WO2008060189A2 - Procédé de fabrication d'un catalyseur et processus de polymérisation d'éthylène utilisant ce catalyseur - Google Patents
Procédé de fabrication d'un catalyseur et processus de polymérisation d'éthylène utilisant ce catalyseur Download PDFInfo
- Publication number
- WO2008060189A2 WO2008060189A2 PCT/RU2007/000623 RU2007000623W WO2008060189A2 WO 2008060189 A2 WO2008060189 A2 WO 2008060189A2 RU 2007000623 W RU2007000623 W RU 2007000623W WO 2008060189 A2 WO2008060189 A2 WO 2008060189A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- compound
- magnesium
- oet
- polymerization
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/65—Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
- C08F4/652—Pretreating with metals or metal-containing compounds
- C08F4/656—Pretreating with metals or metal-containing compounds with silicon or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/02—Carriers therefor
- C08F4/022—Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/65—Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
- C08F4/652—Pretreating with metals or metal-containing compounds
- C08F4/658—Pretreating with metals or metal-containing compounds with metals or metal-containing compounds, not provided for in a single group of groups C08F4/653 - C08F4/657
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/01—High molecular weight, e.g. >800,000 Da.
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/03—Narrow molecular weight distribution, i.e. Mw/Mn < 3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/18—Bulk density
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2500/00—Characteristics or properties of obtained polyolefins; Use thereof
- C08F2500/24—Polymer with special particle form or size
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the invention relates to a method for producing a supported catalyst containing a titanium compound on a magnesium-containing support and intended for the synthesis of ultra-high molecular weight polyethylene with increased bulk density by the method of suspension polymerization of ethylene in a hydrocarbon solvent.
- ultra-high molecular weight polyethylene UHMWPE
- supported Ziegler-type catalysts containing titanium chlorides and magnesium chlorides obtained by various methods can be used.
- ethylene is polymerized in the absence of hydrogen at polymerization temperatures ⁇ 70 ° C to obtain PE with a molecular weight of more than 6 g / mol (the intrinsic viscosity determined in decalin at 135 0 C is greater than 10 dl / g).
- the polymerization is carried out in the presence of cocatalyst - aluminum trialkyl.
- An important requirement for the catalyst for the synthesis of UHMWPE is the ability to obtain UHMWPE powder with an average particle size of less than 200 ⁇ m, a narrow particle size distribution and increased bulk density (> 0.4 g / cm 3 ). For this, it is necessary to use supported catalysts having an average particle size of less than 8 microns, a narrow particle size distribution and low porosity.
- UHMWPE can be synthesized in the presence of a catalyst prepared according to the method of [JP 59-53511, B01J31 / 32, 1986].
- This catalyst contains magnesium chloride as a carrier, obtained by the interaction of a solution of MgCb'3i-CsHpON compound in a hydrocarbon diluent with TiCl 4 in the presence of an electron-donor compound (ethyl benzoate, ethylanisate and others).
- the catalyst obtained in this way is characterized by a particle size of 5-10 ⁇ m, has a fairly high activity (up to 35 kg / g PE g Ti h atm C 2 H 4 ) and allows to obtain a polyethylene powder with a narrow granulometry and high bulk density.
- the disadvantage of this catalyst is the use of low temperatures (up to -20 ° C) in its preparation, the use of large quantities of liquid TiCl 4 as a reaction medium, and the release of a significant amount of hydrogen chloride during the
- a supported supported ethylene polymerization catalyst is obtained by reacting a magnesium-aluminum-alkyl compound of composition RMgR "nAlR 3 " ⁇ -mD with chlorohydrocarbon and then reacting the obtained solid product (carrier) with titanium halide [DE 3626060, BOl J ⁇ 1/32, 1987].
- (n-Bu) Mg (i-Bu) or (n-Bu) Mg (Oct) which are soluble in hydrocarbons, are used as the organomagnesium compound RMgR ', and tret-BuCl is preferably used as chlorohydrocarbon.
- the main disadvantage of the catalysts prepared by this method is their insufficiently high activity in suspension polymerization of ethylene and a large particle size (more than 10 microns).
- MOC organomagnesium compound
- This method allows to obtain a catalyst with an adjustable particle size in the region from 30 to 3 microns.
