WO2008053685A1 - Procédé de détection de cible par radar et dispositif de radar utilisant le procédé de détection de cible - Google Patents

Procédé de détection de cible par radar et dispositif de radar utilisant le procédé de détection de cible Download PDF

Info

Publication number
WO2008053685A1
WO2008053685A1 PCT/JP2007/069954 JP2007069954W WO2008053685A1 WO 2008053685 A1 WO2008053685 A1 WO 2008053685A1 JP 2007069954 W JP2007069954 W JP 2007069954W WO 2008053685 A1 WO2008053685 A1 WO 2008053685A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
antenna elements
interval
azimuth
time interval
Prior art date
Application number
PCT/JP2007/069954
Other languages
English (en)
French (fr)
Inventor
Toru Ishii
Tetsu Nishimura
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008542029A priority Critical patent/JP4905457B2/ja
Priority to EP07829690A priority patent/EP2060929A4/en
Publication of WO2008053685A1 publication Critical patent/WO2008053685A1/ja
Priority to US12/428,774 priority patent/US7928897B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the present invention relates to a radar target detection method, particularly to a target relative speed detection method, and a radar apparatus using the detection method.
  • a radar that is provided on the front side of an automobile, etc., transmits a transmission wave to a predetermined detection area including the front of the automobile, receives a reflected wave of a target in the detection area, and detects the target
  • Various devices have been devised. As such a radar device, the FMCW system is often used in the automobile field!
  • an FMCW radar apparatus includes an uplink modulation section in which the frequency of a transmission signal gradually increases and a downlink modulation in which the frequency of a transmission signal gradually decreases.
  • a triangular wave-shaped transmission signal having alternating sections is used.
  • the radar apparatus calculates the beat frequency in the upstream modulation section and the beat frequency in the downstream modulation section.
  • the beat frequency is a frequency obtained by mixing the frequency of the transmission signal and the frequency of the reception signal with respect to the transmission signal.
  • the radar apparatus calculates the differential force between the beat frequency in the up modulation section and the beat frequency in the down modulation section, and the relative speed of the target.
  • Patent Document 1 Japanese Patent No. 3622565
  • Patent Document 2 Japanese Patent No. 3575694
  • an object of the present invention is to provide a radar target detection method and a radar target detection method capable of detecting the relative speed of a target with high accuracy without performing complicated calculation processing such as a Doppler frequency for the target target. It is to provide a radar device that detects a target using this method.
  • an object of the present invention is to provide a radar target detection method capable of detecting the target position substantially simultaneously with the detection of the relative speed as described above, and a target using this method.
  • the object is to provide a radar device for detection.
  • At least one of a transmission antenna and a reception antenna is constituted by a plurality of antenna elements arranged on a straight line, and the plurality of antenna elements arranged on the straight line are converted into modulation periods of transmission signals.
  • the present invention relates to a radar target detection method that switches in synchronization with a radar device and a radar apparatus that uses the target detection method.
  • a plurality of antenna elements are switched at a first time interval based on a predetermined switching pattern set in advance, and a first measurement phase for calculating a first azimuth of the target and a plurality of antennas are detected.
  • a second measurement phase in which the element is switched at a second time interval different from the first time interval based on a predetermined switching pattern to calculate the second orientation of the target.
  • the target detection method calculates the relative velocity of the target based on the first direction, the second direction, the first time interval, the second time interval, and the arrangement interval of the plurality of antenna elements. It is characterized by.
  • either one or both of the transmission antenna and the reception antenna are composed of a plurality of antenna elements arranged on a straight line, and target detection is performed while switching the antenna elements for transmission and reception.
  • a transmission / reception system is configured with a transmission antenna composed of one antenna element and a reception antenna in which a plurality of antenna elements are arranged on a straight line, the reflected wave based on the transmission wave from the transmission antenna is switched and controlled. Received signals are sequentially received by each antenna element of the received antenna.
  • a transmission / reception system when a transmission / reception system is configured with a transmission antenna in which a plurality of antenna elements are arranged on a straight line and a reception antenna composed of one antenna element, transmission waves are sequentially transmitted from each antenna element of the transmission antenna controlled to be switched. Transmitting and receiving the reflected wave based on each transmitted wave with the receiving antenna to generate the received signal. Furthermore, a plurality of antenna elements arranged on a straight line
  • a transmission / reception system is configured by configuring both a transmission antenna and a reception antenna, transmission waves are sequentially transmitted from each antenna element of the transmission antenna controlled to be switched, and another switching control is performed. By receiving the reflected wave sequentially at each antenna element of the receiving antenna, a reception signal is generated for each combination of the antenna element of the transmitting antenna and the antenna element of the receiving antenna.
  • a reception signal is obtained by performing such switching control and has a first measurement phase and a second measurement phase in which the reception signal can be obtained at different time intervals
  • an object is provided to the radar.
  • the target has a relative speed
  • the phase change of the received signal can be obtained in each phase. Due to the difference in the amount of phase change, the azimuth obtained by the beam forming method or the like differs in each phase.
  • the relative speed is calculated. This makes it possible to calculate the relative speed without calculating the Doppler frequency.
  • the true direction of the target can be calculated at the same time by using the direction calculated in each phase.
  • the direction perpendicular to the arrangement direction of the plurality of antenna elements on the radiation direction side of the transmission signal is defined as the 0 ° direction, and from the 0 ° direction to the arrangement direction.
  • the spreading angle, which is in the range of 90 ° to + 90 °, the first and second azimuth are respectively ⁇ , ⁇ , the interval time difference between the first time interval and the second time interval At, multiple ante
  • n be the element spacing d, V the target relative velocity candidate, and n an arbitrary integer.
  • V d- (sin e -sin e) / (2A t) + ⁇ / (2-A t)-(1)
  • the feature is to calculate the relative speed of the target by selecting one of the candidates obtained using.
  • the relative velocity V is calculated by using a simple equation as specifically shown in equation (1).
  • the range of relative speed that can be taken by the target target is V to V, and the interval time difference between the first time interval and the second time interval is set. Is At and mm max
  • be the wavelength of the transmitted and received signal, A t ⁇ / (2 IV -VI)-(2)
  • the difference At is set between the first time interval and the second time interval.
  • the minimum and maximum relative speeds that can be taken by the target are set in advance to V to V, and the antenna element is
  • the time difference of the switching interval that is, the interval time difference At between the time interval of the first measurement phase and the time interval of the second measurement phase is determined.
  • the direction perpendicular to the arrangement direction of the plurality of antenna elements on the radiation direction side of the transmission signal is defined as the 0 ° direction, and the direction from the 0 ° direction to the arrangement direction.
  • mm max is set, the arrangement interval of multiple antenna elements is d, and the wavelength of the transmitted / received signal is taken as d ⁇ / I sin e -sin e
  • the arrangement interval of a plurality of antenna elements is set so that
  • the azimuth angle range in which the target is detected is set in advance to ⁇ to ⁇ , and the arrangement interval d between the plurality of antenna elements is set using Equation (3).
  • the direction perpendicular to the arrangement direction of the plurality of antenna elements on the radiation direction side of the transmission signal is defined as the 0 ° direction, and the calculation is performed including the 0 ° direction.
  • the azimuth range is - ⁇
  • the spacing between the antenna elements is d
  • the relative velocity and direction of the target are calculated within the calculated azimuth angle range set in.
  • the calculated azimuth angle range ⁇ cal to + ⁇ cal By limiting Eq. (4), only one spectral peak is detected for each of the first and second measurement phases. As a result, the first direction and the second direction used to calculate the relative speed are determined arbitrarily, and the relative speed is reliably calculated.
  • the radar target detection method of the present invention calculates each azimuth when the arrangement interval d of the plurality of antenna elements is set to be less than 0.5 ⁇ with respect to the wavelength ⁇ of the transmission / reception signal. Sometimes the antenna element arrangement interval d is virtually set to 0.5 ⁇ or more to calculate the temporary orientation, and the calculated orientation is corrected to a setting state of less than 0.5 ⁇ to calculate the orientation. It is characterized by this.
  • the antenna element spacing d is less than 0.5 ⁇ , the possible range of the phase difference between the antenna elements caused by the true orientation of the detection target is narrower than / 2 to + ⁇ / 2 Therefore, depending on the relative speed of the target, there may be a problem that the observation peak that should appear in any direction does not appear even if the arrival angle calculation is performed. In other words, in the above-described arithmetic expressions, if the antenna element interval d is not 0.5 ⁇ or more, it is impossible to calculate a practically accurate azimuth.
  • the radar target detection method of the present invention is characterized in that a plurality of antenna elements are arranged at unequal intervals, and the greatest common divisor value of the unequal intervals is made coincident with the arrangement interval d.
  • the radar target detection method of the present invention includes a first time interval and a second time interval. Characterized by variable interval time ⁇ t!
  • the first direction and the second direction are associated with each other according to the spectrum intensity. It can be calculated simultaneously.
  • the speed resolution can be improved.
  • the relative velocity of the target can be calculated with higher accuracy and certainty by appropriately setting the antenna interval and the detection azimuth angle range.
  • the relative speed calculation load can be reduced by appropriately setting the calculated azimuth angle range.
  • FIG. 1 is a block diagram showing a schematic configuration of an FMCW radar device according to a first embodiment.
  • FIG. 2 is an explanatory diagram showing a synchronization state between transmission control and switching control in the first embodiment.
  • FIG. 3 shows a change in distance to a target due to relative speed.
  • FIG. 4 is a diagram showing a change in the distance to the target due to the relative velocity in the first measurement phase, and a diagram showing a change in the distance to the target due to the relative velocity in the second measurement phase.
  • FIG. 5 is a diagram showing a change in the distance to the target in the first measurement phase, and a diagram showing a change in the distance to the target in the second measurement phase.
  • FIG. 6 is a diagram showing an azimuth spectrum by a received signal in the first measurement phase and an azimuth spectrum by a received signal in the second measurement phase.
  • FIG. 7 is a diagram showing a switching pattern for each antenna element switching mode.
  • FIG. 8 is a diagram showing an azimuth direction spectrum.
  • FIG. 9 is a diagram showing an azimuth direction spectrum.
  • FIG. 10 is a diagram showing an example of an azimuth direction spectrum obtained by the configuration and processing of the second embodiment.
  • FIG. 11 is a diagram showing a transmission / reception beam pattern of the second embodiment.
  • FIG. 12 is a diagram showing antenna element intervals and an explanatory diagram showing a synchronization state between transmission control and switching control.
  • FIG. 13 is a diagram showing an azimuth direction spectrum when a plurality of targets are present in different directions at the same distance and have different relative velocities.
  • FIG. 14 is an explanatory diagram showing other transmission signal waveforms and the synchronization state between transmission control and switching control.
  • FIG. 15 is an explanatory diagram showing other transmission signal waveforms and a synchronization state between transmission control and switching control.
  • FIG. 16 is an explanatory diagram showing other transmission signal waveforms and a synchronization state between transmission control and switching control.
  • FIG. 17 is an explanatory diagram showing other transmission signal waveforms and synchronization states between transmission control and switching control.
  • the FMCW radar device is a transmission antenna composed of one antenna element and a reception antenna composed of a plurality of antenna elements.
  • a radar apparatus provided with an antenna will be described as an example.
  • an FM-CW radar device using a transmission signal that has been subjected to triangular wave modulation consisting of an upstream modulation section in which the frequency gradually increases and a downstream modulation section in which the frequency gradually decreases is taken as an example.
  • Force to be applied The force S can be applied to the radar equipment consisting only of up-modulation and down-modulation.
  • FIG. 1 is a block diagram showing a schematic configuration of the FMCW radar device of the present embodiment.
  • the radar apparatus of this embodiment includes a signal processing unit 1 that performs transmission signal control, switching control, and object detection, an RF module 2, a transmission antenna 40, and a reception antenna 50.
  • the signal processing unit 1 generates a transmission control signal and a switching control signal as transmission system control.
  • the transmission control signal is a signal given to V C021 of the RF module 2 in order to generate a transmission signal whose frequency is modulated in a triangular shape in time series (hereinafter simply referred to as “triangular wave modulation transmission signal”).
  • the switching control signal is a signal given to the output switching circuit 23 of the RF module 2 in order to select the antenna element 5 of the receiving antenna 50;!
  • the signal processing unit 1 outputs a transmission control signal so that a transmission signal is generated at different transmission periods in the first measurement phase and the second measurement phase.
  • the generated triangular wave modulation transmission signal is composed of a triangular wave modulated section subjected to triangular wave modulation and a non-modulated section between the triangular wave modulation sections.
  • the time length of the triangular wave modulation section is the same force S in the first measurement phase and the second measurement phase, and in the non-modulation section, the second measurement phase is longer than the first measurement phase. Is set.
  • FIG. 2 is an explanatory diagram showing a synchronization state between transmission control and switching control.
  • (A) is a switching time T
  • (B) shows the case of the second measurement phase switched at the switching time T.
  • the signal processing unit 1 sets the rising timing of each triangular wave modulation section so that each antenna element 5;! -55 sequentially corresponds to each triangular wave modulation section. Outputs a switching control signal that matches the switching timing of antenna element 5;
  • the switching pattern of the antenna elements 5;! To 55 is a preset pattern that is the same in the first measurement phase and the second measurement phase.
  • a switching pattern in which antenna element 51 ⁇ antenna element 52 ⁇ antenna element 53 ⁇ antenna element 54 ⁇ antenna element 55 is repeated in time series order is used.
  • the transmission pattern of the transmission signal and the switching pattern of the antenna element are not limited to this, and various patterns as described at the end of the embodiment of the present specification may be repeated.
  • the RF module 2 includes VC021 and a distributor 22 as a transmission system circuit, and includes an output switch 23, an RF amplifier 24, a mixer 25, and an IF amplifier 26 as a reception system circuit.
  • the VC 021 includes a so-called voltage-controlled oscillator, receives a transmission control signal from the signal processing unit 1, generates a triangular wave modulated transmission signal, and outputs it to the distributor 22.
  • Distributor 22 is formed of a directional coupler, and supplies the triangular wave modulated transmission signal from VC021 to transmission antenna 40, and generates a local signal obtained by distributing the power of the triangular wave modulated transmission signal to mixer 25. .
  • the transmission antenna 40 is composed of a single patch antenna or the like, and radiates a transmission wave obtained by converting a triangular wave modulated transmission signal into a radio wave in the detection region.
  • the receiving antenna 50 includes antenna elements 5;
  • the antenna elements 5;! To 55 are composed of patch antennas or the like, and are composed of, for example, a plurality of patch electrodes arranged on a dielectric substrate in a straight line at equal intervals.
  • the arrangement direction of the antenna elements 5;! To 55 is a direction perpendicular to the front direction of the radar apparatus (the front direction of the automobile in which the radar apparatus is installed) and along the horizontal direction. In this embodiment, as a more specific positional relationship, it is assumed that antenna elements 51, 52, 53, 54, and 55 are arranged in order from the right end to the left end when viewed from the front of the radar apparatus.
  • Each antenna element 5;! To 55 of the reception antenna 50 receives a reflected wave of a target based on the transmission wave, generates a reception signal, and outputs the reception signal to the output switch 23 of the RF module 2.
  • the output switch 23 includes the antenna elements 5; Receive a received signal.
  • the output switch 23 is provided with the switching control signal described above, and the output switch 23 connects the antenna element 5;! -55 and the RF amplifier 24 based on the switching control signal. Switch. That is, the reception signal of the antenna element selected by the switching control signal is given to the RF amplifier 24. At this time, switching of the antenna elements is performed according to the transmission cycle T in the first measurement phase, and the transmission frequency is changed in the second measurement phase.
  • the reception signal of the antenna element selected in accordance with the period ⁇ and selected for each triangular wave modulation section is given to the RF amplifier 24.
