WO2008054828A2 - Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma - Google Patents
Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma Download PDFInfo
- Publication number
- WO2008054828A2 WO2008054828A2 PCT/US2007/023660 US2007023660W WO2008054828A2 WO 2008054828 A2 WO2008054828 A2 WO 2008054828A2 US 2007023660 W US2007023660 W US 2007023660W WO 2008054828 A2 WO2008054828 A2 WO 2008054828A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mir
- seq
- mirna
- gene product
- hcc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/178—Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
Definitions
- Hepatocellular carcinoma represents an extremely poor prognostic cancer that remains one of the most common and aggressive human malignancies worldwide (1 ; 2).
- the dismal outcome has been attributed to the major hallmarks of HCC, intra-hepatic metastases or post-surgical recurrence.
- New tumor colonies frequently invade into the major branches of the portal vein and possibly other parts of the liver (3-6).
- Resection or liver transplantation are the best options for a potential cure however, only about 20 percent of HCC patients, defined by parameters of relatively normal liver function and a manageable tumor lesion as determined by the available clinical staging systems, are currently eligible for surgical intervention.
- resected patients often have a high frequency of metastasis/recurrence, and post-operative 5 year survival is only 30-40 percent.
- HCC Liver transplantation for HCC patients remains controversial due to a shortage of organ donors and the poor performance of current staging systems in selecting appropriate candidates, especially at early disease stages. These systems are essential, particularly in malignant diseases, to provide advice to patients and guidance for assessment and treatment.
- Clinical evaluation and therapeutic decisions in HCC is complex because they depend on both the grade of cancer spread (tumor staging) and residual liver function (chronic liver disease stage).
- tumor staging tumor staging
- chronic liver disease stage chronic liver disease stage
- miRNAs RNA gene products (-22nt) known as microRNAs (miRNAs or miRs) is a superior method for cancer subtype classification and prognostication (17-19).
- miRNAs exist in many organisms and play key regulatory roles in mRNA translation and degradation by base pairing to partially complementary sites of the mRNA, predominantly in the 3' untranslated region (20-22). miRNAs are expressed as long precursor RNAs that are processed by Drosha, a cellular nuclease, and subsequently transported to the cytoplasm by an Exportin-5 -dependent mechanism (23; 24). miRNAs are then cleaved by the DICER enzyme, resulting in — 17-24 nt miRNAs that associate with a RNA-induced silencing-like complex (25; 26).
- miRNA expression profiling can be utilized as a tool for cancer diagnosis (17; 40).
- a unique miRNA signature that can significantly distinguish HCC venous metastasis from metastasis-free HCC.
- this signature is capable of predicting survival and recurrence of HCC patients with multinodular or solitary tumors, including those with early-stage disease.
- this signature is an independent and significant predictor of patient prognosis and relapse when compared to other available clinical parameters.
- This miRNA signature is useful to enable HCC prognosis and has clinical utility for the advance identification of HCC patients with a propensity towards metastasis/recurrence.
- HCC chronic hepatocellular carcinoma
- kits for diagnosing whether a subject has, or is at risk for developing, HCC comprising measuring the level of at least one miR gene product in a test sample from the subject, wherein an alteration in the level of the miR gene product in the test sample, relative to the level of a corresponding miR gene product in a control sample, is indicative of the subject either having, or being at risk for developing, HCC.
- the level of the at least one miR gene product can be measured using a variety of techniques that are well-known to those of skill in the art. In one embodiment, the level of the at least one miR gene product is measured using Northern blot analysis. In another embodiment, the level of the at least one miR gene product in the test sample is less than the level of the corresponding miR gene product in the control sample. Also, in another embodiment, the level of the at least one miR gene product in the test sample can be greater than the level of the corresponding miR gene product in the control sample.
- the level of the at least one miR gene product is measured by reverse transcribing RNA from a test sample obtained from the subject to provide a set of target oligodeoxynucleotides; hybridizing the target oligodeoxynucleotides to a microarray comprising miRNA-specif ⁇ c probe oligonucleotides to provide a hybridization profile for the test sample; and, comparing the test sample hybridization profile to a hybridization profile generated from a control sample.
- An alteration in the signal of at least one miRNA is indicative of the subject either having, or being at risk for developing, HCC.
- a microarray comprises miRNA-specific probe oligonucleotides for one or more miRNAs selected from one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11, and, in particular certain embodiments, one miR gene product comprises one or more of: miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6], and miR124A [SEQ ID NO: 4].
- the method comprises administering to the subject an effective amount of at least one isolated miR gene product, such that proliferation of cancer cells in the subject is inhibited.
- the method comprises administering to the subject an effective amount of at least one compound for inhibiting expression of at least one miR gene product, such that proliferation of cancer cells in the subject is inhibited.
- the at least one isolated miR gene product is selected miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6] and miR124A and combinations thereof.
- Also provided herein are methods of treating HCC in a subject comprising: determining the amount of at least one miR gene product in HCC cells, relative to control cells; and, altering the amount of miR gene product expressed in the HCC cells by: administering to the subject an effective amount of at least one isolated miR gene product, if the amount of the miR gene product expressed in the cancer cells is less than the amount of the miR gene product expressed in control cells; or administering to the subject an effective amount of at least one compound for inhibiting expression of the at least one miR gene product, if the amount of the miR gene product expressed in the cancer cells is greater than the amount of the miR gene product expressed in control cells, such that proliferation of cancer cells in the subject is inhibited, hi certain embodiments, at least one isolated miR gene product is selected from the group consisting of miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6] and miR124A, and combinations thereof.
- compositions for treating HCC comprising at least one isolated miR gene product and a pharmaceutically-acceptable carrier.
- the pharmaceutical compositions comprise at least one isolated miR gene product corresponds to a miR gene product that is down-regulated in HCC cells relative to suitable control cells.
- the pharmaceutical composition comprises at least one miR expression regulator (for example, an inhibitor) compound and a pharmaceutically-acceptable carrier.
- miR expression regulator for example, an inhibitor
- compositions that include at least one miR expression regulator compound that is specific for a miR gene product that is up- or down-regulated in HCC cells relative to suitable control cells.
- Also provided herein are methods of identifying an anti-HCC agent comprising providing a test agent to a cell and measuring the level of at least one miR gene product associated with decreased expression levels in HCC cells, wherein an increase in the level of the miR gene product in the cell, relative to a suitable control cell, is indicative of the test agent being an anti-HCC agent.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR- 219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6], and miR124A [SEQ ID NO: 4].
- Also provided herein are methods of identifying an anti-HCC agent comprising providing a test agent to a cell and measuring the level of at least one miR gene product associated with increased expression levels in HCC cells, wherein a decrease in the level of the miR gene product in the cell, relative to a suitable control cell, is indicative of the test agent being an anti-HCC agent.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6], and miR124A [SEQ ID NO: 4].
- FIGURE 1 Schematic of the search for a miRNA signature that can predict HCC prognosis.
- FIGURE 2 Significant differentially expressed miRNAs in metastatic vs non-metastatic liver tissues from HCC patients.
- Pseudocolors indicate transcript levels below, equal, or above the mean (green, black and red, respectively).
- the scale represents the gene expression ratios from -4 to 4 in log 2 scale.
- FIG. 2B Kaplan-Meier survival analysis of metastasis and non-metastasis samples based on prediction outcome of the 20 miRNAs.
- FIGURE 3 Analysis of the classification capacity of the 20-miRNA or 4- miRNA signature in the testing cohort or early-stage HCC.
- FIGURE 4 Table 1 showing the clinical characteristics of patients for
- FIGURE 5 Table 2 showing univariate and multivariate analyses of factors associated with survival and recurrences (TMM stage I and II).
- FIGURE 6 Table 3 - Summary of 20 micro RNAs with a prognostic value to predict HCC survival/
- FIGURE 7 Table 4 - Clinical staging of the poorly-defined set.
- FIGURE 8 Table 5 - Univariate and multivariate analyses of factors associated with survival and recurrence (BCLC Stage 0 and A).
- FIGURE 9 Table 6 - Univariate and multivariate analyses of factors associated with survival and recurrence.
- FIGURE 10 Analysis of the classification capacity of staging systems in the testing cohort. Kaplan-Meier survival analysis of 110 HCC patients based on predicted classification by (FIG. 10A) TNM staging (FIGL 10B) OKUDA staging (FIG. 10C) CLIP staging or (FIG. 10D) BCLC staging.
- FIGURE 11 A table containing a set of 22 miRN As useful for predicting
- HCC [SEQ ID NOS: 1-22].
- an miRNA is derived from genomic sequences or a gene.
- the term "gene” is used for simplicity to refer to the genomic sequence encoding the precursor miRNA for a given miRNA.
- embodiments of the invention may involve genomic sequences of a miRNA that are involved in its expression, such as a promoter or other regulatory sequences.
- miRNA generally refers to a single-stranded molecule, but in specific embodiments, molecules implemented in the invention will also encompass a region or an additional strand that is partially (between 10 and 50% complementary across length of strand), substantially (greater than 50% but less than 100% complementary across length of strand) or fully complementary to another region of the same single- stranded molecule or to another nucleic acid.
- nucleic acids may encompass a molecule that comprises one or more complementary or self-complementary strand(s) or "complement(s)" of a particular sequence comprising a molecule.
- precursor miRNA may have a self-complementary region, which is up to 100% complementary miRNA probes of the invention can be or be at least 60, 65, 70, 75, 80, 85, 90, 95, or 100% complementary to their target.
- A, B, C, or combinations thereof refers to all permutations and combinations of the listed items preceding the term.
- A, B, C, or combinations thereof is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, ACB, CBA, BCA, BAC, or CAB.
- MicroRNAs are transcripts of a new class of small noncoding
- RNA genes that are able to distinguish several types of aggressive cancers including hepatocellular carcinoma (HCC), from their normal counterparts.
- HCC patients have a very poor prognosis due to high rate of metastasis, and current staging systems are not capable of accurately determining patient prognosis, especially at early stages of this disease.
- the inventors investigated whether unique miRNAs are associated with prognosis and metastases in HCC.
- the inventors examined the miRNA expression profiles of 490 specimens from radical resection of 244 HCC patients.
- the inventors discovered a unique miRNA signature based on 134 clinically well-defined metastatic and non-metastatic HCC specimens.
- the unique signature was used to predict the prognostic outcomes of a 110 independent HCC specimens.
- the miRNA signature composed of 20 unique oligonucleotides can significantly discriminate (p ⁇ 0.001) 30 primary HCC tissues with venous metastases from 104 metastasis-free solitary HCC with cross validation in a training cohort. However, significant miRNAs could not be identified from the corresponding non-cancerous hepatic tissues.
- the tumor metastasis miRNA signature was a significant predictor of patient survival (p ⁇ 0.0023) and recurrence (p-0.002) is 89 early stage HCC.
- a refined signature composed of 4 selected miRNAs had a similar prediction power.
- high miR-219 [SEQ ID NO: 20] and miR-207 [SEQ ID NO: 18] and low miR-30c [SEQ ID NO: 6] and miR-124a [SEQ ID NO: 4] expression correlated with venous metastases and poor survival.
- Cox proportional hazards modeling also revealed that this signature was superior to other clinical variables, including the known staging systems, for predicting patient survival.
- the unique miRNA signature is useful for HCC prognosis, particularly in patients whose outcome is hard to predict by conventional staging systems.
- the examples herein show that measurement of certain miRNA levels in HCC have clinical utility for the advance identification of patients who are likely to develop metastases and subsequently classify them for appropriate treatment.
- Hepatic tissues were obtained with informed consent from patients who underwent radical resection between 2002 and 2003 at the Liver Cancer Institute and Zhongshan Hospital (Fudan University, Shanghai, China). The study was approved by the Institutional Review Board of the Liver Cancer Institute and NIH. Gene expression profiles were conducted in primary HCC and corresponding noncancerous hepatic tissues from 244 Chinese HCC patients. Among them, 93% had underlying cirrhosis and 68% had a serum alpha-fetoprotein (AFP) level > 20 ng/ml ( Figure 4 - Table 1).
- AFP serum alpha-fetoprotein
- FIG. 1 The general strategy for partitioning cases and testing the miRNA signature is outlined in Figure 1.
- the testing cases included 43 multinodular and 67 solitary HCC. Of the 43 multinodular HCC cases, 18 developed intrahepatic recurrence and one developed extrahepatic metastasis in addition to an intrahepatic recurrence. Of the 67 solitary HCC cases, 4 patients had a solitary tumor with an appearance of aggregated nodules, 10 developed intra- and/or extrahepatic metastases while 49 developed intrahepatic recurrence confirmed at follow-up (3yr). In addition, eight normal liver tissues from disease-free patients [described in (16)] were included as normal controls.
- RNA isolation and miRNA arrays are identical to RNA isolation and miRNA arrays.
- RNA isolation and miRNA array methodology were essentially as previously described (13; 17). In the analysis of the 244 HCC cases, RNA was isolated in a pairwise fashion from tumor or non-tumor tissue and samples were selected in random order for miRNA analysis to avoid grouping bias. A total of 488 microarrays were performed (see Example II).
- miRNAs could not be identified when a comparison of these tissues was made with other clinical variables including multinodular status, microvascular invasion and 4 clinical staging systems (data not shown). Therefore, the expression of certain miRNAs appeared to correlate with metastasis only when macrovascular invasion was evident. Of the 20 miRNAs, 4 were overexpressed in M while 16 were overexpressed in NM.
- the clinical staging systems were incapable of predicting overall or disease-free survival in this cohort ( Figure 5 - Table 2).
- the miRNA signature identified is a superior predictor of HCC patient outcome, particularly for early stage disease.
- the clinical HCC staging systems were not capable of predicting patient prognosis and relapse within the testing cohort ( Figure 5 - Table 2 and Figure 8 - Table 5).
- the miRNA signature is an independent predictor for both survival and relapse.
- HCC patients A majority of HCC patients are diagnosed at a late stage and only a small percentage fit resection or transplantation criteria. The outcome of HCC patients has been less than satisfactory, largely due to the lack of a simple, validated and universal clinical staging system with robust predictive power, especially for early stage patients and for those with solitary or multinodular HCC that eventually metastasize or recur. Thus, a key challenge to improving HCC patient outcome is early detection and classification.
- the inventors have shown that the expression of 20 miRNAs, or even 4 miRNAs, can significantly predict the survival of HCC patients with solitary or multinodular tumors who develop metastasis/recurrence and can effectively do so in HCC patients with relatively small tumors who were at an early stage of this disease. In contrast, the clinical HCC staging systems were unable to distinguish the outcome of these patients.
- miRNAs can be used to provide a higher accuracy in subtype classification and the examples herein show a superior ability to distinguish classically poor-to-predict HCC patient cohorts, grouping patients according to their miRNA signature expression may have clinical utility.
- the advance identification of poor prognosis patients (M) by the miRNA signature may allow for more personalized, directed or aggressive treatment regimens than patients classified in the good prognosis group (NM).
- the miRNAs and/or the miRNA signature may also be used for prioritizing
- Another advantage is that, for optimum clinical use and potentially more efficient diagnosis, it would be appropriate to have a minimum number of genes that can discriminate patients who are likely to develop more aggressive forms of the disease.
- the inventors have demonstrated that as few as 4 miRNAs are capable of significantly discriminating HCC patients who have a poor outcome. Thus, these miRNAs are promising tools that may facilitate HCC diagnosis, particularly for early stage patients, and allow for appropriate clinical counsel and treatment.
- the miRNAs and/or Mir signature can be also useful to identify candidate miRNA targets that are differentially expressed in patients who develop metastases/recurrence.
- these miRNAs are useful to provide insight into the biological consequence of miRNA alteration in HCC.
- the miRNAs and/or miR signature is also useful to develop and/ or serve as therapeutic targets to reverse the potential outcome of patients with a poor prognostic signature defined by miRNA classification.
- miRNAs and/or miR signature is useful in developing methods and/or compositions to reverse the course of the disease. Such reversion possibilities may occur, for example, through gene therapy options to alter the expression of miRNAs or their targets.
- Other non-limiting examples include inactivation of oncogenic phenotypes by synthetic antisense oligonucleotides, generation of specific inhibitors to abrogate miRNA/target gene interaction or overexpression of tumor suppressive phenotypes using viral or liposomal delivery.
- the miRNAs and/or miR signature are useful for the early diagnosis and associated interventional treatment and can be used to change the rather fatalistic approach to HCC.
- the miRNA signature disclosed herein can thus be used to classify HCC patients at an early stage, enabling their diagnosis and improving clinical outcome.
- the sample enrollment criteria included those with a history of hepatitis B virus HBV infection or HBV-related liver cirrhosis, HCC diagnosed by two independent pathologists, detailed information on clinical presentation and pathological characteristics; and detailed follow-up data for at least 3 years, which included intrahepatic recurrence, intrahepatic venous metastasis, lymph node involvement, extrahepatic metastases, disease- free and overall survival, as well as the cause of death.
- TNM stage I and II early stage patients
- TNM stage I and II early stage patients
- the inventors also performed Cox proportional hazards modeling based on early stage patients categorized by BCLC (Stage 0 and A).
- the miRNA microarray platform (V 2.0) was composed of 250 non- redundant human and 200 mouse miRNAs and arrays were performed at the Microarray Shared Resource, Comprehensive Cancer Center at the Ohio State University. To examine the robustness of the miRNA array platform, the inventors first analyzed whether miRNA expression can differentiate 244 HCC tissues from their paired surrounding noncancerous hepatic tissues ( Figure 4 - Table 6).
- Cox proportional hazards regression was used to analyze the effect of clinical variables on patient overall and relapse-free survival, including age, sex, HBV active status, pre-resection alphafetoprotein (AFP), cirrhosis, alanine transferase (ALT), Child-Pugh score, tumor size, tumor encapsulation, nodular type, the status of microvascular invasion, Edmondson grade and several HCC prognosis staging systems including BCLC staging (3), CLIP classification (4), Okuda staging (5), or TNM classification (AJCC/UICC, 6th edition) (6).
- a multivariate analysis was performed to estimate the hazards ratio of the miRNA predictor while controlling for clinical variables identified from a stepwise selection process using both forward addition and backwards selection routines with significance set at p ⁇ 0.05. Furthermore, the hazards ratio for the miRNA predictor alone was compared to the hazards ratio for the miRNA predictor with each of the clinical variables. If a 10% change in the hazards ratio of the predictor was observed with the addition of a single covariate, this variable was controlled for in the final Cox proportional hazards model.
- the most parsimonious survival model included the 20 miRNA predictor, tumor size, multinodular status and TNM staging while the most parsimonious recurrence model included the 20 miRNA predictor, multinodular status,
- the most parsimonious survival model included the 20 miRNA predictor, AFP, cirrhosis, tumor size, multinodular status, microvascular invasion and TNM staging while the most parsimonious recurrence model included the 20 miRNA predictor, tumor size, multinodular status and TNM staging.
- the inventors restricted the search by focusing on potential miRNA targets that were part of the 153-gene HCC tumor signature of venous metastases identified recently (7) and had a low FDR score ( ⁇ 0.3).
- the inventors further limited output to only those potential cellular targets whose expression in metastatic HCC was inversely correlated with that of the corresponding miRNA.
- a summary of these host targets based on the search criteria described above is included in Figure 6 - Table 3.
- Figure 10 shows an analysis of the classification capacity of staging systems in the testing cohort. Kaplan-Meier survival analysis of 110 HCC patients based on predicted classification by (A) TNM staging (B) OKUDA staging (C) CLIP staging or
- a method of diagnosing whether a subject has, or is at risk for developing hepatocellular carcinoma (HCC).
- the method generally includes measuring the level of at least one miR gene product in a test sample from the subject and determining whether an alteration in the level of the miR gene product in the test sample, relative to the level of a corresponding miR gene product in a control sample, is indicative of the subject either having, or being at risk for developing,
- the level of the at least one miR gene product is measured using Northern blot analysis. Also, in certain embodiments, the level of the at least one miR gene product in the test sample is less than the level of the corresponding miR gene product in the control sample, and/or the level of the at least one miR gene product in the test sample is greater than the level of the corresponding miR gene product in the control sample.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 20]
- the level of the at least one miR gene product can be measured by reverse transcribing RNA from a test sample obtained from the subject to provide a set of target oligodeoxynucleotides; hybridizing the target oligodeoxynucleotides to a microarray comprising miRNA-specific probe oligonucleotides to provide a hybridization profile for the test sample; and, comparing the test sample hybridization profile to a hybridization profile generated from a control sample.
- An alteration in the signal of at least one miRNA is indicative of the subject either having, or being at risk for developing, HCC.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 20]
- the method comprises administering to the subject an effective amount of at least one isolated miR gene product, such that proliferation of cancer cells in the subject is inhibited.
- the method comprises administering to the subject an effective amount of at least one compound for inhibiting expression of at least one miR gene product, such that proliferation of cancer cells in the subject is inhibited.
- the at least one isolated miR gene product is selected miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6] and miR124A and combinations thereof.
- Also provided herein are methods of treating HCC in a subject comprising: determining the amount of at least one miR gene product in HCC cells, relative to control cells; and, altering the amount of miR gene product expressed in the HCC cells by: administering to the subject an effective amount of at least one isolated miR gene product, if the amount of the miR gene product expressed in the cancer cells is less than the amount of the miR gene product expressed in control cells; or administering to the subject an effective amount of at least one compound for inhibiting expression of the at least one miR gene product, if the amount of the miR gene product expressed in the cancer cells is greater than the amount of the miR gene product expressed in control cells, such that proliferation of cancer cells in the subject is inhibited.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR- 219 [SEQ ID NO: 20], miR-207[SEQ ID NO: 18], miR-30c [SEQ ID NO: 6], and miR124A [SEQ ID NO: 4] and combinations thereof.
- compositions for treating HCC comprising at least one isolated miR gene product and a pharmaceutically-acceptable carrier.
- the pharmaceutical compositions comprise at least one isolated miR gene product corresponds to a miR gene product that is down-regulated in HCC cells relative to suitable control cells.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6], and miR124A [SEQ ID NO: 4].
- the pharmaceutical composition comprises at least one miR expression regulator (for example, an inhibitor) compound and a pharmaceutically-acceptable carrier.
- miR expression regulator for example, an inhibitor
- compositions that include at least one miR expression regulator compound that is specific for a miR gene product that is up- or down-regulated in HCC cells relative to suitable control cells.
- methods of identifying an anti-HCC agent comprising providing a test agent to a cell and measuring the level of at least one miR gene product associated with decreased expression levels in HCC cells, wherein an increase in the level of the miR gene product in the cell, relative to a suitable control cell, is indicative of the test agent being an anti-HCC agent.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR- 219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6], and miR124A [SEQ ID NO: 4] and combinations thereof.
- Also provided herein are methods of identifying an anti-HCC agent comprising providing a test agent to a cell and measuring the level of at least one miR gene product associated with increased expression levels in HCC cells, wherein a decrease in the level of the miR gene product in the cell, relative to a suitable control cell, is indicative of the test agent being an anti-HCC agent, hi a particular embodiment, the miR gene product is selected from the group consisting of miR-219 [SEQ ID NO: 20], miR-207 [SEQ ID NO: 18], miR-30c [SEQ ID NO: 6] and miR124A and combinations thereof. [00127] EXAMPLE VII
- kits for isolating miRNA, labeling miRNA, and/or evaluating an miRNA population using an array are included in a kit.
- the kit may further include reagents for creating or synthesizing miRNA probes.
- the kits will thus comprise, in suitable container means, an enzyme for labeling the miRNA by incorporating labeled nucleotide or unlabeled nucleotides that are subsequently labeled. It may also include one or more buffers, such as reaction buffer, labeling buffer, washing buffer, or a hybridization buffer, compounds for preparing the miRNA probes, and components for isolating miRNA.
- Other kits may include components for making a nucleic acid array comprising oligonucleotides complementary to miRNAs, and thus, may include, for example, a solid support.
- nucleic acid molecules that contain a sequence that is identical or complementary to all or part of any of SEQ ID NOS: 1- 22.
- kits may be packaged either in aqueous media or in lyophilized form.
- the container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which a component may be placed, and preferably, suitably aliquoted. Where there is more than one component in the kit (labeling reagent and label may be packaged together), the kit also will generally contain a second, third or other additional container into which the additional components may be separately placed. However, various combinations of components may be comprised in a vial.
- the kits of the present invention also will typically include a means for containing the nucleic acids, and any other reagent containers in close confinement for commercial sale.
- Such containers may include injection or blow-molded plastic containers into which the desired vials are retained.
- the liquid solution is an aqueous solution, with a sterile aqueous solution being one preferred solution.
- Other solutions that may be included in a kit are those solutions involved in isolating and/or enriching miRNA from a mixed sample.
- the components of the kit may be provided as dried powder(s).
- kits may also include components that facilitate isolation of the labeled miRNA. It may also include components that preserve or maintain the miRNA or that protect against its degradation. The components may be RNAse-free or protect against RNAses.
- kits can generally comprise, in suitable means, distinct containers for each individual reagent or solution.
- the kit can also include instructions for employing the kit components as well the use of any other reagent not included in the kit. Instructions may include variations that can be implemented. It is contemplated that such reagents are embodiments of kits of the invention. Also, the kits are not limited to the particular items identified above and may include any reagent used for the manipulation or characterization of miRNA.
- any embodiment discussed in the context of an miRNA array may be employed more generally in screening or profiling methods or kits of the invention.
- any embodiments describing what may be included in a particular array can be practiced in the context of miRNA profiling more generally and need not involve an array per se.
- any kit, array or other detection technique or tool, or any method can involve profiling for any of these miRNAs.
- any embodiment discussed in the context of an miRNA array can be implemented with or without the array format in methods of the invention; in other words, any miRNA in an miRNA array may be screened or evaluated in any method of the invention according to any techniques known to those of skill in the art.
- the array format is not required for the screening and diagnostic methods to be implemented.
- kits can include an miRNA array, as well as information regarding a standard or normalized miRNA profile for the miRNAs on the array.
- control RNA or DNA can be included in the kit.
- the control RNA can be miRNA that can be used as a positive control for labeling and/or array analysis.
- miRNA arrays are ordered macroarrays or microarrays of nucleic acid molecules (probes) that are fully or nearly complementary or identical to a plurality of miRNA molecules or precursor miRNA molecules and that are positioned on a support material in a spatially separated organization.
- Macroarrays are typically sheets of nitrocellulose or nylon upon which probes have been spotted.
- Microarrays position the nucleic acid probes more densely such that up to 10,000 nucleic acid molecules can be fit into a region typically 1 to 4 square centimeters.
- Microarrays can be fabricated by spotting nucleic acid molecules, e.g., genes, oligonucleotides, etc., onto substrates or fabricating oligonucleotide sequences in situ on a substrate. Spotted or fabricated nucleic acid molecules can be applied in a high density matrix pattern of up to about 30 non-identical nucleic acid molecules per square centimeter or higher, e.g. up to about 100 or even 1000 per square centimeter. Microarrays typically use coated glass as the solid support, in contrast to the nitrocellulose-based material of filter arrays. By having an ordered array of miRNA- complementing nucleic acid samples, the position of each sample can be tracked and linked to the original sample.
- nucleic acid molecules e.g., genes, oligonucleotides, etc.
- array devices in which a plurality of distinct nucleic acid probes are stably associated with the surface of a solid support are known to those of skill in the art.
- Useful substrates for arrays include nylon, glass and silicon.
- the arrays may vary in a number of different ways, including average probe length, sequence or types of probes, nature of bond between the probe and the array surface, e.g. covalent or non-covalent, and the like.
- the labeling and screening methods described herein and the arrays are not limited in its utility with respect to any parameter except that the probes detect miRNA; consequently, methods and compositions may be used with a variety of different types of miRNA arrays.
- the miR gene product comprises one or more of the SEQ ID NOS: 1 - 22, as shown in Figure 11.
- one miR gene product comprises one or more of: miR- 219 [SEQ ID NO: 20], miR-207[SEQ ID NO: 18], miR-30c [SEQ ID NO: 6], and miR124A [SEQ ID NO: 4].
- 125b-l a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 2005; 19(l l):2009-2010.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Hospice & Palliative Care (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/513,219 US8252538B2 (en) | 2006-11-01 | 2007-11-01 | MicroRNA expression signature for predicting survival and metastases in hepatocellular carcinoma |
| ES07867402T ES2425416T3 (es) | 2006-11-01 | 2007-11-01 | Firma de expresión del microARN para predecir la supervivencia y la metástasis en el carcinoma hepatocelular |
| JP2009535366A JP5501766B2 (ja) | 2006-11-01 | 2007-11-01 | 肝細胞癌における生存および転移を予測するためのマイクロrna発現サイン |
| CA002667617A CA2667617A1 (en) | 2006-11-01 | 2007-11-01 | Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma |
| EP07867402.5A EP2087135B8 (en) | 2006-11-01 | 2007-11-01 | Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma |
| AU2007314212A AU2007314212B2 (en) | 2006-11-01 | 2007-11-01 | MicroRNA expression signature for predicting survival and metastases in Hepatocellular carcinoma |
| US13/595,192 US20120329672A1 (en) | 2006-11-01 | 2012-08-27 | MicroRNA Expression Signature for Predicting Survival and Metastases in Hepatocellular Carcinoma |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US85589506P | 2006-11-01 | 2006-11-01 | |
| US60/855,895 | 2006-11-01 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/595,192 Division US20120329672A1 (en) | 2006-11-01 | 2012-08-27 | MicroRNA Expression Signature for Predicting Survival and Metastases in Hepatocellular Carcinoma |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| WO2008054828A2 true WO2008054828A2 (en) | 2008-05-08 |
| WO2008054828A9 WO2008054828A9 (en) | 2008-06-19 |
| WO2008054828A3 WO2008054828A3 (en) | 2008-12-11 |
Family
ID=39344934
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2007/023660 Ceased WO2008054828A2 (en) | 2006-11-01 | 2007-11-01 | Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US8252538B2 (enExample) |
| EP (1) | EP2087135B8 (enExample) |
| JP (1) | JP5501766B2 (enExample) |
| AU (1) | AU2007314212B2 (enExample) |
| CA (1) | CA2667617A1 (enExample) |
| ES (1) | ES2425416T3 (enExample) |
| WO (1) | WO2008054828A2 (enExample) |
Cited By (79)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009058907A3 (en) * | 2007-10-29 | 2009-12-17 | Isis Pharmaceuticals, Inc. | Targeting micrornas for the treatment of liver cancer |
| WO2010043114A1 (zh) * | 2008-10-13 | 2010-04-22 | 北京命码生科科技有限公司 | 血清/血浆miRNA在HBV感染和肝癌早期诊断中的应用 |
| EP2196543A1 (en) * | 2008-12-15 | 2010-06-16 | Koninklijke Philips Electronics N.V. | Compositions and methods for micro-rna expression profiling of hepatocellular cancer |
| ITMI20091538A1 (it) * | 2009-09-07 | 2011-03-08 | Istituto Naz Di Genetica Mole Colare Ingm | Profili di espressione di micro-rna nel sangue periferico di pazienti affetti da epatocarcinoma o cirrosi epatica e loro usi |
| CN102021169A (zh) * | 2010-10-14 | 2011-04-20 | 南京大学 | 一种血清/血浆miRNA组合物及其应用 |
| WO2011119553A1 (en) | 2010-03-26 | 2011-09-29 | The Ohio State University | Materials and methods related to modulation of mismatch repair and genomic stability by mir-155 |
| US8071292B2 (en) | 2006-09-19 | 2011-12-06 | The Ohio State University Research Foundation | Leukemia diagnostic methods |
| WO2012031412A1 (zh) * | 2010-09-08 | 2012-03-15 | 上海市公共卫生临床中心 | 用于预测干扰素治疗慢性乙型肝炎疗效的血浆miRNA谱及检测试剂盒 |
| WO2012065049A1 (en) | 2010-11-12 | 2012-05-18 | The Ohio State University Research Foundation | Materials and methods related to microrna-21, mismatch repair, and colorectal cancer |
| WO2012078209A1 (en) | 2010-12-06 | 2012-06-14 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Diagnosis and treatment of adrenocortical tumors using human microrna-483 |
| US8252538B2 (en) | 2006-11-01 | 2012-08-28 | The Ohio State University | MicroRNA expression signature for predicting survival and metastases in hepatocellular carcinoma |
| CN102776185A (zh) * | 2011-05-06 | 2012-11-14 | 复旦大学附属中山医院 | 由血浆microRNA组合成的肝癌诊断标志物及一种诊断肝癌的新方法 |
| US8349560B2 (en) | 2007-06-15 | 2013-01-08 | The Ohio State University Research | Method for diagnosing acute lymphomic leukemia (ALL) using miR-222 |
| US8377637B2 (en) | 2006-01-05 | 2013-02-19 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of lung cancer using miR-17-3P |
| US8465917B2 (en) | 2007-06-08 | 2013-06-18 | The Ohio State University Research Foundation | Methods for determining heptocellular carcinoma subtype and detecting hepatic cancer stem cells |
| US8481505B2 (en) | 2005-09-12 | 2013-07-09 | The Ohio State University Research Foundation | Compositions and methods for the diagnosis and therapy of BCL2-associated cancers |
| WO2013148147A1 (en) | 2012-03-26 | 2013-10-03 | The U.S.A., As Represented By The Secretary Dept. Of Health And Human Services | Dna methylation analysis for the diagnosis, prognosis and treatment of adrenal neoplasms |
| US8658370B2 (en) | 2005-08-01 | 2014-02-25 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of breast cancer |
| US8664192B2 (en) | 2011-03-07 | 2014-03-04 | The Ohio State University | Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer |
| WO2014081507A1 (en) | 2012-11-26 | 2014-05-30 | Moderna Therapeutics, Inc. | Terminally modified rna |
| WO2014093924A1 (en) | 2012-12-13 | 2014-06-19 | Moderna Therapeutics, Inc. | Modified nucleic acid molecules and uses thereof |
| CN103898219A (zh) * | 2014-04-01 | 2014-07-02 | 镇江市第三人民医院 | 用于检测原发性胆汁性肝硬化的血清miRNA标志物及标志物组合及应用 |
| WO2014113089A2 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| US8846316B2 (en) | 2012-04-30 | 2014-09-30 | Industrial Technology Research Institute | Biomarker for human liver cancer |
| US8859202B2 (en) | 2012-01-20 | 2014-10-14 | The Ohio State University | Breast cancer biomarker signatures for invasiveness and prognosis |
| US8911998B2 (en) | 2007-10-26 | 2014-12-16 | The Ohio State University | Methods for identifying fragile histidine triad (FHIT) interaction and uses thereof |
| US8916533B2 (en) | 2009-11-23 | 2014-12-23 | The Ohio State University | Materials and methods useful for affecting tumor cell growth, migration and invasion |
| CN104293914A (zh) * | 2014-09-05 | 2015-01-21 | 镇江市第三人民医院 | 用于检测原发性肝细胞癌的血清miRNA标志物组合及应用 |
| US9085804B2 (en) | 2007-08-03 | 2015-07-21 | The Ohio State University Research Foundation | Ultraconserved regions encoding ncRNAs |
| US9125923B2 (en) | 2008-06-11 | 2015-09-08 | The Ohio State University | Use of MiR-26 family as a predictive marker for hepatocellular carcinoma and responsiveness to therapy |
| US9249468B2 (en) | 2011-10-14 | 2016-02-02 | The Ohio State University | Methods and materials related to ovarian cancer |
| US9481885B2 (en) | 2011-12-13 | 2016-11-01 | Ohio State Innovation Foundation | Methods and compositions related to miR-21 and miR-29a, exosome inhibition, and cancer metastasis |
| WO2017127750A1 (en) | 2016-01-22 | 2017-07-27 | Modernatx, Inc. | Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof |
| WO2017180587A2 (en) | 2016-04-11 | 2017-10-19 | Obsidian Therapeutics, Inc. | Regulated biocircuit systems |
| WO2017201350A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
| WO2017218704A1 (en) | 2016-06-14 | 2017-12-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| WO2018002762A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders |
| WO2018002783A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of friedreich ataxia and other related disorders |
| WO2018002812A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders |
| WO2018007976A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| WO2018007980A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| WO2018081459A1 (en) | 2016-10-26 | 2018-05-03 | Modernatx, Inc. | Messenger ribonucleic acids for enhancing immune responses and methods of use thereof |
| WO2018089540A1 (en) | 2016-11-08 | 2018-05-17 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| WO2018144775A1 (en) | 2017-02-01 | 2018-08-09 | Modernatx, Inc. | Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides |
| WO2018154418A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders |
| WO2018154387A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| WO2018154462A2 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders |
| WO2018231990A2 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Polynucleotides encoding methylmalonyl-coa mutase |
| WO2019046809A1 (en) | 2017-08-31 | 2019-03-07 | Modernatx, Inc. | METHODS OF MANUFACTURING LIPID NANOPARTICLES |
| EP3461904A1 (en) | 2014-11-10 | 2019-04-03 | ModernaTX, Inc. | Alternative nucleic acid molecules containing reduced uracil content and uses thereof |
| WO2019102381A1 (en) | 2017-11-21 | 2019-05-31 | Casebia Therapeutics Llp | Materials and methods for treatment of autosomal dominant retinitis pigmentosa |
| WO2019123429A1 (en) | 2017-12-21 | 2019-06-27 | Casebia Therapeutics Llp | Materials and methods for treatment of usher syndrome type 2a |
| WO2019152557A1 (en) | 2018-01-30 | 2019-08-08 | Modernatx, Inc. | Compositions and methods for delivery of agents to immune cells |
| WO2019200171A1 (en) | 2018-04-11 | 2019-10-17 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
| WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
| WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
| WO2020086742A1 (en) | 2018-10-24 | 2020-04-30 | Obsidian Therapeutics, Inc. | Er tunable protein regulation |
| WO2020160397A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| US10758619B2 (en) | 2010-11-15 | 2020-09-01 | The Ohio State University | Controlled release mucoadhesive systems |
| WO2020185632A1 (en) | 2019-03-08 | 2020-09-17 | Obsidian Therapeutics, Inc. | Human carbonic anhydrase 2 compositions and methods for tunable regulation |
| WO2020263985A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Messenger rna comprising functional rna elements and uses thereof |
| WO2020263883A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Endonuclease-resistant messenger rna and uses thereof |
| WO2021046451A1 (en) | 2019-09-06 | 2021-03-11 | Obsidian Therapeutics, Inc. | Compositions and methods for dhfr tunable protein regulation |
| WO2021155274A1 (en) | 2020-01-31 | 2021-08-05 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| WO2022020811A1 (en) | 2020-07-24 | 2022-01-27 | Strand Therapeutics, Inc. | Lipidnanoparticle comprising modified nucleotides |
| WO2022032087A1 (en) | 2020-08-06 | 2022-02-10 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| WO2022150712A1 (en) | 2021-01-08 | 2022-07-14 | Strand Therapeutics, Inc. | Expression constructs and uses thereof |
| US11407997B2 (en) | 2017-02-22 | 2022-08-09 | Crispr Therapeutics Ag | Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders |
| WO2022233880A1 (en) | 2021-05-03 | 2022-11-10 | Curevac Ag | Improved nucleic acid sequence for cell type specific expression |
| US11559588B2 (en) | 2017-02-22 | 2023-01-24 | Crispr Therapeutics Ag | Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders |
| WO2023212618A1 (en) | 2022-04-26 | 2023-11-02 | Strand Therapeutics Inc. | Lipid nanoparticles comprising venezuelan equine encephalitis (vee) replicon and uses thereof |
| WO2024026475A1 (en) | 2022-07-29 | 2024-02-01 | Modernatx, Inc. | Compositions for delivery to hematopoietic stem and progenitor cells (hspcs) and related uses |
| WO2024026487A1 (en) | 2022-07-29 | 2024-02-01 | Modernatx, Inc. | Lipid nanoparticle compositions comprising phospholipid derivatives and related uses |
| WO2024026482A1 (en) | 2022-07-29 | 2024-02-01 | Modernatx, Inc. | Lipid nanoparticle compositions comprising surface lipid derivatives and related uses |
| US12037616B2 (en) | 2022-03-01 | 2024-07-16 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (ANGPTL3) related conditions |
| WO2024222859A1 (zh) | 2023-04-28 | 2024-10-31 | 深圳深信生物科技有限公司 | 经修饰的递送载体及其应用 |
| WO2024259373A1 (en) | 2023-06-14 | 2024-12-19 | Modernatx, Inc. | Compounds and compositions for delivery of therapeutic agents |
| WO2025160381A1 (en) | 2024-01-26 | 2025-07-31 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| WO2025166202A1 (en) | 2024-01-31 | 2025-08-07 | Modernatx, Inc. | Lipid nanoparticle compositions comprising sialic acid derivatives and the uses thereof |
Families Citing this family (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2290071B1 (en) * | 2004-05-28 | 2014-12-31 | Asuragen, Inc. | Methods and compositions involving microRNA |
| CN101312740A (zh) * | 2005-10-05 | 2008-11-26 | 俄亥俄州立大学研究基金会 | Wwox基因、包含该基因的载体和在癌症治疗中的用途 |
| ES2524018T3 (es) | 2006-01-05 | 2014-12-03 | The Ohio State University Research Foundation | Anomalías de la expresión de microARN en tumores pancreáticos endocrinos y acinares |
| EP2487260B1 (en) | 2006-01-05 | 2015-07-08 | The Ohio State University Research Foundation | Microrna-based methods and compositions for the diagnosis and treatment of solid cancers |
| EP2369012A1 (en) | 2006-03-20 | 2011-09-28 | The Ohio State University Research Foundation | Micro-RNA fingerprints during human megakaryocytopoiesis |
| CA2657030A1 (en) | 2006-07-13 | 2008-01-17 | The Ohio State University Research Foundation, An Instrumentality Of The State Of Ohio | Micro-rna-based methods and compositions for the diagnosis and treatment of colon cancer-related diseases |
| US8034560B2 (en) | 2007-01-31 | 2011-10-11 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of acute myeloid leukemia (AML) |
| JP5592251B2 (ja) * | 2007-04-30 | 2014-09-17 | ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション | 膵臓癌を正常な膵臓機能および/または慢性膵炎と識別する方法 |
| ES2496172T3 (es) * | 2007-07-31 | 2014-09-18 | The Ohio State University Research Foundation | Métodos para invertir la metilación por selección dirigida de DNMT3A y DNMT3B |
| CN101836112A (zh) * | 2007-08-22 | 2010-09-15 | 俄亥俄州立大学研究基金会 | 用于在人急性白血病中诱导epha7和erk磷酸化的脱调节的方法和组合物 |
| CA2702241A1 (en) * | 2007-10-11 | 2009-04-16 | The Ohio State University Research Foundation | Methods and compositions for the diagnosis and treatment of esophageal adenocarcinomas |
| US20100323357A1 (en) * | 2007-11-30 | 2010-12-23 | The Ohio State University Research Foundation | MicroRNA Expression Profiling and Targeting in Peripheral Blood in Lung Cancer |
| WO2009108860A2 (en) * | 2008-02-28 | 2009-09-03 | The Ohio University Rasearch Foundation | Microrna-based methods and compositions for the diagnosis, pronosis and treatment of prostate related disorders |
| US20110052502A1 (en) * | 2008-02-28 | 2011-03-03 | The Ohio State University Research Foundation | MicroRNA Signatures Associated with Human Chronic Lymphocytic Leukemia (CCL) and Uses Thereof |
| US20140113978A1 (en) * | 2011-05-01 | 2014-04-24 | University Of Rochester | Multifocal hepatocellular carcinoma microrna expression patterns and uses thereof |
| US20130237456A1 (en) * | 2011-05-06 | 2013-09-12 | Jia Fan | Marker consisting of plasma microrna and a new method for diagnosis of hepatocellular carcinoma |
| NO3051026T3 (enExample) | 2011-10-21 | 2018-07-28 | ||
| JP2015503356A (ja) | 2012-01-06 | 2015-02-02 | バイオミクス, インコーポレイテッドViomics, Inc. | 末梢血中で、がんによって変化したrnaを検出するシステムおよび方法 |
| CN108350507B (zh) * | 2015-09-10 | 2021-08-20 | 中美冠科生物技术(太仓)有限公司 | 对疾病进行组织学诊断和治疗的方法 |
| WO2019123430A1 (en) | 2017-12-21 | 2019-06-27 | Casebia Therapeutics Llp | Materials and methods for treatment of usher syndrome type 2a and/or non-syndromic autosomal recessive retinitis pigmentosa (arrp) |
| EP3514756A1 (en) * | 2018-01-18 | 2019-07-24 | Koninklijke Philips N.V. | Medical analysis method for predicting metastases in a test tissue sample |
| KR102131519B1 (ko) * | 2018-10-30 | 2020-07-07 | 가톨릭대학교 산학협력단 | 간암 전이 진단 또는 예후 예측용 바이오마커 및 이의 용도 |
| KR102256747B1 (ko) * | 2018-10-30 | 2021-05-25 | 가톨릭대학교 산학협력단 | 엑소좀 miR-125b를 포함하는 간암 전이 진단 또는 예측용 바이오마커 및 이의 용도 |
| CN112599202B (zh) * | 2020-12-24 | 2024-04-26 | 南华大学 | 疾病相关miRNA预测系统 |
Family Cites Families (151)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4196265A (en) | 1977-06-15 | 1980-04-01 | The Wistar Institute | Method of producing antibodies |
| US4172124A (en) | 1978-04-28 | 1979-10-23 | The Wistar Institute | Method of producing tumor antibodies |
| US4608337A (en) | 1980-11-07 | 1986-08-26 | The Wistar Institute | Human hybridomas and the production of human monoclonal antibodies by human hybridomas |
| US4701409A (en) | 1984-11-15 | 1987-10-20 | The Wistar Institute | Detection of B-cell neoplasms |
| US4693975A (en) | 1984-11-20 | 1987-09-15 | The Wistar Institute | Human hybridroma fusion partner for production of human monoclonal antibodies |
| US5015568A (en) | 1986-07-09 | 1991-05-14 | The Wistar Institute | Diagnostic methods for detecting lymphomas in humans |
| US5202429A (en) | 1986-07-09 | 1993-04-13 | The Wistar Institute | DNA molecules having human BCL-2 gene sequences |
| US5198338A (en) | 1989-05-31 | 1993-03-30 | Temple University | Molecular probing for human t-cell leukemia and lymphoma |
| US5149628A (en) | 1989-11-15 | 1992-09-22 | Temple University | Methods for detecting bcl-3 gene in human leukemias |
| WO1993012136A1 (en) | 1991-12-11 | 1993-06-24 | Thomas Jefferson University | Detection and treatment of acute leukemias resulting from chromosome abnormalities in the all-1 region |
| US5633135A (en) | 1991-12-11 | 1997-05-27 | Thomas Jefferson University | Chimeric nucleic acids and proteins resulting from ALL-1 region chromosome abnormalities |
| US6040140A (en) | 1991-12-11 | 2000-03-21 | Thomas Jefferson University | Methods for screening and treating leukemias resulting from all-1 region chromosome abnormalities |
| US5674682A (en) | 1992-10-29 | 1997-10-07 | Thomas Jefferson University | Nucleic acid primers for detecting micrometastasis of prostate cancer |
| WO1994010343A1 (en) | 1992-10-29 | 1994-05-11 | Thomas Jefferson University | Methods of detecting micrometastasis of prostate cancer |
| US5985598A (en) | 1994-10-27 | 1999-11-16 | Thomas Jefferson University | TCL-1 gene and protein and related methods and compositions |
| US7175995B1 (en) | 1994-10-27 | 2007-02-13 | Thomas Jefferson University | TCL-1 protein and related methods |
| US5695944A (en) | 1995-05-05 | 1997-12-09 | Thomas Jefferson University | Modulation of bcl-2 phosphorylation |
| US5567586A (en) | 1995-05-18 | 1996-10-22 | Thomas Jefferson University | Methods of indentifying solid tumors with chromosome abnormalities in the ALL-1 region |
| US6242212B1 (en) | 1996-02-09 | 2001-06-05 | Thomas Jefferson University | Fragile histidine triad (FHIT) nucleic acids and methods of producing FHIT proteins |
| US5928884A (en) | 1996-02-09 | 1999-07-27 | Croce; Carlo M. | FHIT proteins and nucleic acids and methods based thereon |
| WO1998035707A1 (en) * | 1997-02-18 | 1998-08-20 | Thomas Jefferson University | Compositions that bind to pancreatic cancer cells and methods of using the same |
| EP0972083A1 (en) | 1997-04-04 | 2000-01-19 | THE TEXAS A&M UNIVERSITY SYSTEM | Noninvasive detection of colonic biomarkers using fecal messenger rna |
| CA2335315A1 (en) | 1998-07-20 | 2000-01-27 | Thomas Jefferson University | Nitrilase homologs |
| WO2000005419A1 (en) | 1998-07-24 | 2000-02-03 | Yeda Research And Development Company Ltd. | Prevention of metastasis with 5-aza-2'-deoxycytidine |
| US7141417B1 (en) | 1999-02-25 | 2006-11-28 | Thomas Jefferson University | Compositions, kits, and methods relating to the human FEZ1 gene, a novel tumor suppressor gene |
| CA2367906A1 (en) | 1999-03-15 | 2000-09-21 | Thomas Jefferson University | Tcl-1b gene and protein and related methods and compositions |
| US7163801B2 (en) | 1999-09-01 | 2007-01-16 | The Burnham Institute | Methods for determining the prognosis for cancer patients using tucan |
| US6891031B2 (en) * | 2000-02-18 | 2005-05-10 | The Regents Of The University Of California | Coordinate cytokine regulatory sequences |
| US20010026796A1 (en) | 2000-03-14 | 2001-10-04 | Croce Carlo M. | TCL1 enhances Akt kinase activity and mediates its nuclear translocation |
| EP1276879A4 (en) | 2000-04-11 | 2004-12-22 | Univ Jefferson | MUIR-TORRE-LIKE SYNDROME IN Fhit-DEFECTIVE MICE |
| US20020086331A1 (en) | 2000-05-16 | 2002-07-04 | Carlo Croce | Crystal structure of worm NitFhit reveals that a Nit tetramer binds two Fhit dimers |
| US7060811B2 (en) | 2000-10-13 | 2006-06-13 | Board Of Regents, The University Of Texas System | WWOX: a tumor suppressor gene mutated in multiple cancers |
| US20040033502A1 (en) | 2001-03-28 | 2004-02-19 | Amanda Williams | Gene expression profiles in esophageal tissue |
| US20050176025A1 (en) | 2001-05-18 | 2005-08-11 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA) |
| EP2390328A1 (en) * | 2001-09-28 | 2011-11-30 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | MicroRNA molecules |
| US7371736B2 (en) | 2001-11-07 | 2008-05-13 | The Board Of Trustees Of The University Of Arkansas | Gene expression profiling based identification of DKK1 as a potential therapeutic targets for controlling bone loss |
| GB0128898D0 (en) | 2001-12-03 | 2002-01-23 | Biotech Res Ventures Pte Ltd | Materials and methods relating to the stabilization and activation of a tumour suppressor protein |
| ES2555307T3 (es) | 2002-03-08 | 2015-12-30 | Eisai R&D Management Co., Ltd. | Compuestos macrocíclicos útiles como agentes farmacéuticos |
| WO2003086445A1 (en) | 2002-04-08 | 2003-10-23 | Ciphergen Biosystems, Inc. | Serum biomarkers in hepatocellular carcinoma |
| EP1499182B1 (en) | 2002-04-29 | 2009-10-28 | Thomas Jefferson University | Human chronic lymphocytic leukemia modeled in mouse by targeted tcl1 expression |
| EP1530418A4 (en) | 2002-05-31 | 2005-10-12 | Univ Leland Stanford Junior | METHOD FOR IDENTIFYING AND INSULATING STEM CELLS AND CANCER STAMPS |
| US20050260639A1 (en) | 2002-09-30 | 2005-11-24 | Oncotherapy Science, Inc. | Method for diagnosing pancreatic cancer |
| WO2004033659A2 (en) | 2002-10-11 | 2004-04-22 | Thomas Jefferson University | Novel tumor suppressor gene and compositions and methods for making and using the same |
| US20050266443A1 (en) | 2002-10-11 | 2005-12-01 | Thomas Jefferson University | Novel tumor suppressor gene and compositions and methods for making and using the same |
| US20040152112A1 (en) | 2002-11-13 | 2004-08-05 | Thomas Jefferson University | Compositions and methods for cancer diagnosis and therapy |
| US7250496B2 (en) | 2002-11-14 | 2007-07-31 | Rosetta Genomics Ltd. | Bioinformatically detectable group of novel regulatory genes and uses thereof |
| WO2004071464A2 (en) * | 2003-02-12 | 2004-08-26 | Johns Hopkins University School Of Medicine | Diagnostic application of differentially-expressed genes in lympho-hematopoietic stem cells |
| WO2004079013A1 (en) | 2003-03-03 | 2004-09-16 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Ecto-5’-nucleotidase (cd73) used in the diagnosis and the treatment of pancreatic cancer |
| US7183384B2 (en) | 2003-03-06 | 2007-02-27 | A & G Pharmaceutical, Inc. | Monoclonal antibody 7H11 reactive with human cancer |
| AU2003286741A1 (en) | 2003-05-02 | 2004-11-26 | Thomas Jefferson University | Methods and compositions for diagnosis and therapy of parkin-associated disorders |
| US20050069918A1 (en) | 2003-05-29 | 2005-03-31 | Francois Claret | JAB1 as a prognostic marker and a therapeutic target for human cancer |
| SG179291A1 (en) | 2003-06-18 | 2012-04-27 | Genelux Corp | Modified recombinant vaccinia viruses and other microorganisms, uses thereof |
| US8106180B2 (en) * | 2003-08-07 | 2012-01-31 | Whitehead Institute For Biomedical Research | Methods and products for expression of micro RNAs |
| US20050037362A1 (en) | 2003-08-11 | 2005-02-17 | Eppendorf Array Technologies, S.A. | Detection and quantification of siRNA on microarrays |
| US8412541B2 (en) | 2003-08-14 | 2013-04-02 | Edda Technology, Inc. | Method and system for intelligent qualitative and quantitative analysis for medical diagnosis |
| US20050084883A1 (en) | 2003-08-25 | 2005-04-21 | The Johns Hopkins University School Of Medicine | Method of diagnosis and treatment of pancreatic endocrine neoplasms based on differential gene expression analysis |
| WO2005031002A2 (en) | 2003-09-22 | 2005-04-07 | Rosetta Inpharmatics Llc | Synthetic lethal screen using rna interference |
| JP2007506425A (ja) | 2003-09-24 | 2007-03-22 | オンコセラピー・サイエンス株式会社 | 肝細胞癌を診断する方法 |
| WO2005047477A2 (en) | 2003-11-07 | 2005-05-26 | University Of Massachusetts | Interspersed repetitive element rnas as substrates, inhibitors and delivery vehicles for rnai |
| US20050164252A1 (en) * | 2003-12-04 | 2005-07-28 | Yeung Wah Hin A. | Methods using non-genic sequences for the detection, modification and treatment of any disease or improvement of functions of a cell |
| DE602004031881D1 (de) | 2003-12-19 | 2011-04-28 | Univ California | Verfahren und materialien zur beurteilung von prostatakrebstherapien |
| CA2554818A1 (en) | 2004-02-09 | 2005-08-25 | Thomas Jefferson University | Diagnosis and treatment of cancers with microrna located in or near cancer-associated chromosomal features |
| US20050256072A1 (en) | 2004-02-09 | 2005-11-17 | University Of Massachusetts | Dual functional oligonucleotides for use in repressing mutant gene expression |
| CA2558366A1 (en) | 2004-02-23 | 2005-09-01 | Erasmus Universiteit Rotterdam | Classification, diagnosis and prognosis of acute myeloid leukemia by gene expression profiling |
| US20060134639A1 (en) * | 2004-04-06 | 2006-06-22 | Huffel Christophe V | Method for the determination of cellular transcriptional regulation |
| US7365058B2 (en) | 2004-04-13 | 2008-04-29 | The Rockefeller University | MicroRNA and methods for inhibiting same |
| JP2007533324A (ja) * | 2004-04-20 | 2007-11-22 | ゲナコ・バイオメデイカル・プロダクツ・インコーポレイテツド | ncRNAを検出する方法 |
| JP5697297B2 (ja) | 2004-05-14 | 2015-04-08 | ロゼッタ ジノミクス リミテッド | マイクロnasおよびその使用 |
| EP2290071B1 (en) | 2004-05-28 | 2014-12-31 | Asuragen, Inc. | Methods and compositions involving microRNA |
| US7635563B2 (en) | 2004-06-30 | 2009-12-22 | Massachusetts Institute Of Technology | High throughput methods relating to microRNA expression analysis |
| US20060037088A1 (en) | 2004-08-13 | 2006-02-16 | Shulin Li | Gene expression levels as predictors of chemoradiation response of cancer |
| US7893034B2 (en) | 2004-09-02 | 2011-02-22 | Yale University | Regulation of oncogenes by microRNAs |
| US7642348B2 (en) * | 2004-10-04 | 2010-01-05 | Rosetta Genomics Ltd | Prostate cancer-related nucleic acids |
| US7592441B2 (en) | 2004-10-04 | 2009-09-22 | Rosetta Genomics Ltd | Liver cancer-related nucleic acids |
| FR2877350B1 (fr) | 2004-11-03 | 2010-08-27 | Centre Nat Rech Scient | IDENTIFICATION ET UTILISATION DE miRNAs IMPLIQUES DANS LA DIFFERENCIATION DE CELLULES ISSUES D'UNE LEUCEMIE MYELOIDE |
| EP2314688B1 (en) | 2004-11-12 | 2014-07-16 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
| US7361752B2 (en) | 2004-12-14 | 2008-04-22 | Alnylam Pharmaceuticals, Inc. | RNAi modulation of MLL-AF4 and uses thereof |
| US20060185027A1 (en) | 2004-12-23 | 2006-08-17 | David Bartel | Systems and methods for identifying miRNA targets and for altering miRNA and target expression |
| US20070099196A1 (en) | 2004-12-29 | 2007-05-03 | Sakari Kauppinen | Novel oligonucleotide compositions and probe sequences useful for detection and analysis of micrornas and their target mRNAs |
| US8071306B2 (en) | 2005-01-25 | 2011-12-06 | Merck Sharp & Dohme Corp. | Methods for quantitating small RNA molecules |
| US20090123912A1 (en) | 2005-01-25 | 2009-05-14 | Rosetta Inpharmatics Llc | Methods for quantitating small RNA molecules |
| US20070065840A1 (en) | 2005-03-23 | 2007-03-22 | Irena Naguibneva | Novel oligonucleotide compositions and probe sequences useful for detection and analysis of microRNAS and their target mRNAS |
| GB2425311A (en) | 2005-04-15 | 2006-10-25 | Ist Superiore Sanita | Micro RNA against kit protein |
| EP1883709A4 (en) | 2005-04-29 | 2010-10-13 | Univ Rockefeller | HUMAN MICRO-RNAS AND METHOD OF INHIBITING THEM |
| EP1904111A4 (en) | 2005-06-03 | 2009-08-19 | Univ Johns Hopkins | COMPOSITIONS AND METHODS FOR REDUCING MICRORNA EXPRESSION FOR THE TREATMENT OF NEOPLASIA |
| US20070065844A1 (en) | 2005-06-08 | 2007-03-22 | Massachusetts Institute Of Technology | Solution-based methods for RNA expression profiling |
| US20060292616A1 (en) | 2005-06-23 | 2006-12-28 | U.S. Genomics, Inc. | Single molecule miRNA-based disease diagnostic methods |
| CN103866018B (zh) | 2005-08-01 | 2016-05-25 | 俄亥俄州立大学研究基金会 | 用于乳腺癌的诊断、预后和治疗的基于MicroRNA的方法和组合物 |
| US20070213292A1 (en) | 2005-08-10 | 2007-09-13 | The Rockefeller University | Chemically modified oligonucleotides for use in modulating micro RNA and uses thereof |
| AU2006279906B2 (en) | 2005-08-10 | 2012-05-10 | Alnylam Pharmaceuticals, Inc. | Chemically modified oligonucleotides for use in modulating micro RNA and uses thereof |
| CN103028120B (zh) | 2005-09-12 | 2015-08-12 | 俄亥俄州立大学研究基金会 | 用于诊断或治疗bcl2相关癌症的组合物和方法 |
| CN101312740A (zh) | 2005-10-05 | 2008-11-26 | 俄亥俄州立大学研究基金会 | Wwox基因、包含该基因的载体和在癌症治疗中的用途 |
| US7390792B2 (en) | 2005-12-15 | 2008-06-24 | Board Of Regents, The University Of Texas System | MicroRNA1 therapies |
| ES2524018T3 (es) | 2006-01-05 | 2014-12-03 | The Ohio State University Research Foundation | Anomalías de la expresión de microARN en tumores pancreáticos endocrinos y acinares |
| WO2007081720A2 (en) | 2006-01-05 | 2007-07-19 | The Ohio State University Research Foundation | Microrna-based methods and compositions for the diagnosis, prognosis and treatment of lung cancer |
| EP2487260B1 (en) | 2006-01-05 | 2015-07-08 | The Ohio State University Research Foundation | Microrna-based methods and compositions for the diagnosis and treatment of solid cancers |
| US20090007281A1 (en) | 2006-01-13 | 2009-01-01 | Battelle Memorial Institute | Animal Model for Assessing Copd-Related Diseases |
| EP2369012A1 (en) | 2006-03-20 | 2011-09-28 | The Ohio State University Research Foundation | Micro-RNA fingerprints during human megakaryocytopoiesis |
| WO2007112097A2 (en) | 2006-03-24 | 2007-10-04 | Children's Medical Center Corporation | Novel signature self renewal gene expression programs |
| AU2007243475B2 (en) | 2006-04-24 | 2013-02-07 | The Ohio State University Research Foundation | Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in miR155 transgenic mice |
| CA2657030A1 (en) | 2006-07-13 | 2008-01-17 | The Ohio State University Research Foundation, An Instrumentality Of The State Of Ohio | Micro-rna-based methods and compositions for the diagnosis and treatment of colon cancer-related diseases |
| US20080193943A1 (en) | 2006-09-05 | 2008-08-14 | Abbott Laboratories | Companion diagnostic assays for cancer therapy |
| CA2663878A1 (en) | 2006-09-19 | 2008-03-27 | Asuragen, Inc. | Mir-200 regulated genes and pathways as targets for therapeutic intervention |
| JP2010510964A (ja) | 2006-09-19 | 2010-04-08 | アシュラジェン インコーポレイテッド | 治療的介入の標的としての、miR−15、miR−26、miR−31、miR−145、miR−147、miR−188、miR−215、miR−216、miR−331、mmu−miR−292−3pによって調節される遺伝子および経路 |
| AU2007299828C1 (en) | 2006-09-19 | 2014-07-17 | Interpace Diagnostics, Llc | MicroRNAs differentially expressed in pancreatic diseases and uses thereof |
| US8071292B2 (en) | 2006-09-19 | 2011-12-06 | The Ohio State University Research Foundation | Leukemia diagnostic methods |
| JP5501766B2 (ja) | 2006-11-01 | 2014-05-28 | ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション | 肝細胞癌における生存および転移を予測するためのマイクロrna発現サイン |
| US8293684B2 (en) | 2006-11-29 | 2012-10-23 | Exiqon | Locked nucleic acid reagents for labelling nucleic acids |
| WO2008070082A2 (en) | 2006-12-04 | 2008-06-12 | The Johns Hopkins University | Stem-progenitor cell specific micro-ribonucleic acids and uses thereof |
| CA2671299A1 (en) | 2006-12-08 | 2008-06-19 | Asuragen, Inc. | Functions and targets of let-7 micro rnas |
| CN101622350A (zh) | 2006-12-08 | 2010-01-06 | 奥斯瑞根公司 | 作为干预治疗靶标的miR-126调控基因和通路 |
| CA2671294A1 (en) | 2006-12-08 | 2008-06-19 | Asuragen, Inc. | Mir-21 regulated genes and pathways as targets for therapeutic intervention |
| AU2007333106A1 (en) | 2006-12-08 | 2008-06-19 | Asuragen, Inc. | miR-20 regulated genes and pathways as targets for therapeutic intervention |
| US20090175827A1 (en) | 2006-12-29 | 2009-07-09 | Byrom Mike W | miR-16 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION |
| US8034560B2 (en) | 2007-01-31 | 2011-10-11 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of acute myeloid leukemia (AML) |
| EP2134874A4 (en) | 2007-04-10 | 2010-12-22 | Univ Nat Taiwan | PROGNOSIS OF SURVIVAL RATE OF PATIENTS AFTER TREATMENT WITH miRNA |
| JP5592251B2 (ja) | 2007-04-30 | 2014-09-17 | ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション | 膵臓癌を正常な膵臓機能および/または慢性膵炎と識別する方法 |
| US20090005336A1 (en) | 2007-05-08 | 2009-01-01 | Zhiguo Wang | Use of the microRNA miR-1 for the treatment, prevention, and diagnosis of cardiac conditions |
| US20090131354A1 (en) | 2007-05-22 | 2009-05-21 | Bader Andreas G | miR-126 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION |
| US20090232893A1 (en) | 2007-05-22 | 2009-09-17 | Bader Andreas G | miR-143 REGULATED GENES AND PATHWAYS AS TARGETS FOR THERAPEUTIC INTERVENTION |
| WO2008154098A2 (en) | 2007-06-07 | 2008-12-18 | Wisconsin Alumni Research Foundation | Reagents and methods for mirna expression analysis and identification of cancer biomarkers |
| WO2008154333A2 (en) | 2007-06-08 | 2008-12-18 | Asuragen, Inc. | Mir-34 regulated genes and pathways as targets for therapeutic intervention |
| CA2690144A1 (en) | 2007-06-08 | 2008-12-18 | The Government Of The United States Of America As Represented By The Sec Retary Of Department Of Health And Human Services | Methods for determining hepatocellular carcinoma subtype and detecting hepatic cancer stem cells |
| US8053186B2 (en) | 2007-06-15 | 2011-11-08 | The Ohio State University Research Foundation | Oncogenic ALL-1 fusion proteins for targeting Drosha-mediated microRNA processing |
| ES2496172T3 (es) | 2007-07-31 | 2014-09-18 | The Ohio State University Research Foundation | Métodos para invertir la metilación por selección dirigida de DNMT3A y DNMT3B |
| AU2008283997B2 (en) | 2007-08-03 | 2014-04-10 | The Ohio State University Research Foundation | Ultraconserved regions encoding ncRNAs |
| CN101836112A (zh) | 2007-08-22 | 2010-09-15 | 俄亥俄州立大学研究基金会 | 用于在人急性白血病中诱导epha7和erk磷酸化的脱调节的方法和组合物 |
| US20090061424A1 (en) | 2007-08-30 | 2009-03-05 | Sigma-Aldrich Company | Universal ligation array for analyzing gene expression or genomic variations |
| WO2009033140A1 (en) | 2007-09-06 | 2009-03-12 | The Ohio State University Research Foundation | Microrna signatures in human ovarian cancer |
| CA2702241A1 (en) | 2007-10-11 | 2009-04-16 | The Ohio State University Research Foundation | Methods and compositions for the diagnosis and treatment of esophageal adenocarcinomas |
| CA2703707A1 (en) | 2007-10-26 | 2009-04-30 | The Ohio State University Research Foundation | Methods for identifying fragile histidine triad (fhit) interaction and uses thereof |
| CA2705488C (en) | 2007-11-12 | 2018-01-16 | Curtis C. Harris | Therapeutic applications of p53 isoforms in regenerative medicine, aging and cancer |
| US20090123933A1 (en) | 2007-11-12 | 2009-05-14 | Wake Forest University Health Sciences | Microrna biomarkers in lupus |
| US20100323357A1 (en) | 2007-11-30 | 2010-12-23 | The Ohio State University Research Foundation | MicroRNA Expression Profiling and Targeting in Peripheral Blood in Lung Cancer |
| WO2009070805A2 (en) | 2007-12-01 | 2009-06-04 | Asuragen, Inc. | Mir-124 regulated genes and pathways as targets for therapeutic intervention |
| WO2009086156A2 (en) | 2007-12-21 | 2009-07-09 | Asuragen, Inc. | Mir-10 regulated genes and pathways as targets for therapeutic intervention |
| EP2604704B1 (en) | 2008-02-01 | 2018-10-03 | The General Hospital Corporation | Use of microvesicles in diagnosis and prognosis of brain tumor |
| US20090263803A1 (en) | 2008-02-08 | 2009-10-22 | Sylvie Beaudenon | Mirnas differentially expressed in lymph nodes from cancer patients |
| CA2716906A1 (en) | 2008-02-28 | 2009-09-03 | The Ohio State University Research Foundation | Microrna-based methods and compositions for the diagnosis, prognosis and treatment of gastric cancer |
| WO2009108860A2 (en) | 2008-02-28 | 2009-09-03 | The Ohio University Rasearch Foundation | Microrna-based methods and compositions for the diagnosis, pronosis and treatment of prostate related disorders |
| CA2717030A1 (en) | 2008-02-28 | 2009-09-03 | The Ohio State University Research Foundation | Microrna signatures associated with cytogenetics and prognosis in acute myeloid leukemia (aml) and uses thereof |
| US20110052502A1 (en) | 2008-02-28 | 2011-03-03 | The Ohio State University Research Foundation | MicroRNA Signatures Associated with Human Chronic Lymphocytic Leukemia (CCL) and Uses Thereof |
| WO2009111643A2 (en) * | 2008-03-06 | 2009-09-11 | Asuragen, Inc. | Microrna markers for recurrence of colorectal cancer |
| WO2009154835A2 (en) | 2008-03-26 | 2009-12-23 | Asuragen, Inc. | Compositions and methods related to mir-16 and therapy of prostate cancer |
| EP2285960B1 (en) | 2008-05-08 | 2015-07-08 | Asuragen, INC. | Compositions and methods related to mir-184 modulation of neovascularization or angiogenesis |
| CN102112110A (zh) | 2008-06-06 | 2011-06-29 | 米尔纳医疗股份有限公司 | 用于RNAi试剂体内递送的新型组合物 |
| AU2009257410B2 (en) | 2008-06-11 | 2014-03-06 | Fudan University | Use of miR-26 family as a predictive marker of hepatocellular carcinoma and responsiveness to therapy |
| WO2010019694A1 (en) | 2008-08-12 | 2010-02-18 | The Ohio State University Research Foundation | Micro-rna-based compositions and methods for the diagnosis, prognosis and treatment of multiple myeloma |
| AU2009316584A1 (en) | 2008-11-21 | 2010-05-27 | The Ohio State University Research Foundation | Tcl1 as a transcriptional regulator |
| US20110275534A1 (en) | 2008-12-05 | 2011-11-10 | The Ohio State University | MicroRNA-Based Methods and Compositions for the Diagnosis, Prognosis and Treatment of Ovarian Cancer Using a Real-Time PCR Platform |
| CA2753562A1 (en) | 2009-02-26 | 2010-09-02 | The Ohio State University Research Foundation | Micrornas in never-smokers and related materials and methods |
-
2007
- 2007-11-01 JP JP2009535366A patent/JP5501766B2/ja not_active Expired - Fee Related
- 2007-11-01 CA CA002667617A patent/CA2667617A1/en not_active Abandoned
- 2007-11-01 US US12/513,219 patent/US8252538B2/en not_active Expired - Fee Related
- 2007-11-01 EP EP07867402.5A patent/EP2087135B8/en not_active Not-in-force
- 2007-11-01 WO PCT/US2007/023660 patent/WO2008054828A2/en not_active Ceased
- 2007-11-01 AU AU2007314212A patent/AU2007314212B2/en not_active Ceased
- 2007-11-01 ES ES07867402T patent/ES2425416T3/es active Active
-
2012
- 2012-08-27 US US13/595,192 patent/US20120329672A1/en not_active Abandoned
Non-Patent Citations (2)
| Title |
|---|
| None |
| See also references of EP2087135A4 |
Cited By (105)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8658370B2 (en) | 2005-08-01 | 2014-02-25 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of breast cancer |
| US8481505B2 (en) | 2005-09-12 | 2013-07-09 | The Ohio State University Research Foundation | Compositions and methods for the diagnosis and therapy of BCL2-associated cancers |
| US8377637B2 (en) | 2006-01-05 | 2013-02-19 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of lung cancer using miR-17-3P |
| US8071292B2 (en) | 2006-09-19 | 2011-12-06 | The Ohio State University Research Foundation | Leukemia diagnostic methods |
| US8252538B2 (en) | 2006-11-01 | 2012-08-28 | The Ohio State University | MicroRNA expression signature for predicting survival and metastases in hepatocellular carcinoma |
| US8465917B2 (en) | 2007-06-08 | 2013-06-18 | The Ohio State University Research Foundation | Methods for determining heptocellular carcinoma subtype and detecting hepatic cancer stem cells |
| US8349560B2 (en) | 2007-06-15 | 2013-01-08 | The Ohio State University Research | Method for diagnosing acute lymphomic leukemia (ALL) using miR-222 |
| US8361722B2 (en) | 2007-06-15 | 2013-01-29 | The Ohio State University Research Foundation | Method for diagnosing acute lymphomic leukemia (ALL) using miR-221 |
| US9085804B2 (en) | 2007-08-03 | 2015-07-21 | The Ohio State University Research Foundation | Ultraconserved regions encoding ncRNAs |
| US8911998B2 (en) | 2007-10-26 | 2014-12-16 | The Ohio State University | Methods for identifying fragile histidine triad (FHIT) interaction and uses thereof |
| US10301627B2 (en) | 2007-10-29 | 2019-05-28 | Regulus Therapeutics Inc. | Targeting microRNAs for the treatment of liver cancer |
| US9845470B2 (en) | 2007-10-29 | 2017-12-19 | Regulus Therapeutics Inc. | Targeting microRNAS for the treatment of liver cancer |
| US8680067B2 (en) | 2007-10-29 | 2014-03-25 | Regulus Therapeutics, Inc. | Targeting microRNAs for the treatment of liver cancer |
| WO2009058907A3 (en) * | 2007-10-29 | 2009-12-17 | Isis Pharmaceuticals, Inc. | Targeting micrornas for the treatment of liver cancer |
| US9150857B2 (en) | 2007-10-29 | 2015-10-06 | Regulus Therapeutics | Targeting microRNAs for the treatment of liver cancer |
| US9506062B2 (en) | 2007-10-29 | 2016-11-29 | Regulus Therapeutics Inc. | Targeting microRNAs for the treatment of liver cancer |
| US8211867B2 (en) | 2007-10-29 | 2012-07-03 | Regulus Therapeutics Inc. | Targeting microRNAs for the treatment of liver cancer |
| US9125923B2 (en) | 2008-06-11 | 2015-09-08 | The Ohio State University | Use of MiR-26 family as a predictive marker for hepatocellular carcinoma and responsiveness to therapy |
| WO2010043114A1 (zh) * | 2008-10-13 | 2010-04-22 | 北京命码生科科技有限公司 | 血清/血浆miRNA在HBV感染和肝癌早期诊断中的应用 |
| EP2196543A1 (en) * | 2008-12-15 | 2010-06-16 | Koninklijke Philips Electronics N.V. | Compositions and methods for micro-rna expression profiling of hepatocellular cancer |
| ITMI20091538A1 (it) * | 2009-09-07 | 2011-03-08 | Istituto Naz Di Genetica Mole Colare Ingm | Profili di espressione di micro-rna nel sangue periferico di pazienti affetti da epatocarcinoma o cirrosi epatica e loro usi |
| EP2657354A1 (en) * | 2009-09-07 | 2013-10-30 | Istituto Nazionale Di Genetica Molecolare-INGM | Microrna expression signature in peripheral blood of patients affected by hepatocarcinoma or hepatic cirrhosis and uses thereof |
| WO2011027332A3 (en) * | 2009-09-07 | 2011-05-19 | Istituto Nazionale Di Genetica Molecolare - Ingm | Microrna expression signature in peripheral blood of patients affected by hepatocarcinoma or hepatic cirrhosis and uses thereof |
| US8916533B2 (en) | 2009-11-23 | 2014-12-23 | The Ohio State University | Materials and methods useful for affecting tumor cell growth, migration and invasion |
| WO2011119553A1 (en) | 2010-03-26 | 2011-09-29 | The Ohio State University | Materials and methods related to modulation of mismatch repair and genomic stability by mir-155 |
| WO2012031412A1 (zh) * | 2010-09-08 | 2012-03-15 | 上海市公共卫生临床中心 | 用于预测干扰素治疗慢性乙型肝炎疗效的血浆miRNA谱及检测试剂盒 |
| CN102021169A (zh) * | 2010-10-14 | 2011-04-20 | 南京大学 | 一种血清/血浆miRNA组合物及其应用 |
| US8946187B2 (en) | 2010-11-12 | 2015-02-03 | The Ohio State University | Materials and methods related to microRNA-21, mismatch repair, and colorectal cancer |
| WO2012065049A1 (en) | 2010-11-12 | 2012-05-18 | The Ohio State University Research Foundation | Materials and methods related to microrna-21, mismatch repair, and colorectal cancer |
| US11679157B2 (en) | 2010-11-15 | 2023-06-20 | The Ohio State University | Controlled release mucoadhesive systems |
| US10758619B2 (en) | 2010-11-15 | 2020-09-01 | The Ohio State University | Controlled release mucoadhesive systems |
| WO2012078209A1 (en) | 2010-12-06 | 2012-06-14 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Diagnosis and treatment of adrenocortical tumors using human microrna-483 |
| US8664192B2 (en) | 2011-03-07 | 2014-03-04 | The Ohio State University | Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer |
| CN102776185B (zh) * | 2011-05-06 | 2013-07-10 | 复旦大学附属中山医院 | 由血浆microRNA组合成的肝癌诊断标志物及一种诊断肝癌的新方法 |
| CN102776185A (zh) * | 2011-05-06 | 2012-11-14 | 复旦大学附属中山医院 | 由血浆microRNA组合成的肝癌诊断标志物及一种诊断肝癌的新方法 |
| US9249468B2 (en) | 2011-10-14 | 2016-02-02 | The Ohio State University | Methods and materials related to ovarian cancer |
| US9481885B2 (en) | 2011-12-13 | 2016-11-01 | Ohio State Innovation Foundation | Methods and compositions related to miR-21 and miR-29a, exosome inhibition, and cancer metastasis |
| US8859202B2 (en) | 2012-01-20 | 2014-10-14 | The Ohio State University | Breast cancer biomarker signatures for invasiveness and prognosis |
| US9434995B2 (en) | 2012-01-20 | 2016-09-06 | The Ohio State University | Breast cancer biomarker signatures for invasiveness and prognosis |
| WO2013148147A1 (en) | 2012-03-26 | 2013-10-03 | The U.S.A., As Represented By The Secretary Dept. Of Health And Human Services | Dna methylation analysis for the diagnosis, prognosis and treatment of adrenal neoplasms |
| US8846316B2 (en) | 2012-04-30 | 2014-09-30 | Industrial Technology Research Institute | Biomarker for human liver cancer |
| TWI454578B (zh) * | 2012-04-30 | 2014-10-01 | Ind Tech Res Inst | 偵測罹患肝癌機率的方法 |
| WO2014081507A1 (en) | 2012-11-26 | 2014-05-30 | Moderna Therapeutics, Inc. | Terminally modified rna |
| EP4074834A1 (en) | 2012-11-26 | 2022-10-19 | ModernaTX, Inc. | Terminally modified rna |
| WO2014093924A1 (en) | 2012-12-13 | 2014-06-19 | Moderna Therapeutics, Inc. | Modified nucleic acid molecules and uses thereof |
| WO2014113089A2 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| EP3434774A1 (en) | 2013-01-17 | 2019-01-30 | ModernaTX, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| CN103898219A (zh) * | 2014-04-01 | 2014-07-02 | 镇江市第三人民医院 | 用于检测原发性胆汁性肝硬化的血清miRNA标志物及标志物组合及应用 |
| CN104293914A (zh) * | 2014-09-05 | 2015-01-21 | 镇江市第三人民医院 | 用于检测原发性肝细胞癌的血清miRNA标志物组合及应用 |
| EP3461904A1 (en) | 2014-11-10 | 2019-04-03 | ModernaTX, Inc. | Alternative nucleic acid molecules containing reduced uracil content and uses thereof |
| WO2017127750A1 (en) | 2016-01-22 | 2017-07-27 | Modernatx, Inc. | Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof |
| WO2017180587A2 (en) | 2016-04-11 | 2017-10-19 | Obsidian Therapeutics, Inc. | Regulated biocircuit systems |
| EP4186518A1 (en) | 2016-05-18 | 2023-05-31 | ModernaTX, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
| WO2017201350A1 (en) | 2016-05-18 | 2017-11-23 | Modernatx, Inc. | Polynucleotides encoding interleukin-12 (il12) and uses thereof |
| WO2017218704A1 (en) | 2016-06-14 | 2017-12-21 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| WO2018002812A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders |
| EP4484443A2 (en) | 2016-06-29 | 2025-01-01 | CRISPR Therapeutics AG | Materials and methods for treatment of friedreich ataxia and other related disorders |
| WO2018002783A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of friedreich ataxia and other related disorders |
| WO2018002762A1 (en) | 2016-06-29 | 2018-01-04 | Crispr Therapeutics Ag | Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders |
| US11564997B2 (en) | 2016-06-29 | 2023-01-31 | Crispr Therapeutics Ag | Materials and methods for treatment of friedreich ataxia and other related disorders |
| US11174469B2 (en) | 2016-06-29 | 2021-11-16 | Crispr Therapeutics Ag | Materials and methods for treatment of Amyotrophic Lateral Sclerosis (ALS) and other related disorders |
| WO2018007980A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| US11459587B2 (en) | 2016-07-06 | 2022-10-04 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| EP4650364A2 (en) | 2016-07-06 | 2025-11-19 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| US12442020B2 (en) | 2016-07-06 | 2025-10-14 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| WO2018007976A1 (en) | 2016-07-06 | 2018-01-11 | Crispr Therapeutics Ag | Materials and methods for treatment of pain related disorders |
| US11801313B2 (en) | 2016-07-06 | 2023-10-31 | Vertex Pharmaceuticals Incorporated | Materials and methods for treatment of pain related disorders |
| WO2018081459A1 (en) | 2016-10-26 | 2018-05-03 | Modernatx, Inc. | Messenger ribonucleic acids for enhancing immune responses and methods of use thereof |
| WO2018089540A1 (en) | 2016-11-08 | 2018-05-17 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
| WO2018144775A1 (en) | 2017-02-01 | 2018-08-09 | Modernatx, Inc. | Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides |
| US11407997B2 (en) | 2017-02-22 | 2022-08-09 | Crispr Therapeutics Ag | Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders |
| WO2018154418A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders |
| WO2018154462A2 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders |
| US11920148B2 (en) | 2017-02-22 | 2024-03-05 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| WO2018154387A1 (en) | 2017-02-22 | 2018-08-30 | Crispr Therapeutics Ag | Compositions and methods for gene editing |
| US11559588B2 (en) | 2017-02-22 | 2023-01-24 | Crispr Therapeutics Ag | Materials and methods for treatment of Spinocerebellar Ataxia Type 1 (SCA1) and other Spinocerebellar Ataxia Type 1 Protein (ATXN1) gene related conditions or disorders |
| WO2018231990A2 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Polynucleotides encoding methylmalonyl-coa mutase |
| WO2019046809A1 (en) | 2017-08-31 | 2019-03-07 | Modernatx, Inc. | METHODS OF MANUFACTURING LIPID NANOPARTICLES |
| WO2019102381A1 (en) | 2017-11-21 | 2019-05-31 | Casebia Therapeutics Llp | Materials and methods for treatment of autosomal dominant retinitis pigmentosa |
| WO2019123429A1 (en) | 2017-12-21 | 2019-06-27 | Casebia Therapeutics Llp | Materials and methods for treatment of usher syndrome type 2a |
| WO2019152557A1 (en) | 2018-01-30 | 2019-08-08 | Modernatx, Inc. | Compositions and methods for delivery of agents to immune cells |
| WO2019200171A1 (en) | 2018-04-11 | 2019-10-17 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
| WO2019241315A1 (en) | 2018-06-12 | 2019-12-19 | Obsidian Therapeutics, Inc. | Pde5 derived regulatory constructs and methods of use in immunotherapy |
| WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
| WO2020086742A1 (en) | 2018-10-24 | 2020-04-30 | Obsidian Therapeutics, Inc. | Er tunable protein regulation |
| EP4427739A2 (en) | 2019-01-31 | 2024-09-11 | ModernaTX, Inc. | Methods of preparing lipid nanoparticles |
| WO2020160397A1 (en) | 2019-01-31 | 2020-08-06 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| WO2020185632A1 (en) | 2019-03-08 | 2020-09-17 | Obsidian Therapeutics, Inc. | Human carbonic anhydrase 2 compositions and methods for tunable regulation |
| WO2020263985A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Messenger rna comprising functional rna elements and uses thereof |
| WO2020263883A1 (en) | 2019-06-24 | 2020-12-30 | Modernatx, Inc. | Endonuclease-resistant messenger rna and uses thereof |
| WO2021046451A1 (en) | 2019-09-06 | 2021-03-11 | Obsidian Therapeutics, Inc. | Compositions and methods for dhfr tunable protein regulation |
| WO2021155274A1 (en) | 2020-01-31 | 2021-08-05 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| WO2022020811A1 (en) | 2020-07-24 | 2022-01-27 | Strand Therapeutics, Inc. | Lipidnanoparticle comprising modified nucleotides |
| WO2022032087A1 (en) | 2020-08-06 | 2022-02-10 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| WO2022150712A1 (en) | 2021-01-08 | 2022-07-14 | Strand Therapeutics, Inc. | Expression constructs and uses thereof |
| WO2022233880A1 (en) | 2021-05-03 | 2022-11-10 | Curevac Ag | Improved nucleic acid sequence for cell type specific expression |
| US12037616B2 (en) | 2022-03-01 | 2024-07-16 | Crispr Therapeutics Ag | Methods and compositions for treating angiopoietin-like 3 (ANGPTL3) related conditions |
| WO2023212618A1 (en) | 2022-04-26 | 2023-11-02 | Strand Therapeutics Inc. | Lipid nanoparticles comprising venezuelan equine encephalitis (vee) replicon and uses thereof |
| WO2024026482A1 (en) | 2022-07-29 | 2024-02-01 | Modernatx, Inc. | Lipid nanoparticle compositions comprising surface lipid derivatives and related uses |
| WO2024026487A1 (en) | 2022-07-29 | 2024-02-01 | Modernatx, Inc. | Lipid nanoparticle compositions comprising phospholipid derivatives and related uses |
| WO2024026475A1 (en) | 2022-07-29 | 2024-02-01 | Modernatx, Inc. | Compositions for delivery to hematopoietic stem and progenitor cells (hspcs) and related uses |
| WO2024222859A1 (zh) | 2023-04-28 | 2024-10-31 | 深圳深信生物科技有限公司 | 经修饰的递送载体及其应用 |
| WO2024259373A1 (en) | 2023-06-14 | 2024-12-19 | Modernatx, Inc. | Compounds and compositions for delivery of therapeutic agents |
| WO2025160381A1 (en) | 2024-01-26 | 2025-07-31 | Modernatx, Inc. | Methods of preparing lipid nanoparticles |
| WO2025166202A1 (en) | 2024-01-31 | 2025-08-07 | Modernatx, Inc. | Lipid nanoparticle compositions comprising sialic acid derivatives and the uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2007314212A1 (en) | 2008-05-08 |
| EP2087135A2 (en) | 2009-08-12 |
| EP2087135A4 (en) | 2009-12-23 |
| CA2667617A1 (en) | 2008-05-08 |
| EP2087135B8 (en) | 2013-07-24 |
| WO2008054828A9 (en) | 2008-06-19 |
| US8252538B2 (en) | 2012-08-28 |
| JP5501766B2 (ja) | 2014-05-28 |
| AU2007314212B2 (en) | 2014-05-29 |
| WO2008054828A3 (en) | 2008-12-11 |
| ES2425416T3 (es) | 2013-10-15 |
| EP2087135B1 (en) | 2013-06-19 |
| US20100120898A1 (en) | 2010-05-13 |
| US20120329672A1 (en) | 2012-12-27 |
| JP2010508042A (ja) | 2010-03-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2087135B1 (en) | Microrna expression signature for predicting survival and metastases in hepatocellular carcinoma | |
| Budhu et al. | Identification of metastasis‐related microRNAs in hepatocellular carcinoma | |
| Schaefer et al. | Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma | |
| Spahn et al. | Expression of microRNA‐221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence | |
| Borrelli et al. | miRNA expression profiling of ‘noninvasive follicular thyroid neoplasms with papillary-like nuclear features' compared with adenomas and infiltrative follicular variants of papillary thyroid carcinomas | |
| Schaefer et al. | Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors | |
| Wu et al. | Analysis of serum genome-wide microRNAs for breast cancer detection | |
| EP2481806B1 (en) | Methods for pancreatic cancer prognosis | |
| Shi et al. | MicroRNA expression and its implications for the diagnosis and therapeutic strategies of breast cancer | |
| Jamieson et al. | MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma | |
| Li et al. | Identification of aberrantly expressed miRNAs in rectal cancer | |
| Qu et al. | Circulating miRNAs: promising biomarkers of human cancer | |
| US20100285471A1 (en) | Methods and Compositions for the Diagnosis and Treatment of Esphageal Adenocarcinomas | |
| Nakka et al. | Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma | |
| WO2013110053A1 (en) | Breast cancer biomarker signatures for invasiveness and prognosis | |
| Sandhu et al. | Potential applications of microRNAs in cancer diagnosis, prognosis, and treatment | |
| Ludvíková et al. | Pathobiology of microRNAs and their emerging role in thyroid fine-needle aspiration | |
| CN108728439A (zh) | 小rna组成的指纹图谱及其在膀胱癌诊断中的应用 | |
| Bhome et al. | Clinical Relevance, Prognostic Potential, and Therapeutic Strategies of Noncoding RNAs in Cancer | |
| AU2013267038B2 (en) | Methods for differentiating pancreatic cancer from normal pancreatic function and/or chronic pancreatitis | |
| Navarro et al. | Exosomal microRNAs as potentially useful tools in cancer biomarker discovery | |
| Ziogas | The emerging role of miRNAs in translational cancer medicine. | |
| KUN | Novel Biology-driven bioinformatics methods in Cancer genomics |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07867402 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2667617 Country of ref document: CA Ref document number: 2007867402 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007314212 Country of ref document: AU |
|
| ENP | Entry into the national phase |
Ref document number: 2009535366 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2007314212 Country of ref document: AU Date of ref document: 20071101 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12513219 Country of ref document: US |