WO2008068856A1 - 情報再生装置及び方法、並びにコンピュータプログラム - Google Patents

情報再生装置及び方法、並びにコンピュータプログラム Download PDF

Info

Publication number
WO2008068856A1
WO2008068856A1 PCT/JP2006/324288 JP2006324288W WO2008068856A1 WO 2008068856 A1 WO2008068856 A1 WO 2008068856A1 JP 2006324288 W JP2006324288 W JP 2006324288W WO 2008068856 A1 WO2008068856 A1 WO 2008068856A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
read signal
read
waveform distortion
run length
Prior art date
Application number
PCT/JP2006/324288
Other languages
English (en)
French (fr)
Inventor
Yoshio Sasaki
Shogo Miyanabe
Hiroyuki Uchino
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2008548142A priority Critical patent/JP4861433B2/ja
Priority to PCT/JP2006/324288 priority patent/WO2008068856A1/ja
Priority to US12/517,253 priority patent/US8154966B2/en
Publication of WO2008068856A1 publication Critical patent/WO2008068856A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10203Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter baseline correction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing

Definitions

  • the present invention relates to an information reproducing apparatus and method for reproducing recorded data recorded on a recording medium, for example, and particularly to a read signal obtained by reading the recorded data recorded on the recording medium.
  • the present invention relates to an information reproducing apparatus and method for performing waveform equalization such as filtering processing, and a technical field of a computer program for causing a computer to function as such an information reproducing apparatus.
  • Waveform equalization is performed by applying a filtering process that emphasizes the high frequency to the read signal, which is powerful to improve the S / N ratio of the read signal read from the recording medium.
  • Techniques for performing are known.
  • Patent Document 1 there is a technique (a technique related to a so-called limit equalizer) that can emphasize a high frequency without causing intersymbol interference by performing filtering processing after limiting the amplitude of a read signal. It is disclosed.
  • Patent Document 1 Japanese Patent No. 3459563
  • waveform distortion may occur in the read signal.
  • Waveform distortion refers to a state in which there is a deviation between the signal level that should be originally taken and the signal level that actually appears in the read signal. If the waveform distortion force is included within the limit range of the limit equalizer (that is, the higher the coherence between the waveform distortion and the limit value of the limit equalizer), the limit is applied after the amplitude limit. The high-frequency emphasis that is applied leads to further emphasis on waveform distortion. As a result, for example, a mark having a relatively long run length may be misidentified as another mark.
  • a mark with a run length of 8T may be misidentified as a mark with a run length of ⁇ , a space with a run length of 2 ⁇ , and a mark with a run length of 2 ⁇ ⁇ ⁇ ⁇ .
  • Mark misjudgment and! /, Inconvenience can occur not only in limit equalizers but also in various waveform equalizers such as PRML (Partial Response Maximum Likelihood) system.
  • PRML Partial Response Maximum Likelihood
  • the present invention has been made in view of, for example, the above-described conventional problems.
  • an information reproduction apparatus and method capable of suitably reproducing recorded data even when waveform distortion occurs, and It is an object to provide a computer program.
  • an information reproducing apparatus of the present invention includes an offset adding unit that adds a variably settable offset value to a read signal read from a recording medium, and the offset adding unit.
  • a waveform equalizing means for performing is provided.
  • the information reproducing method of the present invention includes an offset adding step of adding a variably settable offset value to a read signal read from a recording medium, and the offset unit.
  • a computer program includes an offset adding unit that adds a variably settable offset value to a read signal read from a recording medium, and the offset addition.
  • a correction means for correcting waveform distortion generated in at least the read signal corresponding to the long mark among the read signals to which the offset value is added by the means, and waveform equalization processing for the read signal in which the waveform distortion is corrected A computer program for reproduction control for controlling a computer provided in an information reproduction apparatus comprising waveform equalization means for performing at least one of the offset means, the correction means, and the waveform equalization means Function as a part.
  • FIG. 1 is a block diagram conceptually showing the basic structure of an information reproducing apparatus in an example.
  • FIG. 2 is a block diagram conceptually showing the structure of a limit equalizer according to the present example.
  • FIG. 3 is a waveform diagram conceptually showing an operation for setting an upper limit and a lower limit of an amplitude limit value on a sample value series.
  • FIG. 4 is a waveform diagram conceptually showing an operation of acquiring a high-frequency emphasized read sample value series on the sample value series.
  • FIG. 5 is a waveform diagram conceptually showing a first example of waveform distortion.
  • FIG. 6 is a waveform diagram conceptually showing a second example of waveform distortion.
  • FIG. 7 is a flowchart conceptually showing a flow of operations of the adder, the offset addition circuit, and the waveform distortion correction circuit.
  • FIG. 8 is a block diagram conceptually showing the structure of a waveform distortion correction circuit.
  • FIG. 9 is a waveform diagram conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit on a sample value series.
  • FIG. 10 is a waveform diagram conceptually showing a waveform of a read signal before and after correction of waveform distortion.
  • FIG. 11 is a waveform diagram conceptually showing the operation of acquiring a high-frequency emphasized read sample value series when the waveform distortion is not corrected and when the waveform distortion is corrected, on the sample value series.
  • FIG. 12 is a graph showing changes in symbol error rate with respect to waveform distortion rate.
  • FIG. 13 is a waveform chart conceptually showing asymmetry values.
  • FIG. 14 is a graph showing a change in symbol error rate with respect to an offset value normalized by the amplitude of a read signal.
  • FIG. 15 is a graph showing the change in offset value normalized by the amplitude of the read signal with respect to the asymmetry value.
  • FIG. 16 is a table showing the appearance probability of recorded data for each run length.
  • FIG. 17 is a waveform diagram conceptually showing a waveform of a read signal corresponding to minT according to a change in asymmetry.
  • FIG. 18 is a waveform diagram conceptually showing another waveform or the like of a read signal before and after correction of waveform distortion.
  • FIG. 21 is a waveform chart conceptually showing a partial ⁇ value.
  • a waveform diagram conceptually showing an ⁇ value.
  • FIG. 25 is a flowchart schematically showing another operation flow of the adder, the offset addition circuit, and the waveform distortion correction circuit.
  • FIG. 26 is a waveform diagram conceptually showing a waveform distortion correction operation by a waveform distortion correction circuit included in the information reproducing apparatus according to the first modification on a sample value series.
  • FIG. 27 is a block diagram conceptually showing the structure of a waveform distortion correction circuit provided in the information reproducing apparatus in the first modified example.
  • FIG. 28 is a waveform diagram conceptually showing a waveform distortion correction operation by a waveform distortion correction circuit included in the information reproducing apparatus according to the second modified example, on a sample value series.
  • FIG. 29 is a block diagram conceptually showing the structure of a waveform distortion correction circuit in an information reproducing apparatus in a second modification.
  • FIG. 30 is a waveform diagram conceptually showing, on a sample value series, a waveform distortion correction operation by a waveform distortion correction circuit included in an information reproducing apparatus according to a third modification.
  • FIG. 31 is a block diagram conceptually showing the structure of a waveform distortion correction circuit in an information reproducing apparatus in a third modification.
  • FIG. 32 is a waveform diagram conceptually showing, on a sample value series, a waveform distortion correction operation by a waveform distortion correction circuit included in an information reproducing apparatus according to a fourth modification.
  • FIG. 33 conceptually shows the configuration of a waveform distortion correction circuit included in an information reproduction apparatus according to a fourth modification. It is a block diagram shown in FIG.
  • FIG. 34 is a timing chart conceptually showing a waveform distortion correcting operation by the waveform distortion correcting circuit provided in the information reproducing apparatus in the fifth modified example on the first read signal.
  • FIG. 35 is a timing chart conceptually showing a waveform distortion correction operation by the waveform distortion correction circuit included in the information reproducing apparatus in the fifth modified example on the second read signal.
  • FIG. 36 is a flowchart conceptually showing a first operation flow by the waveform distortion correction circuit included in the information reproducing apparatus in the fifth modified example.
  • FIG. 37 is a flowchart conceptually showing a second operation flow by the waveform distortion correction circuit provided in the information reproducing apparatus in the fifth modified example.
  • FIG. 38 is a block diagram conceptually showing the structure of a waveform distortion correction circuit included in an information reproducing apparatus in a sixth modification.
  • FIG. 39 is a block diagram conceptually showing the structure of a waveform distortion detection circuit included in a waveform distortion correction circuit included in an information reproducing apparatus in a sixth modification.
  • FIG. 40 is a plan view schematically showing a mark on the recording surface of a read-only optical disc.
  • an offset adding means for adding a variably settable offset value to the read signal read from the recording medium force, and the offset adding means by the offset adding means.
  • Correction means for correcting waveform distortion occurring in a read signal corresponding to at least a long mark of the read signals, and waveform equalization means for performing waveform equalization processing on the read signal in which the waveform distortion is corrected With.
  • the offset value is added to the read signal by the operation of the offset adding means.
  • the offset value can be set variably, and the offset value can be changed as appropriate.
  • the offset value adding calorie may be configured to be performed once for each read signal, or may be configured to be performed step by step plural times for each read signal.
  • the correcting means After that, by the operation of the correcting means, at least a long mark (for example, if the recording medium is a DVD, run length 7T to 11T and 14T marks and the recording medium is Blu-ray Disc If so, the waveform distortion that occurs in the read signal corresponding to the run length 6T to 9T mark) is corrected.
  • the waveform distortion (more specifically, so as not to adversely affect the waveform equalization by the waveform equalization means (specifically, for example, amplitude limitation and high-frequency emphasis filtering described later)). Is preferably corrected, for example, the signal level of waveform distortion.
  • the waveform equalization processing is performed on the read signal whose waveform distortion has been corrected by the operation of the waveform equalization means.
  • various signal processing for example, binarization processing or decoding processing
  • the recorded data is reproduced.
  • the reference signal is originally used. It is possible to suitably prevent inconvenience that the run length is assumed to be above the level, the run length is relatively short, and the signal level of the space constituting the recording data is below the reference level (or zero level, the same applies hereinafter). . If the signal level of the space constituting the recording data having a relatively short run length is equal to or lower than the reference level, the recording data may be erroneously recognized as waveform distortion.
  • the signal level of the space that constitutes recording data with a relatively short run length which is supposed to be higher than the reference level, becomes lower than the reference level. Even so, the signal level of the space can be made higher than the reference level by adding the offset value to the read signal. That is, it is possible to suitably prevent the inconvenience of erroneously recognizing recording data having a relatively short run length as waveform distortion.
  • the recording medium is intended for a recording medium in which the reflectance is reduced (in other words, the reflectance of the mark is smaller than the reflectance of the S space).
  • a relatively large asymmetry is read even on a recording medium in which the reflectance increases by recording the recording data (in other words, the reflectance of the mark is larger than the reflectance of the space).
  • Space that constitutes recording data with a relatively short run length that is assumed to be below the reference level even if it occurs in the signal
  • the signal level force of the reference level (or zero level, the same shall apply hereinafter) can be suitably prevented. If the signal level of the space constituting the recording data having a relatively short run length is equal to or higher than the reference level, the recording data may be erroneously recognized as waveform distortion.
  • the signal level of the space that constitutes recording data with a relatively short run length which is assumed to be lower than the reference level, has become higher than the reference level.
  • the signal level of the space can be made lower than the reference level by adding the offset value to the read signal. That is, it is possible to suitably prevent the inconvenience of erroneously recognizing recording data having a relatively short run length as waveform distortion.
  • the waveform distortion generated in the read signal is corrected before the waveform equalization processing by the waveform equalizing means is performed, even if the waveform distortion occurs in the read signal read from the recording medium,
  • the waveform distortion has little or no adverse effect on the waveform equalization process. More specifically, for example, the inconvenience that the waveform distortion is further emphasized or the waveform distortion remains can be suitably prevented.
  • the waveform equalization means can suitably perform the waveform equalization processing of the read signal. As a result, the recorded data can be suitably reproduced.
  • the offset adding means adds an offset to the reference level of the read signal by adding the offset value to the read signal. I can see you.
  • the offset value is calculated by: (0 the amplitude center of the read signal from which the maximum amplitude can be obtained among the read signals and the run value of the read signals).
  • the amplitude center of the read signal obtained when the recorded data with the shortest length is read.
  • the optimum offset value can be set according to the asymmetry value and j8 value that are actually generated (specifically, the overall ⁇ value and partial ⁇ value).
  • the offset value is set to the asymmetry value and the read signal.
  • the run length for the recorded data included in the recorded data may be the shortest, and the recorded data may be multiplied by the appearance probability that does not consider the run length.
  • the "appearance probability without considering run length” in the present embodiment is that an appearance frequency of 1 is assigned each time the recorded data of each run length appears regardless of the length of the run length. Appearance probability calculated by. For example, in a certain range of read signals, if there are ⁇ recorded data with a run length of aT, B recorded data with a run length of bT, and C recorded data with a run length of cT, Record data with a run length of aT is AZ (A + B + C), record data with a run length of bT is BZ (A + B + C), and run length is a record of cT The data appearance probability is CZ (A + B + C).
  • the offset value is set to the overall (8) value.
  • the run length for the recorded data included in the read signal may be the shortest, and may be configured to be a value multiplied by the appearance probability of the recorded data not considering the run length.
  • the offset value is a value obtained by multiplying the partial ⁇ value by the appearance probability considering the run length of the recorded data having the shortest run length for the recorded data included in the read signal. 4. The information reproducing apparatus according to claim 3, wherein
  • the "appearance probability considering the run length” in this embodiment is a weighting according to the run length every time the recorded data of each run length appears once considering the length of the run length. This is the appearance probability calculated by assigning the appearance frequency assigned. For example, there are ⁇ recorded data with a run length of aT, B recorded data with a run length of bT, and C recorded data with a run length of cT in a certain range of read signals!
  • aT is a XA / (a XA + b XB + c XC)
  • the appearance probability of the recorded data with run length 3 ⁇ 4T is b XB / (a XA + b XB + c XC)
  • the appearance probability of the recorded data of the run-length force cT is c XC / (a XA + b XB + c XC).
  • the offset value is obtained when the reference data of the read signal and the record data having the shortest run length among the read signals are read. It is set based on the positional relationship with the amplitude center of the read signal.
  • the optimum offset value is set according to the actual positional relationship between the reference level and the run length and the amplitude center of the read signal obtained when reading the most familiar recording data. Can do.
  • an offset value is added based on the positional relationship between the reference level and the amplitude center of the read signal obtained when the recorded data having the shortest run length is read.
  • the value is the reference level of the read signal
  • the read signal may be configured to have a value indicating a deviation from the amplitude center of the read signal obtained when the record data having the shortest run length is read.
  • the waveform equalizing means limits the amplitude level of the read signal in which the waveform distortion is corrected to a predetermined amplitude limit value.
  • Amplitude limiting means for acquiring an amplitude limiting signal
  • filtering means for acquiring an equalization correction signal by performing high-frequency emphasis filtering processing on the amplitude limiting signal.
  • the amplitude level of the read signal whose waveform distortion is corrected (hereinafter referred to as “distortion correction signal” as appropriate) is limited by the operation of the amplitude limiting unit. Specifically, the signal level of the distortion correction signal whose amplitude level is larger than the upper limit or lower limit of the amplitude limit value is limited to the upper limit or lower limit of the amplitude limit value. On the other hand, the amplitude level of the signal component whose amplitude level is below the upper limit of the amplitude limit value and above the lower limit of the distortion correction signal is not limited.
  • the distortion correction signal subjected to the amplitude level limitation in this way is output to the filtering means as an amplitude limitation signal.
  • the filtering means performs high frequency emphasis filtering processing on the amplitude limited signal. As a result, an equalization correction signal is acquired. Thereafter, for example, binary correction processing or decoding processing is performed on the equalization correction signal. As a result, it is possible to perform reproduction processing of recording data (for example, video data, audio data, etc.) recorded on the recording medium.
  • recording data for example, video data, audio data, etc.
  • the waveform distortion generated in the read signal is corrected before the waveform equalization processing by the waveform equalization means is performed, even if the waveform distortion occurs in the read signal read from the recording medium,
  • the waveform distortion has little or no adverse effect on amplitude limiting and high frequency emphasis filtering. More specifically, for example, the waveform distortion is higher than the amplitude limit value.
  • the disadvantage that the waveform distortion is further emphasized due to the value below the limit or the value above the lower limit can be suitably prevented.
  • the high frequency emphasis of the read signal can be suitably performed by the limit equalizer (that is, the amplitude limiting unit and the filtering unit).
  • the offset adding means includes (0 error correction of the read signal (more specifically, error correction of recording data obtained from the read signal). ) Is impossible, GO has an error rate of the read signal equal to or higher than a predetermined threshold value, or (m) is used to read user data included in the record data and is included in the record data. When the read signal corresponding to the data cannot be read, the offset value is added.
  • an offset value is added while appropriately monitoring whether error correction is impossible, whether the error rate is equal to or greater than a predetermined threshold, or whether it is possible to read synchronous data (particularly, By appropriately changing the offset value), the optimum offset value can be realized relatively easily.
  • the correction unit may be configured such that the error rate of the read signal is equal to or greater than a predetermined threshold value when the correction unit is (0 error correction of the read signal is impossible). Or (m) the read signal used to read user data included in the record data and corresponding to the synchronization data included in the record data cannot be read! / The information reproducing apparatus according to claim 1, wherein distortion is corrected.
  • the long mark is a mark whose signal level has a maximum amplitude.
  • an offset adding step for adding a variably settable offset value to a read signal read from a recording medium force, and the offset value is added by the offset means.
  • a correction process for correcting waveform distortion generated in a read signal corresponding to at least a long mark, and a waveform equalization process for performing waveform equalization processing on the read signal in which the waveform distortion is corrected. Prepare.
  • the embodiment of the information reproduction method of the present invention can also adopt various aspects.
  • an offset adding unit that adds a variably settable offset value to a read signal read by a recording medium force, and the offset value is added by the offset adding unit.
  • Correction means for correcting waveform distortion occurring in a read signal corresponding to at least a long mark of the read signals, and waveform equalization means for performing waveform equalization processing on the read signal in which the waveform distortion is corrected Information reproducing apparatus (that is, the embodiment of the information reproducing apparatus of the present invention described above (including various aspects thereof)), a reproduction control com- bination for controlling a computer.
  • a computer program that causes the computer to function as at least part of the offset adding means, the correcting means, and the waveform equalizing means.
  • the computer program is read from a recording medium such as a ROM, a CD-ROM, a DVD-ROM, and a hard disk that stores the computer program and then executed by the computer. If the computer program is executed after being downloaded to the computer via the communication means, the above-described embodiment of the information reproducing apparatus of the present invention can be realized relatively easily.
  • the embodiment of the computer program of the present invention can also adopt various aspects.
  • An embodiment according to the computer program product of the present invention includes: an offset adding unit that adds a variably settable offset value to a read signal read by a recording medium force; and the offset adding unit by the offset adding unit.
  • Correction means for correcting waveform distortion generated in a read signal corresponding to at least a long mark among the read signals to which the waveform is added, a waveform for performing waveform equalization processing on the read signal in which the waveform distortion is corrected, and the like A program instruction executable by a computer included in the information reproducing apparatus (that is, the embodiment of the information reproducing apparatus of the present invention described above (including various aspects thereof)). And the computer is caused to function as at least a part of the offset means, the correction means, and the waveform equalization means.
  • the embodiment of the computer program product of the present invention if the computer program product is read into a computer from a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk storing the computer program product.
  • a recording medium such as a ROM, CD-ROM, DVD-ROM, or hard disk storing the computer program product.
  • the computer program product which is a transmission wave
  • the computer program product may also be configured with a computer-readable code (or computer-readable instruction) that functions as an embodiment of the information reproducing apparatus of the present invention described above.
  • the embodiment of the computer program product of the present invention can also adopt various aspects.
  • the offset adding means, the correcting means, and the waveform equalizing means are provided.
  • it includes an offset adding step, a correcting step, and a waveform equalizing step.
  • the computer is caused to function as the embodiment of the information reproducing apparatus of the present invention. Therefore, data can be suitably reproduced even when waveform distortion occurs.
  • FIG. 1 is a block diagram conceptually showing the basic structure of the information reproducing apparatus in the example.
  • the information reproducing apparatus 1 includes a spindle motor 10, a pick-up (PU) 11, a HPF (High Pass Filter) 12, and an AZD variable ⁇ 13, a pre-equalizer (p re equalizer) 14, a limit equalizer (limit equalizer) 15, a binarizing circuit 1 6, a decoding circuit 17, a waveform distortion correction circuit 18, an adder 19 1, the offset generator Circuit 19-2.
  • the pickup 11 photoelectrically converts the reflected light when the recording surface of the optical disc 100 rotated by the spindle motor 10 is irradiated with the laser beam LB, and generates a read signal R.
  • the HPF 12 removes the low frequency component of the read signal R output from the pickup, and
  • the resulting read signal R is output to the AZD converter 13.
  • the A / D converter 13 samples a read signal in accordance with a sampling clock output from a PLL (Phased Lock Loop) (not shown) and the like, and a read sample value system obtained as a result Output column RS to pre-equalizer 14.
  • PLL Phase Lock Loop
  • the pre-equalizer 14 removes intersymbol interference based on the transmission characteristics of the information reading system composed of the pickup 11 and the optical disc 100, and outputs the read sample value series RS obtained as a result to the adder 191.
  • the adder 19-1 constitutes a specific example of the “offset adding means” in the present invention, and an offset generator is applied to the read sample value series RS output from the pre-equalizer 14.
  • the offset value OFS generated in the generation circuit is added.
  • the read sample value series RS to which the offset value OFS is added is output to the waveform distortion correction circuit 18.
  • the offset generation circuit 19-2 constitutes a specific example of “offset adding means” in the present invention, and generates an offset value OFS.
  • the offset value OFS will be described in detail later (see FIG. 13 and subsequent figures).
  • the waveform distortion correction circuit 18 constitutes a specific example of the “correction means” in the present invention, and the waveform distortion generated in the read sample value series RS (that is, generated in the read signal R 1).
  • the limit equalizer 15 performs high-frequency emphasis processing on the distortion-corrected read sample value sequence RS without increasing intersymbol interference, and obtains a high-frequency emphasized read sample obtained as a result.
  • the binary key circuit 16 performs a binarization process on the high-frequency emphasized read sample value series RS,
  • the binary signal obtained as a result is output to the decoding circuit 17.
  • the decoding circuit 17 performs a decoding process or the like on the binarized signal and outputs a reproduction signal obtained as a result to an external reproduction device such as a display or a speaker. As a result, data (for example, video data, audio data, etc.) recorded on the optical disc 100 is reproduced.
  • FIG. 2 is a block diagram conceptually showing the structure of the limit equalizer 15. As shown in FIG. 2, the limit equalizer 15 includes an amplitude limit value setting block 151, an amplitude limit block 152, And a high frequency emphasis block 153.
  • the amplitude limit value setting block 151 is based on the distortion correction read sample value series RS.
  • the upper and lower limits of the amplitude limit value used in the amplitude limit block 152 are set.
  • the amplitude limit block 152 is based on the upper and lower limits of the amplitude limit value set in the amplitude limit value setting block 151, and the amplitude limit of the distortion correction read sample value series RS.
  • the sample value series RS that has been subjected to amplitude limiting processing is a high-frequency emphasis block.
  • the high frequency emphasis block 153 performs filtering processing for emphasizing the high frequency on the sample value series RS on which the amplitude limiting process has been performed. as a result,
  • a high-frequency emphasized read sample value series RS is obtained.
  • the reference sample timing detection circuit 1511 detects the reference sample timing based on the distortion correction read sample value series RS.
  • the detected reference sample timing is output to the sample hold circuit 1514 via the delay device 1512 that gives a delay of one clock and the OR circuit 1513.
  • the read sample value series RS output from the interpolation filter 1522 is sampled and held in accordance with the reference sample timing output via the delay circuit 1512 and the OR circuit 1513.