  • the RF amplifier 24 performs gain control of a given received signal, and outputs the RF signal after gain control to the mixer 25.
  • the mixer 25 multiplies the RF signal and the local signal to generate an IF beat signal, and supplies the IF beat signal to the IF amplifier 26.
  • the IF amplifier 26 controls the gain of the IF beat signal and outputs it to the A / D converter 3.
  • the A / D converter 3 converts the analog IF beat signal into a digital IF beat signal by sampling the IF beat signal after amplification (gain control) at a predetermined sampling period, and the signal processing unit 1 Output to.
  • the buffer memory 10 which is the reception system of the signal processing unit 1 sequentially buffers the input IF beat signals. At this time, the IF beat signal is buffered in the buffer memory 10 in units of measurement phases.
  • the Fourier transform processing unit 11 includes a time-axis Fourier transform unit 111 and a beam forming unit 112.
  • the time-axis Fourier transform unit 111 generates a frequency vector using a known FFT process and supplies it to the distance “relative velocity detection unit 12.
  • the beamforming unit 112 generates an azimuth direction spectrum by applying a known beamformer method or Capon method using the frequency spectrum generated by the time-axis Fourier transform unit, and generates an azimuth direction spectrum. To give. At this time, the Fourier transform processing unit 11 generates an azimuth direction spectrum in units of measurement phases.
  • the distance / relative speed detection unit 12 calculates the relative speed of the detected target with respect to the own apparatus using the following method.
  • FIGS. 3 to 7 are diagrams for explaining the principle of detecting the target relative speed. Indicates the change in the distance to the target due to the relative velocity.
  • d represents the arrangement interval of the antenna elements
  • r is the target 900 and the antenna at the time when the received signal of the antenna element 51 is selected to be output.
  • the distance when the antenna element 51 is selected is r.
  • the distance when antenna element 52 is selected is r + r
  • the distance when antenna element 53 is selected is r + 2r
  • the distance when antenna element 54 is selected is r + 3r
  • the distance when antenna element 55 is selected is r +
  • Fig. 4 (A) shows the change in the distance to the target due to the relative velocity in the first measurement phase
  • Fig. 4 (B) shows the target due to the relative velocity in the second measurement phase. It is a figure which shows the change of the distance to.
  • the distance varies according to the transmission force T for each distance force Sr. Specifically, when the distance when selecting the antenna element 51 is r, the antenna element 5
  • the distance when selecting 2 is r + r and the distance when antenna element 53 is selected is r + 2r.
  • the distance when the child 54 is selected is r + 3r, and the distance when the antenna element 55 is selected is r + 4r.
  • the distance is r according to the transmission period T.
  • the distance when element 52 is selected is r + r
  • the distance when antenna element 53 is selected is r + 2r
  • the distance when the tenor element 54 is selected is r + 3r
  • the distance when the antenna element 55 is selected is r + 4r.
  • Fig. 5 (A) shows the change in the round-trip distance from the radar device to the target in the first measurement phase
  • Fig. 5 (B) shows the radar device to the target in the second measurement phase. It is a figure which shows the change of the round-trip distance from.
  • each antenna element 52, 53, 54 , 55 to the virtual phase reference plane are L + 2r, 2L + 4r, 3L + 6r and 4L + 8r, respectively.
  • L is the distance change due to the target azimuth ⁇
  • 2r is the distance change due to the target velocity V.
  • the distance from the antenna element 51 to the virtual phase reference plane is specifically "0" as shown in Fig. 5 (B)
  • the distances from the antenna elements 52, 53, 54 and 55 to the virtual phase reference plane are L + 2r, 2L + 4r, 3L + 6r and 4L + 8r, respectively.
  • L is the distance change due to the azimuth ⁇ of the target
  • 2r is the distance change due to the velocity V of the target.
  • the second azimuth calculated in the first phase is ⁇
  • the true azimuth that is not affected by the relative velocity is ⁇
  • the azimuth deviation of the first measurement phase relative to the true azimuth ⁇ is ⁇
  • the direction sign defines the direction of ⁇ and ⁇ shown in FIG. 5 as negative.
  • this equation (7) is the first term on the right side of equation (1) representing the relative velocity candidate V described above, the relative velocity candidate V of the target is calculated by performing this calculation process. be able to.
  • the signal processing unit 1 calculates the relative speed candidate V according to the following processing flow.
  • the signal processing unit 1 calculates an azimuth direction spectrum from the received signal group in the first measurement phase, and calculates a sine value sine of the azimuth angle ⁇ . Next, the signal processing unit 1 receives the first measurement fan.
  • the azimuth direction spectrum is calculated from the received signal group in the second measurement phase following the phase, and the sine value sine of the azimuth angle ⁇ is calculated. Then, the signal processing unit 1 calculates the relative velocity candidate V by applying the calculated sine and sine to Equation (1).
  • the number of receiving antenna elements is 5, the antenna interval is 1.4 & ⁇ ( ⁇ is the wavelength of the 76 GHz transmission signal), the antenna switching period T in the first measurement phase is lmsec.
  • FIG. 6 is a diagram showing the azimuth direction spectrum by the received signal in the first measurement phase and the azimuth direction spectrum by the received signal in the second measurement phase.
  • the T period scan in the figure is the first measurement face.
  • the antenna elements 51, 52, 53, 54, and 55 are sequentially switched at the switching period T.
  • the azimuth ⁇ in the first measurement phase is 5.00 °.
  • the azimuth ⁇ in the second measurement phase is 13.47 °. Therefore, the calculated relative speed metric is 3 ⁇ 0 ⁇ 141.
  • L Xn km / h from Eq. (1), which is in line with the assumption of Nichira's straight-line simulation. If the target speed is 40 km / h to 100 km / h, the true relative speed can be specified to be 30 km / h.
  • the radar apparatus of the present embodiment can calculate the relative speed of the target without performing complicated processing such as calculation of the Doppler frequency of the target. It is possible to reliably detect with high accuracy. In addition, since the processing calculation is simple, highly accurate detection can be performed at high speed. [0069]
  • the first measurement phase and the second measurement phase are configured using all the antenna elements 5;! To 55 that constitute the reception antenna. It is not necessary to switch to all antenna elements up to the end. As shown in Fig. 7, a pattern of switching some antenna elements may be used.
  • Figure 7 shows the switching patterns for each antenna element switching mode. (A) and (B) show the high-speed detection mode, and (C) and (D) show the normal detection mode.
  • the signal processing unit 1 is provided with a mode switching function.
  • the mode is switched by an operation input from the user.
  • the modes include, for example, a high-speed detection mode that detects a relative speed at a high speed and a normal detection mode that detects a relative speed at a normal detection time.
  • the signal processing unit 1 accepts the selection of the high-speed detection mode, the signal processing unit 1 detects the relative speed from the first measurement phase shown in FIG. 7 (A) and the second measurement phase shown in FIG. 7 (B). That is, first, as the first measurement phase, the first azimuth ⁇ is calculated by switching the three antenna elements 5;! Then, as the second measurement phase,
  • the second antenna ⁇ is calculated by switching the antenna elements 5;! To 53 with the switching period T. Then, the relative velocity V is calculated using the first azimuth ⁇ and the second azimuth ⁇ .
  • the relative speed can be detected at a higher speed than in the normal detection mode.
  • the signal processing unit 1 detects the relative speed from the first measurement phase shown in FIG. 7 (C) and the second measurement phase shown in FIG. 7 (D). . That is, first, as the first measurement phase, all the antenna elements 5;! To 55 are switched at the switching period T to calculate the first direction ⁇ . Then, as the second measurement phase,
  • the second azimuth ⁇ is calculated by switching all the antenna elements 5 through! Then, the relative velocity V is calculated using these first azimuth ⁇ and second azimuth ⁇ .
  • the relative speed can be detected with higher accuracy than in the high-speed detection mode.
  • the time range was not specified for the antenna element switching interval difference At.
  • the switching interval difference At by setting the switching interval difference At according to the following method, the relative speed candidate V that appears within the range of relative speeds that the target can take becomes unique and is ambiguous. Relative speed can be calculated without this.
  • Time difference from switching cycle T (switching interval difference) Distance difference ⁇ with respect to At also increases.
  • a phase difference corresponding to this reciprocal distance difference 2 ⁇ occurs between the first measurement phase and the second measurement phase.
  • the phase difference corresponding to the distance difference 2 ⁇ exists within the range of / 2 to + ⁇ / 2, the ambiguity does not occur and the relative velocity V Can be calculated. That is, the absolute value force of the phase difference due to 2 ⁇ should be less than ⁇ / 2.
  • candidates for the relative velocity V appear at intervals of ⁇ / (2 At). Therefore, V is the maximum relative speed candidate and V is the minimum relative speed candidate in the relative speed V candidate range.
  • the force S can be calculated uniquely and more reliably. Moreover, once the target is detected, an approximate value of the relative speed can be obtained.
  • the relative velocity of the target obtained in the previous measurement is V, the maximum possible due to the nature of the target's motion
  • the antenna element interval d is set to 0.5 ⁇ or more, the relative speed and direction of the target can be reliably detected.
  • is the relative velocity of the target.
  • B shows the case where the relative velocity of the target is 4. Okm / h.
  • the detection range of the distance difference between adjacent antenna elements is d + n to + d + n (n is an integer).
  • n is an integer.
  • the distance difference obtained by adding the distance difference due to the positional relationship between the antenna element and the target and the distance difference caused by the relative speed does not fall within the range of -d + n to + d + n.
  • a spectral peak of the azimuth spectrum as shown in Fig. 6 cannot be obtained! /.
  • the second measurement phase switching period T is 1.05 msec.
  • the relative speed of the target is 2 km / h at 1 sec.
  • the distance difference between adjacent antenna elements will be 0.32.
  • 0. ⁇ + ⁇ to 0 ⁇ ⁇ + ⁇ is satisfied, a spectrum peak is obtained (see FIG. 8A), and the relative velocity can be detected.
  • the force antenna element spacing d is less than 0.5 ⁇ , which indicates that the spectral peak can be obtained reliably and easily by setting the antenna element spacing d to 0.5 ⁇ or more. Even in such a case, it is possible to obtain a spectrum peak by virtually setting the antenna element interval d to be greater than or equal to 0. ⁇ in terms of the Capon method and Beamformer method.
  • the mode vector shown in the following equation is used for the arrival direction estimation calculation.
  • a ( ⁇ ) represents a mode vector for the estimated orientation ⁇
  • dl to dk represent antenna intervals when one antenna element position is set as a reference position in the number of antenna elements k + 1.
  • the virtually set antenna element interval d ′ is used instead of using the actual antenna element interval d for dl to dk in (Eq. ⁇ ).
  • Figure 9 shows the azimuth direction spectrum
  • the case where 8 ⁇ is used is shown.
  • FIG. 9 Note that the azimuth direction spectrum shown in FIG. 9 is obtained under the same conditions as the azimuth direction spectrum shown in FIG. 8 (B). That is, FIG. 9 (A) and FIG. 8 (B) show the same results.
  • the relative velocity V can be calculated using the calculated orientations ⁇ 1 and ⁇ 2 of each measurement phase.
  • the radar apparatus of the present embodiment is different only in the antenna interval d, and the other configuration is the same as that of the radar apparatus of the first embodiment.
  • the true azimuth ⁇ of the target is calculated together with the relative velocity V of the target, and a method for calculating the true azimuth ⁇ will be specifically described below.
  • the distance difference r caused by the relative velocity between adjacent antenna elements also increases. Normally, if the distance difference r caused by the relative velocity is designed to fall within the range of -2 to + ⁇ / 2, ambiguity will not occur. However, if the distance difference r due to relative speed does not fall within the range of / 2 to + ⁇ / 2, r cannot be distinguished from r + ⁇ (where n is an integer).
  • n is an arbitrary integer.
  • is the maximum value and ⁇ is the maximum value.
  • the relative velocity V can be obtained by performing the calculation of the above-described embodiment using sin ⁇ and sine used when calculating the true direction ⁇ .
  • FIG. 10 is a diagram showing an example of the azimuth direction spectrum obtained by the configuration and processing of the present embodiment.
  • the frequency of the transmitted signal is 76 GHz
  • the wavelength is 3.9 mm
  • the switching period T of the first measurement phase is lmsec.
  • FIG. 11 shows the transmit / receive beam pattern of this embodiment.
  • Such transmission / reception beam patterns can be set by the configuration of the transmission antenna and reception antenna and transmission / reception control.
  • the speed that the target can take is 40km / l! If it is ⁇ 100km / h, the true relative speed can be specified as 70km / h.
  • the detection range is set to ⁇ to ⁇ .
  • the radar apparatus of this embodiment has unequal antenna element intervals, and the other configurations are the same as those of the first and second embodiments.
  • FIG. 12A is a diagram showing antenna element spacing
  • FIG. 12B is an explanatory diagram showing a synchronized state between transmission control and switching control.
  • the distance between the antenna elements 5;! To 55 is set to 2d, 2d, 3d, and 3d in order from the antenna element 51 side.
  • ⁇ , that is, 2 ⁇ . , 2 ⁇ , 3 ⁇ , 3 ⁇
  • the generation interval of the grating globe is determined by the greatest common divisor of the antenna element spacing. For this reason, assuming that the greatest common divisor of the antenna element spacing is d, from the conditions of the first and second embodiments described above,
  • an azimuth angle range (estimated calculation azimuth angle range) for estimation calculation is set, and other configurations are the same as those of the radar apparatus shown in the third embodiment. [0120]
  • the estimated calculation azimuth range is set to ⁇ ⁇ + ⁇
  • the maximum calculation azimuth ⁇ is
  • This embodiment is a case where a plurality of targets are present at a substantially equal distance from the own device within a detection region that does not relate to processing in the case of a single target as in the above-described embodiments. It relates to processing.
  • FIG. 13 is a diagram showing the azimuth direction spectrum when a plurality of targets are present in different directions at the same distance and have different relative velocities.
  • the level of the spectrum peak due to the received signal in the first measurement phase and the level of the spectrum peak due to the received signal in the second measurement phase are approximately the same if the target target is the same (single). It becomes. Therefore, the spectrum peak level differs for each target, and the spectrum peak level in the first measurement phase and the spectrum peak level in the second measurement phase for the same target are substantially the same.
  • the signal processing unit 1 pairs the spectrum peak of the first measurement phase and the spectrum peak of the second measurement phase based on the peak level from the obtained spectrum peak. . Then, the signal processing unit 1 uses the paired spectral peak of the first measurement phase and the spectral peak of the second measurement phase to perform the relative speed and true orientation of each target using the various methods described above. Is detected. By using such a processing method, even if there are a plurality of targets having different relative speeds and directions at the same distance, the relative speed and direction can be reliably and accurately detected. . [0125] In this pairing, the pairing may be performed with reference to the shape of the spectral peak formed only by the peak level of the spectrum peak.
  • the interval time difference At is shortened by the following method, and the paired spectrum is obtained.
  • the peak may be determined.
  • the interval time difference At is gradually set shorter, and by narrowing the ⁇ candidates to one, pairing can be performed reliably.
  • the relative velocity V can be calculated reliably. Once the relative speed V is calculated, the interval time difference At is increased to increase the relative speed resolution. As a result, the relative speed of the target can be reliably calculated, and the relative speed can be gradually and accurately calculated.
  • the antenna element is used as a first measurement phase with a triangular wave modulation signal 51 ⁇ 52 ⁇ 53 ⁇ 54 ⁇
  • FIG. 14 to FIG. 17 are explanatory diagrams showing other transmission signal waveforms and synchronization states between transmission control and switching control.
  • FIG. 14 uses a so-called sawtooth modulation signal having only an upstream modulation section, and the modulation section These waveforms are the same, and the length of the non-modulation section is different in the first measurement phase and the second measurement phase.
  • Fig. 15 uses a triangular wave modulation signal, and there is no non-modulation section in the first measurement phase, and a non-modulation section is provided in the second measurement phase.
  • Fig. 16 uses a sawtooth modulation signal and has two modulation sections in one transmission cycle. In addition, the interval between two modulation intervals within one transmission cycle is different for each transmission cycle.
  • the antenna elements 5;! To 55 are controlled to be switched according to the transmission cycle.
  • Each antenna element 5;! To 55 constitutes the first measurement phase with the sawtooth modulation signal corresponding to the first (first) modulation section of the transmission cycle received by each antenna element 5;! To 55.
  • the second measurement phase is composed of the sawtooth modulation signal corresponding to the second modulation section of the transmission period received by 55.
  • FIG. 17 uses a triangular wave modulation signal in which an uplink modulation interval and a downlink modulation interval exist, but uses a triangular wave modulation signal having a non-modulation interval between the uplink modulation interval and the downlink modulation interval. This non-modulation section varies depending on each triangular wave modulation signal.
  • each antenna element 5;! To 55 constitutes a first measurement phase with the signal in the upstream modulation section of the triangular wave modulation signal received by each antenna element 5;! To 55, and each antenna element 5;!
  • the second measurement phase is composed of signals in the downstream modulation section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

