WO2008056791A1 - Accumulateur lithium-ion - Google Patents

Accumulateur lithium-ion Download PDF

Info

Publication number
WO2008056791A1
WO2008056791A1 PCT/JP2007/071841 JP2007071841W WO2008056791A1 WO 2008056791 A1 WO2008056791 A1 WO 2008056791A1 JP 2007071841 W JP2007071841 W JP 2007071841W WO 2008056791 A1 WO2008056791 A1 WO 2008056791A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium ion
ion secondary
negative electrode
Prior art date
Application number
PCT/JP2007/071841
Other languages
English (en)
French (fr)
Inventor
Ryuji Shiozaki
Asao Iwata
Satoko Kaneko
Nobuo Ando
Masahiko Taniguchi
Original Assignee
Fuji Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo Kabushiki Kaisha filed Critical Fuji Jukogyo Kabushiki Kaisha
Priority to US12/298,345 priority Critical patent/US20100173184A1/en
Priority to EP07831572A priority patent/EP2104174A4/en
Priority to JP2007556451A priority patent/JPWO2008056791A1/ja
Publication of WO2008056791A1 publication Critical patent/WO2008056791A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to battery technology, and is particularly effective for non-aqueous lithium secondary batteries.
  • a lithium ion secondary battery is a so-called locking in which, after battery assembly, charging is performed to supply lithium ions from a lithium-containing metal oxide of a positive electrode to the negative electrode, and in discharging, the lithium ions of the negative electrode are returned to the positive electrode. It is a chair type battery.
  • the Coulomb efficiency of the positive electrode material is higher than the Coulomb efficiency of the negative electrode material.
  • the initial capacity of the battery after assembly is the product of the charge amount and the coulomb efficiency of the negative electrode. That is, the initial capacity of the battery is determined by the Coulomb efficiency of the negative electrode.
  • positive electrode materials include a wide range of oxide-type compounds represented by LiCoO, LiNiO, LiMn 0, or olivine compounds represented by LiFePO.
  • the positive electrode material contains lithium ions. Therefore, it can be easily operated as a secondary battery simply by combining with the negative electrode.
  • the lithium-containing metal oxide is used in the oxidation-reduction reaction! Less than 1 mole of lithium ion utilization per mole of metal oxide. Therefore, we cannot expect a high level discharge capacity.
  • vanadium oxide can dope or dedope several moles of lithium ion per mole of vanadium oxide. Therefore, it may become a positive electrode material for a large capacity lithium ion secondary battery.
  • Patent Documents 1 and 2 disclose a technique using xerogel synthesized by gelling vanadium pentoxide (V 0) as a positive electrode active material. However, all of them use an active material in a gel state in which crystals are sufficiently developed. Furthermore, it is a thin film electrode in which an active material is directly formed on a current collector. Therefore, the electron conductivity is low and the characteristics cannot be fully exhibited.
  • Patent Documents 1 and 2 have a polymer solid electrolyte type battery configuration using metallic lithium. This avoids a short circuit due to the precipitation of dendrite lithium. However, even if such a polymer solid electrolyte is used, it is difficult to suppress dendrite precipitation after a long cycle. For this reason, the configurations disclosed in Patent Documents 1 and 2 are difficult to use as a large-capacity power source.
  • Patent Document 3 discloses a secondary battery using a carbon negative electrode and a liquid electrolyte. In this method, a positive electrode and a lithium electrode are combined, and the positive electrode is doped with lithium ions in advance, and then the lithium electrode and the carbon negative electrode are combined to produce a battery.
  • Non-Patent Document 1 discloses a technique related to charge and discharge in a similar battery system that operates at a positive electrode operating potential of 2.5 V or more.
  • LiV 0 is chemically synthesized by heat treating V 0 and a lithium salt. Thereby, lithium ions are supplemented in advance.
  • Patent Document 1 Japanese Patent No. 3108186
  • Patent Document 2 Japanese Patent No. 31 15448
  • Patent Document 3 Japanese Patent Publication No. 5-80791
  • Patent Document 4 Japanese Patent Laid-Open No. 05-198300
  • Non-Patent Literature l Joumal of Power Sources 54 (1995) 146-150
  • the above-described lithium ion secondary battery technology has the following problems. That is, in the technique of Patent Document 3, the lithium ion supply source is only from the positive electrode. Therefore, it is restricted by the charge / discharge efficiency of the negative electrode, and high discharge energy cannot be extracted. In addition, because there is a lithium ion doping process and an electrode recombination process, productivity is low when actually manufacturing batteries.
  • Non-Patent Document 1 when operating at 2.5 V or higher, it is difficult to achieve a high energy density with low utilization of the positive electrode.
  • An object of the present invention is to provide a lithium ion secondary battery that is easy to manufacture and has a high energy density.
  • the present inventors have conducted intensive research. As a result, the positive electrode and the negative electrode of the lithium ion secondary battery are within a certain operating potential range. As a result, the present invention has been found.
  • a positive electrode, a negative electrode, and an electrolyte solution comprising a lithium salt and an aprotic organic solvent, and a positive electrode active material strength S
  • a material capable of reversibly doping lithium ions and / or anions Lithium ion secondary battery made of a material that can be reversibly doped with lithium ions.
  • the positive electrode and negative electrode potentials after short-circuiting the positive and negative electrodes are 0.5% on the basis of metal lithium (vs. Li / Li +). It was made to be V or more and 2.0V or less.
  • a lithium ion secondary battery having a high energy density is provided by setting the operating potential of the positive electrode and the negative electrode in the range of 0.5 V or more and 2.0 V or less in a non-aqueous lithium ion secondary battery.
  • a lithium ion secondary battery having a high energy density exceeding an energy density power of 3 ⁇ 400 Wh / kg per battery weight is provided.
  • FIG. 1 is an explanatory diagram showing a situation of an operating potential of a lithium ion secondary battery of the present invention.
  • FIG. 2 is an image diagram of an amorphized gel schematically showing a layered crystal structure with a short layer length used in the present invention.
  • FIG. 3 is an image diagram of gelation schematically showing a layered crystal structure having a long layer length different from that used in the present invention.
  • FIG. 4 is an explanatory diagram showing an X-ray diffraction pattern of a positive electrode active material used in the present invention.
  • FIG. 5 is a flow diagram of a method for producing a positive electrode active material used in the present invention.
  • FIG. 6 is a flowchart of a method for producing a positive electrode active material used in the present invention.
  • FIG. 7 is a drawing-substituting photograph of a positive electrode active material used in the present invention by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 8 is an explanatory view schematically showing a schematic configuration of a laminated lithium ion secondary battery of the present invention.
  • FIG. 9 is an explanatory view schematically showing a schematic configuration of a wound type lithium ion secondary battery of the present invention.
  • FIG. 10 is an explanatory view schematically showing a schematic configuration of a foldable lithium ion secondary battery of the present invention.
  • FIG. 11 is a drawing-substituting photograph of a positive electrode active material used in the present invention by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 12 is an explanatory diagram showing the effect of the present invention in a tabular format together with a comparative example.
  • the present invention This is a technology related to muon secondary batteries.
  • the present inventor has found that the positive electrode and the negative electrode of the lithium ion secondary battery as described above exhibit a high energy density when they are within a certain operating potential range.
  • a lithium ion secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution composed of a lithium salt and a non-protonic organic solvent.
  • the positive electrode active material is a metal oxide or an organic compound exhibiting redox activity.
  • the negative electrode active material strength S is a material that can be reversibly doped with lithium ions.
  • the positive and negative electrode potentials after short-circuiting the positive and negative electrodes are set to 0.5 V or more and 2.0 V or less on the basis of metallic lithium (vs. Li / Li +). This can increase the energy of the lithium-ion secondary battery.
  • Examples of the organic compound exhibiting redox activity include acetylene, aniline, tetrathionaphthalene, thiophene derivatives, and polymers thereof.
  • FIG. 1 shows a potential profile of a lithium ion secondary battery.
  • the point at which the curve of the force, the positive electrode potential, and the negative electrode potential curve intersect is the potential of the positive electrode and the negative electrode during 0 V discharge when both electrodes are short-circuited.
  • the potential of the positive electrode and the negative electrode is 0.5 V or more and 2.0 V or less on the basis of metal lithium ion (vs. Li / Li +). This is one major feature of the present invention. Such a range is indicated by an arrow in the figure.
  • a lithium ion secondary battery for example, it has a layered crystalline material as a positive electrode active material, and the layered crystalline material contains fine crystalline particles having a layer length of 30 mm or less not containing 0. It is preferable to use an electrode material characterized by having it. Furthermore, as a negative electrode material, easy It is preferable to use graphitized carbon material (soft carbon), graphite, or a mixture of graphitizable carbon material and graphite.
  • a battery configuration of a lithium ion secondary battery for example, a cell configuration in which positive electrodes and negative electrodes are alternately stacked via a separator and then wound, folded, or stacked in three or more layers is used. I prefer to do it.
  • the positive electrode current collector and the negative electrode current collector are provided with through holes that penetrate from the front surface to the back surface.
  • the negative electrode, or the positive electrode, or the negative electrode and the positive electrode are previously doped with lithium ions by electrochemical contact with metallic lithium.
  • dope means occlusion, support, adsorption or insertion, and refers to a phenomenon in which lithium ions and / or anions enter the positive electrode active material, or a phenomenon in which lithium ions enter the negative electrode active material.
  • De-doping means release and desorption, and refers to a phenomenon in which lithium ions or anions are desorbed from the positive electrode active material, or a phenomenon in which lithium ions are desorbed from the negative electrode active material.
  • anion doping means that an anion of a supporting salt contained in an electrolyte is doped when a conductive polymer such as polyacetylene or polyaniline is used on the positive electrode side.
  • a conductive polymer such as polyacetylene or polyaniline
