WO2008053828A1 - Polymère conducteur de protons, électrolyte solide et cellule électrochimique utilisant l'électrolyte solide - Google Patents

Polymère conducteur de protons, électrolyte solide et cellule électrochimique utilisant l'électrolyte solide Download PDF

Info

Publication number
WO2008053828A1
WO2008053828A1 PCT/JP2007/071012 JP2007071012W WO2008053828A1 WO 2008053828 A1 WO2008053828 A1 WO 2008053828A1 JP 2007071012 W JP2007071012 W JP 2007071012W WO 2008053828 A1 WO2008053828 A1 WO 2008053828A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
proton
proton conductive
polymer
salt
Prior art date
Application number
PCT/JP2007/071012
Other languages
English (en)
French (fr)
Inventor
Atsushi Kawada
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to JP2008542096A priority Critical patent/JPWO2008053828A1/ja
Publication of WO2008053828A1 publication Critical patent/WO2008053828A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel proton conductive polymer that functions under non-humidified conditions.
  • the present invention also relates to a proton-conductive high-molecular solid electrolyte that can be used in electrochemical devices such as batteries and electrolysis.
  • a perfluorocarbon sulfonic acid membrane or the like is used as an electrolyte membrane of a conventional solid polymer electrolyte fuel cell (Patent Document 1).
  • Perfluorocarbon sulfonic acid membrane or the like is used as an electrolyte membrane of a conventional solid polymer electrolyte fuel cell (Patent Document 1).
  • Perfluorocarbon sulfonic acid membrane or the like is used as an electrolyte membrane of a conventional solid polymer electrolyte fuel cell.
  • Non-patent Document 1 Since water contained in the membrane serves as a proton conduction path, there is a disadvantage that it cannot be used in a dry state (Non-patent Document 1).
  • Patent Literature 2 silica-dispersed perfluorosulfonic acid membrane
  • Patent Literature 3 inorganic-organic composite membrane
  • Patent Literature 4 phosphoric acid doped graft membrane
  • water in the membrane is indispensable in order to show proton conductivity, and it is not an essential solution to proton conduction under the non-humidified condition. There wasn't.
  • An ionic liquid is a generic name for a compound having a melting point of 100 ° C or less composed of a combination of anion and caton, and it has been proposed that necessary characteristics can be expressed by a combination of ions according to the purpose! / (Non-Patent Document 1).
  • Non-Patent Document 1 In recent years, its use as a reaction solvent, battery electrolyte, lubricant, heat medium, etc. has been studied as its application.
  • a quaternary ammonium salt is a proton exchange membrane that uses an aprotic ionic liquid composed of a nitrogen-containing quaternary salt such as a quaternary pyridinium salt or a quaternary imidazolium salt and a polymer material having an ion exchange group (patented) References 5-6), proton exchange solution and membrane using protonic ionic liquid composed of imidazole compound (Patent) Reference 7-12).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-90111
  • Patent Document 2 Japanese Patent Laid-Open No. 6-111827
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-90946
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-213987
  • Patent Document 5 Japanese Patent Laid-Open No. 2004-31307
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-311212
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2006-32181
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2006-32213
  • Patent Document 9 Japanese Patent Laid-Open No. 2005-44550
  • Patent Document 10 JP-A-2005-44548
  • Patent Document 11 WO2003-083981
  • Patent Document 12 JP-A-2005-174911
  • Patent Document 13 Japanese Patent Laid-Open No. 2000-11753
  • Non-Patent Document 1 Chem. & Eng. News, May 15, 2000
  • An object of the present invention is to provide a polymer and a solid polymer electrolyte having proton conductivity under non-humidified or low humidified conditions (100 ° C or higher and 60RH% or lower).
  • the present invention relates to N-Bureimidazole, Bronsted acid power, N-Bureumidazole salt obtained from the above, and a crosslinking agent having two or more radical polymerizable functional groups copolymerizable with this salt; ! Proton-conducting polymer obtained by polymerizing a polymerization raw material containing 50% by weight
  • the present invention is a composition in which a thermoplastic polymer is blended with the above proton conductive polymer, the proton conductive polymer comprising 1 to 80 wt% of the proton conductive polymer.
  • the present invention relates to a conductive polymer composition.
  • the present invention relates to a proton conductive solid electrolyte containing the proton conductive polymer or proton conductive polymer composition as an active ingredient. Furthermore, this invention relates to the electrochemical cell characterized by using the said proton conductive solid electrolyte.
  • the present invention provides an N-butimidazole salt obtained by neutralization reaction of N-butimidazole and Bronsted acid and a crosslinking agent having two or more radical polymerizable functional groups copolymerizable with the salt. 0.; relates to a method for producing a proton conductive polymer, characterized by radical polymerization of a polymerization raw material containing 50 to 50% by weight.
  • the proton conductive polymer of the present invention is a polymer obtained by subjecting an N-butimidazole salt obtained by the neutralization reaction of N-butimidazole to Bronsted acid and a crosslinking agent to a polymerization reaction. .
  • the Bronsted acid used for obtaining the N-butimidazole salt either an organic Bronsted acid or an inorganic Bronsted acid can be used.
  • the inorganic prested acid include sulfuric acid, phosphoric acid, boric acid, and heteropolyacid.
  • Organic Bronsted acids include carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid, alkyl sulfonic acids such as methane sulfonic acid, ethane sulfonic acid and octane sulfonic acid, and trifluorometa.
  • Fluorinated alkyl sulfonic acids such as sulfonic acid, perfluorobutane sulfonic acid, perfluorooctane sulfonic acid, and fluorinated alkyl sulfonic acid imides (also referred to as imide acids) such as bis (trifluoromethanesulfonic acid) imide Is mentioned.
  • imide acids fluorinated alkyl sulfonic acid imides
