by a known SC melting and forging method. It is obtained by coarse pulverization to a mesh or less.
  • Nd, Dy, Co, and Fe are blended at a predetermined composition ratio to produce an alloy raw material by a known SC melting and forging method.
  • the produced alloy raw material is, for example, 50 mesh or less in Ar. Obtained by coarse pulverization.
  • the crystal grains are large and round in shape (that is, there are few nucleation sites), and the rare earth (Nd) -rich phase that exists in the grain boundaries with good orientation characteristics has good dispersibility (that is, non-magnetic Rare earth rich laminar force S that increases the coercive force by magnetically insulating the main phase S, more than doubled compared to those produced by the so-called one-alloy method! Magnet S is obtained.
  • the conditions in each step of the production of the sintered magnet S are individually set. It is preferable that the average crystal grain size of the sintered magnet S be in the range of 4 m to 12 m. This allows Dy and Tb adhering to the surface of the sintered magnet to diffuse efficiently into the grain boundary phase without being affected by the carbon remaining inside the sintered magnet. Average grain When the diameter is smaller than 4 im, Dy and Tb diffuse into the grain boundary phase, resulting in a permanent magnet with a high coercive force, ensuring fluidity and improving orientation during compression molding in a magnetic field.
  • the effect of adding a lubricant to the raw material powder of the alloy is diminished, and the degree of orientation of the sintered magnet deteriorates. As a result, the residual magnetic flux density and the maximum energy product exhibiting magnetic characteristics are lowered.
  • the average crystal grain size is larger than 12 m, the coercive force decreases because the crystal is large, and the surface area of the crystal grain boundary decreases, so that the concentration ratio of residual carbon near the crystal grain boundary is reduced. As the value increases, the coercive force further decreases. Residual carbon reacts with Dy and Tb, which prevents Dy from diffusing into the grain boundary phase, resulting in a long diffusion time and poor productivity!
  • a vacuum vapor processing apparatus 1 for carrying out the process, a turbo molecular pump, cryopump, a predetermined pressure via the evacuating means 11 such as a diffusion pump (e.g. 1 X 10_ 5 Pa) It has a vacuum chamber 12 that can be kept under reduced pressure.
  • a box 2 comprising a rectangular parallelepiped box 21 having an upper surface opened and a detachable lid 22 on the upper surface of the opened box 21 is installed.
  • a flange 22a bent downward is formed on the outer peripheral edge of the lid 22 over the entire circumference.
  • the flange 22a A processing chamber 20 is defined which is fitted to the outer wall (in this case, no vacuum seal such as a metal seal is provided) and is isolated from the vacuum chamber 11.
  • a predetermined pressure of the vacuum chamber 12 through the vacuum exhaust means 11 e.g., 1 X 10- 5 Pa
  • the processing chamber 20 is substantially half orders of magnitude higher pressure than the vacuum chamber 12 (e.g., 5 X 10- 4 The pressure is reduced to Pa).
  • the volume of the processing chamber 20 is set so that metal atoms (molecules) in the vapor atmosphere are supplied to the sintered magnet S from a plurality of directions directly or repeatedly in consideration of the mean free path of the evaporation material.
  • the wall thicknesses of the box portion 21 and the lid portion 22 are set so as not to be thermally deformed when heated by a heating means described later, and are made of a material that does not react with the evaporation material.
  • the box 2 is made of, for example, Mo, W, V, Ta or an alloy thereof (rare earth-added Mo alloy, Ti Including additive-type Mo alloys), CaO, YO, or rare earth oxides,
  • these materials are formed as a lining film on the surface of another heat insulating material.
  • a placement portion 21a is formed at a predetermined height position from the bottom in the processing chamber 20 by arranging, for example, a plurality of wire rods made of Mo (for example, ⁇ 0.;! To 10 mm) in a lattice shape.
  • a plurality of sintered magnets S can be placed side by side on the placement portion 21a.
  • the evaporation material V is an alloy containing at least one of Dy and Tb or Dy and Tb that greatly improves the magnetocrystalline anisotropy of the main phase, and is appropriately disposed on the bottom surface, side surface, or top surface of the processing chamber 20.
  • the vacuum chamber 12 is also provided with heating means 3.
  • the heating means 3 is made of a material that does not react with the evaporation material V of Dy and Tb in the same manner as the box 2 and is, for example, made of Mo that is provided so as to surround the box 2 and has a reflection surface on the inside. And an electric heater disposed on the inside and having a filament made of Mo. Then, the inside of the processing chamber 20 can be heated substantially uniformly by heating the box 2 with the heating means 3 under reduced pressure and indirectly heating the inside of the processing chamber 20 via the box 2.
  • the sintered magnet S produced by the above method is placed on the placement portion 21a of the box portion 21 and Dy, which is the evaporation material V, is placed on the bottom surface of the box portion 21 (thereby, the inside of the processing chamber 20).
  • the sintered magnet S and the evaporation material V are spaced apart from each other).
  • the box body 2 is installed in a predetermined position surrounded by the heating means 3 in the vacuum chamber 12 (see FIG. 2).
  • the vacuum chamber 12 through the vacuum exhaust means 11 constant pressure (e.g., l X 10_ 4 Pa) was evacuated under vacuum until it reaches and is evacuated to (the processing chamber 20 is substantially half orders of magnitude higher pressures )
  • the heating chamber 3 is activated to heat the processing chamber 20.
  • Dy installed on the bottom surface of the processing chamber 20 is heated to substantially the same temperature as the processing chamber 20 and starts to evaporate.
  • Dy vapor atmosphere is formed.
  • the sintered magnets S and Dy are arranged apart from each other, so the melted Dy does not directly adhere to the sintered magnet S in which the surface Nd-rich phase is melted.
  • the Dy atoms in the Dy vapor atmosphere are supplied and adhered to the surface of the sintered magnet S heated to approximately the same temperature as Dy from multiple directions by direct or repeated collisions. Dy adhering to is diffused into the grain boundary phase of the sintered magnet S, and the permanent magnet M is obtained.
  • the average composition of the sintered magnet surface S adjacent to the thin film becomes a Dy rich composition.
  • the surface of the sintered magnet S melts (that is, the main phase melts and the amount of liquid phase increases).
  • the vicinity of the surface of the sintered magnet S melts and collapses, and the unevenness increases.
  • Dy penetrates excessively into the crystal grains with a large amount of liquid phase, and the maximum energy product and residual magnetic flux density, which show magnetic properties, are further reduced.
  • the surface area (specific surface area) per unit volume is small at a ratio of ! to 10% by weight of the sintered magnet! /, And Balta-like (substantially spherical) Dy is treated in the processing chamber 20 The amount of evaporation at a constant temperature was reduced.
  • the heating means 3 is controlled so that the temperature in the processing chamber 20 is in the range from 700 ° C to 1050 ° C, preferably from 900 ° C to 1000 ° C. (For example, when the temperature in the processing chamber is 900 ° C. to 100 ° C., the saturated vapor pressure of Dy is about 1 ⁇ 10 1 ⁇ 10— &).
  • the total surface area of the sintered magnet S installed on the mounting portion 21a of the processing chamber 20 is used to diffuse Dy into the grain boundary phase.
  • the ratio of the total surface area of Balta-shaped Dy installed on the bottom of the barber 20 is set to be in the range of 1 X 10 to 2 X 10 3 . If the ratio is outside the range of 1 X 1CT 4 to 2 X 10 3 , a thin film of Dy or Tb may be formed on the surface of the sintered magnet S, and a permanent magnet with high magnetic properties cannot be obtained. In this case, the ratio was Sigma preferred is the range of 1 X 10_ 3 of 1 X 10 3, the ratio is more preferably ranges from 1 X 10- 2 1 of X 10 2.
  • the permanent magnet M has a higher coercive force because it can effectively increase the concentration of Dy and Tb in the rare earth-rich phase with good dispersibility, which is mixed more than doubled.
  • the block-shaped sintered magnet having a predetermined size is cut into a plurality of thin pieces, and in this state is placed side by side on the mounting portion 21a of the box 2, and then compared with the case where the vacuum vapor treatment is performed.
  • the sintered magnet S can be taken in and out of the box 2 in a short time, and preparation before the vacuum steam treatment is facilitated. ⁇ High! / Productivity is achieved.
  • the Dy rich phase which has extremely high corrosion resistance and weather resistance compared to the force Nd to which Co is added, has crystal grains near the surface. By being in the inside of the crack or in the grain boundary phase, it becomes a permanent magnet having extremely strong corrosion resistance and weather resistance without using Co.
  • Dy adhering to the surface of the sintered magnet is diffused, there is no intermetallic compound containing Co at the grain boundary of the sintered magnet S, so the metal atoms of Dy and Tb adhering to the surface of the sintered magnet S are Furthermore, it is diffused efficiently.
  • the operation of the heating means 3 is stopped, and the lOkPa is introduced into the processing chamber 20 via a gas introduction means (not shown).
  • Ar gas is introduced, evaporation of the evaporation material V is stopped, and the temperature in the processing chamber 20 is temporarily lowered to, for example, 500 ° C.
