WO2008061517A2 - Utilisation de complexes de métal de transition dithiolène et de composés analogues au sélémium comme agents dopants - Google Patents

Utilisation de complexes de métal de transition dithiolène et de composés analogues au sélémium comme agents dopants Download PDF

Info

Publication number
WO2008061517A2
WO2008061517A2 PCT/DE2007/002108 DE2007002108W WO2008061517A2 WO 2008061517 A2 WO2008061517 A2 WO 2008061517A2 DE 2007002108 W DE2007002108 W DE 2007002108W WO 2008061517 A2 WO2008061517 A2 WO 2008061517A2
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
dopant
organic
use according
matrix
Prior art date
Application number
PCT/DE2007/002108
Other languages
German (de)
English (en)
Other versions
WO2008061517A3 (fr
Inventor
Olaf Zeika
Ansgar Werner
Horst Hartmann
Steffen Willmann
Original Assignee
Novaled Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaled Ag filed Critical Novaled Ag
Priority to JP2009536603A priority Critical patent/JP5431163B2/ja
Publication of WO2008061517A2 publication Critical patent/WO2008061517A2/fr
Publication of WO2008061517A3 publication Critical patent/WO2008061517A3/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the use of dithiolene transition metal complexes and selenium-analogous compounds as dopant for doping an organic semiconductive matrix material, as a charge injection layer, as an electrode material, as a matrix material itself or as a memory material in electronic or optoelectronic components.
  • Inorganic dopants such as alkali metals (eg cesium) or Lewis acids (eg FeCl 3 ) are usually disadvantageous in organic matrix materials because of their high diffusion coefficients, since the function and stability of the electronic components is impaired. Moreover, these dopants have a high vapor pressure.
  • alkali metals eg cesium
  • Lewis acids eg FeCl 3
  • the acceptor-like material can also be used as a hole injection layer.
  • a layer structure of anode / acceptor / hole transporter can be produced.
  • the hole transporter can be a pure layer or a mixed layer.
  • the hole transporter may also be doped with an acceptor.
  • the anode may be, for example, ITO.
  • the acceptor layer may, for example, be 0.5-100 nm thick.
  • the present invention is based on the object, improved organic semiconductive matrix materials, charge injection layers, matrix materials themselves, electrode material and storage materials, in particular in electronic or optoelectronic components.
  • the compounds used as dopants should lead to sufficiently high reduction potentials without interfering influences for the matrix material itself and should provide an effective increase in the charge carrier proportion in the matrix material and be comparatively easy to handle.
  • the object is achieved by the use of dithiolene transition metal complexes and selenium-analogous compounds as dopant for doping an organic semiconductive matrix material, as charge injection layer, as electrode material, as matrix material itself or as a memory material in electronic or optoelectronic devices, characterized in that the transition metal complexes have the following Have structures:
  • X is S, Se or NR 10 , wherein R 10 is alkyl, perfluoroalkyl, cycloalkyl, aryl, heteroaryl, acetyl or CN.
  • transition metal in structures 1 and 5 be selected from Cr, Mo, W, Fe, V, Re, Ru, Os ,.
  • the transition metal in the structures 2, 3, 4 and 6 is selected from Fe, Co, Pd, Pt, Ni, Cu and Au.
  • R 1 , R 3 and R 5 are phenyl or H and R 2 , R 4 and R 6 are tolyl, N, N-dimethylaminophenyl, anisyl or quinoxalyl.
  • R 1 and R 3 are phenyl or hydrogen and R 2 and R 4 are tolyl, N, N-dimethylaminophenyl, anisyl or quinoxalyl.
  • R 1 and R 3 are phenyl or hydrogen and R 2 and R 4 are tolyl, N, N-dimethylaminophenyl, anisyl or quinoxalyl.
  • a further embodiment is characterized in that, for the transition metal complex of structure 3, R 1 and R 3 are phenyl or " hydrogen and R 2 and R 4 are tolyl, N 5 N-dimethylaminophenyl, anisyl or quinoxalyl.
  • R 1 and R 3 are phenyl or hydrogen and R 2 and R 4 are tolyl, N, N-dimethylaminophenyl, anisyl or quinoxalyl.
  • R 1 and R 2 are CF 3 .
  • M is Ni or Pd and R 1 and R 2 are hydrogen, or M is Ni, Cu, Au, Pt or Pd and R 1 and R 2 are CF 3 ,
  • the invention further provides an organic semiconductive material comprising at least one organic matrix compound and a dopant, characterized in that at least one compound as disclosed above is used as the dopant.
  • the molar doping ratio of dopant to matrix molecule or the doping ratio of dopant to monomeric units of a polymeric matrix molecule is between 20: 1 and 1: 100,000, preferably 10: 1 and 1: 1,000, particularly preferably 1: 1 and 1: 100 , is.
