WO2004022807A1 - 大入熱溶接用鋼材およびその製造方法 - Google Patents

大入熱溶接用鋼材およびその製造方法 Download PDF

Info

Publication number
WO2004022807A1
WO2004022807A1 PCT/JP2002/008977 JP0208977W WO2004022807A1 WO 2004022807 A1 WO2004022807 A1 WO 2004022807A1 JP 0208977 W JP0208977 W JP 0208977W WO 2004022807 A1 WO2004022807 A1 WO 2004022807A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
toughness
steel
heat input
Prior art date
Application number
PCT/JP2002/008977
Other languages
English (en)
French (fr)
Inventor
Kenji Oi
Katsuyuki Ichimiya
Mitsuhiro Okatsu
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CNB028193466A priority Critical patent/CN100402688C/zh
Priority to PCT/JP2002/008977 priority patent/WO2004022807A1/ja
Priority to EP02763002.9A priority patent/EP1533392B1/en
Priority to KR1020047004838A priority patent/KR100622888B1/ko
Publication of WO2004022807A1 publication Critical patent/WO2004022807A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Definitions

  • the present invention relates to a steel material used for various structures such as shipbuilding, construction, civil engineering, etc., and particularly to a steel material suitable for large heat input welding having a welding heat input exceeding 400 kJ / cm, and a method for producing the same.
  • Background art
  • Steel materials used in the fields of shipbuilding, construction, civil engineering, etc. are generally finished to the desired shape by welding.
  • these structures from the viewpoint of safety, it is required that not only the toughness of the base metal of the steel material used but also the toughness of the welded portion be excellent.
  • these structures and ships are becoming larger and larger, and the steel materials used are becoming stronger and thicker. High heat input welding is applied. For this reason, when welding is performed by large heat input welding, a steel material with excellent toughness in the welded part is required.
  • Solid solution B which is not linked to the steel, significantly increases the hardenability during welding cooling, causing the structure of the weld heat-affected zone to be mainly composed of hard peinite, which has the problem of significantly reducing toughness.
  • JP-A-62-170459 takes measures to further reduce the amount of A 1 added.
  • Japanese Patent Application Laid-Open No. 62-26041 proposes that the region in which the solid solution of TiN is dissolved is made into a fine structure by the sulfur oxide of the REM by adding the REM.
  • the present invention solves the above-mentioned problems of the prior art, and even if a large heat input welding exceeding 400 kj / cm is performed, a good welding heat-affected zone toughness equivalent to that of the base metal is obtained. It is an object to provide the obtained steel material. Disclosure of the invention
  • the inventors have found that in order to improve the toughness of the welded heat-affected zone welded with a large heat input exceeding 400 kj / cm, it is necessary to properly contain Ca necessary for controlling the sulfide morphology. It was found that it was important to make In other words, in order to improve the toughness of the heat-affected zone with a large heat input, the austenite coarsening in the high-temperature region is suppressed and the ferrite transformation nuclei necessary to promote ferrite transformation in the subsequent cooling process are refined. It is important to disperse them in a conventional manner, and it has been found that all of these are insufficient with the conventional technology.
  • Ca S is crystallized in the solidification stage when the steel sheet is melted. Since Ca S is crystallized at a lower temperature than oxides, it can be finely dispersed. Here, it is particularly important that if the amount of dissolved S in the steel after the crystallization of CaS is secured by controlling the content of Ca and S and the amount of dissolved oxygen in the steel, was found to precipitate MnS. Mn S itself has the ability to generate ferrite nuclei and also has the effect of forming a rare zone of Mn around it to promote ferrite transformation. It was also found that ferrite transformation is further promoted by the precipitation of ferrite-forming nuclei such as TiN and A1N on MnS.
  • the present invention provides: C: 0.03 to 0.15 mass%,
  • Si 0.05 ⁇ 0.25mass%
  • Mn 0.5 to 2.0 mass%
  • each of the Ca, 0, and S contents satisfies the following formula (1), and the balance is Fe and inevitable impurities.
  • Ca, 0, and S represent the content (mass%) of each component.
  • the present invention also provides a steel composition
  • a large heat input welding steel characterized by having a composition containing one or more selected from the group consisting of:
  • the present invention provides that the composition of molten steel is
  • Ca, 0, and S represent the content (mass%) of each component.
  • the present invention provides a method for producing a steel sheet, comprising:
  • the lower limit of the C content is set to 0.03 mA SS % in order to obtain the necessary strength for structural steel, and the upper limit is set to 0.15 mass% because the weld cracking property is deteriorated. More preferably, 0.05 to 0.10 mass% is desirable.
  • Si is required to be 0.05 mass% or more in steelmaking, and if it exceeds 0.25 mass%, the toughness of the base metal will be deteriorated, and island-like martensite will be formed in the heat-affected zone with large heat input to deteriorate toughness. .
  • 0.13-0.22 mass% is desirable.
  • Mn is required to be 0.5 mass% or more in order to secure the strength of the base metal. If the content exceeds mass%, the toughness of the weld is significantly deteriorated. More preferably, 0.8 to 1.6 mass% is desirable.
  • P exceeds 0.03 mass%, the toughness of the weld is deteriorated. More preferably, 0.01 mass% or less is desirable.
  • S must be 0.0005 mass% or more to generate the required CaS and MnS, and if it exceeds 0.0030 mass%, the toughness of the base material is degraded. More preferably, 0.0015-0.0025 mass% is desirable.
  • A1 is required to be 0.015 raass% or more in deoxidation of steel. If it exceeds 0.1 raass%, the toughness of the base metal is reduced and the toughness of the weld metal is also deteriorated. More preferably, 0.02 to 0.06 mass% is desirable.
  • Ti precipitates as TiN during solidification and suppresses austenite coarsening in the heat-affected zone of the weld and contributes to higher toughness as ferrite transformation nuclei. If it is less than 0.004 mass%, the effect is small, and if it exceeds 0.03 mass%, the expected effect cannot be obtained due to coarsening of TiN particles. More preferably, 0.008 to 0.02 mass% is desirable.
  • N is an element necessary to secure the required amount of TiN. If it is less than 0.0020 mass%, a sufficient amount of TiN cannot be obtained.If it exceeds 0.0070 mass%, it is in the region where TiN is melted by the welding heat cycle.
  • the toughness is significantly reduced by increasing the amount of dissolved N in the steel. More preferably, 0.0030 to 0.0055 niass% is desirable.
  • Ca is an element having an effect of improving toughness by fixing S. In order to exhibit such an effect, it is preferable to contain at least 0.0005 raass% or more, but if the content exceeds 0.0030 mass%, the effect is saturated. Therefore, in the present invention, Limit to the range of 0.0005 mass% to 0.0030 mass%. More preferably, 0.0010-0.0020 mass% is desirable.