  • CF SO-, C F SO-, (CF SO) N-, (CF SO) C-, BF-, PF-, CIO- are doped.
  • the lithium ion secondary battery of the present invention having such a configuration will be described in further detail below.
  • the active material for the positive electrode used in the present invention for example, an oxide type compound group represented by LiCoO, LiNiO, and LiMn 0 used in a conventional lithium-ion secondary battery, or an olivine compound group represented by LiFePO is used. Is possible. Or layered crystalline material
  • the state of the layered crystalline substance in the present invention refers to a crystal structure having a layer length of 30 nm or less or a crystal structure having a layer length of 30 mm or less from a microscopic viewpoint observed on the order of ⁇ or less. It means a state where an amorphous structure coexists. When such a state is viewed from a macroscopic viewpoint, such as that obtained by X-ray diffraction analysis, which is larger than nm and is observed on the order of ⁇ m or more, an apparently amorphous structure in which crystal structures are randomly arranged is observed. Is done.
  • the layer length of the layered crystalline substance is shortened (miniaturized). For example, a layered crystal state with a long layer length is divided, and a layered crystal state with a short layer length appears.
  • Such a state is a novel structure that cannot be realized in an amorphous state. By stopping the progress of the amorphization halfway, the above state, that is, a layered crystal state with a short layer length can exist.
  • FIG. 2 schematically shows a layered crystal state having a short layer length L1 according to the present invention, that is, an apparent amorphized state.
  • a so-called short-period structure in which the layer length L1 repeats with a short period on average forms a layered crystal structure.
  • the apparently amorphized state according to the present invention a plurality of layered crystals having a short period structure are thus assembled.
  • the layered crystal state according to the present invention having a short layer length is used as, for example, an electrode active material of a battery
  • chemical species such as ions involved in the reaction of the battery enter and exit between layers in the layered crystal state. It becomes easy.
  • ions doped between layers have a short layer length, so that their diffusion path is short and they are easily diffused.
  • the layer with charge / discharge characteristics has excellent cycle resistance and the like.
  • the length of the layer length is particularly important.
  • a layer length affects the length of a path through which ions pass directly when ions enter and exit.
  • the portion other than the layer length for example, the length in the thickness direction of the layer of the layered crystal structure may be reduced as the average crystal grain becomes smaller.
  • the layered crystal state having a short layer length is preferably produced by using vanadium oxide as a raw material, dissolving it with hydrogen peroxide 0) or an alkali salt, and further solidifying the solution. It is possible.
  • the dissolved vanadium oxide solution is acidic.
  • Alkali salt When used, it exhibits alkalinity.
  • lithium ions When lithium ions are used as the cation source for the alkali salt, lithium ions can be doped into the vanadium oxide at the synthesis stage.
  • the lithium ion source for example, water-soluble lithium sulfide, lithium hydroxide, lithium selenide, lithium telluride, or the like can be used.
  • the power S is to use at least one lithium compound selected from the group of such lithium compounds as a water-soluble lithium ion source.
  • a monomer corresponding to the sulfur-containing organic conductive polymer may be mixed with the active material. However, it is desirable to remove the monomer corresponding to the sulfur-containing organic conductive polymer as the final positive electrode active material. Although details are unknown, the sulfur-containing organic conductive polymer is functioning in maintaining the oxide composition during the synthesis reaction of vanadium oxide, but the performance as an active material is considered to be low.
  • the active material thus obtained is mixed with a binder such as polyvinylidene fluoride (PDVF), preferably with conductive particles, to obtain a positive electrode material.
  • a binder such as polyvinylidene fluoride (PDVF)
  • PDVF polyvinylidene fluoride
  • This is applied on a conductive substrate (current collector) to produce a positive electrode.
  • the layer of the positive electrode material for the non-aqueous lithium ion secondary battery is formed to a thickness of 10 to 200 ⁇ m, for example.
  • the conductive particles include conductive carbon (conductive carbon such as ketjen black), metal such as copper, iron, silver, nickel, palladium, gold, platinum, indium, tungsten, indium oxide, oxide There are conductive metal oxides such as tin.
  • the conductive particles may be contained in an amount of 1 to 30% of the weight of the metal oxide.
  • a conductive substrate having conductivity at least on the surface in contact with the positive electrode material can be used.
  • a substrate is a metal, conductive metal oxide Or a conductive material such as conductive carbon.
  • copper, gold, aluminum, an alloy thereof, or conductive carbon is preferable.
  • the base is formed of a non-conductive material, it is necessary to coat the base with a conductive material.
  • a layered crystalline substance having a short layer length which is effective as a positive electrode material for a non-aqueous lithium secondary battery, is manufactured through a manufacturing process as shown in the flowchart of FIG.
  • step S110 vanadium pentoxide is prepared as a layered crystalline material.
  • a water-soluble lithium ion source is prepared in step S120, and a monomer corresponding to sulfur-containing organic conductivity is prepared in step S130.
  • step S140 the monomers corresponding to vanadium pentoxide prepared in steps S110, S120, and S130, the water-soluble lithium ion source, and the sulfur-containing organic conductive polymer are suspended in water. Amorphization begins with force and suspension.
  • the water-soluble lithium ion source for example, lithium sulfide or lithium hydroxide can be used.
  • 3,4-ethylenedioxythiophene can be used as the monomer corresponding to the sulfur-containing organic conductivity.
  • step S150 The suspension is heated to reflux in step S150 for a predetermined time. After heating and refluxing in step S150, the solid content is removed from the heated and refluxed suspension by filtering in step S160. The filtrate from which the solid content has been removed is concentrated in step S170. After concentrating the filtrate, it is dried in step S 180 by vacuum drying or the like.
  • step S190 the particles are pulverized to a predetermined particle size by a ball mill or the like, and classified by sieving. In this way, a layered crystal structure powder having a short layer length of vanadium pentoxide is obtained. Such layered crystal structure powder is used as an active material of the positive electrode material.
  • the heating temperature needs to be less than 250 ° C. If it exceeds 250 ° C, the layered crystals with a short layer length change, which is not preferable.
  • a layered crystalline substance having a force and such a short layer length can be manufactured by a manufacturing force S as shown in the flow diagram of FIG.
  • step S210 for the positive electrode material of the non-aqueous lithium ion secondary battery.
  • Synthesize active material A necessary material is mixed with water and heated to reflux for a predetermined time to synthesize an active material soluble in water.
  • the active material suspension for the positive electrode material synthesized in this way is filtered, and in step S220, the spray drying method is applied.
  • the active material for the positive electrode material can be made into a fine spherical particle positive electrode material powder.
  • the positive electrode material powder is a spherical water-soluble particle having an average particle diameter of 0.1 m or more and 20 m or less.
  • the active material once produced without using the spray drying method may be pulverized to a predetermined particle size with a ball mill or the like and classified by sieving.
  • the spraying and drying method it is possible to save the troubles of pulverization, classification, etc., and further, the obtained particles become fine spherical particles having a fine average particle diameter of submicron or less. In this way, a layered crystal structure powder of vanadium oxide such as vanadium pentoxide having a short layer length is obtained.
  • the crystal grains observed in the cross section include a layered crystal state having a layer length of 30 ⁇ m or less in an area ratio of 30% or more in the cross section.
  • crystal grains in an arbitrary cross section are contained in an area of 30% or more.
  • the energy density of the lithium ion secondary battery having such a structure is better than that of the case where it includes a layered crystal structure having a layer length exceeding the crystal particle force of> 0 nm. Further, it may be contained in an area% of 30% or more and less than 100%. The upper limit is valid up to a value close to 100%. In the case of 100%, there is no amorphous state in the crystal particles, and only the layered crystal state.
  • the minimum layer length of the layered crystal structure is preferably 1 mm or more. If the layer length of the layered crystal is less than 1 mm, the layered structure cannot be maintained, so lithium ions cannot be doped or dedoped, and the capacity cannot be taken out. On the other hand, if the layer length exceeds 30 mm, the crystal structure collapses due to charge and discharge, resulting in poor cycle characteristics. Therefore, the layer length is preferably 1 nm or more and 30 nm or less. More preferably, the layer length is 5 nm or more and 25 nm or less. FIG.
  • Fig. 7 shows a layered crystal state of the positive electrode active material used in the present invention having a layer length of 1 nm or more and 30 nm or less as a transmission electron micrograph used as a drawing substitute photo.
  • Fig. 7 shows the case of lithium vanadium pentoxide, especially when a layered crystal state of 5 nm or more and 25 nm is observed.
  • a non-aqueous lithium ion secondary battery is formed by forming a positive electrode using such an active material.
  • the non-aqueous lithium ion secondary battery includes the positive electrode, the negative electrode, and an electrolyte layer disposed between the positive electrode and the negative electrode.
  • a commonly used material for a lithium ion secondary battery can be used for the negative electrode.
  • the power and curable materials include lithium-based metal materials such as lithium metal lithium alloys (eg, Li-Al alloys), intermetallic compound materials of metals and lithium metals such as tin-cathenium, and lithium nitride. And a lithium intercalation carbon material.
  • Lithium salts such as LiPF and LiCIO can be used.
  • the solvent that dissolves power and electrolytes can be used.
  • non-aqueous solvent chain carbonates, cyclic carbonates, cyclic esters, nitrile compounds, acid anhydrides, amide compounds, phosphate compounds, amine compounds, and the like can be used.
  • a solution obtained by dissolving the above electrolyte in a non-aqueous solvent can be used.
  • a polymer gel (polymer gel electrolyte) containing a force, electrolyte solution can be used.
  • Such a non-aqueous lithium secondary battery has a configuration as shown in FIG. 8, for example. That is, in the nonaqueous lithium secondary battery 10, the negative electrode 1 and the positive electrode 2 face each other with the separator 3 interposed therebetween.
