WO2005024822A1 - 再生信号処理装置、及び再生信号処理方法 - Google Patents

再生信号処理装置、及び再生信号処理方法 Download PDF

Info

Publication number
WO2005024822A1
WO2005024822A1 PCT/JP2003/011200 JP0311200W WO2005024822A1 WO 2005024822 A1 WO2005024822 A1 WO 2005024822A1 JP 0311200 W JP0311200 W JP 0311200W WO 2005024822 A1 WO2005024822 A1 WO 2005024822A1
Authority
WO
WIPO (PCT)
Prior art keywords
reproduction signal
signal processing
processing device
output
reproduced
Prior art date
Application number
PCT/JP2003/011200
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nakahira
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/513,367 priority Critical patent/US20050219985A1/en
Priority to CNA038106655A priority patent/CN1653539A/zh
Priority to JP2005508773A priority patent/JPWO2005024822A1/ja
Priority to PCT/JP2003/011200 priority patent/WO2005024822A1/ja
Publication of WO2005024822A1 publication Critical patent/WO2005024822A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10481Improvement or modification of read or write signals optimisation methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters

Definitions

  • the present invention relates to a reproduction signal processing device for equalizing a waveform of a reproduction signal reproduced from a recording medium, and a method of processing the reproduction signal.
  • an equalizer for equalizing the waveform of the reproduced signal is provided in the reproducing circuit to remove waveform distortion and noise included in the reproduced signal, and a code in a recording sequence is provided. Interference is compensated for, and the method of waveform equalization is an adaptive equalization method of estimating waveform distortion from the reproduced signal and determining the characteristics of the equalizer. ing.
  • FIG. 12 is a waveform diagram showing each mark shape and its reproduction signal when the recording pit is formed uniformly and when the recording pit has unevenness.
  • the mark shape is a beautiful rectangle.
  • the recording pit has unevenness, the mark shape has large distortion at both ends and the center of the pit.
  • the level of the reproduction signal takes a constant value at the center thereof, but the recording pits have irregularities.
  • the level of the reproduced signal is distorted at the center, and the reproduced signal X becomes like a signal on which a certain frequency is superimposed.
  • conventional equalizers consist only of linear operations such as delay of reproduction signals, multiplication of coefficients, and addition, and are intended to remove linear distortion of reproduction signals. Reproduction of non-linear distortion caused by manufacturing variations If the signal was included in the signal (for example, see the reproduced signal in FIG. 12 when the recording pit had unevenness), the conventional equalizer could not remove the distortion component. Since the non-linear distortion included in the reproduced signal remarkably degrades the equalization capability of the equalizer, the performance of the reproduction circuit, such as the bit error rate, cannot be avoided.
  • Japanese Patent Application Publication No. 2768028/1996 discloses a reproduction signal processing device that performs a waveform equalization process in consideration of the influence of nonlinear distortion of a reproduction signal.
  • FIG. 13 is a diagram showing a configuration of a conventional reproduction signal processing device
  • FIG. 14 is a diagram showing a detailed configuration of a digital filter in the conventional reproduction signal processing device
  • FIG. FIG. 10 is a diagram showing a detailed configuration of a coefficient updater in a conventional reproduction signal processing device.
  • the conventional reproduction signal processing device 400 includes a digital filter 401 and a coefficient updater 402.
  • the digital filter 401 receives a reproduced signal X obtained by digitizing a signal reproduced from an optical disk such as a CD or a DVD in a quantization unit (not shown) in a reproducing circuit.
  • the filter is a 5-tap FIR (Finite I immediate ulse response) filter as shown in FIG.
  • FIR Finite I immediate ulse response
  • the digital filter 401 is composed of five elements connected to each other so as to form a plurality of delay elements for delaying the propagation of the reproduction signal X.
  • the output X ' is a digital filter 4 0 1, multiplied by the delayed signal X I through X 5 obtained by delaying the reproduced signal X each a factor Wi Ws, adding Te the multiplication result to base the adder 4 1 3 Value.
  • the coefficient updater 4 0 2 the coefficient W to determine the digital filter 4 0 1 equalization characteristics, the to W-5, the output of the digital filter evening 4 0 1) 3 ⁇ 4 Ji adaptively further
  • the ternary determination circuit 4 25 converts the digital filter output X ′ output from the digital filter 401 into three values (for example, 1 1, 0, +1) according to a preset threshold value.
  • the reference amplitude generation circuit 4 24 converts the three values (for example, 1, 1, 0, +1) outputted from the IT path 4 25 into a digital filter 4 0 1
  • the subtractor 423 sets the equalization error ⁇ , which is the difference between the output from the reference amplitude generation circuit 424 and the digital filter output X ′.
  • the correlator 4 2 1 calculates a correlation between the delay signal ⁇ ⁇ ⁇ input from the digital filter 4 0 1 and the equalization error ⁇ ⁇ from the subtractor 4 2 3, 42 2 is the digital value of the value obtained by time-integrating each correlation obtained by the correlator 42 1 as the updated coefficient W n.
  • the error signal selection circuit 426 supplies the equalization calculated by the subtractor 423 based on the time-series information of the output of the ternary decision circuit 425. A selection signal for selecting whether or not to input the error ⁇ to the correlator 421 is generated, and the switch 427 is turned on and off according to the selection signal from the error signal selection circuit 426. Switch.
  • the coefficient updater 402 outputs a characteristic pattern, which is considered to have nonlinear distortion, from among the outputs of the ternary decision circuit 425.
  • the error signal selection circuit 4 26 is set in advance, and the error signal selection circuit 4 26 determines whether or not the preset characteristic pattern matches the output from the ternary judgment circuit 4 25. or the judge, and the Suitsuchi 4 2 7 must match the on and update of the coefficient ⁇ E ⁇ ⁇ , the turn off the switch 4 2 7 if there is a match update of the coefficient Wi ⁇ W 5 Being not performed, Degiru is possible to suppress the influence of nonlinear distortion of the reproduced i No. X has on the update of the previous SL coefficient Wi ⁇ W 5.
  • waveform equalization output X ′ In some cases, waveform equalization may fail.
  • FIG. Fig. 16 shows the re- FIG. 4 is a diagram showing a raw signal X and a waveform equalized output Y obtained by adaptively equalizing the reproduced signal X.
  • a reproduced signal having large nonlinear distortion is a signal obtained by superimposing a signal in a certain frequency band, which is not included in a normal waveform of the reproduced signal.
  • the frequency band to be superimposed is a frequency band far from the frequency band of the reproduction signal, the superimposed signal can be easily removed by the digital filter 401, If the frequency band of the reproduced signal is the same as the frequency band of the reproduced signal, whether the large distortion of the reproduced signal waveform is the waveform distortion due to the nonlinear distortion or the normal waveform of the reproduced signal, Since it is not possible to distinguish between them, it is very difficult to correct the nonlinear distortion of the waveform.
  • the A, B, and D portions are non-linear distortions in which a signal of the same frequency band is superimposed on a normal waveform, and a C portion Is a waveform of a normal reproduction signal.
  • the reproduced signal X has a distortion component in the same frequency band as the frequency band of the normal waveform portion, the reproduced signal X Even if the coefficient Wi Wg is not updated, the distortion component of the reproduced signal itself will be amplified in the same way, and the waveform equalization will eventually fail (parts A, B, and D in FIG. 16). reference).
  • the decoding performance of the reproduction circuit is degraded.
  • the waveform equalization output is obtained only by not updating the coefficient W Wg in a portion considered to be nonlinear distortion of the waveform of the reproduction signal X.
  • the influence of nonlinear distortion on X ′ cannot be suppressed.
  • the conventional reproduction signal processing device 400 has sufficient waveform equalization characteristics in consideration of nonlinear distortion in the digital filter 410. Therefore, there is a problem that the waveform of a reproduced signal including nonlinear distortion cannot be optimally equalized.
  • the present invention has been made in view of the above problems, and provides a reproduced signal processing device capable of realizing optimal waveform equalization corresponding to nonlinear distortion included in a reproduced signal. It is the purpose. Disclosure of the invention
  • a reproduction signal processing device of the present invention is a reproduction signal processing device for equalizing a waveform of a reproduction signal reproduced from a recording medium, and a digital filter for equalizing the reproduction signal;
  • a coefficient updater for adaptively updating a coefficient for determining an equality characteristic of the digital filter, a prediction unit for predicting a data sequence of the reproduction signal and outputting a predicted value of the reproduction signal,
  • a pattern predictor that determines whether or not the sequence is a predetermined specific pattern and outputs a determination result; and as an output after waveform equalization, either the output of the digital filter or the predicted value of the reproduced signal.
  • a selection circuit for selecting and outputting one of them.
  • the selection circuit selects an output of the digital filter when the determination result indicates that the data sequence of the reproduction signal is the specific pattern, Indicates that the data sequence of the reproduction signal is not the specific pattern, the measurement value is selected. This makes it possible to optimally suppress the influence of the nonlinear distortion included in the reproduced signal on the output after waveform equalization.
  • the coefficient updater updates the coefficient of the digital filter when the result of the determination indicates that the data sequence of the reproduced signal is the specific pattern, If the result indicates that the data sequence of the reproduction signal is not a specific pattern, the coefficient of the digital filter is not updated.
  • the coefficient updater is configured to calculate the predicted value Is used to adaptively update the coefficients of the digital filter.
  • the digital filter outputs the reproduction signal after multi-value equalization
  • the specific pattern preset in the pattern predictor is a data sequence of the reproduction signal.
  • the digital filter equalizes the reproduction signal into multi-values and outputs the same, and the specific pattern preset in the pattern predictor includes This is the part of the data series other than the minimum and maximum values.
  • the pattern predictor predicts a data sequence of the reproduced signal using partial response equalization, and the predicted data sequence of the reproduced signal is the specific pattern. It is determined whether or not they match.
  • a reproduced signal processing device of the present invention is a reproduced signal processing device for equalizing a waveform of a reproduced signal reproduced from a recording medium, wherein a data sequence of the reproduced signal is a predetermined pattern or not.
  • a pattern predictor that discriminates and outputs a discrimination result; a prediction filter that partially filters the reproduction signal based on the discrimination result; and an adaptive filter that adaptively equalizes the output of the prediction filter. Equipped with an equalizer It is.
  • the reproduced signal is subjected to the adaptive equalization after being partially subjected to the fill processing, and the optimal waveform equalization corresponding to the nonlinear distortion included in the reproduced signal can be realized.
  • the pattern predictor determines a data sequence of the reproduced signal, predicts a data sequence of the reproduced signal, and outputs a predicted value of the reproduced signal
  • the prediction filter outputs the reproduced signal when the result of the determination indicates that the data sequence of the reproduced signal is the specific pattern, and the result of the determination is that the data sequence of the reproduced signal is not the specific pattern. In this case, a predicted value of the reproduction signal is output.
  • the filter processing of the prediction filter may be performed based on the waveform of the reproduction signal only when the determination result indicates that the data sequence of the reproduction signal is not the specific pattern. It removes a specific frequency band.
  • the specific pattern preset in the pattern predictor includes, from the minimum value to the maximum value, and the maximum value in the predicted data sequence of the reproduction signal. Is the part that transitions from to the / J, value.