  • an electronic or optoelectronic device having an electronically functionally effective region, wherein for the electronically effective region at least one compound as disclosed above is used.
  • the electronically effective region comprises an organic semiconductive matrix material which is doped with at least one dopant for altering the electronic properties of the semiconductive matrix material using at least one compound as defined above.
  • the electronic or optoelectronic component may be in the form of an organic light emitting diode, a photovoltaic cell, an organic solar cell, an organic diode or an organic field effect transistor.
  • the conductivity of charge transport layers in the case of use according to the invention is substantially increased and / or the transfer of the charge carriers between the contacts and the organic layer is substantially improved in applications as an electronic component.
  • the conductivity of such matrix materials can be increased to greater than 10 "8 S / cm, often> 10 " 5 S / cm. This is especially true for matrix materials that have an oxidation potential greater than -0.5 V vs. Fc / Fc + , preferably greater than 0 V vs. Fc / Fc + , in particular greater +0.2 V vs. Fc / Fc + exhibit.
  • the term Fc / Fc + refers to the redox couple ferrocene / ferrocenium, which is used as reference in an electrochemical determination of potential, for example cyclic voltammetry.
  • the described six-coordinate and bridged and dimeric transition metal complexes of the dithiolenes and selenium-analogous compounds can also be used as an injection layer in electronic components, preferably between an electrode and a semiconductor layer, which can also be doped, or also as Blocker layer, preferably between emitter and transport layer can be used in electronic components.
  • the complexes shown have a surprisingly high stability with respect to their reactivity with the atmosphere.
  • transition metal complexes of dithiolenes can be synthesized by known methods, in some cases they are also commercially available. The synthesis of such compounds is described, for example, in the following references, which are hereby incorporated by reference in the application in their entirety. It is understood that the cited references are given by way of example only. According to G.N. Schrauzer et al. such transition metal complexes can be prepared from 1,2-diketones or 2-hydroxyketones, Phosphorpentasulf ⁇ d and a suitable transition metal salt, s. J. Am. Chem. Soc. (1966) 88/22 5174-9; Angew. Chem. (1964) 76 715.
  • transition metal carbonyls with sulfur and acetylenes also leads to the complexes, s. A. Davison et al. Inorg. Chem. (1964) 3/6 814.
  • transition-metal carbonyls it is also possible to use other, formally 0-valent transition metal compounds, such as, for example, corresponding cyclooctadienyls, phosphines, etc., but also pure transition metals, cf. GNSchrauzer et al. Z. Naturforschg. (1964) 19b, 192- 8.
  • the corresponding acetylenes can be prepared via a Wittig reaction and then reacted with sulfur and transition metal (O) compounds or fine transition metal powders to give the corresponding transition metal trisdithiolates.
  • the acetylenes are reacted with sulfur or selenium to Dithiacyclobuten or Dislenabuten, which in turn with transition metal (O) compounds (preferably Bonbonyltagenen) or in fine metallic form to the corresponding Trisdithiolatoü- transition metal complexes or to Bis- or Tris (diselenato) transition metal complexes can be reacted, s.
  • the cyano-substituted trisdithiolene of the transition metals can be z. B. over the alkali salts, s. Boots EJ. et al. Inorg. Chem. (1970) 9/2 281-6 / G. Bahr, G. Schleitzer, Chemische Berichte (1957) 90 438.
  • the bridged complexes can preferably be prepared by thermolysis of the monomeric complexes, s. G.N. Schrauzer et al. J Am. Chem. Soc. (1966) 88/22 5174-9.
  • Dimer complexes are formed, for example, in the reaction of cyclodithiobutene with iron or cobalt carbonyls or with palladium or platinum carbonyls, s. JS Kasper et al. , J. Am. Chem. Soc. (1971) 93/23 6289-90; A. Davison et al. Inorg. Chem. (1964) 3/6 814-23. endowment
  • Suitable p-dopable matrix materials include phthalocyanine complexes, for example of Zn (ZnPc), Cu (CuPc), Ni (NiPc) or other metals, where the phthalocyanine ligand may also be substituted.
  • Other metal complexes of naphthanocanines and porphyrins may optionally be used.
  • arylated or heteroarylated amines or benzidine derivatives which may be substituted or unsubstituted, in particular also spiro-linked, for example TPD, ⁇ -NPD, TDATA, spiro-TTB, can also be used as the matrix material.