  • the number of carbon atoms of these alkyls is preferably in the range of 1 to 12;
  • the N-butimidazole salt is obtained by a neutralization reaction with a Bronsted acid.
  • an acid-base neutralization reaction that is already generally known can be used. Since 1 mole of N-Buylimidazole is calculated as 1 equivalent of base, 1 equivalent of Bronsted acid is required to neutralize 1: 1. One of them can be used in excess. In this case, the preferred range is from 0.1 to 1 equivalent of Bronsted acid to 1 mol of N-butyrimidazole.
  • a neutralization reaction method a method of dissolving or mixing ⁇ -buylimidazole and Bronsted acid is suitable.
  • bis (trifluoromethanesulfonic acid) imide as bronzed acid and bis (trifluoromethanesulfonic acid) imide as methanol in methanol in an equimolar amount respectively, bis-bulimidazole bis represented by the formula (1) can be obtained.
  • (Trifluoromethanesulfonic acid) imide salt can be obtained.
  • the proton conductive polymer of the present invention is obtained by polymerizing a polymerization raw material (polymerizable mixture) containing an N-butimidazole salt and a crosslinking agent.
  • a cross-linking agent By using a cross-linking agent, the N-butimidazole salt and the cross-linking agent are copolymerized to form a polymer network in the polymer, and the thermal stability and conductivity can be improved.
  • the polymerization raw material contains N-vinylimidazole salt and a crosslinking agent as essential polymerizable components (monomers), but if necessary, a small amount, preferably 20 wt% or less of other polymerizable components (monomers), For example, a monomer having one olefinic double bond can be included.
  • the crosslinking agent may be a radical polymerizable compound copolymerizable with the N-butimidazole salt.
  • One or more monomers having two or more functional groups are used.
  • Preferred crosslinking agents include monomers having 2 to 4 polymerizable unsaturated groups.
  • an acrylic acid derivative or a methacrylic acid derivative is preferred and exemplified.
  • these acrylic acid derivatives or methacrylic acid derivatives there are attalylate and methacrylate.
  • cross-linking agents include N ⁇ '-methylenebisacrylamide, tetraethylene glycol dimetatalylate, tetraethylene glycol diatalylate, diethylene glycol glycol diatalate, diethylene glycol dimetatalylate, polyethylene glycol Diatalylate, 1,6-hexanediol diatalylate, neopentylglycol diatalylate, tripropylene glycol diatalylate, polypropylene glycol diacrylate, trimethylolpropane trimetatalylate, trimethylolpropane tritalylate, Tetramethylol methanetetraacrylate, triethylene glycol dimetatalylate, polyethylene glycol dimetatalylate, 1,3-butylene glycol dimetatalylate, 1,6 -Hexanediol Noresimethacrylate, neopentyldaricol dimetatalate and the like.
  • the amount of the crosslinking agent is 0.;! To 50% by weight, preferably 1 to 30% by weight, based on the total of ⁇ -bulimidazole salt and the crosslinking agent. If the amount is less than this, since the degree of crosslinking is low, a self-supporting solid electrolyte cannot be obtained. Also, if the amount exceeds this, the degree of bridging will be high, and a decrease in conductivity will be a problem.
  • the proton conductive polymer of the present invention is formed by polymerizing a polymerization raw material containing a bis-imidazole salt and a cross-linking agent as described above.
  • the polymerization method includes radical polymerization and ion polymerization.
  • known polymerization methods such as coordination polymerization and addition polymerization can be used, and radical polymerization is preferable because of easy polymerization operation, but is not particularly limited.
  • a method for performing radical polymerization a method of applying heat, a method of irradiating light in the visible / ultraviolet region, a method of irradiating radiation such as an electron beam, and the like can be used. Further, a polymerization initiator can be added as necessary.
  • the polymerization initiator in the case of thermal polymerization, for example, azo polymerization such as 2,2'-azobisisoptyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), etc. Initiators, benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide carbonate, etc. Examples thereof include oxide-based polymerization initiators. Examples of the polymerization initiator in the case of photopolymerization include acetophenone, benzophenone, 2,2-dimethoxy-2-phenylacetophenone, and the like.
  • a proton conductive polymer is obtained in the form of a membrane by thermal polymerization
  • various methods can be used. For example, in a solution of N-butimidazole salt and a crosslinking agent, polymerization is started as necessary. After dissolving the agent and casting it on a petri dish or the like, the polymerization reaction is carried out by treating at 60 ° C to 80 ° C under reduced pressure or in a nitrogen atmosphere, and then dried. That power S. In the case of photopolymerization, it can be obtained by casting a petri dish and then irradiating with ultraviolet light to carry out a polymerization reaction and then drying.
  • the proton conductive polymer thus obtained has a function as a proton conductive solid electrolyte
  • the proton conductive polymer itself serves as a proton conductive solid electrolyte and also serves as an active component of the proton conductive solid electrolyte. . In the latter case, it is used in combination with or mixed with other materials.
  • the proton conductive polymer of the present invention can be made into a proton conductive polymer composition excellent in mechanical strength and thermal stability by being compounded with another thermoplastic synthetic polymer.
  • a thermoplastic varnish which is exemplified below, the above-mentioned N-butimidazole salt, and a varnish in which a cross-linking agent is dissolved are prepared, and this is used as a petri dish or the like. It can be obtained by casting it onto a container, glass plate, etc., followed by polymerization reaction and drying.
  • the thermoplastic synthetic polymer is not limited as long as it can be combined with the above polymer, but is preferably a thermoplastic synthetic polymer having solubility in an organic solvent.