  • the specific pattern preset in the pattern predictor is a portion other than the minimum value and the maximum value in the data sequence of the predicted f-number reproduction signal. .
  • a reproduction signal processing method of the present invention is a reproduction signal processing method for equalizing a waveform of a reproduction signal reproduced from a recording medium, wherein the reproduction is performed while updating a coefficient for determining a fuzzy characteristic of the waveform.
  • the reproduction signal processing method of the present invention is a reproduction signal processing method for equalizing a waveform of a reproduction signal reproduced from a recording medium, wherein a data sequence of the reproduction signal is a predetermined pattern.
  • the output after the fill signal processing can be adaptively equalized, so that the optimal waveform equalization corresponding to the nonlinear distortion included in the reproduced signal is performed. Can be realized.
  • FIG. 1 is a diagram showing a configuration of a reproduction signal processing device according to Embodiment 1 of the present invention.
  • FIG. 2 shows details of a coefficient updater of the reproduction signal processing device according to the first embodiment of the present invention. It is a figure which shows a detailed structure.
  • FIG. 3 is a diagram showing a detailed configuration of a pattern predictor of the reproduced signal processing device according to Embodiment 1 of the present invention.
  • FIG. 4 is a waveform diagram showing an operation of the pattern predictor of the reproduction signal processing device according to Embodiment 1 of the present invention.
  • FIG. 5 shows the case where the reproduced signal input to the reproduced signal processing apparatus according to Embodiment 1 of the present invention is normal (X a) and where the nonlinear distortion is large (X b).
  • FIG. 6 is a waveform diagram showing a reproduced signal and its predicted value.
  • FIG. 6 is a diagram explaining the operation of a coefficient updater of the reproduced signal processing device according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram explaining the operation of the selection circuit in the reproduction signal processing device according to Embodiment 1 of the present invention.
  • FIG. 8 shows a reproduced signal input to the reproduced signal processing apparatus according to Embodiment 1 of the present invention, a predicted value of the reproduced signal, and a waveform equalized output obtained by equalizing the reproduced signal.
  • FIG. 9 is a diagram showing a configuration of a reproduced signal processing device according to Embodiment 2 of the present invention.
  • FIG. 10 is a waveform diagram showing an operation of a prediction filter of the reproduction signal processing device according to Embodiment 2 of the present invention.
  • FIG. 11 is a waveform diagram showing an operation of a prediction filter of a modification of the reproduction signal processing device according to Embodiment 2 of the present invention.
  • FIG. 12 is a diagram showing a mark shape and a reproduction signal thereof in a case where recording pits recorded on a recording medium are uniform and a case where unevenness occurs.
  • FIG. 13 is a diagram showing a configuration of a conventional reproduction signal processing device.
  • FIG. 14 is a diagram showing a detailed configuration of a digital filter of a conventional reproduction signal processing device.
  • FIG. 15 is a diagram showing a detailed configuration of a coefficient updater of the conventional reproduction signal processing device.
  • FIG. 16 shows a reproduction signal input to a conventional reproduction signal processing apparatus and the reproduction signal.
  • FIG. 9 is a waveform chart showing a waveform equalized output after the equalization processing.
  • the coefficient Wi ⁇ W 5 that determine the equalization characteristics of the digital filter evening
  • a waveform equalized output after adaptive equalization output from the digital filter is taken into consideration.
  • FIG. 1 is a diagram showing a configuration of a reproduced signal processing device according to the first embodiment
  • FIG. 2 is a detailed configuration of a coefficient updater of the reproduced signal processing device according to the first embodiment
  • FIG. 3 is a diagram showing a detailed configuration of a pattern predictor of the reproduction signal processing device according to the first embodiment.
  • a reproduced signal processing apparatus 100 includes an adaptive equalizer 110 composed of a digital filter 101 and a coefficient updater 102, a pattern predictor This is composed of 103 and a selection circuit 104.
  • the digital filter 101 of the adaptive equalizer 110 is used for converting a signal reproduced from an optical disk such as a CD or a DVD into a quantization circuit (shown in the figure) preceding the adaptive equalizer 110. is intended to receive the digitized reproduced signal X in not), the coefficient updater 1 0 2 the engaging number W to W-5 to determine the digital filter 1 0 1 equalization characteristic, the reproduction signal X
  • the adaptive equalizer is adapted to update adaptively according to a predicted value P and a determination result of a pattern predictor 103 described later and an output X ′ of the digital filter 101.
  • Numeral 110 denotes an adaptive equalization of the reproduction signal X in the digital filter 101 using the coefficient W updated timely in the coefficient updater 102.
  • the configuration of the digital filter 101 is similar to that of the above-described conventional digital filter 401, and the 5-tap FIR (Finite I Immediate Response Response) shown in FIG. ) Filter It is assumed that five coefficients W updated timely in the coefficient updater 102 are N ⁇ D.
  • the pattern predictor 103 predicts a binary data sequence (prediction value P) obtained from the reproduced signal X, and the predicted value P, which is the predicted data sequence, is set to a predetermined specific value. It determines whether or not the pattern matches the pattern, and outputs a result of the determination.
  • the selection circuit 104 further includes a digital filter output X ′ from the digital filter 101 and the pattern The prediction value P and the discrimination result from the predictor 103 are received, and based on the discrimination result, either the digital filter output X ′ or the prediction value P is converted to a waveform equalization output Y. Is output as
  • the coefficient updater 102 generates an equalization error ⁇ ⁇ which is a difference between the digital filter output X′n output from the digital filter 101 and the predicted value Pn.
  • the subtractor 2 2 1 for calculating the respective delay signals chi eta of the reproduced signal X delayed by D flip-flops in the digital filter 1 0 1 taking into account the clock delay, from the subtracter 2 2 1
  • a multiplier 2 2 2 for correlating with the equality error ⁇ ⁇ of the amplifier, an amplifier 2 2 3 for amplifying an output from the multiplier 2 2 2 with an amplification factor //, and an output from the amplifier 2 2 3
  • the ( ⁇ -1) th coefficient W n — are added, and an adder 2 2 4 that outputs the updated coefficient W n, and a discrimination result from the prediction pattern measuring instrument 10 3 to consist the control circuit 2 2 5 for controlling whether or not to output the coefficients W n after the update from the adder 2 2 4, the control circuit 2 2 5 Under the control, the square of the
  • the pattern predictor 103 converts the reproduced signal X into 1 as shown in FIG. A D flip-flop 23 la to 23 d for clock delay, an adder 232 for adding the reproduction signal X and a signal delayed by one block by the D flip-flop 231 a, and an output of the adder 232 Encoders 233 for calculating the code, outputs from the encoder 233, and outputs obtained by delaying the output of the encoder 233 by one clock with three D flip-flops 231b to 231d, respectively. And an adder 234 that executes PR (1, 1, 1, 1) by adding the following to the predicted value memory 2 that outputs a predicted value P from the result of the PR (1, 1, 1, 1).
  • the reproduced signal X is obtained by using the partial response PR (1, 1, 1, 1). Predicting the data series and outputting a predicted value P, and predicting the predicted value P To determine whether the constant pattern or not, and outputs the determination result.
  • the binary data sequence (predicted value P) of the reproduced signal X equalized to multi-value can be obtained by the PR (1, 1, 1, 1) because the signal of the DVD is EFM + This is because the data is encoded by the modulation and demodulation method called NRZI (Non Return to Zero Inverted) during recording.
  • NRZI Non Return to Zero Inverted
  • FIG. 4 is a diagram showing values obtained in respective units of the pattern predictor according to the first embodiment.
  • a reproduced signal digitized by quantization means (not shown) is input to the adaptive equalizer 110 and to the pattern predictor 103.
  • the coefficient ⁇ V supplied from the coefficient updater 102 is applied to the input reproduced signal X in the same manner as in the conventional apparatus 400 described above.
  • Perform adaptive equalization according to Ws, and output the digital filter output X 'after the equalization processing to the selection circuit 104.
  • the pattern predictor 103 predicts a data sequence of the input reproduced signal X and outputs it to the selection circuit 104 as a predicted value P of the reproduced signal X.
  • the value P matches a preset specific pattern. Is determined, and the determination result is transmitted to the ttr-coefficient updating unit 102 and the selection circuit 10.
  • a reproduced signal X having a value as shown in FIG. 4 is input to the pattern predictor 103.
  • the reproduction signal X is delayed by one clock by the D flip-flop 231a, the reproduction signal X is added to the reproduction signal X in the adder 232 to obtain a value (1 + D) X.
  • the operation (+ D) is performed in order to easily realize the same function as the interpolation filter using the Nyquist filter. A level equivalent to the midpoint of the point is obtained Note that a Nyquist filter may be configured with a multi-tap FIR filter.
  • the value (1 + D) X output from the adder 232 is input to the encoder 233, and the encoder 233 obtains the value of the code (1 + D) X.
  • the value of the output (1 + D) X of the adder 232 is negative, the value of the sign (1 + D) X is set to “0”.
  • the sign (1 + D) D) The value of X is "1”.
  • the value of the code (1 + D) X output from the encoder 233 is delayed by one clock in each of the D flip-flops 231b to 231d, and the output of the encoder 233 is added to the adder 234.
  • the output from each of the D-flops 231 b to 231 d is added to obtain the value of PR (1, 1, 1, 1).
  • the value of PR (1, 1, 1, 1) is obtained by delaying the reproduced signal X by one clock by the D flip-flops 23 la to 231 d, and adding all the delayed values by the adder 234. Therefore, the value of PR (1, 1, 1, 1) output from the adder 234 takes a value of "0" to "4" as shown in FIG.
  • the value of PR (1, 1, 1, 1) always changes by +1, 1, 1, 0 from the previous value due to the characteristics of the DVD playback signal. Therefore, if the playback signal X input to the playback signal processing device 100 is a DVD playback signal, the signal value PR (1, 1, 1, 1) predicted from the playback signal X is 0 ⁇ Transition like 0 ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 4 ⁇ 4 ⁇ 3 ⁇ 2 ⁇ 1 ⁇ 2 ⁇ 3-4 etc. None like 0 ⁇ 4 ⁇ 2 ⁇ 4 ⁇ 1 ⁇ 3 There is no transition.
  • the predicted value memory 235 outputs a predicted value P, which is a predicted data sequence of the reproduced signal X, based on the output from the adder 234.
  • the values corresponding to the output values 0, 1, 2, 3, and 4 of the adder 2 3 4 are set to —4 4, —2 5, 0, 25, and 4 4 respectively, and the predicted value memory 2 3
  • the five values are applied so as to correspond to the input output value PR (1, 1, 1, 1) of the adder 234, and the value is used as the predicted value P of the reproduced signal X.
  • the reason why five values corresponding to the output value of the adder 234 are prepared as the predicted value P is to match the predicted value P with a range of possible values of the reproduced signal X.
  • the waveform equalization output Y output from the reproduction signal processing apparatus 100 is equalized around these five values.
  • the five values (144, 125, 0, 25, 44) described here are merely examples, and may be any value as long as the reproduced signal X can take.
  • the one that outputs the predicted value P is expressed as the predicted value memory 235.
  • it is not limited to the memory. For example, a combination of a register and a multiplexer may be used.
  • the predicted value P of the reproduced signal X obtained as described above is compared between a case where the reproduced signal is normal (waveform Xa) and a case where the nonlinear distortion is large (waveform Xb).
  • a reference signal for example, the level of 0 (zero) is kept constant irrespective of the presence or absence of non-linear distortion by an offset canceller (not shown)
  • the predicted value P of the reproduced signal is the same regardless of the magnitude of the waveform distortion. This is apparent from the calculation contents of the pattern predictor 103, that is, the PR (1,1,1,1,1) is executed by the sign of the midpoint between two adjacent sampling points.
  • the predicted value P of the reproduced signal X output from the predicted value memory 235 is output to the discriminator 236, and the discriminator 236 matches a specific pattern set in advance. It is determined whether or not to perform.