  • interpolation filter 1522 interpolates the distortion correction read sample value series RS.
  • the read signal R read from the optical disc 100 is converted into an AZD conversion.
  • An interpolated sample value series obtained when sampling is performed at an intermediate timing of the clock timing by the sampling clock used in the converter 14 is generated.
  • the generated interpolated sample value series is included in the distortion corrected read sample value series RS to read the read sample.
  • sample value series RS As a sample value series RS, it is output to the limiter 1523 and the sample hold circuit 1514.
  • the read sample value series RS that has been sampled and held is referred to by a subtractor 1515.
  • the subtraction result is output to the averaging circuit 1516.
  • the average value of the absolute values of the sample values is calculated.
  • the average value of the calculated sample values is set as the upper and lower limits of the amplitude limit value. Specifically, The value obtained by adding the average value to the reference level is set as the upper limit of the amplitude limit value, and the subtracted value is set as the lower limit of the amplitude limit value.
  • the reference level When the zero level is used as the reference level, a value obtained by adding a positive sign to the average value of the calculated sample values is set as the upper limit of the amplitude limit value, and the average value of the calculated sample values is set. A value with a negative sign is set as the lower limit of the amplitude limit value.
  • the reference level is used for the sake of simplicity.
  • Fig. 3 is a waveform conceptually showing the operation of setting the upper and lower limits of the amplitude limit value on the distortion correction read sample value series RS.
  • FIG. 1 A first figure.
  • FIG. 3 shows data with a relatively short run length in the read signal (specifically, when the optical disc 100 is a Blu-ray Disc, the run length is 2T, 3 ⁇ , and 4 ⁇ ).
  • the average value L of the absolute values of the interpolated sample values (that is, the sample values generated by the interpolation filter 1522) and the interpolated sample values located after the zero cross point (that is, after time) is Are set as absolute values of the upper limit and lower limit of the amplitude limit value.
  • the upper limit of the amplitude limit value is set to L
  • the lower limit of the amplitude limit value is set to L.
  • the limiter 1523 limits the amplitude of the sample value series RS based on the upper limit and the lower limit set in the amplitude limit value setting block 151.
  • the sample values included in the sample value series RS are smaller than the upper limit L and lower limit
  • the sample value is output as it is as the sample value series RS.
  • the upper limit L is output as the sample value series RS.
  • the sample value series RS is output as the sample value series RS.
  • the lower limit—L is output as the sample value series R S.
  • Short data for example, run length 3T data if the optical disc 100 is a DVD
  • the signal level is increased only for the sample value series RS corresponding to run length 2T data).
  • the sample value sequence RS input to the high-frequency emphasis block 153 receives the multiplication factor k via delay units 1532, 1533, and 1534 that add a one-clock delay as it is.
  • the coefficient multipliers 1535 and 1538 having the multiplication coefficient k and the coefficient multipliers 1536 and 1537 having the multiplication coefficient k are input.
  • the outputs of the coefficient multipliers 1535, 1536, 1537 and 1538 are added in an adder 1539.
  • the high-frequency read sample value RS which is the result of the addition, is added to the distortion correction read sample value series RS input to the adder 1531 via the delay unit 1530 that adds a delay of 3 clocks in the Karo arithmetic unit 1531. .
  • a high-frequency emphasized read sample value series RS is obtained.
  • Figure 4 shows the acquisition operation of the high-frequency emphasized read sample value series RS.
  • FIG. 4 is a waveform diagram conceptually showing on a distortion correction read sample value series RS.
  • the high-frequency read sample value RS output from the adder 1531 is the time point D (— 1 ⁇ 5), D (— 0 ⁇ 5) in the sample value series RS. , D (0.5) and D (l
  • the sample values Sip (—1) and Sip at the time points D (—1.5) and D (—0.5) corresponding to the run length 2T data. (0) are substantially identical to each other.
  • the sample values Sip (1) and Sip (2) at the time points D (0.5) and D (l. 5) corresponding to the run length 2T data are substantially the same.
  • the lower limit of the amplitude limit value—L By both The lower limit of the amplitude limit value—L. In other words, variations in sample values before and after the reference sample point are forcibly suppressed.
  • the read signal R (more specifically, the read signal)
  • Waveform value is corrected after adding the offset value OFS to the sample value series RS).
  • the limit equalizer 15 performs amplitude limiting and high-frequency emphasis.
  • offset value OFS and waveform distortion correction are specific examples of offset value OFS and waveform distortion correction.
  • FIG. 5 is a waveform diagram conceptually showing a first example of waveform distortion
  • FIG. 6 is a waveform diagram conceptually showing a second example of waveform distortion.
  • the waveform distortion is caused by the signal level to be originally taken and the actual read signal R.
  • the amount of distortion D and the amount of waveform distortion D ' which is the signal level from the zero level to the top of the waveform distortion.
  • the thick dotted line indicates the signal level that should be taken when waveform distortion occurs. Waveform distortion has occurred! /! In the case of /, of course, the waveform distortion amount D is zero.
  • waveform distortion shown in FIG. 5 (a) is caused by the signal levels at the front end and rear end of the read signal R.
  • FIGS. 5 (a) to 5 (c) the waveform distortion generated in the optical disc 100 in which the reflectance of the laser beam LB is reduced by forming the mark has been described.
  • waveform distortion occurs such that the signal level unintentionally increases below the zero level.
  • the reflectance of the laser beam LB increases by recording data, such as an optical disc such as a Blu-ray Disc using a dye film as a recording layer.
  • waveform distortions that occur in an optical disc (so-called Low to High disc) 100. In other words, at signal levels above the zero level, waveform distortion can occur where the signal level decreases unintentionally.
  • a mark having a relatively long run length (hereinafter referred to as “long mark” as appropriate).
  • the run length is 7T to 11T or 14T.
  • the optical disc 100 is a Blu-ray Disc, it is preferable to pay attention to waveform distortion generated in a read signal corresponding to run length 6T to 9 mm.
  • the mark corresponding to the sync data for example, if the optical disc 100 is a DVD, it is run-length 14T data, and the optical disc 100 is Blu-ray In the case of Disc, it is preferable to pay attention to waveform distortion that occurs in the read signal corresponding to run length 9T data).
  • FIG. 7 is a flowchart conceptually showing the operation flow of the adder 19 1, the offset-added circuit 19 2, and the waveform distortion correction circuit 18.
  • FIG. 8 shows the configuration of the waveform distortion correction circuit 18.
  • 9 is a waveform diagram conceptually showing the waveform distortion correction operation by the waveform distortion correction circuit 18 on the sample value series RS.
  • the read signal R (more
  • step S102 This determination may be performed based on, for example, an ⁇ value described later. For example, if the ⁇ value is approximately 0, it may be determined that the offset value OFS is not added, or if the ⁇ value is not approximately 0, it may be determined that the offset value OFS is added. Alternatively, this determination may be performed based on the same determination criterion as the determination in step S104 described later.
  • the symbol error rate is not equal to or higher than a predetermined threshold, error correction is not possible, and synchronous data is not readable, it may be determined that an offset value is not added, If the error rate is equal to or higher than the predetermined threshold, error correction is impossible, or synchronization data cannot be read, it may be determined that an offset value is added.
  • step S102 If it is determined in step S102 that the offset value OFS is not added (step S102: No), the process proceeds to step S104.
  • step S102 determines whether the offset value OFS is to be added (step S102: Yes)
  • the offset value OFS is generated by the operation of the offset generation circuit 19-2, and the adder After the offset value OFS generated by the operation of 19—1 is added to the read signal R (more specifically, the read sample value series RS)
  • step S103 the process proceeds to step S104.
  • the predetermined threshold is set based on whether or not a suitable reproduction operation is being performed. Specifically, it is preferable to set a symbol error rate value (for example, approximately 0.001 or more) at which a suitable reproduction operation is not performed as a predetermined threshold value.
  • step S104 if it is determined that the symbol error rate is not equal to or higher than the predetermined threshold, that error correction is not possible, and that synchronous data is not readable (step S104: No), Proceed to step S109.
  • step S104 if it is determined in step S104 that the symbol error rate is equal to or higher than a predetermined threshold value, error correction is impossible, or synchronization data cannot be read (step S). 104: Yes), and then the waveform distortion of the long mark is measured (step S105).
  • a waveform distortion rate (ie, D / AX 100) indicating the ratio of (or D ') is measured.
  • step S106 it is determined whether or not the waveform distortion is greater than or equal to a predetermined value. For example, it is determined whether or not the waveform distortion rate is approximately 30% or more.
  • step S106 If the result of determination in step S106 is that the waveform distortion is not greater than or equal to a predetermined value (for example, the waveform distortion rate is approximately 30% or less) (step S106: No), step S109 Proceed to
  • step S106 determines whether the waveform distortion is greater than or equal to a predetermined value (eg, the waveform distortion rate is approximately 30% or greater) (step S 106: Yes).
  • waveform distortion correction conditions such as a waveform distortion correction level and a correction range are set (step S107). The waveform distortion correction conditions will be described in detail later (see Fig. 9 etc.).
  • step S108 the waveform distortion of the long mark is corrected based on the waveform distortion correction condition set in step S107 (step S108).
  • step S109 it is determined whether or not the power to end the regenerating operation is determined. If the regenerating operation is not ended (step S109: No), the process returns to step S101, and the operations after step S101 are repeated again. It is.
  • the operations related to the correction of waveform distortion are mainly performed by the waveform distortion correction circuit 18.
  • the specific circuit configuration of the waveform distortion correction circuit is explained. Light up.
  • the waveform distortion correction circuit 18 includes a delay adjustment circuit 181, a distortion correction value detection circuit 182, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185. And.
  • the read sample value series RS output from the pre-equalizer 14 includes a delay adjustment circuit 181,
  • the distortion correction value detection circuit 182 holds the sample value S (k) when the time corresponding to the zero cross point force minT has elapsed, and outputs the sample value S (k) to the selector 185 as the distortion correction value amd.
  • minT is a read signal R (more detailed) corresponding to the record data having the shortest run length.
  • minT indicates a read signal R corresponding to recorded data having a run length of 3T.
  • optical disc 100 is a Blu-ray Disc
  • MinT indicates the read signal R corresponding to the recording data with a run length of 2T.
  • the delay adjustment circuit 181 sets a delay amount corresponding to the longest run length of the recording data, and outputs the read sample value series RS to the selector 185 at a desired timing.
  • the optical disc 100 is a Blu-ray Disc
  • a delay amount corresponding to 9T which is the longest run length
  • 14T which is the longest run length
  • the mark Z space length detection circuit 183 detects the mark Z space length by detecting, for example, the interval between zero cross points, the number of consecutive code bits, and the like. The detection result is output to the timing generation circuit 184.
  • the timing generation circuit 184 generates a timing signal SW based on the mark Z space length detected by the mark Z space length detection circuit 183, and outputs the generated timing signal SW to the selector 185.
  • the timing generation circuit 184 is connected to the (0 mark Z space length detection circuit 183).
  • the z-space length is the long mark that is subject to waveform distortion correction, and (ii) the first zero-crossing from time T1 when at least the time corresponding to the first zero-crossing force minT has elapsed.
  • the timing generation circuit 184 determines whether the mark Z space length detected by the 0 mark Z space length detection circuit 183 is a mark other than the long mark to be subjected to waveform distortion correction, or the GO first Zero cross point force is also a period other than the period from time T1 when the time corresponding to minT has passed at least after the time corresponding to the second zero cross point force minT located next to the first zero cross point from time T1
  • the selector 185 When the high-level timing signal SW is output from the timing generation circuit 184, the selector 185 outputs the distortion correction value amd output from the distortion correction value detection circuit 182 to the distortion correction read sample value. Output to limit equalizer 15 as series RS.
  • the selector 185 reads the read sample value series RS output from the delay adjustment circuit 181 when the low-level timing signal SW is output from the timing generation circuit 184.
  • the waveform distortion correction condition set in step S105 of FIG. 7 is substantially generated by the distortion correction value amd detected by the distortion correction value detection circuit 182 and the timing generation circuit 184. This corresponds to the timing signal SW.
  • the waveform distortion correction circuit 18 operates as shown in the waveform diagram of the sample value series RS.
  • Fig. 10 shows the waveform of read signal R before and after correction of waveform distortion.
  • FIG. 11 is a waveform diagram conceptually showing the high-frequency emphasized read sample value series RS when the waveform distortion is not corrected and when the waveform distortion is corrected.
  • Figure 12 is a waveform diagram conceptually showing the operation on the sample value series RS.
  • Shape distortion can be mistaken for a normal mark (for example, a mark with a relatively short run length). Therefore, the binary signal waveform after the binary value of the read signal R is not distorted.
  • the resulting false signal will be included. As a result, consistency with the original recording data is not achieved, and a binary error occurs.
  • the high-frequency emphasized read sample value series RS output from the high-frequency emphasized block 153 is the sum of the high-frequency emphasized read sample value series RS and S (O).
  • RS is (1 k) X Sip (— l) + k X Sip (0) + k X Sip (l) + (— k) X Sip (2)
  • the value of the high-frequency emphasized read sample value series RS is increased by the value obtained by multiplying the sum of (0) and Sip (1) by K.
  • the waveform distortion is similarly applied to the optical disc 100 in which the reflectance of the laser beam LB is reduced by forming the mark shown in FIG. 6 (a) force and FIG. 6 (c).
  • the effect of correcting the waveform distortion can be understood from the change in the symbol error rate with respect to the waveform distortion rate.
  • the SER value when the waveform distortion is corrected is improved compared to the SER value when the waveform distortion is not corrected.
  • the sample values before and after the reference sample point in the read signal that causes intersymbol interference when the high frequency band is emphasized.
  • the dispersion of is forcibly suppressed. For this reason, even if sufficient high frequency emphasis is performed in the high frequency emphasis block 153, intersymbol interference does not occur.
  • the limit equalizer 15 is suitable for the disadvantage of emphasizing waveform distortion that should not occur originally. Can be prevented. Furthermore, due to the emphasis on waveform distortion, for example, in an information reproducing apparatus that employs PRM L, for example, it is possible to suitably prevent, for example, a problem that a mark having a relatively long run length is misidentified as another mark. be able to. As a result, the binary error due to waveform distortion hardly occurs, and a suitable reproduction operation can be performed.
  • read signal R (more specifically, read sample
  • FIG. 13 is a waveform diagram conceptually showing the asymmetry value
  • FIG. 14 is a symbol error with respect to the offset value OFS normalized by the amplitude of the read signal R.
  • FIG. 15 is a graph showing a change of one rate, and FIG. 15 shows the read signal R with respect to the asymmetry value.
  • Fig. 16 is a graph showing the change in offset value normalized by amplitude.
  • Fig. 16 is a table showing the appearance probability of recorded data for each run length.
  • Fig. 17 shows min T corresponding to the change in asymmetry.
  • FIG. 18 is a waveform diagram conceptually showing the waveform of the read signal R to be read.
  • the asymmetry value is the value of the read signal R corresponding to the record data with the longest run length.
  • ImaxCnt is the amplitude center of the read signal R corresponding to the record data with the longest run length, and the run is based on ImaxCnt.
  • the run length based on ImaxCnt is the longest
  • the bottom amplitude of the read signal R corresponding to the recorded data is ImaxL
  • the run length based on ImaxCnt is the longest.
  • IminH the magnitude of the top amplitude of the read signal R corresponding to short recorded data
  • the offset value OFS should not be added! / Compared with the symbol error rate, the offset value OFS normalized by the amplitude of the read signal R is 0%.
  • the offset value OFS normalized by the amplitude of the read signal R is approximately 2
  • the symbol error rate is the smallest.
  • the force is about 7%, the symbol error rate when the offset value OFS is added is improved.
  • the offset value OFS normalized by the amplitude of the read signal R is approximately 3
  • the symbol error rate is the smallest.
  • the offset value OFS normalized by the amplitude of the read signal R is approximately 4
  • the symbol error rate is the smallest.
  • FIG. 15 shows a graph plotting the asymmetry value and the offset value OFS when the symbol error rate shown in FIG. 14 (a) is the smallest as shown in FIG. 14 (a).
  • each run-length recorded data in one ECC block appears in consideration of the run length. Probability is shown. As shown in Fig. 16 (a), in 1ECC block, the appearance probability of recorded data with a run length of 2T is about 38%, and the appearance probability of recorded data with a run length of 3T is about 25%. Yes, the probability of appearance of recorded data with a run length of 4T is approximately 16%, the probability of appearance of recorded data with a run length of 5T is approximately 10%, and the probability of appearance of recorded data with a run length of 6T is approximately 6%. The appearance probability of recorded data with a run length of 7T is about 3%, the appearance probability of recorded data with a run length of 8T is about 1.6%, and the appearance probability of recorded data with a run length of 9T. Is about 0.35%.
  • the appearance probability (T appearance probability in the figure) shown here is an appearance probability that does not consider run length.
  • the 7T recorded data, the recorded data with a run length of 8T, and the recorded data with a run length of 9T have the same weight when calculating the appearance probability.
  • one piece of recorded data of a certain run length appears, it indicates the probability of appearance when the number of occurrences is counted as one.
  • OFS can be approximated by a value obtained by multiplying the appearance probability of recorded data with the shortest run length without considering the run length by an asymmetry value.
  • the offset normalized by the amplitude of the read signal R is used.
  • the set value OFS can be approximated by a 0.3809 X asymmetry value.
  • FIG. 16 (b) does not consider the run length of the recorded data of each run length in one ECC block when random data is recorded on the DVD, which is a specific example of the optical disc 100.
  • the appearance probability is shown. As shown in Fig. 16 (b), in 1 ECC block, the appearance probability of recorded data with a run length of 3T is about 32%, and the appearance probability of recorded data with a run length of 4T is about 24%.
  • the appearance probability of recorded data with a run length of 5T is about 17%
  • the appearance probability of recorded data with a run length of 6T is about 11.5%
  • the appearance probability of recorded data with a run length of 7T is about 7%.
  • the appearance probability of recorded data with a run length of 8T is about 4%
  • the appearance probability of recorded data with a run length of 9T is about 2%
  • the appearance probability of recorded data with a run length of 10T is
  • the appearance probability of recorded data with a run length of 11T is about 0.24%
  • the appearance probability of recorded data with a run length of 14T is about 0.3%. Again, this is normalized by the amplitude of the read signal R.
  • the offset value OFS can be approximated by a value obtained by multiplying the appearance probability of recorded data with the shortest run length without considering the run length by an asymmetry value.
  • the DVD which is a specific example of the optical disc 100, is normalized by the amplitude of the read signal R.
  • the offset value OFS can be approximated by a 0.3184 X symmetry value.
  • the offset value OFS normalized by the amplitude of the read signal R is recorded data with the shortest run length.
  • the offset generation circuit 19-2 generates the offset value OFS based on the asymmetry value.
  • the improvement in reproduction characteristics (for example, symbol error rate) by adding the offset value OFS can be explained as follows.
  • the signal level of the minT space is the minT mark. It becomes larger than the signal level.
  • the signal waveform of minT gradually decreases (ie, the negative side) from the center level of all T (ie, the reference level or zero level). Shift to. If the asymmetry is increased to some extent, the signal level force at the apex of minT space may be below the center level of all T.
  • minT may be misrecognized as waveform distortion.
  • FIG. 18 by correcting minT as waveform distortion, a signal corresponding to minT does not appear in the binarized signal, leading to a deterioration in symbol error rate.
  • the signal level force minT mark of minT space It becomes smaller than the signal level.
  • the minT signal waveform gradually shifts upward (ie, positive) with respect to all T center levels (ie, reference level or zero level). If the symmetry increases to some extent, the signal level force at the apex of the minT space can exceed the center level of all dings. In this case, minT may be misrecognized as waveform distortion. As a result, minT is corrected as waveform distortion, so that a signal equivalent to minT does not appear in the binary signal, leading to a bad symbol error rate.
  • the signal waveform of minT can be shifted by adding the offset value OFS.
  • the above-described inconveniences below or above the center level of all T signal levelers at the apex of the minT space can be suitably prevented.
  • FIG. 19 is a waveform diagram conceptually showing the entire j8 value
  • FIG. 20 is the whole normalized by the amplitude of the read signal R) and normalized by the amplitude of the read signal R with respect to the eight values. It is a graph which shows the change of the converted offset value.
  • the total ⁇ value is recorded data of all types of run length (for example, if the optical disc 100 is a DVD, the run data is 3 to 11T and 14T, respectively). If the optical disc 100 is a Blu-ray Disc, the average position of the amplitude center of each read signal R corresponding to the run length 2T to 9T recording data) is shown. Specifically, the optical disc 100 is a Blu-ray Disc, the average position of the amplitude center of each read signal R corresponding to the run length 2T to 9T recording data) is shown. Specifically, if the optical disc 100 is a DVD, the run data is 3 to 11T and 14T, respectively). If the optical disc 100 is a Blu-ray Disc, the average position of the amplitude center of each read signal R corresponding to the run length 2T to 9T recording data) is shown. Specifically, the optical disc 100 is a DVD, the run data is 3 to 11T and 14T, respectively. If the optical disc 100 is a Blu-ray Disc, the average position of the
  • the overall ⁇ value (Al + ⁇ 2) / (A1 ⁇ ⁇ 2).
  • FIG. 14 (a) force is also shown in FIG. 20 which is a graph force in which the overall j8 value and the offset value OFS are plotted when the symbol error rate shown in FIG. 14 (c) is the smallest.
  • the whole X j8 value is 1. Shown by 2768.
  • the offset value OFS normalized by the amplitude can be approximated by a value obtained by multiplying the appearance probability of recorded data with the shortest run length by the overall j8 value.
  • the offset normalized by the amplitude of the read signal R is used.
  • the set value OFS can be approximated by 0.38 x overall j8 value.
  • the amplitude of the read signal R is a specific example of the optical disc 100.
  • the offset value OFS normalized by can be approximated by 0.38 X whole j8 value.
  • the offset value OFS normalized by the amplitude of the read signal R is recorded data with the shortest run length.
  • the appearance probability X without considering the run length can be approximated by the overall ⁇ value.
  • the offset generation circuit 19-2 generates the offset value OFS based on the entire
  • the same effect as when the offset value OFS is generated based on the asymmetry value can be suitably obtained. [0161] (3-3) part
  • FIG. 21 is a waveform diagram conceptually showing the partial j8 value
  • FIG. 22 is a portion normalized by the amplitude of the read signal R).
  • 8 values are the amplitude center of the read signal corresponding to the record data with the shortest run length, and the read signal corresponding to the record data with the second shortest run length.
  • the deviation from the amplitude center of the signal is shown. Specifically, the recorded data with the shortest run length
  • the amplitude center of the corresponding read signal is IminCnt, and the top amplitude of the read signal R corresponding to the second shortest recorded data with IminCnt as the reference is Imin + 1H
  • IminCnt has the shortest run length ⁇ ⁇
  • FIG. 14 (a) force is also shown in FIG. 22 which is a graph force in which the partial j8 value and the offset value OFS are plotted when the symbol error rate shown in FIG. 14 (c) is the smallest.
  • X part j8 value is shown as 0.1721.
  • each run-length recorded data in one ECC block appears in consideration of the run length. Probability is shown. As shown in Fig. 16 (a), in 1 ECC block, the appearance probability of recorded data with a run length of 2T is about 22%, and the appearance probability of recorded data with a run length of 3T is about 22%. Yes, the probability of appearance of recorded data with a run length of 4T is approximately 19%, the probability of appearance of recorded data with a run length of 5T is approximately 14%, and the probability of appearance of recorded data with a run length of 6T is approximately 10%. The run length is 7T The appearance probability of recorded data is about 6%, the appearance probability of recording data with a run length of 8T is about 4%, and the appearance probability of recording data with a run length of 9cm is about 0.9%.
  • the appearance probability (sample appearance probability in the figure) shown here is an appearance probability in consideration of run length.
  • the weight for calculating the appearance probability of each of the record data of 7 cm, the record data of 8 cm run length, and the record data of 9 cm run length is proportional to the run length.
  • the recorded data with run length ⁇ appears that is, if one recorded data containing ⁇ sample values appears by sampling
  • the number of occurrences is counted as ⁇ times. The probability of occurrence is shown.
  • the FS can be approximated by a value obtained by multiplying the appearance probability of the recorded data with the shortest run length in consideration of the run length by the partial j8 value.
  • Fig. 16 (b) when the random data is recorded on the DVD which is a specific example of the optical disc 100, the run length of the recorded data of each run length in one ECC block is considered.
  • the appearance probability is shown.
  • the appearance probability of recorded data with a run length of 3T is about 20%
  • the appearance probability of recorded data with a run length of 4T is about 20%.
  • the appearance probability of recorded data with a run length of 5T is about 18%
  • the appearance probability of recorded data with a run length of 6T is about 14%
  • the appearance probability of recorded data with a run length of 7T is about 10%.
  • the appearance probability of recorded data with a run length of 8T is about 7%
  • the appearance probability of recorded data with a run length of 9T is about 4.5%
  • the appearance probability of recorded data with a run length of 10T is about 3%
  • the run length is
  • the appearance probability of 1 IT recording data is about 0.5%
  • the appearance probability of recording data with a run length of 14T is about 0.9%. In this case as well, it is normalized by the amplitude of the read signal R.
  • the offset value OFS can be approximated by multiplying the appearance probability of the recorded data with the shortest run length by considering the run length and the partial j8 value.
  • an offset that is normally set by the amplitude of the read signal R is used.
  • the net value OFS can be approximated by 0.22026 X part
  • the offset value OFS normalized by the amplitude of the read signal R is recorded data with the shortest run length.
  • the appearance probability considering the run length X part can be approximated by ⁇ value.
  • the offset generation circuit 19-2 generates the offset value OFS based on the partial j8 value.
  • the offset value OFS is generated based on the partial ⁇ value, it is possible to preferably enjoy the same effect as when the offset value OFS is generated based on the asymmetry value.