  • a negative electrode active material is provided in a layered manner on a substrate surface as a current collector.
  • a positive electrode active material is provided in a layered manner on a substrate surface as a current collector.
  • a plurality of such negative electrodes 1 and positive electrodes 2 are laminated via separators 3 as shown in FIG.
  • the upper and lower ends are stacked in the vertical direction, and the negative electrode 1 is formed at the upper and lower ends.
  • Metallic lithium 4 is laminated on the negative electrode 1 formed on the upper and lower ends via a separator 3.
  • the outside of the metallic lithium 4 is covered with a copper mesh 5 as a current collector! Not shown! / ⁇ 1S
  • a copper mesh 5 as a current collector! Not shown! / ⁇ 1S
  • Such a stacked electrode group is provided in a non-aqueous solvent in which the electrolyte is dissolved.
  • the separator 3 is impregnated with a non-aqueous solvent in which the electrolyte is dissolved.
  • the configuration of the non-aqueous lithium ion secondary battery may be other configurations.
  • it may be a wound or folded configuration.
  • the configuration shown in FIG. 9 is a wound configuration.
  • the configuration shown in FIG. 10 is a folded configuration.
  • the positive electrode material developed in the present invention can be doped with several moles of lithium ions per mole of the positive electrode material. However, beyond a certain amount, the dedoping ability is significantly reduced. This threshold is up to 1.45V for lithium metal. Below this, capacity degradation proceeds. If it is more than this, it is possible to achieve both high charge / discharge capacity and cycle performance. Preferably it is 1.45V or more to 2V, more preferably 1.5V to 1.9V.
  • Preparation of positive electrode active material In this example, in step S210 of FIG.
  • composition of this powder was determined from TG (Thermobalance, Thermo-Gravimetry). V 0 -0.3H Ou.
  • Fim lithium metal was placed in two locations, upper and lower, to form a pole group consisting of a positive electrode, a negative electrode, metallic lithium, and a separator.
  • the metallic lithium current collector and the negative electrode current collector were welded.
  • Lithium ion doping step After the battery prepared as described above was left for 20 days
  • Charging / discharging test A charging / discharging cycle test was performed using the remaining one-cell battery. 0 charge It was terminated after 30 hours with a constant current and constant voltage (CC CV) charging method of 4.1V at .1C. The discharge was a constant current (CC) discharge method that ended when it reached 0V at 0.05C. After charging and discharging three times under the above conditions, the operating potentials of the positive electrode and the negative electrode were determined from the reference electrode. Both were 1.5V based on metallic lithium.
  • CC CV constant current and constant voltage
  • the discharge capacity at this time was 13.5 Ah.
  • the configuration of the positive electrode and the negative electrode was the same as in Example 1, and the thickness of the metallic lithium disposed at the upper and lower two locations on the outermost part of the electrode laminate unit was changed to 490 am.
  • battery cells were constructed in the same manner as in Example 1, and two cells were produced. When the cell was disassembled after being left for 20 days, all of the lithium metal had disappeared, so it was confirmed that a predetermined amount of lithium ion was previously doped into the negative electrode.
  • a charge / discharge cycle test was performed using the remaining one-cell battery. Charging was terminated after 30 hours with a constant current constant voltage (CC CV) charging method of 0.1 (: 4.1 yen). Discharging was a constant current (CC) discharging method that ended when it reached 0 V at 0.05C.
  • CC CV constant current constant voltage
  • the configuration was the same as Example 1 except for the configuration of the positive electrode, the configuration of the negative electrode, and the configuration of the thickness of metallic lithium.
  • a lithium ion secondary battery was constructed using the positive electrode and the negative electrode.
  • Such a battery configuration is the same as that of Example 1 except that the thickness of the metallic lithium disposed at the upper and lower two positions on the outermost part of the electrode stack unit is changed to 85 m. In this way, two battery cells were produced. When the cell was disassembled after being left for 20 days, all of the lithium metal disappeared and it was confirmed that a predetermined amount of lithium ions had previously been occluded in the negative electrode.
  • a charge / discharge cycle test was performed using the remaining one-cell battery. Charging was completed after 30 hours with a constant current constant voltage (CC CV) charging method of 0.1 (: 4.1 yen at 3.0. Discharge was 3.0 at 0.05C.
  • CC CV constant current constant voltage
  • the discharge capacity after charging and discharging three times under the above conditions was 5.4 Ah.
  • this was allocated based on the battery mass excluding the reference electrode and converted per battery weight, it was 157 Wh / kg-cell.
  • the positive electrode negative electrode operating potential was determined from the reference electrode, and both were 0.5 V based on metallic lithium.
  • Preparation of positive electrode active material In this example, 200 g of vanadium pentoxide, 30 g of lithium sulfide (Li2S) and 3,4-ethylenedioxythiophene (EDOT) lOOg were suspended in 5 liters of water for 24 hours. The mixture was heated and stirred under reflux. After completion of the stirring, suction filtration was performed to remove the solid content. This solid was a polymer of sulfur and 3,4-ethylenedioxythiophene.
  • Li2S lithium sulfide
  • EDOT 3,4-ethylenedioxythiophene
  • a positive electrode paste was prepared with the same composition as in Example 1, and applied to both surfaces of an aluminum current collector having through-holes to produce a positive electrode having a thickness of 175 m.
  • Lithium ion doping step The battery prepared as described above was allowed to stand for 20 days, and then one cell was disassembled. Since all of the metallic lithium had disappeared completely, it was confirmed that the required amount of lithium ions was previously doped into the negative electrode.
  • Comparative Example 1 is the same as in Example 1 except that the lithium ion secondary battery configured in Example 1 above was changed to 420 am in the thickness of the metallic lithium disposed at the upper and lower two positions on the outermost part of the electrode stack unit. Similarly, two battery cells were produced. After leaving for 20 days, 1 cell was disassembled. Since all of the metallic lithium had disappeared completely, it was confirmed that a predetermined amount of lithium ions had previously been occluded in the negative electrode.
  • a charge / discharge cycle test was conducted using the remaining one-cell battery. Charging was terminated after 30 hours with a constant current constant voltage (CC CV) charging method of 0.1 (: 4.1 yen). Discharging was a constant current (CC) discharging method that ended when it reached 0 V at 0.05C.
  • CC CV constant current constant voltage
  • Example 2 a battery was constructed using the positive electrode in Example 2 and the negative electrode in Example 1.
  • Two battery cells were produced in the same manner as in Example 1, except that the thickness of the lithium metal disposed at the upper and lower two locations on the outermost part of the electrode laminate unit was changed to 350 m. After leaving it for 20 days, 1 cell was disassembled. Since all of the metallic lithium had disappeared completely, it was confirmed that a predetermined amount of lithium ions was previously doped into the negative electrode.
  • a charge / discharge cycle test was performed using the remaining one-cell battery. Charging was terminated after 30 hours with a constant current and constant voltage (CC CV) charging method of 0.1V at 0.1C. The discharge was a constant current (CC) discharge method that ended when the voltage reached 3.0 V at 0.05C.
  • CC CV constant current and constant voltage
  • the discharge capacity after repeating charge and discharge three times under the above conditions was 5.4 Ah.
  • this was allocated by the battery mass excluding the reference electrode and converted per battery weight, it was 127 Wh / kg-cell.
  • the positive electrode negative electrode operating potential when the cell was discharged at 0 V was determined from the reference electrode, and both were 0.3 V based on the metallic lithium.
  • Comparative Example 3 two battery cells were produced in the same manner as in Comparative Example 2, except that the thickness of the lithium metal disposed in the upper and lower two locations on the outermost part of the electrode laminate unit was changed to 140 m. Each cell was disassembled after being left for 20 days. Since all of the metallic lithium had disappeared completely, it was confirmed that a predetermined amount of lithium ions was previously doped into the negative electrode.
  • a charge / discharge cycle test was performed using the remaining one-cell battery. Charging was terminated after 30 hours with a constant current constant voltage (CC CV) charging method of 0.1 (: 4.1 yen). Discharging was a constant current (CC) discharging method that ended when it reached 0 V at 0.05C.
  • CC CV constant current constant voltage
  • the discharge capacity after repeating charging and discharging three times under the above conditions was 5.4 Ah.
  • this was allocated by the battery mass excluding the reference electrode and converted per battery weight, it was 128 Wh / kg-cell.
  • the positive and negative electrode operating potentials were determined from the reference electrode, and both were 0.4V based on metallic lithium.
  • Comparative Example 4 one battery cell was produced in the same manner as in Comparative Example 2, except that no lithium metal was disposed on the outermost part of the electrode laminate unit.
  • a charge / discharge cycle test was performed using the produced one-cell battery. Charging was terminated after 30 hours with a constant current and constant voltage (CC CV) charging method of 0.1 and 4.1 yen. The discharge was a constant current (CC) discharge method that ended when it reached 3.0V at 0.05C.
  • CC CV constant current and constant voltage
  • the discharge capacity after repeating charging and discharging three times under the above conditions was 3.6 Ah.
  • the positive and negative electrode operating potentials were determined from the reference electrode, and both were 3.6V based on metallic lithium.
  • Example 3 The energy density of Example 3 is lower than that of the other examples, but the same positive electrode of Example 2 was used.
  • the positive electrode active material had a layer length of 5 nm or more and 25 nm or less, and more widely, a layer length of 1 nm or more and 30 nm or less. It was found that the direction energy density using vanadium pentoxide, in which layered fine crystal particles were randomly assembled, was used as the active material of the positive electrode was higher.
  • a graphite material was used for the negative electrode as a battery configuration.
  • the same effect can be obtained by using any negative electrode material that can be doped with lithium ion.
  • a tin alloy, a key alloy, or the like can be used.
  • the present invention is particularly effective in the field of positive electrode materials for large-capacity lithium secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