  • a part that changes is set as the specific pattern, and a change in the predicted value P is the specific pattern.
  • the discriminator 236 outputs “1 25” of the predicted value P as a discrimination result as shown in FIG. , "0", and "25” are output as the edge portion.
  • the predicted value P output from the predicted value memory 235 is input to the discriminator 236.
  • the output value of the adder 234 (0 to 4)
  • the predicted value P ( ⁇ 44, 125, 0, 25, 44) correspond to and are equivalent to each other as described above.
  • the output of the heater 234 may be input.
  • the discriminator 2336 is set in advance as a specific pattern at a portion where the output value of the adder 2334 changes to "1", "2", "3". In other words, as described above, the same result can be obtained as when the specific pattern is set to a portion that changes to the predicted values “1 25”, “0”, “25”.
  • the determination result thus obtained is output to the control circuit 225 of the coefficient updater 102 and the selection circuit 104, and the control circuit of the coefficient updater 102 is controlled. In 225, it is controlled whether or not to update the coefficient Wi Ws according to the discrimination result.
  • the selection circuit 104 the digital filter output X ′ or the reproduction is determined according to the discrimination result. Which of the predicted values P of the signal X is output as the waveform equalization output Y is selected.
  • FIG. 6 is a diagram for explaining a discriminating method by a discriminator at the time of updating a coefficient according to the first embodiment.
  • “learning” shown in FIG. 6 refers to appropriately changing the equalization characteristics, that is, executing coefficient updating, and “non-learning” does not change the equalization characteristics. That is, no coefficient update is performed.
  • the discriminator 2 36 of the pattern predictor 103 determines The signal B shown in FIG. 6 is output from the device 236 as the determination result.
  • the discrimination result obtained as described above is used as the control in the coefficient updater 102.
  • the control circuit 225 of the coefficient updater 102 adaptively updates the coefficient according to the reproduced signal X during the “non-learning” period (the part other than the edge). and controlled not, on the other hand, the "learning" period (edge portion) is controlled to perform the updating of the coefficients Wi ⁇ W 5.
  • FIG. 7 is a diagram illustrating a discriminating method by a discriminator at the time of waveform equalization according to the first embodiment.
  • the determination result signal B in FIG. 6 will be described as an example.
  • the discrimination result obtained by the discriminator 236 in the pattern predictor 103 is output to the selection circuit 104.
  • the selection circuit 104 determines a portion where the predicted value P of the reproduced signal transitions to “ ⁇ 25”, “0”, “25” based on the determination result from the pattern predictor 103.
  • the corresponding predicted value P is output instead of the digital filter output X ′.
  • the predicted value P is the same whether the reproduced signal waveform is normal (waveform Xa) or includes nonlinear distortion (waveform Xb), as already described with reference to FIG.
  • the waveform equalization output Y is replaced with the ⁇ digital filter output X ′ instead of the digital filter output X ′. If the predicted value P generated from the reproduced signal X is output, as shown in the area surrounded by the dotted line in FIG. 8, the waveform equalization failed with the conventional apparatus 400. It is also possible to perform waveform equalization at points without failing in waveform equalization.
  • the pattern predictor 103 creates the predicted value P of the reproduced signal X, and determines whether or not the predicted value P is a predetermined specific pattern.
  • the adaptive equalizer 111 is selected in the selection circuit 104 in accordance with the result of the determination. 0 or the predicted value P of the reproduced signal from the pattern predictor 103. Since the selected signal is output as the waveform equalized output Y, the reproduced signal X input to the reproduced signal processing apparatus 100 is the same as the normal waveform as described in FIG.
  • the coefficient W n for determining the equalization characteristic of the digital filter 101 is five, but the number of coefficients W is not limited to five. Not something.
  • the adaptive equalizer first performs an adaptive equalization process on the reproduction signal X, and then outputs the output of the adaptive equalizer (digital filter output X ′) by a selection circuit at a subsequent stage.
  • the waveform equalization output Y from which the non-linear cup is removed is output.
  • the adaptive equalizer at the subsequent stage performs the adaptive equalization process on the signal from which the nonlinear distortion has been removed. .
  • the reproduced signal processing apparatus 300 of the second embodiment includes an adaptive equalizer 301, a prediction filter 302, and a / ° turn predictor 303.
  • the adaptive equalizer 301 adaptively changes its equalization characteristics according to the output of a prediction filter 302 described later, and generates a waveform and the like for the output of the prediction filter 302. It mainly includes a digital filter and a coefficient updater that updates a coefficient W n (n is an integer) that determines the equalization characteristic of the digital filter.
  • the conventional digital filter 401 and coefficient An example includes an updater 402 or a configuration including the digital filter 101 and the coefficient updater 102 described in the first embodiment.
  • the pattern predictor 303 predicts a binary sequence (predicted value P) obtained from the reproduced signal X, and the predicted value P and a specific pattern set in advance are calculated.
  • the pattern predictor 303 is configured to determine whether or not they match, and output a determination result.
  • the configuration and operation of the pattern predictor 303 are the same as those of the pattern predictor 103 of the first embodiment. I do.
  • the prediction filter 302 performs a filtering process on the reproduced signal X, and the content of the filtering process to be executed is determined by the pattern predictor 303.
  • the reproduced signal X or the predicted value P of the reproduced signal X predicted by the pattern predictor 303 is output according to the determination result output from the pattern predictor 303. Things.
  • a selection circuit that selects an output value according to the determination result can be considered.
  • FIG. 10 is a waveform diagram for explaining the filter processing of the prediction filter in the reproduction signal processing apparatus according to the second embodiment.
  • a reproduced signal X digitized by a quantization means (not shown) is input to a prediction filter 302 and a pattern predictor 303.
  • the reproduced signal X input to the pattern predictor 303 generates a prediction value P and a discrimination result in the same manner as described in the first embodiment, and outputs the prediction value P to the prediction filter 302. I do.
  • the specific pattern set in advance is a part other than the maximum value and the minimum value of the predicted value P, and the discriminator 2 36 of the pattern predictor 303 shown in FIG. It is assumed that signal B is output as a determination result. Then, the prediction filter 302 outputs either the reproduction signal X or the prediction value P as a prediction filter output based on the determination result.
  • the pattern predictor 303 determines whether or not the prediction value P matches a predetermined specific pattern is determined.
  • the prediction filter 302 determines a prediction value of a reproduced signal based on the determination result. In the part where P transitions to “ ⁇ 25”, “0”, “25”, the reproduced signal X is output as it is as the prediction filter output, and the predicted value P of the reproduced signal is “—25”, “0”, “ Other than the transition to 25 ", the corresponding prediction value P is output as a prediction filter output instead of the reproduction signal X.
  • the prediction filter 302 the nonlinear distortion of the waveform of the reproduced signal X to be applied can be removed, and a signal without nonlinear distortion (predictive filter output) can be supplied to the subsequent adaptive equalizer 301.
  • the adaptive equalizer 301 performs an adaptive equalization process on the prediction filter output from which the nonlinear distortion has been removed, to obtain a waveform equalized output Y.
  • the filter processing in the prediction filter 302 changes the predicted value P of the reproduced signal to “1 25”, “0”, “25” based on the discrimination result from the pattern predictor 303.
  • the part where the reproduced signal: X is output as the prediction filter output as it is, and the part other than the transition of the predicted value P of the reproduced signal to “125”, “0”, and “25” is the reproduced signal.
  • the corresponding prediction value P is output as the prediction filter output.
  • the prediction value P of the reproduction signal In addition to the portion other than the transition of “ ⁇ 25”, “0”, and “25”, a component of a specific frequency band of the reproduction signal X may be cut and output.
  • FIG. 11 is a diagram for explaining a filter process of a prediction filter in a reproduction signal processing device according to a modification of the second embodiment.
  • a reproduction signal processing apparatus 300 includes a prediction filter 302, an adaptive equalizer 301, and a pattern predictor 303, similarly to the configuration of the second embodiment shown in FIG. It is composed of
  • the prediction filter 302 according to the modification of the second embodiment cuts and outputs a component of a specific frequency band of the input reproduced signal X in accordance with the determination result. It consists of a digital filter as shown.
  • the digital Tarufiru coefficient W n of evening can be fixed, the may be one that is similar to the adaptive update in the first embodiment, have the characteristic to remove the influence of non-linear distortion of the waveform of the reproduced signal X inputted Whatever you do.
  • the discrimination result and the prediction value P are output from the pattern predictor 303 to the prediction filter 302.
  • the modification of the second embodiment only the discrimination result is output. I just need to.
  • Other configurations are the same as those of the above-described reproduction signal processing apparatus according to the second embodiment, and a description thereof will not be repeated.
  • a reproduction signal X as shown in FIG. 11 When input to the signal processing device 300, the pattern predictor 303 predicts a predicted value P of the reproduced signal X, and outputs a determination result based on the predicted value P. Then, the prediction filter 302 receives only the discrimination result from the pattern predictor 303 and executes a filtering process on the reproduction signal X based on the discrimination result.
  • the determination result signal B shown in FIG. 6 will be described as an example.
  • the prediction filter 302 outputs the input reproduction signal X as it is as a prediction filter output when the prediction value P of the reproduction signal transitions to “1 25”, “0”, “25”.
  • the characteristic of the reproduced signal X corresponds to the portion where the predicted value P of the reproduced signal transitions to “_25”, “0”, “25”.
  • the filter processing for cutting the components of the fixed frequency band is executed, and the frequency cut of the frequency cut is performed by the prediction filter 302 at the portion where the predicted value P of the reproduced signal transitions to “25”, “0”, and “25”. Even if a component in the same band as the target signal is included, this is not cut.
  • the prediction filter 302 the nonlinear distortion of the waveform of the input reproduced signal X can be reliably removed, and a waveform having almost no nonlinear distortion can be supplied to the adaptive equalizer 301 in the subsequent stage. Then, the output of the prediction filter from which the nonlinear distortion has been removed as described above is subjected to adaptive equalization in the adaptive equalizer 301 to obtain a waveform equalized output Y.
  • the reproduced signal X input to the reproduced signal processing apparatus 300 has a waveform having non-linear distortion in which frequency components in the same band as the normal waveform are superimposed, as described in FIG. Even in this case, the failure of the waveform equalization due to the nonlinear distortion is eliminated, and the effect of the waveform distortion on the waveform equalization output Y can be suppressed.
  • the reproduction signal processing apparatus 300 of the second embodiment it is possible to obtain good equalization characteristics and to always perform the optimal adaptive equalization processing on the reproduction signal X. Become. Industrial applicability
  • the reproduction signal processing apparatus and the reproduction signal processing method of the present invention are extremely useful as a means for realizing an optimal equalization process corresponding to a nonlinear distortion caused by manufacturing variations of a medium such as an optical disk or a magnetic disk. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