  • FIG. 23 is a waveform diagram conceptually showing the ⁇ value.
  • the ⁇ value is recorded data of all types of run length (for example, if the optical disc 100 is a DVD, it is recorded data of run lengths 3 to 11T and 14T, If 100 is a Blu-ray Disc, the amplitude center (that is, the reference level) of each read signal R corresponding to run length 2T to 9T recording data)
  • the deviation rate of the amplitude center of the read signal R corresponding to the recording data with the shortest run length with respect to the zero level in this embodiment is shown. Specifically, all types of run
  • the center of the amplitude of the read signal R corresponding to the recorded data (that is,
  • the run length based on the amplitude center (that is, all T center levels) of the read signal R corresponding to the recorded data of all types of run length is the largest.
  • the magnitude of the bottom amplitude of the read signal R corresponding to long recorded data is set to IminL.
  • the offset generation circuit 19-2 outputs the ⁇ value as the offset value OFS to the adder 19-1. That is, the offset generation circuit 19-2 generates the ⁇ value itself. As described above, even when the offset value OFS is generated based on the ⁇ value, the same effect as when the offset value OFS is generated based on the asymmetry value can be suitably enjoyed.
  • FIG. 24 is a flowchart conceptually showing another operation flow of the adder 19-1, the offset-added circuit 19-2, and the waveform distortion correction circuit 18.
  • step S101 the reproduction operation of the data recorded on the optical disc 100 is performed (step S101).
  • the offset value OFS is applied to the read signal R (more specifically, the read sample value series RS) by the operation of the offset generation circuit 19-2.
  • step S102 If it is determined in step S102 that the offset value OFS is not added (step S102: No), the process proceeds to step S104.
  • step S102 determines whether the offset value OFS is to be added (step S102: Yes)
  • the offset value OFS is generated by the operation of the offset generation circuit 19-2, and the adder After the offset value OFS generated by the operation of 19—1 is added to the read signal R (more specifically, the read sample value series RS)
  • step S103 the process proceeds to step S104.
  • step S104 it is sequentially determined whether or not the power of the symbol error rate is greater than or equal to a predetermined threshold, whether or not error correction is possible, or power of which the synchronous data cannot be read (step S104). ).
  • step S104 if it is determined that the symbol error rate is not greater than or equal to the predetermined threshold, that error correction is not possible, and that the synchronous data cannot be read (step S104: No), Proceed to step S109.
  • step S104 if it is determined that the symbol error rate is equal to or higher than a predetermined threshold value, error correction is impossible, or synchronization data cannot be read (step S 104: Yes), and then the waveform distortion of the long mark is measured (step S105). Thereafter, it is determined whether or not the waveform distortion is equal to or greater than a predetermined value (step S106).
  • step S106 If it is determined in step S106 that the waveform distortion is not greater than or equal to the predetermined value (eg, the waveform distortion rate is approximately 30% or less) (step S 106: No), step S 109 Proceed to
  • step S106 determines whether the waveform distortion is greater than or equal to a predetermined value (eg, the waveform distortion rate is approximately 30% or greater) (step S 106: Yes).
  • waveform distortion correction conditions #x (where X is an integer equal to or greater than 1 with 1 as an initial value) such as a waveform distortion correction level and a correction range are set (step S201).
  • the waveform distortion of the long mark is corrected based on the waveform distortion correction condition #X set in step S201 (step S108).
  • step S 202 it is determined whether or not the force has achieved the target condition.
  • the target condition for example, the determination condition in step S102 (that is, the symbol error rate is equal to or higher than a predetermined threshold or error correction is impossible) may be used!
  • step S202 If it is determined in step S202 that the target condition has been realized,
  • Step S202 Yes
  • step S202 if it is determined that the target condition is not realized (step S202: No), X is incremented by 1 (step S203), and then step S201 is performed again. Subsequent operations are repeated. That is, until the target condition is realized, the waveform distortion is corrected while appropriately changing the waveform distortion correction condition.
  • FIG. 25 is a flowchart conceptually showing another flow of operations of the adder 19-1, the offset-added circuit 19-2, and the waveform distortion correction circuit 18.
  • step S101 a reproduction operation of data recorded on the optical disc 100 is performed (step S101).
  • the variable n used when adding the offset value OFS is set to the initial value 0 (step S401).
  • the offset generation circuit 19-2 operates to read the signal R (more specifically, the read sample value series RS).
  • step S102 If it is determined in step S102 that the offset value OFS is not added (step S102: No), the process proceeds to step S104.
  • step S102 determines whether the offset value OFS is to be added (step S102: Yes). If it is determined in step S102 that the offset value OFS is to be added (step S102: Yes), variable n is incremented by 1 (step S402).
  • the offset generator circuit 19 2 operates to turn off the output normalized by the amplitude of the read signal R.
  • the offset value OFS is generated so as to be equal to the set value OFS value%, and the generated offset value OFS is read by the operation of the adder 19-1.
  • step S104 it is sequentially determined whether or not the power of the symbol error rate is greater than or equal to a predetermined threshold, whether or not error correction is impossible, or the power of whether or not the synchronization data cannot be read (step S104). ).
  • step S104 if it is determined that the symbol error rate is not greater than or equal to the predetermined threshold, that error correction is not possible, and that the synchronous data cannot be read (step S104: No), Proceed to step S109.
  • step S104 if it is determined that the symbol error rate is equal to or higher than a predetermined threshold, error correction is impossible, or synchronization data cannot be read (step S). 104: Yes), and then the waveform distortion of the long mark is measured (step S105). Thereafter, it is determined whether or not the waveform distortion is equal to or greater than a predetermined value (step S106).
  • step S106 the waveform distortion does not exceed a predetermined value (for example, the waveform If it is determined that the distortion rate is approximately 30% or less (step S106: No), then it is determined whether the force is the number of retries, which is the number of times the offset value OFS is added, is greater than or equal to a predetermined value. (Step S404).
  • step S404 if it is determined that the number of retries is not greater than or equal to the predetermined number (step S404: No), the process returns to step S102, and the operations after step S102 are repeated.
  • step S404 determines whether the number of retries is greater than or equal to a predetermined number. If the result of determination in step S404 is that the number of retries is greater than or equal to a predetermined number (step S404: Yes), the process proceeds to step S109.
  • step S106 determines whether the waveform distortion is greater than or equal to a predetermined value (eg, the waveform distortion rate is approximately 30% or greater) (step S 106: Yes).
  • waveform distortion correction conditions such as a waveform distortion correction level and a correction range are set (step S107). Thereafter, the waveform distortion of the long mark is corrected based on the waveform distortion correction condition set in step S107 (step S108).
  • step S109 it is determined whether or not the power to end the regenerating operation is determined. If the regenerating operation is not ended (step S109: No), the process returns to step S101 and the operations after step S101 are repeated again. It is.
  • FIG. 26 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18a included in the information reproducing device la according to the first modification on the sample value series RS.
  • FIG. 27 is a block diagram conceptually showing the structure of a waveform distortion correction circuit 18a provided in the information reproducing apparatus la according to the first modification.
  • the run length is set as the distortion correction value amd.
  • the center sample of the (min + 3) T mark that is, for the waveform distortion shown in Figs. 5 (a) to 5 (c)
  • the minimum amplitude value of the (min + 3) T mark is shown in Fig. 6.
  • the average value of (min + 3) T mark maximum amplitude) is used for the waveform distortion shown in (a) to Fig. 6 (c).
  • (min + k) T is a read signal R (more specifically, the read signal R) corresponding to the record data whose run length is k + 1 (where k is an integer of 1 or more).
  • Read signal R corresponding to the recorded data (more specifically, corresponding to the read signal R
  • the read sample value series RS is shown.
  • the optical disc 100 is a DVD
  • (min + 3) T indicates a read signal R corresponding to recording data with a run length of 5T.
  • the waveform distortion correction circuit 18a includes a delay adjustment circuit 181, a distortion correction value detection circuit 182a, a mark Z space length detection circuit 183, and a timing generation circuit 184. , And selector 185.
  • the distortion correction value detection circuit 182a receives the recording data whose run length is (min + 3) T while monitoring the mark Z space length output from the mark Z space length detection circuit 183. If this occurs, the center sample value is held, averaged, and output to the selector 185 as a distortion correction value amd.
  • the waveform distortion is corrected, so that the signal level after correction increases from the original signal level (that is, the signal level before correction). For this reason, the signal level can be brought close to the maximum amplitude of the read signal R by correcting the waveform distortion.
  • the center of the recording data whose run length is (min + 3) T is used as the distortion correction value amd.
  • the average value of the center sample of recording data having other run lengths may be used. In this case, as recorded data having other run lengths
  • the recorded data can realize the maximum amplitude.
  • FIG. 28 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18b included in the information reproducing device lb according to the second modification on the sample value series RS.
  • FIG. 29 is a block diagram conceptually showing the structure of the waveform distortion correction circuit 18b provided in the information reproducing apparatus lb according to the second modification.
  • the maximum or minimum value of the digital code for indicating the read sample value series RS (specifically, in FIG. 5 (a )
  • the waveform distortion correction circuit 18b includes a delay adjustment circuit 181, a distortion correction value detection circuit 182b, a mark Z space length detection circuit 183, and a timing generation circuit 184. , And selector 185.
  • the distortion correction value detection circuit 182a outputs the maximum value or the minimum value of the digital code to the selector 185 as the distortion correction value amd.
  • the maximum value or the minimum value of the digital code may be used as the distortion correction value amd.
  • the load of 18b (that is, the load of the information reproducing device lb) can be relatively reduced.
  • the load of the waveform distortion correction circuit 18b (that is, the information reproducing device lb) is not limited to the maximum value or minimum value of the digital code, even if a predetermined fixed value is used as the distortion correction value a md.
  • the above-mentioned various effects can be suitably enjoyed while relatively reducing
  • FIG. 30 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18c included in the information reproducing apparatus lc according to the third modification on the sample value series RS.
  • FIG. 31 is a block diagram conceptually showing the structure of a waveform distortion correction circuit 18c provided in the information reproducing apparatus lc according to the third modification.
  • the distortion correction value amd has an upper limit L or a lower limit L of the amplitude limit value in the limit equalizer 15 (specifically, FIG. 5 (a) To the waveform distortion shown in Fig. 5 (c) is the lower limit L of the amplitude limit value, and for the waveform distortion shown in Fig. 6 (a) to Fig. 6 (c), the upper limit of the amplitude limit value. L) is used.
  • the waveform distortion correction circuit 18c includes a delay adjustment circuit 181, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185. .
  • the selector 185 sets the upper limit L or lower limit L of the amplitude limit value of the limit equalizer 15 to the distortion correction sample value series RS. Output as.
  • the signal level of the waveform distortion is corrected to the upper limit L or lower limit—L of the limit limit value of the limit equalizer 15, so that the limit equalizer 15 can be sure to avoid the inconvenience of emphasizing waveform distortion that should not occur. Can be prevented.
  • the waveform distortion is emphasized, for example, in an information reproducing apparatus employing PRML, for example, it is possible to suitably prevent, for example, a problem that a mark having a relatively long run length is misidentified as another mark. Can do. As a result, binary error occurs due to waveform distortion. Thus, a suitable reproduction operation can be performed.
  • a value equal to or higher than the upper limit L of the amplitude limit value in the limit equalizer 15 or a value equal to or lower than the lower limit-L may be used. Even if comprised in this way, the various effects mentioned above can be enjoyed suitably.
  • FIG. 32 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18d included in the information reproducing apparatus Id according to the fourth modification on the sample value series RS.
  • FIG. 33 is a block diagram conceptually showing the structure of a waveform distortion correction circuit 18d provided in the information reproducing apparatus Id according to the fourth modification.
  • the distortion correction value amd has an upper limit L or a lower limit L of the amplitude limit value in the limit equalizer 15 (specifically, FIG. 5 (a) To the waveform distortion shown in Fig. 5 (c) is the lower limit L of the amplitude limit value, and for the waveform distortion shown in Fig. 6 (a) to Fig. 6 (c), the upper limit of the amplitude limit value.
  • a value twice that of L) ie 2L or 2L is used.
  • the waveform distortion correction circuit 18d includes a delay adjustment circuit 181, an amplifier 182d, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185. And.
  • the amplifier 182d amplifies the upper limit L or lower limit L of the amplitude limit value of the limit equalizer 15, and outputs it to the selector 185 as a distortion correction value amd.
  • the upper limit of the amplitude limit value in the limit equalizer 15 is used as the distortion correction value amd.
  • the signal level of the waveform distortion is corrected to the upper limit L or lower limit—L of the limit limit value of the limit equalizer 15, so that the limit equalizer 15 can be sure to avoid the inconvenience of emphasizing waveform distortion that should not occur. Can be prevented.
  • waveform distortion For example, in an information reproducing apparatus employing PRML, for example, an inconvenience that a mark having a relatively long run length is erroneously determined as another mark can be suitably prevented. As a result, there is almost no binary error due to waveform distortion, and a suitable reproduction operation can be performed.
  • the signal level is corrected to a signal level that is twice or less the upper limit L or lower limit L of the amplitude limit value. Can do. As a result, for example, the inconvenience of misidentifying a long mark as another mark can be suitably prevented. As a result, there is almost no occurrence of binary conversion error due to waveform distortion, and a suitable reproduction operation can be performed.
  • FIG. 34 is a timing chart conceptually showing the waveform distortion correction operation by the waveform distortion correction circuit 18e included in the information reproducing apparatus le according to the fifth modification on the first read signal R.
  • FIG. 35 conceptually shows the waveform distortion correction operation by the waveform distortion correction circuit 18e included in the information reproducing apparatus le according to the fifth modification on the second read signal R.
  • FIG. 36 is a timing chart.
  • FIG. 36 is a flowchart conceptually showing a flow of the first operation by the waveform distortion correction circuit 18e included in the information reproducing apparatus le according to the fifth modification.
  • the recorded data recorded on the optical disc 100 includes, in addition to normal user data, synchronization data (for example, the optical disc 100 is a DVD) used for synchronization when reproducing the user data. If the optical disc 100 is a B1 u-ray Disc, the run length 9T recording data) is included. In consideration of the fact that such synchronous data is included in the recorded data, it may be configured to correct the waveform distortion only to the synchronous data.
  • the synchronization data is composed of a 9T mark and a 9T space. It may be configured to detect the waveform and correct the waveform distortion before or after the detected 9T space. In addition, focusing on the periodicity at which the synchronous data appears, the position (or the time corresponding to 1932T (or 1932T person ⁇ 1: ⁇ 1 is a predetermined constant)) has elapsed from the detected 9 cm space. A position shifted by j8 1T from the position: ⁇ 1 may be configured to correct waveform distortion in the vicinity of a predetermined constant).
  • the optical disc is a DVD
  • the synchronization data is a 14T mark or a 14T space
  • the 14T space is detected, and the detected 14 mm space is detected.
  • step S101 the reproduction operation of the data recorded on the optical disc 100 is performed (step S101).
  • the read signal R more specifically, the read sample is detected by the operation of the offset generation circuit 192).
  • step S102 If it is determined in step S102 that the offset value OFS is not added (step S102: No), the process proceeds to step S301.
  • step S102 determines whether the offset value OFS is to be added (step S102: Yes)
  • the offset value OFS is generated by the operation of the offset generation circuit 19-2, and the adder After the offset value OFS generated by the operation of 19—1 is added to the read signal R (more specifically, the read sample value series RS)
  • step S103 the process proceeds to step S301.
  • step S301 it is determined whether or not the sync space (that is, the 9T space, 14T space, etc. described above, which is the space constituting the synchronization data) is detected.
  • step S301 As a result of the determination in step S301, if it is determined that the sync space is not detected (step S301: No), the process returns to step S301 again, and the determination operation as to whether the sync space is detected is repeated. It is. [0242] On the other hand, if it is determined in step S301 that the sync space has been detected (step S301: Yes), the mark at the position where the time corresponding to the time corresponding to nT has elapsed is also reproduced. It is determined whether or not (step S302).
  • the mark at the position where the time corresponding to the above-mentioned 1932T person a 1 or 1488T person a 2 has elapsed is reproduced from the detected sync space, It is determined whether or not.
  • step S302 If it is determined in step S302 that the mark at the position corresponding to nT has not been played back from the sync space (step S302: No), the operation of step S302 is repeated. .
  • step S302 when it is determined that the mark at the position where the time corresponding to the sync space force nT has elapsed (step S302: Yes), the sync space is subsequently determined. In the vicinity of the position where the time corresponding to nT has passed, the waveform distortion of the mark corresponding to the synchronous data is measured (step S105). Thereafter, the same operation as shown in FIG. 7 is performed.
  • step S101 the reproduction operation of the data recorded on optical disc 100 is performed (step S101).
  • the offset generation circuit 19-2 operates to turn off the read signal R (more specifically, the read sample value series RS).
  • step S102 If it is determined in step S102 that the offset value OFS is not added (step S102: No), the process proceeds to step S301.
  • step S102 determines whether the offset value OFS is to be added (step S102: Yes)
  • the offset value OFS is generated by the operation of the offset generation circuit 19-2, and the adder After the offset value OFS generated by the operation of 19—1 is added to the read signal R (more specifically, the read sample value series RS)
  • step S301 it is determined whether or not a sync space (that is, a space constituting the synchronization data, such as the 9T space or the 14T space described above) is detected (step S301).
  • a sync space that is, a space constituting the synchronization data, such as the 9T space or the 14T space described above
  • step S301 If it is determined in step S301 that the sync space is not detected (step S301: No), the process returns to step S301 again, and the determination operation for determining whether the sync space is detected is repeated. It is.
  • step S301 determines whether or not that the sync space has been detected. If it is determined in step S301 that the sync space has been detected (step S301: Yes), the mark at the position where the time corresponding to nT has elapsed is also played back. It is determined whether or not (step S302). In other words, paying attention to the periodicity in which the synchronous data appears, the mark at the position where the time corresponding to the above-mentioned 1932T person a 1 or 1488T person a 2 has elapsed, for example, is reproduced from the detected sync space. It is determined whether or not.
  • step S302 As a result of the determination in step S302, when it is determined that the mark at the position corresponding to nT has not been reproduced from the sync space (step S302: No), the operation of step S302 is repeated. It is.
  • step S302 when it is determined that the mark at the position where the time corresponding to the sync space force nT has elapsed (step S302: Yes), the sync space is subsequently In the vicinity of the position where the time corresponding to nT has passed, the waveform distortion of the mark corresponding to the synchronous data is measured (step S105). Thereafter, the same operation as that shown in FIG. 24 is performed.
  • FIG. 38 is a block diagram conceptually showing the configuration of the waveform distortion correction circuit 18f provided in the information reproducing apparatus If according to the sixth modified example.
  • FIG. 39 is a block diagram showing information according to the sixth modified example.
  • FIG. 22 is a block diagram conceptually showing the structure of a waveform distortion detection circuit 186f provided in the waveform distortion correction circuit 18f provided in the reproducing device If.
  • the waveform distortion correction circuit 18f includes a delay adjustment circuit 181, a waveform distortion detection circuit 186f, a mark Z space length detection circuit 183, a timing generation circuit 184, and a selector 185.
  • the AND circuit 187f is provided.
  • the detection result of the mark Z space length by the mark Z space length detection circuit 183 is output to the waveform distortion detection circuit 186f in addition to the timing generation circuit 184.
  • the AND circuit 187f detects the waveform distortion based on the outputs of the timing generation circuit 184 and the waveform distortion detection circuit 186f (that is, the timing signal SW and the waveform distortion output from the timing generation circuit 184).
  • a high-level timing signal SW0 is generated.
  • the AND circuit 187f when waveform distortion is not detected based on the outputs of the timing generation circuit 184 and the waveform distortion detection circuit 186f (that is, the timing signal SW and waveform output from the timing generation circuit 184).
  • the low-level timing signal SWO is generated. That is, in the sixth modified example, when the waveform distortion is detected, the waveform distortion is selectively corrected.
  • the waveform distortion detection circuit 186f includes a shift register 1831f, a selector 1 832f, a maximum value detection circuit 1833f, a minimum value detection circuit 1834f, a subtractor 1835f, and a determination circuit 1836f.
  • the read sample value series RS input to the waveform distortion detection circuit 186f is the shift register 1
  • the shift register 1831f reads the input read sample value series RS. While shifting by one clock, output from DO to D14 to selector 1832f.
  • the selector 1832f selectively samples and holds three outputs based on the force mark Z space length of the output DO to D14 at the timing output from the mark Z space length detection circuit 183, and the distortion correction amount This is output to each of the detection circuit 1837f, the maximum value detection circuit 1833f, and the minimum value detection circuit 1834f.
  • the selector 1832f when the mark Z space length output from the mark Z space length detection circuit 183 is 6T, the selector 1832f outputs three outputs D2 and D3 from the outputs DO to D14. And D4 are selectively sampled and held and output to the distortion correction amount detection circuit 1837f, the maximum value detection circuit 1833f, and the minimum value detection circuit 1834f, respectively.
  • the selector 18 32f When the mark Z space length output from the mark Z space length detection circuit 183 is 7T, the selector 18 32f selectively samples and holds the three outputs D2, D3, and D5 among the outputs DO to D14. And output to the distortion correction amount detection circuit 1837f, the maximum value detection circuit 1833f, and the minimum value detection circuit 1834f, respectively.
  • the selector 1832f When the mark Z space length output from the mark Z space length detection circuit 183 is 8T, the selector 1832f selectively samples and holds three outputs D2, D4, and D6 from the outputs DO to D14. And output to the distortion correction amount detection circuit 1837f, the maximum value detection circuit 1833f, and the minimum value detection circuit 1834f, respectively.
  • the selector 1832f When the mark Z space length output from the mark Z space length detection circuit 183 is 9T, the selector 1832f selectively samples and holds three outputs D2, D 4 and D7 among the outputs DO to D14.
  • the distortion correction amount detection circuit 1837f, the maximum value detection circuit 1833f, and the minimum value detection circuit 1834f are output.
  • the selector 1832f When the mark Z space length output from the mark Z space length detection circuit 183 is 10T, the selector 1832f selectively samples three outputs D2, D5, and D8 from the outputs DO to D14. And output to each of the distortion correction amount detection circuit 1837f, the maximum value detection circuit 1833f, and the minimum value detection circuit 1834f. The selector 1832f selectively samples and holds the three outputs D2, D5, and D9 from the outputs DO to D14 when the mark Z space length output from the mark Z space length detection circuit 183 is 11T. And output to the distortion correction amount detection circuit 1837f, the maximum value detection circuit 1833f, and the minimum value detection circuit 1834f, respectively. Selector 1832f is a mark Z space output from mark Z space length detection circuit 183.
  • a desired one of the three outputs (that is, the signal level at the front end, the signal level at the middle, and the signal level at the rear end) output from the selector 1832f
  • One signal level is output as the distortion correction amount amd.
  • the signal level at the middle part has changed.
  • the signal level is output as the distortion correction amount amd.
  • the signal level at the front end is output as the distortion correction amount amd for the waveform distortion in which the signal level at the rear end has changed.
  • the maximum value (that is, the maximum signal level) of the three outputs outputted from the selector 1832 is detected, and the detected maximum value is output to the subtracter 1 835f. Is done.
  • the minimum value detection circuit 1834f the minimum value (that is, the minimum signal level) of the three outputs outputted from the selector 1832 is detected, and the detected minimum value is output to the subtracter 1835f.
  • the subtractor 1835f subtracts the minimum value detected by the minimum value detection circuit 1834f from the maximum value detected by the maximum value detection circuit 1833f, thereby calculating the waveform distortion amount D. .
  • the determination circuit 1836f it is determined whether or not the waveform distortion amount output from the subtracter 1835 is greater than or equal to a predetermined value X. If the amount of waveform distortion D is relatively small, the waveform distortion detection signal DT of low level is output without considering that the waveform distortion has been detected. On the other hand, when the waveform distortion amount D is relatively large (for example, when the waveform distortion rate is approximately 30% or more), it is assumed that the waveform distortion has been detected, and a high level waveform distortion detection signal DT is output. .
  • the signal level of the waveform distortion can be corrected to one desired signal level among the signal level at the front end, the signal level at the middle, and the signal level at the rear end. For this reason, waveform distortion of various shapes can be suitably corrected.
  • waveform distortion of various shapes can be suitably corrected.
  • FIGS. 7 to 9 since the signal level of waveform distortion is corrected to the signal level at the front end, in particular, FIG. 5 (b) and FIG. 6 (b The waveform distortion in which the signal level at the front end as shown in FIG.
  • waveform distortion generally occurs due to variations in the shape and length of marks formed on the recording surface of the optical disc 100. Therefore, for example, waveform distortion is likely to occur in a recordable optical disc 100 such as DVD-RZRW, DV D + RZRW, DVD-RAM, or BD-RZRE. However, even in a read-only optical disc 100 such as a DVD-ROM or a BD-ROM, for example, as shown in FIG. 40, synchronous data having a relatively long mark force is adjacent in the tracking direction. ! In this case, waveform distortion occurs. Needless to say, the above-described information reproducing apparatus 1 can suitably correct the waveform distortion generated in the read-only optical disc 100 as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