明 細 書
リチウムイオン二次電池
技術分野
[0001] 本発明は電池技術に関し、特に、非水系のリチウム二次電池に有効な技術である。
背景技術
[0002] 近年、負極にグラフアイト等の炭素材料を用い、正極に LiCoO等のリチウム含有金 属酸化物を用いた、所謂リチウムイオン二次電池が提供されている。力、かるリチウムィ オン二次電池は、他の二次電池と比較して、高電圧及び高容量を有する為、蓄電装 置として、主にノート型パソコンや携帯電話の主電源として実用化されて!/、る。
[0003] リチウムイオン二次電池は、電池組立後、充電することにより、正極のリチウム含有 金属酸化物から負極にリチウムイオンを供給し、放電では、負極のリチウムイオンを 正極に戻すという、いわゆるロッキングチェア型電池である。一般に、リチウムイオン 二次電池に用いられる正極材料と負極材料の充放電時におけるクーロン効率を比 較すると、正極材料のクーロン効率が負極材料のクーロン効率よりも高い。この場合、 組立後における電池の初期容量は、充電量と負極のクーロン効率の積となる。つまり 、電池の初期容量は、負極のクーロン効率により決定される。
[0004] このため、リチウムイオン二次電池の高エネルギー密度化を目指して、単位重量あ たりの放電容量が大きな負極材料、例えば Sn系の酸化物を用いても、負極のクーロ ン効率が低いと、電池の放電容量は小さくなる。現状のリチウムイオン二次電池では 、負極のクーロン効率が低い。よって、充填されている正極材料に対して 100%のエネ ルギーを使用できて!/、な!/、。
[0005] また、リチウムイオン二次電池では、正極材料には LiCoO、 LiNiO、 LiMn 0に代 表される酸化物型化合物群、あるいは LiFePOに代表されるオリビン化合物群が広く
4
一般に使用されている。かかる構成では、正極材料中にリチウムイオンを含有する。 よって、負極と組み合わせるだけで、容易に二次電池として作動させることが可能と なる。
[0006] しかし、上記リチウム含有金属酸化物は、その酸化還元反応にお!/、て、リチウム含 有金属酸化物 1モル当たりの、リチウムイオンの利用量力 1モルを下回る。よって、 高レヽ放電容量を期待することができなレ、。
[0007] 一方、バナジウム酸化物は、バナジウム酸化物 1モル当たり、数モルのリチウムィォ ンをドープ、あるいは脱ドープすること力 Sできる。よって、大容量のリチウムイオン二次 電池用正極材料となる可能性がある。例えば、特許文献 1、 2には、五酸化バナジゥ ム (V 0 )をゲル化させて合成したキセロゲルを、正極活物質として使用した技術が開 示されている。しかし、これらは、いずれも、結晶の充分発達したゲル状態の活物質 を使用している。さらに、活物質を、集電体上に直接形成させた薄膜電極である。よ つて、電子伝導性は低く特性を十分に発揮させることができなレ、。
[0008] 特許文献 1、 2に開示の構成では、金属リチウムを使用した高分子固体電解質型の 電池構成としている。これにより、デンドライトリチウムの析出によるショートを回避して いる。しかし、かかる高分子固体電解質を用いても、長期間サイクル後のデンドライト 析出を抑制することは難しい。このため、特許文献 1、 2に開示の構成は、大容量電 源としての使用が困難である。
[0009] 特許文献 3には、炭素負極と液体電解質を用いた二次電池が開示されている。こ れは、正極とリチウム極を組み合わせて、正極に予めリチウムイオンをドープさせてお き、その後、リチウム極と炭素負極と組み替えて、電池を作製する。非特許文献 1には 、正極作動電位を 2.5V以上で運用する、同様の電池系での充放電に関する技術が 開示されている。
[0010] 一方、特許文献 4では、 V 0とリチウム塩とを熱処理することで、化学的に LiV 0を 合成している。これにより、予めリチウムイオンを補っている。
特許文献 1 :特許 3108186号公報
特許文献 2:特許 31 15448号公報
特許文献 3 :特公平 5— 80791号公報
特許文献 4:特開平 05— 198300号公報
非特許文献 l : Joumal of Power Sources 54(1995)146-150
発明の開示
発明が解決しょうとする課題 [0011] ところ力 上記リチウムイオン二次電池の技術においては、以下の課題がある。すな わち、特許文献 3の技術では、リチウムイオン供給源が正極からのみである。よって、 負極の充放電効率によって制約を受け、高い放電エネルギーを引き出すことができ ない。また、リチウムイオンのドープェ程と、電極の組替え工程があるために、実際の 電池の生産に際しては生産性が低レ、。
[0012] 非特許文献 1のように、 2.5V以上で運用すると、正極の利用率が低ぐ高工ネルギ 一密度を出すことが難しい。
[0013] 特許文献 4の技術では、予めリチウムイオンを、 V 0と Li塩とを熱処理することで、 化学的に補っている。この方法では、熱処理によって V 0と反応して取り込むことの できるリチウムイオンの量が限定される。よって、高い放電エネルギーを供給すること ができない。
[0014] 本発明の目的は、製造が容易で、高いエネルギー密度を有したリチウムイオン二次 電池を提供することにある。
[0015] 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添 付図面から明らかになるであろう。
課題を解決するための手段
[0016] 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、 次のとおりである。
[0017] 上記課題を解決するため、本発明者らは鋭意研究を行った結果、リチウムイオン二 次電池の正極、負極が、ある作動電位範囲内にあること力 高いエネルギー密度を 発現する上で重要となることを見出し、本発明に至った。
[0018] すなわち、正極、負極、及び、リチウム塩と、非プロトン性有機溶媒からなる電解液 を備え、正極活物質力 Sリチウムイオン及び/又はァニオンを可逆的にドープ可能な 物質で、負極活物質がリチウムイオンを可逆的にドープ可能な物質で構成したリチウ ムイオン二次電池で、正極と負極を短絡させた後の正極及び負極電位が、金属リチ ゥム (対 Li/Li+)基準で 0.5V以上、 2.0V以下であるようにした。
発明の効果
[0019] 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に 説明すれば以下のとおりである。
[0020] 非水系リチウムイオン二次電池で、正極、負極の作動電位を 0.5V以上、 2.0V以下 の範囲内とすることで、高いエネルギー密度を有するリチウムイオン二次電池を提供 する。例えば、本願請求項 2に示されるバナジウム酸化物を正極に用いた場合、電池 重量当たりのエネルギー密度力 ¾00Wh/kgを上回る、高いエネルギー密度を有するリ チウムイオン二次電池を提供する。
図面の簡単な説明
[0021] [図 1]本発明のリチウムイオン二次電池の作動電位の状況を示す説明図である。
[図 2]本発明で使用される層長の短い層状結晶構造を模式的に示したアモルファス 化ゲルのイメージ図である。
[図 3]本発明で使用されるのとは異なる層長の長い層状結晶構造を模式的に示した ゲル化のイメージ図である。
[図 4]本発明で使用される正極の活物質の X線回析パターンを示す説明図である。
[図 5]本発明で使用され正極活物質の製造方法のフロー図である。
[図 6]本発明で使用され正極活物質の製造方法のフロー図である。
[図 7]本発明で使用される正極活物質の透過型電子顕微鏡 (TEM)による図面代用 写真である。
[図 8]本発明の積層型のリチウムイオン二次電池の概略構成を模式的に示す説明図 である。
[図 9]本発明の捲回型のリチウムイオン二次電池の概略構成を模式的に示す説明図 である。
[図 10]本発明の折り畳み型のリチウムイオン二次電池の概略構成を模式的に示す説 明図である。
[図 11]本発明で使用される正極活物質の透過型電子顕微鏡 (TEM)による図面代 用写真である。
[図 12]本発明の効果を比較例とともに表形式で示した説明図である。
発明を実施するための最良の形態
[0022] 以下、本発明の実施の形態を図面に基づいて詳細に説明する。本発明は、リチウ ムイオン二次電池に関する技術である。力、かる技術において、本発明者は、前記の 如ぐリチウムイオン二次電池の正極、負極が、ある作動電位範囲内にあるときに高 いエネルギー密度を発現することを見出した。
[0023] 本発明に係るリチウムイオン二次電池は、正極、負極、及び、リチウム塩と非プロト ン性有機溶媒からなる電解液を備える。また、正極活物質がレドッタス活性を示す金 属酸化物あるいは有機化合物である。また、負極活物質力 Sリチウムイオンを可逆的に ドープ可能な物質である。正極と負極を短絡させた後の正極及び負極電位が、金属 リチウム (対 Li/Li+)基準で 0.5V以上、 2.0V以下に設定する。これにより、リチウムィォ ン二次電池を高エネルギー化することができる。
[0024] 上記レドックス活性を示す有機化合物としては、例として、アセチレン、ァニリン、テ トラチォナフタレン、チォフェン誘導体もしくはその重合体がある。
[0025] 図 1に、リチウムイオン二次電池電位プロファイルを示した。図 1に示すように、リチウ ムイオン二次電池では、実際のセル電圧は、正極電位を示す曲線と、負極電位を示 す曲線との差し引き電位を示すセル電圧曲線で示される。すなわち、セル電圧 =正 極電位 負極電位となる。
[0026] 力、かる正極電位の曲線と、負極電位の曲線と、が交わった点が、両極を短絡させた 0V放電時の正極、負極の電位となる。かかる正極、負極の電位が、金属リチウムィォ ン (対 Li/Li+)基準で 0.5V以上、 2.0V以下であること力 本発明の一つの大きな特徴で ある。図中、かかる範囲を矢印で示した。
[0027] 図 1に示すように、曲線 αが正極電位を示す場合には、容量は大きいが正極の利 用容量が少なぐエネルギー密度は小さくなる。一方、曲線 /3が正極電位を示す場 合には、正極の利用容量は十分だ力 負極の電位は 0.5V未満となり、負極の容量を 十分に利用できず、やはりエネルギー密度が小さくなる。よって、正極、負極の容量 を十分に利用できる範囲として、本発明では、上記 0.5V以上、 2.0V以下の範囲を設 定した。
[0028] 力、かるリチウムイオン二次電池では、例えば、正極活物質として、層状結晶性物質 を有し、前記層状結晶性物質は、 0を含まない 30匪以下の層長の微細結晶粒子を有 することを特徴とする電極材料を用いるのが好ましい。さらに、負極材料としては、易 黒鉛化炭素材料 (soft carbon)、黒鉛、あるいは易黒鉛化炭素材料と黒鉛との混合物 を使用するのが好ましい。