第1図に示すように、本発明の再生信号処理装置(100)は、パターン予測器(103)において、再生信号Xのデータ系列である予測値を予測すると共に、該予測値と予め設定された特定パターンとが一致するか否かを判別し、適応等化器(110)において、前記パターン予測器(103)からの判別結果に応じてデジタルフィルタの係数Wを適時更新しながら再生信号Xに対し適応等化処理を行い、選択回路(104)において、前記判別結果に基づいて、波形等化出力Yとして、前記適応等化器(110)からの出力か、あるいは前記予測値のいずれかを出力するようにした。このような構成の再生信号処理装置(100)は、再生信号に含まれる非線形歪みに対応した最適な波形等化を実現できる。

Description

明 細 書 再生信号処理装置、 及び再生信号処理方法 技術分野
本発明は、 記録媒体から再生された再生信号の波形を等化する再生信号処理装 置、 及びその再生信号処理方法に関する。 背景技術
光ディスク、 磁気ディスク等の再生回路では、 再生信号に含まれる波形歪みや ノイズを除去するために、 その再生回路内に再生信号の波形等化を行う等化器を 設けて、 記録系列中の符号間干渉の補償が行われており、 その波形等化の方法と しては、 該再生信号から波形歪みを推定して、 等化器の特性を決定するという適 応等化の方法がとられている。
ここで、 第 1 2図を参照しながら、 光ディスク、 磁気ディスク等の記録ピット がー様に形成されている場合と、 該記録ピットにムラがある場合の再生信号を比 較する。 第 1 2図は、 記録ピットが一様に形成されている場合と、 記録ピットに ムラがある場合における、 それぞれのマーク形状とその再生信号を示した波形図 である。
第 1 2図に示すように、 記録ピットが一様に形成されている場合、 そのマーク 形状がきれいな長方形になっている。一方、記録ピットにムラが生じている場合、 そのマーク形状はピットの両端や中央での歪みが大きくなつている。 そして、 こ れらの信号を再生回路のピックアップなどで読み取ると、 記録ピットが一様に形 成されている場合は、 再生信号のレベルはその中央部において一定値をとるが、 記録ピットにムラがある場合は、 再生信号のレベルはその中央部において歪み、 再生信号 Xは、 ある周波数が重畳された信号のようになってしまう。
しかし、 従来の等化器は、 再生信号の遅延、 係数の乗算、 加算といった線形操 作のみによって構成され、 再生信号の線形歪みの除去を目的としているため、 光 ディスクや磁気ディスク等の媒体の製造ばらつきなどが一因の非線形歪みが再生 信号に含まれていた場合 (例えば、 第 1 2図の記録ピットにムラがある場合の再 生信号参照)、従来の等ィ匕器ではその歪み成分を取り除くことができなかった。そ して、 この再生信号に含まれる非線形歪みは、 等化器の等化能 を著しく低下さ せるため、 例えば、 ビットエラーレートの劣化など、 再生回路の性能の低下が避 けられなかった。
この従来の問題を解決したものとして、 特許第 2 7 6 8 2 9 6号公報に、 再生 信号の非線形歪みの影響を考慮した波形等化処理を行う再生信号処理装置が開示 されている。
以下、 第 1 3図、 第 1 4図、 及び第 1 5図を用いて、 従来の再生信号処理装置 について説明する。第 1 3図は、従来の再生信号処理装置の構成を示す図であり、 第 1 4図は、 従来の再生信号処理装置におけるデジタルフィルタの詳細な構成を 示す図であり、 第 1 5図は、 従来の再生信号処理装置における係数更新器の詳細 な構成を示す図である。
第 1 3図において、 従来の再生信号処理装置 4 0 0は、 デジタルフィルタ 4 0 1と、 係数更新器 4 0 2とから構成されている。 そして、 前記デジタルフィルタ 4 0 1は、 C Dや D VD等の光ディスクから再生された信号が再生回路内の量子 化部 (図示せず) でデジタル化された再生信号 Xを受け取るフ ル夕で、 ここで は第 1 4図に示すように 5タップの F I R (Fini te I即 ulse Response) フィルタ であるとする。 以下、 第 1 4図を用いて詳細に説明すると、 前言己デジタルフィル 夕 4 0 1は、 再生信号 Xの伝搬を遅延させるための複数段の遅 素子を構成する ように互いに接続された 5個の Dフリップフロップ 4 l l a〜4 1 1 eと、 該各 Dフリップフロップ 4 1 1 a〜4 1 1 eから出力される遅延信号 X 〜X 5にそ れぞれ係数 Wi Wsを乗算する 5個の乗算器 4 1 2 a〜4 1 2 eと、 該各乗算器 4 1 2からの出力を加算する 1個の加算器 4 1 3とからなる。 って、 デジタル フィルタ 4 0 1の出力 X ' は、 再生信号 Xを遅延させた遅延信号 X i〜X 5を各々 係数 Wi Wsで乗じ、 その乗算結果すベてを加算器 4 1 3で加算した値となる。 そして、 前記係数更新器 4 0 2は、 前記デジタルフィルタ 4 0 1の等化特性を 決定する係数 W,〜W5を、 該デジタルフィル夕 4 0 1の出力に )¾じて適応的に更 新するものであり、 ここでは、 第 1 5図に示すように、 相関器 4 2 1、 積分器 4 2 2、 減算器 4 2 3、 基準振幅発生回路 4 2 4、 三値判定回路 4 2 5、 誤差信号 選択回路 4 2 6、 及びスィッチ 4 2 7で構成されている。 そして、 前記三値判定 回路 4 2 5は、 前記デジタルフィルタ 4 0 1から出力されるデジタルフィルタ出 力 X ' を予め設定したしきい値によって、 3つの値 (例えば、 一 1 , 0, + 1 ) に判定し、 前記基準振幅発生回路 4 2 4は、 該三値判定 [IT路 4 2 5から出力され る 3つの値 (例えば、 一 1, 0 , + 1 ) を、 デジタルフィルタ 4 0 1の出カレべ ルに対応する振幅値にし、 前記減算器 4 2 3は、 前記基準振幅発生回路 4 2 4か らの出力と、前記デジタルフィル夕出力 X 'との差分である等化誤差 εを算出し、 前記相関器 4 2 1は、 デジタルフィルタ 4 0 1から入力される遅延信号 Χ ηと前 記減算器 4 2 3からの等化誤差 ε ηとの相関をとり、 前記賴分器 4 2 2は、 該相 関器 4 2 1においてとられた各相関をそれぞれ時間積分した値を、 更新後の係数 Wnとしてデジタルフィルタ 4 0 1に供給し、 前記誤差信号選択回路 4 2 6は、 前記三値判定回路 4 2 5の出力の時系列情報に基づいて、 前記減算器 4 2 3にお いて算出された等化誤差 εを相関器 4 2 1に入力するか否かを選択する選択信号 を発生させ、 前記スィツチ 4 2 7は、 該誤差信号選択回路 4 2 6からの選択信号 に応じて、 そのオン、 オフを切り替える。
このような従来の再生信号処理装置 4 0 0では、 前記係数更新器 4 0 2におい て、 前記三値判定回路 4 2 5の出力のうち、 非線形歪みが、あると思われる特徴的 なパターンを予め誤差信号選択回路 4 2 6に設定しておき、 該誤差信号選択回路 4 2 6で、 その予め設定された特徴的なパターンと前記三値判定回路 4 2 5から の出力が一致するか否かを判断して、 一致しなければスィツチ 4 2 7をオンにし て前記係数 ^ェ〜^^の更新を行い、一致すればスィッチ 4 2 7をオフにして前記 係数 Wi〜W5の更新を行わないようにすることで、再生 i 号 Xの非線形歪みが前 記係数 Wi〜W5の更新に与える影響を抑制することがでぎる。
しかしながら、 前述した係数更新器 4 0 2における係数更新の適応制御のみが 波形等化の失敗の原因ではなく、 前記デジタルフィルタ 4 0 1において波形等化 が施されたデジタルフィル夕の出力 X ' (以下、 「波形等化出力 X '」 ともいう。) そのものが、 波形等化失敗の一因となる場合がある。
以下、 第 1 6図を用いて具体的に説明する。 第 1 6図は、 非線形歪みを含む再 生信号 Xと、 該再生信号 Xを適応等化した波形等化出力 Yとを示す図である。 第 1 2図で説明したように、 非線形歪みの大きい再生信号は、 再生信号の正常 な波形には含まれない、 ある周波数帯域の信号を重畳したものとなってしまう。 この重畳される周波数帯域が、 再生信号の周波数帯域とはかけ離れた周波数帯域 である場合には、 該重畳される信号を前記デジタルフィルタ 4 0 1で容易に取り 除くことができるが、 前記重畳される周波数帯域が、 前記再生信号と同じような 周波数帯域の場合は、 その再生信号の波形の大きな歪みが、 非線形歪みの影響に よる波形の歪みなのか、 それとも再生信号の正常な波形なのか、 の区別がつけら れないため、 波形の非線形歪みの補正が非常に困難になる。
例えば、第 1 6図に示す再生信号 Xの波形の大きな歪み A〜D部分のうち、 A, B , D部分は正常な波形に同じ周波数帯域の信号が重畳された非線形歪みであり、 C部分は正常な再生信号の波形である。 このような波形に対して従来装置 4 0 0 により波形等化を施すと、 再生信号 Xが、 正常な波形部分の周波数帯域と同じ周 波数帯域の歪み成分をもっている場合には、該歪み部分において係数 Wi Wgの 更新が行われなかったとしても、 その再生信号そのものの歪み成分が同様に増幅 されてしまうので、 結局波形等化は失敗してしまう (第 1 6図の A, B , D部分 参照)。そして、 この波形等化の失敗は、 符号化の制約を満たしてしまうと、 図示 していない後段の復号器、 例えばビタビ復号器においても誤り訂正が不可能であ るためにそのまま復号化されてしまうこととなるので、 再生回路の復号性能を劣 化させる一因となる。
従って、 従来の再生信号処理装置 4 0 0のように、 再生信号 Xの波形の非線形 歪みと思われる部分において、前記係数 W Wgの更新を行わないようにするだ けでは、 前記波形等化出力 X ' に対する非線形歪みの影響を抑制できない場合が あり、 この結果、 従来の再生信号処理装置 4 0 0では、 デジタルフィル夕 4 0 1 において非線形歪みを考慮した波形等化特性を十分なものとすることができず、 非線形歪みを含む再生信号を最適に波形等化することができないという課題があ つた。
本発明は前記課題に鑑みてなされたものであり、 再生信号に含まれる非線形歪 みに対応した、 最適な波形等化を実現できる再生信号処理装置を提供することを 目的とするものである。 発明の開示
前記課題を解決するために、 本発明の再生信号処理装置は、 記録媒体から再生 された再生信号の波形を等化する再生信号処理装置であって、 前記再生信号を等 化するデジタルフィルタと、 前記デジタルフィル夕の等ィヒ特性を決定する係数を 適応的に更新する係数更新器と、 前記再生信号のデータ系列を予測して前記再生 信号の予測値を出力するとともに、 前記再生信号のデータ系列が予め設定された 特定パターンか否かを判別して判別結果を出力するパターン予測器と、 波形等化 後の出力として、 前記デジタルフィル夕の出力か、 前記再生信号の予測値のいず れか一方を選択し、 出力する選択回路と、 を備えるものである。
これにより、 再生信号に対して適応等化処理をした後、 波形等化出力として、 該適応等化処理した出力か、 あるいは該再生信号から予測されたデータ系列のい ずれかを選択して出力するようにしたので、 該再生信号に含まれる非線形歪みに 対応した最適な波形等化を実現することがでぎる。
さらに、 本発明の再生信号処理装置において、 前記選択回路は、 前記判別結果 が前記再生信号のデータ系列が前記特定パターンであることを示す場合、 前記デ ジタルフィル夕の出力を選択し、 前記判別結果が前記再生信号のデータ系列が前 記特定パターンでないことを示す場合、 前記 測値を選択するものである。 これにより、 前記再生信号に含まれる非線 歪みが、 波形等化後の出力に与え る影響を最適に抑制することができる。
さらに、 本発明の再生信号処理装置において、 前記係数更新器は、 前記判別結 果が前記再生信号のデータ系列が前記特定パターンであることを示す場合、 前記 デジタルフィルタの係数を更新し、 前記判別洁果が前記再生信号のデータ系列が 特定パターンでないことを示す場合、 前記デジタルフィル夕の係数を更新しない ものである。
これにより、 前記再生信号に含まれる非線形歪みが、 前記デジタルフィルタの 係数の更新に与える影響を抑制することがでぎる。