  • a-NPD and spiro-TTB can be used as matrix material.
  • heteroaromatics such as, in particular, imidazole, thiophene, thiazole derivatives, heterotriphenylenes but also others can be used as the matrix material, optionally also dimeric, oligomeric or polymeric heteroaromatics.
  • the heteroaromatics are preferably substituted, in particular aryl-substituted, for example phenyl - or naphthyl-substituted. They can also be present as spiro compounds.
  • the above compounds can be used as matrix material. It is understood that the matrix materials mentioned can also be used with one another or mixed with other materials in the context of the invention. It will be understood that suitable other organic matrix materials having semiconductive properties may also be used.
  • the dopant is present in a doping concentration of ⁇ 1: 1 to the matrix molecule or the monomeric unit of a polymeric matrix molecule, preferably in a doping concentration of 1: 2 or less, more preferably from 1: 5 or less or 1:10 or smaller ,
  • the doping concentration may be in the range of 1: 1 to 1: 100,000, more preferably in the range of 1: 5 to 10,000 or 1:10 to 1,000, for example in the range of 1:10 to 1: 100 or 1:25 to 1:50, without being limited to this.
  • the doping of the respective matrix material with the compounds to be used according to the invention can be carried out by one or a combination of the following processes:
  • the doping can also be carried out in such a way that the dopant is evaporated out of a precursor compound which releases the dopant on heating and / or irradiation.
  • a precursor compound which releases the dopant on heating and / or irradiation.
  • a carbonyl compound, dinitrogen compound or the like can be used as the precursor compound, which releases CO, nitrogen or the like upon release of the dopant, although other suitable precursors can also be used, for example salts, e.g. Halides, or the like.
  • the heat necessary for the evaporation can essentially be provided; it can also be irradiated deliberately into specific bands of the compounds or precursors or compound complexes to be vaporized, such as charge-transfer complexes, to evaporate the compounds, for example by conversion into excited states to facilitate by dissociation of the complexes.
  • the complex may also be sufficiently stable to evaporate undissociated under the given conditions or to be applied to the substrate. It is understood that other suitable methods for carrying out the doping can be used.
  • the electron-poor transition metal complex compounds used in accordance with the invention it is possible to produce semiconductive layers which may be more linear in shape, for example as conductivity paths, contacts or the like.
  • the transition metal complexes can be used here as p-dopants together with another compound which can function as matrix material, the doping ratio can be 1: 1 or less.
  • the dopant used can also be present in higher proportions than the other compound or component, so that the ratio of dopant: compound can be in the ratio> 1: 1, for example in the ratio> 2: 1, ⁇ 5: 1,> 10 : 1 or> 20: 1 or higher.
  • the respective other component may be one which can be used as matrix material in the case of the production of doped layers, without being limited thereto.
  • the dopant used can also be present substantially in pure form, for example as a pure layer.
  • the region containing or essentially or completely consisting of a dopant can in particular be electrically conductively contacted with an organic semiconductive material and / or an inorganic semiconducting material, for example, be arranged on such a substrate.
  • the said electron-poor transition metal complex compounds are preferably used according to the invention as p-dopants, for example in a ratio ⁇ 1: 1 or ⁇ 1: 2.
  • p-dopants By means of the electron-poor compounds used according to the invention as p-dopants, it is possible, for example when using ZnPc, spiro-TTB or a NPD as a matrix semiconducting layers with conductivities at room temperature in the range of 10 3 S / cm or higher, for example from 10 "2 S / cm.
  • phthalocyanine 5 be achieved higher, for example of 10 S / cm or " Zinc as a matrix
  • a conductivity of higher 10 "8 S / cm was achieved, for example 10 " 6 S / cm
  • the conductivity of undoped phthalocyanine zinc is at most 10 "10 S / cm.
  • the dopant layer or formation may each contain one or more different such electron-poor transition metal complex compounds.
  • a plurality of electronic components or these containing devices are produced with a p-doped organic semiconductor layer.