- the interaction of MOC with CCl 4 must be carried out at low temperatures (from -5 0 C to -15 0 C); however, the process of interaction of MOC with CCl 4 becomes difficult to regulate, especially with increasing volumes of equipment and the amount of catalyst obtained.
- MOC organomagnesium compound
- MOC organomagnesium compound
- the main disadvantage of the catalysts obtained in a known manner is the relatively low bulk density of UHMWPE obtained at polymerization temperatures of 40-70 ° C.
- the invention solves the problem of developing a method for producing a supported titanium-magnesium catalyst for synthesis by ultra-high molecular weight UHMWPE suspension polymerisation method with high yield and high bulk density.
- the proposed method for the preparation of the catalyst provides polyethylene with a high yield and with a high bulk density in the range of 0.39 -0.45 g / cm 3 .
- the polymerization is carried out in suspension mode at a temperature of 40-70 0 C in a hydrocarbon solvent (for example, hexane, heptane) ethylene pressure> 1 bar, in the presence of cocatalyst - trialkyl aluminum (triisobutylaluminum or triethyl aluminum).
- a hydrocarbon solvent for example, hexane, heptane
- cocatalyst - trialkyl aluminum triisobutylaluminum or triethyl aluminum
- a supported catalyst is obtained with a titanium content of 1.2 wt.%.
- Ethylene is polymerized in a 0.8 L steel reactor equipped with a stirrer and a thermostatic jacket.
- Heptane 250 ml
- AlEt 3 cocatalyst triethyl aluminum
- the polymerization is carried out at a temperature of 6O 0 C, ethylene pressure of 4 atm. within 3 hours.
- the polymerization results are shown in the table.
- Example 2
- the catalyst contained 1.2 wt. % titanium.
- the polymerization of ethylene is carried out under the conditions of the example, except that the polymerization temperature is 7O 0 C and the polymerization time is 3.5 hours. The polymerization results are shown in Table 1.
- the catalyst was prepared under the conditions of Example 2, except that the reaction temperature of the mixture of PhSiCl 3 with Si (OEt) 4 with the organomagnesium compound 1O 0 C.
- the catalyst contained 1.6 wt.% Titanium.
- Polymerization of ethylene is carried out under the conditions of Example 2, except that it is first used for polymerization for 5 minutes. a mixture of ethylene with 5 vol.% propylene at a pressure of 1 atm., and then the polymerization is carried out at an ethylene pressure of 3 atm. 3 hours. The polymerization results are shown in the table.
- the catalyst contained 2.1 wt. % titanium.
- the polymerization of ethylene is carried out under the conditions of Example 3 for 4 hours. The polymerization results are shown in Table I. Example 5.
- the synthesis of the catalyst is carried out analogously to example 2, except that using an organomagnesium compound of the composition MgPh 2 ⁇ O.49MgCl 2 "2 (1-Am) 2 O with a concentration of 0.9 mol Mg / L.
- the catalyst contains 1.8 wt.% Titanium.
- Example 6 The synthesis of the catalyst is carried out analogously to example 5, except that instead of PhSiCl 3 , MeSiCl 3 is used and the interaction of the organomagnesium compound with a mixture of MeSiCl 3 ZSi (OEt) 4 is carried out at a temperature of 2O 0 C.
- the catalyst contains 2.4 wt.% Titanium.
- Polymerization ethylene is conducted under the conditions of example 3 for 1.2 hours. The polymerization results are shown in the table.
- PhSiCl 3 Mg 1.6.
- the catalyst contains 2.0 wt.% Titanium.
- the polymerization of ethylene is carried out under the conditions of example 3 for 3.3 hours. The polymerization results are shown in the table.
- the catalyst contains 1.0 wt.% Titanium.
- the polymerization of ethylene is carried out under the conditions of example 5 for 2 hours. The polymerization results are shown in the table.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
Способ приготовления катализатора и процесс полимеризации этилена с использованием этого катализатора.
Изобретение относится к способу получения нанесенного катализатора, содержащего в своем составе соединение титана на магнийсодержащем носителе, и предназначенного для синтеза сверхвысокомолекулярного полиэтилена с повышенной насыпной плотностью методом суспензионной полимеризации этилена в углеводородном растворителе.