さらに、 本発明の再生信号処理装置において、 前記係数更新器は、 前記予測値 を用いて、 前記デジタルフィルタの係数を適応的に更新するものである。
これにより、 前記再生信号に含まれる非泉形歪みが前記デジタルフィル夕の係 数の更新に与える影響を、 最適に抑制することができる。
さらに、 本発明の再生信号処理装置において、 前記デジタルフィルタは、 前記 再生信号を多値に等化して出力し、 前記パターン予測器に予め設定される前記特 定パターンは、 前記再生信号のデータ系列のうちの、 最小値から最大値に、 及び 該最大値から該最小値に遷移する部分であるものである。
これにより、 再生信号の正常な波形と同じ周波数帯域の非線形歪みが含まれて いても、 該非線形歪みが波形等化後の出力に与える影響を抑制して、 波形等化を 最適に行うことができる。
さらに、 本発明の再生信号処理装置にお て、 前記デジタルフィルタは、 前記 再生信号を多値に等化して出力し、 前記パターン予測器に予め設定される前記特 定パターンは、 前記再生信号のデータ系列のうちの、 最小値及び最大値以外の部 分であるものである。
これにより、 再生信号の正常な波形と同 周波数帯域の非線形歪みが含まれて いても、 該非線形歪みが波形等化後の出力に与える影響を抑制して、 波形等化を 最適に行うことができる。
さらに、 本発明の再生信号処理装置にお て、 前記パターン予測器は、 パーシ ャルレスポンス等化を用いて、 前記再生信号のデータ系列を予測し、 該予測した 再生信号のデータ系列が、 前記特定パターンと一致するか否かを判別するもので ある。
これにより、 該再生信号の正常な波形と同じ周波数帯域の非線形歪みが含まれ ていても、 該非線形歪みが波形等化後の出力に与える影響を抑制して、 波形等化 を最適に行うことができる。
また、 本発明の再生信号処理装置は、 記録媒体から再生された再生信号の波形 を等化する再生信号処理装置であって、 前記再生信号のデータ系列が予め設定さ れた特定パターンか否かを判別して判別結果を出力するパターン予測器と、 前記 判別結果に基づいて、 前記再生信号に対して部分的にフィルタ処理を行う予測フ ィルタと、 前記予測フィルタの出力を適応等化する適応等化器とを、 備えるもの である。
これにより、 再生信号は部分的にフィル夕処理が施された後、 適応等化される こととなり、 該再生信号に含まれる非線形歪みに対応した最適な波形等化を実現 することができる。
さらに、 本発明の再生信号処理装置において、 前記パターン予測器は、 前記再 生信号のデータ系列の判別を行うと共に、 前記再生信号のデータ系列を予測して 前記再生信号の予測値を出力し、 前記予測フィル夕は、 前記判別結果が前記再生 信号のデータ系列が前記特定パターンであることを示す場合、 前記再生信号を出 力し、 前記判別結果が前記再生信号のデータ系列が前記特定パターンでないこと を示す場合、 前記再生信号の予測値を出力するものである。
これにより、 再生信号の正常な波形と同じ周波数帯域の非線形歪みが含まれて いても、 該非線形歪みが波形等化後の出力に与える影響を抑制して、 波形等化を 最適に行うことができる。
さらに、 本発明の再生信号処理装置において、 前記予測フィルタのフィル夕処 理は、 前記判別結果が前記再生信号のデ一夕系列が前記特定パターンでないこと を示す場合のみ、 前記再生信号の波形からある特定の周波数帯域を除去するもの である。
これにより、 前記再生信号のデータ系列の特定パターン部分以外でフィル夕処 理による影響が生じないようにして、 後段の適応等化器に、 非線形歪みのほとん どない信号を供給できる。
さらに、 本発明の再生信号処理装置において、 前記パターン予測器に予め設定 される前記特定パターンは、 前記予測された前記再生信号のデータ列のうちの、 最小値から最大値に、 及び該最大値から該最/ J、値に遷移する部分である。
これにより、 再生信号の正常な波形と同じ周波数帯域の非線形歪みが含まれて いても、 該非線形歪みが波形等化後の出力に与える影響を抑制して、 波形等化を 最適に行うことができる。
さらに、 本発明の再生信号処理装置において、 前記パターン予測器に予め設定 される前記特定パターンは、 前記予測された f 記再生信号のデータ列のうちの、 最小値及び最大値以外の部分である。 これにより、 再生信号の正常な波形と同じ周波数帯域の非線形歪みが含まれて いても、 該非線形歪みが波形等ィヒ後の出力に与える影響を抑制して、 波形等化を 最適に行うことができる。
また、 本発明の再生信号処理方法は、 記録媒体から再生された再生信号の波形 を等化する再生信号処理方法であって、 波形の等 f匕特性を決定する係数を更新し ながら、 前記再生信号を適応的に等化して出力する適応等化ステップと、 前記再 生信号のデ一タ系列を予測して該再生信号の予測値を出力する予測ステップと、 該再生信号のデータ系列が予め設定された特定パターンか否かを判別して判別結 果を出力する判別ステップと、 波形等化後の出力として、 前記等化ステップの出 力か、 前記予測ステップの出力のいずれか一方を選択し、 出力する選択ステップ と、 を含むものである。
これにより、 波形等化出力として、 適応等化処理した再生信号か、 あるいは該 再生信号から予測された予測値のいずれかが選択されて出力されることとなり、 該再生信号に含まれる非線形歪みに対応した最適な波形等化を実現することがで きる。
また、 本発明の再生信号処理方法は、 記録媒体)^ら再生された再生信号の波形 を等化する再生信号処理方法であって、 前記再生信号のデータ系列が予め設定さ れた特定パターンか否かを判別して判別結果を出力する判別ステップと、 前記判 別結果に基づいて、 前記再生信号に対して部分的にフィルタ処理を行うフィルタ ステップと、前記フィル夕ステップの出力を適応等ィ匕する適応等化ステツプとを、 含むものである。
これにより、 再生信号に対してフィル夕処理を行った後、 該フィル夕処理後の 出力を適応等化することができるため、 該再生信号に含まれる非線形歪みに対応 した最適な波形等化を実現することができる。 図面の簡単な説明
第 1図は、 本発明の実施の形態 1に係る再生信号処理装置の構成を示す図であ る。
第 2図は、 本発明の実施の形態 1に係る再生信号処理装置の、 係数更新器の詳 細な構成を示す図である。
第 3図は、 本発明の実施の形態 1に係る再生信号処理装置の、 パターン予測器 の詳細な構成を示す図である。
第 4図は、 本発明の実施の形態 1に係る再生信号処理装置の、 パターン予測器 の動作を示す波形図である。
第 5図は、 本発明の実施の形態 1に係る再生信号処理装置に入力される再生信 号が、 正常な場合 (X a ) と非線形歪みが大きい場合 (X b ) とにおける、 それ ぞれの再生信号とその予測値とを示す波形図である。
第 6図は、 本発明の実施の形態 1に係る再生信号処理装置の、 係数更新器の動 作を説明する図である。
第 7図は、 本発明の実施の形態 1に係る再生信号処理装置の、 選択回路の動作 を説明する図である。
第 8図は、 本発明の実施の形態 1に係る再生信号処理装置に入力された再生信 号と、 該再生信号の予測値と、 該再生信号を等化処理した波形等化出力と、 を示 す波形図である。
第 9図は、 本発明の実施の形態 2に係る再生信号処理装置の構成を示す図であ る。
第 1 0図は、 本発明の実施の形態 2に係る再生信号処理装置の、 予測フィルタ の動作を示す波形図である。
第 1 1図は、 本発明の実施の形態 2に係る再生信号処理装置の変形例の、 予測 フィル夕の動作を示す波形図である。
第 1 2図は、 記録媒体に記録される記録ピットが一様な場合と、 ムラが生じて いる場合とにおける、 マーク形状とその再生信号を示す図である。
第 1 3図は、 従来の再生信号処理装置の構成を示す図である。
第 1 4図は、 従来の再生信号処理装置の、 デジタルフィル夕の詳細な構成を示 す図である。
第 1 5図は、 従来の再生信号処理装置の、 係数更新器の詳細な構成を示す図で ある。
第 1 6図は、 従来の再生信号処理装置に入力された再生信号と、 該再生信号を 等化処理した波形等化出力とを示す波形図である。 発明を実施するための最良の形態
(実施の形態 1 )
以下、 第 1図〜第 8図、 及び第 1 4図を用いて、 本実施の形態 1に係る再生信 号処理装置について説明する。
本実施の形態 1においては、 非線形歪みを含む再生信号に対して適応等化処理 を行う場合に、 その非線形歪みの影響を、 デジタルフィル夕の等化特性を決定す る係数 Wi〜W5の更新に対してだけでなく、該デジタルフィル夕から出力される 適応等化後の波形等化出力に対しても考慮するようにしたものである。
まず、 第 1図〜第 3図、 及び第 1 4図を用いて、 本実施の形態 1における再生 信号処理装置の構成について説明する。 第 1図は、 本実施の形態 1に係る再生信 号処理装置の構成を示す図であり、 第 2図は、 本実施の形態 1に係る再生信号処 理装置の係数更新器の詳細な構成を示す図であり、 第 3図は、 本実施の形態 1に 係る再生信号処理装置のパターン予測器の詳細な構成を示す図である。
第 1図において、 本実施の形態 1の再生信号処理装置 1 0 0は、 デジタルフィ ルタ 1 0 1、 及び係数更新器 1 0 2とからなる適応等化器 1 1 0と、 パターン予 測器 1 0 3と、 選択回路 1 0 4とで構成されているものである。
そして、 前記適応等化器 1 1 0の前記デジタルフィル夕 1 0 1は、 C D、 D V Dなどの光ディスクから再生された信号が、 該適応等化器 1 1 0の前段の量子化 回路 (図示せず) においてデジタル化された再生信号 Xを受け取るものであり、 前記係数更新器 1 0 2は、 前記デジタルフィルタ 1 0 1の等化特性を決定する係 数 W 〜W5を、 再生信号 Xと、 後述するパターン予測器 1 0 3の予測値 P及び判 別結果と、 前記デジタルフィル夕 1 0 1の出力 X ' とに応じて、 適応的に更新す るものであり、 前記適応等化器 1 1 0は、 該係数更新器 1 0 2において適時更新 された係数 Wを用いて、 前記デジタルフィルタ 1 0 1において該再生信号 Xを適 応等化するものである。 なお、 本実施の形態 1では、 前記デジタルフィルタ 1 0 1の構成が、 前述した従来のデジタルフィルタ 4 0 1と同様、 第 1 4図に示され る 5タップの F I R (Fini te I即 ulse Response) フィルタであるものとし、 前記 係数更新器 1 0 2において適時更新される係数 Wは 5つ N^D であるとす る。
そして、 前記パターン予測器 1 0 3は、 再生信号 Xから得られる 2値のデータ 系列(予測値 P ) を予測すると共に、その予測したデータ系列である予測値 Pが、 予め設定された特定のパターンと一致しているか否かを判別し、 その判別結果を 出力するものであり、 さらに、 前記選択回路 1 0 4は、 前記デジタルフィル夕 1 0 1からのデジタルフィルタ出力 X ' と、 前記パターン予測器 1 0 3からの前記 予測値 P及び判別結果とを受信し、 該判別結果に基づいて、 前記デジタルフィル 夕出力 X ' か、 前記予測値 Pのいずれか一方を、 波形等化出力 Yとして出力する ものである。
以下、 第 2図及び第 3図を用いて、 前記係数更新器 1 0 2と、 前記パターン予 測器 1 0 3の詳細な構成について説明する。
まず、 前記係数更新器 1 0 2は、 第 2図に示すように、 デジタルフィルタ 1 0 1から出力されるデジタルフィルタ出力 X ' nと、予測値 P nとの差分である等化 誤差 ε ηを算出する減算器 2 2 1と、 クロック遅延を考慮して前記デジタルフィ ルタ 1 0 1において再生信号 Xを Dフリップフロップにより遅延させた各遅延信 号 Χ ηと、前記減算器 2 2 1からの等ィヒ誤差 ε ηとの相関をとる乗算器 2 2 2と、 該乗算器 2 2 2からの出力を増幅率 //で増幅する増幅器 2 2 3と、 該増幅器 2 2 3からの出力と、 (η— 1 )番目の係数 Wn— とを加算して、更新後の前記係数 W nを出力する加算器 2 2 4と、 前記予測パターン測定器 1 0 3からの判別結果を 元に、 前記加算器 2 2 4から更新後の係数 Wnを出力するか否かを制御する制御 回路 2 2 5とからなり、 前記制御回路 2 2 5の制御の下、 前記等化誤差 ε nの 2 乗を最小にするように係数 Wnを更新していくことで、 再生信号 Xの波形特性に 応じたデジタルフィルタ 1 0 1の等化特性を適応制御するものである。 なお、 第 2図に示す係数更新器 1 0 2の構成では、 1回の更新につき 1個の係数 Wしか更 新できないが、 同様の回路を係数 Wnの個数分 (ここでは 5つ) 用意すれば、 1 回の更新ですベての係数 Wn-4, Wn.3 ) Wn.2 , Wn—い Wn (ここでは、 係数 ^丄 〜W5) を更新できる。