  • FIG. 1 shows the results of a reproducible thermal cycling test simulating two types of heat input conditions with various additions of Ca to the basic composition of the steel of the present invention. It can be seen that the toughness is remarkably improved at 0.3 ⁇ ACR ⁇ 0.8 when the cooling time at 800-500 ° C is 153 seconds or 270 seconds (approximately 30 ° C improvement in v T r s). In the range of 0.3 ⁇ ACR ⁇ 0.8, as shown in the micrograph of Fig. 2, the morphology of composite sulfides with MnS precipitated on CaS or TiN precipitates further.
  • the composite sulfide of Ti and CaS was co-precipitated, but the average particle size was 0.1 to 5 ⁇ m and 5 ⁇ 10 2 to 1x10 4 pcs Zmm 2 in the heat affected zone due to the presence of: -Light transformation is promoted, and high toughness can be achieved by refining the structure.
  • At least one or two or more selected from B, V, Nb, Cu, Ni, Cr and Mo having a function of improving the strength of the base material can be contained.
  • B has the effect of enhancing hardenability when manufacturing steel sheets. To obtain it, 0.0004 mass% or more is necessary. However, if it exceeds 0.0010 mass%, the hardenability increases and the toughness of the heat affected zone deteriorates.
  • V 0.2 mass% or less
  • V acts to improve the strength and toughness of the base metal, but its effect can be obtained by adding 0.011113% or more. If the content exceeds 0.2 mass%, the toughness is rather reduced.
  • Nb 0.05 mass% or less
  • Nb is an element effective in securing the strength and toughness of the base metal and the strength of the joint, but its effect can be obtained by adding 0.007 mass% or more. If the content exceeds 0.05 ma «s%, the toughness of the weld heat affected zone deteriorates.
  • Ni increases the strength while maintaining the high toughness of the base metal, but the effect is obtained by adding 0.10 mass% or more. The effect is saturated even if it exceeds 1.5 mass%, so this content was made the upper limit.
  • Cu has the same function as Ni, but its effect can be obtained by adding 0.10 mass% or more. If it exceeds 1.0 mass%, hot embrittlement occurs and the surface properties of the steel sheet deteriorate.
  • Cr is an element that is effective in increasing the strength of the base material, but its effect can be obtained by adding 0.05 111333% or more.
  • the upper limit is set to 0.7 mass%, because adding a large amount adversely affects toughness.
  • Mo is an effective element for increasing the strength of the base metal, but its effect can be obtained by adding 0.05 1 ⁇ 33% or more.
  • the upper limit is set to 0.7 mass%, because adding a large amount adversely affects toughness.
  • a steel material having excellent toughness of a weld heat affected zone in large heat input welding can be provided by adjusting and including Ca and S in a limited range.
  • the steel material of the present invention is manufactured, for example, as follows. First, hot metal is refined in a converter to form steel, then degassed by RH, and made into a slab through continuous production or ingot slab.
  • This is reheated to a temperature of 1250 ° C or less, rolled to a predetermined thickness in the temperature range from the heating temperature to 650 ° C by hot rolling, and then air cooled or accelerated cooling at a cooling rate of 1 to 40 ° CZ s
  • the cooling is stopped at 200 ° C to 600 ° C and then air-cooled, or, after the hot rolling, quenching is performed directly from a temperature range of 650 ° C or more 500.
  • C ⁇ 150 It can be manufactured by processes such as tempering and tempering at C, reheating at 1000 and below, and tempering to 650 or below. Further, in hot rolling by a tandem rolling mill, it can be manufactured under manufacturing conditions usually used.
  • the dimensions of the steel sheet of the present invention are a thick steel sheet having a thickness of 6 mm or more or a hot-rolled steel sheet.
  • the welding method applied to the steel sheet of the present invention is not particularly limited, and arc welding, submerged arc welding, electroslag welding, electrogas welding, and other welding methods using a heat source can also be applied.
  • Example 1
  • test specimens of width 8 Omm X length 8 Omm X thickness 15 mm were collected, heated to 1400 ° C, and cooled at 800 to 500.
  • To 1 / s (equivalent to the heat affected zone of 450 kj / cra of heat input by gas welding at the outlet opening), and the toughness of the weld heat affected zone was 2 mm V was evaluated.
  • Table 3 shows the toughness of the obtained heat affected zone together with the strength and toughness of the base metal.
  • the strength of the base material was determined by taking two JISZ2201 test specimens at a thickness of 1/2 t from the rolling direction of the rolled material and following JIS Z2241. A test was performed and the average was determined.
  • the toughness is perpendicular to the rolling direction of the rolled material.
  • v Trs brittle-ductile fracture surface transition temperature
  • Table 3 shows that in all of the inventive examples, good weld heat affected zone toughness of v Trs ⁇ -40 ° C was obtained. On the other hand, in the comparative example, the toughness of the heat affected zone was poor, and some of them were poor in the toughness of the base metal.
  • These comparative examples are (Ca — (0.18 + 130 X Ca) ⁇ ⁇ ) / 1.25Z S value, Ca, Ti, C, Mn, Si, S, N, Cu, Cr, Mo, V Any one of the component contents such as B and B was out of the range of the present invention.
  • a steel plate with a thickness of 60 mmt was prepared by hot rolling from steel 16 of the invention and steel of Comparative Example 23, and a welded joint was made with heat input of 450 kJ / cm at the gas outlet.
  • the microstructure of a typical weld heat affected zone in the t section was observed.
  • Fig. 4 shows microphotographs of steel 16 of the invention and
  • Fig. 5 shows microphotographs of steel of comparative example 23.
  • coarsening of the weld heat affected zone is remarkable
  • steel 16 of the present invention in Fig. 4 has the microstructure of the weld heat affected zone reduced to the same level as the base metal. You can see that there is.
  • the toughness of the heat-affected zone of the high heat input welded steel 16 of the present invention was equivalent to that of the base metal.
  • a steel sheet with a thickness of 50 mm was prepared by hot rolling a steel sheet 2 of the steel of the present invention, and an electro-slag welded joint with a heat input of 700 kJ / cm was manufactured, and the toughness of the heat affected zone was evaluated.
  • Table 4 shows the chemical composition of the steel sheet, welding conditions, base metal and mechanical properties of the heat affected zone.
  • the test piece was sampled so that the notch was located at a position 1 mm from the pound of the weld heat affected zone and away from the 3iMi weld metal, and the v Trs was determined. At all positions, excellent properties similar to those of the base metal were obtained, almost equivalent to the toughness obtained by the reproducible heat cycle of the example in Table 3.
  • the present invention greatly contributes to the improvement of the quality of large structures constructed by large heat input welding such as submerged arc welding, electrogas welding, and electroslag welding. Naturally, it has excellent weld heat affected zone toughness even in the heat input range of 400 kJ / cm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