  • the heating means 3 is operated again, the temperature in the processing chamber 20 is set in the range of 450 ° C. to 650 ° C., and heat treatment is performed to remove the distortion of the permanent magnet in order to further improve or recover the coercive force. Apply. Finally, rapidly cool to about room temperature and take out box 2.
  • the example using Dy as the evaporation material V has been described as an example.
  • the heating temperature range of the sintered magnet S that can increase the diffusion rate (from 900 ° C. to 1000 ° C.) ), Tb having a low vapor pressure can be used, or an alloy of Dy and Tb may be used.
  • the force of using Balta-shaped evaporation material V with a small specific surface area in order to reduce the amount of evaporation at a constant temperature is not limited to this.
  • a tray having a concave cross section is installed in the box part 21.
  • the specific surface area may be reduced by storing the granular or Balta-like evaporation material V in the saucer, and further, after the evaporation material V is accommodated in the saucer, a lid provided with a plurality of openings ( You can wear it (not shown)!
  • an evaporation chamber (another processing chamber: not shown) is provided in the vacuum chamber 12 separately from the processing chamber 20, and other heating means for heating the evaporation chamber is provided, and the evaporation material is evaporated in the evaporation chamber.
  • the sintered magnet in the processing chamber 20 is connected through a communication path that connects the processing chamber 20 and the evaporation chamber.
  • the stone may be supplied with metal atoms in a steam atmosphere.
  • the saturated vapor pressure of Dy is about 1 X 10_ 4 when the evaporation chamber is 700 ° C ⁇ ; 1050 ° C (700 ° C ⁇ ; 105 0 ° C). Heat up to the range of ⁇ 1 X 10_ &). At temperatures lower than 700 ° C, the vapor pressure that can supply Dy to the surface of the sintered magnet S is not reached so that Dy diffuses and spreads uniformly in the grain boundary phase.
  • the evaporation material V is Tb
  • the evaporation chamber may be heated in the range of 900 ° C to 1150 ° C.
  • the vacuum chamber 12 is set in a predetermined manner via the vacuum exhaust means 11.
  • pressure e.g., 1 X 10- 5 Pa
  • the processing chamber 20 was reduced from the vacuum chamber 12 to approximately half orders of magnitude higher pressure (e.g., 5 X 10_ 4 Pa)
  • the heating means 3 may be operated to heat the inside of the processing chamber 20 to, for example, 100 ° C. and hold it for a predetermined time.
  • a plasma generator (not shown) having a known structure for generating Ar or He plasma is provided in the vacuum chamber 12, and the surface of the sintered magnet S by plasma prior to processing in the vacuum chamber 12 is provided. The cleaning pre-processing may be performed.
  • a known transfer robot is installed in the vacuum chamber 12, and the lid 22 is installed in the vacuum chamber 12 after the tailing is completed. You just have to do it.
  • the force S described with respect to what constitutes the box body 2 by mounting the lid portion 22 on the upper surface of the box portion 21, is isolated from the vacuum chamber 12, and the vacuum chamber 12 is decompressed.
  • the processing chamber 20 is depressurized along with this, the present invention is not limited to this.
  • the upper surface opening thereof is made of, for example, Mo foil. It may be covered with.
  • the processing chamber 20 may be sealed in the vacuum chamber 12 and may be configured to be maintained at a predetermined pressure independently of the vacuum chamber 12.
  • the present embodiment in order to achieve high productivity, vacuum steam treatment is performed.
  • the present invention can also be applied to a permanent magnet M obtained by performing a diffusion treatment for diffusing into the grain boundary phase (second step) to obtain a permanent magnet, and a permanent magnet M having high magnetic properties can be obtained.
  • Example 1 an Nd—Fe—B based sintered magnet S having an alloy compositional force of 9Nd—2Dy—1B—3Co—bal. Fe produced by a so-called two-alloy method was used.
  • a main phase alloy having a composition of 29Nd-lB-l.5Co-bal.Fe is produced by a known SC melting and forging method, and coarsely pulverized in Ar to, for example, 50 mesh or less.
  • As a liquid phase alloy a composition having a compositional strength of 5Nd- 38D y — 0 ⁇ 7B-34Co-bal.
  • Fe is produced by a known SC melting and forging method, and coarsely pulverized to 50 mesh or less in Ar, for example. A coarse powder is obtained.
  • the compact is stored in a known sintering furnace, Sintering is performed at a processing temperature of 1050 ° C and a processing time of 2 hours (sintering process), and then an aging treatment is performed at a processing temperature of 530 ° C and a processing time of 2 hours.
  • the above sintered magnet was prepared.
  • a permanent magnet cage was obtained by the vacuum vapor treatment.
  • 60 sintered magnets S were placed at equal intervals on the mounting portion 21a in the Mo box 2.
  • Balta-shaped Dy (about 1 mm) with a purity of 99.9% was used as the evaporation material, and the total amount of 100 g was placed on the bottom surface of the processing chamber 20.
  • the vacuum evacuation means once pressure of the vacuum chamber to 1 X 10- 4 Pa in (pressure in the treatment chamber 5 X 10- 3 Pa), the heating temperature of the processing chamber 20 by the heating means 3 950 Set to ° C.
  • the alloy raw material powder is filled in the cavity of a known uniaxial pressure type compression molding machine and molded into a predetermined shape in a magnetic field (molding process), and then the molded body is stored in a known sintering furnace. Sintering is performed at a processing temperature of 1050 ° C and a processing time of 2 hours (sintering process), and then an aging treatment is performed at a processing temperature of 530 ° C and a processing time of 2 hours. The sintered magnet of ⁇ m was produced. Finally, after processing to 40 X 20 X 5 dimensions, cleaning by barrel polishing and surface finishing were performed.
  • the permanent magnet M was obtained by the vacuum vapor treatment using the vacuum vapor treatment apparatus 1.
  • vacuum steam treatment was performed under the same conditions as in Example 1.
  • FIG. 5 is a table showing the average value of magnetic characteristics (measured using a BH curve tracer) when a permanent magnet is obtained under the above conditions, together with the average value of magnetic characteristics before vacuum vapor treatment.
  • Comparative Example 1 the coercive force is improved when the vacuum vapor treatment is performed, and the coercive force is increased as the treatment time is increased. 3. It was IkOe.
  • Example 1 a high coercive force of 25.3 k0e was obtained in half the vacuum steam processing time (6 hours) of Comparative Example 1, and the vacuum steam processing time (that is, the diffusion time) was reduced. It can be seen that productivity can be improved by shortening.
  • Example 2 a Nd—Fe—B-based sintered magnet S produced in the same manner as in Example 1 above was used, and in the same manner as in Example 1 above, vacuum vapor treatment was performed using the vacuum vapor treatment apparatus 1. Permanent magnet M was obtained. In this case, 60 sintered magnets S are arranged at equal intervals on the mounting portion 21a in the Mo box 2. In addition, as a vaporized material, a 99.9% pure Balta-like Tb (approximately 1 mm), and the total amount of lOOOOg was placed on the bottom surface of the processing chamber 20.
  • the evacuating means by operating the evacuating means once pressure of the vacuum chamber to 1 X 10_ 4 Pa in (pressure in the treatment chamber 5 X 10- 3 Pa) with, 1000 ° C the heating temperature of the processing chamber 20 by the heating means 3 Set to. Then, after the temperature of the processing chamber 20 reached 1000 ° C., the vacuum vapor treatment was performed for 2 to 8 hours in this state, and then a heat treatment was performed to remove the distortion of the permanent magnet. In this case, the heat treatment temperature was set to 400 ° C and the treatment time was set to 90 minutes.
  • a permanent magnet M was obtained by using the Nd-Fe-B-based sintered magnet produced in the same manner as in Comparative Example 1, using the vacuum vapor processing apparatus 1, and performing the vacuum vapor treatment. .
  • vacuum steam treatment was performed under the same conditions as in Example 2.
  • FIG. 6 is a table showing the average value of the magnetic characteristics (measured using a BH curve tracer) when the permanent magnet is obtained under the above conditions, together with the average value of the magnetic characteristics before the vacuum steam treatment.
  • Comparative Example 2 the coercive force is improved when the vacuum vapor treatment is performed, and the coercive force is increased as the treatment time is increased. It was 8k0e.
  • Example 2 a high coercive force of 25.6 k0e was obtained in 1/4 the processing time of Comparative Example 2, and the vacuum steam processing time (that is, the diffusion time) was shortened to improve productivity. I understand that I can do it. It can also be seen that when the treatment time exceeds 4 hours, a permanent magnet M having a higher coercive force exceeding 28 k0e and having high magnetic properties can be obtained.
  • FIG. 1 is a diagram schematically illustrating a cross section of a permanent magnet manufactured according to the present invention.
  • FIG. 2 is a diagram schematically showing a vacuum processing apparatus for performing the processing of the present invention.
  • FIG. 3 is a diagram schematically illustrating a cross section of a permanent magnet manufactured by a conventional technique.
  • FIG. 4 (a) is a diagram for explaining processing deterioration of a sintered magnet surface. (B) is a figure explaining the surface state of the permanent magnet produced by implementation of this invention.
  • FIG. 5 is a table showing the magnetic properties of the permanent magnet produced in Example 1.
  • FIG. 6 is a table showing the magnetic properties of the permanent magnet produced in Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