そして、 前記パターン予測器 1 0 3は、 第 3図に示すように、 再生信号 Xを 1 クロック遅延させる Dフリップフロップ 23 l a〜2 3 1 dと、 該再生信号 Xと 前記 Dフリップフロップ 23 1 aにより 1グロック遅延させた信号とを加算する 加算器 232と、 前記加算器 232の出力の符号を算出する符号器 2 3 3と、 該 符号器 23 3からの出力と、 該符号器 2 33の出力を 3つの Dフリップフロップ 23 1 b〜 23 1 dによりそれぞれ 1クロヅク遅延させた各出力とを加算するこ とで PR (1, 1, 1, 1) を実行する加算器 2 34と、 前記 PR (1, 1, 1, 1) の結果より予測値 Pを出力する予測値 モリ 2 3 5と、 その予測値 Pが予め 設定されていた特定パターンか否かを判別する判別器 2 3 6とからなり、 パーシ ャルレスポンス PR (1, 1, 1, 1) を使って、 再生信号 Xのデータ系列を予 測して予測値 Pを出力すると共に、 該予測ざれた予測値 Pが、 予め設定されてい た前記特定パターンか否かを判別して、 その判別結果を出力するものである。 な お、 前記 PR (1, 1, 1, 1) とは、 1 Di + Ds + Dsで得られる信号であ り、 Dm (m=1~3)は mクロックだけ遅延した信号のことである。 そして、 多値に等 化された再生信号 Xの 2値のデータ系列 (予測値 P) が、 前記 PR (1, 1, 1, 1) によって得ることができるのは、 DVDの信号が、 EFM+という変復調方 式により符号化され、 記録時には NRZ I (Non Return to Zero Inverted) とい う変調方式で記録されるためである。
次に、 第 4図〜第 8図を用いて、 前述した構成を有する本実施の形態 1に係る 再生信号処理装置の一連の動作について説明する。 第 4図は、 本実施の形態 1に おけるパターン予測器の各部において得られる値を示す図である。
まず、 図示されていない量子化手段によりデジタル化された再生信号 が、 適 応等化器 1 1 0に入力されると共に、 パターン予測器 1 0 3に入力される。
前記適応等化器 1 1 0では、 前記デジタルフィルタ 1 0 1において、 入力され た再生信号 Xに対し、 既に説明した従来装置 40 0と同様、 係数更新器 1 02か ら供給される係数 ^V^ Wsに応じた適応等ィ匕を実行し、 該等化処理後のデジタル フィルタ出力 X' を選択回路 1 04に出力する。
これと同時に、 前記パターン予測器 10 3では、 入力された再生信号 Xのデー 夕系列を予測してそれを再生信号 Xの予測値 Pとして選択回路 1 04に出力する と共に、 その予測した前記予測値 Pが予め設定された特定パターンと一致してい るか否かを判別して、 その判別結果を、 ttr記係数更新器 102及び選択回路 10
4に出力する。
以下、第 4図を用いて、前記パターン予貝 (1器 103の動作を詳細に説明すると、 まず、 第 4図に示すような値を有する再生信号 Xがパターン予測器 103に入力 されると、 該再生信号 Xは Dフリップフロップ 231 aにより 1クロック遅延さ れた後、 加算器 232において再生信号 Xと加算されて、 値 (1+D) Xが得ら れる。 ここで、 まず (1+D) という演算を行うのは、 ナイキストフィルタによ る補間フィルタと同等の機能を簡易的に実現するためである。ここでは、演算(1 + D) を行うことによって、 隣り合う 2つのサンプリング点の中点と等価なレべ ルを得ている。 なお、 複数タップの F I Rフィルタでナイキストフィルタを構成 してもよい。
次に、 前記加算器 232から出力された値 (1+D) Xは、 符号器 233に入 力され、 該符号器 233において、 符号 ( 1+D) Xの値を得る。 ここでは、 前 記加算器 232の出力(1+D) Xの値が負のとき、符号(1 +D) Xの値を" 0" とし、 前記の値が負でないとき、 符号 (1 +D) Xの値を "1" としている。 そして、 前記符号器 233から出力された符号 (1+D) Xの値は、 Dフリツ プフロップ 231 b〜231 dにおいてそれぞれ 1クロックづっ遅延され、 加算 器 234において、 該符号器 233の出力と、 各 Dフロップフロップ 231 b〜 231 dからの出力とを加算して、 PR ( 1, 1, 1, 1) の値を得る。 なお、 ここでの PR (1, 1, 1, 1) の値は、 再生信号 Xを Dフリップフロップ 23 l a〜231 dにより 1クロックずつ遅延させ、 該遅延させた値すべてを加算器 234により加算することによって得られるため、 該加算器 234から出力され る PR (1, 1, 1, 1) の値は、 第 4図に示すように "0"〜 "4" の値をと る。
PR (1, 1, 1, 1) の値は、 DVDの再生信号の特徴から、 常に前の値の + 1、 一 1、 0だけ変化する。 従って、 ここで再生信号処理装置 100に入力さ れる前記再生信号 Xが DVDの再生信号の場合、 その再生信号 Xから予測される 信号の値 PR (1, 1, 1, 1) は、 0→ 0→1→2→3→4→4→4→3→2 →1→2→3—4などのように遷移し、 決して 0→4→2→4→1→3のように 遷移することはない。
そして、 前記予測値メモリ 2 3 5は、 前記加算器 2 3 4からの出力を元に、 再 生信号 Xの予測されたデータ系列である予測値 Pを出力する。 ここでは、 加算器 2 3 4の出力値 0、 1、 2、 3、 4に対応する値をそれぞれ、 —4 4、 —2 5、 0、 2 5、 4 4とし、 前記予測値メモリ 2 3 5において、 入力された前記加算器 2 3 4の出力値 P R ( 1, 1 , 1, 1 ) に対応するように、 前記 5つの値をあて はめて、 その値を再生信号 Xの予測値 Pとして出力する。 このように、 前記予測 値 Pとして、 加算器 2 3 4の出力値に対応する 5つの値を用意する理由は、 前記 予測値 Pを再生信号 Xの取りうる値の範囲に合わせるためであり、 これにより本 再生信号処理装置 1 0 0から出力される波形等化出力 Yはこれら 5つの値付近に 等化されることとなる。 なお、 ここで挙げた 5つの値 (一 4 4、 一2 5、 0、 2 5、 4 4) は一例であって、 再生信号 Xの取りうる値であればよい。 また、 本実 施の形態 1では、 予測値 Pを出力するものを予測値メモリ 2 3 5と表現したが、 これと同等の機能を有するものであれば、 メモリに限定されるものではなく、 例 えば、 レジス夕とマルチプレクサの組み合わせであってもよい。
ここで、 前述のようにして得られる再生信号 Xの予測値 Pを、 該再生信号 が 正常な場合 (波形 X a) と、 非線形歪みが大きい場合 (波形 X b ) とで比較して みると、 第 5図に示すように、 図示していないオフセットキャンセラにより基準 となる信号、 例えば 0 (ゼロ) のレベルが非線形歪みの有無に関わらず一定に保 たれている場合には、 該再生信号の波形の歪みの大小によらず、 再生信号の予測 値 Pは同一のものとなる。 これはパターン予測器 1 0 3の演算内容、 すなわち、 隣り合う 2つのサンプリング点の中点の符号により、 前記 P R ( 1 , 1 , 1 , 1 ) を実行していることからも明らかである。
そして、前記予測値メモリ 2 3 5から出力される前記再生信号 Xの予測値 Pは、 前記判別器 2 3 6に出力され、 該判別器 2 3 6において、 予め設定された特定パ ターンと一致するか否かが判別される。
例えば、 前記判別器 2 3 6に予め、 前記予測値 Pが最大値、 あるいは最小値ま で遷移する部分、 すなわち、 前記予測値 Pが "— 2 5 ", " 0 ", " 2 5 " と変化す る部分を前記特定パターンとして設定し、 前記予測値 Pの変化が前記特定パ夕一 ンと一致すればエッジを立ち上げる判別結果を出力するものとすると、 前記判別 器 2 3 6は、第 4図に示されるように、判別結果として、前記予測値 Pのうち"一 2 5 ", " 0 ", " 2 5 " と変化する部分をエッジ部分とする判別結果を出力する。 なお、 本実施の形態 1では、 前記判別器 2 3 6に前記予測値メモリ 2 3 5の出力 である予測値 Pが入力されているが、 前記加算器 2 3 4の出力値 (0〜4) と、 前記予測値 P (- 4 4 , 一 2 5、 0、 2 5、 4 4) とは、 前述したように対応し ており等価であることから、 前記判別器 2 3 6に前記加算器 2 3 4の出力を入力 するようにしてもよい。 このようにする場合、 前記判別器 2 3 6には予め、 特定 パターンとして、 前記加算器 2 3 4の出力値が " 1 ", " 2 ", " 3 " と変化する部 分と設定しておけば、 前述のように、 特定パターンを前記予測値 "一 2 5 ", " 0 ", " 2 5 " と変化する部分と設定した場合と同じ結果が得られる。
そして、 このようにして得られた判別結果は、 前記係数更新器 1 0 2の制御回 路 2 2 5、 及び前記選択回路 1 0 4に出力され、 前記係数更新器 1 0 2の制御回 路 2 2 5においては、該判別結果に応じて係数 Wi Wsを更新するか否かが制御 され、 前記選択回路 1 0 4においては、 前記判別結果に応じてデジタルフィル夕 出力 X ' か、 前記再生信号 Xの予測値 Pのいずれを波形等化出力 Yとして出力す るかが選択される。
まず第 6図を参照しながら、前記判別結果を係数 Wi Wsの更新に使用する場 合を説明する。 第 6図は、 本実施の形態 1の、 係数更新時における判別器での判 別方法を説明する図である。 なお、 第 6図中に示す "学習" とは、 等化特性を適 応的に変えること、すなわち係数更新を実行することであり、 "非学習"とは、等 化特性を変えない、 すなわち係数更新を実行しないことである。
例えば、 特定パターンが、 前記予測値 Pのうち、 最大値から最小値に、 及び最 小値から最大値に遷移する部分と設定された場合、 パターン予測器 1 0 3の判別 器 2 3 6からは、 第 6図に示す信号 Aが判別結果として出力され、 また、 特定パ ターンが、 前記予測値 Pの最大値及び最小値でない部分と設定された場合、 前記 パターン予測器 1 0 3の判別器 2 3 6からは、 第 6図に示す信号 Bが判別結果と して出力される。
そして、 前述したようにして得られた判別結果を、 係数更新器 1 0 2内の制御 回路 2 2 5で受信すると、該係数更新器 1 0 2の制御回路 2 2 5は、 "非学習"期 間 (エッジでない部分) では、 再生信号 Xに応じて適応的に係数 の更新 を実行しないように制御し、 一方、 "学習"期間 (エッジ部分) では、 係数 Wi〜 W5の更新を実行するように制御する。 これにより、 非線形歪みが大きい再生信 号が入力された場合であっても、 該非線形歪みにより不適切な係数更新が行われ るのが回避されることとなり、 係数更新の収束性は改善される。
次に第 7図を参照しながら、 前記判別結果を、 波形等化に使用する場合を説明 する。 第 7図は、 本実施の形態 1の、 波形等化時における判別器での判別方法を 説明する図である。 ここでは、 第 6図の判別結果信号 Bを例に挙げて説明する。 前述したように、 前記パターン予測器 1 0 3内の判別器 2 3 6において得られ た判別結果は、 選択回路 1 0 4に出力される。 そして、 前記選択回路 1 0 4は、 前記パターン予測器 1 0 3からの判別結果に基づいて、再生信号の予測値 Pが" - 2 5 ", " 0 ", " 2 5 " と遷移する部分は、 波形等化出力 Yとしてデジタルフィル タ出力 X, を、 また再生信号の予測値 Pが "一 2 5 ", " 0 ", " 2 5 " と遷移する 以外の部分は、 波形等化出力 Yとして、 該デジタルフィル夕出力 X ' に代えて、 対応する予測値 Pを出力する。