記録再生装置(1)は、記録媒体(100)から読み取られた読取信号(RRF)に対して、可変に設定可能なオフセット値(OFS)を付加するオフセット付加手段(19-1、19-2)と、オフセット値が付加された読取信号のうち長マークに対応する読取信号に生ずる波形歪みを補正する補正手段(18)と、波形歪みが補正された読取信号に対して波形等化処理を行う波形等化手段(15)とを備える。

Description

明 細 書
情報再生装置及び方法、並びにコンピュータプログラム
技術分野
[0001] 本発明は、例えば記録媒体に記録された記録データの再生を行う情報再生装置 及び方法であって、特に記録媒体に記録された記録データを読み取ることで得られ る読取信号に対してフィルタリング処理等の波形等化を行う情報再生装置及び方法 、並びにコンピュータをこのような情報再生装置として機能させるコンピュータプロダラ ムの技術分野に関する。
背景技術
[0002] 記録データが高密度記録されて!、る記録媒体から読み取られた読取信号の SN比 を改善すベぐ力かる読取信号に対して高域を強調するフィルタリング処理を施して 波形等化を行う技術が知られている。特に、特許文献 1によれば、読取信号の振幅 制限を行った後にフィルタリング処理を行うことで、符号間干渉を生じさせることなぐ 高域を強調することができる技術 (いわゆるリミットイコライザに関する技術)が開示さ れている。
[0003] 特許文献 1:特許第 3459563号
発明の開示
発明が解決しょうとする課題
[0004] ここで、読取信号には波形歪みが生じ得る。波形歪みとは、本来とるべき信号レべ ルと実際に読取信号に現れた信号レベルとの間にずれが生じている状態を示す。こ のような波形歪み力 リミットイコライザにおける振幅制限を行う範囲内に含まれてしま うと (つまり、波形歪みとリミットイコライザにおける振幅制限値との干渉性が高くなるほ ど)、振幅制限の後に行われる高域強調によって波形歪みがより一層強調されること につながる。これにより、例えばランレングスが相対的に長いマークを他のマークと誤 判別してしまう不都合につながりかねない。具体的には、例えば、ランレングスが 8T のマークを、ランレングス力 Τのマークと、ランレングスが 2Τのスペースと、ランレング スが 2Τのマークとして誤判別してしまう不都合につながりかねない。 [0005] マークの誤判別と!/、う不都合は、リミットイコライザに限らず、例えば PRML (Partial Response Maximum Likelihood)システム等の各種波形等化器においても発生し得る
[0006] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えば波形 歪みが生じている場合においても好適に記録データを再生することができる情報再 生装置及び方法、並びにコンピュータプログラムを提供することを課題とする。
課題を解決するための手段
[0007] 上記課題を解決するために、本発明の情報再生装置は、記録媒体から読み取られ た読取信号に対して、可変に設定可能なオフセット値を付加するオフセット付加手段 と、前記オフセット付加手段により前記オフセット値が付加された読取信号のうち少な くとも長マークに対応する読取信号に生ずる波形歪みを補正する補正手段と、前記 波形歪みが補正された前記読取信号に対して波形等化処理を行う波形等化手段と を備える。
[0008] 上記課題を解決するために、本発明の情報再生方法は、記録媒体から読み取られ た読取信号に対して、可変に設定可能なオフセット値を付加するオフセット付加工程 と、前記オフセット手段により前記オフセット値が付加された読取信号のうち少なくとも 長マークに対応する読取信号に生ずる波形歪みを補正する補正工程と、前記波形 歪みが補正された前記読取信号に対して波形等化処理を行う波形等化工程とを備 える。
[0009] 上記課題を解決するために、本発明のコンピュータプログラムは、記録媒体から読 み取られた読取信号に対して、可変に設定可能なオフセット値を付加するオフセット 付加手段と、前記オフセット付加手段により前記オフセット値が付加された読取信号 のうち少なくとも長マークに対応する読取信号に生ずる波形歪みを補正する補正手 段と、前記波形歪みが補正された前記読取信号に対して波形等化処理を行う波形 等化手段とを備える情報再生装置に備えられたコンピュータを制御する再生制御用 のコンピュータプログラムであって、該コンピュータを、前記オフセット手段、前記補正 手段及び前記波形等化手段の少なくとも一部として機能させる。
[0010] 本発明の作用及び他の利得は次に説明する実施の形態力 明らかにされよう。 図面の簡単な説明
[図 1]本実施例に係る情報再生装置の基本構成を概念的に示すブロック図である。
[図 2]本実施例に係るリミットイコライザの構成を概念的に示すブロック図である。
[図 3]振幅制限値の上限及び下限の設定動作を、サンプル値系列上で概念的に示 す波形図である。
[図 4]高域強調読取サンプル値系列の取得動作を、サンプル値系列上で概念的に 示す波形図である。
[図 5]波形歪みの第 1の例を概念的に示す波形図である。
[図 6]波形歪みの第 2の例を概念的に示す波形図である。
[図 7]加算器、オフセット付加回路及び波形歪み補正回路の動作の流れを概念的に 示すフローチャートである。
[図 8]波形歪み補正回路の構成を概念的に示すブロック図である。
[図 9]波形歪み補正回路による波形歪みの補正動作を、サンプル値系列上で概念的 に示す波形図である。
[図 10]波形歪みの補正前後における読取信号の波形等を概念的に示す波形図であ る。
[図 11]波形歪みが補正されない場合及び波形歪みが補正される場合の夫々におけ る高域強調読取サンプル値系列の取得動作を、サンプル値系列上で概念的に示す 波形図である。
[図 12]波形歪み率に対するシンボルエラーレートの変化を示すグラフである。
[図 13]ァシンメトリ値を概念的に示す波形図である。
[図 14]読取信号の振幅で正規ィ匕されたオフセット値に対するシンボルエラーレートの 変化を示すグラフである。
[図 15]ァシンメトリ値に対する読取信号の振幅で正規化されたオフセット値の変化を 示すグラフであ。
[図 16]各ランレングスの記録データの出現確率を示す表である。
[図 17]ァシンメトリの変化に応じた minTに対応する読取信号の波形を概念的に示す 波形図である [図 18]波形歪みの補正前後における読取信号の他の波形等を概念的に示す波形 図である。
圆 19]全体 β値を概念的に示す波形図である。
圆 20]読取信号の振幅で正規化された全体 β値に対する読取信号の振幅で正規化 されたオフセット値の変化を示すグラフである。
[図 21]部分 β値を概念的に示す波形図である。
圆 22]読取信号の振幅で正規化された部分 β値に対する読取信号の振幅で正規化 されたオフセット値の変化を示すグラフである。
圆 23] α値を概念的に示す波形図である。
圆 24]加算器、オフセット付カ卩回路及び波形歪み補正回路の他の動作の流れを概 念的に示すフローチャートである。
[図 25]加算器、オフセット付加回路及び波形歪み補正回路の他の動作の流れを概 念的に示すフローチャートである。
[図 26]第 1変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 27]第 1変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 28]第 2変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 29]第 2変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 30]第 3変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 31]第 3変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 32]第 4変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、サンプル値系列上で概念的に示す波形図である。
[図 33]第 4変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 34]第 5変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、第 1の読取信号上で概念的に示すタイミングチャートである。
[図 35]第 5変形例に係る情報再生装置が備える波形歪み補正回路による波形歪み の補正動作を、第 2の読取信号上で概念的に示すタイミングチャートである。
[図 36]第 5変形例に係る情報再生装置が備える波形歪み補正回路による第 1の動作 の流れを概念的に示すフローチャートである。
[図 37]第 5変形例に係る情報再生装置が備える波形歪み補正回路による第 2の動作 の流れを概念的に示すフローチャートである。
[図 38]第 6変形例に係る情報再生装置が備える波形歪み補正回路の構成を概念的 に示すブロック図である。
[図 39]第 6変形例に係る情報再生装置が備える波形歪み補正回路が備える波形歪 み検出回路の構成を概念的に示すブロック図である。
[図 40]再生専用型の光ディスクの記録面上のマークの様子を模式的に示す平面図 である。
符号の説明
1、2 情報再生装置
10 スピンドノレモータ
11 ピックアップ
12 HPF
13 AZD変
14 プリイコライザ
15 リミットィ 3ライザ
16 2値化回路
17 復号回路
18 波形歪み補正回路
181 遅延調整回路
182 歪み補正値検出回路 183 マーク Zスペース長検出回路
184 タイミング生成回路
185 セレクタ
186 波形歪み検出回路
19- 1 加算器
19- 2 オフセット生成回路
151 振幅制限値設定ブロック
1516 平均化回路
152 振幅制限ブロック
1522 補間フィルタ
1523 ッタ
153 高域強調ブロック
発明を実施するための最良の形態
[0013] 以下、発明を実施するための最良の形態として、本発明の情報再生装置及び方法 、並びにコンピュータプログラムに係る実施形態の説明を進める。
[0014] (情報再生装置の実施形態)
本発明の情報再生装置に係る実施形態は、記録媒体力 読み取られた読取信号 に対して、可変に設定可能なオフセット値を付加するオフセット付加手段と、前記ォ フセット付加手段により前記オフセット値が付加された読取信号のうち少なくとも長マ ークに対応する読取信号に生ずる波形歪みを補正する補正手段と、前記波形歪み が補正された前記読取信号に対して波形等化処理を行う波形等化手段とを備える。
[0015] 本発明の情報再生装置に係る実施形態によれば、オフセット付加手段の動作によ り、読取信号に対して、オフセット値が付加される。オフセット値は、可変に設定するこ とができ、適宜オフセット値を変化させることができる。このとき、オフセット値の付カロは 、読取信号毎に 1回ずつ行われるように構成してもよいし、読取信号毎に複数回段階 的に行われるように構成してもよ 、。
[0016] その後、補正手段の動作により、少なくとも長マーク (例えば、記録媒体が DVDで あればランレングス 7Tから 11T及び 14Tのマークであり記録媒体が Blu— ray Disc であればランレングス 6Tから 9Tのマーク)に対応する読取信号に生ずる波形歪みが 補正される。ここでは、波形歪みが、波形等化手段による波形等化 (具体的には、例 えば、後述の振幅制限及び高域強調フィルタリング)に悪影響を与えなくなるように、 波形歪みが(より具体的には、例えば波形歪みの信号レベル等)が補正されることが 好ましい。
[0017] その後、波形等化手段の動作により、波形歪みが補正された読取信号に対して波 形等化処理が行われる。その後、波形等化処理が行われた読取信号に対して、各種 信号処理 (例えば、 2値化処理ゃ復号処理等)が行われることで、記録データの再生 が行われる。
[0018] このように、オフセット値を読取信号に付加した後に、該読取信号の波形歪み補正 が行われるため、仮に相対的に大きなァシンメトリが読取信号に生じている場合であ つても、本来リファレンスレベル以上となることが想定される、ランレングスが相対的に 短 、記録データを構成するスペースの信号レベル力 リファレンスレベル(或いは、 ゼロレベル、以下同じ)以下となる不都合を好適に防ぐことができる。仮に、ランレング スが相対的に短い記録データを構成するスペースの信号レベルがリファレンスレべ ル以下であれば、該記録データを波形歪みと誤認識してしまいかねない。しかるに、 ァシンメトリが生ずることに起因して、本来リファレンスレベル以上となることが想定さ れる、ランレングスが相対的に短い記録データを構成するスペースの信号レベルが、 リファレンスレベル以下となってしまった場合であっても、オフセット値を読取信号に 付加することにより、該スペースの信号レベルがリファレンスレベル以上とすることが できる。つまり、ランレングスが相対的に短い記録データを波形歪みと誤認識してしま う不都合を好適に防止することができる。尚、ここでは、記録データを記録することで 反射率が減少する(言い換えれば、マークの反射率力 Sスペースの反射率よりも小さい )記録媒体を対象としている。
[0019] 同様に、記録データを記録することで反射率が増加する(言 、換えれば、マークの 反射率がスペースの反射率よりも大きい)記録媒体においても、仮に相対的に大きな ァシンメトリが読取信号に生じている場合であっても、本来リファレンスレベル以下と なることが想定される、ランレングスが相対的に短い記録データを構成するスペース の信号レベル力 リファレンスレベル(或いは、ゼロレベル、以下同じ)以上となる不都 合を好適に防ぐことができる。仮に、ランレングスが相対的に短い記録データを構成 するスペースの信号レベルがリファレンスレベル以上であれば、該記録データを波形 歪みと誤認識してしまいかねない。しかるに、ァシンメトリが生ずることに起因して、本 来リファレンスレベル以下となることが想定される、ランレングスが相対的に短い記録 データを構成するスペースの信号レベルが、リファレンスレベル以上となってしまった 場合であっても、オフセット値を読取信号に付加することにより、該スペースの信号レ ベルがリファレンスレベル以下とすることができる。つまり、ランレングスが相対的に短 い記録データを波形歪みと誤認識してしまう不都合を好適に防止することができる。
[0020] 更に、波形等化手段による波形等化処理が行われる前に、読取信号に生ずる波形 歪みが補正されるため、記録媒体から読み取られた読取信号に波形歪みが生じてい たとしても、該波形歪みが波形等化処理に悪影響を与えることは殆ど或いは全くなく なる。より具体的には、例えば、波形歪みがより一層強調されてしまう或いは波形歪 みが残留してしまう不都合を好適に防止することができる。つまり、波形歪みを補正 することで、例えば、長マークを他のマークと誤判別してしまう不都合を好適に防止 することができる。これにより、波形等化手段において、読取信号の波形等化処理を 好適に行うことができる。その結果、好適に記録データを再生することができる。
[0021] このように、本実施形態に係る情報再生装置によれば、波形歪みが生じている場合 においても、良好に波形等化を行うことができる。その結果、波形歪みが生じている 場合においても、好適に記録データを再生することができる。
[0022] 本発明の情報再生装置に係る実施形態の一の態様は、前記オフセット付加手段は 、前記読取信号に対して前記オフセット値を付加することで、前記読取信号のリファ レンスレベルにオフセットをカ卩える。
[0023] この態様によれば、読取信号に対するオフセット値の付加が、リファレンスレベルの オフセットにつながるため、上述した各種効果を好適に享受することができる。
[0024] 本発明の情報再生装置に係る実施形態の他の態様は、前記オフセット値は、(0前 記読取信号のうち最大振幅を得られる読取信号の振幅中心と、前記読取信号のうち ランレングスが最も短い記録データを読み取った際に得られる読取信号の振幅中心 のずれ量を示すァシンメトリ値、 GO前記読取信号の振幅中心の平均値を示す全体 β 値、及び (m)前記読取信号のうちランレングスが最も短 、記録データを読み取った際 に得られる読取信号の振幅中心と、前記読取信号のうちランレングスが 2番目に短い 記録データを読み取った際に得られる読取信号の振幅中心とのずれを示す部分 j8 値の少なくとも一つに基づ!、て設定される。
[0025] この態様によれば、ランレングスが異なる各記録データを読み取った際に得られる 各読取信号の振幅ずれ又は振幅中心ずれ等の影響を考慮して、オフセット値を設定 することができる。つまり、実際に発生しているァシンメトリ値や j8値 (具体的には、全 体 β値や部分 β値)に応じた最適なオフセット値を設定することができる。
[0026] 上述の如くァシンメトリ値、全体 β値及び部分 β値の少なくとも一つに応じてオフセ ット値を設定する情報再生装置の態様では、前記オフセット値は、前記ァシンメトリ値 に、前記読取信号中に含まれる記録データに対するランレングスが最も短 、記録デ ータの、ランレングスを考慮しない出現確率を乗じた値であるように構成してもよ 、。
[0027] このように構成すれば、実際に発生して 、るァシンメトリ値と、波形歪みの誤認識の 対象となりやすいランレングスが最も短い記録データの出現確率に応じた最適なオフ セット値を付加することができる。
[0028] 尚、本実施形態における「ランレングスを考慮しない出現確率」とは、ランレングスの 長短に関わらず、各ランレングスの記録データが 1回出現するたびに 1の出現頻度が 割り当てられることで算出される出現確率である。例えば、ある範囲の読取信号中に 、ランレングスが aTの記録データが Α個、ランレングスが bTの記録データが B個、ラ ンレングスが cTの記録データが C個存在している場合には、ランレングスが aTの記 録データの出現確率は AZ (A+ B + C)であり、ランレングスが bTの記録データの出 現確率は BZ (A+ B + C)であり、ランレングスが cTの記録データの出現確率は CZ (A + B + C)である。
[0029] 上述の如くァシンメトリ値、全体 β値及び部分 β値の少なくとも一つに応じてオフセ ット値を設定する情報再生装置の態様では、前記オフセット値は、前記全体 )8値に、 前記読取信号中に含まれる記録データに対するランレングスが最も短 、記録データ の、ランレングスを考慮しない出現確率を乗じた値であるように構成してもよ 、。 [0030] このように構成すれば、実際に発生して 、る全体 β値と、波形歪みの誤認識の対 象となりやすいランレングスが最も短い記録データの出現確率に応じた最適なオフセ ット値を付加することができる。
[0031] 前記オフセット値は、前記部分 β値に、前記読取信号中に含まれる記録データに 対するランレングスが最も短 ヽ記録データの、前記ランレングスを考慮した出現確率 を乗じた値であることを特徴とする請求の範囲第 3項に記載の情報再生装置。
[0032] このように構成すれば、実際に発生して 、る部分 β値と、波形歪みの誤認識の対 象となりやすいランレングスが最も短い記録データの出現確率に応じた最適なオフセ ット値を付加することができる。
[0033] 尚、本実施形態における「ランレングスを考慮した出現確率」とは、ランレングスの長 短を考慮して、各ランレングスの記録データが 1回出現するたびにランレングスに応じ た重み付けがなされた出現頻度が割り当てられることで算出される出現確率である。 例えば、ある範囲の読取信号中に、ランレングスが aTの記録データが Α個、ランレン ダスが bTの記録データが B個、ランレングスが cTの記録データが C個存在して!/、る 場合には、ランレングスが aTの記録データの出現確率は a XA/ (a XA+b X B + c X C)であり、ランレングス力 ¾Tの記録データの出現確率は b X B/ (a XA+b X B + c X C)であり、ランレングス力 cTの記録データの出現確率は c X C/ (a XA+b X B + c X C)である。
[0034] 本発明の情報再生装置に係る実施形態の他の態様は、前記オフセット値は、前記 読取信号のリファレンスレベルと、前記読取信号のうちランレングスが最も短い記録 データを読み取った際に得られる読取信号の振幅中心との位置関係に基づいて設 定される。
[0035] この態様によれば、リファレンスレベルとランレングスが最も身近記録データを読み 取った際に得られる読取信号の振幅中心との実際の位置関係に応じた最適なオフ セット値を設定することができる。
[0036] 上述の如くリファレンスレベルと、ランレングスが最も短い記録データを読み取った 際に得られる読取信号の振幅中心との位置関係に基づいてオフセット値を付加する 情報再生装置の態様では、前記オフセット値は、前記読取信号のリファレンスレベル と、前記読取信号のうちランレングスが最も短い記録データを読み取った際に得られ る読取信号の振幅中心とのずれを示す値であるように構成してもよ 、。
[0037] このように構成すれば、リファレンスレベルとランレングスが最も身近記録データを 読み取った際に得られる読取信号の振幅中心との実際のずれに応じた最適なオフ セット値を設定することができる。
[0038] 本発明の情報再生装置に係る実施形態の他の態様は、前記波形等化手段は、前 記波形歪みが補正された前記読取信号の振幅レベルを所定の振幅制限値にて制 限して振幅制限信号を取得する振幅制限手段と、前記振幅制限信号に対して高域 強調フィルタリング処理を行うことで等化補正信号を取得するフィルタリング手段とを 備える。
[0039] この態様によれば、振幅制限手段の動作により、波形歪みが補正された読取信号( 以下、適宜"歪み補正信号"と称する)の振幅レベルが制限される。具体的には、歪 み補正信号のうち振幅レベルが振幅制限値の上限よりも大きい又は下限より小さい 信号成分は、振幅レベルが振幅制限値の上限又は下限に制限される。他方、歪み 補正信号のうち振幅レベルが振幅制限値の上限以下且つ下限以上である信号成分 は、振幅レベルが制限されることはない。このように振幅レベルの制限が施された歪 み補正信号は、振幅制限信号としてフィルタリング手段へ出力される。フィルタリング 手段においては、振幅制限信号に対して高域強調フィルタリング処理を行う。その結 果、等化補正信号が取得される。その後は、等化補正信号に対して、例えば 2値ィ匕 処理や復号化処理等が行われる。これにより、記録媒体に記録された記録データ( 例えば、映像データや音声データ等)の再生処理を行うことができる。
[0040] これにより、フィルタリング手段上において、読取信号 (又はそのサンプル値)のばら つき(つまり、ジッタ)の発生を抑制することができ、その結果、符号間干渉を生じさせ ることなぐ読取信号の高域強調を行うことができる。
[0041] 更に、波形等化手段による波形等化処理が行われる前に、読取信号に生ずる波形 歪みが補正されるため、記録媒体から読み取られた読取信号に波形歪みが生じてい たとしても、該波形歪みが振幅制限及び高域強調フィルタリングに悪影響を与えるこ とは殆ど或いは全くなくなる。より具体的には、例えば、波形歪みが振幅制限値の上 限以下の値となったり或いは下限以上の値となることに起因して、波形歪みがより一 層強調されてしまう不都合を好適に防止することができる。つまり、波形歪みを補正 することで、波形歪みと振幅制限値との干渉性を低く抑えることができる。この結果、 例えば、長マークを他のマークと誤判別してしまう不都合を好適に防止することがで きる。これにより、リミットイコライザ (つまり、振幅制限手段及びフィルタリング手段)に ぉ 、て、読取信号の高域強調を好適に行うことができる。
[0042] 本発明の情報再生装置に係る実施形態の他の態様は、前記オフセット付加手段は 、(0前記読取信号のエラー訂正 (より具体的には、読取信号から得られる記録データ のエラー訂正)が不能である場合、 GO前記読取信号のエラーレートが所定の閾値以 上である場合、又は (m)記録データに含まれるユーザデータを読み取るために用いら れ且つ前記記録データに含まれる同期データに相当する読取信号を読み取ることが できない場合に、前記オフセット値を付加する。
[0043] この態様によれば、このような場合に選択的にオフセット値を付加することで、情報 再生装置の負荷を低減させつつ、上述した各種効果を享受することができる。
[0044] 更には、エラー訂正が不能か否か、エラーレートが所定の閾値以上である力否力、 又は同期データを読み取ることが可能力否かを適宜モニタリングしながらオフセット 値を付加する(特に、オフセット値を適宜変化させながら)ことで、最適なオフセット値 を比較的容易に実現することができる。
[0045] 本発明の情報再生装置に係る実施形態の他の態様は、前記補正手段は、(0前記 読取信号のエラー訂正が不能である場合、 GO前記読取信号のエラーレートが所定の 閾値以上である場合、又は (m)記録データに含まれるユーザデータを読み取るため に用いられ且つ前記記録データに含まれる同期データに相当する読取信号を読み 取ることができな!/、場合に、前記波形歪みを補正することを特徴とする請求の範囲第 1項に記載の情報再生装置。
[0046] この態様によれば、このような場合に選択的に波形歪みを補正することで、情報再 生装置の負荷を低減させつつ、上述した各種効果を享受することができる。
[0047] 特に、シーケンシャル記録のみが許可されて 、る記録媒体とは異なって、ランダム 記録が許可されている記録媒体においては、様々な記録状態が混在している。この 場合、波形歪みが不連続にな 、しは離散的に分布したり或いはして 、な力 たりす る読取信号を読み取ったり、大小様々な信号レベルを有する読み取り信号を読み取 る必要がある。従って、通常は波形歪みを補正することなく記録データを再生し、上 述した場合に選択的に波形歪みを補正しながら記録データを再生することで、情報 再生装置の負荷を低減させつつ、上述した各種効果を享受することができる。
[0048] 本発明の情報再生装置に係る実施形態の他の態様は、前記長マークは、信号レ ベルが最大振幅となるマークである。
[0049] この態様によれば、このような長マークに対応する読取信号に生ずる波形歪みを好 適に補正することができる。
[0050] (情報再生方法の実施形態)
本発明の情報再生方法に係る実施形態は、記録媒体力 読み取られた読取信号 に対して、可変に設定可能なオフセット値を付加するオフセット付加工程と、前記ォ フセット手段により前記オフセット値が付加された読取信号のうち少なくとも長マーク に対応する読取信号に生ずる波形歪みを補正する補正工程と、前記波形歪みが補 正された前記読取信号に対して波形等化処理を行う波形等化工程とを備える。
[0051] 本発明の情報再生方法に係る実施形態によれば、上述した本発明の情報再生装 置に係る実施形態が享受することができる各種効果と同様の効果を享受することが できる。
[0052] 尚、上述した本発明の情報再生装置に係る実施形態における各種態様に対応し て、本発明の情報再生方法に係る実施形態も各種態様を採ることが可能である。
[0053] (コンピュータプログラムの実施形態)
本発明のコンピュータプログラムに係る実施形態は、記録媒体力 読み取られた読 取信号に対して、可変に設定可能なオフセット値を付加するオフセット付加手段と、 前記オフセット付加手段により前記オフセット値が付加された読取信号のうち少なくと も長マークに対応する読取信号に生ずる波形歪みを補正する補正手段と、前記波形 歪みが補正された前記読取信号に対して波形等化処理を行う波形等化手段とを備 える情報再生装置 (即ち、上述した本発明の情報再生装置に係る実施形態 (但し、 その各種態様を含む) )に備えられたコンピュータを制御する再生制御用のコンビュ ータプログラムであって、該コンピュータを、前記オフセット付加手段、前記補正手段 及び前記波形等化手段の少なくとも一部として機能させる。
[0054] 本発明のコンピュータプログラムに係る実施形態によれば、当該コンピュータプログ ラムを格納する ROM、 CD-ROM, DVD-ROM,ハードディスク等の記録媒体か ら、当該コンピュータプログラムをコンピュータに読み込んで実行させれば、或いは、 当該コンピュータプログラムを、通信手段を介してコンピュータにダウンロードさせた 後に実行させれば、上述した本発明の情報再生装置に係る実施形態を比較的簡単 に実現できる。
[0055] 尚、上述した本発明の情報再生装置に係る実施形態における各種態様に対応し て、本発明のコンピュータプログラムに係る実施形態も各種態様を採ることが可能で ある。
[0056] 本発明のコンピュータプログラム製品に係る実施形態は、記録媒体力 読み取られ た読取信号に対して、可変に設定可能なオフセット値を付加するオフセット付加手段 と、前記オフセット付加手段により前記オフセット値が付加された読取信号のうち少な くとも長マークに対応する読取信号に生ずる波形歪みを補正する補正手段と、前記 波形歪みが補正された前記読取信号に対して波形等化処理を行う波形等化手段と を備える情報再生装置 (即ち、上述した本発明の情報再生装置に係る実施形態 (伹 し、その各種態様を含む))に備えられたコンピュータにより実行可能なプログラム命 令を明白に具現化し、該コンピュータを、前記オフセット手段、前記補正手段及び前 記波形等化手段のうち少なくとも一部として機能させる。
[0057] 本発明のコンピュータプログラム製品に係る実施形態によれば、当該コンピュータ プログラム製品を格納する ROM、 CD-ROM, DVD-ROM,ハードディスク等の 記録媒体から、当該コンピュータプログラム製品をコンピュータに読み込めば、或い は、例えば伝送波である当該コンピュータプログラム製品を、通信手段を介してコン ピュータにダウンロードすれば、上述した本発明の情報再生装置に係る実施形態を 比較的容易に実施可能となる。更に具体的には、当該コンピュータプログラム製品は 、上述した本発明の情報再生装置に係る実施形態として機能させるコンピュータ読 取可能なコード (或 、はコンピュータ読取可能な命令)力も構成されてよ 、。 [0058] 尚、上述した本発明の情報再生装置に係る実施形態における各種態様に対応し て、本発明のコンピュータプログラム製品に係る実施形態も各種態様を採ることが可 能である。
[0059] 本実施形態のこのような作用及び他の利得は次に説明する実施例から更に明らか にされよう。
[0060] 以上説明したように、本発明の情報再生装置に係る実施形態によれば、オフセット 付加手段と、補正手段と、波形等化手段とを備える。本発明の情報再生方法に係る 実施形態によれば、オフセット付加工程と、補正工程と、波形等化工程とを備える。 本発明のコンピュータプログラムに係る実施形態によれば、コンピュータを本発明の 情報再生装置に係る実施形態として機能させる。従って、波形歪みが生じている場 合においても好適にデータを再生することができる。
実施例
[0061] 以下、本発明の実施例を図面に基づいて説明する。
[0062] (1) 基本構成
初めに、図 1を参照して、本発明の情報再生装置に係る実施例について説明を進 める。ここに、図 1は、本実施例に係る情報再生装置の基本構成を概念的に示すブ ロック図である。
[0063] 図 1に示すように、本実施例に係る情報再生装置 1は、スピンドルモータ 10と、ピッ クアップ(PU : Pick Up) 11と、 HPF (High Pass Filter) 12と、 AZD変^^ 13と、プリ イコライザ(pre Equalizer) 14と、リミットイコライザ(Limit Equalizer) 15と、 2値化回路 1 6と、復号回路 17と、波形歪み補正回路 18と、加算器 19 1と、オフセット生成回路 19— 2とを備えている。
[0064] ピックアップ 11は、スピンドルモータ 10によって回転する光ディスク 100の記録面に レーザ光 LBを照射した際の反射光を光電変換して読取信号 R を生成する。
RF