  • the term "electronic components” also encompasses optoelectronic components
  • the connections described allow the electronic properties of an electronically functionally effective region of the component, such as its electrical conductivity, light-emitting properties or the like, to be advantageously changed the conductivity of the doped layers is improved and / or the improvement of the charge carrier injection of contacts into the doped layer is achieved.
  • the invention includes in particular organic light emitting diodes (OLED), organic see solar cells, field effect transistors, organic diodes, especially those with high rectification ratio such as 10 3 -10 7, preferably 10 4 - 10 7, or 10 5 -10 7, and organic field effect transistors prepared by means of the electron-poor transition metal complex compounds.
  • OLED organic light emitting diodes
  • OLED organic see solar cells
  • field effect transistors organic diodes, especially those with high rectification ratio such as 10 3 -10 7, preferably 10 4 - 10 7, or 10 5 -10 7, and organic field effect transistors prepared by means of the electron-poor transition metal complex compounds.
  • a p-doped layer based on an organic matrix material may be present, for example, in the following layer structures, wherein preferably the base materials or matrix materials of the individual layers are each organic:
  • p-i-n p-doped semiconductor-insulator-n-doped semiconductor
  • n-i-p n-doped semiconductor-insulator-p-doped semiconductor.
  • the contact materials are here hole-injecting, wherein on the p-side, for example, a layer or a contact made of ITO or Au can be provided, or electron-injecting, where on the n-side, a layer or a contact of ITO, Al or Ag can be provided.
  • the i-layer may also be omitted, whereby layer sequences with pn or np junctions can be obtained.
  • the use of the compounds described is not limited to the abovementioned embodiments.
  • the layer structures can be supplemented or modified by introducing additional suitable layers.
  • OLEDs with such layer sequences, in particular with pin or with an inverse structure with them, can be constructed with the compounds described.
  • organic diodes of the metal-insulator-p-doped semiconductor type (min) or also of the pin type, for example on the basis of phthalocyanine zinc. These diodes show a rectification ratio of 10 5 and higher.
  • electronic components with pn junctions can be produced using the dopants according to the invention, wherein in each case the same semiconductor material is used for the p-doped and n-doped sides (homo-pn junction), and wherein for the p-doped semiconductor material a described electron-poor transition metal complex compound is used.
  • the electron-poor transition metal complex compounds can be used according to the invention in the electronic components but also in layers, conductance paths, point contacts or the like, if these predominate over another component, for example as an injection layer in pure or substantially pure form.
  • the presented electron-poor transition metal complex compound is evaporated simultaneously with the matrix material.
  • the matrix material is because phthalocyanine zinc, spiro-TTB or a-NDP.
  • the p-type dopant and the matrix material can be evaporated in such a way that the layer deposited on a substrate in a vacuum evaporation system has a doping ratio of p-dopant to matrix material of 1:10.
  • the layer of the organic semiconductor material doped with the p-dopant is applied to an ITO layer (indium tin oxide), which is arranged on a glass substrate.
  • ITO layer indium tin oxide
  • a metal cathode is deposited, for example, by vapor deposition of a suitable metal to produce an organic light emitting diode.
  • the organic light-emitting diode can also have a so-called inverted layer structure, wherein the layer sequence is: glass substrate - metal cathode -p-doped organic layer - transparent conductive cover layer (for example ITO). It is understood that depending on the application, further layers can be provided between the individual layers mentioned.
  • the neutral complex was used for doping spiro-TTB as a matrix material.
  • Doped layers with a doping ratio dopant: matrix material of 1:10 were prepared by mixed evaporation of matrix and dopant with spiro-TTB. 2xlO "The conductivity was 4 S / cm.
  • the neutral complex was used for doping spiro-TTB as a matrix material.
  • Doped layers doped with dopant matrix material of 1:10 produced by Mischverdampfimg of matrix and dopant with spiro-TTB. 5xlO "The conductivity was 4 S / cm.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Glass Compositions (AREA)