[0029] 力、かるリチウムイオン二次電池の電池構成としては、例えば、正極及び負極を、セ パレータを介して交互に積層した後に、捲回、折り畳み、または 3層以上積層された セル構成とするのが好ましレ、。
[0030] かかる構成では、正極集電体及び負極集電体には、表面から裏面へと貫通する貫 通孔が設けられる。負極、あるいは正極、あるいは負極及び正極は、金属リチウムと の電気化学的接触により、予めリチウムイオンをドープされる。
[0031] 本発明において、ドープとは、吸蔵、担持、吸着または揷入をも意味し、正極活物 質にリチウムイオン及び/又はァニオンが入る現象、あるいは負極活物質にリチウム イオンが入る現象を意味する。脱ドープとは、放出、脱着をも意味し、正極活物質か らリチウムイオン又はァニオンが脱離する現象、あるいは負極活物質からリチウムィォ ンが脱離する現象をレ、うものとする。
[0032] ァニオンのドープとは、正極側にポリアセチレン、ポリア二リン等の導電性高分子を 用いた場合に、電解質中に含まれる支持塩のァニオンがドープされることを言う。例 えば、 CF SO—、 C F SO―、 (CF SO ) N―、 (CF SO ) C―、 BF―、 PF―、 CIO—がドープさ
3 3 4 9 8 3 2 2 3 2 3 4 6 4
れることを言う。
[0033] 力、かる構成を有する本発明のリチウムイオン二次電池について、以下、さらに詳細 に説明する。本発明で用いる正極用の活物質としては、例えば、従来のリチウムィォ ン二次電池で用いられる LiCoO 、 LiNiO 、 LiMn 0に代表される酸化物型化合物群 、 LiFePOに代表されるオリビン化合物群が利用可能である。あるいは層状結晶性物
4
質のバナジウム酸化物、特に五酸化バナジウムが利用可能である。
[0034] 本発明における層状結晶性物質の状態とは、匪以下のオーダで観察するミクロ的 な視点では、層長が 30nm以下の結晶構造のみ、もしくは層長が 30匪以下の結晶構 造とアモルファス構造とが、共存している状態のことを言う。かかる状態を、例えばェ ックス線回折分析で得られるような nmより大きい、 μ mオーダ以上で観察するマクロ 的な視点から見た場合には、結晶構造がランダムに配列した見かけ上アモルファス 構造が観察される。 [0035] かかる五酸化バナジウムを、マクロ的に見かけ上アモルファス化することで、層状結 晶性物質の層長を短く (微細化)する。例えば、層長が長い層状結晶状態が、分断さ れて、層長の短い層状結晶状態が出現する。
[0036] かかる状態は、アモルファス状態になっていては実現できない、新規な構造である 。アモルファス化の進行状態を、途中で止めることにより、上記状態、すなわち層長の 短い層状結晶状態が存在できるようになる。
[0037] 図 2には、本発明に係る層長 L1の短い層状結晶状態、すなわち見かけ上のァモル ファス化状態を、模式的に示した。力、かる見かけ上のアモルファス化状態では、層長 L1が平均的に短い周期で繰り返す所謂短周期構造が、層状結晶構造を構成してい る。本発明に係る見かけ上のアモルファス化状態では、このように短周期構造の層状 結晶が、複数集合している。
[0038] 一方、従来例では、図 3に示すように、層長 L2が平均的に長い周期で繰り返す、所 謂長周期構造の層状結晶状態が得られる。
[0039] 本発明に係る層長が短い層状結晶状態を、例えば、電池の電極活物質として使用 すると、電池の反応等に関与するイオン等の化学種が、層状結晶状態の層間に出入 りし易くなる。例えば、層間にドープされたイオンは、層長が短いため、その拡散パス が短くなり、拡散し易くなる。イオンの出入りが円滑に行われない、前記長周期構造 の層状結晶状態の場合に比べて、充放電特性あるレヽはサイクル耐性等が優れてレ、
[0040] かかる構成では、特に層長の長さが重要である。かかる層長は、イオンの出入りに 際して、直接的にイオンが通過する経路 (パス)の長さに影響を与える。勿論、層長以 外の部分も、例えば、層状結晶構造の層の厚さ方向の長さも、平均結晶粒子が小さ くなるに従って、小さくなつても構わない。要は、層状結晶構造の間に結晶粒子が小 さくなり、全体的にはイオンの出入りがし易い状態となることが重要である。
[0041] 前記層長の短い層状結晶状態は、原料に酸化バナジウムを用いて、これを過酸化 水素 0 )やアルカリ塩で溶解させ、さらにこの溶解液を固化することで、好適に作 製することが可能である。
[0042] H 0を用いた場合、溶解した酸化バナジウム溶解液は酸性を呈する。アルカリ塩を 用いた場合、アルカリ性を呈する。
[0043] アルカリ塩のカチオン源としてリチウムイオンを用いた場合、合成段階で、酸化バナ ジゥム中に、リチウムイオンをドープさせることが出来る。
[0044] これらいずれの溶液からも、溶媒を除去することで、好適にアモルファス状態の酸 化バナジウムを作製することが出来る。
[0045] リチウムイオン源としては、例えば、水溶性の硫化リチウム、水酸化リチウム、セレン 化リチウム、あるいはテルル化リチウム等が利用可能である。力、かるリチウム化合物の 群から選ばれた少なくとも 1種のリチウム化合物を、水溶性リチウムイオン源として用 いること力 Sでさる。
[0046] 上記バナジウム酸化物を合成する際に、硫黄含有有機導電性ポリマーに対応する モノマーを活物質に混合させる場合がある。ただし、最終的な正極活物質としては硫 黄含有有機導電性ポリマーに対応するモノマーを除去することが望ましい。詳細は 不明であるが、バナジウム酸化物の合成反応時に、酸化物組成を維持する上で、硫 黄含有有機導電性ポリマーは機能しているが、活物質としての性能は低いと考えら れる。
[0047] 力、かる非水系のリチウムイオン二次電池用の正極材料の活物質では、その活物質 に含まれる金属酸化物の X線回折パターンは、図 4に示すように、回折角 2 Θ =5〜15 ° の範囲にのみピークを有している。
[0048] このようにして得られる活物質を、ポリフッ化ビニリデン(PDVF)等のバインダと、好 ましくは導電性粒子と共に混合して正極用の材料とする。これを導電性の基体 (集電 体)上に塗布して、正極を作製する。非水系のリチウムイオン二次電池用の正極材料 の層は、例えば 10〜200 μ mの厚さに形成する。
[0049] 上記導電性粒子としては、導電性カーボン (ケッチェンブラック等の導電性カーボン 等)、銅、鉄、銀、ニッケル、パラジウム、金、白金、インジウム、タングステン等の金属 、酸化インジウム、酸化スズ等の導電性金属酸化物等がある。力、かる導電性粒子は、 上記金属酸化物の重量の 1〜30%の割合で含まれていればよい。
[0050] 正極材料を支持する基体 (集電体)には、少なくとも正極材料と接する表面にお!/、 て導電性を有する導電性基体が使用できる。かかる基体は、金属、導電性金属酸化 物、導電性カーボン等の導電性材料で形成することができる。特に、銅、金、アルミ二 ゥム、あるいはそれらの合金、または導電性カーボンが好ましい。また、基体を非導 電性材料で形成した場合には、その基体を導電性材料で被覆することが必要である
[0051] 力、かる非水系リチウム二次電池の正極材料として有効な、短い層長を有する層状 結晶性物質は、図 5のフロー図に示すような製造工程を経て製造される。
[0052] 図 5に示すように、ステップ S110で、層状結晶性物質として、例えば、五酸化バナ ジゥムを準備する。併せて、ステップ S 120で水溶性のリチウムイオン源を、ステップ S 130で硫黄含有有機導電性に対応するモノマーを準備する。
[0053] ステップ S140で、ステップ S 110 S120 S130で準備した五酸化バナジウム、水 溶性リチウムイオン源、硫黄含有有機導電性ポリマーに対応するモノマーを、水に懸 濁する。力、かる懸濁によりアモルファス化が始まる。水溶性リチウムイオン源としては、 例えば、硫化リチウム、水酸化リチウムを使用可能である。硫黄含有有機導電性に対 応するモノマーには、例えば、 3, 4—エチレンジォキシチォフェンが使用可能である
[0054] かかる懸濁液を、ステップ S 150で所定時間加熱還流させる。ステップ S 150の加熱 還流後は、ステップ S160でろ過することで、加熱還流した懸濁液から、固形分を除 去する。固形分を除去したろ液は、ステップ S170で濃縮される。ろ液の濃縮後、ステ ップ S 180で、真空乾燥等により乾燥させる。
[0055] その後、ステップ S 190で、ボールミル等により所定粒径に粉砕し、篩い分けを行つ て分級する。このようにして、五酸化バナジウムの層長の短い層状結晶構造粉末が 得られる。かかる層状結晶構造粉末を、正極材料の活物質として使用する。
[0056] 但し、ステップ S 150 S 180の工程で、加熱処理を行う場合、加熱温度を 250°C未 満で行う必要がある。 250°Cを超えると、層長の短い層状結晶が変化するので、好ま しくない。
[0057] 力、かる短い層長を有する層状結晶性物質は、図 6のフロー図に示すような製造ェ 程を経てあ製造すること力 Sでさる。
[0058] 図 6に示すように、ステップ S210で、非水系リチウムイオン二次電池の正極材料用 の活物質を合成する。所要の材料を水に混合して、所定時間加熱還流することで、 水に可溶な活物質を合成する。このようにして合成した、正極材料用の活物質の懸 濁液を濾過して、ステップ S220で、噴霧乾燥法を適用する。かかる噴霧乾燥法を適 用することで、正極材料用の活物質を、微細な球状粒子の正極材料粉末とすること ができる。かかる正極材料粉末は、平均粒子径が 0.1 m以上、 20 m以下の球状 の水溶性粒子である。
[0059] 噴霧乾燥法を用いることなぐ一旦生成した活物質を、図 5に示すように、ボールミ ル等により所定粒径に粉砕し、篩い分けを行って分級することも可能である。し力、し、 噴霧乾燥法を適用することで、粉砕、分級等の手間が省け、さらには、得られる粒子 が平均粒径の細かいサブミクロン以下の球状粒子となる。このようにして、五酸化バ ナジゥム等のバナジウム酸化物の、層長の短い層状結晶構造粉末が得られる。
[0060] 上記製造工程では、加熱処理を行う場合には、加熱温度を 250°C未満で行う必要 がある。 250°Cを超えると、層長の短い本発明の層状結晶が変化するので好ましくな い。