これは、 第 5図を用いて既に説明したように、 再生信号の波形が正常 (波形 X a )であっても、 非線形歪みを含んでいても (波形 X b)、 その予測値 Pは同じに なることを利用したものであり、 このように再生信号 Xの波形に非線形歪みが含 まれる可能性のある部分では、波形等化出力 Yとして <デジタルフィル夕出力 X ' の代わりに、 該再生信号 Xから生成した予測値 Pを出力するようにすれば、 第 8 図中の点線で囲まれた領域に示されるように、 従来装置 4 0 0であれば波形等化 に失敗していた箇所も、 波形等化に失敗することなく波形等化を行うことが可能 となる。
以上のように、 本実施の形態 1によれば、 パターン予測器 1 0 3において再生 信号 Xの予測値 Pを作成すると共に、 及び該予測値 Pが予め設定された特定バタ —ンか否かを判別し、 再生信号 Xに対して適応等化器 1 1 0において適応等化処 理を施した後、 前記判別結果に応じて、 選択回路 1 0 4にて、 該適応等化器 1 1 0からの出力か、 パターン予測器 1 0 3からの再生信号の予測値 Pのいずれかを 選択して、 波形等化出力 Yとして出力するようにしたので、 本再生信号処理装置 1 0 0に入力される再生信号 Xが、 第 1 6図で説明したような、 正常な波形と同 じ帯域の周波数成分が重畳された、 非線形歪みを有する波形であっても、 それに 起因する波形等化の失敗がなくなって、 該波形等化出力 Υでの波形歪みの影響を 抑えることが可能となる。 そしてその結果、 本実施の形態 1の再生信号処理装置 1 0 0では、 良好な等化特性を得られると共に、 再生信号 Xに対し常に最適な適 応等化処理を施すことができる。
なお、 本実施の形態 1においては、 デジタルフィルタ 1 0 1の等化特性を決定 する係数 Wnが 5つである場合を一例に挙げて説明したが、 この係数 Wの数はこ れに限るものではない。
(実施の形態 2 )
以下、 第 9図及び第 1 0図を用いて、 本実施の形態 2に係る再生信号処理装置 について説明する。
前記実施の形態 1においては、 まず適応等化器で再生信号 Xに対して適応等化 処理を行った後、 後段の選択回路で、 該適応等化器の出力 (デジタルフィルタ出 力 X ')か、あるいはパターン予測器において予測した再生信号 Xの予測値 Pのい ずれかを選択することで、 非線形盃みを取り除いた波形等ィ匕出力 Yを出力するよ うにしたが、 本実施の形態 2においては、 まずフィルタよって再生信号 Xの非線 形歪みを取り除いた後、 後段の適応等化器で、 該非線形歪みを取り除いた信号に 対して適応等化処理を行うようにしたものである。
まず、 第 9図を用いて、 本実施の形態 2における再生信号処理装置の構成につ いて説明する。
第 9図において、 本実施の形態 2の再生信号処理装置 3 0 0は、 適応等化器 3 0 1と、 予測フィルタ 3 0 2と、 / °ターン予測器 3 0 3とで構成されており、 前 記適応等化器 3 0 1は、 後述する予測フィルタ 3 0 2の出力に応じて、 その等化 特性を適応的に変えて、 該予測フィル夕 3 0 2の出力に対して波形等化を行うも のであり、 主としてデジタルフィルタと、 該デジタルフィルタの等化特性を決定 する係数 Wn ( nは整数) を更新する係数更新器とで構成される。 この適応等化 器の具体的な構成については、 例えば、 従来のデジタルフィル夕 4 0 1及び係数 更新器 4 0 2からなるもの、 あるいは前記実施の形態 1において説明したデジ夕 ルフィルタ 1 0 1及び係数更新器 1 0 2からなるものが挙げられる。
そして、 前記パターン予測器 3 0 3は、 前記再生信号 Xから得られる 2値のデ 一夕系列 (予測値 P) を予測すると共に、 該予測した予測値 Pと予め設定された 特定のパターンが一致しているか否かを判別して判別結果を出力するものであり、 該パターン予測器 3 0 3の構成、 及び動作は、 前記実施の形態 1のパターン予測 器 1 0 3と同様であるとする。
そして、 前記予測フィルタ 3 0 2は、 前記再生信号 Xに対してフィルタ処理を 行うもので、 その実行するフィル夕処理内容は、 前記パターン予測器 3 0 3によ つて決定されるものであり、 ここでは、 前記パターン予測器 3 0 3から出力され る判別結果に応じて、 再生信号 Xか、 該パターン予測器 3 0 3において予測され た前記再生信号 Xの予測値 Pのいずれかを出力するものである。 この予測フィル 夕 3 0 2の構成としては、 例えば、 前記判別結果に応じて出力値を選択する選択 回路が考えられる。
次に、 第 1 0図を用いて、 前述した構成を有する本実施の形態 2に係る再生信 号処理装置 3 0 0の一連の動作について説明する。 第 1 0図は、 本実施の形態 2 に係る再生信号処理装置の、 予測フィル夕のフィルタ処理を説明する波形図であ る。
まず、 図示されていない量子ィ匕手段によりデジタル化された再生信号 Xが、 予 測フィルタ 3 0 2、 及びパターン予測器 3 0 3に入力される。
前記パターン予測器 3 0 3に入力された再生信号 Xは、 前記実施の形態 1にお いて説明したのと同様にして、 予測値 Pと判別結果とを生成し、 予測フィルタ 3 0 2に出力する。 なおここでは、 予め設定された特定パターンを、 前記予測値 P のうちの、 最大値及び最小値でない部分とし、 前記パターン予測器 3 0 3の判別 器 2 3 6からは、 第 6図に示す信号 Bが判別結果として出力されるものとする。 そして、 前記予測フィルタ 3 0 2は、 該判別結果に基づいて、 再生信号 Xか、 前記予測値 Pのいずれかを予測フィル夕出力として出力する。
以下、 第 1 0図を用いて具体的に説明すると、 まず、 第 1 0図に示す再生信号 Xが本再生信号処理装置 3 0 0に入力されると、 前記パターン予測器 3 0 3にお いて予測値 Pの生成、 及び該予測値 Pが予め設定された特定パターンと一致する か否かの判別が行われ、 前記予測フィル夕 302は、 前記判別結果に基づき、 再 生信号の予測値 Pが "— 25", "0", "25" と遷移する部分は、 再生信号 Xを そのまま予測フィルタ出力として出力し、また再生信号の予測値 Pが"— 25", "0", "25" と遷移する以外の部分は、 再生信号 Xに代えて、 対応する予測値 Pを予測フィルタ出力として出力する。
これにより、 前記予測フィルタ 302において、 ス力される再生信号 Xの波形 の非線形歪みを取り除き、 非線形歪みのない信号 (予測フィルタ出力) を後段の 適応等化器 301へ供給することができる。
そして、 この非線形歪みを取り除いた予測フィルタ出力に対して、 適応等化器 301において適応等化処理を施して、 波形等化出力 Yを得る。
なお、 前記説明においては、 予測フィルタ 302におけるフィルタ処理を、 前 記パターン予測器 303からの判別結果に基づいて、 再生信号の予測値 Pが "一 25", "0", "25" と遷移する部分は、 再生信号: Xをそのまま予測フィルタ出 力として出力し、 また再生信号の予測値 Pが "一 2 5", "0", "25" と遷移す る以外の部分は、 再生信号 Xに代えて、 対応する予 ?』値 Pを予測フィル夕出力と して出力するものとしたが、 前記予測フィルタ 302の別のフィルタ処理方法と して、 例えば、 前記再生信号の予測値 Pが "— 25", "0", "25" と遷移する 以外の部分で、 前記再生信号 Xの特定の周波数帯域の成分をカツ卜して出力する ものであってもよい。
以下、 第 9図及び第 11図を用いて詳細に説明する。 第 11図は、 本実施の形 態 2の変形例に係る再生信号処理装置の、 予測フィル夕のフィルタ処理を説明す る図である。
本実施の形態 2の変形例の再生信号処理装置 300は、 前述した第 9図に示す 実施の形態 2の構成と同様、 予測フィルタ 302と、 適応等化器 301と、 バタ —ン予測器 303とで構成されるものである。 そして本実施の形態 2の変形例に おける予測フィルタ 302は、 判別結果に応じて、 入力される再生信号 Xの特定 の周波数帯域の成分をカットして出力するものであり、 例えば第 14図に示すよ うなデジタルフィル夕で構成される。 なお、 予測フィル夕 302である前記デジ タルフィル夕の係数 Wnは、 固定であっても、 前記実施の形態 1と同様適応更新 されるものであってもよく、 入力される再生信号 Xの波形の非線形歪みの影響を 取り除く特性を有しているものであればよい。 また、 前記実施の形態 2では前記 パターン予測器 303から前記予測フィルタ 302に、 判別結果と予測値 Pとが 出力されたが、 本実施の形態 2の変形例においては判別結果のみが出力されれば よい。 その他の構成は、 前述した本実施の形態 2の再生信号処理装置と同様であ るため、 ここでは説明を省略する。
次に、 第 11図を用いて、 前述した構成を有する本実施の形態 2の変形例にお ける再生信号処理装置 300の動作について説明すると、 まず第 11図に示すよ うな再生信号 Xが再生信号処理装置 300に入力されると、 パターン予測器 30 3において、 前記再生信号 Xの予測値 Pが予測され、 該予測値 Pに基づいて判別 結果が出力される。 そして、 前記予測フィル夕 302は、 前記パターン予測器 3 03から判別結果のみを受信し、 該判別結果に基づいて再生信号 Xのフィルタ処 理を実行する。 なお、 ここでは、 第 6図に示す判別結果信号 Bを例に挙げて説明 する。
そして、 前記予測フィルタ 302は、再生信号の予測値 Pが "一 25", "0", "25" と遷移する部分は、 入力された再生信号 Xをそのまま予測フィルタ出力 として出力し、 再生信号の予測値 Pが "一 25", "0", "25" と遷移する部分 以外の部分は、 再生信号 Xに代えて、 再生信号 Xの特定の周波数帯域の成分を力 ットして、 予測フィルタ出力として出力する。
このように、 本実施の形態 2の変形例の予測フィル夕 302では、 再生信号の 予測値 Pが "_25", "0", "25" と遷移する部分に対して、 再生信号 Xの特 定の周波数帯域の成分をカツ卜するフィルタ処理を実行し、 再生信号の予測値 P が "一 25", "0", "25" と遷移する部分に、 前記予測フィルタ 302におい て周波数カットの対象となる信号と同じ帯域の成分が含まれていたとしても、 こ れがカツトされることはない。
これにより、 前記予測フィルタ 302において、 入力される再生信号 Xの波形 の非線形歪みを確実に取り除き、 非線形歪みのほとんどない波形を後段の適応等 化器 301へ供給することができる。 そして、 前述のようにして非線形歪みを取り除いた予測フィルタの出力を、 適 応等化器 3 0 1において適応等化処理し、 波形等化出力 Yを得る。
以上のように、 本実施の形態 2においては、 再生信号 Xを予測フィル夕 3 0 2 においてフィルタ処理した後、 該フィルタ処理した再生信号を適応等化器 3 0 1 において適応等化処理するようにしたので、 本再生信号処理装置 3 0 0に入力さ れる再生信号 Xが、 第 1 6図で説明したような、 正常な波形と同じ帯域の周波数 成分が重畳された、 非線形歪みを有する波形であっても、 非線形歪みに起因する 波形等化の失敗がなくなって、 該波形等化出力 Yでの波形歪みの影響を抑えるこ とが可能となる。 そしてこの結果、 本実施の形態 2の再生信号処理装置 3 0 0で は、 良好な等化特性を得ることができる共に、 再生信号 Xに対し常に最適な適応 等化処理を施すことが可能となる。 産業上の利用可能性
本発明の再生信号処理装置、 及び再生信号処理方法は、 光ディスクや磁気ディ スク等の媒体の製造ばらつきなどが一因の非線形歪みに対応した最適な等化処理 を実現するものとして極めて有用である。