[0065] HPF12は、ピックアップより出力される読取信号 R の低域成分を除去し、その結
RF
果得られる読取信号 R を AZD変換器 13へ出力する。
HC
[0066] A/D変換器 13は、不図示の PLL (Phased Lock Loop)等から出力されるサンプリ ングクロックに応じて読取信号をサンプリングし、その結果得られる読取サンプル値系 列 RSをプリイコライザ 14へ出力する。
[0067] プリイコライザ 14は、ピックアップ 11及び光ディスク 100から構成される情報読取系 の伝送特性に基づく符号間干渉を除去し、その結果得られる読取サンプル値系列 R Sを加算器 19 1へ出力する。
C
[0068] 加算器 19—1は、本発明における「オフセット付加手段」の一具体例を構成してお り、プリイコライザ 14より出力される読取サンプル値系列 RS に対して、オフセット生
C
成回路において生成されたオフセット値 OFSを加算する。オフセット値 OFSが付加さ れた読取サンプル値系列 RS は、波形歪み補正回路 18へ出力される。
C
[0069] オフセット生成回路 19— 2は、本発明における「オフセット付加手段」の一具体例を 構成しており、オフセット値 OFSを生成する。尚、オフセット値 OFSについては、後に 詳述する(図 13以降参照)。
[0070] 波形歪み補正回路 18は、本発明における「補正手段」の一具体例を構成しており 、読取サンプル値系列 RS に生じている波形歪み(つまり、読取信号 R に生じてい
C RF
る波形歪み)を補正する。その結果得られる、歪み補正読取サンプル値系列 RS
CAM
は、リミットイコライザ 15へ出力される。
[0071] 尚、波形歪み補正回路 18の具体的な構成及び動作については後に詳述する(図 6以降参照)。
[0072] リミットイコライザ 15は、符号間干渉を増加させることなく歪み補正読取サンプル値 系列 RS に対して高域強調処理を施し、その結果得られる高域強調読取サンプ
CAM
ル値系列 RS を、 2値ィ匕回路 16へ出力する。
H
[0073] 2値ィ匕回路 16は、高域強調読取サンプル値系列 RS に対して 2値化処理を行い、
H
その結果得られる 2値ィ匕信号を復号回路 17へ出力する。
[0074] 復号回路 17は、 2値化信号に対して復号処理等を行い、その結果得られる再生信 号を、ディスプレイやスピーカ等の外部再生機器へ出力する。その結果、光ディスク 1 00に記録されたデータ (例えば、映像データや音声データ等)が再生される。
[0075] 続いて、図 2を参照して、リミットイコライザ 15のより詳細な構成について説明する。
図 2は、リミットイコライザ 15の構成を概念的に示すブロック図である。図 2に示すよう に、リミットイコライザ 15は、振幅制限値設定ブロック 151と、振幅制限ブロック 152と 、高域強調ブロック 153とを備えている。
[0076] 振幅制限値設定ブロック 151は、歪み補正読取サンプル値系列 RS に基づいて
CAM
、振幅制限ブロック 152において用いられる振幅制限値の上限及び下限を設定する 。振幅制限ブロック 152は、振幅制限値設定ブロック 151において設定された振幅制 限値の上限及び下限に基づいて、歪み補正読取サンプル値系列 RS の振幅制
CAM
限処理を行う。振幅制限処理が行われたサンプル値系列 RS は、高域強調ブロッ
LIM
ク 153へ出力される。高域強調ブロック 153は、振幅制限処理が行われたサンプル 値系列 RS に対して、高域を強調するためのフィルタリング処理を行う。その結果、
LIM
高域強調読取サンプル値系列 RS が得られる。
H
[0077] より具体的には、リファレンスサンプルタイミング検出回路 1511により、歪み補正読 取サンプル値系列 RS に基づいて、リファレンスサンプルタイミングが検出される。
CAM
検出されたリファレンスサンプルタイミングは、 1クロックの遅延を付与する遅延器 151 2及び OR回路 1513を介してサンプルホールド回路 1514へ出力される。サンプルホ 一ルド回路 1514においては、遅延器 1512及び OR回路 1513を介して出力されるリ ファレンスサンプルタイミングに応じて、補間フィルタ 1522より出力される読取サンプ ル値系列 RSがサンプルホールドされる。
P
[0078] 尚、補間フィルタ 1522は、歪み補正読取サンプル値系列 RS に対して補間演
CAM
算処理を施すことにより、光ディスク 100から読み取られた読取信号 R を、 AZD変
RF
换器 14において用いられるサンプリングクロックによるクロックタイミングの中間タイミ ングでサンプリングした際に得られる補間サンプル値系列を生成する。生成された補 間サンプル値系列は、歪み補正読取サンプル値系列 RS に含められて、読取サ
CAM
ンプル値系列 RSとして、リミッタ 1523及びサンプルホールド回路 1514へ出力され
P
る。
[0079] サンプルホールドされた読取サンプル値系列 RSは、減算器 1515においてリファ
P
レンスレベル Rfが減算される。但し、リファレンスレベル Rfとしてゼロレベルを用いて いる場合は、 Rf=0となる。減算結果は、平均化回路 1516へ出力される。平均化回 路 1516においては、サンプル値の絶対値の平均値が算出される。算出されたサン プル値の平均値は、振幅制限値の上限及び下限として設定される。具体的には、リ ファレンスレベルに平均値を加算した値が、振幅制限値の上限、減算した値が振幅 制限値の下限として設定される。リファレンスレベルとしてゼロレベルを用いている場 合は、算出されたサンプル値の平均値に正の符号を付した値を振幅制限値の上限と して設定し、算出されたサンプル値の平均値に負の符号を付した値を振幅制限値の 下限として設定する。以下の説明では、説明の簡略化のために、リファレンスレベル
Rfとしてゼロレベルを用いた構成を説明する。
[0080] 具体的に、図 3を参照して、振幅制限値設定ブロック 151において設定される振幅 制限値の上限及び下限について説明する。ここに、図 3は、振幅制限値の上限及び 下限の設定動作を、歪み補正読取サンプル値系列 RS 上で概念的に示す波形
CAM
図である。
[0081] 図 3には、読取信号のうち、ランレングスが相対的に短いデータ(具体的には、光デ イスク 100が Blu— ray Discである場合においては、ランレングスが 2T、 3Τ及び 4Τ のデータ)を読み取った際に得られる読取信号 R とその歪み補正読取サンプル値
RF
系列 RS を示す。図 3に示すように、ゼロクロス点の前(つまり、時間的に前)〖こ位
CAM
置する補間サンプル値(つまり、補間フィルタ 1522にお 、て生成されたサンプル値) と、ゼロクロス点の後(つまり、時間的に後)に位置する補間サンプル値の絶対値の平 均値 Lが、振幅制限値の上限及び下限の絶対値として設定される。つまり、振幅制限 値の上限は Lと設定され、振幅制限値の下限が Lと設定される。
[0082] 再び図 2において、リミッタ 1523は、振幅制限値設定ブロック 151において設定さ れた上限及び下限に基づいて、サンプル値系列 RS に対して振幅制限を行う。具体
P
的には、サンプル値系列 RS に含まれるサンプル値が、上限 Lよりも小さく且つ下限
P
—Lよりも大きい場合には、そのサンプル値をそのままサンプル値系列 RS として出
LIM
力する。一方、サンプル値系列 RS に含まれるサンプル値が、上限 L以上である場合
P
には、上限 Lをサンプル値系列 RS として出力する。他方、サンプル値系列 RS に
LIM P
含まれるサンプル値が、下限— L以下である場合には、下限— Lをサンプル値系列 R S として出力する。
LIM
[0083] 高域強調ブロック 153においては、サンプル値系列 RS 中における最もランレン
LIM
ダスが短いデータ(例えば、光ディスク 100が DVDであればランレングス 3Tのデータ であり、光ディスク 100が Blu— ray Discであればランレングス 2Tのデータ)に対応 するサンプル値系列 RS のみ、その信号レベルを増大させる。
[0084] 具体的には、高域強調ブロック 153へ入力されるサンプル値系列 RS は、そのま ま又は 1クロックの遅延を付加する遅延器 1532、 1533及び 1534を介して、乗算係 数 kを有する係数乗算器 1535及び 1538、並びに乗算係数 kを有する係数乗算 器 1536及び 1537へ入力される。係数乗算器 1535、 1536、 1537及び 1538の出 力は、加算器 1539において加算される。その加算結果である高域読取サンプル値 RS は、カロ算器 1531において、 3クロックの遅延を付加する遅延器 1530を介して 加算器 1531に入力される歪み補正読取サンプル値系列 RS と加算される。その 結果、高域強調読取サンプル値系列 RS が得られる。
[0085] ここで、図 4を参照して、高域強調読取サンプル値系列 RS の取得動作についてよ り詳細に説明する。ここに、図 4は、高域強調読取サンプル値系列 RS の取得動作を
、歪み補正読取サンプル値系列 RS 上で概念的に示す波形図である。
[0086] 図 4 (a)に示すように、加算器 1531から出力される高域読取サンプル値 RS は、 サンプル値系列 RS 中における時点 D (— 1· 5)、 D (— 0· 5)、 D (0. 5)及び D (l
. 5)の夫々でのサンプル値に基づいて算出される。具体的には、サンプル値系列 R S 中における時点 D (— l. 5)、D (— 0. 5)、D (0. 5)及び D (l. 5)の夫々でのサ ンプル値を、 Sip (— 1)、 Sip (0)、 Sip (1)及び Sip (2)とすると、 RS = (— k) X Sip
(一 l) +k X Sip (0) +kX Sip (l) + (— k) X Sip (2)となる。
[0087] このとき、図 4 (b)に示すように、ランレングス 2Tのデータに対応する時点 D (— 1. 5 )及び D (— 0. 5)におけるサンプル値 Sip (— 1)及び Sip (0)は、互いに略同一となる 。また、ランレングス 2Tのデータに対応する時点 D (0. 5)及び D (l. 5)におけるサン プル値 Sip (1)及び Sip (2)は、互いに略同一となる。
[0088] また、図 4 (c)に示すように、ランレングス 3T及び 4Tの夫々のデータに対応する時 点 D (— 1. 5)及び D (— 0. 5)におけるサンプル値 Sip (— 1)及び Sip (0)は、振幅制 限ブロック 152による振幅制限により、共に振幅制限値の上限 Lとなる。同様に、ラン レングス 3T及び 4Tの夫々のデータに対応する時点 D (0. 5)及び D (l. 5)における サンプル値 Sip (1)及び Sip (2)は、振幅制限ブロック 152による振幅制限により、共 に振幅制限値の下限—Lとなる。つまり、リファレンスサンプル点前後のサンプル値の ばらつきが強制的に抑制される。
[0089] このため、高域強調を強くかけるために、係数乗算器 1535、 1536、 1537及び 15 38の係数 kの値を大きくしても、ゼロクロス点 D (O)において得られる高域読取サンプ ル値 RS は一定値に維持される。従って、符号間干渉は生じな 、。このように、リミ
HIG
ットイコライザ 15を備える情報再生装置 1によれば、高域強調した際に、符号間干渉 が生ずる原因となるところの読取信号中におけるゼロクロス点前後のサンプル値のば らつきが強制的に抑えられる。このため、高域強調ブロック 153において十分な高域 強調を行っても符号間干渉が生ずることはない。
[0090] 本実施例に係る情報再生装置 1では特に、読取信号 R (より具体的には、読取サ
RF
ンプル値系列 RS )に対してオフセット値 OFSを付加した後に波形歪みを補正し、そ
C
の後に、リミットイコライザ 15において、振幅制限及び高域強調が行われる。以下、ォ フセット値 OFS及び波形歪み補正の具体例にっ 、て、詳細に説明を進める。
[0091] (2)波形歪み
初めに、図 5及び図 6を参照して、波形歪みについて説明する。ここに、図 5は、波 形歪みの第 1の例を概念的に示す波形図であり、図 6は、波形歪みの第 2の例を概 念的に示す波形図である。
[0092] 図 5 (a)に示すように、波形歪みは、本来とるべき信号レベルと実際に読取信号 R
RF
に現れた信号レベルとの差を示す。この波形歪みは、読取信号 R の最大振幅 Aに
RF
対する歪み量 D及びゼロレベルから波形歪みの頂点までの信号レベルである波形歪 み量 D'で定量的に定義される。図 5 (a)において、太い点線は、波形歪みが発生し て!ヽな 、ときに本来とるべき信号レベルを示して 、る。波形歪みが発生して!/、な!/、場 合には、当然に波形歪み量 Dはゼロである。
[0093] 尚、図 5 (a)に示す波形歪みは、読取信号 R の前端部及び後端部の信号レベル
RF
と比較して、中間部の信号レベルが変化してしまった波形歪みを示している。このよう な波形歪み以外にも、図 5 (b)に示すように、読取信号 R の後端部の信号レベルと
RF
比較して、前端部及び中間部の信号レベルが変化してしまった波形歪みや、図 5 (c) に示すように、読取信号 R の前端部の信号レベルと比較して、中間部及び後端部 の信号レベルが変化してしまった波形歪みも存在しえる。 V、ずれの波形歪みを対象 としていても、後述する構成及び動作を採用することができることは言うまでもない。
[0094] また、図 5 (a)から図 5 (c)においては、マークを形成することによって、レーザ光 LB の反射率が減少する光ディスク 100に生ずる波形歪みについて説明した。つまり、ゼ ロレベル以下の信号レベルにぉ 、て、信号レベルが意図せず増加するような波形歪 みが発生する例について説明した。し力しながら、図 6 (a)に示すように、例えば色素 膜を記録層として用いた Blu— ray Disc等の光ディスクのように、データを記録する ことによって、レーザ光 LBの反射率が増加する光ディスク(いわゆる、 Low to Hig hディスク) 100に生ずる波形歪みも存在し得る。つまり、ゼロレベル以上の信号レべ ルにおいて、信号レベルが意図せず減少するような波形歪みも発生し得る。尚、ゼロ レベル以上の信号レベルにぉ 、て、信号レベルが意図せず減少するような波形歪み が発生する場合においても、ゼロレベル以上の信号レベルにおいて、図 5 (b)におい て示した信号レベルが意図せず減少するような波形歪みが発生する場合と同様に、 図 6 (b)に示すように、読取信号 R の後端部の信号レベルと比較して、前端部及び
RF
中間部の信号レベルが変化してしまった波形歪みが存在し得る。また、図 5 (c)にお いて示した信号レベルが意図せず減少するような波形歪みが発生する場合と同様に 、図 6 (c)に示すように、読取信号 R の前端部の信号レベルと比較して、中間部及
RF
び後端部の信号レベルが変化してしまった波形歪みも存在し得る。
[0095] また、本実施例においては、ランレングスが相対的に長いマーク(以降、適宜"長マ ーク"と称し、例えば、光ディスク 100が DVDであればランレングス 7Tから 11T又は 1 4Tのデータであり、光ディスク 100が Blu— ray Discであればランレングス 6Tから 9 Τのデータ)に対応する読取信号に発生する波形歪みに着目することが好ましい。或 いは、同期データ(つまり、 syncデータ)の重要性を考慮すれば、同期データに対応 するマーク(例えば、光ディスク 100が DVDであればランレングス 14Tのデータであり 、光ディスク 100が Blu— ray Discであればランレングス 9Tのデータ)に対応する読 取信号に発生する波形歪みに着目することが好ましい。
[0096] (3)動作例
続いて、図 7から図 9を参照して、加算器 19— 1、オフセット付カ卩回路 19— 2及び波 形歪み補正回路 18の具体的な動作例について説明する。ここに、図 7は、加算器 1 9 1、オフセット付カ卩回路 19 2及び波形歪み補正回路 18の動作の流れを概念的 に示すフローチャートであり、図 8は、波形歪み補正回路 18の構成を概念的に示す ブロック図であり、図 9は、波形歪み補正回路 18による波形歪みの補正動作を、サン プル値系列 RS 上で概念的に示す波形図である。
C
[0097] 図 7に示すように、まず、光ディスク 100に記録されたデータの再生動作が行われる
(ステップ S 101)。
[0098] 再生動作の際には、オフセット生成回路 19 2の動作により、読取信号 R (より具
RF
体的には、読取サンプル値系列 RS )に対してオフセット値 OFSを付加する力否か
C
が判定される (ステップ S102)。この判定は、例えば後述する α値に基づいて行われ てもよい。例えば、 α値が概ね 0であれば、オフセット値 OFSを付カ卩しないと判定して もよいし、 α値が概ね 0でなければ、オフセット値 OFSを付加すると判定してもよい。 或いは、この判定は、後述するステップ S 104における判定と同様の判定基準に基づ いて行われてもよい。例えば、シンボルエラーレートが所定閾値以上でない、且つェ ラー訂正が不可能でない、且つ同期データが読取不可能でない場合には、オフセッ ト値を付加しな 、と判定してもよ 、し、シンボルエラーレートが所定閾値以上である、 エラー訂正が不可能である、又は同期データが読取不可能である場合には、オフセ ット値を付加すると判定してもよ ヽ。
[0099] ステップ S102における判定の結果、オフセット値 OFSを付カ卩しな 、と判定された場 合には(ステップ S 102: No)、ステップ S 104へ進む。
[0100] 他方、ステップ S102における判定の結果、オフセット値 OFSを付加すると判定され た場合には(ステップ S102 : Yes)、オフセット生成回路 19— 2の動作によりオフセッ ト値 OFSが生成され、加算器 19— 1の動作により該生成されたオフセット値 OFSが 読取信号 R (より具体的には、読取サンプル値系列 RS )に付加された後 (ステップ
RF C
S103)、ステップ S 104へ進む。
[0101] その後、シンボルエラーレート(SER: Symbol Error Rate)が所定閾値以上であるか 否力 例えば ECC (Error Correction Code)等を用いたエラー訂正が不可能である か否か、又は同期データが読取不可能である力否かが逐次判定される (ステップ S1 04)。ここでは、好適な再生動作が行われている力否かに基づいて、所定閾値が設 定されることが好ましい。具体的には、好適な再生動作が行われなくなるシンボルェ ラーレートの値 (例えば、概ね 0. 001以上)を所定閾値として設定することが好ましい
[0102] ステップ S104における判定の結果、シンボルエラーレートが所定閾値以上でない 、且つエラー訂正が不可能でない、且つ同期データが読取不可能でないと判定され た場合には(ステップ S 104 : No)、ステップ S 109へ進む。
[0103] 他方、ステップ S104における判定の結果、シンボルエラーレートが所定閾値以上 である、エラー訂正が不可能である、又は同期データが読取不可能であると判定さ れた場合には (ステップ S 104 : Yes)、続いて、長マークの波形歪みが測定される (ス テツプ S105)。ここでは、例えば、読取信号 R の最大振幅 Aに対する波形歪み量 D
RF
(又は D' )の比率を示す波形歪み率 (つまり、 D/AX 100)が測定される。
[0104] その後、波形歪みが所定値以上である力否かが判定される (ステップ S 106)。例え ば、波形歪み率が概ね 30%以上である力否かが判定される。
[0105] ステップ S106における判定の結果、波形歪みが所定値以上でない(例えば、波形 歪み率が概ね 30%以下である)と判定された場合には (ステップ S 106: No)、ステツ プ S 109へ進む。
[0106] 他方、ステップ S106における判定の結果、波形歪みが所定値以上である(例えば 、波形歪み率が概ね 30%以上である)と判定された場合には (ステップ S 106: Yes) 、続いて、波形歪みの補正レベルや補正範囲等の波形歪み補正条件が設定される( ステップ S107)。波形歪み補正条件については、後に詳述する(図 9等参照)。
[0107] その後、ステップ S107において設定された波形歪み補正条件に基づいて、長マ ークの波形歪みが補正される (ステップ S 108)。
[0108] その後、再生動作を終了する力否かが判定され (ステップ S109)、再生動作を終了 しない場合には(ステップ S109 :No)、ステップ S101へ戻り、再度ステップ S101以 降の動作が繰り返される。
[0109] 図 7に示す動作のうち波形歪みの補正に関する動作は、主として、波形歪み補正 回路 18により行われる。ここで、波形歪み補正回路の具体的な回路構成について説 明する。
[0110] 図 8に示すように、波形歪み補正回路 18は、遅延調整回路 181と、歪み補正値検 出回路 182と、マーク Zスペース長検出回路 183と、タイミング生成回路 184と、セレ クタ 185とを備えている。
[0111] プリイコライザ 14から出力される読取サンプル値系列 RSは、遅延調整回路 181、
C
歪み補正値検出回路 182及びマーク Zスペース長検出回路 183の夫々へ出力され る。
[0112] 歪み補正値検出回路 182は、ゼロクロス点力 、 minTに相当する時間が経過した 時点におけるサンプル値 S (k)をホールドして、歪み補正値 amdとしてセレクタ 185へ 出力する。
[0113] 尚、 minTは、ランレングスが最も短い記録データに対応する読取信号 R (より具
RF
体的には、該読取信号 R に対応する読取サンプル値系列 RS )を示している。例え
RF C
ば、光ディスク 100が DVDであれば、 minTは、ランレングスが 3Tの記録データに対 応する読取信号 R を示している。例えば、光ディスク 100が Blu— ray Discであれ
RF
ば、 minTは、ランレングスが 2Tの記録データに対応する読取信号 R を示している
RF
[0114] また、遅延調整回路 181は、記録データの最長ランレングスに応じた遅延量を設定 し、所望のタイミングで読取サンプル値系列 RSをセレクタ 185へ出力する。具体的
c
には、光ディスク 100が Blu— ray Discである場合には、最長ランレングスである 9T に相当する遅延量を設定し、光ディスク 100が DVDである場合には、最長ランレング スである 14Tに相当する遅延量を設定する。
[0115] マーク Zスペース長検出回路 183は、例えばゼロクロス点の間隔や、符号ビットの 連続回数等を検出することで、マーク Zスペース長を検出する。その検出結果は、タ イミング生成回路 184へ出力される。
[0116] タイミング生成回路 184は、マーク Zスペース長検出回路 183において検出される マーク Zスペース長に基づいて、タイミング信号 SWを生成し、該生成したタイミング 信号 SWをセレクタ 185へ出力する。
[0117] 具体的には、タイミング生成回路 184は、(0マーク Zスペース長検出回路 183にお いて検出されるマーク zスペース長が、波形歪み補正の対象となる長マークであり、 且つ (ii)第 1のゼロクロス点力 minTに相当する時間が少なくとも経過した時点 T1か ら、第 1のゼロクロス点の次に位置する第 2のゼロクロス点力 minTに相当する時間 を遡った時点 T2までの間の期間には、ハイレベルのタイミング信号 SW(SW= 1)を 生成し、該生成したタイミング信号 SWをセレクタ 185へ出力する。他方、タイミング生 成回路 184は、(0マーク Zスペース長検出回路 183において検出されるマーク Zス ペース長が、波形歪み補正の対象となる長マーク以外のマークであるか、又は GO第 1のゼロクロス点力も minTに相当する時間が少なくとも経過した時点 T1から、第 1の ゼロクロス点の次に位置する第 2のゼロクロス点力 minTに相当する時間を遡った 時点 T2までの間の期間以外の期間には、ローレベルのタイミング信号 SW(SW=0) を生成し、該生成したタイミング信号 SWをセレクタ 185へ出力する。
[0118] セレクタ 185は、ハイレベルのタイミング信号 SWがタイミング生成回路 184から出 力されて 、る場合には、歪み補正値検出回路 182から出力される歪み補正値 amdを 、歪み補正読取サンプル値系列 RS として、リミットイコライザ 15へ出力する。他方
CAM
、セレクタ 185は、ローレベルのタイミング信号 SWがタイミング生成回路 184から出 力されている場合には、遅延調整回路 181から出力される読取サンプル値系列 RS
C
を、歪み補正読取サンプル値系列 RS として、リミットイコライザ 15へ出力する。
CAM
[0119] 尚、図 7のステップ S105において設定される波形歪み補正条件は、実質的には、 歪み補正値検出回路 182において検出される歪み補正値 amd及びタイミング生成 回路 184にお 、て生成されるタイミング信号 SWに相当する。
[0120] このような波形歪み補正回路 18による動作を、サンプル値系列 RSを示す波形図
C
上でより明確に説明する。
[0121] 図 9に示すように、第 1のゼロクロス点力 minTに相当する時間が少なくとも経過し た時点 T1から、第 1のゼロクロス点の次に位置する第 2のゼロクロス点力 minTに相 当する時間を遡った時点 T2までの間の期間(つまり、タイミング信号 SWがハイレべ ルである期間)には、サンプル値系列 RS に含まれるサンプル値力 波形歪み補正
C
値検出回路 182において検出される歪み補正値 amdに補正される。その結果、波形 歪みが補正される。 [0122] この波形歪みを補正することで得られる効果について、図 10から図 12を参照しな 力 説明する。ここに、図 10は、波形歪みの補正前後における読取信号 R の波形
RF
等を概念的に示す波形図であり、図 11は、波形歪みが補正されない場合及び波形 歪みが補正される場合の夫々における高域強調読取サンプル値系列 RS の取得動
H
作を、サンプル値系列 RS上で概念的に示す波形図であり、図 12は、波形歪み率に c
対するシンボルエラーレートの変化を示すグラフである。
[0123] 図 10の左側に示すように、読取信号 R に波形歪みが生じている場合には、該波
RF
形歪みを通常のマーク (例えば、ランレングスが相対的に短いマーク)と誤認識してし まいかねない。従って、読取信号 R を 2値ィ匕した後の 2値ィ匕波形には、波形歪みに
RF
起因した誤信号が含まれてしまう。この結果、元の記録データとの整合性がとれずに 、 2値ィ匕エラーが発生してしまう。
[0124] 他方で、図 10の右側に示すように、読取信号 R に生じた波形歪みを補正した場
RF
合には、読取信号 R を 2値ィ匕した後の 2値ィ匕波形には、波形歪みに起因した誤信
RF
号が含まれることはなくなる。従って、元の記録データとの整合性を取ることができ、 2 値ィ匕エラーは発生しない。
[0125] より具体的に説明すると、波形歪みの大きさ等の条件によっては、図 11 (a)に示す ように、波形歪みがリミットイコライザ 15における振幅制限値の下限— Lを上回る信号 レベルを有しかねない。この場合、高域強調ブロック 153から出力される高域強調読 取サンプル値系列 RS は、高域強調読取サンプル値系列 RS と S (O)との和であり
H HIG
、RS は、 (一 k) X Sip (— l) +k X Sip (0) +k X Sip (l) + (— k) X Sip (2)にて示
HIG
されることは前述した。ここで、 Sip (— 1)と Sip (2)は、下限 Lに抑制されるため、 R S =S (0) +k X (— 2 X—L + Sip (0) +Sip (l) )となる。これでは、下限 Lと Sip (
H
0)と Sip (1)の和を K倍した値だけ、高域強調読取サンプル値系列 RS の値が大きく
H
なってしまう。これは、本来発生するべきでない波形歪みを強調してしまっているため 好ましくない。更には、波形歪みが強調されることに起因して、例えば PRMLを採用 する情報再生装置においては、例えば波形歪みが生じているランレングスが相対的 に長 、マークを他のマークと誤判別してしまう不都合につながりかねな ヽ。その結果 、 2値ィ匕エラーが発生してしまう。 [0126] また、図示はしな 、が、図 6 (a)力 図 6 (c)に示すマークを形成することによって、 レーザ光 LBの反射率が減少する光ディスク 100についても同様に、 Sip (— 1)と Sip (2)は、上限 Lに抑制されるため、 RS =S (0) +k X (一 2 X L+Sip (0) +Sip (l) )
H
となる。これでは、上限 Lと Sip (0)と Sip (1)の和を K倍した値だけ、高域強調読取サ ンプル値系列 RS の値が大きくなつてしまう。これは、本来発生するべきでない波形
H
歪みを強調してしまって 、るため好ましくな 、。
[0127] 他方、図 11 (b)に示すように、波形歪みが補正される場合には、波形歪みの信号レ ベルを、リミットイコライザ 15における振幅制限値の下限— L以下の信号レベルに補 正することができる。この場合、 Sip (— 1)と Sip (O)と、 Sip (1)と Sip (2)は、下限一 L に抑制されるため、 RS =S (0)となる。このため、波形歪みを強調する不都合を防ぐ
H
ことができ、その結果、 2値ィ匕エラーが発生してしまうという不都合を防ぐことができる
[0128] また、図示はしな 、が、図 6 (a)力 図 6 (c)に示すマークを形成することによって、 レーザ光 LBの反射率が減少する光ディスク 100についても同様に、波形歪みが補 正される場合には、 Sip (— 1)と Sip (0)と、 Sip (1)と Sip (2)は、上限 Lに抑制される ため、 RS =S (0)となる。このため、波形歪みを強調する不都合を防ぐことができ、
H
その結果、 2値ィ匕エラーが発生してしまうという不都合を防ぐことができる。
[0129] このように、波形歪みを補正することによる効果は、波形歪み率に対するシンボル エラーレートの変化からも分かる。図 12に示すように、波形歪みが補正されない場合 における SERの値と比較して、波形歪みが補正される場合における SERの値は改 善している。
[0130] 以上説明したように、本実施例に係る情報再生装置 1によれば、高域強調した際に 、符号間干渉が生ずる原因となるところの読取信号中におけるリファレンスサンプル 点前後のサンプル値のばらつきが強制的に抑えられる。このため、高域強調ブロック 153において十分な高域強調を行っても符号間干渉が生ずることはない。
[0131] 特に、本実施例に係る情報再生装置 1によれば、波形歪みを補正した後に、リミット イコライザ 15における振幅制限及び高域強調を行っている。このため、リミットィコライ ザ 15において、本来発生するべきでない波形歪みを強調してしまう不都合を好適に 防止することができる。更には、波形歪みが強調されることに起因して、例えば PRM Lを採用する情報再生装置においては、例えばランレングスが相対的に長いマーク を他のマークと誤判別してしまう不都合を好適に防止することができる。その結果、波 形歪みに起因して 2値ィ匕エラーが発生することは殆どなくなり、好適な再生動作を行 うことができる。
[0132] 力!]えて、波形歪みを補正する前に、読取信号 R (より具体的には、読取サンプル
RF
値系列 RS )に対してオフセット値 OFSが付加されるため、以下に示す効果をも更に
C
享受することができる。以下、図 13から図 19を参照して、オフセット値 OFSを付加す ることによって得られる効果について、オフセット値 OFSの生成動作と共に説明する