明 細 書
レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置 技術分野
[0001] この発明は、レーダの物標検知方法、特に物標の相対速度検知方法と、当該検知 方法を用いたレーダ装置に関するものである。
背景技術
[0002] 従来、自動車の前方側等に備え付けられ、自動車前方を含む所定検知領域に送 信波を送信し、検知領域内の物標の反射波を受信して、当該物標を検知するレーダ 装置が各種考案されている。そして、このようなレーダ装置として、自動車分野では F MCW方式が多く用いられて!/、る。
[0003] FMCW方式のレーダ装置は、例えば、特許文献 1や特許文献 2に示すように、送 信信号の周波数が徐々に高くなる上り変調区間と送信信号の周波数が徐々に低くな る下り変調区間とを交互に設けた三角波形状の送信信号を用いる。レーダ装置は、 上り変調区間のビート周波数と下り変調区間のビート周波数とを算出する。ここで、ビ ート周波数とは、送信信号の周波数とこの送信信号に対する受信信号の周波数とを ミキシングした周波数である。レーダ装置は、これら上り変調区間のビート周波数と下 り変調区間のビート周波数との差分値力、ら物標の相対速度を算出する。
特許文献 1:特許第 3622565公報
特許文献 2:特許第 3575694公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、特許文献 1 , 2の方法では、相対速度を算出するにあたり、必ずビー ト周波数およびドッブラ周波数を算出しなければならず、処理が複雑化してしまう。 また、検知領域内に複数の物標が存在する場合には、ビート周波数のスペクトルピ ークが複数になり、対応するスペクトル同士をペアリングする必要がある力 このペア リング処理では、ペアリングミスが発生することがある。そして、ペアリングミスが発生 すると、相対速度を正確に算出できない。 [0005] したがって、本発明の目的は、 目的とする物標に対するドッブラ周波数等の煩雑な 演算処理を行うことなく高精度に物標の相対速度を検知することができるレーダの物 標検知方法およびこの方法を用いて物標検知するレーダ装置を提供することにある
[0006] また、本発明の目的は、上述のように相対速度を検知するのと略同時に物標の方 位をも検出することができるレーダの物標検知方法およびこの方法を用いて物標検 知するレーダ装置を提供することにある。
課題を解決するための手段
[0007] (A)この発明は、送信アンテナと受信アンテナの少なくとも一方を直線上に配置さ れた複数のアンテナ素子により構成し、直線上に配置された複数のアンテナ素子を 送信信号の変調周期に同期して切り替えるレーダの物標検知方法および当該物標 検知方法を用いたレーダ装置に関するものである。この物標検知方法は、複数のァ ンテナ素子を予め設定した所定切替パターンに基づいて、第 1の時間間隔で切り替 えて、物標の第 1方位を算出する第 1測定フェーズと、複数のアンテナ素子を所定切 替パターンに基づいて、第 1の時間間隔とは異なる第 2の時間間隔で切り替えて、物 標の第 2方位を算出する第 2測定フェーズと、を有する。さらに、この物標検知方法は 、第 1方位、第 2方位、第 1の時間間隔、第 2の時間間隔、および複数のアンテナ素 子の配置間隔に基づいて物標の相対速度を算出することを特徴としている。
[0008] このようなレーダの場合、送信アンテナか受信アンテナのいずれか一方もしくは両 方が直線上に配置された複数のアンテナ素子からなり、送受信を行うアンテナ素子 を切り替えながら物標検知が行われる。具体的に、一つのアンテナ素子からなる送信 アンテナと複数のアンテナ素子が直線上に配置された受信アンテナとで送受信系が 構成された場合、送信アンテナからの送信波に基づく反射波を、切り替え制御された 受信アンテナの各アンテナ素子で順次受信して受信信号を生成する。また、複数の アンテナ素子が直線上に配置された送信アンテナと一つのアンテナ素子からなる受 信アンテナとで送受信系が構成された場合、切り替え制御された送信アンテナの各 アンテナ素子から順次送信波を送信して、各送信波に基づく反射波を受信アンテナ で受信して受信信号を生成する。さらに、直線上に配置された複数のアンテナ素子 力、ら送信アンテナと受信アンテナとの双方を構成することで送受信系が構成された場 合、切り替え制御された送信アンテナの各アンテナ素子から順次送信波を送信して、 別の切り替え制御された受信アンテナの各アンテナ素子で反射波を順次受信するこ とで、送信アンテナのアンテナ素子と受信アンテナのアンテナ素子の組み合わせ毎 に受信信号を生成する。
[0009] このような切り替え制御を行って受信信号を得る場合で、それぞれに異なる時間間 隔で受信信号を得られる第 1測定フェーズと第 2測定フェーズとを有する場合、レー ダに対して物標が相対速度を有すると、各フェーズで受信信号の位相変化量が得ら れる。このような位相変化量の違いにより、各フェーズではビームフォーミング法等で 得られる方位が異なる。ここで、フェーズ間での時間間隔の差 (間隔時間差)と、各フ エーズで算出される方位の差と、アンテナ素子と、相対速度とには特定の関係が成り 立つので、これらの関係から相対速度が算出される。これにより、ドッブラ周波数を算 出することなぐ相対速度を算出することができる。この際、各フェーズで算出される 方位を用いることで、同時に物標の真の方位を算出することもできる。
[0010] (B)この発明のレーダの物標検知方法は、送信信号の放射方向側で複数のアンテ ナ素子の配列方向に垂直な方向を 0° 方向とし、当該 0° 方向から配列方向に広が る角度であって、 90° 〜+ 90° の範囲内にある、第 1方位および第 2方位をそれ ぞれ θ , Θ 、第 1の時間間隔と第 2の時間間隔との間隔時間差を A t、複数のアンテ
1 2
ナ素子の間隔を d、物標の相対速度候補を Vとして、 nを任意の整数として、
演算式
V=d- (sin e -sin e ) / (2 · A t) +η· λ / (2 - A t) - (1)
1 2
を用いて得られる候補の中から 1つを選択して物標の相対速度を算出することを特 徴としている。
[0011] この方法およびこの方法を実現する構成では、具体的に式(1)に示すような簡素な 式を用いることで、相対速度 Vが算出される。
[0012] (C)この発明のレーダの物標検知方法は、 目的とする物標の取り得る相対速度の 範囲を V 〜V とし、第 1の時間間隔と第 2の時間間隔との間隔時間差を A tとし、 mm max
送受信信号の波長を λとして、 A t< λ / (2 I V -V I ) - (2)
max min
となるように、第 1の時間間隔と第 2の時間間隔との差 A tを設定することを特徴として いる。
[0013] この方法およびこの方法を実現する構成では、物標が取り得る相対速度の最小値 および最大値を、予め V 〜V に設定しておき、式(2)を用いて、アンテナ素子の
mm max
切替間隔の時間差、すなわち、第 1測定フェーズの時間間隔と第 2測定フェーズの 時間間隔との間隔時間差 A tが決定される。このように間隔時間差 A tを決定すること で、式(1)で得られる相対速度の候補の中で、 V 〜V の範囲にあるものは唯一と
mm max
なるため、測定を行レ、た!/、相対速度が確実に測定される。
[0014] (D)この発明のレーダの物標検知方法は、送信信号の放射方向側で複数のアンテ ナ素子の配列方向に垂直な方向を 0° 方向とし、当該 0° 方向から配列方向に広が る角度範囲であって、 90° 〜+ 90° の範囲内に検知方位角範囲 Θ 〜 Θ を
mm max 設定し、複数のアンテナ素子の配置間隔を dとし、送受信信号の波長をえとして、 d< λ / I sin e -sin e | 一(3)
max min
となるように、複数のアンテナ素子の配置間隔を設定することを特徴としている。
[0015] この方法およびこの方法を実現する構成では、物標検知を行う方位角範囲を、予 め θ 〜θ に設定しておき、式(3)を用いて複数のアンテナ素子の配置間隔 dが mm max
決定される。このようにアンテナ素子の配置間隔 dを決定することで、測定を行いたい 物標検知方位角範囲内の物標の相対速度が確実に測定されるとともに、方位が一 意に検出される。
[0016] (E)この発明のレーダの物標検知方法は、送信信号の放射方向側で複数のアンテ ナ素子の配列方向に垂直な方向を 0° 方向とし、当該 0° 方向を含んで算出方位角 範囲を— θ とし、前記複数のアンテナ素子の配置間隔を dとし、送受信信
Figure imgf000006_0001
号の波長をえとして、
Θ =sin_1 ( l / (2d) ) 一(4)
cal
で設定される算出方位角範囲で、物標の相対速度と方位とを算出することを特徴とし ている。
[0017] この方法およびこの方法を実現する構成では、算出方位角範囲 Θ cal〜+ Θ cal を式 (4)で限定することで、第 1測定フェーズと第 2測定フェーズのそれぞれ一つず つのスペクトルピークしか検出されない。これにより、相対速度の算出に用いる第 1方 位と第 2方位とがー意に決定し、確実に相対速度が算出される。
[0018] (F)この発明のレーダの物標検知方法は、複数のアンテナ素子の配置間隔 dを送 受信信号の波長 λに対して 0. 5 λ未満に設定した場合に、各方位の算出時にアン テナ素子の配置間隔 dを仮想的に 0. 5 λ以上に設定して仮方位を算出し、当該算 出された方位を 0. 5 λ未満の設定状態に補正して方位を算出することを特徴として いる。
[0019] アンテナ素子間隔 dが 0. 5 λ未満の場合、検知物標の真の方位により生じるアンテ ナ素子間の位相差が取り得る範囲は、一え /2〜+ λ /2よりも狭いため、物標の相 対速度によっては到来角算出演算を行ってもいずれの方位にも本来現れるべき観 測ピークが現れないという問題が起こりうる。すなわち、前述の各演算式は、アンテナ 素子間隔 dが 0. 5 λ以上でなければ、現実的に正確な方位を算出することができな い。
[0020] したがって、この方法およびこの方法を実現する構成では、検知方位の算出時に は、仮想的にアンテナ素子の配置間隔 dが 0. 5 λ以上であると仮定して前述の方法 で第 1方位および第 2方位を算出する。そして、検知方位算出時のアンテナ素子の 配置間隔 dの設定値と、現実のアンテナ素子の配置間隔 dとの関係から、算出された 第 1方位と第 2方位とを補正する。これにより、現実の第 1方位と第 2方位が算出され 、これに伴い相対速度も算出される。
[0021] (G)この発明のレーダの物標検知方法は、複数のアンテナ素子を不等間隔に配置 し、且つ当該不等間隔の最大公約数値を配置間隔 dに一致させることを特徴としてい
[0022] この方法およびこの方法を実現する構成では、アンテナ素子を不等間隔にすること で、配列されたアンテナ素子の両端の間隔が広がり、方位分解能が向上するので、 スペクトルピークが急峻になり、より高精度に第 1方位、第 2方位が算出され、ひいて はより高精度に相対速度が算出される。
[0023] (H)この発明のレーダの物標検知方法は、第 1の時間間隔と第 2の時間間隔との 間隔時間差 Δ tを可変に設定することを特徴として!、る。
[0024] この方法およびこの方法を実現する構成では、複数のスペクトルピークが存在して も、スペクトル強度に応じて、第 1方位と第 2方位とが関連付けされるので、複数の検 知方位を同時に算出することができる。また、相対速度を検出する物標が決まった場 合に、速度分解能を向上させることもできる。
発明の効果
[0025] この発明によれば、ドッブラ周波数等の複雑な演算処理を行うことなぐ簡素な演算 処理だけで容易に相対速度を算出することができる。この際、同じ処理系で略同時 に方位をも算出することができる。
[0026] また、この発明によれば、アンテナ間隔、検知方位角範囲を適宜設定することで、よ り高精度で確実に物標の相対速度を算出することができる。
[0027] また、この発明によれば、算出方位角範囲を適宜設定することで、相対速度演算負 荷を軽減することができる。
[0028] また、この発明によれば、アンテナ間隔を不等間隔に設定することで、より高精度に 物標の相対速度検知を行うことができる。
[0029] また、この発明によれば、複数の物標の相対速度検知を同時に行うことができる。
図面の簡単な説明
[0030] [図 1]第 1の実施形態の FMCW方式レーダ装置の概略構成を示すブロック図である
[図 2]第 1の実施形態における送信制御と切替制御との同期状態を示す説明図であ [図 3]相対速度による物標までの距離の変化を示す。
[図 4]第 1測定フェーズでの相対速度による物標までの距離の変化を示す図、および 、第 2測定フェーズでの相対速度による物標までの距離の変化を示す図である。
[図 5]第 1測定フェーズでの物標までの距離の変化を示す図、および、第 2測定フエ ーズでの物標までの距離の変化を示す図である。
[図 6]前述の第 1測定フェーズでの受信信号による方位方向スペクトルと、第 2測定フ エーズでの受信信号による方位方向スペクトルとを示した図である。 [図 7]アンテナ素子の切り替えモード別の切り替えパターンを表した図である。
[図 8]方位方向スペクトルを示す図である。
[図 9]方位方向スペクトルを示す図である。
[図 10]第 2の実施形態の構成および処理で得られる方位方向スペクトルの一例を示 す図である。
[図 11]第 2の実施形態の送受信ビームパターンを示した図である。