Abstract

L'invention concerne l'utilisation de complexes de métal de transition dithiolène et de composés analogues au sélénium desdits complexes, comme agents dopants pour doper un matériau matriciel organique semi-conducteur.
PCT/DE2007/002108 2006-11-20 2007-11-20 Utilisation de complexes de métal de transition dithiolène et de composés analogues au sélémium comme agents dopants WO2008061517A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009536603A JP5431163B2 (ja) 2006-11-20 2007-11-20 ジチオレン遷移金属錯体およびセレニウム類似化合物のドーパントとしての使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006054524.9A DE102006054524B4 (de) 2006-11-20 2006-11-20 Verwendung von Dithiolenübergangsmetallkomplexen und Selen- analoger Verbindungen als Dotand
DE102006054524.9 2006-11-20

Publications (2)

Publication Number Publication Date
WO2008061517A2 true WO2008061517A2 (fr) 2008-05-29
WO2008061517A3 WO2008061517A3 (fr) 2008-09-18

Family

ID=39221226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/002108 WO2008061517A2 (fr) 2006-11-20 2007-11-20 Utilisation de complexes de métal de transition dithiolène et de composés analogues au sélémium comme agents dopants

Country Status (3)

Country Link
JP (1) JP5431163B2 (fr)
DE (1) DE102006054524B4 (fr)
WO (1) WO2008061517A2 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530618A (ja) * 2007-06-20 2010-09-09 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機半導性マトリックス材料、有機半導性材料及び有機発光ダイオードのためのp−ドーパントとしての金属錯体の使用
US8119037B2 (en) 2008-10-16 2012-02-21 Novaled Ag Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components
WO2013096918A1 (fr) 2011-12-22 2013-06-27 Georgia Tech Research Corporation Polymères transporteurs de trous à base de triscarbazole réticulables
WO2013096921A1 (fr) 2011-12-22 2013-06-27 Georgia Tech Research Corporation Matières de transport de trous triscarbazole polystyrène non réticulé
WO2013098648A1 (fr) 2011-12-30 2013-07-04 Imperial Innovations Ltd. Dopage chimique non conventionnel de matériaux semi-conducteurs organiques
JP2014075347A (ja) * 2013-11-05 2014-04-24 Konica Minolta Inc 有機エレクトロルミッセンス素子、及び照明装置
WO2015082046A2 (fr) 2013-12-06 2015-06-11 Merck Patent Gmbh Oxépines substituées
EP3345984A1 (fr) 2013-12-06 2018-07-11 Merck Patent GmbH Raccordements et dispositifs électro-organiques
WO2018189134A1 (fr) 2017-04-13 2018-10-18 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019002198A1 (fr) 2017-06-26 2019-01-03 Merck Patent Gmbh Mélanges homogènes
WO2019007866A1 (fr) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019007867A1 (fr) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019096717A2 (fr) 2017-11-14 2019-05-23 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019229011A1 (fr) 2018-05-30 2019-12-05 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2020178230A1 (fr) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands pour matériaux nanométriques
DE102008051737B4 (de) 2007-10-24 2022-10-06 Novaled Gmbh Quadratisch planare Übergangsmetallkomplexe, organische halbleitende Materialien sowie elektronische oder optoelektronische Bauelemente, die diese umfassen und Verwendung derselben