明 細 書
大入熱溶接用鋼材およびその製造方法
技術分野
本発明は、 造船、 建築、 土木等の各種構造物で使用される鋼材、 特に溶接入 熱量が 400kJ/cm を超える大入熱溶接に適した鋼材およびその製造方法に関す る。 背景技術
造船、 建築、 土木等の分野で使用される鋼材は、 一般に、 溶接接合により所 望の形状の構造物に仕上げられる。 これらの構造物においては、 安全性の観点 から、 使用される鋼材の母材靱性はもちろんのこと、 溶接部の靱性に優れるこ とが要請されている。 一方で、 これら構造物や船舶はますます大型化し、 使用 される鋼材の高強度化 ·厚肉化に伴い、 溶接施工にはサブマージアーク溶接、 エレク トロガス溶接おょぴエレク トロスラグ溶接などの高能率な大入熱溶接が 適用されている。 このため、 大入熱溶接により溶接施工したときに、 溶接部の 靱性に優れた鋼材が必要となっている。
しかし、 一般に、 溶接入熱量が大きくなると、 溶接熱影響部の組織が粗大化 するために、 溶接熱影響部の靱性は低下することが知られている。 このような 大入熱溶接による靱性の低下に対して、 これまでにも多くの対策が提案されて きた。
例えば、 TiNの微細分散によるオーステナイ ト粒の粗大化抑制やフェライ ト 変態核としての作用を利用する技術はすでに実用化されている。 また、 Ti の酸 化物を分散させる技術 (特開昭 5 7— 5 1 24 3号公報) や BNのフ-ライ ト 核生成能を組み合わせる技術 (特開昭 6 2 - 1 7 04 5 9号公報) も開発され ている。 さらに、 Ca (特開昭 6 0— 204 86 3号公報) や REM (特開昭 6 2- 2 6 0 04 1号公報) を添加して硫化物の形態を制御することにより高靱 性を得ることも知られている。
しかしながら、 TiNを析出させて溶接部の組織を微細化させ、 靭性を改善す ることを主体に利用する特開昭 6 2— 1 7 04 59号公報、 特開昭 6 0— 20 486 3号公報の従来技術では、 TiNが溶解する温度域に加熱される溶接熱影 響部においては TiNが有する上記の作用がなくなり、 組織が固溶 Ti およぴ固 溶 Nにより脆化して靱性が著しく低下するという問題があり、 そのため Bの添 加によって固溶した Nを B Nとして固定する必要がある。 しかし, Bの添加は T i Nが固溶する領域では HA Z靭性向上に有効であるが, T i Nが固溶しな い領域に (加熱温度が約 1350°C以下) おいては Nと結びつかない固溶 Bが溶接 冷却時に焼入れ性を著しく高めることで溶接熱影響部の組織を硬いペイナイ ト 主体とし, 靭性を著しく低下させる問題があった。 そこで特開昭 6 2 - 1 70 45 9号公報では Bの悪影響をなくすために、 さらに A 1添加量を低減する対 策を取っているが, A 1量は 0.010%以上添加しなければ鋼の溶製時に十分な 脱酸ができなく鋼中の介在物量が増加するために十分な靭性が得られない問題 があった。 さらに, 特開昭 6 2— 2 6 0 04 1号公報では T i Nの固溶した領 域を R EM添加によって R EMの,硫 ·酸化物で微細組織にすることを提案して いるが鋼の溶製時に R EMを十分に微細分散させることは非常に困難であり, 溶接熱影響部の高温に加熱される領域では十分な靭性確保が困難であった。 ま た、 特開昭 5 7— 5 1 24 3号公報の技術では、 通常の A 1脱酸と異なり T i により脱酸して T iの酸化物あるいは複合酸化物を鋼中に分散させることによ つてオーステナイ ト粒の成長抑制を図ろうとしたものである。 その結果, 鋼中 にはオーステナイ トの粒成長を抑制するための酸化物の分散が可能である一方, 酸化物を均一微細に分散させることが困難であるという問題や T i Nに比べて T i酸化物は粗大でありシャルピーの吸収エネルギーを低下させるという致命 的な問題がある。 よって, 入熱量が 400 kj/cmを超えるような大入熱溶接では、 オーステナイ ト粒の成長を十分に抑制することは困難であり、 溶接熱影響部の 高靱性を確保することは困難である。
また、 特開昭 6 0 - 2048 6 3号公報に記載の Ca を添加する技術ゃ特開 昭 6 2— 2 6 0041号公報に記載の R EMを添加する技術では、 300kJ/cm程 度までの入熱量であれば高靱性の確保が可能であるが、 400kJ/cmを超えるよう な大入熱溶接では、 これらの技術でも溶接熱影響部の高靱性を母材と同等レべ ル確保することは困難であった。
そこで、 本発明は、 従来技術が抱えていた上記問題点を解決し、 400 kj/cm を超えるような大入熱溶接を行っても、 母材と同等レベルの良好な溶接熱影響 部靱性が得られる鋼材を提供することを目的とする。 発明の開示
発明者らは、 種々検討を重ねた結果、 400 kj/cm を超える大入熱で溶接した 溶接熱影響部の靱性を向上させるためには、 硫化物の形態制御に必要な Ca を 適正に含有させることが重要であることを知見した。 すなわち、 大入熱溶接熱 影響部の靱性向上には、 高温領域でのオーステナイ トの粗大化を抑制し、 その 後の冷却過程におけるフェライ ト変態を促進させるに必要な、 フェライ ト変態 核を微細に分散させることが肝要であり、 従来技術ではこれらのいずれもが不 十分であることがわかった。
そこで、 本発明では鋼板を溶製する際の凝固段階で Ca Sを晶出させるように した。 Ca Sは酸化物に比べて低温で晶出するために、 微細に分散させることが 可能となる。 ここで、 とくに重要なことは、 Ca、 Sの含有量おょぴ鋼中の溶存 酸素量を制御することによって Ca Sの晶出後の固溶 S量を確保すれば、 Ca Sの 表面上に Mn Sが析出することを見出した。 Mn Sは、 それ自身がフェライ ト核生 成能をもっているほか、 その周囲に Mn の希薄帯を形成してフェライ ト変態を 促進する作用を有している。 また、 Mn S上には、 さらに Ti N、 A1 N、 等のフエ ライ ト生成核が析出することによって、 より一層フェライ ト変態が促進される ことも知見した。 以上の方策をとることによって、 大入熱溶接時の高温下でも 溶解しないフェライ ト変態生成核を微細に分散させることができ、 溶接熱影響 部の組織を微細なフ-ライ トパーライ トの組織として高靱性化を達成すること ができた。
本発明は、 C : 0. 03〜0. 15mass%、
Si : 0. 05~0. 25mass%、 Mn: 0.5 ~2.0 mass%、
P : 0.03mass%以下、
S : 0.0005〜0.0030nmss%、
Al: 0.015〜0· 1 mass%、
Ti: 0.004 〜0.03mass%、
N : 0.0020—0.0070mass%,
Ca: 0.0005〜0.0030mass%を含み、
かつ、 Ca、 0、 Sの各含有量は、 下記 (1)式を満たして含有し、 残部は Fe およ ぴ不可避的不純物からなることを特徴とする大入熱溶接用鋼材である。
0.3 ≤ ACR≤0.8——(1)
ここで、 ACR = (Ca —(0.18 +130 XCa) X0) /1.25/ S
また、 Ca、 0、 Sは各成分の含有量 (mass%) を表す。
また、 本発明は、 鋼組成が、 さらに
B : 0.0004〜0.0010mass%、 V : 0.2 mass%以下、 Nb : 0.05 mass%以下、 Cu: 1.0 mass%以下、 Ni : 1.5 mass%以下、 Cr: 0.7 mass%以下、 Mo: 0.7 maSS%以下から選ばれる 1種または 2種以上を含有する組成になることを特徴 とする大入熱溶接用鋼材である。
また、 本発明は、 溶鋼の組成が、
C : 0. 03〜0.15mass%、
Si: 0. 05~0.25mass%,
Mn: 0. 5 —2.0 mass%、
P : 0. 03mass%以下、
S : 0. 0005〜0· 0030raass%,
A1: 0. 015 〜0.1 mass%、
Ti: 0. 004 〜0.03mass%、
N : 0. 0020〜0.0070mass%.
Ca 0. 0005〜0.0030mass%を含み、 かつ、 Ca、 0、 Sの各含有量は、 下記 (1)式を満たして含有し、 残部は Fe およ ぴ不可避的不純物からなる溶鋼を連続鎳造または造塊一分塊工程を経て鋼片と し、 これを再加熱し、 熱間圧延するか、 あるいはまた、 前記熱間圧延後に、 加 速冷却、 直接焼入れ焼戻し、 再加熱焼入れ—焼戻し、 再加熱焼準一焼戻しのェ 程で製造することを特徴とする大入熱溶接用鋼材の製造方法である。
0.3 ≤ AC R≤0.8—— (1)
ここで、 ACR= (Ca — (0.18 +130 XCa) X0) /1.25/S
また、 Ca、 0、 Sは各成分の含有量 (mass%) を表す。
また、 本発明は、 溶鋼の組成が、 さらに
B : 0.0004-0.0010mass%, V : 0.2 mass%以下、 Nb : 0.05 mass%以下、 Cu : 1.0 mass%以下、 Ni : 1.5 mass%以下、 Cr : 0.7 mass%以下、 Mo : 0.7 111 3%以下から選ばれる 1種または 2種以上、 を含有する組成になることを特 徴とする大入熱溶接用鋼材の製造方法である。 発明を実施するための最良の形態
以下、 各成分の限定理由について説明する。
C : 0.03〜0.15 raass%
C量は、 構造用鋼として必要な強度を得るために下限を 0.03maSS%とし、 溶 接割れ性を劣化させるので上限を 0.15mass%とする。 さらに好適には、 0.05~ 0.10 mass%が望ましい。
Si : 0.05~0.25 mass%
Si は、 製鋼上 0.05 mass%以上が必要であり、 0.25 mass%を超えると、 母 材の靱性を劣化させるほか、 大入熱溶接熱影響部に島状マルテンサイ トを生成 して靱性を劣化させる。
さらに好適には 0.13-0.22 mass%が望ましい。
Mn: 0.5 〜2.0 mass%
Mn は、 母材の強度を確保するために、 0.5 mass%以上は必要であり、 2.0 mass%を超えると溶接部の靱性を著しく劣化させる。 さらに好適には 0.8〜1.6 mass%が望ましい。
P : 0.03 mass%以下
Pは、 0.03 mass%を超えると溶接部の靱性を劣化させる。 さらに好適には、 0.01 mass%以下が望ましい。
S : 0.0005〜0.0030 mass%
Sは、 必要な CaSおよび MnSを生成するために 0.0005 mass%以上必要であ り、 0.0030 mass%を超えると母材の靱性を劣化させる。 さらに好適に、 は 0.0015-0.0025 mass%が望ましい。
A1: 0.015 ~0.1 mass%
A1 は、 鋼の脱酸上 0.015 raass%以上は必要であり、 0.1 raass%を超えて含 有すると母材の靱性を低下させると同時に溶接金属の靱性を劣化させる。 さら に好適には、 0.02〜0.06 mass%が望ましい。
Ti: 0.004 〜0.03 mass%
Ti は、 凝固時に TiNとなって析出し、 溶接熱影響部でのオーステナイ トの 粗大化抑制やフェライ ト変態核となって高靱性化に寄与する。 0.004 mass%に 満たないとその効果が少なく、 0.03 mass%を超えると TiN粒子の粗大化によ つて期待する効果が得られなくなる。 さらに好適には、 0.008〜0.02 mass% が望ましい。
N : 0.0020~0.0070 raass%
Nは、 TiNの必要量を確保するうえで必要な元素であり、 0.0020 mass%未 満では十分な TiN量が得られず、 0.0070 mass%を超えると溶接熱サイクルに よって TiNが溶解する領域での固溶 N量の増加によって靱性が著しく低下する。 さらに好適には、 0.0030〜0.0055 niass%が望ましい。
Ca: 0.0005〜0.0030 mass%
Caは、 Sの固定による靱性改善効果を有する元素である。 このような効果を 発揮させるには少なく とも 0.0005 raass%以上含有することが好ましいが、 0.0030 mass%を超えて含有しても効果が飽和する。 このため、 本発明では、 0.0005 mass%から 0.0030 mass%の範囲に限定する。 さらに好適には、 0.0010 -0.0020 mass%が望ましい。
0: 0.0045 mass%以下
0は、 0.0045 mass%を超えると介在物量が増加して鋼の清浄度が悪くなること で靭性を低下させる。
0.3 ≤ A C R≤0.8 (ここで、 AC R= (Ca - (0.18 + 130 XCa) X 0) / 1.25/ S , また、 Ca, 0, S :各元素の含有量 (mass%) )
Caおよび Sは、 0.3 ≤ AC R≤0.8 の関係を満足するように含有させる必要 がある。 図 1には本発明鋼の基本組成に Ca を種々添加し, 2種類の入熱条件 を模擬した再現熱サイクル試験結果を示す。 800- 500°Cの冷却時間が 153秒あ るいは 270 秒いずれの場合においても 0.3≤ACR≤0.8 で格段に靭性が向上 することが分かる (v T r sで約 30°C向上) 。 0.3 ≤ A C R≤ 0.8の範囲では、 図 2 の顕微鏡写真で示すように CaS上に MnSが析出した複合硫化物の形態あ るいはさらに T i Nが析出したものとなる。
AC Rの値が 0.3 に満たないと、 CaSが晶出しないために Sは MnS単独の形 態で析出する。 この MnSは鋼板製造時の圧延で伸長されて母材の靱性の低下を 引き起こすとともに、 本発明の主眼である溶接熱影響部で MnSが溶融するため に微細分散が達成されない。 一方、 ACRの値が 0.8 を超えると、 Sがほとん ど Caによって固定され、 フェライ ト生成核として働く MnSが CaS上に析出し ないために十分な機能が発揮されない。 図 3に AC Rと析出する硫化物の関係 を模式図に示す。 また, 本発明鋼での AC Rの適正範囲では C a Sと Mn Sの 複合硫化物おょぴ T i Nが同時析出したものが、 平均粒径 0.1〜5μ mの大きさ で 5X102〜1X104個 Zmm2存在することで溶接熱影響部でのフ: cライトハ。-ライト変態 の促進が行なわれ, 組織微細化による高靭化が達成できる。
本発明では、 母材の強度向上機能を有する、 B、 V、 Nb、 Cu、 Ni、 Cr、 Mo か ら選ばれる少なく とも 1種または 2種以上を含有させることができる。
B : 0.0004~0.0010 mass%
Bは、 鋼板を製造する時に焼入れ性を高める効果がある. このような効果を 得るには 0.0004 mass%以上必要であるが、 0.0010 mass%を超えて添加すると 焼入れ性が増して溶接熱影響部の靱性が劣化する。
V : 0.2 mass%以下
Vは、 母材の強度 ·靱性の向上として働くが、 その効果は、 0.01 111 3%以 上添加することで得られる。 0.2 mass%を超えるとかえって靱性の低下を招く。
Nb: 0.05 mass%以下
Nb は、 母材の強度 ·靱性および継手の強度を確保するのに有効な元素である が、 その効果は、 0.007 mass%以上添加することで得られる。 0.05 ma«s%を 超えて含有すると溶接熱影響部の靱性が劣化する。
Ni : 1.5 mass%以下
Ni は、 母材の高靱性を保ちつつ強度を上昇させるが、 その効果は、 0.10 mass%以上添加することで得られる。 1.5 mass%を超えても効果が飽和するの でこの含有量を上限とした。
Cu: 1.0 mass%以下
Cu は、 Ni と同様の働きを有しているが、 その効果は、 0.10 mass%以上添加 することで得られる。 1.0 mass%を超えると熱間脆性を生じ、 鋼板の表面性状 を劣化させる。
Cr: 0.7 mass%以下
Cr は、 母材の高強度化に有効な元素であるが、 その効果は、 0.05 111333%以 上添加することで得られる。 多量に添加すると靱性に悪影響を与えるために上 限を 0.7 mass%とする。
Mo: 0.7 mass%以下
Mo は、 母材の高強度化に有効な元素であるが、 その効果は、 0.05 1^33%以 上添加することで得られる。 多量に添加すると靱性に悪影響を与えるために上 限を 0.7 mass%とする。
上述したように、 本発明では、 とくに Ca、 Sを限定された範囲に調整して含 有させることによって、 大入熱溶接における溶接熱影響部の靱性に優れた鋼材 を提供することができる。 なお、 本発明の鋼材は、 例えば、 以下のようにして製造される。 まず溶銑を 転炉で精鍊して鋼とした後、 R H脱ガスを行い、 連続錄造または造塊一分塊ェ 程を経て鋼片とする。 これを 1250°C以下の温度に再加熱し、 熱間圧延にて加熱 温度から 650°Cの温度域で所定の板厚まで圧延後、 空冷あるいは 1〜40°CZ s の冷却速度で加速冷却を行い 200°C〜600°Cにて冷却停止その後空冷するか、 あ るいはまた、 前記熱間圧延後に、 650°C以上の温度域から直接焼入れし 500。C土 150°Cにて焼戻しする方法、 850°Cから 950°Cまでの温度域に再加熱焼入れし 500。C ± 150。Cにて焼,戻し、 1000で以下の温度に再加熱焼準、 650 以下への焼 戻しなどの工程で製造可能である。 また、 タンデム圧延機による熱間圧延にお いても通常用いられる製造条件で製造可能である。 また、 本発明の鋼板の寸法 は、 板厚 6 mm以上の厚鋼板または、 熱間圧延鋼板である。
また、 本発明の鋼板に適用される溶接方法に特に、 制限は無く、 アーク溶接、 サブマージアーク溶接、 エレク トロスラグ溶接、 エレク トロガス溶接、 その他 の熱源の溶接方法も適用できる。 実施例 1
次に本発明を実施例に基づいて説明する。
100 k gの高周波溶解炉にて、 表 1およぴ表 2に示す組成の鋼を溶製し、 厚 さ 100 m mのスラブとした。 このスラブを 1150 に 1時間加熱後、 930 以 上の温度域で全圧下量の 5 0 %を圧延した後、 900 から 700 。Cの温度域にて 2 0 m m厚の鋼板に仕上げ、 1 0。じ/ sの冷却速度で加速冷却した。
これらの鋼板から溶接熱サイクル後の特性を測定するため、 幅 8 O m m X長 さ 8 O m m X厚み 1 5 m mの試験片を採取し、 1400°Cに加熱後 800 〜500 での 冷却速度を 1で/ s (エレク ト口ガス溶接での入熱量 450 kj/cra の溶接熱影響 部に相当) とした溶接熱サイクルを付与し、 溶接熱影響部の靱性を 2 m m Vノ ツチシャルピー試験にて評価した。 表 3に、 得られた溶接熱影響部の靱性を母 材の強度 ·靱性とともに示す。 なお、 母材の強度は、 圧延材の圧延方向から板 厚 1/2 t部にて JISZ2201試験片を各 2本採取し、 J I S Z2241 に準拠して、 試験を行ない、 その平均値を求めた。 靭性は、 圧延材の圧延方向と直角方向に
JISZ2201 の V ノツチ試験片を 1/2 t の位置から各 3本採取し、 J I S Z2242に 準拠して、 脆性一延性破面遷移温度 (v Trs) を測定した。 なお、 母材と溶接 熱影響部の靭性 (破面遷移温度) は v Trsが- 40 以下を良好と判定した。
表 3から、 発明例ではいずれも v Trs≤- 40°Cの良好な溶接熱影響部靱性が得 られた。 これに対し、 比較例では、 溶接熱影響部の靱性が劣り、 中には母材の 靱性も劣るものがあった。 これらの比較例は、 (Ca —(0. 18 + 130 X Ca) Χ θ) / 1. 25Z Sの値、 Ca、 Ti、 C、 Mn、 Si、 S、 N、 Cu、 Cr、 Mo、 V、 Bなどの各 成分含有量のいずれかが本発明範囲を外れるものであった。 発明例の鋼 16 と 比較例 23 の鋼について熱間圧延にて板厚 60mmt の鋼板を作製し, エレク ト口 ガス溶接 450 k J/cm の入熱で溶接継手を作り、 板厚 1/4 t部の代表的な溶接熱 影響部のミクロ組織を観察した。 図 4に発明例の鋼 16、 図 5に比較例 23 の鋼 のミクロ写真を示す。 図 5の比較鋼 23 においては溶接熱影響部の粗粒化が顕 著であるのに比べ、 図 4の本発明鋼 16 は溶接熱影響部のミクロ組織が母材と 同等まで微細化できていることがわかる。 その結果, 本発明鋼 1 6では大入熱 溶接熱影響部の靭性が母材と同等レベルであることが分った。
/ 6800sv:sfcl£/ /-OSS OさAV
Figure imgf000013_0001
ζι
Figure imgf000014_0001
LL6800/Z00Zd£/13d ム 08Z請 00i OAV ετ
Figure imgf000015_0001
ε挲
..6800/J00Zdf/X3d .08ZZ0/tO0Z; OAV 実施例 2
本発明鋼の鋼 2について板厚 50mm の鋼板を熱間圧延にて作製し, 入熱 7 0 0 k J / c mのエレク トロスラグ溶接継手を作り、 溶接熱影響部の靭性を評価 した。 鋼板の化学組成、 溶接条件、 母材および溶接熱影響部の機械的特性を表 4に示す。 機械的試験では溶接熱影響部のポンドから 1mm と 3iMi溶接金属から 離れた位置にノッチが来るように試験片を採取し、 v Trs を求めた。 いずれの 位置でも表 3の実施例の再現熱サイクルにて得られた靭性とほぼ同等で母材な みの優れた特性が得られた。
表 4
Figure imgf000016_0001
産業上の利用可能性
以上説明したように、 本発明によれば、 400kJ/cmを超える大入熱溶接を行つ ても優れた溶接熱影響部靱性を有する鋼材が得られる。 したがって、 本発明は、 サブマージアーク溶接、 エレク トロガス溶接、 エレク トロスラグ溶接などの大 入熱溶接により施工される大型の構造物の品質向上に寄与するところ大である。 当然のことながら 400 k J/cm以下の入熱範囲においても優れた溶接熱影響部靭 性を有する.

Claims

請求の範囲
1. C : 0.03〜0.15mass%、
Si : 0.05〜0.25mass%、
Mn: 0.5 〜2.0 mass%、
P : 0.03raass%以下、
S : 0.0005〜0.0030mass%、
Al: 0.015 ~0.1 raass%,
Ti : 0.004 〜0.03mass%s
N : 0.0020〜0· 0070mass%、
Ca: 0.0005—0.0030mass%を含み、
かつ、 Ca、 0、 Sの各含有量は、 下記 (1)式を満たして含有し、 残部は Fe およ ぴ不可避的不純物からなることを特徴とする大入熱溶接用鋼材。
0.3 ≤AC R≤0.8—— (1)
ここで、 ACR= (Ca - (0.18 +130 XCa) X0) /1.25/S
また、 Ca、 0、 Sは各成分の含有量 (mass%) を表す。
2. 請求項 1において鋼組成が、 さらに
B : 0.0004〜0.0010mass%、 V : 0.2 mass%以下 、 Cu : 1.0 mass%以下、 Ni : 1.5 mass%以下、 Cr: 0.7 mass%以下、 Mo: 0.7 mass%以下から選ばれる 1種または 2種以上、 を含有する組成になることを特徴とする大入熱溶接用鋼 材。
3. C 0.03〜0.15mass%、
Si 0.05〜0.25mass%、
Mn 0.5 〜2.0 mass%、
P 0.03mass%以下、
s 0.0005~0.0030mass%, Al: 0.015 ~0.1 mass%、
Ti: 0.004 〜0.03mass%、
N : 0.0020〜0.0070mass%、
Ca: 0.0005~0.0030mass%を含み、
かつ、 Ca、 0、 Sの各含有量は、 下記 (1)式を満たして含有し、 残部は Fe およ ぴ不可避的不純物からなる溶鋼を連続鎵造または造塊一分塊工程を経て鋼片と し、 これを再加熱し、 熱間圧延するか、 あるいはまた、 前記熱間圧延後に、 加 速冷却、 直接焼入れ焼戻し、 再加熱焼入れ一焼戻し、 再加熱焼準一焼戻しのェ 程で製造することを特徴とする大入熱溶接用鋼材の製造方法。
0.3 ≤AC R≤0.8—— (1)
ここで、 ACR = (Ca - (0.18 +130 XCa) X0) /1.25/ S
また、 Ca、 0、 Sは各成分の含有量 (mass%) を表す。
4. 請求項 3において溶鋼の組成が、 さらに
B : 0.0004〜0.0010mass%、 V : 0.2 mass%以下、 Cu: 1.0 mass%以下、 Ni: 1.5 mass%以下、 Cr: 0.7 mass%以下、 Mo: 0.7 mass%以下から選ばれる
1種または 2種以上、 を含有する組成になることを特徴とする大入熱溶接用鋼 材の製造方法。
PCT/JP2002/008977 2002-09-04 2002-09-04 大入熱溶接用鋼材およびその製造方法 WO2004022807A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB028193466A CN100402688C (zh) 2002-09-04 2002-09-04 高入热量焊接用钢材及其制造方法
PCT/JP2002/008977 WO2004022807A1 (ja) 2002-09-04 2002-09-04 大入熱溶接用鋼材およびその製造方法
EP02763002.9A EP1533392B1 (en) 2002-09-04 2002-09-04 Steel product for high heat input welding and method for production thereof
KR1020047004838A KR100622888B1 (ko) 2002-09-04 2002-09-04 대입열용접용 강재 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/008977 WO2004022807A1 (ja) 2002-09-04 2002-09-04 大入熱溶接用鋼材およびその製造方法

Publications (1)

Publication Number Publication Date
WO2004022807A1 true WO2004022807A1 (ja) 2004-03-18

Family

ID=31972301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008977 WO2004022807A1 (ja) 2002-09-04 2002-09-04 大入熱溶接用鋼材およびその製造方法

Country Status (4)

Country Link
EP (1) EP1533392B1 (ja)
KR (1) KR100622888B1 (ja)
CN (1) CN100402688C (ja)
WO (1) WO2004022807A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129827A1 (ja) 2005-05-30 2006-12-07 Jfe Steel Corporation 耐遅れ破壊特性に優れた高張力鋼材ならびにその製造方法
WO2009075542A2 (en) * 2007-12-13 2009-06-18 Posco High strength steel plate for high heat input welding having welded joint with superior impact toughness in weld heat affected zone
CN101899614A (zh) * 2010-08-27 2010-12-01 攀钢集团钢铁钒钛股份有限公司 一种含V、Nb复合微合金化的热轧钢板及其制备方法
JP2013117055A (ja) * 2011-12-05 2013-06-13 Jfe Steel Corp 大入熱溶接用鋼材およびその製造方法
CN105839003A (zh) * 2016-05-31 2016-08-10 江阴兴澄特种钢铁有限公司 一种正火态交货的180~200mm厚EH36钢板及其制备方法
CN107385353A (zh) * 2017-06-19 2017-11-24 江阴兴澄特种钢铁有限公司 一种海洋平台用250mm 特厚EH36钢板及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722388B1 (ko) * 2005-12-26 2007-05-28 주식회사 포스코 대입열 용접에 적용되는 용접용 강재 및 이의 제조 방법,그리고 대입열 용접에 의해 제조된 용접 구조물
KR100722393B1 (ko) * 2005-12-26 2007-05-28 주식회사 포스코 미세 복합석출물을 이용한 대입열 용접부 인성이 우수한고강도 강재 및 그 제조방법
JP5439887B2 (ja) * 2008-03-31 2014-03-12 Jfeスチール株式会社 高張力鋼およびその製造方法
CN101736194B (zh) * 2008-11-19 2012-11-28 攀钢集团研究院有限公司 一种车轮钢及其制备方法和车轮
WO2010110490A1 (ja) 2009-03-25 2010-09-30 新日本製鐵株式会社 加工性及び焼入れ後の疲労特性に優れた電縫鋼管
JP5480215B2 (ja) * 2011-09-08 2014-04-23 株式会社神戸製鋼所 引張強さ780MPa以上の低降伏比厚肉円形鋼管用鋼板およびその製造方法、並びに引張強さ780MPa以上の低降伏比厚肉円形鋼管
KR20160121712A (ko) 2015-04-10 2016-10-20 동국제강주식회사 초대입열 용접용 강판의 제조 방법과 이에 의해 제조된 초대입열 용접용 강판
WO2017135179A1 (ja) * 2016-02-03 2017-08-10 Jfeスチール株式会社 大入熱溶接用鋼材
KR101889189B1 (ko) * 2016-12-22 2018-08-16 주식회사 포스코 수소유기균열 저항성이 우수한 인장강도 450MPa급 후육 강재 및 그 제조방법
CN108063108A (zh) * 2018-01-22 2018-05-22 广安市嘉乐电子科技有限公司 一种mb桥堆焊接机
KR102209581B1 (ko) * 2018-11-29 2021-01-28 주식회사 포스코 용접열영향부 인성이 우수한 강재 및 이의 제조방법
CN113366138A (zh) * 2019-03-19 2021-09-07 杰富意钢铁株式会社 高锰钢铸片的制造方法、高锰钢钢片及高锰钢钢板的制造方法
CN111519098B (zh) * 2020-05-12 2021-06-15 首钢集团有限公司 一种低碳钢及控制低碳钢中夹杂物的脱氧方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270333A (ja) * 1985-05-23 1986-11-29 Sumitomo Metal Ind Ltd 溶接部cod特性の優れた高張力鋼の製造方法
JPS62112722A (ja) * 1985-11-13 1987-05-23 Nippon Steel Corp 耐水素誘起割れ性及び耐硫化物応力腐食割れ性の優れた鋼板の製造方法
JPH02267241A (ja) * 1989-04-07 1990-11-01 Kawasaki Steel Corp 耐水素誘起割れ性および耐硫化物応力腐食割れ性に優れるラインパイプ用鋼
JPH0995731A (ja) * 1995-10-02 1997-04-08 Nkk Corp 低温用建築向け鋼材の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157628A (ja) * 1984-12-28 1986-07-17 Nippon Steel Corp 高靭性耐サワ−鋼管用ホツトコイルの製造方法
JPH07173536A (ja) * 1993-12-16 1995-07-11 Nippon Steel Corp 耐サワー性の優れた高強度ラインパイプ用鋼板の製造法
JP3802810B2 (ja) * 1999-10-12 2006-07-26 新日本製鐵株式会社 Haz靱性の入熱依存性がない溶接構造物用鋼とその製造方法
JP2002235114A (ja) * 2001-02-05 2002-08-23 Kawasaki Steel Corp 大入熱溶接部靱性に優れた厚肉高張力鋼の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270333A (ja) * 1985-05-23 1986-11-29 Sumitomo Metal Ind Ltd 溶接部cod特性の優れた高張力鋼の製造方法
JPS62112722A (ja) * 1985-11-13 1987-05-23 Nippon Steel Corp 耐水素誘起割れ性及び耐硫化物応力腐食割れ性の優れた鋼板の製造方法
JPH02267241A (ja) * 1989-04-07 1990-11-01 Kawasaki Steel Corp 耐水素誘起割れ性および耐硫化物応力腐食割れ性に優れるラインパイプ用鋼
JPH0995731A (ja) * 1995-10-02 1997-04-08 Nkk Corp 低温用建築向け鋼材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1533392A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129827A1 (ja) 2005-05-30 2006-12-07 Jfe Steel Corporation 耐遅れ破壊特性に優れた高張力鋼材ならびにその製造方法
EP1889937A1 (en) * 2005-05-30 2008-02-20 JFE Steel Corporation High tensile steel product excellent in delayed fracture resistance and method for production thereof
EP1889937A4 (en) * 2005-05-30 2009-03-04 Jfe Steel Corp HIGH TENSILE STRENGTH STEEL PRODUCT HAVING EXCELLENT RESISTANCE TO DELAYED RUPTURE AND PROCESS FOR PRODUCING THE SAME
US8728257B2 (en) 2005-05-30 2014-05-20 Jfe Steel Corporation High tensile strength steel material having excellent delayed fracture resistance property, and method of manufacturing the same
WO2009075542A2 (en) * 2007-12-13 2009-06-18 Posco High strength steel plate for high heat input welding having welded joint with superior impact toughness in weld heat affected zone
WO2009075542A3 (en) * 2007-12-13 2010-07-15 Posco High strength steel plate for high heat input welding having welded joint with superior impact toughness in weld heat affected zone
CN101899614A (zh) * 2010-08-27 2010-12-01 攀钢集团钢铁钒钛股份有限公司 一种含V、Nb复合微合金化的热轧钢板及其制备方法
JP2013117055A (ja) * 2011-12-05 2013-06-13 Jfe Steel Corp 大入熱溶接用鋼材およびその製造方法
CN105839003A (zh) * 2016-05-31 2016-08-10 江阴兴澄特种钢铁有限公司 一种正火态交货的180~200mm厚EH36钢板及其制备方法
CN105839003B (zh) * 2016-05-31 2017-09-26 江阴兴澄特种钢铁有限公司 一种正火态交货的180~200mm厚EH36钢板及其制备方法
CN107385353A (zh) * 2017-06-19 2017-11-24 江阴兴澄特种钢铁有限公司 一种海洋平台用250mm 特厚EH36钢板及其制备方法
CN107385353B (zh) * 2017-06-19 2019-06-25 江阴兴澄特种钢铁有限公司 一种海洋平台用250mm 特厚EH36钢板及其制备方法

Also Published As

Publication number Publication date
EP1533392A1 (en) 2005-05-25
KR20040040485A (ko) 2004-05-12
KR100622888B1 (ko) 2006-09-14
EP1533392B1 (en) 2017-08-02
CN100402688C (zh) 2008-07-16
CN1561403A (zh) 2005-01-05
EP1533392A4 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP4946092B2 (ja) 高張力鋼およびその製造方法
JP5076658B2 (ja) 大入熱溶接用鋼材
JP5079419B2 (ja) 溶接熱影響部の靱性が優れた溶接構造物用鋼とその製造方法および溶接構造物の製造方法
WO2004022807A1 (ja) 大入熱溶接用鋼材およびその製造方法
TWI526545B (zh) 熔接用鋼材
JP4035990B2 (ja) 超大入熱溶接haz靱性に優れた低降伏比建築構造用厚鋼板およびその製造方法
KR20160127808A (ko) 고장력 강판 및 그 제조 방법
JP3546308B2 (ja) 大入熱溶接用鋼材
JP4096839B2 (ja) 超大入熱溶接熱影響部靱性に優れた低降伏比高張力厚鋼板の製造方法
JP4981262B2 (ja) 溶接部靭性に優れた低温用低降伏比鋼材の製造方法
JP2005187853A (ja) 超大入熱溶接熱影響部靭性に優れた高強度厚鋼板の製造方法
EP3378962B1 (en) High heat input welded steel material
WO2016009595A1 (ja) 大入熱溶接用鋼板の製造方法
JP4237904B2 (ja) 母材ならびに溶接継手のクリープ強度と靭性に優れたフェライト系耐熱鋼板およびその製造方法
US10300564B2 (en) Weld joint
JP5233365B2 (ja) 大入熱溶接用鋼材
JP2005213534A (ja) 溶接熱影響部靭性に優れた鋼材の製造方法
JP2011074448A (ja) 大入熱溶接用鋼
JP3644398B2 (ja) 溶接熱影響部靭性に優れた非調質厚肉高張力鋼板の製造方法
JP2009242852A (ja) 大入熱溶接用鋼材
JP6299676B2 (ja) 高張力鋼板およびその製造方法
JP2002371338A (ja) レーザー溶接部の靭性に優れた鋼
JP3202310B2 (ja) 大入熱溶接熱影響部靱性の優れた建築用耐火鋼板の製造法
WO2016068094A1 (ja) 溶接熱影響部の低温靭性に優れる高張力鋼板とその製造方法
JP2020204091A (ja) 大入熱溶接用高強度鋼板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

REEP Request for entry into the european phase

Ref document number: 2002763002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002763002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028193466

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047004838

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002763002

Country of ref document: EP