[0133] (3— 1)ァシンメトリ値に基づくオフセット値 OFSの付カロ
初めに図 13から図 18を参照して、ァシンメトリ値に基づくオフセット値 OFSの付カロ について説明する。ここに、図 13は、ァシンメトリ値を概念的に示す波形図であり、図 14は、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSに対するシンボルエラ
RF
一レートの変化を示すグラフであり、図 15は、ァシンメトリ値に対する読取信号 R の
RF
振幅で正規ィ匕されたオフセット値の変化を示すグラフであり、図 16は、各ランレングス の記録データの出現確率を示す表であり、図 17は、ァシンメトリの変化に応じた min Tに対応する読取信号 R の波形を概念的に示す波形図であり、図 18は、波形歪み
RF
の補正前後における読取信号 R
RFの他の波形等を概念的に示す波形図である。
[0134] 図 13に示すように、ァシンメトリ値は、ランレングスが最も長い記録データに対応す る読取信号 R の
RF 振幅中心に対する、ランレングスが最も短い記録データに対応する 読取信号の振幅中心のずれを示す。具体的には、ランレングスが最も長い記録デー タに対応する読取信号 R の振幅中心を ImaxCntとし、 ImaxCntを基準とするラン
RF
レングスが最も長 ヽ記録データに対応する読取信号 R のトップ振幅の大きさを Ima
RF
xHとし、 ImaxCntを基準とするランレングスが最も長 、記録データに対応する読取 信号 R のボトム振幅の大きさを ImaxLとし、 ImaxCntを基準とするランレングスが最
RF
も短い記録データに対応する読取信号 R のトップ振幅の大きさを IminHとし、 Imax
RF
Cntを基準とするランレングスが最も短 、記録データに対応する読取信号 R のボト ム振幅の大きさを IminLとすると、ァシンメトリ値 Asy= ( (ImaxH+ImaxL)— (Imin H+IminL) ) / (2 X (ImaxH— ImaxL) )にて示される。尚、 ImaxCntは、ランレン ダスが最も長 、記録データに対応する読取信号 R のトップ振幅値とボトム振幅値と
RF
の平均値である。
[0135] 図 14 (a)に示すように、光ディスク 100の一具体例である Blu— ray Discにおいて ァシンメトリ値が 6%の場合には、オフセット値 OFSを付カ卩しな!/、場合のシンボルエラ 一レートと比較して、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが、 0%
RF
力 5%程度であれば、オフセット値 OFSを付カ卩した場合のシンボルエラーレートは 改善している。特に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが概ね 2
RF
%程度であるときに、シンボルエラーレートが最も小さくなる。
[0136] 尚、シンボルエラーレートが最も小さくなるとき、後述する全体 β値は 9. 3%であり、 部分 j8値は 10. 0%であり、 α値は 3. 0%であることを付記しておく。
[0137] 図 14 (b)に示すように、光ディスク 100の一具体例である Blu— ray Discにおいて ァシンメトリ値が 8%の場合には、オフセット値 OFSを付カ卩しな!/、場合のシンボルエラ 一レートと比較して、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが、 0%
RF
力 7%程度であれば、オフセット値 OFSを付カ卩した場合のシンボルエラーレートは 改善している。特に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが概ね 3
RF
%程度であるときに、シンボルエラーレートが最も小さくなる。
[0138] 尚、シンボルエラーレートが最も小さくなるとき、後述する全体 β値は 12. 3%であり
、部分 j8値は 14. 0%であり、 α値は 4. 4%であることを付記しておく。
[0139] 図 14 (c)に示すように、光ディスク 100の一具体例である Blu— ray Discにおいて ァシンメトリ値が 11%の場合には、オフセット値 OFSを付カ卩しな!/、場合のシンボルェ ラーレートと比較して、読取信号 R の振幅で正規ィ匕されたオフセット値 OFS力 0%
RF
力 9%程度であれば、オフセット値 OFSを付カ卩した場合のシンボルエラーレートは 改善している。特に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSが概ね 4
RF
%程度であるときに、シンボルエラーレートが最も小さくなる。
[0140] 尚、シンボルエラーレートが最も小さくなるとき、後述する全体 β値は 15. 0%であり 、部分 j8値は 19. 0%であり、 α値は 5. 4%であることを付記しておく。 [0141] このように、オフセット値 OFSを付カ卩しない場合のシンボルエラーレートと比較して、 オフセット値 OFSを付カ卩した場合のシンボルエラーレートは改善していることが分か る。特に、ァシンメトリと同一極性のオフセット値 OFSを付加することで、シンボルエラ 一レートが改善して 、ることが分かる。
[0142] 図 14 (a)力も図 14 (c)において示したシンボルエラーレートが最も小さくなるときの 、ァシンメトリ値とオフセット値 OFSとをプロットしたグラフが、図 15に示される。図 15 に示すように、読取信号 R の振幅で正規化されたオフセット値 OFSは、 OFS = 0.
RF
3947 Xアシンメトリー 0. 2895にて示される。
[0143] ここで、図 16 (a)及び図 16 (b)に示される、各ランレングスの記録データの、ランレ ングスを考慮しない出現確率に着目してみる。
[0144] 図 16 (a)には、光ディスク 100の一具体例である Blu— ray Discにランダムデータ を記録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングス を考慮した出現確率を示している。図 16 (a)に示すように、 1ECCブロック中におい ては、ランレングスが 2Tの記録データの出現確率は約 38%であり、ランレングスが 3 Tの記録データの出現確率は約 25%であり、ランレングスが 4Tの記録データの出現 確率は約 16%であり、ランレングスが 5Tの記録データの出現確率は約 10%であり、 ランレングスが 6Tの記録データの出現確率は約 6%であり、ランレングスが 7Tの記 録データの出現確率は約 3%であり、ランレングスが 8Tの記録データの出現確率は 約 1. 6%であり、ランレングスが 9Tの記録データの出現確率は約 0. 35%である。
[0145] 尚、ここで示す出現確率(図中の T出現確率)は、ランレングスを考慮しない出現確 率である。つまり、ランレングスが 2Tの記録データと、ランレングスが 3Tの記録データ と、ランレングス力 S4Tの記録データと、ランレングスが 5Tの記録データと、ランレング スが 6Tの記録データと、ランレングスが 7Tの記録データと、ランレングスが 8Tの記録 データと、ランレングスが 9Tの記録データとの夫々の、出現確率を算出する際の重 み付けは同一である。つまり、あるランレングスの記録データが 1つ出現すれば、その 出現回数が 1回とカウントされる場合の出現確率を示して ヽる。
[0146] 係る出現確率と図 15に示すグラフ(或いは、数式)を考慮するに、図 15に示すオフ セット値を求めるための数式におけるァシンメトリに掛け合わせる係数 0. 3947と、ラ ンレングスが 2Tの記録データの出現確率 38% (0. 3809)とは、概ね同一の値であ るとみなすことができる。このため、読取信号 R の振幅で正規ィ匕されたオフセット値
RF
OFSは、ランレングスが最も短い記録データの、ランレングスを考慮しない出現確率 に、ァシンメトリ値を乗じた値で近似することができる。つまり、光ディスク 100の一具 体例である Blu— ray Discにおいては、読取信号 R の振幅で正規化されたオフセ
RF
ット値 OFSは、 0. 3809 Xァシンメトリ値で近似することができる。
[0147] また、図 16 (b)には、光ディスク 100の一具体例である DVDにランダムデータを記 録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングスを考 慮しない出現確率を示している。図 16 (b)に示すように、 1ECCブロック中には、ラン レングスが 3Tの記録データの出現確率は約 32%であり、ランレングスが 4Tの記録 データの出現確率は約 24%であり、ランレングスが 5Tの記録データの出現確率は 約 17%であり、ランレングスが 6Tの記録データの出現確率は約 11. 5%であり、ラン レングスが 7Tの記録データの出現確率は約 7%であり、ランレングスが 8Tの記録デ ータの出現確率は約 4%であり、ランレングスが 9Tの記録データの出現確率は約 2 %であり、ランレングスが 10Tの記録データの出現確率は約 1. 3%であり、ランレング スが 11Tの記録データの出現確率は約 0. 24%であり、ランレングスが 14Tの記録デ ータの出現確率は約 0. 3%である。この場合も、読取信号 R の振幅で正規化され
RF
たオフセット値 OFSは、ランレングスが最も短い記録データの、ランレングスを考慮し ない出現確率に、ァシンメトリ値を乗じた値で近似することができる。つまり、つまり、 光ディスク 100の一具体例である DVDにおいては、読取信号 R の振幅で正規化さ
RF
れたオフセット値 OFSは、 0. 3184 Xァシンメトリ値で近似することができる。
[0148] もちろん、 Blu— ray Discや DVD以外の光ディスクにおいても同様に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSは、ランレングスが最も短い記録データ
RF
の、ランレングスを考慮しない出現確率 Xァシンメトリ値で近似することができる。
[0149] 以上説明したように、オフセット生成回路 19— 2は、ァシンメトリ値に基づいてオフセ ット値 OFSを生成する。
[0150] このように、オフセット値 OFSを付加することで、再生特性 (例えば、シンボルエラー レート)が改善することは、以下のような理由力 説明できる。 [0151] 図 17の上側に示すように、マークを形成することによって、レーザ光 LBの反射率が 減少する光ディスク 100を対象として!/、る場合には、 minTスペースの信号レベルが 、 minTマークの信号レベルよりも大きくなる。この場合、ァシンメトリが大きくなるにつ れて、 minTの信号波形が、全ての Tのセンターレベル(つまり、リファレンスレベルな いしはゼロレベル)に対して、徐々に下側(つまり、負の側)へシフトする。ァシンメトリ がある程度大きくなると、 minTスペースの頂点の信号レベル力 全ての Tのセンター レベルを下回ってしまいかねない。この場合、 minTを波形歪みと誤認識してしまい かねない。その結果、図 18に示すように、 minTが波形歪みとして補正されることで、 minTに相当する信号が 2値化信号中に現れず、シンボルエラーレートの悪化につ ながってしまう。
[0152] 同様に、図 17の下側に示すように、マークを形成することによって、レーザ光 LBの 反射率が増加する光ディスク 100を対象としている場合には、 minTスペースの信号 レベル力 minTマークの信号レベルよりも小さくなる。この場合、ァシンメトリが大きく なるにつれて、 minTの信号波形が、全ての Tのセンターレベル(つまり、リファレンス レベルないしはゼロレベル)に対して、徐々に上側(つまり、正の側)へシフトする。ァ シンメトリがある程度大きくなると、 minTスペースの頂点の信号レベル力 全ての丁の センターレベルを上回ってしまいかねない。この場合、 minTを波形歪みと誤認識し てしまいかねない。その結果、 minTが波形歪みとして補正されることで、 minTに相 当する信号が 2値ィ匕信号中に現れず、シンボルエラーレートの悪ィ匕につながってしま
[0153] しかるに、本実施例によれば、オフセット値 OFSを付加することで、 minTの信号波 形をシフトさせることができる。その結果、上述した minTスペースの頂点の信号レべ ルカ 全ての Tのセンターレベルを下回る又は上回る不都合を好適に防止することが できる。その結果、シンボルエラーレートの悪ィ匕を好適に防止することができる。
[0154] (3- 2)全体 j8値に基づくオフセット値 OFSの付カロ
続いて、図 19及び図 20を参照して、全体 |8値に基づくオフセット値 OFSの付加に ついて説明する。ここに、図 19は、全体 j8値を概念的に示す波形図であり、図 20は 、読取信号 R の振幅で正規化された全体 )8値に対する読取信号 R の振幅で正規 化されたオフセット値の変化を示すグラフである。
[0155] 図 19に示すように、全体 β値は、全ての種類のランレングスの記録データ(例えば 、光ディスク 100が DVDであればランレングス 3Τから 11T及び 14Tの夫々の記録デ ータであり、光ディスク 100が Blu— ray Discであればランレングス 2Tから 9Tの記 録データ)に対応する夫々の読取信号 R の振幅中心の平均位置を示す。具体的に
RF
は、全ての種類のランレングスの記録データに対応する読取信号 R の振幅中心(つ
RF
まり、全 Τセンターレベル)を基準とする(つまり、原点又は基点とする)上側(正側)の 最大振幅(トップ振幅)の大きさを A1とし、全ての種類のランレングスの記録データに 対応する読取信号 R の
RF 振幅中心を基準とする下側 (負側)の最大振幅 (ボトム振幅
)の大きさを Α2とすると、全体 β値 = (Al +Α2) / (A1— Α2)にて示される。
[0156] 図 14 (a)力も図 14 (c)において示したシンボルエラーレートが最も小さくなるときの 、全体 j8値とオフセット値 OFSとをプロットしたグラフ力 図 20に示される。図 20に示 すように、読取信号 R の振幅で正規化されたオフセット値 OFSは、 OFS = 0. 3506
RF
X全体 j8値一 1. 2768にて示される。
[0157] 係る出現確率と図 15に示すグラフ(或いは、数式)を考慮するに、読取信号 R の
RF
振幅で正規ィ匕されたオフセット値 OFSは、ランレングスが最も短い記録データの出現 確率に全体 j8値を乗じた値で近似することができる。つまり、光ディスク 100の一具 体例である Blu— ray Discにおいては、読取信号 R の振幅で正規化されたオフセ
RF
ット値 OFSは、 0. 3809 X全体 j8値で近似することができる。
[0158] 同様に、光ディスク 100の一具体例である DVDにおいては、読取信号 R の振幅
RF
で正規化されたオフセット値 OFSは、 0. 3184 X全体 j8値で近似することができる。
[0159] もちろん、 Blu— ray Discや DVD以外の光ディスクにおいても同様に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSは、ランレングスが最も短い記録データ
RF
の、ランレングスを考慮しない出現確率 X全体 β値で近似することができる。
[0160] 以上説明したように、オフセット生成回路 19— 2は、全体 |8値に基づいてオフセット 値 OFSを生成する。このように全体 13値に基づいてオフセット値 OFSを生成しても、 ァシンメトリ値に基づいてオフセット値 OFSを生成した場合と同様の効果を好適に享 受することができる。 [0161] (3— 3)部分 |8値に基づくオフセット値 OFSの付カロ
続いて、図 21及び図 22を参照して、部分 j8値に基づくオフセット値 OFSの付加に ついて説明する。ここに、図 21は、部分 j8値を概念的に示す波形図であり、図 22は 、読取信号 R の振幅で正規化された部分 )8値に対する読取信号 R の振幅で正規
RF RF
化されたオフセット値の変化を示すグラフである。
[0162] 図 21に示すように、部分 |8値は、ランレングスが最も短い記録データに対応する読 取信号 の振幅中心と、ランレングスが 2番目に短い記録データに対応する読取信
RF
号 の振幅中心とのずれを示す。具体的には、ランレングスが最も短い記録データに
RF
対応する読取信号の振幅中心を IminCntとし、 IminCntを基準とするランレングスが 2番目に短い記録データに対応する読取信号 R のトップ振幅の大きさを Imin+ 1H
RF
とし、 IminCntを基準とするランレングスが 2番目に短い記録データに対応する読取 信号 R のボトム振幅の大きさを Imin+ 1Lとすると、部分 β値 = (lmin+ 1H+Imin
RF
+ lL)Z(Imin+ lH— Imin+ 1L)にて示される。尚、 IminCntは、ランレングスが 最も短 ヽ記録データに対応する読取信号 R のトップ振幅値 IminHとボトム振幅値 I
RF
minLとの平均値である。
[0163] 図 14 (a)力も図 14 (c)において示したシンボルエラーレートが最も小さくなるときの 、部分 j8値とオフセット値 OFSとをプロットしたグラフ力 図 22に示される。図 22に示 すように、読取信号 R の振幅で正規化されたオフセット値 OFSは、 OFS = 0. 2213
RF
X部分 j8値一 0. 1721にて示される。
[0164] ここで、図 16 (a)及び図 16 (b)に示される、各ランレングスの記録データの、ランレ ングスを考慮した出現確率に着目してみる。
[0165] 図 16 (a)には、光ディスク 100の一具体例である Blu— ray Discにランダムデータ を記録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングス を考慮した出現確率を示している。図 16 (a)に示すように、 1ECCブロック中におい ては、ランレングスが 2Tの記録データの出現確率は約 22%であり、ランレングスが 3 Tの記録データの出現確率は約 22%であり、ランレングスが 4Tの記録データの出現 確率は約 19%であり、ランレングスが 5Tの記録データの出現確率は約 14%であり、 ランレングスが 6Tの記録データの出現確率は約 10%であり、ランレングスが 7Tの記 録データの出現確率は約 6%であり、ランレングスが 8Tの記録データの出現確率は 約 4%であり、ランレングスが 9Τの記録データの出現確率は約 0. 9%である。
[0166] 尚、ここで示す出現確率(図中のサンプル出現確率)は、ランレングスを考慮した出 現確率である。つまり、ランレングスが 2Τの記録データと、ランレングスが 3Τの記録 データと、ランレングスが 4Τの記録データと、ランレングスが 5Τの記録データと、ラン レングスが 6Τの記録データと、ランレングスが 7Τの記録データと、ランレングスが 8Τ の記録データと、ランレングスが 9Τの記録データとの夫々の、出現確率を算出する 際の重み付けは、ランレングスに比例する。つまり、ランレングスが ηΤの記録データ 力 つ出現すれば(つまり、サンプリングすることで η個のサンプル値を含む記録デー タが 1つ出現すれば)、その出現回数が η回とカウントされる場合の出現確率を示して いる。
[0167] 係る出現確率と図 22に示すグラフ(或いは、数式)を考慮するに、図 22に示すオフ セット値を求めるための数式における部分 j8値に掛け合わせる係数 0. 2213と、ラン レングスが 2Tの記録データの出現確率 22% (0. 2255)とは、概ね同一の値である とみなすことができる。このため、読取信号 R の振幅で正規ィ匕されたオフセット値 O
RF
FSは、ランレングスが最も短い記録データの、ランレングスを考慮した出現確率に、 部分 j8値を乗じた値で近似することができる。つまり、光ディスク 100の一具体例であ る Blu— ray Discにおいては、読取信号 R の振幅で正規化されたオフセット値 OF
RF
Sは、 0. 2255 X部分 |8値で近似することができる。
[0168] また、図 16 (b)には、光ディスク 100の一具体例である DVDにランダムデータを記 録した場合の、 1ECCブロック中の各ランレングスの記録データの、ランレングスを考 慮した出現確率を示している。図 16 (b)に示すように、 1ECCブロック中には、ランレ ンダスが 3Tの記録データの出現確率は約 20%であり、ランレングスが 4Tの記録デ ータの出現確率は約 20%であり、ランレングスが 5Tの記録データの出現確率は約 1 8%であり、ランレングスが 6Tの記録データの出現確率は約 14%であり、ランレング スが 7Tの記録データの出現確率は約 10%であり、ランレングスが 8Tの記録データ の出現確率は約 7%であり、ランレングスが 9Tの記録データの出現確率は約 4. 5% であり、ランレングスが 10Tの記録データの出現確率は約 3%であり、ランレングスが 1 ITの記録データの出現確率は約 0. 5%であり、ランレングスが 14Tの記録データ の出現確率は約 0. 9%である。この場合も、読取信号 R の振幅で正規ィ匕されたォ
RF
フセット値 OFSは、ランレングスが最も短い記録データの、ランレングスを考慮した出 現確率に、部分 j8値を乗じた値で近似することができる。つまり、つまり、光ディスク 1 00の一具体例である DVDにおいては、読取信号 R の振幅で正規ィ匕されたオフセ
RF
ット値 OFSは、 0. 2026 X部分 |8値で近似することができる。
[0169] もちろん、 Blu— ray Discや DVD以外の光ディスクにおいても同様に、読取信号 R の振幅で正規ィ匕されたオフセット値 OFSは、ランレングスが最も短い記録データ
RF
の、ランレングスを考慮した出現確率 X部分 β値で近似することができる。
[0170] 以上説明したように、オフセット生成回路 19— 2は、部分 j8値に基づいてオフセット 値 OFSを生成する。このように部分 β値に基づ 、てオフセット値 OFSを生成しても、 ァシンメトリ値に基づいてオフセット値 OFSを生成した場合と同様の効果を好適に享 受することができる。
[0171] (3-4) α値に基づくオフセット値 OFSの付カロ
続いて、図 23を参照して、 α値に基づくオフセット値 OFSの付カ卩について説明す る。ここに、図 23は、 α値を概念的に示す波形図である。
[0172] 図 23に示すように、 α値は、全ての種類のランレングスの記録データ(例えば、光 ディスク 100が DVDであればランレングス 3Τから 11T及び 14Tの夫々の記録データ であり、光ディスク 100が Blu— ray Discであればランレングス 2Tから 9Tの記録デ ータ)に対応する夫々の読取信号 R の振幅中心(つまり、リファレンスレベルであり、
RF
本実施例においてはゼロレベル)に対する、ランレングスが最も短い記録データに対 応する読取信号 R の振幅中心の乖離率を示す。具体的には、全ての種類のランレ
RF
ンダスの記録データに対応する読取信号 R の振幅中心(つまり、全 Τセンターレべ
RF
ル)を基準とするランレングスが最も長 、記録データに対応する読取信号 R のトップ
RF
振幅の大きさを ImaxHとし、全ての種類のランレングスの記録データに対応する読 取信号 R の振幅中心(つまり、全 Tセンターレベル)を基準とするランレングスが最も
RF
長い記録データに対応する読取信号 R のボトム振幅の大きさを IminLとし、全ての
RF
種類のランレングスの記録データに対応する夫々の読取信号 R の振幅中心に対す る、ランレングスが最も短い記録データに対応する読取信号 R の振幅中心のずれ
RF
量を ARefとすると、 α値 = Δ Ref / (imaxH - ImaxL)にて示される。
[0173] この場合、オフセット生成回路 19— 2は、 α値をオフセット値 OFSとして加算器 19 —1へ出力する。つまり、オフセット生成回路 19— 2は、 α値そのものを生成する。こ のように、 α値に基づいてオフセット値 OFSを生成しても、ァシンメトリ値に基づいて オフセット値 OFSを生成した場合と同様の効果を好適に享受することができる。
[0174] 尚、図 7に示した動作例では、波形歪み補正条件がただ 1つ設定されている。しか しながら、複数の波形歪み補正条件を設定しておき、それらを順に適用しながら波形 歪み補正を行うように構成してもよい。この場合の動作例について、図 24を参照して 説明する。ここに、図 24は、加算器 19— 1、オフセット付カ卩回路 19— 2及び波形歪み 補正回路 18の他の動作の流れを概念的に示すフローチャートである。
[0175] 図 24に示すように、まず、光ディスク 100に記録されたデータの再生動作が行われ る (ステップ S101)。再生動作の際には、オフセット生成回路 19— 2の動作により、読 取信号 R (より具体的には、読取サンプル値系列 RS )に対してオフセット値 OFSを
RF C
付加するか否かが判定される (ステップ S 102)。
[0176] ステップ S102における判定の結果、オフセット値 OFSを付カ卩しないと判定された場 合には(ステップ S 102: No)、ステップ S 104へ進む。
[0177] 他方、ステップ S102における判定の結果、オフセット値 OFSを付加すると判定され た場合には(ステップ S102 : Yes)、オフセット生成回路 19— 2の動作によりオフセッ ト値 OFSが生成され、加算器 19— 1の動作により該生成されたオフセット値 OFSが 読取信号 R (より具体的には、読取サンプル値系列 RS )に付加された後 (ステップ
RF C
S103)、ステップ S 104へ進む。
[0178] その後、シンボルエラーレートが所定閾値以上である力否力、エラー訂正が不可能 であるか否か、又は同期データが読取不可能である力否かが逐次判定される (ステツ プ S104)。
[0179] ステップ S104における判定の結果、シンボルエラーレートが所定閾値以上でない 、且つエラー訂正が不可能でない、且つ同期データが読取不可能でないと判定され た場合には(ステップ S 104 : No)、ステップ S 109へ進む。 [0180] 他方、ステップ S104における判定の結果、シンボルエラーレートが所定閾値以上 である、エラー訂正が不可能である、又は同期データが読取不可能であると判定さ れた場合には (ステップ S 104 : Yes)、続いて、長マークの波形歪みが測定される (ス テツプ S105)。その後、波形歪みが所定値以上であるか否かが判定される (ステップ S106)。
[0181] ステップ S106における判定の結果、波形歪みが所定値以上でない(例えば、波形 歪み率が概ね 30%以下である)と判定された場合には (ステップ S 106: No)、ステツ プ S 109へ進む。
[0182] 他方、ステップ S106における判定の結果、波形歪みが所定値以上である(例えば 、波形歪み率が概ね 30%以上である)と判定された場合には (ステップ S 106: Yes) 、続いて、波形歪みの補正レベルや補正範囲等の波形歪み補正条件 # x (但し、 Xは 、 1を初期値とする、 1以上の整数)が設定される (ステップ S201)。その後、ステップ S201にお 、て設定された波形歪み補正条件 # Xに基づ!/、て、長マークの波形歪み が補正される (ステップ S 108)。
[0183] 続 、て、波形歪み補正条件 # Xに基づく波形歪みの補正の結果、目標条件が実現 された力否かが判定される (ステップ S 202)。目標条件としては、例えばステップ S10 2における判定条件(つまり、シンボルエラーレートが所定閾値以上である、又はエラ 一訂正が不可能である)を用いてもよ!、。
[0184] ステップ S202における判定の結果、目標条件が実現されたと判定された場合には
(ステップ S202 : Yes)、ステップ S 109へ進む。
[0185] 他方、ステップ S202における判定の結果、目標条件が実現されていないと判定さ れた場合には (ステップ S202 :No)、 Xが 1だけインクリメントされた後(ステップ S203 )、再度ステップ S201以降の動作が繰り返される。つまり、目標条件を実現するまで 、波形歪み補正条件を適宜変更しながら波形歪みの補正が行われる。
[0186] 尚、複数の波形歪み補正条件としては、図 26から図 39を参照して以下に詳述する 変形例における動作で用いられる波形歪み補正条件を用いることが好まし 、。
[0187] また、上述の実施例では、オフセット値 OFSの付カ卩は、再生の都度 1回ずつ行う構 成を採用している。し力しながら、再生の都度複数回ずつ段階的にオフセット値を付 加するように構成してもよい。この場合の動作例について、図 25を参照して説明する 。ここに、図 25は、加算器 19— 1、オフセット付カ卩回路 19— 2及び波形歪み補正回 路 18の他の動作の流れを概念的に示すフローチャートである。
[0188] 図 25に示すように、まず、光ディスク 100に記録されたデータの再生動作が行われ る(ステップ S101)。ここで、オフセット値 OFSの付カ卩の際に用いられる変数 nが初期 値 0に設定される (ステップ S401)。再生動作の際には、オフセット生成回路 19— 2 の動作により、読取信号 R (より具体的には、読取サンプル値系列 RS )に対してォ
RF C
フセット値 OFSを付加するか否かが判定される(ステップ S 102)。
[0189] ステップ S102における判定の結果、オフセット値 OFSを付カ卩しないと判定された場 合には(ステップ S 102: No)、ステップ S 104へ進む。
[0190] 他方、ステップ S102における判定の結果、オフセット値 OFSを付加すると判定され た場合には (ステップ S 102 : Yes)、変数 nを 1だけインクリメントした後 (ステップ S402
)、オフセット生成回路 19 2の動作により、読取信号 R の振幅で正規化されたオフ
RF
セット値 OFSの値カ %となるようにオフセット値 OFSが生成され、加算器 19—1の 動作により該生成されたオフセット値 OFSが読取信号 R (より具体的には、読取サ
RF
ンプル値系列 RS )に付カ卩された後(ステップ S403)、ステップ S 104へ進む。
c
[0191] その後、シンボルエラーレートが所定閾値以上である力否力、エラー訂正が不可能 であるか否か、又は同期データが読取不可能である力否かが逐次判定される (ステツ プ S104)。
[0192] ステップ S104における判定の結果、シンボルエラーレートが所定閾値以上でない 、且つエラー訂正が不可能でない、且つ同期データが読取不可能でないと判定され た場合には(ステップ S 104 : No)、ステップ S 109へ進む。
[0193] 他方、ステップ S104における判定の結果、シンボルエラーレートが所定閾値以上 である、エラー訂正が不可能である、又は同期データが読取不可能であると判定さ れた場合には (ステップ S 104 : Yes)、続いて、長マークの波形歪みが測定される (ス テツプ S105)。その後、波形歪みが所定値以上であるか否かが判定される (ステップ S106)。
[0194] ステップ S106における判定の結果、波形歪みが所定値以上でない(例えば、波形 歪み率が概ね 30%以下である)と判定された場合には (ステップ S 106 : No)、続いて 、オフセット値 OFSを付加した回数であるリトライ回数が所定値以上である力否かが 判定される(ステップ S404)。
[0195] ステップ S404における判定の結果、リトライ回数が所定以上でないと判定された場 合には(ステップ S404 :No)、ステップ S102へ戻り、ステップ S102以降の動作を繰 り返す。