  • Polybutyl polymer compounds such as polyacrylonitrile, polymethyl methacrylate, and polyvinylidene fluoride, polyether polymer compounds such as polyoxymethylene, polyethylene oxide, and polypropylene oxide, polyimide polymer compounds, and polycarbonate polymer polymers Compounds.
  • the amount of the proton conductive polymer contained in the proton conductive polymer composition is 1 to 80% by weight, preferably 5 to 75% by weight. If the amount is less than this amount, sufficient proton conductivity cannot be obtained. In addition, if the amount exceeds this amount, the composite product and The difference in the characteristics of the product is not seen.
  • the proton conductive polymer and the proton conductive polymer composition of the present invention are effective components of a proton conductive solid electrolyte.
  • the proton conductive solid electrolyte may be composed of the above proton conductive polymer or proton conductive polymer composition, or may be a combination of these with other components.
  • the proton conductive solid electrolyte of the present invention is a polymer solid electrolyte, and is excellent as a solid electrolyte used in an electrochemical cell such as a fuel cell.
  • FIG. 1 An example of a fuel cell using the proton conductive solid electrolyte of the present invention is shown in FIG.
  • a fuel cell is constructed by sandwiching a stack of the proton conductive solid electrolyte 5 and the catalyst-coated carbon cloth 4 and 6 of the present invention between separators 8 and 9.
  • the fuel cell is sandwiched and fixed by a stainless end plate 2 through a copper terminal plate 3. Tighten the stainless steel end plates 2 with insulating glass bolts 1.
  • a gas inlet and a gas outlet are provided on the fuel electrode side and the oxygen electrode side through the separators 8 and 9, the copper terminal plate 3, and the stainless steel end plate 2, respectively. Circulate while touching.
  • lg 2,2, monoazobis (isobutyronitrile) 23 mg
  • tetraethylene glycol ditalylate 42 mg After dissolving in lg of methyl sulfoxide, it was cast into a petri dish. After leaving at 60 ° C. for 18 hours under reduced pressure, the film was peeled off. The ion conductivity of the peeled film without humidification was measured by the AC impedance method. The results are shown in Table 1.
  • Example 2 The film prepared in Example 2 was allowed to stand at 160 ° C. without humidification for 6 hours, and then cooled to room temperature. Thereafter, the conductivity was measured under the same conditions as in Example 2. As a result, the conductivity was almost the same as in Example 2. From this result, it was confirmed that there was no decrease in conductivity even when the polymer solid electrolyte of the present invention was used at a high temperature. The results are shown in Table 3.
  • a fuel cell was produced using the membrane produced by the method of Example 2.
  • catalyst paste 0.7 g of vinylidene fluoride, bis (trifluoromethanesulfonic acid) imide salt of N-Buylimidazole 2 ⁇ lg, 2,2, -azobis (isobutyronitrile) 0 ⁇ 9 mg, tetraethylene glycol di Attalylate 85 mg was dissolved in N-methylpyrrolidone (54 g). To 4 g of the resulting solution, 1 g of platinum 40 wt% -supported carbon and 2 g of pure water were added and stirred to prepare a catalyst paste.
  • Preparation of fuel cell The catalyst paste prepared by the above-described method was applied to carbon cloth (4 cm * 4 cm) so that the platinum coating amount was 1 mg / cm 2 . After coating, it was dried at 60 ° C under reduced pressure for 18 hours. Using two dried catalyst-coated carbon cloths, both sides of the film obtained by the method of Example 2 were sandwiched and hot pressed under the conditions of 120 ° C. and 156 kg / cm 2 . A fuel cell was obtained by mounting a separator and a current collector on which the reaction gas supply grooves were formed on both sides of the obtained laminate.
  • Fuel cell test Hydrogen and air, which are fuel gases, were supplied to the fuel cell thus obtained without being moistened, and electricity was generated at room temperature. As a result, 0.668V was confirmed as the open circuit voltage.
  • a direct methanol fuel cell was produced using the membrane produced by the method of Example 2.
  • catalyst paste Preparation of catalyst paste; 0.7 g of vinylidene fluoride, bis (trif of N-butimidazole (Luoromethanesulfonic acid) imide salt 2 ⁇ lg, 2,2, -azobis (isobutyronitrile) 0 ⁇ 9 mg and tetraethylene glycol ditalylate 85 mg were dissolved in N-methylpyrrolidone (54 g). To 4 g of the resulting solution, lg of platinum ruthenium 40 wt% supported carbon and 2 g of pure water were added and stirred to prepare a catalyst paste.
  • N-methylpyrrolidone 54 g
  • Preparation of fuel cell The catalyst paste prepared by the above-described method was applied to carbon cloth (4 cm * 4 cm) so that the platinum ruthenium coating amount force was S4 mg / cm 2 . After coating, the carbon electrode coated with fuel electrode catalyst was prepared by drying at 60 ° C under reduced pressure for 18 hours. On the other hand, an air electrode was obtained by carrying out the same operation except that it was applied to carbon cloth (4 cm * 4 cm) so that the amount of platinum ruthenium applied was 2 mg / cm 2 . A film obtained by the method of Example 2 was sandwiched between carbon electrodes coated with fuel electrode and oxygen electrode catalysts, and hot-pressed at 120 ° C. and 156 kg / cm 2 to obtain a laminate. A direct methanol fuel cell was obtained by mounting a separator for supplying oxygen on the oxygen electrode side of the laminate, a current collector on both electrodes, and a methanol aqueous solution supply container on the fuel electrode.
  • Fuel cell test A 10 wt% methanol aqueous solution was charged into the methanol aqueous solution supply container of the fuel cell thus obtained, and air was supplied to the air electrode to generate power at room temperature. As a result, 0.48V was confirmed as the open circuit voltage.
  • the proton conductive polymer of the present invention provides a solid polymer electrolyte having high proton conductivity with no humidification or low humidification conditions.
  • This polymer solid electrolyte is used as a material for electrochemical devices utilizing proton conductivity under non-humidification or low humidification conditions, which has been difficult until now, such as solid electrolytes for fuel cells and electrolytes in the battery field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Description