[図 12]アンテナ素子間隔を示す図、および、送信制御と切替制御との同期状態を示 す説明図である。
[図 13]複数の物標が同距離で異なる方位に存在して異なる相対速度を有する場合 の方位方向スペクトルを示す図である。
[図 14]その他の送信信号波形および送信制御と切替制御との同期状態を示す説明 図である。
[図 15]その他の送信信号波形および送信制御と切替制御との同期状態を示す説明 図である。
[図 16]その他の送信信号波形および送信制御と切替制御との同期状態を示す説明 図である。
[図 17]その他の送信信号波形および送信制御と切替制御との同期状態を示す説明 図である。
符号の説明
[0031] 1一信号処理部、 10—バッファメモリ、 11 フーリエ変換処理部、 111一時間軸フー リエ変換部、 112 ビームフォーミング部、 12 距離.相対速度検出部、 13 方位 検出部、 2— RFモジュール、 21—VCO、 22 分配器、 23 出力切替器、 24— RF アンプ、 25 ミキサ、 26— IFアンプ、 3— A/Dコンバータ、 40 送信アンテナ、 50 受信アンテナ、 5;!〜 55—アンテナ素子
発明を実施するための最良の形態
[0032] 本発明の第 1の実施形態に係るレーダ装置およびレーダ装置の物標検知方法に ついて、図を参照して説明する。なお、本実施形態では、 FMCW方式のレーダ装置 で、一つのアンテナ素子からなる送信アンテナと、複数のアンテナ素子からなる受信 アンテナとを備えたレーダ装置を例に説明する。また、以下の説明では、周波数が徐 々に高くなる上り変調区間と周波数が徐々に低くなる下り変調区間とからなる三角波 変調を行った送信信号を用いた FM— CW方式のレーダ装置を例に示す力 上り変 調のみや下り変調のみからなるレーダ装置対しても下記の構成および処理を適用す ること力 Sでさる。
[0033] 図 1は本実施形態の FMCW方式レーダ装置の概略構成を示すブロック図である。
図 1に示すように、本実施形態のレーダ装置は、送信信号制御、切り替え制御、物 体検知を行う信号処理部 1と、 RFモジュール 2と、送信アンテナ 40と受信アンテナ 50 とを備える。
[0034] 信号処理部 1は、送信系制御として、送信制御信号の生成と切替制御信号の生成 とを行う。送信制御信号は、時系列で三角形状に周波数を変調させた送信信号 (以 下、単に「三角波変調送信信号」と称する。)を生成するために、 RFモジュール 2の V C021に与える信号である。また、切替制御信号は、受信アンテナ 50のアンテナ素 子 5;!〜 55を選択するために RFモジュール 2の出力切替回路 23に与える信号であ
[0035] 信号処理部 1は、第 1測定フェーズと第 2測定フェーズとで異なる送信周期で、送信 信号が生成されるように送信制御信号を出力する。この際、生成される三角波変調 送信信号は、三角波変調された三角波変調区間と三角波変調区間の間の非変調区 間とからなる。そして、三角波変調区間の時間長は、第 1測定フェーズと第 2測定フエ ーズとで同じである力 S、非変調区間は、第 1測定フェーズよりも第 2測定フェーズが長 くなるように設定されている。
[0036] 図 2は送信制御と切替制御との同期状態を示す説明図であり、 (A)は切替時間 T
1 で切り替えた第 1測定フェーズの場合、(B)は切替時間 Tで切り替えた第 2測定フエ ーズの場合を示す。なお、第 2測定フェーズの切替時間 Tは、第 1測定フェーズの切 替時間 Tに所定時間 A tを加算した時間である。すなわち、 T =T + A tの関係とな
1 2 1
[0037] このような送信制御処理と同時に、信号処理部 1は、各三角波変調区間に各アンテ ナ素子 5;!〜 55が順次対応するように、各三角波変調区間の立ち上がりタイミングと、 アンテナ素子 5;!〜 55の切り替わりタイミングとを一致させる切替制御信号を出力する
[0038] この際、アンテナ素子 5;!〜 55の切替パターンは、第 1測定フェーズ、第 2測定フエ ーズとで同じになる予め設定されたパターンからなる。例えば、図 2に示すように、時 系列順に、アンテナ素子 51→アンテナ素子 52→アンテナ素子 53→アンテナ素子 5 4→アンテナ素子 55を繰り返す切替パターンを用いる。なお、送信信号の送信バタ ーンおよびアンテナ素子の切替パターンは、これに限るものではなぐ当明細書の実 施の形態の終わりに記載するような各種パターンを繰り返すものであっても良い。
[0039] RFモジュール 2は、送信系回路として VC〇21、分配器 22を備え、受信系回路とし て出力切替器 23、 RFアンプ 24、ミキサ 25、 IFアンプ 26を備える。
RFモジュール 2の送信系として、 VC021は、所謂、電圧制御発振器からなり、信 号処理部 1からの送信制御信号を受けて三角波変調送信信号を生成し、分配器 22 に出力する。
[0040] 分配器 22は方向性結合器からなり、 VC021からの三角波変調送信信号を送信ァ ンテナ 40に与えるとともに、三角波変調送信信号を電力分配してなるローカル信号 を生成し、ミキサ 25に与える。
[0041] 送信アンテナ 40は、単一のパッチアンテナ等からなり、三角波変調送信信号を電 波に変換した送信波を、検知領域内に放射する。
[0042] 受信アンテナ 50はアンテナ素子 5;!〜 55を備える。アンテナ素子 5;!〜 55は、パッ チアンテナ等からなり、例えば誘電体基板上に直線上に等間隔で配列形成された複 数のパッチ電極からなる。アンテナ素子 5;!〜 55の配列方向は、当該レーダ装置の 正面方向(当該レーダ装置が設置される自動車の正面方向)に対して垂直な方向で 、且つ水平方向に沿う方向である。そして、本実施形態ではより具体的な位置関係と して、レーダ装置正面から見て右端から左端に向けてアンテナ素子 51 , 52, 53, 54 , 55が順に並ぶものとする。
[0043] 受信アンテナ 50の各アンテナ素子 5;!〜 55は、送信波に基づく物標の反射波等を 受信して受信信号を生成し、 RFモジュール 2の出力切替器 23に出力する。
[0044] RFモジュール 2の受信系として、出力切替器 23は、各アンテナ素子 5;!〜 55からの 受信信号を受ける。出力切替器 23には前述の切替制御信号が与えられており、出 力切替器 23は、この切替制御信号に基づいてアンテナ素子 5;!〜 55のいずれ力、と R Fアンプ 24との接続を切り替える。すなわち、切替制御信号により選択されたアンテ ナ素子の受信信号が RFアンプ 24に与えられる。この際、アンテナ素子の切り替えは 、第 1測定フェーズでは送信周期 Tに準じて行われ、第 2測定フェーズでは送信周
1
期 τに準じて行われ、前述の三角波変調区間毎に出力選択されたアンテナ素子の 受信信号が RFアンプ 24に与えられる。
[0045] RFアンプ 24は、与えられた受信信号のゲイン制御を行い、ゲイン制御後の RF信 号をミキサ 25に出力する。
ミキサ 25は、 RF信号とローカル信号とを乗算して IFビート信号を生成し、 IFアンプ 26に与える。 IFアンプ 26は、 IFビート信号のゲイン制御を行い、 A/Dコンバータ 3 に出力する。
[0046] A/Dコンバータ 3は、所定のサンプリング周期で増幅(ゲインコントロール)後の IF ビート信号をサンプリングすることで、アナログの IFビート信号をディジタルの IFビート 信号にコンバートして信号処理部 1に出力する。
[0047] 信号処理部 1の受信系であるバッファメモリ 10は、入力される IFビート信号を順次 バッファリングしていく。この際、バッファメモリ 10には、測定フェーズ単位で IFビート 信号がバッファリングされる。
[0048] フーリエ変換処理部 11は、時間軸フーリエ変換部 111、およびビームフォーミング 部 112を備える。時間軸フーリエ変換部 111は、既知の FFT処理を用いて周波数ス ベクトルを生成して距離 '相対速度検出部 12に与える。ビームフォーミング部 112は 、時間軸フーリエ変換部で生成された周波数スペクトルを用いて、既知のビームフォ 一マ(Beamformer)法や Capon法を適用することで、方位方向スペクトルを生成し て方位検出部 13に与える。この際、フーリエ変換処理部 11は、測定フェーズ単位で 方位方向スペクトルを生成する。
[0049] 距離 ·相対速度検出部 12は、次に示す方法を用いて、自装置に対する検知物標 の相対速度を算出する。
[0050] [相対速度検知原理の説明] 本実施形態のレーダ装置は、次に示す原理に基づ!/、て物標の相対速度を検知す 図 3〜図 7は物標相対速度検知原理を説明するための図であり、図 3は相対速度 による物標までの距離の変化を示す。図 3において、 dはアンテナ素子の配置間隔を 表し、 rはアンテナ素子 51の受信信号を出力選択した時点での物標 900とアンテナ
0
素子 51との距離を表し、 rはアンテナ切替周期の応じた相対速度による距離変化量 を表す。
[0051] 図 3に示すように、物標 900が自装置に対して「0」でない等速直線運動を行ってい る場合、一つの測定フェーズでは、アンテナ素子 51の選択時の距離を rとすると、ァ
0 ンテナ素子 52の選択時の距離は r +r、アンテナ素子 53の選択時の距離は r + 2r、 o o アンテナ素子 54の選択時の距離は r + 3r、アンテナ素子 55の選択時の距離は r +
0 0
4rとなる。したがって、受信アンテナ 50の正面方向を 0として相対速度による方位角 を Θ とし、アンテナ素子間隔を dとすると、 Θ = sin— ^Zr/d)の方向に等位相面が
V V
生成されるのと同等となる。これが、測位フェーズにおける相対速度による方位角の ズレに相当する。
[0052] このような状況において、第 1測定フェーズ (送信周期 T )と第 2測定フェーズ (送信
1
周期 τ )とで送信周期 (切替周期)を異ならせると、各アンテナ素子選択時の距離は
2
図 4に示すような位相関係となる。
[0053] 図 4 (A)は、第 1測定フェーズでの相対速度による物標までの距離の変化を示す図 であり、図 4 (B)は、第 2測定フェーズでの相対速度による物標までの距離の変化を 示す図である。
[0054] 図 4 (A)に示すように、第 1測定フェーズでは、送信周期 Tに準じ、距離力 Sr毎に変 化する。具体的には、アンテナ素子 51の選択時の距離を rとすると、アンテナ素子 5
0
2の選択時の距離は r +r、アンテナ素子 53の選択時の距離は r + 2r、アンテナ素
0 1 0 1
子 54の選択時の距離は r + 3r、アンテナ素子 55の選択時の距離は r + 4rとなる。
0 1 0 1
[0055] 一方、図 4 (B)に示すように、第 2測定フェーズでは、送信周期 Tに準じ、距離が r
2 2 毎に変化する。具体的には、アンテナ素子 51の選択時の距離を rとすると、アンテナ
0
素子 52の選択時の距離は r +r、アンテナ素子 53の選択時の距離は r + 2r、アン テナ素子 54の選択時の距離は r +3r、アンテナ素子 55の選択時の距離は r +4r
0 2 0 2 となる。ここで、 r =r + であり、 ΔΓは、送信周期 Τと Τとの時間長の差 Atに準じ
2 1 1 2
た距離差である。
[0056] このようにアンテナ素子間で物標の速度による距離変化が観測されると、レーダ装 置に対する物標の方位による距離変化とともに、レーダ装置と物標との距離の変化 は、図 5に示す関係となる。
図 5(A)は、第 1測定フェーズでの物標までのレーダ装置からの往復距離の変化を 示す図であり、図 5(B)は、第 2測定フェーズでの物標までのレーダ装置からの往復 距離の変化を示す図である。
[0057] 第 1測定フェーズでは、具体的に図 5(A)に示すように、アンテナ素子 51から仮想 的な位相基準面までの距離を「0」とすると、各アンテナ素子 52, 53, 54, 55から仮 想的な位相基準面までの距離は、それぞれ L + 2r , 2L + 4r , 3L + 6r , 4L + 8rと
1 1 1 1 なる。ここで、 Lは物標の方位 Θによる距離変化分、 2rは物標の速度 Vによる距離変
1
化分である。
[0058] また、第 1測定フェーズに引き続く第 2測定フェーズでは、具体的に図 5(B)に示す ように、アンテナ素子 51から仮想的な位相基準面までの距離を「0」とすると、各アン テナ素子 52, 53, 54, 55から仮想的な位相基準面までの距離は、それぞれ L + 2r , 2L + 4r , 3L + 6r , 4L + 8rとなる。ここで、 Lは物標の方位 Θによる距離変化分、 2rは物標の速度 Vによる距離変化分である。
[0059] このような関係から、第 1測定フェーズで算出される第 1方位を Θ とし、第 2測定フエ
1
ーズで算出される第 2方位を Θ とし、相対速度の影響を受けない真の方位を Θとし、 真の方位 Θに対する第 1測定フェーズの方位のズレを Θ とし、真の方位 Θに対する
rl
第 2測定フェーズの方位のズレを Θ とした場合に、次に二式が得られる。
r2
[0060] L+2r =-d(sin0 +sin0 ) = -d-sin0 一(5)
1 rl 1
L+2r =-d(sin0 +sin0 ) = -d-sin0 一(6)
2 r2 2
なお、方位の符号は、図 5に示す θ , Θ の向きを負と定義している。
1 2
[0061] ここで、 r rと定義すると、
2 1
[0062] [数 1] — =— (sinft -sin ΘΊ) - ( 7)
At 2At 1