[0196] 他方、ステップ S404における判定の結果、リトライ回数が所定以上であると判定さ れた場合には(ステップ S404: Yes)、ステップ S 109へ進む。
[0197] 他方、ステップ S106における判定の結果、波形歪みが所定値以上である(例えば 、波形歪み率が概ね 30%以上である)と判定された場合には (ステップ S 106: Yes) 、続いて、波形歪みの補正レベルや補正範囲等の波形歪み補正条件が設定される( ステップ S107)。その後、ステップ S 107において設定された波形歪み補正条件に 基づいて、長マークの波形歪みが補正される(ステップ S 108)。
[0198] その後、再生動作を終了する力否かが判定され (ステップ S109)、再生動作を終了 しない場合には(ステップ S109 :No)、ステップ S101へ戻り、再度ステップ S101以 降の動作が繰り返される。
[0199] (4)変形例
続いて、図 26から図 39を参照して、本実施例に係る情報再生装置 1の変形例につ いて説明を進める。
[0200] (4 1)第 1変形例
初めに、図 26及び図 27を参照して、第 1変形例に係る情報再生装置 laについて 説明する。ここに、図 26は、第 1変形例に係る情報再生装置 laが備える波形歪み補 正回路 18aによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に示す
C
波形図であり、図 27は、第 1変形例に係る情報再生装置 laが備える波形歪み補正 回路 18aの構成を概念的に示すブロック図である。
[0201] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては
、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0202] 図 26に示すように、第 1変形例においては、歪み補正値 amdとして、ランレングスが (min+ 3) Tのマークのセンターサンプル(つまり、図 5 (a)から図 5 (c)に示す波形歪 みに対しては、(min+ 3)Tのマークの最小振幅値であり、図 6 (a)から図 6 (c)に示 す波形歪みに対しては、(min+ 3) Tのマークの最大振幅値)の平均値が用いられる
[0203] 尚、(min+k)Tは、ランレングスが k+ 1 (但し、 kは 1以上の整数)番目に短い記録 データに対応する読取信号 R (より具体的には、該読取信号 R に対応する読取サ
RF RF
ンプル値系列 RS )を示している。従って、(min+ 3)Tは、ランレングスが 4番目に短
c
い記録データに対応する読取信号 R (より具体的には、該読取信号 R に対応する
RF RF
読取サンプル値系列 RS )を示している。例えば、光ディスク 100が DVDであれば、
c
(min+ 3)Tは、ランレングスが 6Tの記録データに対応する読取信号 R を示してい
RF
る。例えば、光ディスク 100が Blu— ray Discであれば、(min+ 3)Tは、ランレング スが 5Tの記録データに対応する読取信号 R を示している。
RF
[0204] この場合、波形歪み補正回路 18aは、図 27に示すように、遅延調整回路 181と、歪 み補正値検出回路 182aと、マーク Zスペース長検出回路 183と、タイミング生成回 路 184と、セレクタ 185とを備えている。
[0205] 歪み補正値検出回路 182aは、マーク Zスペース長検出回路 183より出力されるマ ーク Zスペース長をモニタリングしながら、ランレングスが(min+ 3)Tである記録デ ータが入力された場合に、そのセンターサンプル値をホールドして平均化し、歪み補 正値 amdとしてセレクタ 185へ出力する。
[0206] このように、歪み補正値 amdとして、ランレングスが(min+ 3)Tである記録データの センターサンプルの平均値を用いても、上述した各種効果を好適に享受することが できる。
[0207] 更に、場合によっては、波形歪みが補正されることで、補正後の信号レベルが、元 の信号レベル(つまり、補正前の信号レベル)よりも増加する。このため、波形歪みが 補正されることで、信号レベルを、読取信号 R の最大振幅に近づけることができる。
RF
その結果、特に PRML (Partial Response Maximum Likelihood)を採用する情報再生 装置において、記録データをより好適に再生することができる。
[0208] 尚、歪み補正値 amdとして、ランレングスが(min+ 3)Tである記録データのセンタ 一サンプルの平均値に代えて、他のランレングスを有する記録データのセンターサン プルの平均値を用いてもよい。この場合、他のランレングスを有する記録データとして
、最大振幅を実現できる記録データであることが好まし 、。
[0209] (4 2)第 2変形例
続いて、図 28及び図 29を参照しながら、第 2変形例に係る情報再生装置 lbにつ いて説明する。ここに、図 28は、第 2変形例に係る情報再生装置 lbが備える波形歪 み補正回路 18bによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に
C
示す波形図であり、図 29は、第 2変形例に係る情報再生装置 lbが備える波形歪み 補正回路 18bの構成を概念的に示すブロック図である。
[0210] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては
、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0211] 図 28に示すように、第 2変形例においては、歪み補正値 amdとして、読取サンプル 値系列 RS を示すためのデジタルコードの最大値又は最小値 (具体的には、図 5 (a)
H
力 図 5 (c)に示す波形歪みに対しては、デジタルコードの最小値であり、図 6 (a)か ら図 6 (c)に示す波形歪みに対しては、デジタルコードの最大値)が用いられる。例え ば、デジタルコードが 8ビットであれば、デジタルコードの最大値は、 2' (8— 1)—1 =
127となり、デジタノレコードの最 /J、値は、 - 2" (8— 1) = 128となる。
[0212] この場合、波形歪み補正回路 18bは、図 29に示すように、遅延調整回路 181と、歪 み補正値検出回路 182bと、マーク Zスペース長検出回路 183と、タイミング生成回 路 184と、セレクタ 185とを備えている。
[0213] 歪み補正値検出回路 182aは、デジタルコードの最大値又は最小値を、歪み補正 値 amdとしてセレクタ 185へ出力する。
[0214] このように、歪み補正値 amdとして、デジタルコードの最大値又は最小値を用いても
、上述した各種効果を好適に享受することができる。
[0215] 力!]えて、歪み補正値 amdを逐次検出する必要がなくなるため、波形歪み補正回路
18bの負荷 (つまり、情報再生装置 lbの負荷)を相対的に低減させることができる。
[0216] 尚、デジタルコードの最大値又は最小値に限らず、所定の固定値を歪み補正値 a mdとして用いたとしても、波形歪み補正回路 18bの負荷 (つまり、情報再生装置 lb の負荷)を相対的に低減させつつ、上述した各種効果を好適に享受することができる
[0217] (4 3)第 3変形例
続いて、図 30及び図 31を参照して、第 3変形例に係る情報再生装置 lcについて 説明する。ここに、図 30は、第 3変形例に係る情報再生装置 lcが備える波形歪み補 正回路 18cによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に示す
C
波形図であり、図 31は、第 3変形例に係る情報再生装置 lcが備える波形歪み補正 回路 18cの構成を概念的に示すブロック図である。
[0218] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては
、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0219] 図 30に示すように、第 3変形例においては、歪み補正値 amdとして、リミットィコライ ザ 15における振幅制限値の上限 L又は下限— L (具体的には、図 5 (a)から図 5 (c) に示す波形歪みに対しては、振幅制限値の下限 Lであり、図 6 (a)から図 6 (c)に示 す波形歪みに対しては、振幅制限値の上限 L)が用いられる。
[0220] この場合、波形歪み補正回路 18cは、図 31に示すように、遅延調整回路 181と、マ ーク Zスペース長検出回路 183と、タイミング生成回路 184と、セレクタ 185とを備え ている。
[0221] セレクタ 185は、ハイレベルのタイミング信号 SWがタイミング生成回路 184から出 力されている場合には、リミットイコライザ 15の振幅制限値の上限 L又は下限— Lを、 歪み補正サンプル値系列 RS として出力する。
CAM
[0222] このように、歪み補正値 amdとして、リミットイコライザ 15における振幅制限値の上限 L又は下限—Lを用いても、上述した各種効果を好適に享受することができる。
[0223] 力!]えて、波形歪みの信号レベルがリミットイコライザ 15の振幅制限値の上限 L又は 下限— Lに補正されるため、リミットイコライザ 15において、本来発生するべきでない 波形歪みを強調してしまう不都合を確実に防止することができる。更には、波形歪み が強調されることに起因して、例えば PRMLを採用する情報再生装置においては、 例えばランレングスが相対的に長いマークを他のマークと誤判別してしまう不都合を 好適に防止することができる。その結果、波形歪みに起因して 2値ィ匕エラーが発生す ることは殆どなくなり、好適な再生動作を行うことができる。
[0224] 尚、歪み補正値 amdとして、リミットイコライザ 15における振幅制限値の上限 L以上 の値又は下限— L以下の値を用いるように構成してもよい。このように構成しても、上 述した各種効果を好適に享受することができる。
[0225] (4 4)第 4変形例
続いて、図 32及び図 33を参照して、第 4変形例に係る情報再生装置 Idについて 説明する。ここに、図 32は、第 4変形例に係る情報再生装置 Idが備える波形歪み補 正回路 18dによる波形歪みの補正動作を、サンプル値系列 RS上で概念的に示す
C
波形図であり、図 33は、第 4変形例に係る情報再生装置 Idが備える波形歪み補正 回路 18dの構成を概念的に示すブロック図である。
[0226] 尚、上述した実施例における各種構成及び動作と同一の構成及び動作に関しては
、同一の参照符号を付することで、それらの詳細な説明については省略する。
[0227] 図 32に示すように、第 4変形例においては、歪み補正値 amdとして、リミットィコライ ザ 15における振幅制限値の上限 L又は下限— L (具体的には、図 5 (a)から図 5 (c) に示す波形歪みに対しては、振幅制限値の下限 Lであり、図 6 (a)から図 6 (c)に示 す波形歪みに対しては、振幅制限値の上限 L)の 2倍の値 (つまり、 2L又は 2L)が 用いられる。
[0228] この場合、波形歪み補正回路 18dは、図 33に示すように、遅延調整回路 181と、増 幅器 182dと、マーク Zスペース長検出回路 183と、タイミング生成回路 184と、セレ クタ 185とを備えている。
[0229] 増幅器 182dは、リミットイコライザ 15の振幅制限値の上限 L又は下限— Lを 2倍に 増幅した後に、歪み補正値 amdとしてセレクタ 185へ出力する。
[0230] このように、歪み補正値 amdとして、リミットイコライザ 15における振幅制限値の上限
L又は下限 Lの 2倍の値を用いても、上述した各種効果を好適に享受することがで きる。
[0231] 力!]えて、波形歪みの信号レベルがリミットイコライザ 15の振幅制限値の上限 L又は 下限— Lに補正されるため、リミットイコライザ 15において、本来発生するべきでない 波形歪みを強調してしまう不都合を確実に防止することができる。更には、波形歪み が強調されることに起因して、例えば PRMLを採用する情報再生装置においては、 例えばランレングスが相対的に長いマークを他のマークと誤判別してしまう不都合を 好適に防止することができる。その結果、波形歪みに起因して 2値ィ匕エラーが発生す ることは殆どなくなり、好適な再生動作を行うことができる。
[0232] 更には、読取信号 R にノイズ成分が重畳してしまった場合であっても、波形歪み
RF
の信号レベルを振幅制限値の上限 L又は下限 Lの 2倍以下の信号レベルに補正 するため、波形歪みが振幅制限値の上限 L以下又は下限 L以上の値となる不都合 を確実に防止することができる。この結果、例えば、長マークを他のマークと誤判別し てしまう不都合を好適に防止することができる。その結果、波形歪みに起因して 2値 化工ラーが発生することは殆どなくなり、好適な再生動作を行うことができる。
[0233] (4 5)第 5変形例
続いて、図 34から図 37を参照して、第 5変形例に係る情報再生装置 leについて説 明する。ここに、図 34は、第 5変形例に係る情報再生装置 leが備える波形歪み補正 回路 18eによる波形歪みの補正動作を、第 1の読取信号 R 上で概念的に示すタイミ
RF
ングチャートであり、図 35は、第 5変形例に係る情報再生装置 leが備える波形歪み 補正回路 18eによる波形歪みの補正動作を、第 2の読取信号 R 上で概念的に示す
RF
タイミングチャートであり、図 36は、第 5変形例に係る情報再生装置 leが備える波形 歪み補正回路 18eによる第 1の動作の流れを概念的に示すフローチャートであり、図 37は、第 5変形例に係る情報再生装置 leが備える波形歪み補正回路 18eによる第 2の動作の流れを概念的に示すフローチャートである。
[0234] 光ディスク 100に記録される記録データには、通常のユーザデータに加えて、該ュ 一ザデータを再生する際の同期をとるために用いられる同期データ (例えば、光ディ スク 100が DVDであればランレングス 14Tの記録データであり、光ディスク 100が B1 u-ray Discであればランレングス 9Tの記録データ)が含まれている。このような同 期データが記録データに含まれていることを考慮して、同期データに限定して波形 歪みを補正するように構成してもよ 、。
[0235] より具体的には、図 34に示すように、光ディスクが Blu— ray Discである場合には 、同期データは 9Tマークと 9Tスペースとにより構成されているため、まず、 9Tスぺー スを検出し、該検出された 9Tスペースの前又は後の波形歪みを補正するように構成 してもよい。また、同期データが出現する周期性に着目して、検出された 9Τスペース から、 1932T (或いは、 1932T士 α 1 : α 1は所定の定数)に相当する時間が経過し た位置 (或いは、該位置から j8 1Tだけずれた位置: β 1は所定の定数)付近の波形 歪みを補正するように構成してもよ 、。
[0236] また、図 35に示すように、光ディスクが DVDである場合には、同期データは 14Tマ ークまたは 14Tスペースであるため、まず、 14Tスペースを検出し、該検出された 14 Τスペースから、 1488T (或いは、 1488Τ± α 2 : α 2は定数)に相当する時間が経 過した位置 (或いは、該位置から j8 2Τだけずれた位置: β 2は所定の定数)付近の 波形歪みを補正するように構成してもよ ヽ。
[0237] この場合の動作の流れについて説明すると、図 36に示すように、まず、光ディスク 1 00に記録されたデータの再生動作が行われる (ステップ S101)。再生動作の際には 、オフセット生成回路 19 2の動作により、読取信号 R (より具体的には、読取サン
RF
プル値系列 RS )に対してオフセット値 OFSを付加する力否かが判定される (ステツ c
プ S102)。
[0238] ステップ S102における判定の結果、オフセット値 OFSを付カ卩しな 、と判定された場 合には(ステップ S 102 : No)、ステップ S301へ進む。
[0239] 他方、ステップ S102における判定の結果、オフセット値 OFSを付加すると判定され た場合には(ステップ S102 : Yes)、オフセット生成回路 19— 2の動作によりオフセッ ト値 OFSが生成され、加算器 19— 1の動作により該生成されたオフセット値 OFSが 読取信号 R (より具体的には、読取サンプル値系列 RS )に付加された後 (ステップ
RF C
S103)、ステップ S301へ進む。
[0240] その後、シンクスペース(つまり、同期データを構成するスペースであって、上述し た 9Tスペースや 14Tスペース等)が検出されるカゝ否かが判定される (ステップ S301)
[0241] ステップ S301における判定の結果、シンクスペースが検出されないと判定された場 合には (ステップ S301 :No)、再度ステップ S301に戻り、シンクスペースが検出され るか否かの判定動作が繰り返される。 [0242] 他方、ステップ S301における判定の結果、シンクスペースが検出されたと判定され た場合には(ステップ S301 : Yes)、続いて、シンクスペース力も nTに相当する時間 が経過した位置のマークを再生しているか否かが判定される(ステップ S302)。つま り、同期データが出現する周期性に着目して、検出されたシンクスペースから、例え ば上述した 1932T士 a 1ないしは 1488T士 a 2に相当する時間が経過した位置の マークを再生して 、るか否かが判定される。
[0243] ステップ S302における判定の結果、シンクスペースから nTに相当する時間が経過 した位置のマークを再生していないと判定された場合には (ステップ S302 : No)、ス テツプ S302の動作を繰り返す。
[0244] 他方、ステップ S302における判定の結果、シンクスペース力 nTに相当する時間 が経過した位置のマークを再生していると判定された場合には(ステップ S302 : Yes )、続いて、シンクスペースから nTに相当する時間が経過した位置付近において、同 期データに相当するマークの波形歪みが測定される (ステップ S 105)。以降は、図 7 に示した動作と同様の動作が行われる。
[0245] また、この場合も、図 37に示すように、図 24に示す動作例と同様に、複数の波形歪 み補正条件を設定しておき、それらを順に適用しながら波形歪み補正を行うように構 成してちょい。
[0246] 具体的には、図 37に示すように、まず、光ディスク 100に記録されたデータの再生 動作が行われる (ステップ S101)。再生動作の際には、オフセット生成回路 19— 2の 動作により、読取信号 R (より具体的には、読取サンプル値系列 RS )に対してオフ
RF C
セット値 OFSを付加するか否かが判定される(ステップ S 102)。
[0247] ステップ S102における判定の結果、オフセット値 OFSを付カ卩しな 、と判定された場 合には(ステップ S 102 : No)、ステップ S301へ進む。
[0248] 他方、ステップ S102における判定の結果、オフセット値 OFSを付加すると判定され た場合には(ステップ S102 : Yes)、オフセット生成回路 19— 2の動作によりオフセッ ト値 OFSが生成され、加算器 19— 1の動作により該生成されたオフセット値 OFSが 読取信号 R (より具体的には、読取サンプル値系列 RS )に付加された後 (ステップ
RF C
S 103)、ステップ S301へ進む。 [0249] その後、シンクスペース(つまり、同期データを構成するスペースであって、上述し た 9Tスペースや 14Tスペース等)が検出されるカゝ否かが判定される (ステップ S301)
[0250] ステップ S301における判定の結果、シンクスペースが検出されないと判定された場 合には (ステップ S301 : No)、再度ステップ S301に戻り、シンクスペースが検出され るか否かの判定動作が繰り返される。
[0251] 他方、ステップ S301における判定の結果、シンクスペースが検出されたと判定され た場合には(ステップ S301 : Yes)、続いて、シンクスペース力も nTに相当する時間 が経過した位置のマークを再生しているか否かが判定される(ステップ S302)。つま り、同期データが出現する周期性に着目して、検出されたシンクスペースから、例え ば上述した 1932T士 a 1ないしは 1488T士 a 2に相当する時間が経過した位置の マークを再生して 、るか否かが判定される。
[0252] ステップ S302における判定の結果、シンクスペースから nTに相当する時間が経過 した位置のマークを再生していないと判定された場合には (ステップ S302 : No)、ス テツプ S302の動作が繰り返される。
[0253] 他方、ステップ S302における判定の結果、シンクスペース力 nTに相当する時間 が経過した位置のマークを再生していると判定された場合には(ステップ S302 : Yes )、続いて、シンクスペースから nTに相当する時間が経過した位置付近において、同 期データに相当するマークの波形歪みが測定される (ステップ S 105)。以降は、図 2 4に示した動作と同様の動作が行われる。
[0254] このように、同期データが記録データに含まれていることを考慮しながら波形歪みを 補正することで、ユーザデータよりもその重要性が高い同期データの高域強調を好 適に行うことができ、その結果同期データの再生を好適に行うことができる。これによ り、再生動作の安定性をより一層高めることができる。
[0255] (4 6)第 6変形例
続いて、図 38及び図 39を参照して、第 6変形例に係る情報再生装置 Ifについて 説明する。ここに、図 38は、第 6変形例に係る情報再生装置 Ifが備える波形歪み補 正回路 18fの構成を概念的に示すブロック図であり、図 39は、第 6変形例に係る情報 再生装置 Ifが備える波形歪み補正回路 18fが備える波形歪み検出回路 186fの構 成を概念的に示すブロック図である。
[0256] 図 38に示すように、波形歪み補正回路 18fは、遅延調整回路 181と、波形歪み検 出回路 186fと、マーク Zスペース長検出回路 183と、タイミング生成回路 184と、セ レクタ 185と、 AND回路 187fを備えている。
[0257] この態様では、マーク Zスペース長検出回路 183によるマーク Zスペース長の検出 結果は、タイミング生成回路 184に加えて、波形歪み検出回路 186fへ出力される。
[0258] 波形歪み検出回路 186fは、波形歪みを検出し、且つ波形歪みを検出したことを示 す波形歪み検出信号 DTを AND回路 187fへ出力する。より具体的には、波形歪み 検出回路 186fは、波形歪みが検出されている場合には、ハイレベルの波形歪み検 出信号 DT(DT= 1)を AND回路 187fへ出力し、波形歪みが検出されていない場 合には、ローレベルの波形歪み検出信号 DT(DT=0)を AND回路 187fへ出力す る。
[0259] AND回路 187fは、タイミング生成回路 184及び波形歪み検出回路 186fの夫々の 出力に基づいて、波形歪みが検出された場合 (つまり、タイミング生成回路 184から 出力されるタイミング信号 SW及び波形歪み検出回路 186fから出力される波形歪み 検出信号 DTの夫々がハイレベルである場合)には、ハイレベルのタイミング信号 SW 0を生成する。他方、 AND回路 187fは、タイミング生成回路 184及び波形歪み検出 回路 186fの夫々の出力に基づいて、波形歪みが検出されていない場合 (つまり、タ イミング生成回路 184から出力されるタイミング信号 SW及び波形歪み検出回路 186 fから出力される波形歪み検出信号 DTのいずれか一方がローレベルである場合)に は、ローレベルのタイミング信号 SWOを生成する。つまり、第 6変形例においては、波 形歪みが検出されている場合に、選択的に波形歪みが補正される。
[0260] 波形歪み検出回路 186fは、図 39に示すように、シフトレジスタ 1831fと、セレクタ 1 832fと、最大値検出回路 1833fと、最小値検出回路 1834fと、減算器 1835fと、判 定回路 1836fとを備える。
[0261] 波形歪み検出回路 186fに入力される読取サンプル値系列 RS は、シフトレジスタ 1
C
831fに出力される。シフトレジスタ 1831fは、入力される読取サンプル値系列 RS を 1クロックずつシフトさせながら、出力 DOから D14としてセレクタ 1832fへ出力する。
[0262] セレクタ 1832fは、マーク Zスペース長検出回路 183から出力されるタイミングで、 出力 DOから D14のうち力 マーク Zスペース長に基づいて、 3つの出力を選択的に サンプルホールドし、歪み補正量検出回路 1837f、最大値検出回路 1833f及び最 小値検出回路 1834fの夫々に出力する。
[0263] より具体的には、セレクタ 1832fは、マーク Zスペース長検出回路 183から出力さ れるマーク Zスペース長が 6Tである場合には、出力 DOから D14のうちから 3つの出 力 D2、 D3及び D4を選択的にサンプルホールドし、歪み補正量検出回路 1837f、 最大値検出回路 1833f及び最小値検出回路 1834fの夫々に出力する。セレクタ 18 32fは、マーク Zスペース長検出回路 183から出力されるマーク Zスペース長が 7T である場合には、出力 DOから D14のうち力も 3つの出力 D2、 D3及び D5を選択的に サンプルホールドし、歪み補正量検出回路 1837f、最大値検出回路 1833f及び最 小値検出回路 1834fの夫々に出力する。セレクタ 1832fは、マーク Zスペース長検 出回路 183から出力されるマーク Zスペース長が 8Tである場合には、出力 DOから D 14のうちから 3つの出力 D2、 D4及び D6を選択的にサンプルホールドし、歪み補正 量検出回路 1837f、最大値検出回路 1833f及び最小値検出回路 1834fの夫々に 出力する。セレクタ 1832fは、マーク Zスペース長検出回路 183から出力されるマー ク Zスペース長が 9Tである場合には、出力 DOから D14のうち力も 3つの出力 D2、 D 4及び D7を選択的にサンプルホールドし、歪み補正量検出回路 1837f、最大値検 出回路 1833f及び最小値検出回路 1834fの夫々に出力する。セレクタ 1832fは、マ ーク Zスペース長検出回路 183から出力されるマーク Zスペース長が 10Tである場 合には、出力 DOから D14のうち力も 3つの出力 D2、 D5及び D8を選択的にサンプ ルホールドし、歪み補正量検出回路 1837f、最大値検出回路 1833f及び最小値検 出回路 1834fの夫々に出力する。セレクタ 1832fは、マーク Zスペース長検出回路 1 83から出力されるマーク Zスペース長が 11Tである場合には、出力 DOから D14のう ちから 3つの出力 D2、 D5及び D9を選択的にサンプルホールドし、歪み補正量検出 回路 1837f、最大値検出回路 1833f及び最小値検出回路 1834fの夫々に出力す る。セレクタ 1832fは、マーク Zスペース長検出回路 183から出力されるマーク Zス ペース長が 14Tである場合には、出力 DOから D14のうちから 3つの出力 D2、 D7及 び D 12を選択的にサンプルホールドし、歪み補正量検出回路 1837f、最大値検出 回路 1833f及び最小値検出回路 1834fの夫々に出力する。このようなセレクタ 1832 fの動作は、実質的には、図 5 (a)から図 5 (c)及び図 6 (a)から図 6 (c)に示す波形歪 みの、前端部の信号レベル、中間部の信号レベル及び後端部の信号レベルを選択 的に出力する動作に相当する。
[0264] その後、歪み補正量検出回路 1837fにおいては、セレクタ 1832fから出力される 3 つの出力(つまり、前端部の信号レベル、中間部の信号レベル及び後端部の夫々の 信号レベル)のうち所望の 1つの信号レベルが歪み補正量 amdとして出力される。具 体的には、図 5 (a)及び図 6 (a)に示すように中間部の信号レベルが変化してしまった 波形歪みに対しては、例えば前端部の信号レベル又は後端部の信号レベルが歪み 補正量 amdとして出力される。図 5 (b)及び図 6 (b)に示すように前端部の信号レべ ルが変化してしまった波形歪みに対しては、例えば後端部の信号レベルが歪み補正 量 amdとして出力される。図 5 (c)及び図 6 (c)に示すように後端部の信号レベルが変 化してしまった波形歪みに対しては、前端部の信号レベルが歪み補正量 amdとして 出力される。
[0265] また、最大値検出回路 1833fにおいては、セレクタ 1832はり出力される 3つの出 力の最大値 (つまり、最大信号レベル)が検出され、該検出された最大値が減算器 1 835fへ出力される。
[0266] 同様に、最小値検出回路 1834fにおいては、セレクタ 1832はり出力される 3つの 出力の最小値 (つまり、最小信号レベル)が検出され、該検出された最小値が減算器 1835fへ出力される。
[0267] その後、減算器 1835fにおいて、最大値検出回路 1833fにおいて検出された最大 値から、最小値検出回路 1834fにおいて検出された最小値が減算されることで、波 形歪み量 Dが算出される。
[0268] その後、判定回路 1836fにおいて、減算器 1835はり出力される波形歪み量が所 定値 X以上である力否かが判定される。波形歪み量 Dが相対的に小さい場合には、 波形歪みを検出したとはみなさず、ローレベルの波形歪み検出信号 DTを出力する。 他方、波形歪み量 Dが相対的に大きい場合 (例えば、波形歪み率が概ね 30%以上 である場合)には、波形歪みを検出したとみなして、ハイレベルの波形歪み検出信号 DTを出力する。
[0269] このように、波形歪みが検出された場合に選択的に波形歪みを補正することで、情 報再生装置 Ifの負荷を低減させつつ、上述した各種効果を享受することができる。
[0270] 力!]えて、波形歪みの信号レベルを、前端部の信号レベル、中間部の信号レベル及 び後端部の夫々の信号レベルのうち所望の 1つの信号レベルに補正することができ る。このため、様々な形状の波形歪みを好適に補正することができる。具体的には、 図 7から図 9を参照して説明した構成では、波形歪みの信号レベルを、前端部の信 号レベルに補正しているため、特に図 5 (b)及び図 6 (b)に示すような前端部の信号 レベルが変化してしまった波形歪みを好適に補正することができない。しかるに、第 6 変形例に係る情報再生装置 Ifによれば、このような波形歪みをも好適に補正すること ができる。
[0271] 尚、波形歪みは、一般的には、光ディスク 100の記録面上に形成されるマークの形 状や長さ等のばらつきに起因して発生する。従って、例えば DVD— RZRWや、 DV D+RZRWや、 DVD—RAMや、 BD—RZRE等の記録型の光ディスク 100にお いて、波形歪みが発生しやすい。しかしながら、例えば DVD—ROMや、 BD-RO M等の再生専用型の光ディスク 100においても、図 40に示すように、相対的に長い マーク力も構成される同期データがトラッキング方向にぉ 、て隣接して!/、る場合には 、波形歪みが生ずる。このような再生専用型の光ディスク 100において発生する波形 歪みに対しても、上述した情報再生装置 1によれば、好適に補正することができること は言うまでもない。
[0272] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴う情報再生装置及び方法、並びにコンピュータプログラムもまた本発 明の技術的範囲に含まれるものである。