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009051142B4 (de) 2009-06-05 2019-06-27 Heliatek Gmbh Photoaktives Bauelement mit invertierter Schichtfolge und Verfahren zu seiner Herstellung
ES2587082T3 (es) 2009-12-16 2016-10-20 Heliatek Gmbh Elemento de construcción fotoactivo con capas orgánicas
EP2385556B1 (fr) 2010-05-04 2021-01-20 Heliatek GmbH Composant photo-actif doté de couches organiques
EP2398056B1 (fr) 2010-06-21 2016-03-02 Heliatek GmbH Cellule solaire organique dotée de plusieurs systèmes de couches de transport
WO2012092972A1 (fr) 2011-01-06 2012-07-12 Heliatek Gmbh Composant électronique ou optoélectronique comprenant des couches organiques
JP2012195054A (ja) 2011-03-14 2012-10-11 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
DE102012103448B4 (de) 2012-04-19 2018-01-04 Heliatek Gmbh Verfahren zur Optimierung von in Reihe geschalteten, photoaktiven Bauelementen auf gekrümmten Oberflächen
DE102012104118B4 (de) 2012-05-10 2021-12-02 Heliatek Gmbh Lochtransportmaterialien für optoelektronische Bauelemente
DE102012104247B4 (de) 2012-05-16 2017-07-20 Heliatek Gmbh Halbleitendes organisches Material für optoelektronische Bauelemente
WO2013179223A2 (fr) 2012-05-30 2013-12-05 Heliatek Gmbh Module solaire à installer sur une pièce moulée en béton
DE102012105022A1 (de) 2012-06-11 2013-12-12 Heliatek Gmbh Fahrzeug mit flexiblen organischen Photovoltaik-Modulen
CN104428898B (zh) 2012-06-11 2018-05-08 赫里亚泰克有限责任公司 光活性组件的滤光系统
DE102012105809B4 (de) 2012-07-02 2017-12-07 Heliatek Gmbh Organisches optoelektronisches Bauelement mit transparenter Gegenelektrode und transparenter Elektrodenvorrichtung
DE102012105812A1 (de) 2012-07-02 2014-01-02 Heliatek Gmbh Elektrodenanordnung für optoelektronische Bauelemente
KR102128943B1 (ko) 2012-07-02 2020-07-01 헬리아텍 게엠베하 광전자 소자용 투명 전극
DE102012105810B4 (de) 2012-07-02 2020-12-24 Heliatek Gmbh Transparente Elektrode für optoelektronische Bauelemente
JP2014053383A (ja) * 2012-09-05 2014-03-20 Konica Minolta Inc タンデム型の有機光電変換素子およびこれを用いた太陽電池
KR102138400B1 (ko) * 2013-03-05 2020-07-27 엔테그리스, 아이엔씨. 이온 주입 조성물, 시스템 및 방법
DE102013110693B4 (de) 2013-09-27 2024-04-25 Heliatek Gmbh Photoaktives, organisches Material für optoelektronische Bauelemente
JP2018046055A (ja) * 2016-09-12 2018-03-22 積水化学工業株式会社 太陽電池
EP3859808A1 (fr) 2020-01-28 2021-08-04 Novaled GmbH Dispositif électronique organique comprenant une couche d'injection de trous incluant un composé de transport de trous