極めて高い保磁力を有し、高磁気特性の永久磁石を高い生産性で作製できる永久磁石の製造方法を提供する 鉄-ホウ素-希土類系の焼結磁石の表面の少なくとも一部に、Dy、Tbの少なくとも一方を付着させる第一工程と、所定温度下で熱処理を施して焼結磁石の表面に付着したDy、Tbの少なくとも一方を焼結磁石の結晶粒界相に拡散させる第二工程とを実施する。焼結磁石として、主相合金(主としてR2T14B相から構成され、Rが、Ndを主とする少なくとも1種の希土類元素、Tが、Feを主とする遷移金属合金)と、液相合金(R2T14B相よりもRの含有率が高く、主としてRリッチ相から構成される)との各粉末を、所定の混合割合で混合し、得られた混合粉末を磁場中で加圧成形し、この成形体を真空または不活性ガス雰囲気中で焼結してなるものを用いる。      

Description

明 細 書
永久磁石及び永久磁石の製造方法
技術分野
[0001] 本発明は、永久磁石及び永久磁石の製造方法に関し、特に、 Nd— Fe— B系の焼 結磁石の結晶粒界相に Dyや Tbを拡散させてなる高磁気特性の永久磁石及びこの 永久磁石の製造方法に関する。
背景技術
[0002] Nd— Fe— B系の焼結磁石(所謂、ネオジム磁石)は、鉄と、安価であって資源的に 豊富で安定供給が可能な Nd、 Bの元素の組み合わせからなることで安価に製造でき ると共に、高磁気特性 (最大エネルギー積はフェライト系磁石の 10倍程度)を有する ことから、電子機器など種々の製品に利用され、近年では、ハイブリッドカー用のモ 一ターや発電機への採用も進んでレ、る。
[0003] 他方、上記焼結磁石のキュリー温度は、約 300°Cと低いことから、採用する製品の 使用状況によっては所定温度を超えて昇温する場合があり、所定温度を超えると、熱 により減磁するという問題がある。また、上記焼結磁石を所望の製品に利用するに際 しては、焼結磁石を所定形状に加工する場合があり、この加工によって焼結磁石の 結晶粒に欠陥(クラック等)や歪などが生じて磁気特性が著しく劣化するという問題が ある。
[0004] このため、 Nd— Fe— B系の焼結磁石を得る際に、 Ndより大きい 4f電子の磁気異 方性を有し、 Ndと同じく負のステイーブンス因子を持つことで、主相の結晶磁気異方 性を大きく向上させる Dyや Tbを添加することが考えられるものの、 Dy、 Tbは主相結 晶格子中で Ndと逆向きのスピン配列をするフェリ磁性構造を取ることから磁界強度、 、ては、磁気特性を示す最大エネルギー積が大きく低下する。
[0005] このこと力、ら、 Nd— Fe— B系の焼結磁石の表面全体に亘つて、 Dyや Tbを所定膜 厚 (磁石の体積に依存して 311 m以上の膜厚で形成される)で成膜し、次!/、で、所定 温度下で熱処理を施して、表面に成膜された Dyや Tbを磁石の結晶粒界相に拡散さ せて均一に行き渡らせることが提案されている(非特許文献 1参照)。 [0006] 上記方法で作製した永久磁石は、結晶粒界相に拡散した Dyや Tbが各結晶粒表 面の結晶磁気異方性を高めることで、ニュークリエーション型の保磁力発生機構を強 化し、その結果、保磁力を飛躍的に向上させると共に、最大エネルギー積がほとんど 損なわれないという利点がある(例えば残留磁束密度: 14. 5kG (l . 45T)、最大工 ネルギ一積: 50MG0e (400kj/m3)で、保磁力: 23k0e (3MA/m)の性能の磁石 ができることが非特許文献 1に報告されて!/、る)。
非特千文献丄 improvement or coercivity on thin Nd2Fe丄 4B sinterea permanent mag nets (薄型 Nd2Fel4B系焼結磁石における保磁力の向上) /朴起兌、東北大学 博 士論文 平成 12年 3月 23日)
発明の開示
発明が解決しょうとする課題
[0007] ところで、例えば保磁力をさらに高めれば、永久磁石の厚みを薄くしても強い磁力 を持ったものが得られる。従って、この種の永久磁石利用製品自体の小型、軽量化 や小電力化を図るためには、上記従来技術と比較して一層高い保磁力を有し、高磁 気特性の永久磁石の開発が望まれる。また、資源的に乏しぐ安定供給が望めない Dyや Tbを用いるため、焼結磁石の表面への Dyや Tbの成膜や結晶粒界相への拡 散を効率よく行って生産性を向上させる必要がある。
[0008] そこで、上記点に鑑み、本発明の第一の目的は、極めて高い保磁力を有し、高磁 気特性の永久磁石を提供することにある。また、本発明の第二の目的は、極めて高 V、保磁力を有し、高磁気特性の永久磁石を高!/、生産性で作製できる永久磁石の製 造方法を提供することにある。
課題を解決するための手段
[0009] 上記課題を解決するために、請求項 1記載の永久磁石の製造方法は、鉄—ホウ素 希土類系の焼結磁石の表面の少なくとも一部に、 Dy、 Tbの少なくとも一方を付着 させる第一工程と、所定温度下で熱処理を施して焼結磁石の表面に付着した Dy、 T bの少なくとも一方を焼結磁石の結晶粒界相に拡散させる第二工程とを含む永久磁 石の製造方法において、前記焼結磁石として、主相合金(主として R T B相から構
2 14
成され、 R力 Ndを主とする少なくとも 1種の希土類元素、 T力 S、 Feを主とする遷移金 属)と、液相合金 (R T B相よりも Rの含有率が高ぐ主として Rリッチ相から構成され
2 14
る)との各粉末を、所定の混合割合で混合し、得られた混合粉末を磁場中で加圧成 形し、この成形体を真空または不活性ガス雰囲気中で焼結してなるものを用いたこと を特徴とする。
[0010] 本発明によれば、主相合金及び液相合金を別々に粉砕した後、成形、焼結する所 謂二合金法で作製した焼結磁石は、結晶粒が大きくて丸い形状であり(つまり、ニュ 一クリエーションサイトが少なく)、配向特性がよぐ結晶粒界に存在する希土類 (Nd) リッチ相が分散性よく増えている(つまり、非磁性であって主相を磁気的に絶縁するこ とで保磁力を高める希土類リッチ層が、所謂一合金法で作製したものと比較して倍以 上に増えて分散している)ことから、この焼結磁石に対して上記処理を施すと、 Dyや Tbの金属原子の結晶粒界の希土類リッチ相への拡散速度が速くなり、短時間で効 率よく拡散させて行き渡らすことができる。その上、分散性の良い希土類リッチ相に D yや Tbの濃度を有効に増加できるため、一層高い保磁力を有し、高磁気特性の永久 磁石が得られる。
[0011] 前記焼結磁石を処理室に配置して加熱すると共に、同一または他の処理室に配置 した Dy、 Tbの少なくとも一方を含有する蒸発材料を加熱して蒸発させ、この蒸発した 蒸発材料を、焼結磁石表面への供給量を調節して付着させ、この付着した蒸発材料 の Dy、 Tbの金属原子を、焼結磁石表面に蒸発材料からなる薄膜が形成される前に 焼結磁石の結晶粒界相に拡散させ、前記第一工程及び第二工程を行うことが好まし い。
[0012] これによれば、蒸発した蒸発材料 (Dy、 Tbの金属原子や分子)が、所定温度まで 加熱された焼結磁石表面に供給されて付着する。その際、焼結磁石を最適な拡散 速度が得られる温度に加熱すると共に、焼結磁石表面への蒸発材料の供給量を調 節したため、表面に付着した蒸発材料は、薄膜を形成する前に焼結磁石の結晶粒 界相に順次拡散されて行く(即ち、焼結磁石表面への Dyや Tb等の供給と焼結磁石 の結晶粒界相への拡散とがー度の処理で行われる(真空蒸気処理))。このため、永 久磁石の表面状態は、上記処理を実施する前の状態と略同一であり、作製した永久 磁石表面が劣化する(表面粗さが悪くなる)ことが防止され、また、特に焼結磁石表面 に近い粒界内に Dyや Tbが過剰に拡散することが抑制され、別段の後工程が不要と なって高!/、生産性を達成できる。
[0013] この場合、結晶粒界相に Dy、 Tbのリッチ相(Dy、 Tbを 5〜80%の範囲で含む相) を有し、さらには結晶粒の表面付近にのみ Dyや Tbが拡散していることで、高磁気特 性の永久磁石となる。さらに、焼結磁石の加工時に焼結磁石表面付近の結晶粒に欠 陥(クラック)が生じている場合には、そのクラックの内側に Dy、 Tbのリッチ相が形成 されて、磁化および保磁力を回復できる。
[0014] 上記処理に際しては、前記焼結磁石と蒸発材料とを離間して配置しておけば、蒸 発材料を蒸発させるとき、溶けた蒸発材料が直接焼結磁石に付着することが防止で きてよい。
[0015] また、前記処理室内に配置される前記蒸発材料の比表面積を変化させて一定温 度下における蒸発量を増減すれば、例えば Dy、 Tbの焼結磁石表面への供給量を 増減する別個の部品を処理室内に設ける等、装置の構成を変えることなぐ簡単に 焼結磁石表面への供給量の調節ができてょレ、。
[0016] Dyや Tbを結晶粒界相に拡散させる前に焼結磁石表面に吸着した汚れ、ガスや水 分を除去するために、前記焼結磁石を収納した処理室の加熱に先立って、処理室 内を所定圧力に減圧して保持することが好ましい。
[0017] この場合、表面に吸着した汚れ、ガスや水分の除去を促進するために、前記処理 室を所定圧力に減圧した後、処理室内を所定温度に加熱して保持することが好まし い。
[0018] 他方、 Dyや Tbを結晶粒界相に拡散させる前に焼結磁石表面の酸化膜を除去す ベぐ前記焼結磁石を収納した処理室の加熱に先立って、プラズマによる前記焼結 磁石表面のクリーニングを行うことが好ましい。