[0063] となる。この式(7)はすなわち、前述の相対速度候補 Vを表す式(1)の右辺第一項そ のものであるので、この演算処理を行うことで、物標の相対速度候補 Vを算出すること ができる。
[0064] 信号処理部 1は次の処理フローにより、上記相対速度候補 Vを算出する。
[0065] まず、信号処理部 1は、第 1測定フェーズの受信信号群から方位方向スペクトルを 算出し、方位角 Θ の正弦値 sine を算出する。次に、信号処理部 1は、第 1測定フエ
1 1
ーズに続く第 2測定フェーズの受信信号群から方位方向スペクトルを算出し、方位角 Θ の正弦値 sine を算出する。そして、信号処理部 1は、算出した sine , sine を 式(1)に適用して、相対速度候補 Vを算出する。
[0066] 具体例として、受信アンテナ素子数を 5とし、アンテナ間隔を 1.4&λ (λは 76GHz 送信信号の波長)、第 1測定フェーズのアンテナ切替周期 Tを lmsec.とし、第 2測
1
定フェーズのアンテナ切替周期 Tを 1· 05msec.とし、物標方位が 5° 、物標の相対 速度が 30km/hであった場合で、 Capon法を用いてシミュレーションを行った場合 の方位方向スペクトルを図 6に示す。図 6は、前述の第 1測定フェーズでの受信信号 による方位方向スペクトルと、第 2測定フェーズでの受信信号による方位方向スぺタト ルとを示した図である。なお、図 6以降の図で、図中の T周期スキャンが第 1測定フエ
1
ーズの場合を示し、 T周期スキャンが第 2測定フェーズの場合を示す。
[0067] 図 6に示すように、アンテナ素子 51, 52, 53, 54, 55を切替周期 Tで順に切り替
1
える第 1測定フェーズでの方位 Θ は 5. 00° となり、切替周期 Tで順に切り替える
1 2
第 2測定フェーズでの方位 Θ は一 13. 47° となる。したがって、算出される相対速 度候ネ甫は、式(1)より、 30· 0±141. l Xn km/hとなり、 n = 0の日寺のィ直カ ンミュレ ーシヨンの仮定と一致する。今、仮に物標の取り得る速度が 40km/h〜; 100km /hであれば、真の相対速度は、 30km/hであると特定できる。
[0068] このように、本実施形態の構成および処理を用いることにより、本実施形態のレーダ 装置は、物標のドッブラ周波数の算出等の煩雑な処理を行うことなぐ物標の相対速 度を確実に精度良く検知することができる。また、処理演算が簡素であるので、高精 度な検知を高速に行うことができる。 [0069] なお、前述の説明では、受信アンテナを構成する全てのアンテナ素子 5;!〜 55を用 いて、第 1測定フェーズおよび第 2測定フェーズを構成したが、必ずしもアンテナ配列 の一方端から他方端までの全てのアンテナ素子に切り替える必要はなぐ図 7に示す ように、一部のアンテナ素子を切り替えるパターンであってもよい。図 7は、アンテナ 素子の切り替えモード別の切り替えパターンを表した図であり、(A) , (B)が高速検 知モードを示し、(C) , (D)が通常検知モードを示す。
[0070] 信号処理部 1には、モード切替機能が備えられており、例えば、ユーザからの操作 入力等によりモードを切り替える。ここで、モードは、例えば、高速で相対速度を検出 する高速検知モードと、通常の検知時間で相対速度を検出する通常検知モードとを 備える。信号処理部 1は、高速検知モードの選択を受け付けると、図 7 (A)に示す第 1測定フェーズと、図 7 (B)に示す第 2測定フェーズから相対速度を検知する。すなわ ち、まず、第 1測定フェーズとして、アンテナ素子 5;!〜 53の三つのアンテナ素子を切 替周期 Tで切り替えて第 1方位 Θ を算出する。その後、第 2測定フェーズとして、ァ
1 1
ンテナ素子 5;!〜 53の三つのアンテナ素子を切替周期 Tで切り替えて第 2方位 Θ を 算出する。そして、これら第 1方位 Θ と第 2方位 Θ とを用いて相対速度 Vを算出する
1 2
。この方法では、切替アンテナ素子数が少ないので、通常検知モードよりも高速で相 対速度を検知することができる。
[0071] 一方、信号処理部 1は、通常検知モードの選択を受け付けると、図 7 (C)に示す第 1測定フェーズと、図 7 (D)に示す第 2測定フェーズから相対速度を検知する。すな わち、まず、第 1測定フェーズとして、アンテナ素子 5;!〜 55の全てのアンテナ素子を 切替周期 Tで切り替えて第 1方位 Θ を算出する。その後、第 2測定フェーズとして、
1 1
アンテナ素子 5;!〜 55の全てのアンテナ素子を切替周期 Tで切り替えて第 2方位 Θ を算出する。そして、これら第 1方位 Θ と第 2方位 Θ とを用いて相対速度 Vを算出す
1 2
る。この方法では、高速検知モードよりも切替アンテナ素子数が多いので、高速検知 モードよりも高精度に相対速度を検知することができる。
[0072] ところで、前述の説明では、アンテナ素子の切替間隔差 A tについて、時間範囲を 指定しなかった。し力もながら、次に示す方法により切替間隔差 A tを設定することで 、物標が取り得る相対速度の範囲内に現れる相対速度候補 Vが唯一となり、あいまい さを排除して相対速度を算出することができる。
物標の相対速度が大きくなると、第 1測定フェーズの切替周期 Tと第 2測定フエ
1 一 ズの切替周期 Tとの時間差 (切替間隔差) Atに対する距離差 ΔΓも大きくなる。この 往復の距離差 2 ΔΓに応じた位相差が第 1測定フェーズと第 2測定フェーズとの間で 発生する。この際、送信信号の波長をえとして、この距離差 2 ΔΓに応じた位相差が、 一え /2〜+ λ/2内に存在すれば、アンビギュイティは生じず、確実に相対速度 V を算出すること力できる。すなわち、 2 ΔΓによる位相差の絶対値力 λ/2以下であ ればよい。ここで、相対速度 Vの候補は、 λ/ (2 At)の間隔で現れる。したがって、 相対速度 Vの候補範囲における最大相対速度候補を V 、最小相対速度候補を V
max mi とすると、相対速度候補が一意に決定するのは、
n
[0073] [数 2] i max- minl < — ( 8)
I I 2At
[0074] の条件を満たす場合である。このため、
[0075] 園
At < r - ( 9)
2|i/max- ^min|
[0076] と、切替間隔差 Atを設定することで、一意に且つより確実に相対速度を算出すること 力 Sできる。また、一度物標を検出すると、相対速度の概算値を取得することができる。 前回の測定にて得られた物標の相対速度を V 、物標の運動の性質上あり得る最大
prv
の加速度を α、同じく減速度を β、前回測定と今回測定路の時間差を 、とすると 、今回の測定時にて物標が取り得る速度の最大値 V および最小値 V は、それぞ
max mm
れ、 V + α τ、ν — β τと表せるので、
prv prv
I V -V
x min I =(V + α τ ) - (V - β τ ) = (α + β) τ 一(9,)
ma prv prv
と表すことができる。
[0077] ここで、具体的な Atの設定方法について説明する。まず、物標が未検知の状態で は、例えば、物標が自動車であったとして、 V = + 200km/h
max 、 V =- 200km
mm
/h、最大の加速度分 a =5m/s2とし、最大の減速度分 /3 =10m/s2とし、時間差 τ =0. lsec.とし、式(9)および式(9' )より、切替間隔差 Δ t= lmsec.とすればよ い。
[0078] このように切替間隔差 A tを設定することで、より確実に相対速度 Vを算出すること ができる。
[0079] さらに、アンテナ素子間隔 dを 0. 5 λ以上とすると確実に物標の相対速度および方 位の検知を行うことができる。
[0080] 図 8は、アンテナ間隔 d = 0. 4 λで、物標の真の方位が 5° の時の方位方向スぺク トルを示す図であり、(Α)は物標の相対速度が 2· Okm/hである場合を示し、(B)は 物標の相対速度が 4. Okm/hの場合を示す。
アンテナ素子間隔力 の場合、隣り合うアンテナ素子間で生じる距離差の検知範囲 は、 d + nえ〜 + d + n (nは整数)となる。すなわち、アンテナ素子と物標との位 置関係による距離差と相対速度により生じる距離差とを加算した距離差は、 - d + n え〜 + d + n の範囲に入らなければ、前述の図 6に示すような方位方向スペクトル のスペクトルピークが得られな!/、。
[0081] ここで、例えばアンテナ素子間隔 dが 0. 5 λ未満(d = 0. 4 λ )の場合、距離差検知 範囲は 0. 4 λ +ηえ〜 0. 4 λ +η λとなる。第 1測定フェーズの切替周期 Τ力 S im
1 sec.で、第 2測定フェーズの切替周期 Tが 1. 05msec.で、物標の相対速度が 2k m/hである場合、隣り合うアンテナ素子間での距離差は 0. 32えとなる。この場合、 前述の条件 0. λ +η λ〜0· λ +η λを満たすので、スペクトルピークが得られ (図 8 (A)参照)、相対速度の検知が可能となる。
[0082] ところ力 物標の相対速度が 4km/hである場合、隣り合うアンテナ素子間での相 対速度による距離変化は 0. 60 λとなる。この場合、前述の条件 0. 4 λ +ηえ〜 0 . 4 λ +η λを満たさないので、スペクトルピークが得られず(図 8 (Β)参照)、正確に 相対速度の検知を行うことができなレ、。
[0083] 一方、アンテナ素子間隔 dが 0. 5 λ以上の場合、例えば d = 0. 8 λとすると、隣り合 うアンテナ素子間の距離差の検知範囲は、( 0· 8 + η)え〜(0. 8 + η)えとなる。こ の場合、 n = mの時の範囲と、 n = m+ lの時の範囲とはオーバラップするので、全て の距離差が検知可能となる。つまり、アンテナ素子と物標との位置関係による距離差 と相対速度により生じる距離差とを加算した距離差は、—d + nえ〜 + d + n の範囲 に確実に存在する。この結果、アンテナ素子間隔 dを 0. 5 λ以上とすることで、方位 方向のスペクトルピークを確実に得られ、物標の相対速度を検知することができる。
[0084] また、前述の説明では、アンテナ素子間隔 dを 0. 5 λ以上にすることで、確実且つ 容易にスペクトルピークを得られることを示した力 アンテナ素子間隔 dが 0. 5 λ未満 であっても、 Capon法や Beamformer法の算術上、仮想的にアンテナ素子間隔 dを 0. δ λ以上に設定することで、スペクトルピークを得ることもできる。
[0085] Capon法や Beamformer法等では、到来方向推定演算に、次式に示すモードべ タトルを用いる。
[0086] [数 4]
2π . 2π , .
(θ) exp - j—— a1 sin Θ L exp - j—— d2 sin Θ '•'•, exp| -ゾ—— dk sin Θ
λ , λ 1 I
一 (式 A)
[0087] ここで、 a ( θ )は、推定方位 Θに対するモードベクトル、 dl〜dkはアンテナ素子数 k + 1個において、一つのアンテナ素子位置を基準位置とした場合の各アンテナ間隔 を示す。
アンテナ素子間隔 dが 0. 5 λ未満である場合に、(式 Α)の dl〜dkに現実のアンテ ナ素子間隔 dを用いるのではなぐ仮想設定したアンテナ素子間隔 d'を用いる。
[0088] この演算処理により、図 9 (B)に示すような方位方向スペクトルが得られる。
図 9は方位方向スペクトルを示す図であり、 (A)は現実のアンテナ素子間隔 d = 0. 4 λを用いた場合を示し、(Β)仮想設定したアンテナ素子間隔 d' = 2d = 0. 8 λを用 いた場合を示す。
なお、図 9に示す方位方向スペクトルは、図 8 (B)に示した方位方向スペクトルと同 じ条件により得られたものである。すなわち、図 9 (A)と図 8 (B)とは同じ結果を示す。
[0089] 図 9 (B)に示すように、アンテナ素子間隔 d'を 0. 5 λ以上に仮想設定した場合、急 峻なスペクトルピークが得られる。
[0090] このようにアンテナ素子間隔を仮想的に 0. 5 λ以上に設定することで、現実のアン テナ素子間隔 dが 0. 5 λ未満であっても相対速度に影響されることなぐスペクトルピ ークを得ること力 Sできる。
[0091] このように得られたスペクトルピークによる第 1測定フェーズでの方位 Θ ,と、第 2測 定フェーズでの方位 θ 2'とは、現実の方位 Θとは異なる。しかしながら、現実の方位 Θと算出方位 Θ 'とは、等位相面までの距離を Lとして、
L = d'sin Θ =d 'sin θ
の関係が成り立つので、
現実の方位 Θは、
Θ =sin_1((d'/d) -sine ') (式 B)
力、ら得ること力 Sでさる。
[0092] このように、現実には、アンテナ素子間隔 dが 0.5 λ未満であっても、算術演算上、 仮想的にアンテナ素子間隔 d'を 0.5 λ以上とすることで、処理演算数は増加するが 、方位 Θを得ること力 Sできる。この結果、算出された各測定フェーズの方位 Θ 1、 Θ 2 を用いて相対速度 Vを算出することができる。
[0093] 次に、第 2の実施形態に係るレーダ装置およびレーダ装置の物標検知方法につい て図を参照して説明する。
本実施形態のレーダ装置は、アンテナ間隔 dのみが異なり、他の構成は、第 1の実 施形態のレーダ装置と同じである。
本実施形態では、物標の相対速度 Vとともに、物標の真の方位 Θをも算出するもの であり、以下は真の方位 Θの算出方法について具体的に説明する。