Claims

請求 の範囲
1 . 記録媒体から再生された再生信号の波形を等化する再生信号処理装置であ つて、
前記再生信号を等化するデジタルフィルタと、
前記デジタルフィル夕の等化特性を決定する係数を適応的に更新する係数更新 器と、
前記再生信号のデー夕系列を予測して前記再生信号の予測値を出力するととも に、 前記再生信号のデータ系列が予め設定された特定パターンか否かを判別して 判別結果を出力するパターン予測器と、
波形等化後の出力として、 前記デジタルフィルタの出力か、 前記再生信号の予 測値のいずれか一方を選択し、 出力する選択回路と、 を備える、
ことを特徴とする再生信号処理装置。
2 . 請求の範囲第 1項に記載の再生信号処理装置において、
前記選択回路は、 前記判別結果が前記再生信号のデータ系列が前記特定パター ンであることを示す場合、 前記デジタルフィルタの出力を選択し、
前記判別結果が前記再生信号のデータ系列が前記特定パターンでないことを示 す場合、 前記予測値を選択する、
ことを特徴とする再生信号処理装置。
3. 請求の範囲第 1項に記載の再生信号処理装置において、
前記係数更新器は、 前記判別結果が前記再生信号のデータ系列が前記特定パタ ーンであることを示す場合、 前記デジタルフィル夕の係数を更新し、
前記判別結果が前記再生信号のデータ系列が特定パターンでないことを示す場 合、 前記デジタルフィル夕の係数を更新しない、
ことを特徴とする再生信号処理装置。
4. 請求の範囲第 1項に記載の再生信号処理装置において、
前記係数更新器は、 前記予測値を用いて、 前記デジタルフィルタの係数を適応 的に更新する、
ことを特徴とする再生信号処理装置。
5 . 請求の範囲第 1項に記載の再生信号処理装置において、 前記デジタルフィルタは、 前記再生信号を多値に等化して出力し、
前記パターン予測器に予め設定される前記特定パターンは、 前記再生信号のデ —夕系列のうちの、 最小値から最大値に、 及び該最大値から該最小値に遷移する 部分である、
ことを特徴とする再生信号処理装置。
6 . 請求の範囲第 1項に記載の再生信号処理装置において、
前記デジタルフィルタは、 前記再生信号を多値に等化して出力し、
前記パターン予測器に予め設定される前記特定パターンは、 前記再生信号のデ 一夕系列のうちの、 最小値及び最大値以外の部分である、
ことを特徴とする再生信号処理装置。
7 . 請求の範囲第 5項または請求の範囲第 6項に記載の再生信号処理装置にお いて、
前記パターン予測器は、 パーシャルレスポンス等化を用いて、 前記再生信号の データ系列を予測し、 該予測した再生信号のデータ系列が、 前記特定パターンと 一致するか否かを判別する、
ことを特徴とする再生信号処理装置。
8 . 記録媒体から再生された再生信号の波形を等化する再生信号処理装置であ つて、
前記再生信号のデータ系列が予め設定された特定パターンか否かを判別して判 別結果を出力するパターン予測器と、
前記判別結果に基づいて、 前記再生信号に対して部分的にフィルタ処理を行う 予測フィル夕と、
前記予測フィル夕の出力を適応等化する適応等化器とを、 備える、
ことを特徴とする再生信号処理装置。
9 . 請求の範囲第 8項に記載の再生信号処理装置において、
前記パターン予測器は、 前記再生信号のデータ系列の判別を行うと共に、 前記 再生信号のデータ系列を予測して前記再生信号の予測値を出力し、
前記予測フィル夕は、 前記判別結果が前記再生信号のデ一夕系列が前記特定パ ターンであることを示す場合、 前記再生信号を出力し、
前記判別結果が前記再生信号のデータ系列が前記特定パターンでないことを示 す場合、 前記再生信号の予測値を出力する、
ことを特徴とする再生信号処理装置。
1 0 . 請求の範囲第 8項に記載の再生信号処理装置において、
前記予測フィルタのフィル夕処理は、 前記判別結果が前記再生信号のデータ系 列が前記特定パターンでないことを示す場合のみ、 前記再生信号の波形からある 特定の周波数帯域を除去するものである、
ことを特徴とする再生信号処理装置。
1 1 . 請求の範囲第 8項に記載の再生信号処理装置において、
前記パターン予測器に予め設定される前記特定パターンは、 前記予測された前 記再生信号のデータ列のうちの、 最小値から最大値に、 及び該最大値から該最小 値に遷移する部分である、
ことを特徴とする再生信号処理装置。
1 2 . 請求の範囲第 8項に記載の再生信号処理装置において、
前記パターン予測器に予め設定される前記特定パターンは、 前記予測された前 記再生信号のデータ列のうちの、 最小値及び最大値以外の部分である、
ことを特徴とする再生信号処理装置。
1 3 . 記録媒体から再生された再生信号の波形を等化する再生信号処理方法で あって、
波形の等化特性を決定する係数を更新しながら、 前記再生信号を適応的に等化 して出力する適応等化ステップと、
前記再生信号のデータ系列を予測して該再生信号の予測値を出力する予測ステ ップと、
該再生信号のデータ系列が予め設定された特定パターンか否かを判別して判別 結果を出力する判別ステップと、
波形等化後の出力として、 前記等化ステップの出力か、 前記予測ステップの出 力のいずれか一方を選択し、 出力する選択ステップと、 を含む、
ことを特徴とする再生信号処理方法。
1 4. 記録媒体から再生された再生信号の波形を等化する再生信号処理方法で あって、
前記再生信号のデータ系列が予め設定された特定パターンか否かを判別して判 別結果を出力する判別ステップと、
前記判別結果に基づいて、 前記再生信号に対して部分的にフィルタ処理を行う フィルタステップと、
前記フィル夕ステップの出力を適応等化する適応等化ステップとを、 含む、 ことを特徴とする再生信号処理方法。
PCT/JP2003/011200 2003-09-02 2003-09-02 再生信号処理装置、及び再生信号処理方法 WO2005024822A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/513,367 US20050219985A1 (en) 2003-09-02 2003-09-02 Reproduced signal processor and reproduced signal processing method
CNA038106655A CN1653539A (zh) 2003-09-02 2003-09-02 再生信号处理装置以及再生信号处理方法
JP2005508773A JPWO2005024822A1 (ja) 2003-09-02 2003-09-02 再生信号処理装置、及び再生信号処理方法
PCT/JP2003/011200 WO2005024822A1 (ja) 2003-09-02 2003-09-02 再生信号処理装置、及び再生信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/011200 WO2005024822A1 (ja) 2003-09-02 2003-09-02 再生信号処理装置、及び再生信号処理方法

Publications (1)

Publication Number Publication Date
WO2005024822A1 true WO2005024822A1 (ja) 2005-03-17

Family

ID=34260115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011200 WO2005024822A1 (ja) 2003-09-02 2003-09-02 再生信号処理装置、及び再生信号処理方法

Country Status (4)

Country Link
US (1) US20050219985A1 (ja)
JP (1) JPWO2005024822A1 (ja)
CN (1) CN1653539A (ja)
WO (1) WO2005024822A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008068857A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068858A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068856A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068852A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068855A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068853A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008140110A1 (ja) * 2007-05-15 2008-11-20 Nec Corporation ビタビ検出器、及び、情報再生装置
JP2011103153A (ja) * 2009-11-10 2011-05-26 Renesas Electronics Corp 情報検出装置及び光ディスク装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830655B2 (ja) * 2006-06-13 2011-12-07 ソニー株式会社 再生装置、再生方法
RU2450371C2 (ru) * 2006-12-26 2012-05-10 Панасоник Корпорэйшн Оптический носитель записи, способ изготовления оптического носителя записи, способ обработки сигнала воспроизведения и способ оценки
US8270457B2 (en) * 2007-06-27 2012-09-18 Qualcomm Atheros, Inc. High sensitivity GPS receiver
US8917470B2 (en) * 2013-03-13 2014-12-23 Lsi Corporation Data sequence detection in band-limited channels using cooperative sequence equalization
US9699006B1 (en) * 2015-12-14 2017-07-04 Fujitsu Limited Sign-based adaptive control with automatically-selected filter patterns

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287937A (ja) * 1994-04-20 1995-10-31 Seiko Epson Corp 光記録再生装置および光記録媒体
JPH09147490A (ja) * 1995-11-28 1997-06-06 Nec Corp 波形等化回路
JPH10106158A (ja) * 1996-09-30 1998-04-24 Toshiba Corp ディスク記憶装置及び同装置に適用する波形等化回路
JPH10145184A (ja) * 1996-11-15 1998-05-29 Toshiba Corp 波形等化回路
JP2000200462A (ja) * 1999-01-06 2000-07-18 Fujitsu Ltd 信号処理装置及びその調整方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768296B2 (ja) * 1994-09-26 1998-06-25 日本電気株式会社 信号処理装置
JP3335862B2 (ja) * 1997-01-28 2002-10-21 シャープ株式会社 波形等化器及びこれを備えたディジタル記録再生装置
US7194674B2 (en) * 2002-07-29 2007-03-20 Sharp Kabushiki Kaisha Adaptive waveform equalization for viterbi-decodable signal and signal quality evaluation of viterbi-decodable signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287937A (ja) * 1994-04-20 1995-10-31 Seiko Epson Corp 光記録再生装置および光記録媒体
JPH09147490A (ja) * 1995-11-28 1997-06-06 Nec Corp 波形等化回路
JPH10106158A (ja) * 1996-09-30 1998-04-24 Toshiba Corp ディスク記憶装置及び同装置に適用する波形等化回路
JPH10145184A (ja) * 1996-11-15 1998-05-29 Toshiba Corp 波形等化回路
JP2000200462A (ja) * 1999-01-06 2000-07-18 Fujitsu Ltd 信号処理装置及びその調整方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023381B2 (en) * 2006-12-05 2011-09-20 Pioneer Corporation Information reproducing apparatus and method, and computer program
JP4861435B2 (ja) * 2006-12-05 2012-01-25 パイオニア株式会社 情報再生装置及び方法、並びにコンピュータプログラム
US8059511B2 (en) 2006-12-05 2011-11-15 Pioneer Corporation Device and method for reproducing information, and computer program
WO2008068852A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068855A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068853A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068857A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
JPWO2008068853A1 (ja) * 2006-12-05 2010-03-11 パイオニア株式会社 情報再生装置及び方法、並びにコンピュータプログラム
US8094534B2 (en) 2006-12-05 2012-01-10 Pioneer Corporation Information reproducing apparatus and method, and computer program
US8014252B2 (en) 2006-12-05 2011-09-06 Pioneer Corporation Information reproducing apparatus and method, and computer program
JP5234966B2 (ja) * 2006-12-05 2013-07-10 パイオニア株式会社 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068856A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
JP5031768B2 (ja) * 2006-12-05 2012-09-26 パイオニア株式会社 情報再生装置及び方法、並びにコンピュータプログラム
JP4861434B2 (ja) * 2006-12-05 2012-01-25 パイオニア株式会社 情報再生装置及び方法、並びにコンピュータプログラム
JP4861433B2 (ja) * 2006-12-05 2012-01-25 パイオニア株式会社 情報再生装置及び方法、並びにコンピュータプログラム
JP4861432B2 (ja) * 2006-12-05 2012-01-25 パイオニア株式会社 情報再生装置及び方法、並びにコンピュータプログラム
WO2008068858A1 (ja) * 2006-12-05 2008-06-12 Pioneer Corporation 情報再生装置及び方法、並びにコンピュータプログラム
US8107341B2 (en) 2006-12-05 2012-01-31 Pioneer Corporation Information reproducing apparatus and method, and computer program
US8154966B2 (en) 2006-12-05 2012-04-10 Pioneer Corporation Apparatus, method and program for waveform equalization on a read signal obtained by reading the record data recorded on a recording medium
US8599670B2 (en) 2007-05-15 2013-12-03 Nec Corporation Viterbi detector and information reproducing apparatus
WO2008140110A1 (ja) * 2007-05-15 2008-11-20 Nec Corporation ビタビ検出器、及び、情報再生装置
JP2011103153A (ja) * 2009-11-10 2011-05-26 Renesas Electronics Corp 情報検出装置及び光ディスク装置

Also Published As

Publication number Publication date
JPWO2005024822A1 (ja) 2006-11-16
CN1653539A (zh) 2005-08-10
US20050219985A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5054791B2 (ja) Prml検出器
US6385239B1 (en) Adaptive equalizing circuit
KR100537239B1 (ko) 디지털 데이터 재생 장치
JP2005302130A (ja) 適応等化装置及び方法
JP2000228064A (ja) 光ディスクの復号装置
JP2001101799A (ja) デジタル再生信号処理装置
US7274645B2 (en) Reproduction signal processing apparatus and optical disc player including the same
WO2005024822A1 (ja) 再生信号処理装置、及び再生信号処理方法
US20020013927A1 (en) Viterbi decoder and Viterbi decoding method
JP2006221762A (ja) 記録情報再生装置
JP3887593B2 (ja) オフセット補正装置およびオフセット補正方法
US20090129229A1 (en) Method and apparatus for reproducing data
US20050053174A1 (en) Device and method for data reproduction
JP4109219B2 (ja) 再生信号処理装置、及びそれを備えた光ディスク再生装置
JP4189747B2 (ja) 信号処理装置
JP3395716B2 (ja) ディジタル信号再生装置
JP3994987B2 (ja) 再生装置
JP4048641B2 (ja) 再生装置および再生方法
JP4612615B2 (ja) Prml検出器
JP4009965B2 (ja) ビタビ復号方法
JP4613657B2 (ja) 再生装置
JP4009963B2 (ja) ビタビ復号方法
JP4009966B2 (ja) ビタビ復号器
JP4009964B2 (ja) ビタビ復号器
JP3792167B2 (ja) 波形等化器および記録情報再生装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10513367

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038106655

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508773

Country of ref document: JP

122 Ep: pct application non-entry in european phase