[0019] 前記焼結磁石の結晶粒界相に Dyや Tbを拡散させた後、上記温度より低い所定温 度下で永久磁石の歪を除去する熱処理を施すようにすれば、磁化および保磁力がさ らに向上または回復した高磁気特性の永久磁石が得られる。
[0020] また、前記焼結磁石の結晶粒界相に Dyや Tbを拡散させた後、磁場配向方向に直 角な方向で所定の厚さに切断するようにして永久磁石を作製してもよい。これにより、 所定寸法を有するブロック状の焼結磁石を複数個の薄片に切断し、この状態で処理 室に並べて収納した後、上記真空蒸気処理を施す場合と比較して、例えば処理室 への焼結磁石の出し入れが短時間で行うことができ、上記真空蒸気処理を施す前準 備が容易になって生産性を向上できる。
[0021] この場合、ワイヤーカツタ等により所望形状に切断すると、焼結磁石表面の主相で ある結晶粒にクラックが生じて磁気特性が著しく劣化する場合があるが、上記真空蒸 気処理を施すと、結晶粒界相に Dyリッチ相を有し、さらには結晶粒の表面付近にの み Dyが拡散しているため、後工程で複数個の薄片に切断して永久磁石を得ても磁 気特定が劣化することが防止され、仕上げ加工が不要なことと相俟って生産性に優 れた永久磁石が得られる。
[0022] さらに、上記課題を解決するために、請求項 10記載の永久磁石は、焼結磁石とし て、主相合金(主として R T B相から構成され、 Rが、 Ndを主とする少なくとも 1種の
2 14
希土類元素、 T力 Feを主とする遷移金属合金)と、液相合金 (R T B相よりも の
2 14
含有率が高ぐ主として Rリッチ相から構成される)との各粉末を、所定の混合割合で 混合し、得られた混合粉末を磁場中で加圧成形し、この成形体を真空または不活性 ガス雰囲気中で焼結してなるものを用い、この焼結磁石を、処理室に配置して加熱 すると共に、同一または他の処理室に配置した Dy、 Tbの少なくとも一方を含有する 蒸発材料を加熱して蒸発させ、この蒸発した蒸発材料を、焼結磁石表面への供給量 を調節して付着させ、この付着した蒸発材料の Dy、 Tbの金属原子を、焼結磁石表 面に蒸発材料からなる薄膜が形成される前に焼結磁石の結晶粒界相に拡散させて なることを特徴とする。
発明の効果
[0023] 以上説明したように、本発明の永久磁石の製造方法は、焼結磁石表面に付着した Dy、 Tbを効率よく結晶粒界相に拡散でき、高い生産性で高磁気特性の永久磁石を 作製できるという効果を奏する。また、本発明の永久磁石は、一層高い保磁力を有し 、高磁気特性のものであるという効果を奏する。
発明を実施するための最良の形態
[0024] 図 1及び図 2を参照して説明すれば、本発明の永久磁石 Mは、所定形状に加工さ れた Nd— Fe— B系の焼結磁石 Sの表面に、 Dy、 Tbの少なくとも一方を含有する蒸 発材料 Vを蒸発させて付着させ、この付着した蒸発材料の Dyや Tbの金属原子を、 焼結磁石 Sの結晶粒界相に拡散させて均一に行き渡らせる一連の処理 (真空蒸気 処理)を同時に行って作製される。
[0025] 出発材料である Nd— Fe— B系の焼結磁石 Sは、公知の所謂二合金法によって次 のように作製されている。即ち、主相合金(主として R T B相から構成され、 Rが、 Nd
2 14
を主とする少なくとも 1種の希土類元素、 T力 Feを主とする遷移金属合金)と、液相 合金 (R T B相よりも Rの含有率が高ぐ主として Rリッチ相から構成される)との混合
2 14
粉末を得る。本実施の形態では、主相合金を、 Fe、 B、 Ndを所定の組成比で配合し て公知の SC溶解铸造法で合金原料を作製し、この作製した合金原料を Ar中で例え ば 50メッシュ以下に粗粉砕して得る。他方で、液相合金もまた、 Nd、 Dy、 Co、 Feを 所定の組成比で配合して公知の SC溶解铸造法で合金原料を作製し、作製した合金 原料を Ar中で例えば 50メッシュ以下に粗粉砕して得る。
[0026] 次!/、で、得られた主相及び液相の各粉末を所定の混合割合 (例えば、主相:液相 = 90wt% : 10wt%)で混合し、水素粉砕工程により一旦粗粉砕し、引き続き、ジェッ トミル微粉砕工程により窒素雰囲気中で微粉砕して混合粉末を得る。次いで、公知 の圧縮成形機によって、磁界中で配向して金型で直方体や円柱など所定形状に圧 縮成形した後、所定の条件下で焼結させて上記焼結磁石が作製される。これにより、 結晶粒が大きくて丸い形状であり(つまり、ニュークリエーションサイトが少なく)、配向 特性がよぐ結晶粒界に存在する希土類 (Nd)リッチ相が分散性の良い(つまり、非 磁性であって主相を磁気的に絶縁することで保磁力を高める希土類リッチ層力 S、所 謂一合金法で作製したものと比較して倍以上に増えて分散して!/、る)焼結磁石 Sが 得られる。
[0027] また、合金原料粉末を圧縮成形する際に、キヤビティ内での混合粉末の流動性を 高めるために公知の潤滑剤を添加する場合、焼結磁石 Sの作製の各工程において 条件をそれぞれ最適化し、焼結磁石 Sの平均結晶粒径が 4 m〜; 12 mの範囲に することが好ましい。これにより、焼結磁石内部に残留する炭素の影響を受けずに、 焼結磁石表面に付着した Dyや Tbが結晶粒界相に効率よく拡散できる。平均結晶粒 径が 4 i mより小さいと、 Dyや Tbが結晶粒界相に拡散したことで、高い保磁力を有 する永久磁石となる力 磁界中での圧縮成形時に流動性を確保し配向性を向上させ ると!/、う合金原料粉末への潤滑剤添加の効果が薄れ、焼結磁石の配向度が悪くなり 、その結果、磁気特性を示す残留磁束密度及び最大エネルギー積が低下する。他 方で、平均結晶粒径が 12 mより大きいと、結晶が大きいため保磁力が低下し、そ の上、結晶粒界の表面積が少なくなることで、結晶粒界付近の残留炭素の濃度比が 高くなることで、保磁力がさらに大きく低下する。また、残留炭素が Dyや Tbと反応し、 Dyの結晶粒界相への拡散が妨げられ、拡散時間が長くなつて生産性が悪!/、。
[0028] 図 2に示すように、上記処理を実施する真空蒸気処理装置 1は、ターボ分子ポンプ 、クライオポンプ、拡散ポンプなどの真空排気手段 11を介して所定圧力(例えば 1 X 10_5Pa)まで減圧して保持できる真空チャンバ 12を有する。真空チャンバ内 12には 、上面を開口した直方体形状の箱部 21と、開口した箱部 21の上面に着脱自在な蓋 部 22とからなる箱体 2が設置される。
[0029] 蓋部 22の外周縁部には下方に屈曲させたフランジ 22aがその全周に亘つて形成さ れ、箱部 21の上面に蓋部 22を装着すると、フランジ 22aが箱部 21の外壁に嵌合して (この場合、メタルシールなどの真空シールは設けていない)、真空チャンバ 11と隔 絶された処理室 20が画成される。そして、真空排気手段 11を介して真空チャンバ 12 を所定圧力(例えば、 1 X 10— 5Pa)まで減圧すると、処理室 20が真空チャンバ 12より 略半桁高い圧力(例えば、 5 X 10— 4Pa)まで減圧されるようになっている。
[0030] 処理室 20の容積は、蒸発材料の平均自由行程を考慮して蒸気雰囲気中の金属原 子(分子)が直接または衝突を繰返して複数の方向から焼結磁石 Sに供給されるよう に設定されている。また、箱部 21及び蓋部 22の壁面の肉厚は、後述する加熱手段 によって加熱されたとき、熱変形しないように設定され、蒸発材料と反応しない材料か ら構成されている。
[0031] 即ち、蒸発材料 Vが Dy、 Tbであるとき、一般の真空装置でよく用いられる Al Oを
2 3 用いると、蒸気雰囲気中の Dy、 Tbと Al Oが反応してその表面に反応生成物を形
2 3
成すると共に、 A1原子が Dyや Tbの蒸気雰囲気中に侵入する虞がある。このため、 箱体 2を、例えば、 Mo、 W、 V、 Taまたはこれらの合金(希土類添加型 Mo合金、 Ti 添加型 Mo合金などを含む)や CaO、 Y O、或いは希土類酸化物から作製するか、
2 3
またはこれらの材料を他の断熱材の表面に内張膜として成膜したものから構成して いる。また、処理室 20内で底面から所定の高さ位置には、例えば Mo製の複数本の 線材 (例えば Φ 0. ;!〜 10mm)を格子状に配置することで載置部 21aが形成され、こ の載置部 21aに複数個の焼結磁石 Sを並べて載置できる。他方、蒸発材料 Vは、主 相の結晶磁気異方性を大きく向上させる Dy及び Tbまたは Dy、Tbの少なくとも一方 を含有する合金であり、処理室 20の底面、側面または上面等に適宜配置される。
[0032] 真空チャンバ 12にはまた、加熱手段 3が設けられている。加熱手段 3は、箱体 2と同 様に Dy、 Tbの蒸発材料 Vと反応しない材料製であり、例えば、箱体 2の周囲を囲うよ うに設けられ、内側に反射面を備えた Mo製の断熱材と、その内側に配置され、 Mo 製のフィラメントを有する電気加熱ヒータとから構成される。そして、減圧下で箱体 2を 加熱手段 3で加熱し、箱体 2を介して間接的に処理室 20内を加熱することで、処理 室 20内を略均等に加熱できる。
[0033] 次に、上記真空蒸気処理装置 1を用いた永久磁石 Mの製造について説明する。先 ず、箱部 21の載置部 21aに上記方法で作製した焼結磁石 Sを載置すると共に、箱部 21の底面に蒸発材料 Vである Dyを設置する(これにより、処理室 20内で焼結磁石 S と蒸発材料 Vが離間して配置される)。そして、箱部 21の開口した上面に蓋部 22を 装着した後、真空チャンバ 12内で加熱手段 3によって周囲を囲まれる所定位置に箱 体 2を設置する(図 2参照)。そして、真空排気手段 11を介して真空チャンバ 12を所 定圧力(例えば、 l X 10_4Pa)に達するまで真空排気して減圧し、(処理室 20は略半 桁高い圧力まで真空排気される)、真空チャンバ 12が所定圧力に達すると、加熱手 段 3を作動させて処理室 20を加熱する。
[0034] 減圧下で処理室 20内の温度が所定温度に達すると、処理室 20の底面に設置した Dyが、処理室 20と略同温まで加熱されて蒸発を開始し、処理室 20内に Dy蒸気雰 囲気が形成される。 Dyが蒸発を開始した場合、焼結磁石 Sと Dyとを離間して配置し たため、溶けた Dyは、表面 Ndリッチ相が溶けた焼結磁石 Sに直接付着することはな い。そして、 Dy蒸気雰囲気中の Dy原子が、直接または衝突を繰返して複数の方向 から、 Dyと略同温まで加熱された焼結磁石 S表面に向力 て供給されて付着し、こ の付着した Dyが焼結磁石 Sの結晶粒界相に拡散されて永久磁石 Mが得られる。
[0035] ところで、図 3に示すように、 Dy層(薄膜) L1が形成されるように、 Dy蒸気雰囲気中 の Dy原子が焼結磁石 Sの表面に供給されると、焼結磁石 S表面で付着して堆積した Dyが再結晶したとき、永久磁石 M表面を著しく劣化させ (表面粗さが悪くなる)、また 、処理中に略同温まで加熱されている焼結磁石 S表面に付着して堆積した Dyが溶 解して焼結磁石 S表面に近い領域 R1における粒界内に過剰に拡散し、磁気特性を 効果的に向上または回復させることができない。
[0036] つまり、焼結磁石 S表面に Dyの薄膜が一度形成されると、薄膜に隣接した焼結磁 石表面 Sの平均組成は Dyリッチ組成となり、 Dyリッチ組成になると、液相温度が下が り、焼結磁石 S表面が溶けるようになる(即ち、主相が溶けて液相の量が増加する)。 その結果、焼結磁石 S表面付近が溶けて崩れ、凹凸が増加することとなる。その上、 Dyが多量の液相と共に結晶粒内に過剰に侵入し、磁気特性を示す最大エネルギー 積及び残留磁束密度がさらに低下する。
[0037] 本実施の形態では、焼結磁石の;!〜 10重量%の割合で、単位体積当たりの表面 積(比表面積)が小さ!/、バルタ状(略球状)の Dyを処理室 20の底面に配置し、一定 温度下における蒸発量を減少させるようにした。それに加えて、蒸発材料 Vが Dyで あるとき、加熱手段 3を制御して処理室 20内の温度を 700°C〜; 1050°C、好ましくは 9 00°C〜; 1000°Cの範囲に設定することとした(例えば、処理室内温度が 900°C〜; 10 00°Cのとき、 Dyの飽和蒸気圧は約 1 X 10 1 X 10— &となる)。
[0038] 処理室 20内の温度(ひいては、焼結磁石 Sの加熱温度)が 700°Cより低いと、焼結 磁石 S表面に付着した Dy原子の結晶粒界層への拡散速度が遅くなり、焼結磁石 S 表面に薄膜が形成される前に焼結磁石の結晶粒界相に拡散させて均一に行き渡ら せることができない。他方、 1050°Cを超えた温度では、 Dyの蒸気圧が高くなつて蒸 気雰囲気中の Dy原子が焼結磁石 S表面に過剰に供給される。また、 Dyが結晶粒内 に拡散する虞があり、 Dyが結晶粒内に拡散すると、結晶粒内の磁化を大きく下げる ため、最大エネルギー積及び残留磁束密度がさらに低下することになる。
[0039] 焼結磁石 S表面に Dyの薄膜が形成される前に Dyをその結晶粒界相に拡散させる ために、処理室 20の載置部 21aに設置した焼結磁石 Sの表面積の総和に対する処 理室 20の底面に設置したバルタ状の Dyの表面積の総和の比率が、 1 X 10 〜2 X 103の範囲になるように設定する。 1 X 1CT4〜2 X 103の範囲以外の比率では、焼結 磁石 S表面に Dyや Tbの薄膜が形成される場合があり、また、高い磁気特性の永久 磁石が得られない。この場合、上記比率が 1 X 10_3から 1 X 103の範囲が好ましぐま た、上記比率が 1 X 10— 2から 1 X 102の範囲がより好ましい。
[0040] これにより、蒸気圧を低くすると共に Dyの蒸発量を減少させることで、焼結磁石 Sへ の Dy原子の供給量が抑制されることと、所謂二合金法で作製した焼結磁石を所定 温度範囲で加熱することで Dyや Tbの結晶粒界相への拡散速度が速くなることとが 相俟って、焼結磁石表面に近い領域の粒界内に Dyが過剰に拡散することを抑制し つつ、焼結磁石 S表面に付着した Dy原子を、焼結磁石 S表面で堆積して Dy層(薄 膜)を形成する前に焼結磁石 Sの結晶粒界相に効率よく拡散させて均一に行き渡ら せることができる(図 1参照)。その結果、永久磁石 M表面が劣化することが防止され る。また、焼結磁石表面に近い領域の粒界内に Dyが過剰に拡散することが抑制され 、結晶粒界相に Dyリッチ相(Dyを 5〜80%の範囲で含む相)を有し、さらには結晶 粒の表面付近にのみ Dyが拡散することで、磁化および保磁力が効果的に向上し、 その上、仕上げ加工が不要な生産性に優れた永久磁石 Mが得られる。この場合、永 久磁石 Mは、倍以上に増えて混合された分散性の良い希土類リッチ相の Dyや Tbの 濃度を有効に増加できるため一層高い保磁力を有する。
[0041] ところで、図 4に示すように、上記焼結磁石を作製した後、ワイヤーカツタ等により所 望形状に加工すると、焼結磁石表面の主相である結晶粒にクラックが生じて磁気特 性が著しく劣化する場合があるが(図 4 (a)参照)、上記真空蒸気処理を施すと、表面 付近の結晶粒のクラックの内側に Dyリッチ相が形成されて(図 4 (b)参照)、磁化およ び保磁力が回復する。他方で、上記真空蒸気処理を施すと、結晶粒界相に Dyリッチ 相を有し、さらには結晶粒の表面付近にのみ Dyが拡散しているため、ブロック状の 焼結磁石に上記真空蒸気処理を施した後、後工程としてワイヤカツタ等により複数個 の薄片に切断して永久磁石 Mを得ても、この永久磁石の磁気特定は劣化し難い。こ れにより、所定寸法を有するブロック状の焼結磁石を複数個の薄片に切断し、この状 態で箱体 2の載置部 21aに並べて収納した後、上記真空蒸気処理を施す場合と比 較して、例えば箱体 2への焼結磁石 Sの出し入れが短時間で行うことができ、上記真 空蒸気処理を施す前準備が容易になり、前工程及び仕上げ加工が不要なことと相俟 つて高!/、生産性が達成される。
[0042] また、従来のネオジム磁石では防鯖対策が必要になることから Coを添加していた 力 Ndと比較して極めて高い耐食性、耐候性を有する Dyのリッチ相が表面付近の 結晶粒のクラックの内側や結晶粒界相に存することで、 Coを用いることなぐ極めて 強い耐食性、耐候性を有する永久磁石となる。尚、焼結磁石の表面に付着した Dyを 拡散させる場合、焼結磁石 Sの結晶粒界に Coを含む金属間化合物がないため、焼 結磁石 S表面に付着した Dy、 Tbの金属原子はさらに効率よく拡散される。
[0043] 最後に、上記処理を所定時間(例えば、;!〜 72時間)だけ実施した後、加熱手段 3 の作動を停止させると共に、図示しないガス導入手段を介して処理室 20内に lOkPa の Arガスを導入し、蒸発材料 Vの蒸発を停止させ、処理室 20内の温度を例えば 50 0°Cまで一旦下げる。引き続き、加熱手段 3を再度作動させ、処理室 20内の温度を 4 50°C〜650°Cの範囲に設定し、一層保磁力を向上または回復させるために、永久 磁石の歪を除去する熱処理を施す。最後に、略室温まで急冷し、箱体 2を取り出す。
[0044] 尚、本実施の形態では、蒸発材料 Vとして Dyを用いるものを例として説明したが、 拡散速度を早くできる焼結磁石 Sの加熱温度範囲(900°C〜; 1000°Cの範囲)で、蒸 気圧が低い Tbを用いることができ、または Dy、 Tbの合金を用いてもよい。また、一定 温度下における蒸発量を減少させるために比表面積が小さいバルタ状の蒸発材料 V を用いることとした力 これに限定されるものではなぐ例えば、箱部 21内に断面凹状 の受皿を設置し、受皿内に顆粒状またはバルタ状の蒸発材料 Vを収納することで比 表面積を減少させるようにしてもよく、さらに、受皿に蒸発材料 Vを収納した後、複数 の開口を設けた蓋(図示せず)を装着するようにしてもよ!/、。
[0045] また、本実施の形態では、処理室 20内に焼結磁石 Sと蒸発材料 Vとを配置したもの について説明した力 焼結磁石 Sと蒸発材料 Vとを異なる温度で加熱できるように、 例えば、真空チャンバ 12内に、処理室 20とは別個に蒸発室(他の処理室:図示せず )を設けると共に蒸発室を加熱する他の加熱手段を設け、蒸発室で蒸発材料を蒸発 させた後、処理室 20と蒸発室とを連通する連通路を介して、処理室 20内の焼結磁 石に、蒸気雰囲気中の金属原子が供給されるようにしてもよい。
[0046] この場合、蒸発材料 Vが Dyである場合、蒸発室を 700°C〜; 1050°C (700°C〜; 105 0°Cのとき、 Dyの飽和蒸気圧は約 1 X 10_4〜1 X 10_ &になる)の範囲で加熱すれ ばよい。 700°Cより低い温度では、結晶粒界相に Dyが拡散されて均一に行き渡るよ うに、焼結磁石 S表面に Dyを供給できる蒸気圧に達しない。他方、蒸発材料 Vが Tb である場合、蒸発室を 900°C〜; 1150°Cの範囲で加熱すればよい。 900°Cより低い 温度では、焼結磁石 S表面に Tb原子を供給できる蒸気圧に達しない。他方、 1150 °Cを超えた温度では、 Tbが結晶粒内に拡散してしまい、最大エネルギー積及び残 留磁束密度を低下させる。
[0047] また、 Dyや Tbを結晶粒界相に拡散させる前に焼結磁石 S表面に吸着した汚れ、ガ スゃ水分を除去するために、真空排気手段 11を介して真空チャンバ 12を所定圧力( 例えば、 1 X 10— 5Pa)まで減圧し、処理室 20が真空チャンバ 12より略半桁高い圧力 (例えば、 5 X 10_4Pa)まで減圧した後、所定時間保持するようにしてもよい。その際 、加熱手段 3を作動させて処理室 20内を例えば 100°Cに加熱し、所定時間保持する ようにしてもよい。
[0048] 他方、真空チャンバ 12内で、 Arまたは Heプラズマを発生させる公知構造のプラズ マ発生装置(図示せず)を設け、真空チャンバ 12内での処理に先だってプラズマに よる焼結磁石 S表面のクリーニングの前処理が行われるようにしてもよい。同一の処 理室 20内に焼結磁石 Sと蒸発材料 Vとを配置する場合、公知の搬送ロボットを真空 チャンバ 12内に設置し、真空チャンバ 12内で蓋部 22をタリ一ユング終了後に装着 するようにすればよい。
[0049] また、本実施の形態では、箱部 21の上面に蓋部 22を装着して箱体 2を構成するも のについて説明した力 S、真空チャンバ 12と隔絶されかつ真空チャンバ 12を減圧する のに伴って処理室 20が減圧されるものであれば、これに限定されるものではなぐ例 えば、箱部 21に焼結磁石 Sを収納した後、その上面開口を例えば Mo製の箔で覆う ようにしてもよい。他方、例えば、真空チャンバ 12内で処理室 20を密閉できるようにし 、真空チャンバ 12とは独立して所定圧力に保持できるように構成してもよい。
[0050] さらに、本実施の形態では、高い生産性を達成するため、真空蒸気処理する場合 について説明したが、公知の蒸着装置やスパッタリング装置を用いて焼結磁石表面 に Dyや Tbを付着させ(第一工程)、次いで、熱処理炉を用いて表面に付着した Dy や Tbを焼結磁石の結晶粒界相に拡散させる拡散処理を施して(第二工程)、永久磁 石を得るものについても、本発明を適用でき、高磁気特性の永久磁石 Mが得られる。 実施例 1
[0051] 実施例 1では、 Nd— Fe— B系の焼結磁石 Sとして、所謂二合金法で作製した合金 組成力 9Nd— 2Dy— 1B— 3Co— bal. Feのものを用いた。この場合、主相合金と して、組成が 29Nd—lB—l . 5Co-bal. Feのものを公知の SC溶解铸造法で作製 し、 Ar中で例えば 50メッシュ以下に粗粉砕して粗粉末を得ると共に、液相合金として 、組成力 5Nd— 38Dy— 0· 7B- 34Co-bal. Feのものを公知の SC溶解铸造法 で作製し、 Ar中で例えば 50メッシュ以下に粗粉砕して粗粉末を得る。
[0052] 次!/、で、得られた主相及び液相の各粗粉末を、主相:液相 = 95wt%: 5wt%の割 合で混合した後、水素粉砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕 工程により窒素雰囲気中で微粉砕して混合粉末を得る。次いで、この混合粉末を、 公知の一軸加圧式の圧縮成形機のキヤビティに充填し、磁界中で所定形状に成形 した後(成形工程)、この成形体を公知の焼結炉内に収納し、処理温度 1050°C、処 理時間 2時間に設定して焼結させ (焼結工程)、その後、処理温度 530°C、処理時間 2時間に設定して時効処理し、平均粒径が 6 πιの上記焼結磁石を作製した。最後 に、 40 X 20 X 5の寸法に加工した後、バレル研磨による洗浄及び表面仕上げ加工 を施した。
[0053] 次に、上記真空蒸気処理装置 1を用い、上記真空蒸気処理によって永久磁石 Μを 得た。この場合、 Mo製の箱体 2内で載置部 21a上に 60個の焼結磁石 Sを等間隔で 酉己置することとした。また、蒸発材料として純度 99. 9%のバルタ状の Dy (約 lmm)を 用い、 100gの総量で処理室 20の底面に配置した。次いで、真空排気手段を作動さ せて真空チャンバを 1 X 10— 4Paまで一旦減圧する(処理室内の圧力は 5 X 10— 3Pa) と共に、加熱手段 3による処理室 20の加熱温度を 950°Cに設定した。そして、処理室 20の温度が 950°Cに達した後、この状態で 2〜; 12時間、上記真空蒸気処理を行い、 次いで、永久磁石の歪を除去する熱処理を行った。この場合、熱処理温度を 400°C 、処理時間を 90分に設定した。
(比較例 1)
[0054] 比較例 1では、 Nd— Fe— B系の焼結磁石として、所謂一合金法で作製した合金組 成力 9Nd— 2Dy— 1B— 3Co— bal. Feのものを用い、 40 X 20 X 5mmの直方体 形状に加工した。この場合、 Fe、 Nd、 Dy、 B及び Coを上記組成比で配合し、公知の SC溶解铸造法で合金原料を作製し、 Ar中で例えば 50メッシュ以下に粗粉砕し、得 られた各粗粉末を、水素粉砕工程により一旦粗粉砕し、引き続き、ジェットミル微粉砕 工程により窒素雰囲気中で微粉砕して合金原料粉末を得る。次いで、この合金原料 粉末を、公知の一軸加圧式の圧縮成形機のキヤビティに充填し、磁界中で所定形状 に成形した後(成形工程)、この成形体を公知の焼結炉内に収納し、処理温度 1050 °C、処理時間 2時間に設定して焼結させ (焼結工程)、その後、処理温度 530°C、処 理時間 2時間に設定して時効処理し、平均粒径が 6 μ mの上記焼結磁石を作製した 。最後に、 40 X 20 X 5の寸法に加工した後、バレル研磨による洗浄及び表面仕上げ 加工を施した。
[0055] 次いで、上記真空蒸気処理装置 1を用い、上記真空蒸気処理によって永久磁石 M を得た。この場合、実施例 1と同条件で真空蒸気処理を施した。
[0056] 図 5は、上記条件で永久磁石を得たときの磁気特性(BHカーブトレーサーを用い て測定)の平均値を、真空蒸気処理前の磁気特性の平均値と共に示す表である。こ れによれば、比較例 1では、真空蒸気処理を施すと保磁力が向上し、処理時間が長 くなるに従い保磁力が高くなり、 12時間にわたる真空蒸気処理を施すと、保磁力が 2 3. IkOeであった。それに対して、実施例 1では、比較例 1の半分の真空蒸気処理時 間(6時間)で、 25. 3k0eの高い保磁力が得られており、真空蒸気処理時間(つまり、 拡散時間)を短くして、生産性を向上できることが判る。
実施例 2
[0057] 実施例 2では、上記実施例 1と同様に作製した Nd— Fe— B系の焼結磁石 S用い、 上記実施例 1と同様に、真空蒸気処理装置 1を用いて真空蒸気処理によって永久磁 石 Mを得た。この場合、 Mo製の箱体 2内で載置部 21a上に 60個の焼結磁石 Sを等 間隔で配置することとした。また、蒸発材料として純度 99. 9%のバルタ状の Tb (約 1 mm)を用い、 lOOOgの総量で処理室 20の底面に配置した。次いで、真空排気手段 を作動させて真空チャンバを 1 X 10_4Paまで一旦減圧する(処理室内の圧力は 5 X 10— 3Pa)と共に、加熱手段 3による処理室 20の加熱温度を 1000°Cに設定した。そし て、処理室 20の温度が 1000°Cに達した後、この状態で 2〜8時間、上記真空蒸気 処理を行い、次いで、永久磁石の歪を除去する熱処理を行った。この場合、熱処理 温度を 400°C、処理時間を 90分に設定した。
(比較例 2)
[0058] 比較例 2では、上記比較例 1と同様に作製した Nd— Fe— B系の焼結磁石を用い、 上記真空蒸気処理装置 1を用い、上記真空蒸気処理によって永久磁石 Mを得た。こ の場合、実施例 2と同条件で真空蒸気処理を施した。
[0059] 図 6は、上記条件で永久磁石を得たときの磁気特性(BHカーブトレーサーを用い て測定)の平均値を、真空蒸気処理前の磁気特性の平均値と共に示す表である。こ れによれば、比較例 2では、真空蒸気処理を施すと、保磁力が向上し、処理時間が 長くなるに従い保磁力が高くなり、 8時間にわたる真空蒸気処理を施すと、保磁力は 25. 8k0eであった。それに対し、実施例 2では、比較例 2の 1/4の処理時間で 25. 6k0eの高い保磁力が得られ、真空蒸気処理時間(つまり、拡散時間)を短くして、生 産性を向上できることが判る。また、処理時間が 4時間を越えると、 28k0eを超える一 層高い保磁力を有し、高磁気特性の永久磁石 Mが得られることが判る。
図面の簡単な説明
[0060] [図 1]本発明で作製した永久磁石の断面を模式的に説明する図。
[図 2]本発明の処理を実施する真空処理装置を概略的に示す図。
[図 3]従来技術により作製した永久磁石の断面を模式的に説明する図。
[図 4] (a)は、焼結磁石表面の加工劣化を説明する図。 (b)は、本発明の実施により 作製した永久磁石の表面状態を説明する図。
[図 5]実施例 1で作製した永久磁石の磁気特性を示す表。
[図 6]実施例 2で作製した永久磁石の磁気特性を示す表。
符号の説明
[0061] 1 真空蒸気処理装置 12 真空チャンバ 20 処理室
21 箱体
22 蓋体
3 加熱手段 S 焼結磁石 M 永久磁石 V 蒸発材料

Claims

請求の範囲
[1] 鉄 ホウ素 希土類系の焼結磁石の表面の少なくとも一部に、 Dy、 Tbの少なくとも 一方を付着させる第一工程と、所定温度下で熱処理を施して焼結磁石の表面に付 着した Dy、 Tbの少なくとも一方を焼結磁石の結晶粒界相に拡散させる第二工程とを 含む永久磁石の製造方法において、前記焼結磁石として、主相合金(主として R T
2 14
B相から構成され、 Rが、 Ndを主とする少なくとも 1種の希土類元素、 Tが、 Feを主と する遷移金属)と、液相合金 (R T B相よりも Rの含有率が高ぐ主として Rリッチ相か
2 14
ら構成される)との各粉末を、所定の混合割合で混合し、得られた混合粉末を磁場中 で加圧成形し、この成形体を真空または不活性ガス雰囲気中で焼結してなるものを 用いたことを特徴とする永久磁石の製造方法。
[2] 前記焼結磁石を処理室に配置して加熱すると共に、同一または他の処理室に配置 した Dy、 Tbの少なくとも一方を含有する蒸発材料を加熱して蒸発させ、この蒸発した 蒸発材料を、焼結磁石表面への供給量を調節して付着させ、この付着した蒸発材料 の Dy、 Tbの金属原子を、焼結磁石表面に蒸発材料からなる薄膜が形成される前に 焼結磁石の結晶粒界相に拡散させ、前記第一工程及び第二工程を行うことを特徴と する請求項 1記載の永久磁石の製造方法。
[3] 前記焼結磁石と蒸発材料とを離間して配置したことを特徴とする請求項 2記載の永 久磁石の製造方法。
[4] 前記処理室内に配置される前記蒸発材料の比表面積を変化させて一定温度下にお ける蒸発量を増減し、前記供給量を調節することを特徴とする請求項 2または請求項
3記載の永久磁石の製造方法。
[5] 前記焼結磁石を収納した処理室の加熱に先立って、処理室内を所定圧力に減圧し て保持することを特徴とする請求項 2乃至請求項 4のいずれかに記載の永久磁石の 製造方法。
[6] 前記処理室を所定圧力に減圧した後、処理室内を所定温度に加熱して保持すること を特徴とする請求項 5記載の永久磁石の製造方法。
[7] 前記焼結磁石を収納した処理室の加熱に先立って、プラズマによる前記焼結磁石表 面のクリーニングを行うことを特徴とする請求項 2乃至請求項 6のいずれかに記載の 永久磁石の製造方法。
[8] 前記焼結磁石の結晶粒界相に前記 Dy、 Tbの少なくとも一方を拡散させた後、前記 温度より低い所定温度で永久磁石の歪を除去する熱処理を施すことを特徴とする請 求項 2乃至請求項 7のいずれかに記載の永久磁石の製造方法。
[9] 前記焼結磁石の結晶粒界相に前記金属原子を拡散させた後、磁場配向方向に直 角な方向で所定の厚さに切断することを特徴とする請求項 2乃至請求項 8のいずれ かに記載の永久磁石の製造方法。
[10] 焼結磁石として、主相合金(主として R T B相から構成され、 R力 Ndを主とする少
2 14
なくとも 1種の希土類元素、 T力 S、 Feを主とする遷移金属)と、液相合金 (R T B相よ
2 14 りも Rの含有率が高ぐ主として Rリッチ相から構成される)との各粉末を、所定の混合 割合で混合し、得られた混合粉末を磁場中で加圧成形し、この成形体を真空または 不活性ガス雰囲気中で焼結してなるものを用い、この焼結磁石を、処理室に配置し て加熱すると共に、同一または他の処理室に配置した Dy、 Tbの少なくとも一方を含 有する蒸発材料を加熱して蒸発させ、この蒸発した蒸発材料を、焼結磁石表面への 供給量を調節して付着させ、この付着した蒸発材料の Dy、 Tbの金属原子を、焼結 磁石表面に蒸発材料からなる薄膜が形成される前に焼結磁石の結晶粒界相に拡散 させてなることを特徴とする永久磁石。
PCT/JP2007/074405 2006-12-21 2007-12-19 永久磁石及び永久磁石の製造方法 WO2008075710A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800478011A CN101568980B (zh) 2006-12-21 2007-12-19 永磁铁及永磁铁的制造方法
JP2008550165A JP5275043B2 (ja) 2006-12-21 2007-12-19 永久磁石及び永久磁石の製造方法
US12/519,878 US8262808B2 (en) 2006-12-21 2007-12-19 Permanent magnet and method of manufacturing same
DE112007003122T DE112007003122T5 (de) 2006-12-21 2007-12-19 Permanentmagnet und Verfahren zu dessen Herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006344780 2006-12-21
JP2006-344780 2006-12-21

Publications (1)

Publication Number Publication Date
WO2008075710A1 true WO2008075710A1 (ja) 2008-06-26

Family

ID=39536337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074405 WO2008075710A1 (ja) 2006-12-21 2007-12-19 永久磁石及び永久磁石の製造方法

Country Status (8)

Country Link
US (1) US8262808B2 (ja)
JP (1) JP5275043B2 (ja)
KR (1) KR20090091203A (ja)
CN (1) CN101568980B (ja)
DE (1) DE112007003122T5 (ja)
RU (1) RU2423748C2 (ja)
TW (1) TWI437588B (ja)
WO (1) WO2008075710A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101707239B1 (ko) * 2010-08-23 2017-02-17 한양대학교 산학협력단 η상을 갖는 R-Fe-B계 소결자석 제조방법
US9601251B2 (en) 2012-12-07 2017-03-21 Continental Teves Ag & Co. Ohg Correction of angle errors in permanent magnets
CN103205543B (zh) * 2013-05-05 2014-12-03 沈阳中北真空磁电科技有限公司 一种钕铁硼稀土永磁器件的真空热处理方法和设备
CN103219117B (zh) * 2013-05-05 2016-04-06 沈阳中北真空磁电科技有限公司 一种双合金钕铁硼稀土永磁材料及制造方法
CN103280290B (zh) * 2013-06-09 2016-03-02 钢铁研究总院 含铈低熔点稀土永磁液相合金及其永磁体制备方法
CN104505206B (zh) * 2014-12-04 2018-07-17 浙江大学 一种高矫顽力烧结钕铁硼的制备方法及产品
TWI564916B (zh) * 2016-03-10 2017-01-01 中國鋼鐵股份有限公司 釹鐵硼磁石的製造方法
CN107464684B (zh) * 2017-08-30 2020-04-21 包头天和磁材科技股份有限公司 烧结磁体的处理方法
CN112986874B (zh) * 2021-02-07 2022-11-01 河北工业大学 基于空间正交三轴应力加载条件下的单片磁特性测量装置
CN113421761B (zh) * 2021-06-12 2023-03-24 山西汇镪磁性材料制作有限公司 一种降低改性磁粉吸附能的高性能烧结钕铁硼制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175138A (ja) * 2003-12-10 2005-06-30 Japan Science & Technology Agency 耐熱性希土類磁石及びその製造方法
WO2006100968A1 (ja) * 2005-03-18 2006-09-28 Ulvac, Inc. 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法
JP2006303433A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2994684B2 (ja) 1990-03-27 1999-12-27 日立金属株式会社 希土類永久磁石用原料の製造方法
KR100592471B1 (ko) * 1998-10-14 2006-06-23 히다찌긴조꾸가부시끼가이사 알-티-비계 소결형 영구자석
CN1217348C (zh) * 2002-04-19 2005-08-31 昭和电工株式会社 在r-t-b系烧结磁铁的制造中使用的合金和r-t-b系烧结磁铁的制造方法
US7199690B2 (en) * 2003-03-27 2007-04-03 Tdk Corporation R-T-B system rare earth permanent magnet
JP3897724B2 (ja) * 2003-03-31 2007-03-28 独立行政法人科学技術振興機構 超小型製品用の微小、高性能焼結希土類磁石の製造方法
JP2005011973A (ja) 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
TWI413136B (zh) 2005-03-23 2013-10-21 Shinetsu Chemical Co 稀土族永久磁體
US7559996B2 (en) * 2005-07-22 2009-07-14 Shin-Etsu Chemical Co., Ltd. Rare earth permanent magnet, making method, and permanent magnet rotary machine
US7955443B2 (en) * 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP2007287865A (ja) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd 永久磁石材料の製造方法
JP4811143B2 (ja) * 2006-06-08 2011-11-09 日立金属株式会社 R−Fe−B系希土類焼結磁石およびその製造方法
DE112007002010T5 (de) * 2006-08-23 2009-07-02 ULVAC, Inc., Chigasaki Permanentmagnet und Herstellungsverfahren davon
JP5090359B2 (ja) * 2006-09-14 2012-12-05 株式会社アルバック 永久磁石及び永久磁石の製造方法
JP4840606B2 (ja) * 2006-11-17 2011-12-21 信越化学工業株式会社 希土類永久磁石の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175138A (ja) * 2003-12-10 2005-06-30 Japan Science & Technology Agency 耐熱性希土類磁石及びその製造方法
WO2006100968A1 (ja) * 2005-03-18 2006-09-28 Ulvac, Inc. 成膜方法及び成膜装置並びに永久磁石及び永久磁石の製造方法
JP2006303433A (ja) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd 希土類永久磁石

Also Published As

Publication number Publication date
KR20090091203A (ko) 2009-08-26
TWI437588B (zh) 2014-05-11
RU2009128024A (ru) 2011-01-27
US8262808B2 (en) 2012-09-11
DE112007003122T5 (de) 2009-11-19
US20100026432A1 (en) 2010-02-04
JPWO2008075710A1 (ja) 2010-04-15
JP5275043B2 (ja) 2013-08-28
CN101568980A (zh) 2009-10-28
RU2423748C2 (ru) 2011-07-10
CN101568980B (zh) 2011-12-28
TW200901246A (en) 2009-01-01

Similar Documents

Publication Publication Date Title
TWI433172B (zh) Method for manufacturing permanent magnets and permanent magnets
JP5275043B2 (ja) 永久磁石及び永久磁石の製造方法
JP5205277B2 (ja) 永久磁石及び永久磁石の製造方法
JP5247717B2 (ja) 永久磁石の製造方法及び永久磁石
WO2007088718A1 (ja) R-Fe-B系希土類焼結磁石およびその製造方法
WO2006112403A1 (ja) 希土類焼結磁石とその製造方法
KR20090065525A (ko) 영구자석 및 영구자석의 제조방법
JP5288277B2 (ja) R−t−b系永久磁石の製造方法
TWI396212B (zh) Permanent magnet manufacturing method and permanent magnet
JP5205278B2 (ja) 永久磁石及び永久磁石の製造方法
JP5064930B2 (ja) 永久磁石及び永久磁石の製造方法
JP2009200179A (ja) 焼結体の製造方法
JP5328369B2 (ja) 永久磁石及び永久磁石の製造方法
JP2009084627A (ja) 焼結体の製造方法及びこの焼結体の製造方法により製造されるネオジウム鉄ボロン系焼結磁石
JP2008071904A (ja) 永久磁石及び永久磁石の製造方法
JP4860491B2 (ja) 永久磁石及び永久磁石の製造方法
JP2010245392A (ja) ネオジウム鉄ボロン系の焼結磁石

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780047801.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850875

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550165

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12009501224

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1020097012985

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1120070031220

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2009128024

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12519878

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 112007003122

Country of ref document: DE

Date of ref document: 20091119

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07850875

Country of ref document: EP

Kind code of ref document: A1