Для получения сверхвысокомолекулярного полиэтилена (СВМПЭ) суспензионным методом могут быть использованы нанесенные катализаторы циглеровского типа, содержащие в своем составе хлориды титана и хлориды магния, получаемые различными способами. В этом случае полимеризацию этилена проводят в отсутствие водорода при температурах полимеризации <70°C для получения ПЭ с молекулярной массой более ПО6 г/моль (характеристическая вязкость, определенная в декалине при 1350C более 10 дл/г). Полимеризацию проводят в присутствии сокатализатора - триалкила алюминия. Важным требованием, предъявляемым к катализатору для синтеза СВМПЭ, является возможность получения порошка СВМПЭ со средним размером частиц менее 200 мкм, узким распределением частиц по размеру и повышенной насыпной плотностью (>0.4 г/см3). Для этого необходимо использовать нанесенные катализаторы, имеющие средний размер частиц менее 8 мкм, узкое распределение частиц по размеру и низкую пористость.
СВМПЭ может быть синтезирован в присутствии катализатора, получаемого по методу [JP 59-53511, B01J31/32, 1986]. Этот катализатор содержит в качестве носителя хлорид магния, полученный взаимодействием раствора соединения МgСЬ'Зi-СsНпОН в углеводородном разбавителе с TiCl4 в присутствии электронно-донорного соединения (этилбензоат, этиланизат и другие). Катализатор, полученный таким способом, характеризуется размером частиц 5-10 мкм, обладает достаточно высокой активностью (до 35 кг/г ПЭ г Ti ч атм C2H4) и позволяет получать порошок полиэтилена с узкой
гранулометрией и высокой насыпной плотностью. Недостатком этого катализатора является применение низких температур (дo-20°C) при его приготовлении, использование в качестве реакционной среды больших количеств жидкого TiCl4, выделение при синтезе катализатора значительного количества хлористого водорода.
Известен нанесенный катализатор полимеризации этилена, получаемый взаимодействием магаий-алюминий-алкильного соединения состава RMgR" nAlR3 "Λ -mD с хлоруглеводородом и последующим взаимодействием полученного твердого продукта (носителя) с галогенидом титана [DE 3626060, BOl JЗ 1/32, 1987]. При этом в качестве магнийорганического соединения RMgR' используют (n-Bu)Mg(i-Bu) или (n-Bu)Mg(Oct), растворимые в углеводородах, а в качестве хлоруглеводорода предпочтительно использовать trеt-ВuСl. Основным недостатком катализаторов, приготовленных этим способом, является их недостаточно высокая активность при суспензионной полимеризации этилена и большой размер частиц (более 10 мкм).
Известен способ приготовления нанесенного титанмагниевого катализатора, содержащего тетрахлорид титана на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения (MOC) состава MgPh2-nMgCl2-mR2O, (где: Ph = фенил, R2O = простой эфир с R=бyтил или i-амил, п = 0.37-0.7, m = 1-2) с четыреххлористым углеродом с последующей обработкой полученного магнийсодержащего носителя тетрахлоридом титана (RU 2064836, B01J31/38, 10.08.96). Этот метод позволяет получать катализатор с регулируемым размером частиц в области от 30 до 3 мкм. Однако для получения катализатора с размером частиц в области 7-3 мкм, требуемым для производства СВМПЭ, взаимодействие MOC с CCl4 необходимо проводить при низких температурах (от -50C до -150C); при этом процесс взаимодействия MOC с CCl4 становится труднорегулируемым, особенно при увеличении объемов аппаратуры и количества получаемого катализатора. Известен способ приготовления нанесенного титанмагниевого катализатора, содержащего тетрахлорид титана на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения (MOC) состава MgPh2-HMgCl2-HiR2O, (где: Ph = фенил, R2O = простой эфир с R = бутил или i-амил, п = 0.37-0.7, m = 1-2) с Si(OEt)4 (RU
2152404, C08F4/64, 10.07.2000) с последующей обработкой носителя электроно-донорным соединением и четыреххлористым титаном. Однако этот метод позволяет получать катализаторы с размером частиц только более 10
MKM. Наиболее близким является способ приготовления нанесенного титанмагниевого катализатора, описанный в патенте RU 2257263, BOl JЗ 1/38, 27.07.05, в котором магнийсодержащий носитель получают взаимодействием раствора магнийорганического соединения (MOC) состава MgPh2-nMgCl2-mR.2θ, где: Ph =фeнил, R2O = простой эфир с R = бутил или i- амил, п = 0.37-0.7, m = 1-2, с алкихлорсиланом RxSiCl4.x где: R = алкил, фенил, x = 1-2.
Основным недостатком катализаторов, полученных известным способом, является относительно низкая насыпная плотность СВМПЭ, полученного при температурах полимеризации 40-700C. Изобретение решает задачу разработки способа получения нанесенного титанмагниевого катализатора для синтеза методом суспензионной полимеризации сверхвысокомолекулярного полиэтилена СВМПЭ с высоким выходом и повышенной насыпной плотностью.
Задача решается тем, что носитель для нанесенного титан-магниевого катализатора получают взаимодействием раствора магнийорганического соединения состава Mg(CбH5)2 #nMgCl2«mR2O, где: п = 0.37-0.7, т = 1-2, R2O - простой эфир с R = i-Аm, п-Вu, с соединениям кремния, в качестве соединения кремния используют продукт, полученный взаимодействием соединения состава RYSiCl4-k с тетраэтоксидом кремния Si(OEt)4, где: R1 = метил или фенил; k = 0-1, при мольном соотношении R1 XSiCl4-XZSi(OEt)4 = 6-40, при соотношении Si(OEt)4Mg = 0.05-0.3 и R^SiСUУМg = 1.6- 2.0, при температуре 10 - 3O0C
Предлагаемый способ получения катализатора обеспечивает получение полиэтилена с высоким выходом и с высокой насыпной плотностью в области 0.39 -0.45 г/см3.
Полимеризацию проводят в режиме суспензии при температуре 40-700C в среде углеводородного растворителя (например, гексана, гептана) давлении этилена > 1 бар, в присутствии сокатализатора - триалкила алюминия (триизобутилалюминий или триэтил алюминий).
Сущность изобретения иллюстрируется следующими примерами. Пример 1.
(А). Приготовление раствора магнийорганического соединения. В стеклянный реактор объемом lл, оборудованный мешалкой и термостатирующим устройством, загружают 29.2г порошкообразного магния (1.2 моль) в 450 мл хлорбензола (4.4 моль), 203 мл дибутилового эфира (1.2 моль) и активирующий агент, представляющего собой раствор 0.05г йода в 3 мл хлористого бутила. Реакцию проводят в атмосфере инертного газа (азот, аргон) при температуре от 80 до 1000C в течение 10 ч. По окончании реакции полученную реакционную смесь отстаивают и отделяют жидкую фазу от осадка. Жидкая фаза представляет собой раствор в хлорбензоле магнийорганического соединения состава MgPh2»0.49MgCl2 "2(Bu)2O с концентрацией 1.0 моль Мg/л.
(Б). Синтез носителя. 200 мл полученного раствора (0.2 моль Mg) загружают в реактор с мешалкой и при температуре 150C в течение 2,3 ч дозируют в реактор раствор смеси PhSiCl3 (64 мл) с Si(OEt)4 (2.2 мл) при мольном соотношении 40:1, (Si(OEt)4Mg =0.05, PhSiCl3ZMg= 2.0). Затем нагревают реакционную смесь до 6O0C в течение 30 мин и выдерживают при этой температуре 1 ч. Удаляют маточный раствор и промывают образовавшийся осадок гептаном 4 раза по 250 мл при температуре 2O0C. Получают ЗЗг порошкообразного магнийсодержащего носителя в виде суспензии в гептане.
К полученной суспензии магнийсодержащего носителя в 150 мл гептана добавляют 22 мл TiCl4 (TiCl4/Mg = 1), нагревают реакционную смесь до 6O0C и выдерживают при перемешивании в течение 2 ч, затем твердый осадок отстаивают и промывают гептаном при температуре 60-700C 5 раз по 200 мл.
Получают нанесенный катализатор с содержанием титана 1.2 мac.%.
Полимеризацию этилена проводят в стальном реакторе объемом 0.8 л, оборудованном мешалкой и термостатирующей рубашкой. В качестве растворителя для полимеризации используют гептан (250 мл) и сокатализатор - триэтилалюминий (AlEt3) с концентрацией 1.4 ммоль/л. Полимеризацию проводят при температуре 6O0C, давлении этилена 4 атм. в течение 3 ч. Результаты полимеризации приведены в таблице.
Пример 2.
Катализатор получают в условиях примера 1, за исключением того, что используют смесь PhSiCl3 с Si(OEt)4 при мольном соотношении 18:1, (Si(OEt)4/Mg = 0.1, PhSiCl3Mg = 1.8. Катализатор содержит 1.2 мac.% титана. Полимеризацию этилена ведут в условиях примера, за исключением того, что температура полимеризации 7O0C, а время полимеризации 3.5 ч. Результаты полимеризации приведены в таблице. Пример 3.
Катализатор получают в условиях примера 2, за исключением того что температура взаимодействия смеси PhSiCl3 с Si(OEt)4 с магнийорганическим соединением 1O0C. Катализатор содержит 1.6 мac.% титана. Полимеризацию этилена ведут в условиях примера 2, за исключением того, что вначале используют для полимеризации в течение 5 мин. смесь этилена с 5 oб.% пропилена при давлении 1 атм., а затем полимеризацию ведут при давлении этилена 3 атм. 3 ч. Результаты полимеризации приведены в таблице. Пример 4.
Катализатор получают в условиях примера 1, за исключением того, что используют смесь PhSiCl3 с Si(OEt)4 при мольном соотношении 6:1, (Si(OEt)4/Mg = 0.3, PhSiCl3Mg = 1.8. Катализатор содержит 2.1 мac.% титана. Полимеризацию этилена ведут в условиях примера 3 в течение 4 ч. Результаты полимеризации приведены в таблице. Пример 5.
Синтез катализатора осуществляют аналогично примеру 2, за исключением того, что используют магнийорганическое соединение состава MgPh2^O.49MgCl2 "2(1-Am)2O с концентрацией 0.9 моль Мg/л. Катализатор содержит 1.8 мac.% титана. Полимеризацию этилена ведут в условиях примера 3, за исключением того, что температура полимеризации 6O0C. Результаты полимеризации приведены в таблице.
Пример 6. Синтез катализатора осуществляют аналогично примеру 5, за исключением того, что вместо PhSiCl3 используют MeSiCl3 и взаимодействие магнийорганического соединения со смесью MeSiCl3ZSi(OEt)4 осуществляют при температуре 2O0C. Катализатор содержит 2.4 мac.% титана. Полимеризацию
этилена ведут в условиях примера 3 в течение 1.2 ч. Результаты полимеризации приведены в таблице.
Пример 7.
Синтез катализатора осуществляют аналогично примеру 2, за исключением того, что взаимодействие магнийорганического соединения со смесью PhSiCl3/Si(OEt)4 осуществляют при температуре 3O0C, и используют смесь PhSiCl3 с Si(OEt)4 при мольном соотношении 16:1, (Si(OEt)4Mg = 0.1,
PhSiCl3Mg = 1.6. Катализатор содержит 2.0 мac.% титана. Полимеризацию этилена ведут в условиях примера 3 в течение 3.3 ч. Результаты полимеризации приведены в таблице.
Пример 8 (сравнительный).
Катализатор получают в соответствии с патентом RU 2257263 в условиях примера 5, за исключением того, что для взаимодействия с магнийорганическим соединением при получении носителя используют PhSiCl3 при соотношении SiMg = 1.8. Катализатор содержит 1.0 мac.% титана. Полимеризацию этилена ведут в условиях примера 5 в течение 2 ч. Результаты полимеризации приведены в таблице.
Из представленных примеров и таблицы видно, что катализатор, приготовленный по способу, предлагаемому в изобретении, позволяет получать
СВМПЭ с повышенной насыпной плотностью ПЭ > 0.39 г/см3 по сравнению с катализатором, приготовленным по прототипу (PhSiCl3 в качестве хлорирующего агента без добавок тетраэтоксисилана; сравнительный пример
8). В последнем случае получают полимер с более низкой насыпной плотностью (сравни опыты 5 и 8, проведенные при одинаковых условиях полимеризации).
Таблица
w н
В О
£\ 2) температура полимеризации
Claims
1. Способ получения нанесенного катализатора для синтеза сверхвысокомолекулярного полиэтилена в режиме суспензии в среде углеводородного растворителя, содержащего соединение титана на магнийсодержащем носителе, который получают взаимодействием раствора магнийорганического соединения состава: Mg(C6H5)2«nMgCl2»mR2θ, где: п = 0.37-0.7, т = 1-2, R2O - простой эфир с R = i-
Am, п-Вu, с соединением кремния, отличающийся тем, что в качестве соединения кремния используют продукт, полученный взаимодействием соединения состава
R1 IcSiCl4-Ic с тетраэтоксидом кремния Si(OEt)4, где: R1 = метил или фенил; k = 0 - 1, при мольном соотношении R^SiСLμх/SifOЕf^ = 6 - 40.
2. Способ по п.l, отличающийся тем, что взаимодействие магнийорганического соединения с соединением кремния вышеупомянутого состава проводят при температуре 10-3O0C.
3. Способ по п. 1, отличающийся тем, что соотношение Si(OEt)4Mg = 0.05 - 0.3 и R1XSiCWMg = 1.6- 2.0.
4. Процесс полимеризации этилена в режиме суспензии в среде углеводородного растворителя в присутствии катализатора, содержащего в своем составе соединение титана на магнийсодержащем носителе, отличающийся тем, что используют катализатор, приготовленный по любому из п. п. 1-3 в сочетании с сокатализатором - триалкилом алюминия.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2006140557/04A RU2320410C1 (ru) | 2006-11-16 | 2006-11-16 | Способ приготовления катализатора и процесс полимеризации этилена с использованием этого катализатора |
RU2006140557 | 2006-11-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008060189A2 true WO2008060189A2 (fr) | 2008-05-22 |
WO2008060189A3 WO2008060189A3 (fr) | 2008-07-24 |
Family
ID=38988055
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2007/000623 WO2008060189A2 (fr) | 2006-11-16 | 2007-11-15 | Procédé de fabrication d'un catalyseur et processus de polymérisation d'éthylène utilisant ce catalyseur |
PCT/EP2007/009917 WO2008058749A2 (en) | 2006-11-16 | 2007-11-16 | Method for catalyst preparation and process of polyolefin polymerization from said catalyst |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/009917 WO2008058749A2 (en) | 2006-11-16 | 2007-11-16 | Method for catalyst preparation and process of polyolefin polymerization from said catalyst |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100143719A1 (ru) |
EP (1) | EP2081969B1 (ru) |
JP (1) | JP5678430B2 (ru) |
CN (1) | CN101631806B (ru) |
BR (1) | BRPI0718890B1 (ru) |
RU (1) | RU2320410C1 (ru) |
WO (2) | WO2008060189A2 (ru) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5463886B2 (ja) * | 2008-12-24 | 2014-04-09 | 住友化学株式会社 | オレフィン重合用固体触媒成分前駆体の製造方法 |
US9127096B2 (en) * | 2010-10-18 | 2015-09-08 | California Institute Of Technology | Methods and systems for synthesis of an ultra high molecular weight polymer |
KR101927561B1 (ko) | 2011-04-13 | 2018-12-10 | 디에스엠 아이피 어셋츠 비.브이. | 크리프-최적화된 초고분자량 폴리에틸렌 섬유 |
JP6576336B2 (ja) * | 2013-10-25 | 2019-09-18 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | 超高分子量エチレンコポリマーの調製 |
CN105658683B (zh) * | 2013-10-25 | 2019-03-05 | 帝斯曼知识产权资产管理有限公司 | 超高分子量聚乙烯的制备 |
BR112016029232B1 (pt) | 2014-07-01 | 2022-05-03 | Dsm Ip Assets B.V. | Estrutura compreendendo elementos rígidos ligados entre si através de elementos de interligação e uso de fibra polimérica compreendendo polietileno de peso molecular ultraelevado |
RU2570645C1 (ru) * | 2014-07-29 | 2015-12-10 | Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук | Способ получения катализатора для полимеризации этилена и сополимеризации этилена с альфа-олефинами |
CN105440174B (zh) * | 2014-08-15 | 2017-12-19 | 中国石油化工股份有限公司 | 用于烯烃聚合的催化剂组分及其制备方法和用于烯烃聚合的催化剂与应用 |
JP6728553B2 (ja) | 2015-05-28 | 2020-07-22 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | ハイブリッド鎖環 |
CA3008051C (en) | 2015-12-15 | 2023-10-03 | Dsm Ip Assets B.V. | Low creep fiber |
JP2019519395A (ja) | 2016-07-01 | 2019-07-11 | ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. | 多層ハイブリッド複合材 |
US11214633B2 (en) | 2019-09-10 | 2022-01-04 | Braskem America, Inc. | Ziegler-Natta catalyst systems and methods of controlling particle size |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4019925A1 (de) * | 1990-06-22 | 1992-01-02 | Hoechst Ag | Verfahren zur herstellung eines polyolefins |
RU2064836C1 (ru) * | 1994-06-20 | 1996-08-10 | Институт катализа им. Г.К.Борескова СО РАН | Способ получения нанесенного катализатора для полимеризации этилена и сополимеризации этилена с альфа-олефинами |
RU2221813C1 (ru) * | 2002-12-09 | 2004-01-20 | Институт катализа им. Г.К.Борескова СО РАН | Способ приготовления катализатора и способ получения высокомолекулярных полиальфаолефинов с использованием этого катализатора |
RU2257263C1 (ru) * | 2004-04-08 | 2005-07-27 | Институт Катализа Имени Г.К. Борескова Сибирского Отделения Российской Академии Наук | Способ приготовления катализатора и процесс полимеризации этилена и сополимеризации этилена с альфа-олефинами с использованием этого катализатора |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0826097B2 (ja) * | 1986-08-04 | 1996-03-13 | 三菱化学株式会社 | 超高分子量ポリエチレンの製造法 |
US5244853A (en) * | 1992-07-27 | 1993-09-14 | Akzo N.V. | Catalyst component for ethylene polymerization |
JP3355230B2 (ja) * | 1993-07-29 | 2002-12-09 | 東邦チタニウム株式会社 | 超高分子量ポリエチレン製造用固体触媒成分 |
JP2001510865A (ja) * | 1997-07-25 | 2001-08-07 | ビーピー ケミカルズ リミテッド | 高活性ポリエチレン触媒 |
EP1086961A1 (en) * | 1999-09-27 | 2001-03-28 | Dsm N.V. | Process for the preparation of a catalyst component for the polymerisation of an olefin |
KR100361224B1 (ko) * | 1999-12-01 | 2002-11-29 | 삼성종합화학주식회사 | 에틸렌 중합 및 공중합용 촉매의 제조방법 |
JP4934898B2 (ja) * | 2000-03-30 | 2012-05-23 | 住友化学株式会社 | オレフィン重合用固体触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 |
EA011040B1 (ru) * | 2004-04-08 | 2008-12-30 | Институт Катализа Имени Г.К. Борескова Сибирского Отделения Российской Академии Наук | СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И ПРОЦЕСС ПОЛИМЕРИЗАЦИИ ЭТИЛЕНА И СОПОЛИМЕРИЗАЦИИ ЭТИЛЕНА С α-ОЛЕФИНАМИ |
RU2303605C1 (ru) * | 2006-03-28 | 2007-07-27 | Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук | Способ получения полиэтилена |
RU2303608C1 (ru) * | 2006-03-28 | 2007-07-27 | Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук | Способ получения сверхвысокомолекулярного полиэтилена |
RU2306178C1 (ru) * | 2006-08-01 | 2007-09-20 | Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук | Способ приготовления катализатора и процесс полимеризации этилена с использованием этого катализатора |
US7651969B2 (en) * | 2006-12-05 | 2010-01-26 | Formosa Plastics Corporation, U.S.A. | Catalyst system for producing ethylene (co) polymer with improved branch distribution |
-
2006
- 2006-11-16 RU RU2006140557/04A patent/RU2320410C1/ru active
-
2007
- 2007-11-15 WO PCT/RU2007/000623 patent/WO2008060189A2/ru active Application Filing
- 2007-11-16 US US12/513,612 patent/US20100143719A1/en not_active Abandoned
- 2007-11-16 BR BRPI0718890-0A patent/BRPI0718890B1/pt active IP Right Grant
- 2007-11-16 CN CN200780042540.4A patent/CN101631806B/zh active Active
- 2007-11-16 JP JP2009536662A patent/JP5678430B2/ja active Active
- 2007-11-16 EP EP07846626.5A patent/EP2081969B1/en active Active
- 2007-11-16 WO PCT/EP2007/009917 patent/WO2008058749A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4019925A1 (de) * | 1990-06-22 | 1992-01-02 | Hoechst Ag | Verfahren zur herstellung eines polyolefins |
RU2064836C1 (ru) * | 1994-06-20 | 1996-08-10 | Институт катализа им. Г.К.Борескова СО РАН | Способ получения нанесенного катализатора для полимеризации этилена и сополимеризации этилена с альфа-олефинами |
RU2221813C1 (ru) * | 2002-12-09 | 2004-01-20 | Институт катализа им. Г.К.Борескова СО РАН | Способ приготовления катализатора и способ получения высокомолекулярных полиальфаолефинов с использованием этого катализатора |
RU2257263C1 (ru) * | 2004-04-08 | 2005-07-27 | Институт Катализа Имени Г.К. Борескова Сибирского Отделения Российской Академии Наук | Способ приготовления катализатора и процесс полимеризации этилена и сополимеризации этилена с альфа-олефинами с использованием этого катализатора |
Also Published As
Publication number | Publication date |
---|---|
CN101631806B (zh) | 2014-09-10 |
US20100143719A1 (en) | 2010-06-10 |
WO2008058749A2 (en) | 2008-05-22 |
BRPI0718890A8 (pt) | 2018-01-02 |
CN101631806A (zh) | 2010-01-20 |
BRPI0718890A2 (pt) | 2014-07-08 |
WO2008060189A3 (fr) | 2008-07-24 |
RU2320410C1 (ru) | 2008-03-27 |
WO2008058749A3 (en) | 2008-07-24 |
EP2081969B1 (en) | 2019-09-18 |
JP5678430B2 (ja) | 2015-03-04 |
EP2081969A2 (en) | 2009-07-29 |
JP2010510334A (ja) | 2010-04-02 |
BRPI0718890B1 (pt) | 2019-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2320410C1 (ru) | Способ приготовления катализатора и процесс полимеризации этилена с использованием этого катализатора | |
US5696044A (en) | Method of producing a deposited catalyst for the polymerization of ethylene and copolymerization of ethylene with O-olefins | |
EP1395364A1 (en) | Improved olefin polymerization catalyst compositions and method of preparation | |
WO2004055068A1 (en) | Method for the preparation of olefin polymerisation catalyst support and an olefin polymerisation catalyst | |
WO2007147714A1 (en) | Magnesium chloroalkolate-based catalyst precursors | |
EP1749574B1 (en) | Method for preparing a catalyst and process for polymerising ethylene and copolymerising ethylene with alpha-olefins | |
KR20110025973A (ko) | 올레핀의 중합용 촉매계 | |
JP2011528384A (ja) | ポリエチレンの製造プロセス | |
EP1515995B1 (en) | Solid catalyst component for polymerization and copolymerization of ethylene, and, process for obtaining the same | |
EP1353960B1 (en) | Method for preparing catalyst for olefin polymerization | |
KR19990080442A (ko) | 에틸렌 중합 및 에틸렌/α-올레핀 공중합용 담지촉매의 제조방법 | |
US7307035B2 (en) | Magnesium dichloride-alcohol adducts and catalyst components obtained therefrom | |
RU2346006C1 (ru) | Катализатор и способ получения сверхвысокомолекулярного полиэтилена с использованием этого катализатора | |
RU2303608C1 (ru) | Способ получения сверхвысокомолекулярного полиэтилена | |
RU2306178C1 (ru) | Способ приготовления катализатора и процесс полимеризации этилена с использованием этого катализатора | |
WO1994015977A1 (en) | Olefin polymerization catalyst | |
WO2014007765A1 (en) | A catalyst for olefin polymerization and a method for the preparation thereof | |
RU2303605C1 (ru) | Способ получения полиэтилена | |
RU2257263C1 (ru) | Способ приготовления катализатора и процесс полимеризации этилена и сополимеризации этилена с альфа-олефинами с использованием этого катализатора | |
RU2627501C1 (ru) | Катализатор и способ получения сверхвысокомолекулярного полиэтилена с использованием этого катализатора | |
RU2381236C1 (ru) | Катализатор и способ получения полиэтилена и сополимеров этилена с альфа-олефинами с узким молекулярно-массовым распределением | |
RU2471552C1 (ru) | Катализатор для получения сверхвысокомолекулярного полиэтилена | |
RU2356911C1 (ru) | Способ получения полиэтилена и сополимеров этилена с альфа-олефинами с широким молекулярно-массовым распределением | |
RU2257264C1 (ru) | Способ приготовления катализатора и процесс полимеризации этилена и сополимеризации этилена с альфа-олефинами с использованием этого катализатора | |
JP3253749B2 (ja) | オレフィン重合触媒の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07861046 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07861046 Country of ref document: EP Kind code of ref document: A2 |