[0094] ターゲットの相対速度が大きくなると、隣り合うアンテナ素子間の相対速度により生 じる距離差 rも大きくなる。通常、相対速度により生じる距離差 rがーえ /2〜+ λ/2 の範囲に入るように設計すれば、アンビギュイティは発生しない。し力もながら、相対 速度による距離差 rがーえ /2〜+ λ/2の範囲に入らない場合、 rと r + ηλ (nは整 数)との判別ができなくなる。
[0095] この場合、第 1測定フェーズの第 1方位を Θ とすると、
1
L+2r +nl=-d-sin0 一(10)
1 1
となる。ただし、 nは任意の整数である。
[0096] このような組み合わせを持つ方位の候補が複数になる。ここで、物標の相対速度を V、真の方位 Θは、
r =V-T -(11-1) L=-d-sin0 -(11-2)
であるので、式(10)、 (11— 1)、 (11 2)より、
[0097] [数 5]
sin 6* = sin 十—— + n— — ( 1 2)
d d
[0098] となる。したがって、式(12)より、真の方位 Θの正弦値 sin Θは、 λ/dの間隔で候補 が発生する。
[0099] このように、正弦値 sin Θはえ /dの間隔で発生するので、 sin Θを特定するには、
Θの取りうる値を、レーダの正面方向すなわち複数のアンテナ素子の配列方向に垂 直で且つ送信信号の送信方向を 0° 方向とした場合に、 90° 〜+ 90° の範囲内 において最小値で Θ 、最大値で Θ として、
mm max
[0100] [数 6]
sin |< 13 )
d
[0101] に限定すればよい。これにより、候補は一意に決定し、真の方位が特定できる。
[0102] したがって、
[0103] [数 7] d< -. ~ - ~ - ~― - ( 14)
- sin |
[0104] となるように、アンテナ素子間隔 dを設定することで、確実且つ容易に真の方位 Θを 算出すること力 Sできる。この際、相対速度 Vは、真の方位 Θの算出時に利用する sin Θ と sine とを用いて、前述の実施形態の演算を行うことで得られる。
1 2
[0105] 図 10は本実施形態の構成および処理で得られる方位方向スペクトルの一例を示 す図である。図 10に示す方位方向スペクトルは、送信信号の周波数を 76GHz、波 長えを 3· 9mmとし、第 1測定フェーズの切替周期 Tを lmsec.とし、第 2測定フエ
1 一 ズの切替周期 Tを 1· 05msec.とし、物標方位 Θを 5° とし、物標の相対速度を 70k m/hとした時のシミュレーション結果である。
[0106] アンテナ素子間隔 dは、 Θ を +20° を 20
max 、 θ ° に設定することで、式(14) mm
から 1.46えに決定される力 S、ここでは境界値として d=l.46 λを設定している。 Θ = 20° , θ = - 20° を実現するため、本実施形態のレーダ装置では、例えば、 min
図 11に示すような指向特性を有する送受信ビームパターンを形成する。図 11は本 実施形態の送受信ビームパターンを示した図である。このような送受信ビームパター ンは、送信アンテナおよび受信アンテナの構成および送受信制御により設定可能で ある。
[0107] 図 10に示すように、本実施形態のアンテナ素子の配置間隔 dを用いることで、第 1 測定フェーズの第 1方位 Θ を式(12)に代入して得られる Θのうち、 Θ 〜 Θ の範
1 max mm 囲にあるものは 1つだけ存在する。第 2測定フェーズの第 2方位 Θ を式(12)の θ 1の 代わりに用いて得られる Θも同様に θ 〜 θ の範囲にあるものは 1つだけである。 s max mm
ίη θ と sin e とから、前述の実施形態の式(1)を用いることで相対速度候補 Vを算出
1 2
することができる。具体的に、図 10の例では、 Θ = 7. 96° 、 Θ = - 11. 62° であ
1 2
るので、申目対速度候ネ甫 Vは 70. 0 ± 141. l X n km/hとなり、 n = 0の日寺のィ直カ仮 定と一致する。今、仮に物標の取り得る速度が 40km/l!〜 + 100km/hであれ ば、真の相対速度は 70km/hであると特定できる。
[0108] 次に、真の方位 Θの正弦値 sin Sは、式(12)に示すように、 λ /d毎に現れるので 、 Θ = 7. 96° から、真の方位 Θの候補は、現実的に送信信号により検知し得るで
1
あろう範囲である 90° 〜+ 90° の範囲内で、 36. 7° , + 5. 0° , + 50. 5° となる。し力、しながら、送信ビーム範囲を一 20° 〜+ 20° に設定しているので、真の 方位 Θは一意に 5. 0° に決定される。そして、この結果は仮定と一致する。
[0109] 以上のように、本実施形態の構成および処理を行うことで、物標の相対速度と方位 とを確実に且つ正確に検知することができる。
[0110] なお、本実施形態では、検知範囲を Θ 〜 Θ に設定したが、前述の 0° 方向を
mm max
中心にして角度の正方向、負方向ともに同じ角度範囲内に設定する場合は、式(14 )に代わり、
[0111] [数 8コ dく—— 2, -—— - ( 1 5 )
[0112] を用いてもよい。 [0113] 次に、第 3の実施形態に係るレーダ装置およびレーダ装置の物標検知方法につい て図を参照して説明する。
本実施形態のレーダ装置は、アンテナ素子間隔が不等間隔であり、他の構成は第 1、第 2の実施形態のレーダ装置と同じである。
図 12 (A)はアンテナ素子間隔を示す図であり、 (B)は送信制御と切替制御との同 期状態を示す説明図である。
[0114] 図 12 (A)に示すように、本実施形態のレーダ装置では、アンテナ素子 5;!〜 55の 間隔を、アンテナ素子 51側から順に、 2d, 2d, 3d, 3dとする。そして、図 12 (B)に示 すように、信号処理部 1は、アンテナ素子 51 , 52, 53, 54, 55の順でアンテナ素子 を切り替える場合、第 1測定フェーズでは、 τ =Τすなわち 2Τ , 2Τ , 3Τ , 3Τの時
1 1 1 1 1 間間隔で切り替え、第 2測定フェーズでは、 τ =Τすなわち 2Τ , 2Τ , 3Τ , 3Τの 時間間隔で切り替える。
[0115] 不等間隔アレーアンテナの場合、アンテナ素子間隔の最大公約数によりグレーティ ングローブの発生間隔が決定する。このため、アンテナ素子間隔の最大公約数を dと すると、前述の第 1実施形態および第 2実施形態の条件から、
[0116] [数 9]
0.51く dく -. r — ( 1 6 )
腿 - sin ^J
[0117] を満たすように、 dを決定すれば、相対速度 Vおよび真の方位 Θを一意に決定するこ と力 Sできる。あるいは、 d < 0. 5えの時も、前述の仮想的な間隔 d ' (d '〉0. 5 λ )を用 い、全く同様に式 (Β)から Θを算出し、続いて相対速度 Vを一意に決定できる。
[0118] このような構成および処理を用いることで、不等間隔アレイによって方位分解能を 向上させ、且つ確実に相対速度 Vと真の方位 Θとを検知すること力 Sできる。すなわち 、高精度で確実に相対速度 Vと真の方位 Θとを検知すること力 Sできる。
[0119] 次に、第 4の実施形態に係るレーダ装置およびレーダ装置の物標検知方法につい て説明する。
本実施形態では、推定演算する方位角範囲 (推定演算方位角範囲)を設定するも のであり、他の構成は第 3の実施形態に示したレーダ装置と同じである。 [0120] 推定演算方位角範囲を θ 〜+ θ に設定した場合、最大演算方位角 Θ を、
Θ =sin_1 ( l / (2d) ) 一(17)
とする。
[0121] この関係式は、前述の原理から導かれるものであり、式(17)に示す設定を行うこと で、第 1測定フェーズの第 1方位 Θ 、第 2測定フェーズの第 2方位 Θ ともに、スぺタト ルピークは一個になる。これにより、確実且つ容易に相対速度 Vと真の方位 Θとを算 出すること力 Sできる。さらに、本実施形態では、推定演算方位角範囲を、前述の実施 形態よりも実質的に狭くすることができるので、相対速度および方位算出の演算負荷 を軽減すること力 Sできる。
[0122] 次に、第 5の実施形態に係るレーダ装置およびレーダ装置の物標検知方法につい て図を参照して説明する。
[0123] 本実施形態は、前述の各実施形態のような物標がーつの場合の処理に関するもの ではなぐ検知領域内で、 自装置から略等距離に、複数の物標が存在する場合の処 理に関するものである。
図 13は複数の物標が同距離で異なる方位に存在して異なる相対速度を有する場 合の方位方向スペクトルを示す図である。
第 1測定フェーズでの受信信号によるスペクトルピークのレベルと、第 2測定フエ一 ズでの受信信号によるスペクトルピークのレベルとは、対象となる物標が同じ(単一) であれば、略同じとなる。したがって、物標毎にスペクトルピークレベルが相違し、同 じ物標に対する第 1測定フェーズのスペクトルピークレベルと第 2測定フェーズのスぺ タトルピークレベルとは略同じになる。
[0124] これを利用し、信号処理部 1は、得られたスペクトルピークから、ピークレベルに基 づレ、て、第 1測定フェーズのスペクトルピークと第 2測定フェーズのスペクトルピークと をペアリングする。そして、信号処理部 1は、ペアリングした第 1測定フェーズのスぺク トルピークと第 2測定フェーズのスペクトルピークとを用いて、前述の各種方法を用い て各物標の相対速度と真の方位とを検知する。このような処理方法を用いることにより 、 自装置力も同距離で異なる相対速度および方位の物標が複数存在しても、それぞ れの相対速度および方位を確実且つ高精度に検知することができる。 [0125] なお、このペアリングの際に、スペクトルピークのピークレベルのみでなぐスぺタト ルピークの形状をも参照してペアリングを行っても良い。
[0126] さらに、第 1測定フェーズと第 2測定フェーズとの位相差が 2V A t/ λであることを 利用し、以下の方法で、間隔時間差 A tを短くしていき、ペアとなるスペクトルピークを 決定しても良い。
[0127] 物標の取り得る相対速度の上限および下限をそれぞれ、 V , V とする。ここで、 max mm
第 1の実施形態に示した条件下で間隔時間差 A tを設定することで、位相差が 2 πを 超えることはないので、式(1)から、第 1方位 Θ に対して、第 2方位の制限値 sin Θ を
1 2
[0128] [数 10]
Figure imgf000025_0001
[0129] の範囲内に納めるように、 Θ を検出すればよい。この際、式(18)の範囲内に複数の
2
Θ 候補が存在する場合には、徐々に間隔時間差 A tを短く設定していき、 Θ 候補を 一つまで絞り込むことで、確実にペアリングを行うことができる。
[0130] これにより、確実に相対速度 Vを算出することができる。そして、一度相対速度 Vを 算出すれば、これ以降は、間隔時間差 A tを長くして相対速度の分解能を上げるよう にすればよい。この結果、確実に物標の相対速度を算出することができるとともに、徐 々に高精度に相対速度を算出することができる。
[0131] なお、前述の実施形態では、送信信号波形およびアンテナ素子の切替の一例とし て、三角波変調信号で第 1測定フェーズとしてアンテナ素子を 51→52→53→54→
55の順に切替周期 T1で切り替え、第 2測定フェーズとしてアンテナ素子を 51→52
→53→54→55の順に切替周期 T2で切り替える例を示した。
[0132] しかしな力 、図 14〜図 17に示すような送信信号波形およびアンテナ素子の切替 を用いても、前述の構成、処理を実現でき、前述の効果を奏することができる。
[0133] 図 14〜図 17は、その他の送信信号波形および送信制御と切替制御との同期状態 を示す説明図である。
[0134] 図 14は、上り変調区間のみを有する、所謂鋸波変調信号を用いており、変調区間 の波形は同じで非変調区間の長さが第 1測定フェーズと第 2測定フェーズとで異なる ものである。
図 15は、三角波変調信号を用いており、第 1測定フェーズでは非変調区間が無ぐ 第 2測定フェーズでは非変調区間を設けたものである。
図 16は、鋸波変調信号を用いており、一つの送信周期内に二つの変調区間を有 するものである。そして、一つの送信周期内の二つの変調区間の間隔が各送信周期 で異なる。この際、各アンテナ素子 5;!〜 55は、送信周期により切替制御される。そし て、各アンテナ素子 5;!〜 55が受信する送信周期の最初の(第 1の)変調区間に対応 する鋸波変調信号にて第 1測定フェーズを構成し、各アンテナ素子 5;!〜 55が受信 する送信周期の第 2の変調区間に対応する鋸波変調信号にて第 2測定フェーズを構 成する。
[0135] 図 17は、上り変調区間と下り変調区間とが存在する三角波変調信号を用いるが、 上り変調区間と下り変調区間との間に無変調区間を有する三角波変調信号を用いる 。この無変調区間は各三角波変調信号により異なる。
[0136] そして、各アンテナ素子 5;!〜 55が受信する三角波変調信号の上り変調区間の信 号にて第 1測定フェーズを構成し、各アンテナ素子 5;!〜 55が受信する三角波変調 信号の下り変調区間の信号にて第 2測定フェーズを構成する。
[0137] また、前述の実施形態では、受信アンテナを複数のアンテナ素子を配列してなるァ ナおよび受信アンテナの双方をアレイアンテナにしても、前述の効果を同様に奏する こと力 Sでさる。

Claims

請求の範囲
[1] 送信アンテナと受信アンテナの少なくとも一方を直線上に配置された複数のアンテ ナ素子により構成し、前記直線上に配置された複数のアンテナ素子を送信信号の変 調周期に同期して切り替えるレーダの物標検知方法であって、
前記複数のアンテナ素子を予め設定した所定切替パターンに基づいて、第 1の時 間間隔で切り替えて、物標の第 1方位を算出する第 1測定フェーズと、
前記複数のアンテナ素子を前記所定切替パターンに基づいて、前記第 1の時間間 隔とは異なる第 2の時間間隔で切り替えて、前記物標の第 2方位を算出する第 2測定 フェーズと、を有し、
前記第 1方位、前記第 2方位、前記第 1の時間間隔、前記第 2の時間間隔、および 前記複数のアンテナ素子の配置間隔に基づいて前記物標の相対速度を算出するレ 一ダの物標検知方法。
[2] 前記送信信号の放射方向側で前記複数のアンテナ素子の配列方向に垂直な方向 を 0° 方向とし、当該 0° 方向から前記配列方向に広がる角度であって、 90° 〜 + 90° の範囲内にある、前記第 1方位および前記第 2方位をそれぞれ θ , Θ 、前
1 2 記第 1の時間間隔と前記第 2の時間間隔との間隔時間差を A t、前記複数のアンテ ナ素子の間隔を d、前記物標の相対速度候補を Vとし、 nを任意の整数として、 演算式
V=d- (sin e -sin e ) / (2 · A t) +n- λ / (2 · A t)
1 2
を用いて得られる候補の中から 1つを選択して前記物標の相対速度を算出する請求 項 1に記載のレーダの物標検知方法。
[3] 目的とする物標の取り得る相対速度を V 〜V とし、前記第 1の時間間隔と前記
mm max
第 2の時間間隔との間隔時間差を A tとし、送受信信号の波長をえとして、
A t< λ / (2 I V -V
max min I )
となるように、前記第 1の時間間隔と前記第 2の時間間隔との差 A tを設定する請求 項 1または請求項 2に記載のレーダの物標検知方法。
[4] 前記送信信号の放射方向側で前記複数のアンテナ素子の配列方向に垂直な方向 を 0° 方向とし、当該 0° 方向から前記配列方向に広がる角度範囲であって、 90 。 〜 + 90° の範囲内に検知方位角範囲 Θ 〜 Θ を設定し、前記複数のアンテナ
mm max
素子の配置間隔を dとし、送受信信号の波長をえとして、
d < λ / I sin Θ —sin θ |
max min
となるように、前記複数のアンテナ素子の配置間隔を設定する請求項 1〜3のいずれ かに記載のレーダの物標検知方法。
[5] 前記送信信号の放射方向側で前記複数のアンテナ素子の配列方向に垂直な方向 を 0° 方向とし、当該 0° 方向を含んで算出方位角範囲を θ 〜+ θ とし、前記
cal cal
複数のアンテナ素子の配置間隔を dとし、送受信信号の波長をえとして、
Θ = sin_1 ( l / (2d) )
cal
で設定される算出方位角範囲で、前記物標の相対速度と方位とを算出する請求項 1
〜4の!/、ずれかに記載のレーダの物標検知方法。
[6] 前記複数のアンテナ素子の配置間隔 dを送受信信号の波長 λに対して 0. 5 λ未 満に設定した場合に、
各方位の算出時にアンテナ素子の配置間隔 dを仮想的に 0. 5 λ以上に設定して 仮方位を算出し、当該算出された方位を前記 0. 5 λ未満の設定状態に補正して前 記方位を算出する請求項 1〜5のいずれかに記載のレーダの物標検知方法。
[7] 前記複数のアンテナ素子を不等間隔に配置し、且つ当該不等間隔の最大公約数 値を前記配置間隔 dに一致させる請求項 4〜6のいずれかに記載のレーダの物標検 知方法。
[8] 前記第 1の時間間隔と前記第 2の時間間隔との間隔時間差 A tを可変に設定する 請求項 1〜7のいずれかに記載のレーダの物標検知方法。
[9] 送信アンテナと受信アンテナの少なくとも一方を直線上に配置された複数のアンテ ナ素子と、
前記直線上に配置された複数のアンテナ素子を送信信号の変調周期に同期して 切り替える切替手段と、
得られた受信信号から物標を検知する物標検知手段と、を備えたレーダ装置にお いて、
前記物標検知手段は、 前記複数のアンテナ素子を予め設定した所定切替パターンに基づいて、第 1の時 間間隔で切り替える第 1測定フェーズで物標の第 1方位を算出し、
前記複数のアンテナ素子を前記所定切替パターンに基づいて、前記第 1の時間間 隔とは異なる第 2の時間間隔で切り替える第 2測定フェーズで、前記物標の第 2方位 を算出し、
前記第 1方位、前記第 2方位、前記第 1の時間間隔、前記第 2の時間間隔、および 前記複数のアンテナ素子の配置間隔に基づいて前記物標の相対速度を算出する、 レーダ装置。
[10] 前記物標検知手段は、
前記送信信号の放射方向側で前記複数のアンテナ素子の配列方向に垂直な方向 を 0° 方向とし、当該 0° 方向から前記配列方向に広がる角度であって、 90° 〜 + 90° の範囲内にある、前記第 1方位および前記第 2方位をそれぞれ θ , Θ 、前
1 2 記第 1の時間間隔と前記第 2の時間間隔との間隔時間差を A t、前記複数のアンテ ナ素子の間隔を d、前記物標の相対速度候補を Vとし、 nを任意の整数として、 演算式
V=d- (sin e -sin e ) / (2 · A t) +n- λ / (2 · A t)
1 2
を用いて得られる候補の中から 1つを選択して前記物標の相対速度を算出する請求 項 9に記載のレーダ装置。
[11] 前記切替手段は、
目的とする物標の取り得る相対速度を V 〜V とし、前記第 1の時間間隔と前記
mm max
第 2の時間間隔との間隔時間差を A tとし、送受信信号の波長をえとして、
A t< λ / (2 I V -V
max min I )
となるように、前記第 1の時間間隔と前記第 2の時間間隔との差 A tを設定して、アン テナ素子を切り替える請求項 9または請求項 10に記載のレーダ装置。
[12] 前記複数のアンテナ素子の配置間隔は、
前記送信信号の放射方向側で前記複数のアンテナ素子の配列方向に垂直な方向 を 0° 方向とし、当該 0° 方向から前記配列方向に広がる角度範囲であって、 90 。 〜+ 90° の範囲内に検知方位角範囲 θ 〜θ を設定し、前記複数のアンテナ 素子の配置間隔を dとし、送受信信号の波長をえとして、
d< λ / I sin Θ —sin θ |
max min
である、請求項 9〜 11の!/、ずれかに記載のレーダ装置。
[13] 前記物標検知手段は、
前記送信信号の放射方向側で前記複数のアンテナ素子の配列方向に垂直な方向 を 0° 方向とし、当該 0° 方向を含んで算出方位角範囲を θ 〜+ θ とし、前記
cal cal
複数のアンテナ素子の配置間隔を dとし、送受信信号の波長をえとして、
Θ = sin_1 ( l / (2d) )
cal
で設定される算出方位角範囲で、前記物標の相対速度と方位とを算出する請求項 9 〜; 12の!/、ずれかに記載のレーダ装置。
[14] 前記複数のアンテナ素子の配置間隔 dは、送受信信号の波長 λに対して 0. 5 λ未 満であり、
前記物標検知手段は、各方位の算出時にアンテナ素子の配置間隔 dを仮想的に 0 . 5 λ以上に設定して仮方位を算出し、当該算出された方位を前記 0. 5 λ未満の設 定状態に補正して前記方位を算出する請求項 9〜; 13のいずれかに記載のレーダ装 置。
[15] 前記複数のアンテナ素子は、不等間隔に配置され、且つ当該不等間隔の最大公 約数値を前記配置間隔 dに一致させてなる請求項 12〜; 14のいずれかに記載のレー ダ装置。
[16] 前記物標検知手段は、前記第 1の時間間隔と前記第 2の時間間隔との間隔時間差
Δ tを可変とする制御を前記切替手段に行う請求項 9〜; 15のいずれかに記載のレー ダ装置。
PCT/JP2007/069954 2006-11-01 2007-10-12 Procédé de détection de cible par radar et dispositif de radar utilisant le procédé de détection de cible WO2008053685A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008542029A JP4905457B2 (ja) 2006-11-01 2007-10-12 レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
EP07829690A EP2060929A4 (en) 2006-11-01 2007-10-12 RADAR TARGET DETECTION METHOD AND RADAR DEVICE USING THE TARGET RECOGNITION METHOD
US12/428,774 US7928897B2 (en) 2006-11-01 2009-04-23 Target detection method for use in radar and radar device using the target detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-297475 2006-11-01
JP2006297475 2006-11-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/428,774 Continuation US7928897B2 (en) 2006-11-01 2009-04-23 Target detection method for use in radar and radar device using the target detection method