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123754A2 (fr) * 2004-06-14 2005-12-29 Georgia Tech Research Corporation Materiaux de transport de charge de metaux de transition, leurs procedes de fabrication et d'utilisation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361777A (en) 1963-10-25 1968-01-02 Du Pont Neutral chelates having a transition metal attached to one to three-sc(cf3)=c(cf3)s-groups
DE3505750A1 (de) 1985-02-20 1986-08-21 Basf Ag, 6700 Ludwigshafen Campherdithiolen-komplexe und deren verwendung
JP4717198B2 (ja) * 1999-11-29 2011-07-06 キヤノン株式会社 有機エレクトロルミネッセンス素子
DE102004034517A1 (de) 2004-07-16 2006-02-16 Covion Organic Semiconductors Gmbh Metallkomplexe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123754A2 (fr) * 2004-06-14 2005-12-29 Georgia Tech Research Corporation Materiaux de transport de charge de metaux de transition, leurs procedes de fabrication et d'utilisation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
C.L. KEAN AND P.G. PICKUP: "A low gap conjugated metallopolymer with nickel bis(dithiolene) crosslinks" CHEMCOMM COMMUNICATION, THE ROYAL SOCIETY OF CHEMISTRY, 6. April 2001 (2001-04-06), Seiten 815-816, XP007904518 *
DA CRUZ ET AL: "A novel material obtained by electropolymerization of polypyrrole doped with [Sn(dmit)3]2-, [tris(1,3-dithiole-2-thione-4,5-dithiolat o)-stannate]2-" SYNTHETIC METALS, ELSEVIER SEQUOIA, LAUSANNE, CH, Bd. 156, Nr. 5-6, 20. März 2006 (2006-03-20), Seiten 396-404, XP005394508 ISSN: 0379-6779 *
DA CRUZ ET AL: "Preparation, structure and electrochemistry of a polypyrrole hybrid film with [Pd(dmit)2]<2->, bis(1,3-dithiole-2-thione-4,5-dithiolate)p alladate(II)" ELECTROCHIMICA ACTA, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, Bd. 52, Nr. 5, 7. September 2006 (2006-09-07), Seiten 1899-1909, XP005813239 ISSN: 0013-4686 *
TAGUCHI ET AL: "Comparison of p-type and n-type organic field-effect transistors using nickel coordination compounds" CHEMICAL PHYSICS LETTERS, NORTH-HOLLAND, AMSTERDAM, NL, Bd. 421, Nr. 4-6, 15. April 2006 (2006-04-15), Seiten 395-398, XP005410175 ISSN: 0009-2614 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010530618A (ja) * 2007-06-20 2010-09-09 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機半導性マトリックス材料、有機半導性材料及び有機発光ダイオードのためのp−ドーパントとしての金属錯体の使用
US8513702B2 (en) 2007-06-20 2013-08-20 Osram Opto Semiconductors Gmbh Use of a metal complex as a p-dopant for an organic semiconductive matrix material, organic semiconductor material and organic light-emitting diodes
DE102008051737B4 (de) 2007-10-24 2022-10-06 Novaled Gmbh Quadratisch planare Übergangsmetallkomplexe, organische halbleitende Materialien sowie elektronische oder optoelektronische Bauelemente, die diese umfassen und Verwendung derselben
US8119037B2 (en) 2008-10-16 2012-02-21 Novaled Ag Square planar transition metal complexes and organic semiconductive materials using them as well as electronic or optoelectric components
WO2013096918A1 (fr) 2011-12-22 2013-06-27 Georgia Tech Research Corporation Polymères transporteurs de trous à base de triscarbazole réticulables
WO2013096921A1 (fr) 2011-12-22 2013-06-27 Georgia Tech Research Corporation Matières de transport de trous triscarbazole polystyrène non réticulé
WO2013098648A1 (fr) 2011-12-30 2013-07-04 Imperial Innovations Ltd. Dopage chimique non conventionnel de matériaux semi-conducteurs organiques
JP2014075347A (ja) * 2013-11-05 2014-04-24 Konica Minolta Inc 有機エレクトロルミッセンス素子、及び照明装置
EP3345984A1 (fr) 2013-12-06 2018-07-11 Merck Patent GmbH Raccordements et dispositifs électro-organiques
EP3693437A1 (fr) 2013-12-06 2020-08-12 Merck Patent GmbH Composés et dispositifs électro-organiques
WO2015082046A2 (fr) 2013-12-06 2015-06-11 Merck Patent Gmbh Oxépines substituées
WO2018189134A1 (fr) 2017-04-13 2018-10-18 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019002198A1 (fr) 2017-06-26 2019-01-03 Merck Patent Gmbh Mélanges homogènes
WO2019007866A1 (fr) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019007867A1 (fr) 2017-07-05 2019-01-10 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019096717A2 (fr) 2017-11-14 2019-05-23 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2019229011A1 (fr) 2018-05-30 2019-12-05 Merck Patent Gmbh Composition pour dispositifs électroniques organiques
WO2020178230A1 (fr) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands pour matériaux nanométriques

Also Published As

Publication number Publication date
JP2010510645A (ja) 2010-04-02
DE102006054524A1 (de) 2008-05-29
DE102006054524B4 (de) 2022-12-22
WO2008061517A3 (fr) 2008-09-18
JP5431163B2 (ja) 2014-03-05

Similar Documents

Publication Publication Date Title
DE102006054524B4 (de) Verwendung von Dithiolenübergangsmetallkomplexen und Selen- analoger Verbindungen als Dotand
DE102008051737B4 (de) Quadratisch planare Übergangsmetallkomplexe, organische halbleitende Materialien sowie elektronische oder optoelektronische Bauelemente, die diese umfassen und Verwendung derselben
DE102006054523B4 (de) Dithiolenübergangsmetallkomplexe und Selen-analoge Verbindungen, deren Verwendung als Dotand, organisches halbleitendes Material enthaltend die Komplexe, sowie elektronische oder optoelektronisches Bauelement enthaltend einen Komplex
EP1860709B1 (fr) Utilisation des complexes plans quadrangulaires à base des métaux de transition comme dopant
DE102007018456B4 (de) Verwendung von Hauptgruppenelementhalogeniden und/oder -pseudohalogeniden, organisches halbleitendes Matrixmaterial, elektronische und optoelektronische Bauelemente
DE102007031220B4 (de) Chinoide Verbindungen und deren Verwendung in halbleitenden Matrixmaterialien, elektronischen und optoelektronischen Bauelementen
EP2002492B1 (fr) Utilisation de radicaux heterocycliques pour le dopage de semi-conducteurs organiques
EP1990847B1 (fr) Utilisation de bisimidazoles quinoïdes et leurs dérivés en tant que dopant destiné au dopage d&#39;un matériau de matrice organique semi-conducteur
EP3157072B1 (fr) Utilisation d&#39;un complexe métallique comme dopant p pour un matériau de matrice semiconducteur organique, matériau de matrice semiconducteur organique et diode électroluminescentes organiques
EP2229699B1 (fr) Complexes de dithiolène-métaux de transition, et composants électroniques ou optoélectroniques
WO2008058525A2 (fr) Utilisation d&#39;une liaison de coordination pour doper des semiconducteurs organiques
WO2007054345A1 (fr) Matériau semi-conducteur organique dopé
EP3201959B1 (fr) Composant électronique organique
WO2008154915A1 (fr) Utilisation d&#39;un complexe métallique comme dopant p pour un matériau de matrice semiconducteur organique, matériau de matrice semiconducteur organique et composant électronique organique
EP2659529B1 (fr) Composant optoélectronique à couches dopées
EP3430656B1 (fr) Couche organique conductrice d&#39;électrons à dopage n
DE102013106949A1 (de) Optoelektronisches Bauelement, organische funktionelle Schicht und Verfahren zur Herstellung eines optoelektronischen Bauelements
WO2024146671A1 (fr) Composant électronique comprenant un composé chimique de formule générale i, ii et/ou iii
DE102023100108A1 (de) Elektronisches Bauelement mit einer chemischen Verbindung der allgemeinen Formel I, II und/oder III

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846360

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2009536603

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07846360

Country of ref document: EP

Kind code of ref document: A2