明 細 書
プロトン伝導性重合体、固体電解質、及びそれを用いた電気化学セル 技術分野
[0001] 本発明は、無加湿条件で機能する新規なプロトン伝導性重合体に関するものであ る。また、電池や電解などの電気化学デバイスに用いることができるプロトン伝導性高 分子固体電解質に関する。
背景技術
[0002] 従来の高分子固体電解質型燃料電池の電解質膜にはパーフルォロカーボンスル ホン酸膜などが用いられている(特許文献 1)。パーフルォロカーボンスルホン酸膜は
、膜内に含まれる水がプロトン伝導パスとなるため、乾燥状態では使用することができ ないという欠点がある(非特許文献 1)。乾燥状態でのプロトン伝導性を向上させるた めに、シリカ分散パーフルォロスルホン酸膜 (特許文献 2)、無機一有機複合膜 (特許 文献 3)、リン酸ドープグラフト膜 (特許文献 4)等の様々な試みがなされている。しかし ながら、これらの方法のいずれにおいてもプロトン伝導性を示すためには膜中の水が 必須であり、無加湿条件でのプロトン伝導とレ、う問題に対する本質的な解決策とはな つていなかった。
[0003] そこで、水を必要としないプロトン伝導性高分子固体電解質の開発が求められてお り、その例としてイオン液体の利用が提案されている。イオン液体はァニオンとカチォ ンの組合せからなる 100°C以下の融点を有する化合物の総称であり、 目的に応じた イオンの組合せにより必要な特性を発現させることが可能なことが提唱されて!/、る (非 特許文献 1)。近年、その用途として反応溶媒、電池電解液、潤滑剤、熱媒等への利 用が検討されている。
[0004] 燃料電池を主たる用途とするプロトン伝導性高分子固体電解質についてもいくつ かの提案がなされている。例えば、 4級アンモニゥム塩ゃ 4級ピリジニゥム塩、 4級イミ ダゾリゥム塩の如き含窒素 4級塩からなる非プロトン性イオン液体とイオン交換基を有 する高分子材料を用いることによるプロトン交換膜 (特許文献 5〜6)、イミダゾール系 化合物からなるプロトン性イオン液体を用いることによるプロトン交換液及び膜 (特許 文献 7〜12)等があげられる。しかしながら、これらの例で示されている材料の無加湿 条件での伝導度は、 10— 4〜; 10— 3S/cm程度であり、無加湿プロトン交換体としての 利用には改善が必要であった。更に、いずれの報告も、高分子材料にイオン液体を 含浸させたものであり、潜在的にイオン液体漏出の問題を有している。この点を解決 するために、イオン液体構造を高分子量化することによる固体電解質の開発が進め られている。その例として、プロトン性イオン液体である N—ビュルイミダゾール塩を重 合させる方法(特許文献 13)が知られている力 そのイオン伝導性は、満足できるレ ベルとは言えず、イオン伝導性の更なる向上が必要であった。また、この方法では、 自立性のある膜を得ることは困難であった。
[0005] 特許文献 1 :特開平 7-90111号公報
特許文献 2:特開平 6-111827号公報
特許文献 3:特開 2000-90946号公報
特許文献 4:特開 2001-213987号公報
特許文献 5:特開 2004-31307号公報
特許文献 6:特開 2004-311212号公報
特許文献 7:特開 2006-32181号公報
特許文献 8:特開 2006-32213号公報
特許文献 9:特開 2005-44550号公報
特許文献 10:特開 2005-44548号公報
特許文献 11 : WO2003-083981号公報
特許文献 12:特開 2005- 174911号公報
特許文献 13:特開 2000-11753号公報
非特許文献 1 : Chem. & Eng. News, 2000年 5月 15日
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、無加湿又は低加湿条件(100°C以上、 60RH%以下)でプロトン伝導能 を有する重合体及び高分子固体電解質を提供することを目的とする。
課題を解決するための手段 [0007] そこで、本発明者らはこのような問題点を解決すべく鋭意研究を重ねた結果、 N— ビュルイミダゾールとブレンステッド酸を作用させることによって得られる塩力 Sイオン伝 導性を有していることに着眼し、この塩とラジカル重合性官能基を 2つ以上有する架 橋剤との重合により得られる N—ビュルイミダゾール塩単位を有するプロトン伝導性 重合体が高分子固体電解質として機能し、高いプロトン伝導性を有することを見出し 、本発明に到達した。
[0008] 本発明は、 N—ビュルイミダゾールとブレンステッド酸力、ら得られる N—ビュルイミダ ゾール塩と、この塩と共重合可能なラジカル重合性官能基を 2つ以上有する架橋剤 を 0. ;!〜 50重量%含む重合原料を重合して得られるプロトン伝導性重合体に関す
[0009] また、本発明は、上記のプロトン伝導性重合体に熱可塑性重合体を配合した組成 物であって、プロトン伝導性重合体を 1〜80重量%含むことを特徴とするプロトン伝 導性重合体組成物に関する。