Publications (1)

Publication Number Publication Date
WO2008053685A1 true WO2008053685A1 (fr) 2008-05-08

Family

ID=39344032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069954 WO2008053685A1 (fr) 2006-11-01 2007-10-12 Procédé de détection de cible par radar et dispositif de radar utilisant le procédé de détection de cible

Country Status (4)

Country Link
US (1) US7928897B2 (ja)
EP (1) EP2060929A4 (ja)
JP (1) JP4905457B2 (ja)
WO (1) WO2008053685A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013056A (ja) * 2009-07-01 2011-01-20 Toyota Central R&D Labs Inc レーダ装置
JP2013024775A (ja) * 2011-07-22 2013-02-04 Mitsubishi Electric Corp レーダ装置
JP2013504764A (ja) * 2009-09-16 2013-02-07 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも1つの平面アンテナ装置を備えたレーダセンサ装置
WO2014112642A1 (ja) * 2013-01-21 2014-07-24 株式会社デンソー レーダ装置
JP2019113379A (ja) * 2017-12-22 2019-07-11 三菱電機株式会社 レーダ装置
JP2020501146A (ja) * 2016-12-05 2020-01-16 エコダイン コーポレーシヨン アナログビーム操縦送信アレイ及びデジタルビーム形成受信アレイを備えたアンテナサブシステム
JP2020129792A (ja) * 2019-02-08 2020-08-27 サムソン エレクトロ−メカニックス カンパニーリミテッド. チップアンテナモジュール
US11879989B2 (en) 2016-12-05 2024-01-23 Echodyne Corp. Antenna subsystem with analog beam-steering transmit array and sparse hybrid analog and digital beam-steering receive array

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688253B2 (en) * 2008-07-09 2010-03-30 Honeywell International Inc. Method and processor for reduced ambiguity resolution matrix for interferometric angle determination
US20100118033A1 (en) * 2008-11-10 2010-05-13 Vistaprint Technologies Limited Synchronizing animation to a repetitive beat source
DE102009002243A1 (de) * 2009-04-07 2010-10-14 Robert Bosch Gmbh FMCW-Radarsensor und Verfahren zum Frequenzmatching
JP5264606B2 (ja) * 2009-04-22 2013-08-14 三菱電機株式会社 レーダ装置
DE102009027003A1 (de) * 2009-06-17 2010-12-23 Endress + Hauser Gmbh + Co. Kg Optimierung der Schaltreihenfolge bei geschalteten Antennenarrays
JP5655516B2 (ja) * 2010-11-12 2015-01-21 株式会社デンソー レーダ装置
JP5653726B2 (ja) * 2010-11-12 2015-01-14 株式会社デンソー レーダ装置
JP5677830B2 (ja) * 2010-12-22 2015-02-25 日本電産エレシス株式会社 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP5628732B2 (ja) * 2011-04-04 2014-11-19 富士通テン株式会社 レーダ装置用の演算装置、レーダ装置、レーダ装置用の演算方法およびプログラム
US20130088393A1 (en) * 2011-10-06 2013-04-11 Toyota Motor Engineering & Manufacturing North America, Inc. Transmit and receive phased array for automotive radar improvement
US8941536B2 (en) * 2011-11-01 2015-01-27 The Charles Stark Draper Laboratory, Inc. Short-range homodyne radar system
US8937570B2 (en) * 2012-09-28 2015-01-20 Battelle Memorial Institute Apparatus for synthetic imaging of an object
DE102013212090A1 (de) * 2013-06-25 2015-01-08 Robert Bosch Gmbh Winkelauflösender FMCW-Radarsensor
JP6338871B2 (ja) * 2014-01-31 2018-06-06 株式会社デンソーテン レーダ装置、車両制御システム及び信号処理方法
DE102014212281A1 (de) 2014-06-26 2015-12-31 Robert Bosch Gmbh Radarmessverfahren mit unterschiedlichen Sichtbereichen
DE102014212284A1 (de) * 2014-06-26 2015-12-31 Robert Bosch Gmbh MIMO-Radarmessverfahren
US10879975B2 (en) 2015-07-08 2020-12-29 Qualcomm Incorporated Beamforming based on adjacent beams systems and methods
US10211524B2 (en) 2015-07-08 2019-02-19 Qualcomm Incorporated Antenna isolation systems and methods
US10021583B2 (en) 2015-07-08 2018-07-10 Qualcomm Incoporated Beam splitting systems and methods
EP3329295B1 (en) 2015-07-29 2021-08-18 QUALCOMM Incorporated Angle and position sensing using arrays of antennas
DE102017204496A1 (de) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren und Radarvorrichtung zum Ermitteln von radialer relativer Beschleunigung mindestens eines Zieles
US10712437B2 (en) 2017-07-07 2020-07-14 Veoneer Us, Inc. Radar systems and methods utilizing composite waveforms for customization of resolution requirements
US11914021B2 (en) * 2018-03-30 2024-02-27 Alouette Technology Inc. Velocity measurement device, velocity measurement program, recording medium, and velocity measurement method
DE102018124503A1 (de) * 2018-10-04 2020-04-09 HELLA GmbH & Co. KGaA Radarsystem für ein Fahrzeug
US11073607B2 (en) * 2018-11-28 2021-07-27 Lockheed Martin Corporation Wideband radar systems, apparatuses, and methods
JP7390658B2 (ja) * 2020-03-18 2023-12-04 パナソニックIpマネジメント株式会社 レーダ装置
US20220349985A1 (en) * 2021-04-28 2022-11-03 Qualcomm Incorporated Radar interference mitigation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170531A (ja) * 1996-12-06 1998-06-26 Railway Technical Res Inst 回転位置/速度検出方法
JP2000284047A (ja) * 1999-03-31 2000-10-13 Denso Corp レーダ装置
JP2003315447A (ja) * 2002-04-24 2003-11-06 Honda Elesys Co Ltd 走査型fmcwレーダのアンテナ切り換え方法及び走査型fmcwレーダ
JP2003315448A (ja) * 2002-04-25 2003-11-06 Denso Corp ホログラフィックレーダ
JP2005257384A (ja) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp レーダ装置およびアンテナ装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617093A (en) * 1946-04-05 1952-11-04 Gen Electric Radio apparatus for indicating speed and course of objects
JP3525425B2 (ja) * 1997-10-31 2004-05-10 トヨタ自動車株式会社 Fm−cwレーダ
US5999117A (en) * 1998-06-16 1999-12-07 Northrop Grumman Corporation Method for tracking and detecting turns of maneuvering targets
JP3393204B2 (ja) * 1999-10-06 2003-04-07 株式会社ホンダエレシス マルチビームレーダ装置
JP3988653B2 (ja) * 2003-02-10 2007-10-10 株式会社デンソー アンテナの配列方法、及びレーダ装置
JP2004271233A (ja) * 2003-03-05 2004-09-30 Fujitsu Ten Ltd 異常検出機能を備えたレーダ装置
JP2006003303A (ja) * 2004-06-21 2006-01-05 Fujitsu Ten Ltd レーダ装置
JP4833534B2 (ja) * 2004-09-29 2011-12-07 富士通株式会社 レーダ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170531A (ja) * 1996-12-06 1998-06-26 Railway Technical Res Inst 回転位置/速度検出方法
JP2000284047A (ja) * 1999-03-31 2000-10-13 Denso Corp レーダ装置
JP3622565B2 (ja) 1999-03-31 2005-02-23 株式会社デンソー レーダ装置
JP2003315447A (ja) * 2002-04-24 2003-11-06 Honda Elesys Co Ltd 走査型fmcwレーダのアンテナ切り換え方法及び走査型fmcwレーダ
JP3575694B2 (ja) 2002-04-24 2004-10-13 株式会社ホンダエレシス 走査型fmcwレーダ
JP2003315448A (ja) * 2002-04-25 2003-11-06 Denso Corp ホログラフィックレーダ
JP2005257384A (ja) * 2004-03-10 2005-09-22 Mitsubishi Electric Corp レーダ装置およびアンテナ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2060929A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013056A (ja) * 2009-07-01 2011-01-20 Toyota Central R&D Labs Inc レーダ装置
JP2013504764A (ja) * 2009-09-16 2013-02-07 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 少なくとも1つの平面アンテナ装置を備えたレーダセンサ装置
JP2013024775A (ja) * 2011-07-22 2013-02-04 Mitsubishi Electric Corp レーダ装置
WO2014112642A1 (ja) * 2013-01-21 2014-07-24 株式会社デンソー レーダ装置
JP2014139536A (ja) * 2013-01-21 2014-07-31 Denso Corp レーダ装置
US9874627B2 (en) 2013-01-21 2018-01-23 Denso Corporation Radar apparatus
JP7241016B2 (ja) 2016-12-05 2023-03-16 エコダイン コーポレーシヨン アンテナサブシステム、レーダサブシステム、車両、方法、及び有体非一時的媒体
JP2020501146A (ja) * 2016-12-05 2020-01-16 エコダイン コーポレーシヨン アナログビーム操縦送信アレイ及びデジタルビーム形成受信アレイを備えたアンテナサブシステム
US11879989B2 (en) 2016-12-05 2024-01-23 Echodyne Corp. Antenna subsystem with analog beam-steering transmit array and sparse hybrid analog and digital beam-steering receive array
JP2019113379A (ja) * 2017-12-22 2019-07-11 三菱電機株式会社 レーダ装置
US11121476B2 (en) 2019-02-08 2021-09-14 Samsung Electro-Mechanics Co., Ltd. Chip antenna module
US11721913B2 (en) 2019-02-08 2023-08-08 Samsung Electro-Mechanics Co., Ltd. Chip antenna module
JP2020129792A (ja) * 2019-02-08 2020-08-27 サムソン エレクトロ−メカニックス カンパニーリミテッド. チップアンテナモジュール

Also Published As

Publication number Publication date
US20090224960A1 (en) 2009-09-10
EP2060929A4 (en) 2013-03-06
JPWO2008053685A1 (ja) 2010-02-25
US7928897B2 (en) 2011-04-19
EP2060929A1 (en) 2009-05-20
JP4905457B2 (ja) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2008053685A1 (fr) Procédé de détection de cible par radar et dispositif de radar utilisant le procédé de détection de cible
JP4433085B2 (ja) レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
CN108845295B (zh) 用于确定对象位置的设备、方法和雷达系统
JP6331195B2 (ja) レーダ装置
US8941533B2 (en) Method and device for detecting azimuth
EP1253441B1 (en) Distance measuring device
EP3220162B1 (en) Radar device and position-determination method
JP4496954B2 (ja) 干渉型レーダー
JP6570610B2 (ja) レーダ装置
JP4724694B2 (ja) 電波レーダ装置
US20110122013A1 (en) Radar apparatus
US6859168B2 (en) Radar apparatus
WO2013080570A1 (ja) レーダ装置
JP3821688B2 (ja) レーダ装置
JP2009080024A (ja) 探知測距装置および探知測距方法
WO2012155992A1 (en) Method to improve a distance measurement between moving objects
WO2019146643A1 (ja) レーダ装置
JP2019074404A (ja) レーダ装置及びレーダ装置の送信処理方法
JP2009109417A (ja) レーダシステムとレーダ搭載移動体装置
JP3865761B2 (ja) レーダ装置
JP2020153872A (ja) レーダ装置
JP2007192573A (ja) 目標測位装置
JP2002168946A (ja) 測距レーダ装置
JP5611294B2 (ja) 探知測距装置
JP7249546B2 (ja) レーダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542029

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007829690

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE