WO2008075443A1 - 溶接熱影響部の靭性に優れた鋼 - Google Patents

溶接熱影響部の靭性に優れた鋼 Download PDF

Info

Publication number
WO2008075443A1
WO2008075443A1 PCT/JP2006/325984 JP2006325984W WO2008075443A1 WO 2008075443 A1 WO2008075443 A1 WO 2008075443A1 JP 2006325984 W JP2006325984 W JP 2006325984W WO 2008075443 A1 WO2008075443 A1 WO 2008075443A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
toughness
less
welding
affected zone
Prior art date
Application number
PCT/JP2006/325984
Other languages
English (en)
French (fr)
Inventor
Ryuji Uemori
Yoshiyuki Watanabe
Kazuhiro Fukunaga
Yoshihide Nagai
Rikio Chijiiwa
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP06843367A priority Critical patent/EP2060643B1/en
Priority to CN200680006614A priority patent/CN100594250C/zh
Priority to CA2602076A priority patent/CA2602076C/en
Priority to BRPI0607524A priority patent/BRPI0607524B1/pt
Priority to KR1020077019771A priority patent/KR100940617B1/ko
Priority to PCT/JP2006/325984 priority patent/WO2008075443A1/ja
Priority to NO20074370A priority patent/NO343351B1/no
Publication of WO2008075443A1 publication Critical patent/WO2008075443A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a steel excellent in toughness of a weld heat affected zone (HAZ) in small heat input welding to medium heat input welding and a method for producing the same.
  • HAZ weld heat affected zone
  • the HA Z toughness of low alloy steels is: (1) grain size, (2) high carbon martensite (M *), upper vanite (Bu) and disperse of hardened phases such as ferrite side braid (FSP) State, (3) Precipitation Hardening state, (4) Presence / absence of grain boundary embrittlement, and (5) Elemental microsegregation.
  • the microstructure of T i, ⁇ , N is optimized by refinement of the microstructure using Ti oxide in steel that does not substantially contain A 1, and in addition to that of Ti C It is known to suppress precipitation, reduce precipitation hardening, and improve toughness (Japanese Laid-Open Patent Publication No. 5-244753).
  • the toughness of the heat affected zone is determined by This is determined by the balance of the effects of the hardened layer, and the conventional technology has been able to solve the problem by improving the toughness of the base material matrix using Ni.
  • the addition of a large amount of expensive alloy elements such as Cu and Ni which are indispensable for the realization of this technology, leads to an increase in manufacturing cost and becomes an obstacle to manufacturing high-strength steel with excellent CTOD characteristics. It was.
  • the steel according to the present invention does not substantially contain Al or Nb is also utilized in the present invention.
  • the C content is high, the problem of reduced toughness when the Mn content is increased has not been solved.
  • Nb and V as impurities would adversely affect toughness.
  • Japanese Patent Laid-Open No. 2 0 3 -1 4 7 4 8 4 the idea of Japanese Patent Laid-Open No. 5-2 4 7 5 3 1 is followed, while using Ti oxide, Nb is added and Increase Mn content. As a result, the austenite-ferrite transformation start temperature is lowered to suppress the formation of the hardening phase, and at the same time, an appropriate microstructure is obtained, and the ⁇ 10 ° C C TO D characteristic is satisfied.
  • the required C TO D characteristics of welded joints are not sufficiently satisfied at a stricter level of ⁇ 40 ° C. or lower. Disclosure of the invention
  • the present invention provides a technique for inexpensively producing high-strength steel having excellent toughness in multilayer welding with small to medium heat input.
  • the steel produced according to the present invention has extremely good CT0D characteristics of multi-layer welds with small to medium heat input, among the toughness of the heat affected zone.
  • the gist of the present invention is as follows.
  • a steel excellent in the toughness of the heat affected zone of welding characterized in that CeH represented by the formula (A) is in the range of 0.04 or less.
  • C, S i, M n, C u, N i, N b, and V represent steel components (mass%), respectively.
  • the toughness of the heat affected zone which is characterized by heat-treating a steel slab satisfying the steel composition described in (1) and C e H to a temperature of 110 ° C or lower and then heat treating it. Excellent steel manufacturing method.
  • Fig. 1 shows the relationship between the cooling time from 800 to 500 ° C and the M * fraction.
  • Figure 2 shows the relationship between C e H and CT OD characteristics.
  • the local regions that have the greatest effect on C TOD characteristics are the hardened phases such as M * and ferrite side plates (FSP).
  • M * and FSP ferrite side plates
  • the feature of the present invention is that the following has been found, and it has been realized in HA Z tough steel.
  • Figure 2 shows a steel plate made of 0.05% C—0.15% S i-1. 7 to 2.7% M n steel with 20 kg vacuum melting.
  • CT OD test was conducted by applying the thermal history of the actual welded joint three times with a reproducible thermal cycle device.
  • ⁇ ⁇ c 0. 1 (6 7 0. 9 C e ⁇ -6 7. 6) is the temperature at which the minimum value of the three CTO D test values is 0.1 mm at each test temperature. It is clear that TS c 0.1 (C TOD characteristics) tends to improve almost linearly as e H decreases. It can be seen that T ⁇ 5 c 0. 1 reaches 1600 ° C when C e H decreases to about 0.0 1.
  • M n is an inexpensive element that has a large effect on optimizing the Miku mouth structure, and because it lowers CeH, it does not impair the HAZ toughness of small to medium heat input, so it is intended to increase the strength. It is preferable to increase the content. However, if it exceeds 2.7%, segregation of the slab is promoted, and it is easy to generate Bu harmful to toughness. Therefore, the upper limit is 2.7%. Also, since the effect is small at less than 1.7%, the lower limit was set at 1.7%. In addition, from the viewpoint of toughness, it is more preferable to exceed 2.0%.
  • P and S should be less in terms of base material toughness and HAZ toughness, but the reduction is also due to industrial production constraints. 0.0 1 5%, 0.0 1 0%, preferably 0 The upper limit was 0 0 8 '% and 0. 0 0 5%.
  • a 1 is not intentionally added in the present invention, but it cannot be avoided that it is mixed into the steel as an impurity. A smaller amount is preferable because it forms an A 1 oxide and inhibits the generation of T i oxide, but the reduction is limited in terms of industrial production, and 0.04% is the upper limit.
  • T i greatly contributes to the improvement of toughness by generating Ti oxide and making the microstructure finer.
  • 0 0 5 to 0. 0 1 5% is the appropriate range.
  • O is necessary for the mass production of Ti oxides, and if less than 0.0 0 10%, the effect is small, while if it exceeds 0.0 04.5%, coarse Ti oxides are produced and the toughness is extremely deteriorated. Therefore, the content range was set to 0.0 0 1 0—0.0 04 5%.
  • N is necessary to improve the base metal toughness and HAZ toughness by forming fine Ti nitrides.
  • N is less effective if it is less than 0.02%, and steel is more than 0.06%.
  • the upper limit was set to 0.0 0 6% because surface flaws occurred during the production of the piece.
  • Nb and V are essentially embrittlement elements, and as shown by the large coefficient in equation (A), their presence greatly increases Ce H and significantly reduces HA Z toughness. Not intentionally added. Even when mixed into steel as an impurity, Nb must be limited to 0.0 3% or less to ensure toughness. V should be limited to 0.0 30% or less, preferably 0.0 20% or less.
  • Cu and Ni have little HAZ toughness deterioration due to addition and have the effect of improving the strength of the base metal, which is effective for further improvement of properties.However, in order to increase the manufacturing cost, the content of the additive when added The upper limit was set to Cu: 0.25% and Ni: 0. '50%.
  • the steel of the present invention is industrially desirably produced by a continuous forging method.
  • the reason is that the solidification cooling rate of the molten steel is fast, and a large amount of fine Ti oxide and Ti nitride can be generated in the slab.
  • the reheating temperature should be 1 100 and below. This is because when the reheating temperature exceeds 1100 ° C, the Ti nitride becomes coarse, and the toughness deterioration of the base metal and the HAZ toughness improvement effect cannot be expected.
  • the heat treatment is essential for the manufacturing method after reheating. The reason is that even though excellent HAZ toughness can be obtained, if the toughness of the base metal is inferior, it is insufficient as a steel material.
  • thermomechanical treatment methods include 1) controlled rolling, 2) controlled rolling and accelerated cooling, and 3) direct quenching and tempering after rolling. Preferred methods are controlled rolling and accelerated cooling, and after rolling. It is a direct quenching and tempering method.
  • said method is an example of the manufacturing method of this invention steel, and the manufacturing method of this invention steel is not limited to said method.
  • Steel sheets manufactured according to the present invention (present steels 1 to 20) have a yield strength (YS) of 4 3 0 N / mm 2 or more, — 2 0, — 40 ° C, — 6 0 ⁇ CT OD values However, both showed good fracture toughness of 0.27 mm or more.
  • the comparative steels 21 to 26 are inferior in strength and C TOD values to the steels of the present invention, and do not have the characteristics required for steel sheets used in harsh environments.
  • Comparative Steel 21 had a low CTOD value because Nb was added and the Nb content of the steel sheet was too high and the CeH value was also high. Since comparative steel 2 2 has too much C content and too much C e H, C T ⁇ D value was low. In Comparative Steels 2 3 and 2.4, CeH was low, but the A 1 content was too high, Ti oxide was not sufficiently generated, and the structure of the mouth was insufficient.
  • Comparative Steel 25 CeH is similar to that of the invented steel, but C is too low and O is too much, so the base metal strength is low and the CTOD value is also low.
  • Comparative Steel 26 the amount of Nb mixed in as an impurity was excessive, so that the base metal strength and CTOD value were both low despite the low CeH.
  • Thermomechanical processing CR controlled rolling (rolling in a temperature range optimal for strength and toughness)
  • the steel produced according to the present invention has high strength and excellent toughness with extremely good C T O D characteristics of the FL part where the toughness deteriorates most during welding. This made it possible to produce high-strength steel materials used in harsh environments such as offshore structures and earthquake-resistant buildings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本発明は、質量%で、C:0.02~0.06%、Si:0.05~0.30%、Mn:1.7~2.7%、P:0.015%以下、S:0.010%以下、Ti:0.005~0.015%、O:0.0010~0.0045、N:0.0020~0.0060%を含有し、残部が鉄および不可避的不純物からなり、不純物としての混入量がAl:0.004%以下、Nb:0.003%以下、V:0.030%以下に制限され、(A)式で表されるCeHが0.04以下の範囲であることを特徴とする溶接熱影響部の靭性に優れた鋼である。CeH=C+1/4Si−1/24Mn+1/48Cu+1/32Ni+1/0.4Nb+1/2V ・・・ (A)但し、C、Si,Mn,Cu,Ni,Nb,Vは、それぞれ鋼成分(質量%)を示す。

Description

明 細 書 . 溶接熱影響部の靭性に優れた鋼 技術分野
本発明は小入熱溶接から中入熱溶接における溶接熱影響部 (H A Z ) の靭性に優れた鋼とその製造法に関する。 背景技術
低合金鋼の HA Z靱性は、 ( 1 ) 結晶粒のサイズ、 ( 2 ) 高炭素 マルテンサイ ト (M * ) 、 上部べイナイ ト (B u) およびフェライ トサイ ドブレート (F S P) などの硬化相の分散状態、 ( 3 ) 析出 硬化状態、 ( 4 ) 粒界脆化の有無、 ( 5 ) 元素のミクロ偏析など種 々の要因に支配される。 これらの要因は靱性に大きな影響を与える ことが知られており、 ΉΑ Ζ靱性を改善するために多くの技術が実 用化されている。
こういつた靭性阻害要因は添加元素によって引き起こされるとい つてもあながち間違いではなく'、 合金元素含有量の低減により靭性 は向上する。 しかしながら、 構造用鋼にはつねに高強度化が求めら れており、 そのためには合金元素の添加が必要である。 すなわち、 強度と靭性の要求は合金元素含有量の観点から相反するものであり 、 合金元素によらない靭性向上技術が求められてきた。
特に優れている技術として、 A 1 を実質的に含まない鋼で T i酸 化物を用いてミクロ組織を微細化し、 これに加え T i , 〇, Nのパ ランスを適正化して T i Cの析出を抑制して析出硬化を低減し、 靱 性を向上させることが知られている (特開平 5— 2 4 7 5 3 1号公 報) 。 この場合、 溶接熱影響部の靭性はミクロ組織の影響と M *を 含む硬化層の影響のバランスにより決まることとなり、 従来の技術 では N i等による母材マトリクスの靭性向上により解決が図られて いた。 しかしながら、 本技術の実現に不可欠である C u、 N i等の 高価な合金元素の大量の添加は製造コス トの増加を招き、 C T O D 特性が優れた高強度鋼を製造するための障害となっていた。
この発明にかかる鋼の、 A l 、 N bを実質的に含まない点は、 本 願発明にも活用されている。 しかし、 この発明においては、 C含有 量が高いため、 M n含有量を増加した場合の靭性低下という課題が 解決されていない。 また、 不純物としての N b、 Vが靭性に悪影響 を及ぼすことが懸念されていた。
また、 特開 2 0 0 3 — 1 4 7 4 8 4号公報では、 特開平 5 — 2 4 7 5 3 1号公報の思想を踏襲し T i酸化物を用いつつ、 N bを添加 しかつ M n含有量を高める。 このことにより、 オーステナイ ト一フ ェライ ト変態開始温度を低下させて硬化相の生成を抑え、 同時に適 正なミクロ組織を得で、 — 1 0 °C C T O D特性を満足するものであ る。 しかしながら、 この特開 2 0 0 3 — 1 4 7 4 8 4号公報の発明 では、 更に厳しいレベルとなる— 4 0 °C以下で溶接継手の要求 C T O D特性を十分満足するものではなかつた。 発明の開示
本発明は、 小〜中入熱の多層溶接において靭性の優れた高強度の 鋼を安価に製造する技術を提供するものである。 本発明により製造 した鋼は溶接熱影響部靭性のうち特に小〜中入熱の多層溶接部の C T〇 D特性が極めて良好である。 本発明の要旨は次のとおりである
( 1 ) 質量%で、 C : 0. 0 2〜 0. 0 6 %、 S i : 0. 0 5〜 0. 3 0 % M n : 1 . 7〜 2. Ί %、 P : 0. 0 1 5 %以下、 S : 0. 0 1 0 %以下、 T i : 0. 0 0 5〜 0 , 0 1 5 %、 0 : 0. 0 0 1 0〜 0. 0 0 4 5、 N : 0. 0 0 2 0〜 0. 0 0 6 0 %を含 有し、 残部が鉄および不可避的不純物からなり、 不純物としての混 入量が A 1 : 0. 0 0 4 %以下、 N b : 0. 0 0 3 %以下、 V : 0 . 0 3 0 %以下に制限され、
( A) 式で表される C e Hが 0. 0 4以下の範囲であることを特徴 とする溶接熱影響部の靭性に優れた鋼。
C e H = C + l / 4 S i - l / 2 4 M n + l / 4 8 C u + l / 3 2 N i + 1 / 0. 4 N b + l / 2 V · . · (A)
但し、 C、 S i , M n , C u , N i , N b, Vは、 それぞれ鋼成分 (質量%) を示す。
( 2 ) ( 1 ) 記載の鋼において、 C e Hが 0. 0 1以下の範囲で あることを特徴とする溶接熱影響部の靭性に優れた鋼。
( 3 ) 更に、 質量%で、 C u : 0. 2 5 %以下、 N i : 0. 5 0 %以下の一種または 種を含有したことを特徴とする ( 1 ) または
( 2 ) 記載の溶接熱影響部の靭性に優れた鋼。
( 4 ) ( 1 ) 記載の鋼成分と C e Hとを満足する鋼片を 1 1 0 0 °C以下の温度に加熱後、 加工熱処理することを特徴とする溶接熱影 響部の靭性に優れた鋼の製造方法。
( 5 ) ( 3 ) の鋼成分と C e Hとを満足する鋼片を 1 1 0 0で以 下の温度に加熱後、 加工熱処理することを特徴とする溶接熱影響部 の靭性が優れた鋼の製造方法。 図面の簡単な説明
図 1は、 8 0 0〜 5 0 0 °Cの冷却時間と M *分率との関係を示し た図。
図 2は、 C e Hと C T OD特性との関係を示した図。 発明を実施するための最良の形態
本発明者らの研究によれば、 小〜中入熱 (板厚 5 0 mmで 1 . 5 〜 6. 0 k J /mm) 溶接時の H A Zの C T〇 D特性 (一 4 0で以 下の温度に於ける C T〇 D特性) に対しては、 極めて局部的な領域 の靭性が支配的であり、 この部分のミク口組織の制御と脆化元素の 低減が重要である。 換言すれば、 C T O D特性は、 材料の平均的特 性ではなく局所的な脆化域に支配され、 鋼材中にごく一部分でも脆 化をもたらす領域があれば、 鋼板の C T OD特性は著しく損なわれ る。
具体的には、 C T OD特性に最も大きな影響を及ぼす局所的な領 域は M *、 フェライ トサイ ドプレート (F S P ) などの硬化相であ る。 このような硬化相の生成を抑えるため、 従来は、 鋼の焼入れ性 を低く抑える必要があり、 高強度化の阻害要因となっていた。
本発明の特徴は、 つぎのことを見出し、 HA Z靭性の高い鋼に具 現化したことである すなわち、
1 ) 小〜中入熱溶接 H A Zでは、 一般に溶接後の冷却時間が 6 0 s e c程度以内である。 このような冷却条件で、 C含有量が十分低 ければ、 その他の脆化元素を適切に制御'することにより、 M nを 2 . 7 %程度まで添加しても、 靭性に悪影響をおよぼす M *が生成し なくなることを見出した。 図 1 に 0. 0 5 % C— 0. 1 5 % S i で M nを 1. 7 %から 2. 7 %に変化させた場合の M *分率を示す。 M n量が変化しても 8 0 0〜 5 0 0での冷却時間が 6 0 s e c程度 以内であれば、 M *分率は極めて少ないことが分かる。 この結果、 従来靭性を劣化させることから多量の添加はできないと考えられて いた M nの含有量を高めることが可能となった。
2 ) A 1 レスベースの鋼で鋼成分を適正化できることを見出した 3 ) 鋼中に不純物として存在する A 1、 N b、 Vを一定限界以下 に、 制限することにより予期せぬ靭性低下要因を除去した。
すなわち、 A 1 レスベース鋼を採用することにより、 T i 〇を確 実に生成させ効果的に靭性を向上させることが可能となった。
この 3点を組み合わせることにより、 これまで達成できなかった 小〜中入熱溶接 H A Zにおける— 2 0 °C以下の厳しい温度条件下で の良好な C T〇 D特性を実現することが可能となったものである。
M *の生成が極めて少ない場合であっても、 脆化元素である C , S i , C u , N i , N b, V等の制御が必須である。 具体的には、 C + 1 / 4 S i - l / 2 4 M n + l / 4 8 C u + l / 3 2 N i + 1 Z 0. 4 N b + l / 2 Vの値 (C e H) を所定の範囲に制御するこ とが必須である。
図 2は、 0. 0 5 % C— 0. 1 5 % S i - 1. 7〜 2. 7 % M n の鋼成分の鋼を 2 0 k gの真空溶解で溶製し、 鋼板としたものに実 溶接継手の 3回の熱履歴を再現熱サイクル装置で付与して C T OD 試験を実施したものである。
Τ δ c 0. 1 ( 6 7 0. 9 C e Η - 6 7. 6 ) は各試験温度で 3 本の C T〇 D試験値の最低値が 0. 1 mmを示す温度であるが、 C e Hの低下でほぼ直線的に T S c 0. 1 (C TOD特性) が良好と なる傾向が明瞭である。 C e Hが 0. 0 1程度に低下すると、 T <5 c 0. 1が一 6 0 °Cに達することが分かる。
すなわち、 本発明鋼の要件を満たし、 C e Hを制御することによ り、 所望の C T OD特性が得られる。 本発明鋼では、 C e Hの値を 、 要求される C T OD特性に応じて制御することが発明の特徴の一 つである。 C e Hの値の制御に加え、 その他の合金元素の含有量を 適正化することが、 高強度と優れた C TOD特性を兼ね備えた鋼の 具現化に必要である。 以下にその限定範囲と理由を述べる。 Cは強度を得るため 0. 0 2 %以上は必要であるが、 0. 0 6 % 超では溶接 H A Zの靭性を劣化させ、. 良好な C T〇D特性を満足で きないため 0. 0 6 %を上限とする。
S i は HA Z靭性を阻害するため、 良好な HA Z靱性を得るため には少ない方が好ましい。 しかし、 発明鋼では A 1 を添加しないた め、 脱酸のため 0. 0 5 %以上の添加が必要である。 しかしながら 、 含有量が 0. 3 0 %を超えると H A Z靱性を害するため、 0. 3 0 %を上限とする。
M nはミク口組織を適正化する効果が大きく安価な元素であるこ とや、 C e Hを低下することから添加により小〜中入熱の H A Z靭 性を害しないため、 高強度化のため含有量を多くすることが好まし い。 しかし 2. 7 %超ではスラブの偏析を助長し、 靱性に有害な B uを生成し易くするため、 含有量は 2. 7 %を上限とした。 また、 1. 7 %未満では効果が少ないので下限を 1. 7 %とした。 なお、 靭性の観点からは 2. ! 0 %超がより好ましい。
P、 Sは母材靱性、 H A Z靱性の観点からともに少ない方が良い が、 その低減には工業生産的な制約もあり、 それぞれ 0. 0 1 5 % 、 0. 0 1 0 %, 望ましくは 0. 0 0 8'%、 0. 0 0 5 %を上限と した。
A 1 は本発明では意図的に添力 Πするものではないが、 不純物とし て鋼中に混入することは避けられない。 A 1酸化物を形成して T i 酸化物の生成を阻害するため少ない方が好ましいが、 その低減には 工業生産的に制約があり、 0. 0 0 4 %が上限である。
T i は T i酸化物を生成させミクロ組織を微細化させることによ り靭性向上に大きく寄与するが、 含有量が多すぎると T i Cを生成 し、 これが H A Z靭性を劣化させるため、 0. 0 0 5〜 0. 0 1 5 %が適正範囲である。 Oは T iの酸化物の大量生成に必要で、 0. 0 0 1 0 %未満では 効果が少なく、 いっぽう 0. 0 04.5 %超では粗大な T i酸化物を 生成し、 靱性を極端に劣化させるため、 含有範囲を 0. 0 0 1 0— 0. 0 04 5 %とした。
Nは微細な T i窒化物を形成して母材靭性ゃ HAZ靭性を改善す るために必要であるが、 0. 0 0 2 %未満では効果が少なく、 0. 0 0 6 %超では鋼片製造時に表面疵が発生するため上限を 0. 0 0 6 %とした。
また、 Nb、 Vは、 本質的に.脆化元素であり、 (A) 式における 大きな係数が示すようにその存在により C e Hを大きく高め、 HA Z靭性を著しく低下させるので、 本発明では意図的に添加しない。 不純物として鋼中に混入する場合も、 靱性確保のため Nbは 0. 0 0 3 %以下に制限する必要がある。 また、 Vは 0. 0 3 0 %以下、 望ましくは 0. 0 2 0 %以下に制限する必要がある。
C u , N iは添加による H A Z靭性の劣化が少なく、 母材の強度 を向上させる効果があり特性のさらなる向上に有効であるが、 製造 コス トを増加させるため、 添加する場合の含有量の上限をそれぞれ C u : 0. 2 5 %, N i : 0. ' 5 0 %とした。
鋼の成分を上記のように限定しても適切な製造法により適切な組 織を形成しなければ、 目的とした効果は発揮できない。 このため、 製造条件についても考慮が必要である。
本発明鋼は工業的には連続铸造法で製造することが望ましい。 そ の理由は溶鋼の凝固冷却速度が速く、 スラブ中に微細な T i酸化物 と T i窒化物を多量に生成することが可能なためである。 スラブの 圧延に際し、 その再加熱温度は 1 1 0 0で以下とする必要がある。 再加熱温度が 1 1 0 0°Cを超えると T i窒化物が粗大化して母材の 靭性劣化や H A Z靱性改善効果が期待できないためである。 つぎに、 再加熱後の製造法は加工熱処理が必須である。 その理由 は、 優れた HAZ靱性が得られても、 母材の靱性が劣っていると鋼 材としては不十分なためである。 加工熱処理の方法としては、 1 ) 制御圧延、 2) 制御圧延一加速冷却、 3) 圧延後直接焼入れ—焼戻 しなどが挙げられるが、 好ましい方法は制御圧延—加速冷却法およ ぴ圧延後直接焼入一焼き戻し法である。
なお、 この鋼を製造後、 脱水素などの目的で A r 3変態点以下の 温度に再加熱しても、 本発明の特徴を損なうものではない。
また、 上記の方法は本発明鋼の製造方法の一例であり、 本発明鋼 の製造方法は上記の方法に限定されるものではない。 実施例
転炉一連続踌造ー厚板工程で種々の鋼成分の厚鋼板を製造し、 母 材強度や溶接継手の C TOD試験を実施した。 溶接は一般的に試験 溶接として用いられでいる潜弧溶接 (S AW) 法で、. 溶接溶け込み 線 (F L) が垂直になるように K開先で溶接入熱は 4. 5〜 5. 0 k J Zmmで実施した。 C TOD試験は t (板厚) X 2 tのサイズ で、 ノッチは 5 0 %疲労亀裂を' F L位置に導入して実施した。 表 1 に本発明の実施例および比較例を示す。
本発明で製造した鋼板 (本発明鋼 1〜 2 0 ) は降伏強度 (Y S ) が 4 3 0 N/mm 2以上で、 — 2 0で、 — 40°C、 — 6 0^の CT O D値がいずれも 0. 2 7 mm以上の良好な破壊靭性を示した。
これに対し、 比較鋼 2 1〜 2 6は、 強度や C TOD値が本発明鋼 に比べ劣り、 厳しい環境下で使用される鋼板として必要な特性を有 しない。 比較鋼 2 1は Nbが添加されたため鋼板の Nb含有量が多 すぎ、 C e Hの値も高くなつたため、 C T O D値が低い値であった 。 比較鋼 2 2は C含有量が多すぎ、 C e Hの値も多すぎるため、 C T〇 D値が低い値であった。 比較鋼 2 3 、 2 .4は C e Hは低いが、 A 1含有量が高すぎ、 T i酸化物の生成が不十分でミク口組織の微 細化が不十分だった。 比較鋼 2 5は C e Hは発明鋼と同程度である が、 Cが低すぎ、 〇が多すぎるため、 母材強度が低く、 C T O D値 も低い値であった。 比較鋼 2 6は不純物として混入する N bの量が 過多であったため C e Hが低いにもかかわらず、 母材強度および C T O D値がいずれも低い値であった。
表 1
Figure imgf000012_0001
表 2
Figure imgf000013_0001
加工熱処理法 CR 制御圧延 (強度 · 靭性に最適な温度域での圧延)
AC C 加速冷却 (制御圧延後に 400〜600\ の温度域まで水冷) DQ 圧延直後焼入一焼戻処理
産業上の利用可能性
本発明により製造した鋼は、 高強度で溶接時に最も靱性が劣化す る F L部の C T O D特性が極めて良好で優れた靱性を示す。 これに より、 海洋構造物、 耐震性建築物等の厳しい環境で使用される高強 度の鋼材の製造を可能とした。

Claims

請 求 の 範 囲
1. 質量%で、 C : 0. 0 2〜 0. 0 6 %、 S i : 0. 0 5〜 0 , 3 0 % M n : 1. 7〜 2. 7 %、 P : 0. 0 1 5 %以下、 S : 0. 0 1 0 %以下、 T i : 0. 0 0 5〜 0. 0 1 5 %、 0 : 0. 0 0 1 0〜 0. 0 0 4 5、 N : 0. 0 0 2 0〜 0. 0 0 6 0 %を含有 し、 残部が鉄および不可避的不純物からなり、 不純物としての混入 量が A 1 : 0. 0 0 4 %以下、 N b : 0. 0 0 3 %以下、 V : 0. 0 3 0 %以下に制限され、
( A) 式で表される C e Hが 0. 0 4以下の範囲であることを特徴 とする溶接熱影響部の靭性に優れた鋼。
C e H= C + l /4 S i - l / 2 4 M n + l / 4 8 C u + l / 3 2 N i + 1 / 0. 4 N b + l / 2 V ♦ · · (A)
但し、 C、 S i , Mn, C u , N i , N b , Vは、 それぞれ鋼成分 (質量%) を示す。 !
2. 請求項 1記載の鋼において、 C e Hが 0. 0 1以下の範囲で あることを特徴とする溶接熱影響部の靭性に優れた鋼。
3. 更に、 質量%で、 C u : 0. 2 5 %以下、 N i : 0. 5 0 % 以下の一種または二種を含有したことを特徴とする請求項 1 または 2記載の溶接熱影響部の靭性に^れた鋼。
4. 請求項 1記載の鋼成分と C e Hとを満足する鋼片を 1 1 0 0 で以下の温度に加熱後、 加工熱処理することを特徴とする溶接熱影 響部の靭性 こ優れた鋼の製造方法。
5. 請求項 3記載の鋼成分と C e Hとを満足する鋼片を 1 1 0 0 以下の温度に加熱後、 加工熱処理することを特徴とする溶接熱影 響部の靭性が優れた鋼の製造方法。
PCT/JP2006/325984 2006-12-20 2006-12-20 溶接熱影響部の靭性に優れた鋼 WO2008075443A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP06843367A EP2060643B1 (en) 2006-12-20 2006-12-20 Steel excelling in toughness at region affected by welding heat
CN200680006614A CN100594250C (zh) 2006-12-20 2006-12-20 焊接热影响区的韧性优良的钢
CA2602076A CA2602076C (en) 2006-12-20 2006-12-20 Steel excellent in toughness of weld heat affected zone
BRPI0607524A BRPI0607524B1 (pt) 2006-12-20 2006-12-20 aço e método de sua produção
KR1020077019771A KR100940617B1 (ko) 2006-12-20 2006-12-20 용접 열영향부의 인성이 우수한 강
PCT/JP2006/325984 WO2008075443A1 (ja) 2006-12-20 2006-12-20 溶接熱影響部の靭性に優れた鋼
NO20074370A NO343351B1 (no) 2006-12-20 2007-08-28 Stål med utmerket seighet i sveisevarmepåvirket sveisesone og fremgangsmåte for fremstilling derav

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/325984 WO2008075443A1 (ja) 2006-12-20 2006-12-20 溶接熱影響部の靭性に優れた鋼

Publications (1)

Publication Number Publication Date
WO2008075443A1 true WO2008075443A1 (ja) 2008-06-26

Family

ID=39536082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325984 WO2008075443A1 (ja) 2006-12-20 2006-12-20 溶接熱影響部の靭性に優れた鋼

Country Status (6)

Country Link
EP (1) EP2060643B1 (ja)
KR (1) KR100940617B1 (ja)
CN (1) CN100594250C (ja)
BR (1) BRPI0607524B1 (ja)
CA (1) CA2602076C (ja)
WO (1) WO2008075443A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169429A (ja) * 2007-01-11 2008-07-24 Nippon Steel Corp 溶接熱影響部のctodが優れた鋼およびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218800B1 (en) 2007-12-07 2012-05-16 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
TWI365915B (en) * 2009-05-21 2012-06-11 Nippon Steel Corp Steel for welded structure and producing method thereof
KR101360737B1 (ko) 2009-12-28 2014-02-07 주식회사 포스코 취성 균열 발생 저항성이 우수한 고강도 강판 및 그 제조방법
JP2011246804A (ja) * 2010-04-30 2011-12-08 Nippon Steel Corp 電子ビーム溶接継手及び電子ビーム溶接用鋼材とその製造方法
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080437A (ja) * 1998-04-17 2000-03-21 Nippon Steel Corp 溶接熱影響部の靱性に優れた鋼板
JP2006124759A (ja) * 2004-10-27 2006-05-18 Kobe Steel Ltd 大入熱溶接継手靭性に優れた厚鋼板
JP2007002271A (ja) * 2005-06-21 2007-01-11 Nippon Steel Corp 溶接熱影響部の破壊靭性に優れた鋼及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624826A (ja) * 1985-07-01 1987-01-10 Kobe Steel Ltd 不安定延性破壊伝播停止特性にすぐれた高強度高靭性ラインパイプ用鋼板の製造方法
JPH093597A (ja) * 1995-06-21 1997-01-07 Nippon Steel Corp 溶接熱影響部靱性の優れた低温用鋼材およびその製造方法
CA2231985C (en) * 1997-03-26 2004-05-25 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
JP4268317B2 (ja) * 2000-06-09 2009-05-27 新日本製鐵株式会社 溶接部の低温靱性に優れた超高強度鋼管及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080437A (ja) * 1998-04-17 2000-03-21 Nippon Steel Corp 溶接熱影響部の靱性に優れた鋼板
JP2006124759A (ja) * 2004-10-27 2006-05-18 Kobe Steel Ltd 大入熱溶接継手靭性に優れた厚鋼板
JP2007002271A (ja) * 2005-06-21 2007-01-11 Nippon Steel Corp 溶接熱影響部の破壊靭性に優れた鋼及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169429A (ja) * 2007-01-11 2008-07-24 Nippon Steel Corp 溶接熱影響部のctodが優れた鋼およびその製造方法

Also Published As

Publication number Publication date
EP2060643A4 (en) 2010-12-01
KR100940617B1 (ko) 2010-02-05
CA2602076A1 (en) 2008-06-20
KR20080067957A (ko) 2008-07-22
CN100594250C (zh) 2010-03-17
CA2602076C (en) 2012-07-10
BRPI0607524A2 (pt) 2010-03-23
EP2060643B1 (en) 2012-04-18
EP2060643A1 (en) 2009-05-20
CN101292055A (zh) 2008-10-22
BRPI0607524B1 (pt) 2016-01-19

Similar Documents

Publication Publication Date Title
JP4946092B2 (ja) 高張力鋼およびその製造方法
JP5212124B2 (ja) 厚鋼板およびその製造方法
JP4547037B2 (ja) 溶接熱影響部のctod特性が優れた鋼およびその製造方法
JP5217385B2 (ja) 高靭性ラインパイプ用鋼板およびその製造方法
KR20190134704A (ko) 고Mn강 및 그의 제조 방법
JP4551492B2 (ja) 溶接性に優れる引張強さ780MPa以上の高張力厚鋼板およびその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
WO2008075443A1 (ja) 溶接熱影響部の靭性に優れた鋼
JP7411072B2 (ja) 低温衝撃靭性に優れた高強度極厚物鋼材及びその製造方法
WO2004022807A1 (ja) 大入熱溶接用鋼材およびその製造方法
JP2022510216A (ja) 溶接熱影響部の靭性に優れた鋼材及びその製造方法
JP3045856B2 (ja) 高靱性Cu含有高張力鋼の製造方法
JP2007051321A (ja) 溶接性及びガス切断性に優れた溶接構造用490MPa級厚手高張力耐火鋼及びその製造方法
JP5098210B2 (ja) 耐火用鋼材およびその製造方法
JP4303703B2 (ja) 溶接熱影響部の破壊靭性に優れた鋼及びその製造方法
JP2008075107A (ja) 高強度・高靭性鋼の製造方法
KR101467049B1 (ko) 라인파이프용 강판 및 그 제조 방법
JP5055783B2 (ja) 高強度・高靭性鋼の製造方法
JP3697202B2 (ja) 溶接熱影響部の靭性が優れた鋼及びその製造方法
TWI526545B (zh) 熔接用鋼材
JP4949210B2 (ja) 溶接熱影響部の靭性が優れた鋼およびその製造方法
JP2010248590A (ja) 溶接熱影響部のctod特性が優れた鋼およびその製造方法
JP4250113B2 (ja) 耐震性と溶接性に優れた鋼板の製造方法
JP3202310B2 (ja) 大入熱溶接熱影響部靱性の優れた建築用耐火鋼板の製造法
JP4174041B2 (ja) 1150MPa以上の引張強さを有する溶接用鋼の製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680006614.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006843367

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2602076

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007132744

Country of ref document: RU

Ref document number: 1020077019771

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06843367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0607524

Country of ref document: BR

Kind code of ref document: A2