[0010] 更に、本発明は、上記プロトン伝導性重合体又はプロトン伝導性重合体組成物を 有効成分とするプロトン伝導性固体電解質に関する。更に、本発明は、上記プロトン 伝導性固体電解質使用することを特徴とする電気化学セルに関する。
[0011] また、本発明は、 N—ビュルイミダゾールとブレンステッド酸の中和反応によって得 られる N—ビュルイミダゾール塩とこの塩と共重合可能なラジカル重合性官能基を 2 つ以上有する架橋剤を 0. ;!〜 50重量%含む重合原料をラジカル重合させることを 特徴とするプロトン伝導性重合体の製造方法に関する。
[0012] 本発明のプロトン伝導性重合体は、 N—ビュルイミダゾールとブレンステッド酸の中 和反応によって得られる N—ビュルイミダゾール塩と架橋剤を重合反応に付すことに よって得られる重合体である。
[0013] 上記 N—ビュルイミダゾール塩を得る際に用いられるブレンステッド酸としては、有 機ブレンステッド酸、無機ブレンステッド酸のいずれも用いることができる。無機プレン ステッド酸としては、硫酸、リン酸、ホウ酸、ヘテロポリ酸が挙げられる。有機ブレンス テッド酸としては、酢酸、蟻酸、トリフルォロ酢酸等のカルボン酸類、メタンスルホン酸 、エタンスルホン酸、オクタンスルホン酸等のアルキルスルホン酸類、トリフルォロメタ ンスルホン酸、パーフルォロブタンスルホン酸、パーフルォロオクタンスルホン酸等の 含フッ素アルキルスルホン酸類、ビス(トリフルォロメタンスルホン酸)イミド等の含フッ 素アルキルスルホン酸イミド(イミド酸類ともいう)が挙げられる。ここで、これらアルキ ルの炭素数としては 1〜; 12の範囲が好ましい。
[0014] 上記 N—ビュルイミダゾール塩は、ブレンステッド酸との中和反応によって得られる 。その具体的方法は、既に一般的に知られている酸塩基の中和反応を用いることが できる。 N—ビュルイミダゾール 1モルは 1当量の塩基と計算されるので、 1 : 1で中和さ せるためには、 1当量のブレンステッド酸が必要とされる。し力、し、いずれかを過剰に 使用することもできる。この場合の好ましい範囲は、 N—ビュルイミダゾール 1モルに 対し、ブレンステッド酸 0· 1〜1当量である。
[0015] 中和反応方法としては、 Ν—ビュルイミダゾールとブレンステッド酸を溶解又は混合 する方法が適する。例えば、 Ν—ビュルイミダゾールとブレンステッド酸としてビス(トリ フルォロメタンスルホン酸)イミドを、それぞれ等モル量をメタノール中で作用させるこ とにより、式(1)で示される Ν—ビュルイミダゾールのビス(トリフルォロメタンスルホン 酸)イミド塩を得ることができる。
[0016]
Figure imgf000006_0001
[0017] 本発明のプロトン伝導性重合体は、 N—ビュルイミダゾール塩と架橋剤を含む重合 原料 (重合性混合物)を重合させることにより得られる。架橋剤を使用することにより、 N—ビュルイミダゾール塩と架橋剤が共重合して、重合体中にポリマーネットワークが 形成され、熱安定性及び伝導性を向上させることができる。重合原料中には、 N—ビ 二ルイミダゾール塩と架橋剤を必須の重合性成分 (モノマー)として含むが、必要によ り少量、好ましくは 20wt%以下の他の重合性成分(モノマー)、たとえばォレフィン性 二重結合を 1有するモノマー等を含むことができる。
[0018] 架橋剤としては、上記 N—ビュルイミダゾール塩と共重合可能なラジカル重合性官 能基を 2つ以上有するモノマーの 1種以上が使用される。好ましい架橋剤としては、 重合性不飽和基を 2〜4個有するモノマーがある。重合性不飽和基を 2〜4個有する モノマーとしては、アクリル酸誘導体又はメタアクリル酸誘導体が好ましレ、ものとして 例示される。これらアクリル酸誘導体又はメタアクリル酸誘導体としては、アタリレート 又はメタアタリレート類がある。
[0019] 好まし!/、架橋剤の例としては、 N Ν'-メチレンビスアクリルアミド、テトラエチレンダリ コールジメタタリレート、テトラエチレングリコールジアタリレート、ジエチレングリコーノレ ジアタリレート、ジエチレングリコールジメタタリレート、ポリエチレングリコールジアタリ レート、 1,6-へキサンジオールジアタリレート、ネオペンチルグリコージアタリレート、ト リプロピレングリコールジアタリレート、ポリプロピレングリコールジアクリルレート、トリメ チロールプロパントリメタタリレート、トリメチロールプロパントリアタリレート、テトラメチロ ールメタンテトラアタリレート、トリエチレングリコールジメタタリレート、ポリエチレングリ コールジメタタリレート、 1,3-ブチレングリコールジメタタリレート、 1,6-へキサンジォー ノレジメタクリレート、ネオペンチルダリコールジメタタリレートなどを挙げることができる。
[0020] 架橋剤の量としては、 Ν—ビュルイミダゾール塩と架橋剤の合計に対し 0. ;!〜 50重 量%であり、好ましくは 1〜30重量%である。これを下回る量では、架橋度が低いた めに、自立性のある固体電解質を得ることができない。また、これを上回る量では、架 橋度が高くなるために、伝導度の低下が問題となる。
[0021] 本発明のプロトン伝導性重合体は、上記のように Ν—ビュルイミダゾール塩と架橋 剤を含む重合原料を重合して形成されるが、重合方法としては、ラジカル重合、ィォ ン重合、配位重合、付加重合など既知の重合方法が使用可能であり、重合操作の簡 便さゆえにラジカル重合が好ましいが、特に限定されるものではない。ラジカル重合 を行う方法としては、熱を加える方法、可視 ·紫外領域の光を照射する方法、電子線 などの放射線を照射する方法などが利用できる。また、必要に応じて重合開始剤を 添加することも可能である。
[0022] 前記重合開始剤としては、熱重合の場合、例えば、 2,2 ' -ァゾビスイソプチロニトリル 、 2,2 ' -ァゾビス (2,4-ジメチルバレロニトリル)などのァゾ系重合開始剤、ベンゾィルパ ーォキシド、ジクミルパーォキシド、ジイソプロピルパーォキシカーボネートなどの過 酸化物系重合開始剤などが挙げられる。光重合の場合の重合開始剤としては、例え ば、ァセトフエノン、ベンゾフエノン、 2,2-ジメトキシ- 2-フエニルァセトフエノンなどが挙 げられる。
[0023] 熱重合によりプロトン伝導性重合体を膜の形態で得ようとする場合、種々の方法が 利用できるが、例えば、 N—ビュルイミダゾール塩と架橋剤の溶液に、必要に応じて 重合開始剤を溶解させ、これを、シャーレ等に流延した後に、減圧下又は窒素雰囲 気下で 60°C〜80°Cで処理することにより重合反応を行い、その後、乾燥することに より得ること力 Sできる。また光重合の場合、シャーレに流延した後に、紫外光を照射す ることにより重合反応を行い、その後乾燥することによって得ることができる。
[0024] このようにして得られたプロトン伝導性重合体はプロトン伝導性固体電解質としての 機能を有するので、それ自体がプロトン伝導性固体電解質ともなるし、プロトン伝導 性固体電解質の有効成分ともなる。後者の場合は、他の材料と複合又は混合されて 使用される。
[0025] 本発明のプロトン伝導性重合体は、他の熱可塑性合成高分子と複合化することに より機械的強度及び熱的安定性に優れたプロトン伝導性ポリマー組成物とすることも できる。その製造法としては、種々の方法を用いることができる力 例えば、以下に例 示する熱可塑性合成高分子と上記 N—ビュルイミダゾール塩と架橋剤を溶解したヮ ニスを調製し、これをシャーレ等の容器やガラス板等に流延し、重合反応、乾燥を行 うことにより得ること力 Sできる。熱可塑性合成高分子としては、上記重合体と複合化し 得るものであれば、限定されないが、好ましくは、有機溶媒可溶性を有した熱可塑性 合成高分子であり、例えば、
ポリアクリロニトリル、ポリメタクリル酸メチル、ポリフッ化ビニリデン等のポリビュル系高 分子化合物、ポリオキシメチレン、ポリエチレンォキシド、ポリプロピレンォキシド等の ポリエーテル系高分子化合物、ポリイミド系高分子化合物、ポリカーボネート系高分 子化合物が挙げられる。
[0026] プロトン伝導性ポリマー組成物中に含まれるプロトン伝導性重合体の量としては、 1 〜80重量%であり、好ましくは 5〜75重量%である。この量を下回る量では、十分な プロトン伝導性を得ることはできない。また、この量を上回る量では、複合化品と未複 合品での特性の違レ、が見られなレ、。
[0027] 本発明のプロトン伝導性重合体及びプロトン伝導性ポリマー組成物は、プロトン伝 導性固体電解質の有効成分となる。プロトン伝導性固体電解質は、上記プロトン伝 導性重合体又はプロトン伝導性ポリマー組成物からなるものであってもよぐこれらに 他の成分を配合したものであってもよレ、。
[0028] 本発明のプロトン伝導性固体電解質は、高分子固体電解質であり、燃料電池等の 電気化学セルにおいて使用される固体電解質として優れる。
[0029] 本発明のプロトン伝導性固体電解質を使用した燃料電池の一例を図 1に示す。本 発明のプロトン伝導性固体電解質 5、触媒塗布済みカーボンクロス 4及び 6からなる積 層体をセパレータ 8及び 9で挟み燃料電池を構成する。この燃料電池は銅製端子板 3 を介してステンレス製端板 2で挟まれて固定される。両側のステンレス製端板 2は絶縁 硝子付ボルト 1で締め付ける。これらセパレータ 8及び 9、銅製端子板 3、ステンレス製 端板 2を貫通して燃料極側と酸素極側それぞれにガス入り口とガス出口が設けられ、 燃料ガス及び酸素ガスはそれぞれこれらを通って電極に接しながら流通する。
図面の簡単な説明
[0030] [図 1]燃料電池の断面図
符号の説明
[0031] 2 :ステンレス製端板
3 :銅製端子板
4、 6 :触媒塗布カーボンクロス
5 :電解質膜
7 :負荷装置
8、 9 :セパレータ
実施例
[0032] 以下、実施例により本発明を更に詳細に説明する。
[0033] 実施例 1
N—ビュルイミダゾールのビス(トリフルォロメタンスルホン酸)イミド塩 lg、 2,2, 一ァ ゾビス(イソブチロニトリル) 23mg、テトラエチレングリコールジアタリレート 42mgをジ メチルスルホキシド lgに溶解した後、シャーレに流延した。減圧下、 60°Cで 18時間放 置した後、膜を剥離した。剥離した膜の無加湿でのイオン伝導性を交流インピーダン ス法により測定した。結果を表 1に示す。
[表 1]
Figure imgf000010_0001
[0035] 実施例 2
フッ化ビニリデン 0· 5g、 N—ビュルイミダゾールのビス(トリフルォロメタンスルホン 酸)イミド塩 1. 5g、 2,2'—ァゾビス(イソブチロニトリノレ) 0· 7mg、テトラエチレングリコ ールジアタリレート 60mgを N—メチルピロリドン 3gに溶解した後、ガラス板に流延した 。減圧下 60°Cで 18時間処理した後、ガラス板から膜を剥離した。剥離した膜の無加 湿でのイオン伝導性を交流インピーダンス法により測定した。結果を表 2に示す。
[0036] [表 2]
°c 伝導度 (mSん m)
100 2
120 3
140 6
160 9
[0037] 実施例 3
実施例 2で作成した膜を無加湿 160°Cで 6時間放置した後、室温まで冷却した。そ の後、実施例 2と同条件での伝導度を測定した結果、伝導度は実施例 2とほぼ同等 であった。この結果から、本発明の高分子固体電解質を高温下で使用しても、伝導 性の低下がないことが確認された。結果を表 3に示す。
[0038] [表 3]
Figure imgf000011_0001
実施例 4
実施例 2の方法により得られた膜を表 4に示す条件でのイオン伝導性を交流インピ 一ダンス法により測定した。表 4に示したように、低加湿条件でも高いイオン伝導性を 有していることが明ら力、となった。 [0040] [表 4]
Figure imgf000012_0001
[0041] 実施例 5
実施例 2の方法により作成した膜を用いて、燃料電池を作成した。
触媒ペーストの調製;フッ化ビニリデン 0. 7g、 N—ビュルイミダゾールのビス(トリフ ルォロメタンスルホン酸)イミド塩 2· lg、 2,2,ーァゾビス(イソブチロニトリル) 0· 9mg、 テトラエチレングリコールジアタリレート 85mgを N—メチルピロリドン(54g)に溶解した 。得られた溶液 4gに白金 40wt%担持カーボンを lg、純水 2gを加えた後、撹拌し、 触媒ペーストを作成した。
燃料電池の作成;上述の方法により調製した触媒ペーストを、白金塗布量が lmg /cm2となるようにカーボンクロス(4cm * 4cm)に塗布した。塗布後、減圧下 60°Cで 18時間乾燥した。乾燥された触媒塗布済みカーボンクロス 2枚を用いて、実施例 2の 方法により得られた膜の両面を挟み、 120°C、 156kg/cm2の条件でホットプレスし た。得られた積層体の両面に反応ガス供給用の溝が形成されたセパレータ並びに集 電体を装着することにより燃料電池を得た。
燃料電池試験;このようにして得られた燃料電池に燃料ガスである水素と空気をカロ 湿せずに供給して、室温にて発電を行った。その結果、開放電圧として 0. 68Vを確 した。
[0042] 実施例 6
実施例 2の方法により作成した膜を用いて、ダイレクトメタノール型燃料電池を作成 した。
触媒ペーストの調製;フッ化ビニリデン 0. 7g、 N—ビュルイミダゾールのビス(トリフ ルォロメタンスルホン酸)イミド塩 2· lg、 2,2,ーァゾビス(イソブチロニトリル) 0· 9mg、 テトラエチレングリコールジアタリレート 85mgを N メチルピロリドン(54g)に加え溶 解した。得られた溶液 4gに白金 ルテニウム 40wt%担持カーボンを lg、純水 2gを 加えた後、撹拌し、触媒ペーストを作成した。
燃料電池の作成;上述の方法により調製した触媒ペーストを、白金 ルテニウム塗 布量力 S4mg/cm2となるようにカーボンクロス(4cm * 4cm)に塗布した。塗布後、減 圧下 60°Cで 18時間乾燥することにより燃料極用触媒塗布済みカーボンクロスを作成 した。一方、白金 ルテニウム塗布量が 2mg/cm2となるようにカーボンクロス(4cm * 4cm)に塗布した他は同様の操作を行うことにより空気極を得た。実施例 2の方法 により得られた膜を燃料極用及び酸素極用触媒塗布済みカーボンクロスで挟み、 12 0°C、 156kg/cm2の条件でホットプレスすることにより積層体を得た。この積層体の 酸素極側に酸素供給用のセパレータ、両極に集電体、燃料極にメタノール水溶液供 給用容器を装着することによりダイレクトメタノール型燃料電池を得た。
燃料電池試験;このようにして得られた燃料電池のメタノール水溶液供給容器に 10 wt%メタノール水溶液を装入し、空気極に空気を供給して、室温にて発電を行った。 その結果、開放電圧として 0. 48Vを確認した。
産業上の利用の可能性
本発明のプロトン伝導性重合体は、無加湿又は低加湿条件で高!/、プロトン伝導性 を有する高分子固体電解質を与える。この高分子固体電解質は、これまで困難であ つた無加湿又は低加湿条件でのプロトン伝導性を活かした電気化学デバイスの材料 、例えば、燃料電池の固体電解質や電池分野での電解質等に利用される。

Claims

請求の範囲
[1] N—ビュルイミダゾールとブレンステッド酸から得られる N—ビュルイミダゾール塩と 、この塩と共重合可能なラジカル重合性官能基を 2つ以上有する架橋剤を 0.;!〜 50 重量%含む重合原料を重合して得られるプロトン伝導性重合体。
[2] 架橋剤がラジカル重合性官能基を 2つ以上有するアクリル酸又はメタクリル酸の誘 導体である請求項 1記載のプロトン伝導性重合体。
[3] 請求項 1に記載のプロトン伝導性重合体に熱可塑性高分子を配合した組成物であ つて、プロトン伝導性重合体を 1〜80重量%含むことを特徴とするプロトン伝導性重 合体組成物。
[4] 請求項 1に記載のプロトン伝導性重合体を有効成分とするプロトン伝導性固体電解 質。
[5] 請求項 3に記載のプロトン伝導性重合体組成物を有効成分とするプロトン伝導性固 体電解質。
[6] N—ビュルイミダゾールとブレンステッド酸の中和反応によって得られる N—ビュル イミダゾール塩とこの塩と共重合可能なラジカル重合性官能基を 2つ以上有する架橋 剤を 0.;!〜 50重量%含む重合原料をラジカル重合させることを特徴とするプロトン伝 導性重合体の製造方法。
[7] 請求項 4記載のプロトン伝導性固体電解質を使用することを特徴とする電気化学セ ル。
[8] 請求項 5記載のプロトン伝導性固体電解質を使用することを特徴とする電気化学セ ル。
PCT/JP2007/071012 2006-10-30 2007-10-29 Polymère conducteur de protons, électrolyte solide et cellule électrochimique utilisant l'électrolyte solide WO2008053828A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542096A JPWO2008053828A1 (ja) 2006-10-30 2007-10-29 プロトン伝導性重合体、固体電解質、及びそれを用いた電気化学セル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006293975 2006-10-30
JP2006-293975 2006-10-30

Publications (1)

Publication Number Publication Date
WO2008053828A1 true WO2008053828A1 (fr) 2008-05-08

Family

ID=39344169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071012 WO2008053828A1 (fr) 2006-10-30 2007-10-29 Polymère conducteur de protons, électrolyte solide et cellule électrochimique utilisant l'électrolyte solide

Country Status (2)

Country Link
JP (1) JPWO2008053828A1 (ja)
WO (1) WO2008053828A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038866A (ja) * 2013-07-18 2015-02-26 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびにその用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258607A (ja) * 1992-03-13 1993-10-08 Yuasa Corp イオン伝導性高分子化合物
JP2000011753A (ja) * 1998-06-17 2000-01-14 Shikoku Chem Corp イミダゾリウム系溶融塩型電解質
JP2004035869A (ja) * 2002-06-28 2004-02-05 Keiichi Uno イオン性樹脂組成物及びその硬化物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05258607A (ja) * 1992-03-13 1993-10-08 Yuasa Corp イオン伝導性高分子化合物
JP2000011753A (ja) * 1998-06-17 2000-01-14 Shikoku Chem Corp イミダゾリウム系溶融塩型電解質
JP2004035869A (ja) * 2002-06-28 2004-02-05 Keiichi Uno イオン性樹脂組成物及びその硬化物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038866A (ja) * 2013-07-18 2015-02-26 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびにその用途

Also Published As

Publication number Publication date
JPWO2008053828A1 (ja) 2010-02-25

Similar Documents

Publication Publication Date Title
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
EP3228644B1 (en) Polymer electrolyte membrane
CA2450346C (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
JP4036279B2 (ja) プロトン伝導体及びこれを用いた燃料電池
US20100098997A1 (en) Polymer electrolyte membrane and process for preparation thereof, and membrane-electrode assembly and polymer electrolyte fuel cell
JP5249042B2 (ja) プロトン伝導性化合物及びプロトン伝導性重合体
EP1170310B1 (en) Partially fluorinated copolymer based on trifluorostyrene and substituted vinyl compound and ionic conductive polymer membrane formed therefrom
EP3229302B1 (en) Polymer electrolyte membrane
JP2008311226A (ja) 複合高分子電解質膜、膜−電極接合体および燃料電池
JP3896105B2 (ja) 燃料電池用電解質膜、及び燃料電池
KR100843569B1 (ko) 수소이온 전도성 복합 트리블록 공중합체 전해질막 및 그제조방법
JP6460243B2 (ja) 芳香族環を含む化合物、これを含む高分子およびこれを用いた高分子電解質膜
JP2009021233A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP2009226873A (ja) 高分子膜−金属積層体
Aslan et al. Proton conducting properties of ionically cross-linked poly (1-vinyl-1, 2, 4 triazole) and poly (2-acrylamido-2-methyl-1-propanesulfonic acid) electrolytes
WO2008053828A1 (fr) Polymère conducteur de protons, électrolyte solide et cellule électrochimique utilisant l'électrolyte solide
JP2008166199A (ja) 高分子電解質、高分子電解質膜及びこれを備える燃料電池
KR102629899B1 (ko) 화합물, 이로부터 유래되는 단위를 포함하는 중합체, 이를 포함하는 고분자 분리막, 이를 포함하는 막 전극 집합체, 연료전지 및 레독스 플로우 전지
KR20170069029A (ko) 레독스 흐름 전지용 음이온 교환막 및 이의 제조방법
JP2009009828A (ja) 燃料電池用電解質
JP5042026B2 (ja) 高分子電解質膜としてのスルホン化ポリ(アリーレン)フィルム
JP2006049866A (ja) 電気化学キャパシタ
Li et al. Proton-conducting membranes based on benzimidazole-containing sulfonated poly (ether ether ketone) compared with their carboxyl acid form
JP4370505B2 (ja) 複合膜
JP4821320B2 (ja) 電気化学キャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542096

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830746

Country of ref document: EP

Kind code of ref document: A1