Claims

請求の範囲
[1] 記録媒体力 読み取られた読取信号に対して、可変に設定可能なオフセット値を 付加するオフセット付加手段と、
前記オフセット付加手段により前記オフセット値が付加された読取信号のうち少なく とも長マークに対応する読取信号に生ずる波形歪みを補正する補正手段と、 前記波形歪みが補正された前記読取信号に対して波形等化処理を行う波形等化 手段と
を備えることを特徴とする情報再生装置。
[2] 前記オフセット付加手段は、前記読取信号に対して前記オフセット値を付加するこ とで、前記読取信号のリファレンスレベルにオフセットをカ卩えることを特徴とする請求 の範囲第 1項に記載の情報再生装置。
[3] 前記オフセット値は、(0前記読取信号のうち最大振幅を得られる読取信号の振幅 中心と、前記読取信号のうちランレングスが最も短い記録データを読み取った際に得 られる読取信号の振幅中心のずれ量を示すァシンメトリ値、 GO前記読取信号の振幅 中心の平均値を示す全体 β値、及び (m)前記読取信号のうちランレングスが最も短い 記録データを読み取った際に得られる読取信号の振幅中心と、前記読取信号のうち ランレングスが 2番目に短い記録データを読み取った際に得られる読取信号の振幅 中心とのずれを示す部分 j8値の少なくとも一つに基づいて設定されることを特徴とす る請求の範囲第 1項に記載の情報再生装置。
[4] 前記オフセット値は、前記ァシンメトリ値に、前記読取信号中に含まれる記録データ に対するランレングスが最も短い記録データの、前記ランレングスを考慮しない出現 確率を乗じた値であることを特徴とする請求の範囲第 3項に記載の情報再生装置。
[5] 前記オフセット値は、前記全体 β値に、前記読取信号中に含まれる記録データに 対するランレングスが最も短 ヽ記録データの、前記ランレングスを考慮しない出現確 率を乗じた値であることを特徴とする請求の範囲第 3項に記載の情報再生装置。
[6] 前記オフセット値は、前記部分 β値に、前記読取信号中に含まれる記録データに 対するランレングスが最も短 ヽ記録データの、前記ランレングスを考慮した出現確率 を乗じた値であることを特徴とする請求の範囲第 3項に記載の情報再生装置。
[7] 前記オフセット値は、前記読取信号のリファレンスレベルと、前記読取信号のうちラ ンレングスが最も短い記録データを読み取った際に得られる読取信号の振幅中心と の位置関係に基づいて設定されることを特徴とする請求の範囲第 1項に記載の情報 再生装置。
[8] 前記オフセット値は、前記読取信号のリファレンスレベルと、前記読取信号のうちラ ンレングスが最も短い記録データを読み取った際に得られる読取信号の振幅中心と のずれを示す値であることを特徴とする請求の範囲第 1項に記載の情報再生装置。
[9] 前記波形等化手段は、
前記波形歪みが補正された前記読取信号の振幅レベルを所定の振幅制限値にて 制限して振幅制限信号を取得する振幅制限手段と、
前記振幅制限信号に対して高域強調フィルタリング処理を行うことで等化補正信号 を取得するフィルタリング手段と
を備えることを特徴とする請求の範囲第 1項に記載の情報再生装置。
[10] 前記オフセット付加手段は、(0前記読取信号のエラー訂正が不能である場合、 GO 前記読取信号のエラーレートが所定の閾値以上である場合、又は (m)記録データに 含まれるユーザデータを読み取るために用いられ且つ前記記録データに含まれる同 期データに相当する読取信号を読み取ることができない場合に、前記オフセット値を 付加することを特徴とする請求の範囲第 1項に記載の情報再生装置。
[11] 前記補正手段は、(0前記読取信号のエラー訂正が不能である場合、 GO前記読取 信号のエラーレートが所定の閾値以上である場合、又は (m)記録データに含まれるュ 一ザデータを読み取るために用いられ且つ前記記録データに含まれる同期データ に相当する読取信号を読み取ることができない場合に、前記波形歪みを補正するこ とを特徴とする請求の範囲第 1項に記載の情報再生装置。
[12] 前記長マークは、信号レベルが最大振幅となるマークであることを特徴とする請求 の範囲第 1項に記載の情報再生装置。
[13] 記録媒体力 読み取られた読取信号に対して、可変に設定可能なオフセット値を 付加するオフセット付加工程と、
前記オフセット付加手段により前記オフセット値が付加された読取信号のうち少なく とも長マークに対応する読取信号に生ずる波形歪みを補正する補正工程と、 前記波形歪みが補正された前記読取信号に対して波形等化処理を行う波形等化 工程と
を備えることを特徴とする情報再生方法。
記録媒体力 読み取られた読取信号に対して、可変に設定可能なオフセット値を 付加するオフセット付加手段と、前記オフセット付加手段により前記オフセット値が付 加された読取信号のうち少なくとも長マークに対応する読取信号に生ずる波形歪み を補正する補正手段と、前記波形歪みが補正された前記読取信号に対して波形等 化処理を行う波形等化手段とを備える情報再生装置に備えられたコンピュータを制 御する再生制御用のコンピュータプログラムであって、
該コンピュータを、前記オフセット手段、前記補正手段及び前記波形等化手段の少 なくとも一部として機能させることを特徴とする再生制御用のコンピュータプログラム。
PCT/JP2006/324288 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム WO2008068856A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008548142A JP4861433B2 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム
PCT/JP2006/324288 WO2008068856A1 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム
US12/517,253 US8154966B2 (en) 2006-12-05 2006-12-05 Apparatus, method and program for waveform equalization on a read signal obtained by reading the record data recorded on a recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324288 WO2008068856A1 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2008068856A1 true WO2008068856A1 (ja) 2008-06-12

Family

ID=39491775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324288 WO2008068856A1 (ja) 2006-12-05 2006-12-05 情報再生装置及び方法、並びにコンピュータプログラム

Country Status (3)

Country Link
US (1) US8154966B2 (ja)
JP (1) JP4861433B2 (ja)
WO (1) WO2008068856A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211639B1 (en) * 2014-10-23 2018-10-31 JVC Kenwood Corporation Digital sound processing device, digital sound processing method, digital sound processing program
KR102521408B1 (ko) * 2018-08-27 2023-04-14 삼성전자주식회사 인포그래픽을 제공하기 위한 전자 장치 및 그에 관한 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330564A (ja) * 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd ディジタル情報再生装置
JP2003303474A (ja) * 2002-04-05 2003-10-24 Pioneer Electronic Corp ディスク評価装置
WO2005024822A1 (ja) * 2003-09-02 2005-03-17 Matsushita Electric Industrial Co., Ltd. 再生信号処理装置、及び再生信号処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0750306B1 (en) * 1995-06-22 2002-06-05 Matsushita Electric Industrial Co., Ltd. A method of maximum likelihood decoding and a digital information playback apparatus
JP3459563B2 (ja) 1998-03-06 2003-10-20 パイオニア株式会社 波形等化器および記録情報再生装置
JP2000200420A (ja) * 1998-10-27 2000-07-18 Matsushita Electric Ind Co Ltd 波形整形装置およびこれを用いた再生信号処理装置
JP4142537B2 (ja) * 2003-09-19 2008-09-03 松下電器産業株式会社 光ディスク装置
KR100528878B1 (ko) * 2004-02-16 2005-11-16 삼성전자주식회사 데이터 저장을 위한 고속 혼성 아날로그/디지털 prml데이터 검출 및 클럭 복원 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330564A (ja) * 1996-06-10 1997-12-22 Matsushita Electric Ind Co Ltd ディジタル情報再生装置
JP2003303474A (ja) * 2002-04-05 2003-10-24 Pioneer Electronic Corp ディスク評価装置
WO2005024822A1 (ja) * 2003-09-02 2005-03-17 Matsushita Electric Industrial Co., Ltd. 再生信号処理装置、及び再生信号処理方法

Also Published As

Publication number Publication date
JPWO2008068856A1 (ja) 2010-03-11
US20100074091A1 (en) 2010-03-25
US8154966B2 (en) 2012-04-10
JP4861433B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
JP4707314B2 (ja) 非対称再生信号におけるオフセットを補償する方法
WO2008068856A1 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
EP1587234A1 (en) Adaptive viterbi detector
JP4861435B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP4861432B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
US20050053174A1 (en) Device and method for data reproduction
JP2000243032A (ja) オフセットコントロール回路及びオフセットコントロール方法
JP4861434B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
US8004443B2 (en) Information readout apparatus and information reproducing method
JP4915876B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP3797303B2 (ja) ディスク再生装置
JP5031768B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
US20090316557A1 (en) Information reproducing apparatus and method, and computer program
JP5234966B2 (ja) 情報再生装置及び方法、並びにコンピュータプログラム
JP2000276848A (ja) 波形等化装置および再生装置
JP4103320B2 (ja) 情報再生装置及び再生方法
JP2001273639A (ja) 光ディスク装置
JP2007505438A (ja) デジタル部分応答非対称性補償
KR20030033832A (ko) 광 기록매체 등화 장치
JP2005093014A (ja) 光ディスクドライブ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548142

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12517253

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06834043

Country of ref document: EP

Kind code of ref document: A1