[0061] 本発明の層状結晶性物質では、断面で観察される結晶粒子において、層長が 30η m以下の層状結晶状態が、その断面における面積率で 30%以上含まれていることが 好ましい。例えば、任意の断面での結晶粒子が、面積%で30%以上含まれていれば好 ましい。
[0062] 力、かる構成のリチウムイオン二次電池のエネルギー密度は、結晶粒子力 ¾0nmを超 える層長の層状結晶構造を含む場合より、良好である。また、面積%で30%以上、 100% 未満含まれていればよい。上限は限りなく 100%に近い値まで有効である。尚、 100%の 場合には、結晶粒子中には、アモルファス状態は存在せず、層状結晶状態のみとな
[0063] 層状結晶構造の最小の層長は、 1匪以上が好ましい。層状結晶の層長が 1匪未満 であると層状構造が維持できないためにリチウムイオンのドープ、脱ドープができず、 容量を取り出すことができない。逆に層長が 30匪を超えると、充放電に伴う結晶構造 の崩壊が起こり、サイクル特性が悪くなる。そこで、層長は、 lnm以上 30nm以下である ことが好ましい。より好ましくは、層長が 5nm以上 25nm以下である。 [0064] 図 7には、層長が lnm以上、 30nm以下である、本発明で使用する正極活物質の層 状結晶状態を、図面代用写真として使用する透過型電子顕微鏡写真で示した。例え ば、図 7は、リチウム 五酸化バナジウムの場合で、特に 5nm以上、 25nmの層状結晶 の状態が見られる場合である。
[0065] かかる活物質を用いて正極を形成することで、非水系リチウムイオン二次電池を構 成する。非水系リチウムイオン二次電池は、上記正極と、負極と、上記正極と負極の 間に配置された電解質層を備えた構成である。
[0066] 力、かる構成の非水系リチウムイオン二次電池において、負極は、通常使用されてい るリチウムイオン二次電池用の材料が利用可能である。力、かる材料としては、金属リ チウムゃリチウム合金(例えば Li-Al合金)のようなリチウム系金属材料、スズゃケィ素 のような金属とリチウム金属との金属間化合物材料、窒化リチウムのようなリチウム化 合物、またはリチウムインターカレーシヨン炭素材料を挙げることができる。
[0067] また、電解質としては、 CF SO Li、 C F SO Li、 (CF SO ) NLi、 (CF SO ) CLi、 LiBF
3 3 4 9 8 3 2 2 3 2 3 4
、 LiPF、 LiCIO等のリチウム塩が使用可能である。力、かる電解質を溶解する溶媒は
6 4
非水系溶媒である。
[0068] 非水系溶媒としては、鎖状カーボネート、環状カーボネート、環状エステル、二トリ ル化合物、酸無水物、アミド化合物、ホスフェート化合物、ァミン化合物等が利用可 能である。具体的には、エチレンカーボネート(EC)、ジェチルカーボネート(DEC) 、プロピレンカーボネート、ジメトキシェタン、 Ί ブチロラタトン、 η メチノレピロリジノ ン、 Ν, N'—ジメチルァセトアミド、ァセトニトリル、あるいはプロピレンカーボネートと ジメトキシェタンとの混合物、スルホランとテトラヒドロフランとの混合物等である。
[0069] 正極と負極との間に介揷される電解質層としては、上記電解質を非水系溶媒に溶 解させた溶液が利用可能である。あるいは、力、かる電解質溶液を含むポリマーゲル( ポリマーゲル電解質)が利用可能である。
[0070] かかる非水系リチウム二次電池は、例えば、図 8に示すような構成である。すなわち 、非水系リチウム二次電池 10では、負極 1と、正極 2とが、セパレータ 3を介して対向 する。負極 1は、負極活物質が、集電体としての基体面に、層状に設けられている。 正極 2は、正極活物質が、集電体としての基体面に、層状に設けられている。 [0071] かかる負極 1と正極 2とが、図 8に示すように、セパレータ 3を介して、複数が積層さ れる。図 8に示す構成では、上下方向に積層され、上下端が、負極 1となる。かかる上 下端に形成された負極 1には、セパレータ 3を介して、金属リチウム 4が積層される。
[0072] 金属リチウム 4の外側は、集電体としての銅メッシュ 5で覆われて!/、る。図示はしな!/ヽ 1S かかる積層された電極群が、上記電解質を溶解した非水系溶媒中に設けられて いる。あるいは、上記電解質を溶解した非水系溶媒を、セパレータ 3に含浸させてあ
[0073] 非水系のリチウムイオン二次電池の構成は、他の構成でも構わない。例えば、捲回 、あるいは折り畳んだ構成でも構わない。図 9に示す構成は、捲回型の構成である。 図 10に示す構成は、折り畳んだ構成である。
[0074] 尚、本発明で開発した正極材料は、正極材料 1モルに対して、数モルのリチウムィ オンをドープさせることができる。ただし、ある量を超えると、脱ドープ能力が著しく低 下する。このしきい値は、リチウム金属に対して 1.45Vまでである。これを下回ると容量 劣化が進行する。これ以上であれば、高い充放電容量とサイクル性能を両立させるこ とができる。好ましくは 1.45V以上から 2V、より好ましくは 1.5Vから 1.9Vである。
実施例
[0075] (実施例 1)
正極活物質の作製:本実施例では、図 6のステップ S210で、 50gの V 0に 51の 10%
H 0を室温で添加した。生成した赤橙色の V 0ゾル溶液を、ステップ S220で、ガス 吹き出し口温度 225°C、排気口温度 110°Cの乾燥雰囲気中に、送液速度 12ml/minで 四流体ノズルより噴霧し、その後 150°Cで真空乾燥した。これにより、赤橙色の粉末 45 gを得た。
[0076] TG (熱天秤、 Thermo-Gravimetry)から、この粉末の組成を求めた。 V 0 -0.3H Ou.
組成であった。また、 CuK a線源を用いた XRD(X線回析)にお!/、て、 2 Θ =7° 付近に 001面に帰属される弱い回折線が観測された。また、 SEM (走査電子顕微鏡)におけ る観察の結果、球状粒子が認められた。この粒子のレーザー回折散乱法による粒度 分布計測の結果、 D90は lO rnであった。また TEM分析において、図 11に示すよ うに、層長力^〜 10nmの層状の微結晶粒子がランダム方向に存在していることが観測 された。 TEM像の観察視野内で面積当たりの層状結晶粒子の割合は、 100%と見積 もられた。
[0077] 正極の作製:上記正極活物質と、導電助材としてカーボンブラックと、バインダとし てポリフッ化ビニリデン(PVDF)とを、重量比 90: 5 : 5で混合し、 n—メチルピロリドン(N MP)で希釈してスラリーを調製した。力、かるスラリーを、貫通孔を有するアルミニウム 製集電体(基体)両面に均一に塗布した。 150°Cで減圧乾燥した後、プレスし、厚み 2 49 μ mの正極を得た。
[0078] 負極の作製:表面を不活性処理した市販の天然黒鉛と、バインダとして PVDFとを、 重量比 94 : 6で混合し、 NMPで希釈したスラリーを調製した。力、かるスラリーを、貫通 孔を有する銅製集電体の両面または片面に均一に塗布した。これを成型し、両面負 極の厚み力 ¾39 a m、片面負極の厚み力 S 127 μ mの負極を得た。
[0079] 電池の作製:上記のようにして作製した正極を、 92mm X 76mmに、また負極を 96mm
X 79mmにそれぞれ裁断した。正極を 16枚と負極を 17枚(内片面塗布 2枚)を、セパレ ータとしてポリオレフイン系微多孔膜を介して積層した。正極の未塗工部にアルミユウ ム端子を溶接し、負極の未塗工部に Ni端子を溶接して電極積層ユニットを構成した
[0080] 電極積層ユニット最外部に、セパレータを介して、負極集電体に圧着した厚さ 500
fi mのリチウム金属を、上下 2箇所に配置し、正極、負極、金属リチウムおよびセパレ ータからなる極群を構成した。また、金属リチウムの集電体と負極集電体は溶接した
[0081] lmol/1でホウフッ化リチウム(LiBF )を溶解したエチレンカーボネート/ジェチルカ
4
ーボネート = 1 /3 (重量比)の電解液を注入した。続いて金属リチウムを圧着した極 群近傍を、 Niワイア一に固定し、正極及び負極の電位をモニターする参照極とした。 開口部を熱溶着により封止した。このようにして、電池セルを 2セル作製した。
[0082] リチウムイオンのドープ工程:上記のようにして作製した電池を、 20日間放置した後
1セルを分解した。分解したセルでは、金属リチウムはいずれも完全に消失していた 。このこと力、ら、所定量のリチウムイオンが予め負極にドープされたことを確認した。
[0083] 充放電試験:残りの 1セルの電池を用いて、充放電サイクル試験を行った。充電は 0 .1Cで 4.1Vの定電流一定電圧(CC CV)充電方式で、 30時間後に終了とした。放 電は 0.05Cで 0Vになった時点で終了する定電流(CC)放電方式とした。前記条件で 充放電を 3回繰り返した後、正極、負極の作動電位を、参照極より求めた。ともに金属 リチウム基準で 1.5Vであった。
[0084] また、このときの放電容量は 13.5Ahとなった。これを、参照極を除レ、た電池質量で 割り付けて電池重量当たりに換算したところ、図 12に示すように、 223Wh/kg-cellとな つた。
[0085] (実施例 2)
本実施例では、正極、負極の構成は実施例 1と同様にし、電極積層ユニット最外部 の上下 2箇所に配置した金属リチウムの厚さを 490 a mに変更した。それ以外の構成 は、実施例 1と同様に電池セルを構成し、 2セル作製した。 20日間放置した後、 1セル を分解したところ、金属リチウムはいずれも完全に消失していたことから、所定量のリ チウムイオンが予め負極にドープされたことを確認した。
[0086] 残りの 1セルの電池を用いて、充放電サイクル試験を行った。充電は0.1(:で4.1¥の 定電流一定電圧(CC CV)充電方式で 30時間後に終了とした。放電は 0.05Cで 0V になった時点で終了する定電流(CC)放電方式とした。
[0087] 前記条件で充放電を 3回繰り返した後、正極、負極の作動電位を参照極より求めた 。ともに金属リチウム基準で 2.0Vとなった。このときの放電容量は 12.7Ahとなった。こ れを、参照極を除いた電池質量で割り付けて電池重量当たりに換算したところ、図 1 2に示すように、 201Wh/kg-cellとなった。
[0088] (実施例 3)
本実施例では、正極の構成、負極の構成、金属リチウムの厚さの構成を除いて、実 施例 1と同様に構成した。
[0089] 正極の作製:市販の LiCo02と、導電助材としてグラフアイトと、バインダとしてポリフ ッ化ビ二リデン(PVDF)とを、重量比 91:5:4で混合し、 n メチルピロリドン(NMP)で 希釈してスラリーを調製した。力、かるスラリーを、貫通孔を有するアルミニウム製集電 体両面に均一に塗布した。 150°Cで減圧乾燥した後、プレスし、厚み 183 mの正極 を得た。 [0090] 負極の作製:表面を不活性処理した市販の天然黒鉛と、バインダとして PVDFとを、 重量比 94 : 6で混合し、 NMPで希釈したスラリーを調製した。このスラリーを、貫通孔 を有する銅製集電体両面または片面に均一に塗布した。これを成型し、両面負極の 厚みが 239 H m、片面負極の厚みが 127 μ mの負極を得た。
[0091] 電池の作製:上記正極及び負極を用いて、リチウムイオン二次電池を構成した。か かる電池構成では、電極積層ユニット最外部の上下 2箇所に配置した金属リチウムの 厚さを 85 mに変更した以外は、実施例 1と同様である。このようにして、電池セルを 2セル作製した。 20日間放置した後、 1セルを分解したところ、金属リチウムはいずれ も完全に消失してレ、たことから、所定量のリチウムイオンが予め負極に吸蔵されたこと を確認した。
[0092] 残りの 1セルの電池を用いて、充放電サイクル試験を行った。充電は0.1(:で4.1¥の 定電流一定電圧(CC CV)充電方式で 30時間後に終了とした。放電は 0.05Cで 3.0
Vになった時点で終了する定電流(CC)放電方式とした。
[0093] 前記条件で充放電を 3回繰り返した後の放電容量は、図 12に示すように、 5.4Ahと なった。これを、参照極を除いた電池質量で割り付けて電池重量当たりに換算したと ころ、 157Wh/kg-cellとなった。
[0094] また、セルを 0Vまで放電した際、前記正極 '負極作動電位を参照極より求めたとこ ろ、ともに金属リチウム基準で 0.5Vとなった。
[0095] (実施例 4)
正極活物質の作製:本実施例では、五酸化バナジウム 200gと、硫化リチウム (Li2S)30 g及び 3,4-エチレンジォキシチォフェン (EDOT)lOOgを水 5リットル中に懸濁し、 24時間 加熱攪拌還流を行った。攪拌終了後、吸引ろ過を行い、固形分を除去した。この固 形分は硫黄と 3,4-エチレンジォキシチォフェンの重合物であった。
[0096] ろ液を 75°C、 10.67kPa(80Torr)の圧力で減圧濃縮し、水と有機物を除去することで 、黒色の固体を得た。この生成物を 100°Cで真空乾燥を行った。 TEM分析において 、図 7に示すように、層長が 5nm以上、 25nm以下の層状の微結晶粒子がランダム方 向に存在していることが観測された。 TEM像の観察視野内で、面積当たりのァモル ファス部に対する層状結晶粒子の割合は 100%と見積もられた。 [0097] 正極の作製:実施例 1と同様の組成で正極ペーストを調整し、貫通孔を有するアル ミニゥム製集電体の両面に塗工し、厚み 175 mの正極を作製した。
[0098] 電池の作製:本実施例の上記正極と、前記実施例 1の負極を用いる以外は、実施 例 1と同様に、正極 16枚と負極 17枚並びにセパレータを用いて極群を構成して、ラミ ネート型の電池を作製した。
[0099] リチウムイオンのドープ工程:上記のようにして作製した電池を、 20日間放置した後 、 1セルを分解した。金属リチウムはいずれも完全に消失していたことから、必要量の リチウムイオンが予め負極にドープされたことを確認した。
[0100] 充放電試験: 1セルの電池を用いて、充放電サイクル試験を行った。充電は 0.1Cで
4. IVの定電流 定電圧(CC CV)充電方式で 30時間後に終了とした。放電は 0.05 Cで 0Vになった時点で終了する定電流(CC)放電方式とした。
[0101] 前記条件で充放電を 3回繰り返した後の正極 ·負極作動電位を参照極より求めた。
ともに 1.5Vとなった。また、このときの放電容量は、図 12に示すように、 13.5Ahとなつ た。これを、参照極を除いた電池質量で割り付けて、電池重量当たりに換算したとこ ろ、 220Wh/kg-cellとなった。
[0102] (比較例 1)
比較例 1では、上記実施例 1で構成のリチウムイオン二次電池で、電極積層ユニット 最外部の上下 2箇所に配置した金属リチウムの厚さを 420 a mに変更した以外は、実 施例 1と同様に電池セルを 2セル作製した。 20日間放置した後、 1セルを分解した。 金属リチウムはいずれも完全に消失していたことから、所定量のリチウムイオンが予め 負極に吸蔵されたことを確認した。
[0103] 残りの 1セルの電池を用いて、充放電サイクル試験を行った。充電は0.1(:で4.1¥の 定電流一定電圧(CC CV)充電方式で 30時間後に終了とした。放電は 0.05Cで 0V になった時点で終了する定電流(CC)放電方式とした。
[0104] 前記条件で充放電を 3回繰り返した後の正極、負極作動電位を、参照極より求めた 。ともに金属リチウム基準で 2.1Vとなった。また、このときの放電容量は、図 12に示す ように、 10.3Ahとなった。これを、参照極を除いた電池質量で割り付けて、電池重量 当たりに換算したところ、 170Wh/kg-cellとなった。 [0105] (比較例 2)
比較例 2では、実施例 2での正極、実施例 1での負極を用いて、電池を構成した。電 極積層ユニット最外部の上下 2箇所に配置したリチウム金属の厚さを 350 mに変更 した以外は、実施例 1と同様に、電池セルを 2セル作製した。 20日間放置した後、 1 セルを分解した。金属リチウムはいずれも完全に消失していたことから、所定量のリチ ゥムイオンが予め負極にドープされたことを確認した。
[0106] 残りの 1セルの電池を用いて、充放電サイクル試験を行った。充電は 0.1Cで 4.2Vの 定電流一定電圧(CC CV)充電方式で 30時間後に終了とした。放電は 0.05Cで 3.0 Vになった時点で終了する定電流(CC)放電方式とした。
[0107] 前記条件で充放電を 3回繰り返した後の放電容量は、図 12に示すように、 5.4Ahと なった。これを、参照極を除いた電池質量で割り付けて、電池重量当たりに換算した ところ、 127Wh/kg-cellとなった。また、セルを 0V放電した際の正極'負極作動電位を 、参照極より求めたところ、ともに金属リチウム基準で 0.3Vとなった。
[0108] (比較例 3)
比較例 3では、電極積層ユニット最外部の上下 2箇所に配置したリチウム金属の厚さ を 140 mに変更した以外は、比較例 2と同様に電池セルを 2セル作製した。 20日間 放置した後、各 1セルを分解した。金属リチウムはいずれも完全に消失していたことか ら、所定量のリチウムイオンが予め負極にドープされたことを確認した。
[0109] 残りの 1セルの電池を用いて、充放電サイクル試験を行った。充電は0.1(:で4.1¥の 定電流一定電圧(CC CV)充電方式で 30時間後に終了とした。放電は 0.05Cで 0V になった時点で終了する定電流(CC)放電方式とした。
[0110] 前記条件で充放電を 3回繰り返した後の放電容量は、図 12に示すように、 5.4Ahと なった。これを、参照極を除いた電池質量で割り付けて、電池重量当たりに換算した ところ、 128Wh/kg-cellとなった。また、セルを 0Vまで放電した際の、正極、負極作動 電位を、参照極より求めたところ、ともに金属リチウム基準で 0.4Vとなった。
[0111] (比較例 4)
比較例 4では、電極積層ユニット最外部にリチウム金属を配置しない以外は、比較例 2と同様に電池セルを 1セル作製した。 [0112] 作製した 1セルの電池を用いて、充放電サイクル試験を行った。充電は0.1じで4.1¥ の定電流一定電圧(CC CV)充電方式で 30時間後に終了とした。放電は 0.05Cで 3 .0Vになった時点で終了する定電流(CC)放電方式とした。
[0113] 前記条件で充放電を 3回繰り返した後の放電容量は、図 12に示すように、 3.6Ahと なった。これを、参照極を除いた電池質量で割り付けて、電池重量当たりに換算した ところ、 87Wh/kg-cellとなった。また、セルを 0Vまで放電した際の、正極'負極作動電 位を、参照極より求めたところ、ともに金属リチウム基準で 3.6Vとなった。
[0114] 上記比較例 1〜4の結果からは、短絡後での非水系のリチウムイオン二次電池の作 動電位が、金属リチウム基準で、 0.4V、 0.3V等のように 0.5Vを下回る場合は、ェネル ギー密度が低くなることが確認された。また、 2. IV、 3.6Vと 2.0Vを超えても、エネルギ 一密度が減少することが確認された。一方、実施例;!〜 4に示すように、作動電位が 0 • 5V、 1.5V、 2.0Vのように、 0.5V以上、 2.0V以下にあれば、エネルギー密度が良好な ことが確認された。
[0115] 実施例 3のエネルギー密度は、他の実施例よりも低いが、同じ実施例 2の正極を用
V、た比較例 2〜4と比較して高!/、値である。
[0116] すなわち、 0Vまで放電した際の正極電位が 2.0V (対 Li/Li+)を越える場合は、正極 材料の利用容量が不充分であると考えられる。また、 0.5Vを下回る場合は、正極材料 の利用容量は充分であるものの、負極材料の利用容量が不充分と考えられる。
[0117] 従って、実施例;!〜 4の結果に示されるように、 0Vまで放電した際の正極電位が 0.5
V以上、 2.0V (対 Li/Li+)以下の範囲にあるものは、正極材料、負極材料ともに利用容 量が充分であるためエネルギー密度が高くなつたものと考えられる。
[0118] また、実施例 1、 2、 4と実施例 3の結果を比較することにより、正極活物質としては、 層長が 5nm以上、 25nm以下、より広くは層長が lnm以上 30nm以下の層状の微細結 晶粒子がランダムに集合した五酸化バナジウムを正極の活物質に用いた方力 エネ ルギー密度はより高くなることがわ力、つた。
[0119] 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが
、本発明は前記実施の形態に限定されるものではなぐその要旨を逸脱しない範囲 で種々変更可能であることはレ、うまでもなレ、。 [0120] 本発明では、電池構成として負極にグラフアイト材料を用いた。ただし、リチウムィォ ンをドープ可能な負極材料であればどのような材料を用いても同様の効果が得られ る。具体的には、スズ合金、ケィ素合金などが利用可能である。
産業上の利用可能性
[0121] 本発明は、特に大容量リチウム二次電池の正極材料の分野で、有効である。

Claims

請求の範囲
[1] 正極、負極、及び、リチウム塩と非プロトン性有機溶媒からなる電解液を備え、正極 活物質がレドッタス活性を示す金属酸化物あるいは有機化合物であり、負極活物質 カリチウムイオンを可逆的にドープ可能な物質であるリチウムイオン二次電池であつ て、
前記正極と前記負極を短絡させた後の正極及び負極電位が、金属リチウム基準で
、 0.5V以上、 2.0V以下 (対 Li/Li+)である、
ことを特徴とするリチウムイオン二次電池。
[2] 請求項 1記載のリチウムイオン二次電池において、
前記正極活物質が層状結晶性物質であり、前記層状結晶性物質は、 0を含まない 3 Onm以下の層長の微細結晶粒子を有するバナジウム酸化物である、
ことを特徴とするリチウムイオン二次電池。
[3] 請求項 2記載のリチウムイオン二次電池において、
前記微細結晶粒子は、前記層状結晶性物質の断面で観察される面積率が 30%以 上、 100%以下の範囲である、
ことを特徴とするリチウムイオン二次電池。
[4] 請求項 1〜3のいずれ力、 1項に記載のリチウムイオン二次電池において、
前記負極活物質が、易黒鉛化炭素材料、あるいは黒鉛、あるいは易黒鉛化炭素材 料と黒鉛である、
ことを特徴とするリチウムイオン二次電池。
[5] 請求項 1〜4のいずれ力、 1項に記載のリチウムイオン二次電池において、
前記正極及び前記負極が、セパレータを介して交互に積層され、かつ捲回、あるい は折り畳み、あるレ、は 3層以上積層されたセル構成を有して!/、る、
ことを特徴とするリチウムイオン二次電池。
[6] 請求項 1〜5のいずれ力、 1項に記載のリチウムイオン二次電池において、
正極集電体及び負極集電体は貫通孔を有し、
前記負極、あるいは前記正極、あるいは前記負極と前記正極とは、リチウムイオン 力 Sドープされている、 :とを特徴とするリチウムイオン二次電池。
PCT/JP2007/071841 2006-11-10 2007-11-09 Accumulateur lithium-ion WO2008056791A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/298,345 US20100173184A1 (en) 2006-11-10 2007-11-09 Lithium ion secondary battery
EP07831572A EP2104174A4 (en) 2006-11-10 2007-11-09 LITHIUM SECONDARY BATTERY ION
JP2007556451A JPWO2008056791A1 (ja) 2006-11-10 2007-11-09 リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-306019 2006-11-10
JP2006306019 2006-11-10

Publications (1)

Publication Number Publication Date
WO2008056791A1 true WO2008056791A1 (fr) 2008-05-15

Family

ID=39364601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071841 WO2008056791A1 (fr) 2006-11-10 2007-11-09 Accumulateur lithium-ion

Country Status (6)

Country Link
US (1) US20100173184A1 (ja)
EP (1) EP2104174A4 (ja)
JP (1) JPWO2008056791A1 (ja)
KR (1) KR20090082104A (ja)
CN (1) CN101536241A (ja)
WO (1) WO2008056791A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562079B (zh) * 2009-05-15 2012-03-07 深圳清华大学研究院 超级电容器
JP2014513394A (ja) * 2011-04-06 2014-05-29 エレクトリシテ・ドゥ・フランス 犠牲リチウム電極を含むリチウムイオン電池前駆体、および負の織物変換電極
JP2017195297A (ja) * 2016-04-21 2017-10-26 セイコーインスツル株式会社 電気化学セル

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2688135A4 (en) * 2011-03-16 2014-09-10 Panasonic Corp METHOD FOR LOADING AND UNLOADING A LITHIUM SUBSTANCE BATTERY AND SYSTEM FOR LOADING AND UNLOADING A LITHIUM CENTRAL BATTERY
CN106463755B (zh) 2014-06-13 2019-07-02 株式会社Lg化学 钒溶液、包含该钒溶液的电解液、包含该电解液的二次电池以及制备该钒溶液的方法
US10587004B2 (en) * 2015-11-18 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte battery
US10964939B2 (en) * 2017-01-31 2021-03-30 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for electrochemical device and electrochemical device, and method for manufacturing same
WO2019082846A1 (ja) * 2017-10-24 2019-05-02 株式会社Gsユアサ 推定装置、推定方法及びコンピュータプログラム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198300A (ja) 1992-01-20 1993-08-06 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池とそれに用いる正極活物質の製造法
JPH0580791B2 (ja) 1986-09-11 1993-11-10 Toshiba Battery
JPH07142092A (ja) * 1993-11-18 1995-06-02 Toshiba Battery Co Ltd 非水溶媒二次電池
JPH07153494A (ja) * 1993-11-26 1995-06-16 Sanyo Electric Co Ltd 非水系二次電池
JP2000164258A (ja) * 1998-11-25 2000-06-16 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JP3108186B2 (ja) 1992-03-30 2000-11-13 新神戸電機株式会社 固体電解質電池
JP3115448B2 (ja) 1993-04-02 2000-12-04 新神戸電機株式会社 リチウム固体電解質電池
JP2005285376A (ja) * 2004-03-26 2005-10-13 Shirouma Science Co Ltd 有機・無機ハイブリッド電極およびそれを用いた二次電池
JP2006338963A (ja) * 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007087940A (ja) * 2005-08-26 2007-04-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326545A (en) * 1993-03-30 1994-07-05 Valence Technology, Inc. Method of making lithium battery electrode compositions
DE69707637T2 (de) * 1996-12-20 2002-08-01 Matsushita Electric Ind Co Ltd Sekundärbatterie mit nichtwässerigem Elektrolyt
US5840371A (en) * 1997-07-02 1998-11-24 Bell Communications Research, Inc. Treatment for improved conductivity of collector-electrode interface in laminated lithium-ion rechargeable batteries
EP1016149A4 (en) * 1997-07-21 2001-11-21 Nanogram Corp VANADIUM OXIDE PARTICLES AND BATTERIES WITH ELECTROACTIVE NANOPARTICLES
US5952125A (en) * 1997-07-21 1999-09-14 Nanogram Corporation Batteries with electroactive nanoparticles
US6168885B1 (en) * 1998-08-21 2001-01-02 Sri International Fabrication of electrodes and devices containing electrodes
US6699623B1 (en) * 2000-04-26 2004-03-02 E. I. Du Pont De Nemours And Company High performance lithium or lithium ion cell
US7198869B2 (en) * 2002-07-22 2007-04-03 Greatbatch, Inc. High capacity and high rate batteries
EP1577914B1 (en) * 2002-12-26 2013-03-06 Fuji Jukogyo Kabushiki Kaisha Electrical storage device and method for manufacturing electrical storage device
JP4442235B2 (ja) * 2004-01-28 2010-03-31 ソニー株式会社 二次電池用負極、二次電池およびそれらの製造方法
CN100373668C (zh) * 2004-05-28 2008-03-05 北京化工大学 锂离子电池正极材料层状钒锰氧化物及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580791B2 (ja) 1986-09-11 1993-11-10 Toshiba Battery
JPH05198300A (ja) 1992-01-20 1993-08-06 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池とそれに用いる正極活物質の製造法
JP3108186B2 (ja) 1992-03-30 2000-11-13 新神戸電機株式会社 固体電解質電池
JP3115448B2 (ja) 1993-04-02 2000-12-04 新神戸電機株式会社 リチウム固体電解質電池
JPH07142092A (ja) * 1993-11-18 1995-06-02 Toshiba Battery Co Ltd 非水溶媒二次電池
JPH07153494A (ja) * 1993-11-26 1995-06-16 Sanyo Electric Co Ltd 非水系二次電池
JP2000164258A (ja) * 1998-11-25 2000-06-16 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JP2005285376A (ja) * 2004-03-26 2005-10-13 Shirouma Science Co Ltd 有機・無機ハイブリッド電極およびそれを用いた二次電池
JP2006338963A (ja) * 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007087940A (ja) * 2005-08-26 2007-04-05 Matsushita Electric Ind Co Ltd 非水電解質二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES, vol. 54, 1995, pages 146 - 150
See also references of EP2104174A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562079B (zh) * 2009-05-15 2012-03-07 深圳清华大学研究院 超级电容器
JP2014513394A (ja) * 2011-04-06 2014-05-29 エレクトリシテ・ドゥ・フランス 犠牲リチウム電極を含むリチウムイオン電池前駆体、および負の織物変換電極
JP2017195297A (ja) * 2016-04-21 2017-10-26 セイコーインスツル株式会社 電気化学セル

Also Published As

Publication number Publication date
JPWO2008056791A1 (ja) 2010-02-25
EP2104174A4 (en) 2011-12-07
CN101536241A (zh) 2009-09-16
US20100173184A1 (en) 2010-07-08
KR20090082104A (ko) 2009-07-29
EP2104174A1 (en) 2009-09-23

Similar Documents

Publication Publication Date Title
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
EP2605316B1 (en) PREDOPING METHOD FOR LITHIUM, METHOD FOR PRODUCING
ELECTRODES AND ELECTRIC POWER STORAGE DEVICE USING
THESE METHODS
US9853289B2 (en) Lithium secondary battery comprising spherical graphite as anode active material
JPWO2017141735A1 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2005317512A (ja) 非水電解質電池
US11056682B2 (en) Positive electrode active material particle including core including lithium cobalt oxide and shell including lithium cobalt phosphate and preparation method thereof
CN111771300A (zh) 包含硅基化合物的多层阳极和包括该多层阳极的锂二次电池
JP3868231B2 (ja) 炭素材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR101697008B1 (ko) 리튬 이차전지
WO2008056794A1 (fr) Matériau d'électrode, procédé de fabrication de matériau d'électrode et batterie secondaire au lithium non aqueuse
WO2008056791A1 (fr) Accumulateur lithium-ion
KR20140142009A (ko) 황-리튬 이온 전지용 전극 조립체 및 이를 포함하는 황-리튬 이온 전지
JP6384596B2 (ja) リチウムイオン電池用アノード材料
KR20140134541A (ko) 전극 전도도가 향상된 전극 및 이의 제조방법
JP5564872B2 (ja) 非水電解質二次電池
KR20090027901A (ko) 리튬 이차전지의 제조방법
KR20080086121A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를포함하는 리튬 이차 전지
KR101514202B1 (ko) 전기화학 소자용 음극 활물질
JP7062150B2 (ja) 正極活物質の製造方法及びこれを用いた正極活物質及びリチウム二次電池
JP2008300189A (ja) 電極用構成材、それを用いた電極、およびリチウムイオン二次電池
US20240038991A1 (en) Metal-carbon composite anode material for lithium secondary battery, method for manufacturing same, and lithium secondary battery comprising same
KR102620768B1 (ko) 다층구조의 음극 및 이를 포함하는 이차전지
US20240038996A1 (en) Cellulose-based fiber-type dispersant for hybrid capacitive electrodes and methods of making the same
JP5659994B2 (ja) 負極活物質、リチウム二次電池、負極活物質の製造方法
KR20230140664A (ko) 보호층을 갖는 음극 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041795.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007556451

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087024209

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12298345

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007831572

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE