WO2008050846A1 - Appareil de compression d'un élément optique - Google Patents

Appareil de compression d'un élément optique Download PDF

Info

Publication number
WO2008050846A1
WO2008050846A1 PCT/JP2007/070850 JP2007070850W WO2008050846A1 WO 2008050846 A1 WO2008050846 A1 WO 2008050846A1 JP 2007070850 W JP2007070850 W JP 2007070850W WO 2008050846 A1 WO2008050846 A1 WO 2008050846A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pressure
molds
upper mold
press molding
Prior art date
Application number
PCT/JP2007/070850
Other languages
English (en)
French (fr)
Inventor
Sunao Miyazaki
Original Assignee
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co., Ltd. filed Critical Asahi Glass Co., Ltd.
Priority to JP2008541028A priority Critical patent/JPWO2008050846A1/ja
Publication of WO2008050846A1 publication Critical patent/WO2008050846A1/ja
Priority to US12/429,780 priority patent/US20090205375A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/60Aligning press die axes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to an optical element press molding apparatus, and more particularly, to an optical element press molding apparatus used when press molding a highly accurate optical element such as an aspheric lens.
  • the first method is to press a plurality of dies using a pressing member such as a flat plate fixed to one pressing shaft perpendicular to the sliding direction of the dies.
  • the stroke is the shortest among a plurality of molds !, and the strokes of all molds are determined based on the molds. For this reason, in order to mold an optical element that requires wall thickness dimensions and surface tilt accuracy in units of microns, the dimensions of each mold, the dimensions of the pressing member, and the pressing member so that all strokes are within the standard.
  • the stroke is the same for all the molds. Therefore, for the same reason as described above, it is impossible to always push all the molds. Nearly possible.
  • Ma Although it is possible to apply pressure with a certain degree of freedom so as to follow the stroke without fixing the pressing member, it is possible to press several molds, especially four or more molds simultaneously. In this case, all the molds cannot be pushed unless the heights of the molds are all on the same plane.
  • the position at which pressurization is started and the molding speed (glass deformation speed) differ between molds due to variations in the dimensions of the molding material and subtle temperature differences between the molds during pressurization.
  • the body mold, the upper mold, and the lower mold are made of materials having substantially the same thermal expansion coefficient, and a clearance is provided to ensure sliding of the upper mold and the lower mold with respect to the cylinder mold. For this reason, for example, when a glass material is pressed between the lower die by lowering the upper die, the upper die is slid within the barrel die unless pressing pressure is applied to the center of the upper die. The glass material cannot be press-molded with the upper and lower mold surfaces correctly aligned with each other.
  • Patent Document 1 As an example of solving the above-mentioned problems of the prior art to some extent, there is a molding apparatus described in Japanese Patent No. 2815037 (Patent Document 1).
  • a press pressure is applied to the upper die.
  • One press shaft is divided into an upper shaft and a lower shaft, and the divided upper shaft and lower shaft are divided. Even if the mold height during pressurization differs by stacking multiple disc springs, the difference in the height is absorbed by the deformation of the pan panel, so that each mold is evenly distributed. Press pressure is applied.
  • the molding apparatus of Patent Document 1 has a drawback in that the dish panel is exposed to a high temperature and sags because the dish panel is located near the upper mold. In order to make up for this drawback, it is necessary to cool the pan panel with water. Furthermore, since the water-cooled member comes into contact with the upper mold during molding, the temperature of the upper mold suddenly decreases and the molding becomes unstable!
  • Patent Document 1 still has a problem.
  • the pressure mechanism does not distribute pressure when the lower die is pressed by the lower die, which does not describe the pressure distribution when the lower die slides and presses within the body die.
  • the present invention has been made in view of such circumstances, and the object of the present invention is to at least slide the barrel mold with respect to the upper mold and press mold the glass material.
  • the force of the operating member applied to the body mold always acts so that it passes through the center of the upper mold, so that a highly accurate optical element can be efficiently used.
  • the present invention when the body mold slides with respect to a plurality of upper molds and press molding is performed on the glass material, all the molding materials can be completely pushed, Even if the pressing start position and molding speed (glass deformation speed) differ between molds due to dimensional variations in molding materials and subtle temperature differences between molds during pressurization. It is an object of the present invention to provide a press molding apparatus for optical elements that can be adjusted correspondingly.
  • a press molding apparatus for molding an optical element by pressing a glass material with a plurality of pairs of upper molds and lower molds.
  • a lower mold pressure applying means for applying pressure; a cylinder mold for guiding the plurality of pairs of upper molds and lower molds; pressure generating means for pushing up the cylinder mold; and the cylinder along the plurality of upper molds
  • Aligning means for aligning each upper mold by sliding the mold, and the aligning means suspends and supports each upper mold, and the barrel generating means by the pressure generating means
  • a suspension member that has a suspension member that can move each upper mold in a plane perpendicular to the axis of movement of the body mold when the upper mold is pushed up.
  • An upper mold pressure distribution means may be further provided that has lever means for pressing each upper mold downward and applying pressure to each upper mold independently.
  • a lower mold pressure distribution means may be further provided that has lever means for pressing the plurality of lower molds upward and applying pressure to each lower mold independently.
  • the upper mold pressure distribution means is a swinging member that is swingably disposed via a fulcrum, and has one end abutting against the upper end of each upper mold and the other end.
  • An oscillating member that biases each of the upper molds downward by being connected to the panel member may be provided, and the pressure acting on each of the upper molds may be adjusted by compressing the panel member.
  • the lower mold pressure distribution means is a swinging member that is swingably disposed via a fulcrum, and has one end abutting against the lower end of each lower mold and the other end.
  • a rocking member that biases the lower mold downward by being connected to the panel member may be provided, and the pressure acting on the lower mold may be adjusted by compressing the panel member.
  • the swing fulcrum of the swing member is variable, and the panel portion The pressure acting on each upper mold may be adjusted without changing the material.
  • the swing fulcrum of the swing member is variable, and the pressure acting on each lower mold may be adjusted without changing the panel member.
  • the spring member may be a wound spring.
  • Upper die pressure distribution means for distributing pressure from the upper die pressure generating means to each upper die
  • lower mold pressure distribution means for distributing the pressure from the lower mold pressure generating means to each of the lower molds may be further provided.
  • the optical element press molding apparatus has the alignment means described above. Therefore, when press molding is simultaneously performed using a plurality of upper molds and lower molds, the force applied to the upper mold Always support each upper mold in place, and when pushing up the barrel mold, it can act toward the center of the axis of movement of the trunk mold, and the optical function surface that eliminates defects such as galling is on the optical axis. On the other hand, a highly accurate optical element that is accurately positioned can be efficiently manufactured.
  • the body mold having a plurality of guide holes is slid on the plurality of upper molds and pressed against the glass material.
  • the press start position and molding can be performed due to variations in the dimensions of molding materials and subtle temperature differences between the molds during pressurization. Even if the speed of the glass (the glass deformation speed) differs between the molds, it can be adjusted correspondingly to improve the productivity of molded parts with high accuracy.
  • FIG. 1 is an overall configuration diagram of an optical element press molding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a structural diagram of a main part of the press molding apparatus.
  • FIG. 3 is a perspective view of a suction pad that sucks and conveys a glass material in the press molding apparatus.
  • FIG. 4 is an explanatory view showing an air flow path from a rotary pump in the press molding apparatus.
  • FIG. 5 is a cross-sectional view showing a positional relationship among an upper die, a barrel die, and an upper die pressure rod in the press molding apparatus.
  • FIG. 6 is a perspective view of an alignment member in the press molding apparatus.
  • Fig. 7 Side view of the alignment member
  • FIG. 8 is a perspective view showing an exploded state and an assembled state of the alignment member.
  • FIG. 9 is a structural diagram of a lower mold pressure adjusting mechanism in the press molding apparatus.
  • FIG. 10 is an explanatory view showing an operation of pressure molding by the press molding apparatus.
  • FIG. 11 is a structural diagram of a glass heating mechanism in the press molding apparatus.
  • FIG. 12 is a side view of a molded product upper die prevention member in the press molding apparatus as seen from the lateral direction.
  • FIG. 13 is a plan view of the molded product upper mold adhesion preventing member as viewed from above.
  • FIG. 14 is a longitudinal sectional view showing a press molding apparatus according to another embodiment of the present invention.
  • FIG. 15 is a plan view of a body mold in the press molding apparatus.
  • FIG. 1 is an overall view of a press apparatus according to an embodiment of the present invention
  • FIG. 2 is a main part structure thereof.
  • the press molding apparatus shown in these figures is for press molding by loading a glass material (glass blank) into a mold 1 and pushing up a barrel mold (described later) of the mold 1 by operating the press operating mechanism 2.
  • the press molding is preferably performed in an inert gas atmosphere such as a nitrogen gas atmosphere.
  • the mold 1 and the press operating mechanism 2 are installed in a molding chamber 3 having an airtight structure.
  • the molding chamber 3 is arranged on a gantry 10, and a gate valve 11 is provided at an inlet / outlet 301 for carrying in a glass material G and carrying out a molded product, and communicates with the outside through this.
  • an exchange means 4 is provided for introducing the glass material G into the mold 1 and for derivation of the molded product.
  • the exchange means 4 has a suction hand 402 constituting a glass-molded article entry / exit means attached to the lower end of a rotating shaft 401 that passes through the ceiling of the molding chamber 3 and is vertically introduced into the molding chamber 3 from the outside.
  • the suction pad 402 is provided at the tip of the suction hand 402.
  • the rotating shaft 401 is rotatably connected to the piston rod 14A of the electric cylinder mechanism 14 provided on the ceiling of the chamber 3, and is moved up and down in the axial direction by the operation of the piston rod 14A.
  • the motor 15 is rotated by the electric train 15 via the gear train 16.
  • reference numerals 14A, 15, and 16 are assigned to the same location.
  • the suction finger 404 provided with the suction pad 403 at the tip of the suction hand 402 has a suction pad that is a mold insertion member via a horizontal compliance spring portion 405 at the tip of the suction hand 402. 403 is held. Further, the suction finger 404 is provided with a positioning hole guided by a vertical operation, and a guide member having a positioning pin guided by the positioning hole is mounted on the molding die side correspondingly. ! /
  • the horizontal compliant panel 405 is composed of three upper, middle and lower holding blocks, a pair of plate panels installed between the upper and middle holding blocks, and the plate panel with a 90 ° phase shift.
  • a coupling member made of a material having a thermal expansion coefficient larger than these thermal expansion coefficients is used.
  • An abutting member that restricts the vertical movement amount is disposed between the mold insertion member and the guide member.
  • the suction pad 403 is made of a material having low thermal conductivity for the purpose of preventing the molded product from cracking due to heat shock, and is made of a heat-resistant material to adsorb high-temperature molded products. ! /
  • One example is polyimide resin.
  • the suction pad 403 is moved in the axial direction operation and the rotation operation of the rotating shaft 401 based on the control of the cylinder mechanism 14 and the rotation control of the electric motor 15 in a state where the glass material G is sucked to the suction pad 403. Is inserted into the mold 1 and the molded product is adsorbed by the suction pad 403. To do.
  • the suction pad 403 is configured to be capable of independently adsorbing or desorbing corresponding to each of the four molds, and the adsorption source is used for nitrogen (N) substitution in the molding chamber 3.
  • Rotary pump 40 The sub-line branched from the rotary pump 40 is connected to the suction pad 403, and as shown in Fig. 4, the throttle means 41 for adjusting the flow rate at a ratio of one for two of each of the four sub-lines is arranged and each of the four sub-lines.
  • the suction pressure is controlled semi-independently. Since each of the four sublines is equipped with pressure detection means 42! Even if the suction pressure is semi-independent, the holding pressure can be controlled without any problem.
  • the throttle means 43 is arranged on each of the four sublines so that the reverse injection force can be controlled independently on each line. Has been.
  • a glass material G for the molding chamber 3 and a means 17 for carrying in / out the molded product are disposed on the gantry 10.
  • the loading / unloading means 17 has a replacement chamber 171 mounted on a piston rod 18A extending laterally from the cylinder mechanism 18 and a mounting table 172 that can be moved left and right through an opening 171A at one end of the replacement chamber 171.
  • the mounting table 172 can be moved laterally by a lateral moving means (for example, a piston cylinder mechanism) 173 provided in the exchange chamber 171.
  • the piston rod 18A is controlled by the cylinder mechanism 18 with the glass material G placed on the mounting table 172. Is operated, the replacement chamber 171 is moved laterally, and its opening 171A is brought into airtight contact with the gate valve 11. In this state, the inside of the replacement chamber 171 is evacuated by the vacuum pump 40, and then replaced with a nitrogen atmosphere, the gate valve 11 is opened, the molding chamber 3 and the replacement chamber 171 are communicated, and further, The table 172 is introduced into the molding chamber 3 by the moving means 173, and the glass material G is transferred to the replacement means 4 and the molded product is received.
  • the lateral movement means 173 is operated in reverse, the placing table 172 is returned to the exchange chamber 171, the gate valve 11 is closed, and the exchange mechanism 171 is laterally moved by the operation of the cylinder mechanism 18. Take out the molded product from 172 and bring new glass material G into it.
  • the required robot 19 is used for bringing the glass material G into the mounting table 172 and taking out the molded product therefrom.
  • the robot 19 replaces the glass material G from the stocker 20 with the mounting table 172 using suction means and takes the molded product from the mounting table 172 to the required location. That is, the robot 19 is a scalar robot in FIG. 1, but is not limited to this, and may be an XY robot.
  • the upper part of the body base plate 337 in Fig. 2 is screwed to the body mold 100 via a heat insulating material 338.
  • the joined bottom plate 339 is placed, and the bottom plate 339 is screwed to the trunk-type base plate 337 via a heat insulating material 338.
  • the body mold 100 forms a non-cuboid, and an opening 100A penetrating from the front surface of the paper shown in FIG. 2 toward the back surface is formed.
  • Four through holes are formed in the ceiling portion 100B1, and four upper molds 102 are fitted into these through holes, respectively.
  • a bottom portion 100B2 of the non-rectangular body of the body die 100 is formed with a hole portion into which the upper die 102 and four lower dies 101 to be a die set are inserted.
  • the reason for the non-rectangular shape is that in order to reduce the heat capacity of the body mold 100, the part other than the part where the heater enters is deleted to the extent that the required strength is not reduced.
  • a notch 100E is formed in the bottom 100B2 of the trunk mold 100, and a protruding top member 300 is arranged in the notch 100E, and each lower mold 101 is placed on each protruding member 300. ing.
  • Each protruding member 300 plays a role of adjusting variation in dimensional accuracy in the axial direction of each lower mold 101.
  • each molded product is simultaneously pressure-molded by a plurality of, for example, four upper and lower mold sets.
  • a total load of 19.6 kN is loaded on the four upper molds 102, and each upper mold 102 needs to be equally loaded.
  • a hole for supplying cooling nitrogen gas is provided in the center of the bottom plate 100D, and the nitrogen gas blown to the bottom plate 100D passes through the lower mold 101 along the passage provided in the bottom plate 100D.
  • a large-diameter portion 102A and an upper flange portion 102B are formed in each upper die 102 that is sprayed and discharged to the outside of the trunk die 100 through a passage provided in the bottom plate 100D.
  • Reference numeral 105 is a suspension member for suspending the four upper molds 102 at the same time, and includes a disk part 105D, a cylinder part 105E, and a flange part 105F, and the four upper molds 102 are provided on the disk part 105A. Four holes are opened for fitting.
  • the upper mold member 102 has a circular cross section, and each is located at the center thereof.
  • a small diameter piece 104 is mounted on the top, and when the body mold 100 is raised, it receives a press pressure at the center.
  • the upper mold member 102 is formed with a flange portion 102B having a non-circular cross section located at the upper portion thereof as shown in FIGS. 8A and 8B, and the large diameter portion 102A described above is formed on the upper die member 102.
  • a dish-shaped suspension member 105 is placed.
  • An alignment means 106 is interposed between the flange portion 102B and the suspension member 105 so that a suspension force acts at the center of the upper mold member 102. As shown in FIG.
  • a belt-like detent member 107 is fixed to the suspension member 105 with screws 108 so as to cross the center, and the side surface thereof corresponds to the side surface of each flange 102B.
  • the upper mold member 102 serves as a detent for the suspension member 105.
  • the suspension member 105 is formed with a through hole 105B through which the flange portion 102B is passed in a posture perpendicular to the rotation stop position.
  • the alignment member 106 includes a pair of hemispherical protrusion-shaped support portions disposed so as to be shifted from each other by 90 degrees on a surface orthogonal to the sliding direction of the upper mold member 102.
  • 106A and 106B are provided on the ring 106C so as to correspond to the upper mold member 102 and the suspension member 105.
  • a through hole 106D through which the flange portion 102B of the upper mold member 102 is passed is formed in the center of the ring 106C.
  • the suspension member 105 is formed with a support groove hole 105C that receives the support portion 106B.
  • the flange portion 102B of the upper mold member 102 is inserted into the through holes 105B and 106D from the lower side. Through this, the flange portion 102B is turned 90 degrees in this state, and the lower surface is supported by the support portion 106A. Thereafter, the rotation preventing member 107 is attached to the suspension member 105 so that the relative position between the upper mold member 102 and the alignment means 106 can be maintained. In this case, the relative positions of the suspension member 105 and the alignment means 106 are ensured by the support portion 106B being in the support groove hole 105C.
  • Reference numeral 212 in FIG. 2 denotes a hook member for suspending and fixing the suspension member 105 in the chamber 3, and includes a support portion 212A, a lower end hook portion 212B, and an upper end hook portion 212C as shown in FIG. Is done.
  • the lower end hook portion 212B is engaged with the flange portion 105C of the suspension member 105
  • the upper end hook portion 212C is configured to be engageable with the holder block 203.
  • a large number of moldings are simultaneously performed by a set of a plurality of upper molds 102 and lower molds 101. In the molding apparatus of this embodiment, four upper molds 102 and four lower molds 101 are used. After forming the lens by press molding glass, the barrel mold 100 is pulled down to remove the molded lens from between the upper and lower molds, and the molded product remaining on the lower mold 101 is molded into the barrel mold. 100 opening part Work to remove from 100A.
  • the four upper molds 102 are aligned by the alignment member 106.
  • the suspension member 105 is fixed, and when the body mold 100 is lowered, the suspension member 105 and the alignment member 106 are separated from the axis of FIG.
  • a plane in the X—X direction with respect to O—O is in point contact.
  • the surface in the Y—Y direction orthogonal to the X—X direction is in a point contact state due to the contact between the protrusion 106B on the upper surface side of the alignment member 106 and the flange 102B of the upper mold 102.
  • the mold 102 is held in place with the two planes X—X and Y—Y orthogonal to the axis O—O in the descending direction of the body mold 100 kept orthogonal to each other.
  • the trunk mold 100 when the trunk mold 100 is lowered, the trunk mold 100 can be prevented from being tilted with respect to the axis OO of the upper mold 102, and it is possible to prevent “galling” when the trunk mold 100 slides.
  • the barrel die 100 is lowered, and after the molded product is taken out, the glass material G is again placed on each lower die 101 and added again.
  • the body mold 100 is raised while the upper mold 102 is held by the hook member 212.
  • the body mold 100 is lifted via the suspension member 105 and the alignment member 106 while the through hole is in sliding contact with the upper mold 102 as a guide.
  • the upper mold 102 does not operate and is almost fixed in place. In this case, the force S required to slide and move the barrel mold 100 without causing “galling” between the four upper molds 102 and the trunk mold 100, and the above-described action of the alignment member 106 are possible. .
  • each upper mold 102 is placed in an orthogonal state with respect to the axis 0-0 in FIG. 6 by the suspension member 105 and the alignment member 106. Keep it.
  • the upper mold 102, the alignment member 106, and the suspension member 105 are Since it is held almost in place by its own weight and the above-mentioned orthogonal state is maintained when the body mold 100 is raised, it is possible to prevent “galling”.
  • Reference numeral 104 in FIG. 2 denotes a pressing plate provided on the upper surface of the flange portion 102B of each upper mold 102.
  • a pressing load of an upper mold pressing rod 202 described later is concentrated in the axial direction of each upper mold 102. It is a member that is intended to work.
  • Each pressing plate 104 is configured such that the total height of the pressing plate 104 matches that of the upper mold 102.
  • the hook member 212 is fixed to the chamber 3 by a holder block denoted by reference numeral 203.
  • Four through holes 203a are formed in the chamber 3, and the upper mold pressure rod 202 is passed through the through holes 203a.
  • the lower ends of the four upper pressure rods 202 are in contact with the pressing plate 104 (including a case where a minute gap is formed; the same applies hereinafter), and the upper end 202A is located outside the chamber 3. Yes, in contact with one end 230A of the insulator rod 230 provided on the outer top of the chamber 3.
  • the insulator rod 230 is swingably supported by an insulator fulcrum member 231, and the other end 230 B on the side opposite to the upper end 202 A of the upper mold pressure rod 202 is in contact with the upper end 202 A via the compression spring 232.
  • the upper mold calo pressure rod 202, the insulator rod 230, the insulator fulcrum member 231 and the compression spring 232 constitute a pressurization adjusting mechanism (described later) of the upper mold 102.
  • Reference numeral 233 denotes a nitrogen cooling pipe provided at the central portion of the four upper pressurizing rods 202, the upper end of which is coupled to the cooling medium supply port 234 provided in the chamber 3, and the lower end is the cylinder. It faces the upper center of the mold 100, and nitrogen gas cooling is performed along the nitrogen gas groove provided in the body mold 100.
  • a pressurizing adjustment mechanism (upper mold pressure distribution means) 208 of the upper mold 102 includes an upper mold pressure rod 202, an insulator rod 230, an insulator fulcrum member 231, and a compression spring 232.
  • One of the objects of the present invention is to provide an apparatus for obtaining a large number of molded articles simultaneously by setting a plurality of upper and lower molds. To that end, it is necessary to apply the required pressing load to the four mold sets uniformly. In the apparatus shown in FIG. 2, the pressure of the cylinder rising cylinder is applied to the four upper molds 102 via the cylinder mold 100.
  • the pressure acting on the four upper molds 102 pushes up the end 230A of the insulator rod 230 through the four upper mold pressure rods 202, and simultaneously pushes down the end 230B to compress the compression spring 232.
  • the pressing force (total load 19.6kN) of the cylinder-type ascending cylinder If it is desirable to apply a load of 4.9 kN to each upper mold 102 evenly, if there is a variation in the distributed load on each upper mold 102, the quality of the four molded products (for example, the lens by pressing) Effect on wall thickness variation).
  • the upper die 102 is pressed by the upper die pressure rod 202 and the rising die 100 shown in FIG. 5, and the upper end surface 100a of the die 100 is placed on the lower end surface of the large diameter portion 102A of the upper die 102.
  • the wall thickness of the molded product can be reduced by pressing through the support 102C and restricting the movement position of the body mold 100.
  • the pressing force of the barrel mold 100 is applied to the panel member, in particular, the pressure adjusting mechanism (upper part) in which the compression spring 232 shown in FIG. Mold pressure distribution means) 208. That is, the pressure adjusting mechanism 208 is configured by contacting or connecting a general compression spring 232 and an upper mold pressure rod 202 to a lever rod 230 supported by a lever fulcrum member 231 as shown in FIG. .
  • the upper mold 102 moves while sliding in contact with the through-hole of the trunk mold 100, and the trunk mold 100 moves until the upper end surface 100a of the trunk mold 100 contacts the large diameter portion 102A of the upper mold 102. Is called.
  • the compression spring 232 is compressed through the upper die pressurizing rod 202 by the pressure from the cylinder-type ascending cylinder 210, so that the upper die 102 is not contacted.
  • the upper end surface 100a of the trunk mold 100 can be pressed. In this way, all the positions of the four upper molds 102 can always be secured at a fixed position, so that the thickness of the molded product can be maintained.
  • the pressure adjustment mechanism that can withstand a load 10 times the maximum load of the compression spring 232 (in this case, 5.68 kN) can be configured by the lever principle.
  • a pressure adjustment mechanism for taking four pieces is completed (withstands up to 22.7 kN at full pressure). Therefore, compared with the molding apparatus of Patent Document 1 in which a disc spring is incorporated in the chamber, it is not necessary to assemble a large amount of pan panel, so there is no need for adjustment. Yes, design becomes easy. Further, it is not necessary to cool the compression spring 232.
  • a similar configuration is possible with a compression spring 232 using a normal piano wire.
  • a flat wire spring consisting of a piano wire with an outer diameter of 28 mm, a wire diameter of 4.5 mm, a spring constant of 68.6 N / mm, a maximum load of 862 N, and a free height force of 0 mm is used.
  • the position of the insulator fulcrum member 231 that supports the insulator rod 230 was set so that the ratio of the distance to the upper die pressure rod 202 and the distance to the compression spring 232 was 1: 6, and each member was assembled.
  • the pressure adjustment mechanism that can withstand the load of 6 times the maximum load of the compression spring 232 (5.17kN in this case) can be configured by the lever principle.
  • a pressure adjusting mechanism for four pieces is completed (withstands up to 20.7kN at full pressure).
  • the thrust of the cylinder-type ascending cylinder rod was set to 19.6 kN, and the pressure variation between each upper mold pressure rod 202 was measured. It was confirmed that it was within the variation range.
  • the finished size is ⁇ 19.6 kN, which is one of the molding conditions.
  • a lens for a video camera with a lens thickness of 10 mm, a center wall thickness of 3.5 mm, and a lens surface curvature of 15 and 20 mm is molded, all four molds are completely free from inconvenience such as galling.
  • the lower mold pressurization mechanism (lower mold pressure distribution means) is shown in FIG. 9, but reference numeral 300 in FIG. 2 denotes a protruding member provided on the lower surface of the flange portion 101b of each lower mold 101. This is a member that causes the pressing load of the pressure rod 302 to act intensively in the axial direction of each lower mold 101.
  • Each projecting member 300 is configured such that the total height of each of the lower molds 101 matches.
  • the chamber 3 has four through holes 303a, and the lower mold pressure rod 302 is passed through the through hole 303a. As described above, the upper ends of the four lower pressure rods 302 are close to the protruding member 300, and the lower ends 302A are outside the chamber 3 as shown in FIG.
  • the lever rod 330 is connected by a lever fulcrum member 331 and is connected to the compression spring unit 333 at the other end 330B opposite to the one end 330A that contacts the lower end 302A of the lower mold pressure rod 302.
  • the compression spring unit 333 includes a compression spring 332 and a compression spring holding member 334. Reference numeral 335 in FIG.
  • a nitrogen cooling pipe provided at the center of the four lower pressurizing rods 302, one end of which is connected to a cooling medium supply port 336 provided in the chamber 3,
  • the other end is a base plate 337, a heat insulating material 338, a hole 337a, 338a, 339a that penetrates the bottom plate 339 It faces the lower center 100b of 0, and nitrogen gas cooling can be performed along a nitrogen gas groove provided in the body mold 100.
  • the pressurization adjusting mechanism of the lower mold 101 includes a lower mold pressurizing pad 302, an insulator rod 330, an insulator fulcrum member 331, a compression spring 332, and a compression spring holding member 334 as shown in FIG.
  • the lower pressure rod 302 is biased downward by the biasing force of the compression spring 332.
  • One of the problems of the present invention is to provide an apparatus for obtaining a large number of molded articles simultaneously by setting a plurality of upper and lower molds. To that end, it is necessary to apply the required pressing load to the four mold sets uniformly during cooling.
  • the pressure of the lower mold raising cylinder 340 (lower mold pressure generating means) is applied to the four lower molds 101 via the pressure adjusting mechanism of the lower mold 101.
  • the pressure of the lower die raising cylinder 340 pushes up one end 330A of the four lever rods 330 and simultaneously pushes up the lower end 302A of the lower die pressure rod 302.
  • the other end 330B of the insulator rod 330 is lowered downward through the insulator fulcrum member 331, and at the same time, the compression spring 332 is compressed.
  • the pressing force of the lower die ascending cylinder 340 (the total load is 9 ⁇ 8k N) to apply the load of 2.45kN evenly to each lower die. If there is a variation in the distribution load, the quality of the four molded products (for example, variations in lens thickness due to pressing) will be affected.
  • there are naturally variations in the dimensions of the upper and lower molds, the lower mold pressure rod 302, etc. of each of the four units and this causes a difference in the movement stroke of each mold due to the pressing force of the lower mold lifting cylinder 340. .
  • the same molded product for example, the same, is formed by four mold members.
  • the molded product is pressed by the upper mold 102 and the lower mold 101 with the lower mold pressure rod 302 shown in FIGS. Without pressing the lower mold 101, the thickness of the molded product is determined. Therefore, in order to make the indentation amount of the molded product being cooled even, it is an absolute condition that the pressure is evenly divided into four parts.
  • the pressing force of the lower die ascending cylinder 340 is applied to the bottom member, in particular, the pressurization as described above in which the compression spring 332 shown in FIG. An adjustment mechanism is provided.
  • the lower mold lifting cylinder can be used even if the pressure is not applied to the other lower mold 101.
  • the pressure from the lower die raising cylinder 340 can be applied to the lower die 101 not in contact.
  • the pressure applied to the four lower molds 101 can always be kept constant, so that the thickness of the molded product can be maintained.
  • the compression spring 332 As a result, one flat wire spring made of a silicon chrome steel wire with an outer diameter of 18 mm, an inner diameter of 9 mm, a spring constant of 23.5 N / mm, a maximum load of 382 N, and a free height of 5 mm is used.
  • Each member was assembled by setting the position of the insulator fulcrum member 331 supporting the insulator rod 330 such that the ratio of the distance to the upper mold pressure rod 202 and the distance to the compression spring 232 was 1: 7.
  • the pressure adjustment mechanism that can withstand a load 7 times the maximum load of the compression spring 332 (2.68 kN in this case) can be configured by the principle of the insulator.
  • a similar configuration is possible even with a compression spring using a normal piano wire.
  • one outer diameter is 25mm
  • wire diameter is 3.5mm
  • spring constant is 28.4N / mm
  • maximum load Is 0.49kN using a single flat wire spring made of piano wire with a free height of 40mm
  • the position of the insulator fulcrum member 331 that supports the insulator rod 330 is the distance to the lower die pressure rod 302 and the compression spring.
  • Each member was assembled with the ratio of the distance to 332 set to 1: 6.
  • the pressure adjustment mechanism that can withstand the load of 6 times the maximum load of the compression spring 332 (in this case 1.96kN) was achieved by the principle of the insulator.
  • the variation force S of the height up to the pressing plate 104 when the press is one of the molding conditions, 19.6kN cylinder die rising pressure, cooling Inside, a lens for a video camera was molded with a lower die pressure of 6.86kN, a finished force dimension of ⁇ 10mm, a center wall thickness of 3.5mm, and a lens surface curvature of 15 and 20mm respectively.
  • all four units are almost completely cut without causing any problems such as galling, and the finished product is completely matched with the mold space formed by each mold. A molded product that sufficiently satisfies the allowable value of was obtained.
  • the upper mold pressure rod 202 as shown in FIG. 10 (c) applies a press pressure to the center of the upper mold 102 via the pressure plate 104. (After that, during cooling, the cylinder mechanism 340 pushes up the upper mold pressure rod 202 and pushes the thrust member 300. And press the lower mold 101 upward).
  • the body mold 100 can be raised while the posture of the upper mold 102 is kept vertical.
  • molding can be performed in a state in which the position of the optical functional surface with respect to the optical axis of the molded optical element in which the positional deviations of the molding surfaces of the upper mold 102 and the lower mold 101 are eliminated is correctly maintained.
  • the dimensions of the upper mold 102 and the upper mold pressure rod 202 are determined from the relationship in which the cylinder mold 100 is driven by the common cylinder mechanism 210 and is simultaneously pressed by the four upper molds 102. It is necessary to absorb errors. However, since the upper mold pressure rod 202 is held by the pressure adjusting mechanism 208, as shown in FIG. 10 (c), the upper mold 102 is inserted through the large diameter portion 102A and the spacer 102C. After the upper end surface 100a of the barrel mold 100 hits, even if the barrel mold 100 is further lifted, the rise can be terminated at that position.
  • the aligning member 106 works to perform self-aligning action. Therefore, since the upper die 102 receives a holding force at the center thereof, the holder block 203, the suspension member 105, and the flange portion 102B have sufficient accuracy with respect to the barrel die 100. The upper mold 102 can be held on the spot and the body mold 100 can be lowered vertically without the force S causing force and kinking even if it is not held.
  • the pressure distribution means is provided in both the upper mold 102 and the lower mold 101.
  • the pressure distribution means is not provided in both of the upper mold 102 and the lower mold 101, or the upper mold 102 is not limited thereto. 102 or lower mold 101 may be provided.
  • the glass heating mechanism includes a glass calorie heater 600 and a driving unit 604 force.
  • the glass heater 600 incorporates a cartridge heater 602, is connected to an independent temperature controller, and is controlled by a thermocouple 603 inserted into the glass heater 600. Since the glass-caloric heat heater 600 is set to a high temperature (for example, 900 ° C.), it is made of a material that can withstand the high temperature (for example, SKD61, SKD62, Hastelloy, and more preferably, Anubiloy, cemented carbide).
  • the drive unit 604 includes a connecting unit 605 that connects the heater unit 601 and the drive unit 604.
  • the glass heater 600 can be inserted through the body-shaped opening.
  • the optical element molded here is an aspheric lens used in a camera, a video camera, or the like.
  • the glass material G is a glass blank previously formed into a spherical shape, and is first placed on the pallet 20C of the stocker 20 in FIG. Then, the robot 19 is operated to bring the suction band 193 to the position, and suck and hold one glass material G from the pallet 20C. Next, the suction band 193 places the glass material G on the mounting table 172 by the operation of the robot 19. Repeat this 4 times to place 4 glass materials G on the table 172.
  • the glass material G on the table 172 is at room temperature and has not been heated in advance. As described above, the glass material G is carried into the molding chamber 3 by the action of the carry-in / out means 17 and is replaced by a polyimide resin exchange means. Adsorbed and held by the suction pad 403 of 4 and introduced into the mold 1.
  • the upper mold 102 and the lower mold 101 are preheated to a temperature of, for example, about 10 16 poise in terms of glass viscosity.
  • the glass material centering mechanism 500 shown in FIG. 1 is introduced into the mold 1, and the glass material G is moved by the movement of the glass material centering cylinder 501. Centering operation is performed so that the lower mold 101 is located at the center.
  • the glass-caloric heat heater 600 maintained at 900 ° C by the cartridge heater 602 is operated between the lower mold 101 and the glass material G and the lower part of the upper mold 102 from the window of the barrel mold 100 by the operation of the cylinder mechanism 604. Inserted into.
  • the upper mold 102 and the lower mold 101 are heated to, for example, a glass viscosity of about 10 9 poise by a cartridge heater provided in the body mold 100.
  • the glass material G is heated by the glass heater 600 to a temperature of, for example, about 10 7 poise in terms of glass viscosity.
  • the cylinder mechanism 604 is operated to pull out the glass heater 400 from the window force of the same mold 100. Therefore, for example, the cylinder-type ascending cylinder is raised at a pressure of 196 MPa and press-molded.
  • Flange part 102A force After fully contacting the upper end of the body mold 100 via the spacer 102C (for example, after 10 seconds), turn off the heater of the body mold 100, and supply the cooling medium introduction part 101B of the upper mold 102 and the lower mold 101.
  • 102D introduced cooling medium, upper mold 102 and Between the temperature of the lower mold 101 from ⁇ 1 " ⁇ 5 a glass viscosity of about 10 13 poise, addition of pressing pressure from the bottom the lower die 101 (e.g., at total pressure 98 MPa). On the other hand, cutting of the upper mold 102 away In order to prevent the molded product from sticking to the upper mold 102 when the mold is opened between the molded product and the molded product, the molded product upper mold adhesion prevention member 700 (see Fig. 1) equipped with a cylinder insertion / extraction mechanism. ) is ⁇ .
  • the barrel die 100 descends (moldings upper mold adhesion preventing member 700, Lower the mold together with the body mold 100), open the mold, remove the molded product upper mold adhesion prevention member 700, and remove the molded product from between the lower mold 101 and the upper mold 102 with the suction pad 403.
  • the relationship between the adhesion prevention member 700 and the upper mold 102 is shown in Fig. 12 and Fig. 13.
  • the upper mold adhesion prevention member of the molded product is shown. 700 is a view from the side, and FIG. 13 is a view from the top.
  • the molded product is returned to the mounting table 172 by the reverse operation of the switching means 4, taken out from the molding chamber 3 by the loading / unloading means 17, and further, the robot 20 operates the nozzle 20C. Returned to
  • the molding die 1 has four (sets) of the upper die 102 and the lower die 101 that are operated in the common barrel die 100.
  • the same force S as in FIG. The structure of the alignment member 106 as described above may be adopted for the structure of the upper mold 102 and the lower mold 101.
  • the mold 1 is configured such that the four upper molds 102 and the lower mold 101 are operated in the common body mold 100, but the body mold 100 as shown in FIG.
  • the upper body 702 is divided into the upper body mold 702 and the upper body mold 702 integrally holds the four upper molds 102, and the lower body mold 704 is integrally held with the four lower molds 101.
  • a structure in which the upper body mold 702 and the lower body mold 704 are slid while being guided by the long pin 706 may be employed. In this structure, the upper trunk mold 702 is suspended and supported by the alignment member 106.
  • the suspension member 105 responds via the pressing plate 104 so that at least the press pressure parallel to the sliding surface with the trunk mold 100 acts at the center of the upper mold 102,
  • the suspension member 105 suspended and supported by the hook member 212 is interlocked via the alignment member 6 so that the pulling force acts at the center, the glass material G is press-molded.
  • the force of the upper and lower barrel molds applied to the upper mold 102 can always be caused to pass through the center of the upper mold 102.
  • Optical function A highly accurate optical element whose surface is accurately positioned with respect to the optical axis can be efficiently manufactured.
  • a mold for optical glass suitable for a precision press molding method excellent in durability and releasability from optical glass can be provided. Also, by pressing the optical glass using this mold, various optical elements can be manufactured without being polished after molding, so that an optical element manufacturing method that is mass-productive and advantageous in terms of cost can be provided. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

明 細 書
光学素子のプレス成形装置
技術分野
[0001] 本発明は光学素子のプレス成形装置に係り、特に非球面レンズなどの高精度な光 学素子をプレス成形する場合に使用される光学素子のプレス成形装置に関する。 背景技術
[0002] 近年、ガラスレンズなどの光学ガラス素子をプレス成形し、成形面を研磨加工等す ることなぐそのまま使用する精密プレス成形法が注目されている。通常、この種の成 形には、胴型内で、胴型に対して摺動する成形用の型を用いて、軟化状態にあるガ ラス素材をプレスし、型の成形面に対応した光学機能面をガラス素材に形成するよう にした光学素子のプレス成形装置が用いられる。ここで重要なことは、製品が比較的 小型の場合、 1台のプレス成形機によって 1組の型により成形するのでは、生産性が 低いということである。そこで、複数個の型を、 1台のプレス成形機に装着して、同時 に、複数個の光学素子を生産する方式が提唱された。
[0003] 複数個の型を同時に加圧する場合、成形精度の高い光学素子を得るための工夫 が必要である。この方法としては、一本の加圧軸に型の摺動方向に直交して固定さ れた平板などの押圧部材を用いて複数の型を加圧する方法が第一に考えられる。こ の方法であると、複数個の型のうち最もストロークが短!/、型を基準に全ての型のスト口 ークが決定されることになる。このため、肉厚寸法や面の傾きの精度がミクロン単位で 要求される光学素子を成形するには、ストロークが全て規格内に納まるように各型の 寸法や、押圧部材の寸法や、押圧部材の取り付けや加圧時の傾き、押圧部材の型と の接触部の摩耗、変形を十分に管理する必要があるが、数百。 Cの成形条件下では 成形機の変形をも含めほとんど管理不可能に近い。そのために、胴型に成形用の型 である上型をつき当て、上型と胴型、及びその他の型の構成部材の精度で、上記の 様な精度を保証する必要が生じる。
[0004] し力、し、上記のような加圧方法では、ストロークが全ての型に対して同一であるため 、上記と同様の理由により、常に全ての型を押しきることは、同様に不可能に近い。ま た、押圧部材を固定することなくストロークに追従するように、ある程度の自由度を持 たせた状態で加圧する方法も考えられるが、複数個の型、特に 4個以上の型を同時 に加圧する際には、押しきつた時の各型の高さが全て同一平面上になければ、全て の型を押しきることはできない。また、成形素材の寸法のばらつきや、加圧時におけ る、各型間の微妙な温度差等により、加圧開始の位置や成形のスピード (ガラスの変 形速度)が各型間で異なるため、押圧部材が型の摺動方向に対して傾いた状態で加 圧されることが頻繁に発生する。このため、加圧力が型の摺動方向以外にも作用し、 型のかじりや破損を招きやすぐ更に型と押圧部材との接触部が常に擦り合わされて 摩耗し易ぐ特にこのような高温下の状態では摩耗が激しくなり、その摩耗の結果、型 のかじりや破損が更に助長されるという悪循環を繰り返す。
[0005] また、上記成形装置では、プレス成形過程におけるガラス素材の温度制御のため に、胴型、上型、及び下型をかなりの高低温度差で加熱 ·冷却する必要がある。そこ で胴型、上型、及び下型を、ほぼ同じ熱膨張係数の材料で構成するとともに、胴型に 対する上型、下型の摺動を確保するためのクリアランスを設けている。このため、例え ば、上型を降下して下型との間で、ガラス素材をプレス成形する場合、上型の中心に プレス圧力を掛けなければ、上型は胴型内で摺動する間に傾き、上型と下型の成形 面を互いに正しく対応した状態で、ガラス素材に対してプレス成形できない。更に、 極端な場合には、胴型と上型との間でかじりが生じ、上型を胴型に対して完全に閉じ ることができなくなり、正常なプレスが行われなくなる。換言すれば、結果として、成形 された光学素子の光学機能面の中心が光軸に一致しなくなる。また、成形品を型か ら取り出すために、上型を引き上げる際、引き上げ力が上型の中心から外れていると 、上型が傾き、胴型と上型とにかじりが生じ、上型の開閉ができなくなる。このような成 形装置は、実際に使用される条件では、特に、胴型と上型との摺動部のクリアランス 力 0 以下と小さく、しかも、熱間で使用される関係で、前記かじりがより発生しやす い; 境にある。
[0006] 上述の従来技術の欠点をある程度解決した例として日本国特許第 2815037号公 報(特許文献 1)に記載された成形装置がある。特許文献 1の成形装置では、上型に プレス圧力を加える 1本のプレス軸を上軸及び下軸に分割し、分割された上軸と下軸 との間に、複数の皿バネを積み重ねて配置することで加圧時の型の高さが異なって も、皿パネの変形でその高さの差を吸収することにより、各型に均一にプレス圧力が かかるようにしている。
[0007] しかしながら、特許文献 1の成形装置では、皿パネが上型に近い部分にあるため、 皿パネが高温にさらされ、へたるという欠点があった。この欠点を補うために皿パネの 部分を水冷する必要がある力 水冷のため部材が大型化し、複雑化するという欠点 が新たに生じた。更に、水冷された部材が成形時に上型に接触するため上型の温度 が急激に低下し、成形が不安定になると!/、う欠点もあった。
[0008] また、コストダウンが目的で複数の上型、下型を 1台の胴型にセットするので、各型 セット間の距離を大きくとることは経済的にありえない。このため、各型セット間の距離 は大きくても十数ミリであるのが通常で、この間隔に対応する軸の 1本 1本に皿バネを 設ける必要がある。通常、ガラスのプレス成形に必要な圧力は φ 18の金型で 4. 9k N前後であるから、皿パネに用いられるパネの強さは 4. 9kN以上である必要がある。 十数ミリの空間に収まる 4. 9kNの巻きバネは、通常存在しない。そのため特許文献 1 では皿バネを用いているが、皿バネにしても狭い空間に 4. 9kNの容量のものとなる と複数の皿パネを大量に積み重ねる必要があり、パネ機構の部分の長さが非常に長 くなるという欠陥が生じ、成形装置が大型化する。また、プレスするレンズの大きさが 当初の予定と変わりプレス圧力を大きく変更する必要が生じた場合には、皿パネを交 換してパネ定数を変える必要がある力 S、積み上げた皿パネを収めた部品を分解し、 中の皿パネを交換するのは、大変な労力と手間がかかる。このように、特許文献 1の 成形装置においても依然として問題がある。なお、特許文献 1では、下型が胴型内を 摺動しプレスする場合の圧力分配についての記載がなぐ下型でプレスする場合に は圧力分配しなレゝ機構であると推察される。
発明の開示
[0009] 本発明は、このような事情に鑑みてなされたもので、その目的とするところは、少なく とも、上型に対して胴型を摺動動作し、ガラス素材に対してプレス成形する場合、及 び成形された光学素子成形品を離型する際、胴型に加える操作部材の力が、常に、 上型の中心を通るように作用させることで、精度の高い光学素子を効率的に製造す ることができる光学素子のプレス成形装置を提供することにある。
[0010] また、本発明は、複数の上型に対して胴型を摺動動作し、ガラス素材に対してプレ ス成形する場合、全ての成形素材を完全に押しきることができ、しかも、成形素材の 寸法のばらつきや、加圧時における、各型間の微妙な温度差等により、加圧開始の 位置や成形のスピード (ガラスの変形速度)が各型間で異なっても、これらに対応して 調整ができるようにした光学素子のプレス成形装置を提供することを目的とする。
[0011] 本発明によれば、前記目的を達成するために、ガラス素材を複数対の上型及び下 型でプレスして光学素子を成形するプレス成形装置であって、前記複数の下型に圧 力を付与する下型圧力付与手段と、前記複数対の上型及び下型をガイドする胴型と 、前記胴型を押し上げ動作する圧力発生手段と、前記複数の上型に沿って前記胴 型を摺動させることにより各上型を調芯する調芯手段とを具備しており、前記調芯手 段は、前記各上型を吊り下げ支持するとともに、前記圧力発生手段により前記胴型を 前記各上型に沿って押し上げ動作する際に前記胴型の移動軸線に対して直交する 平面において前記各上型を移動可能とする吊り下げ部材を有するものが提供される
[0012] 前記各上型を下方に向けて押圧するとともに前記各上型に独立的に圧力を負荷さ せるための梃子手段を有する上型圧力分配手段を更に備えてもよい。
前記複数の下型を上方に向けて押圧するとともに各下型に独立的に圧力を負荷さ せるための梃子手段を有する下型圧力分配手段を更に備えてもよい。
[0013] 前記上型圧力分配手段は、支点を介して揺動自在に配置された揺動部材であつ て、その一端が前記各上型の上端部と当接されるとともに、その他端部がパネ部材 に連結されることにより前記各上型を下方に向けて付勢する揺動部材を備え、前記 各上型に作用する圧力を前記パネ部材が圧縮されることにより調整してもよい。
[0014] 前記下型圧力分配手段は、支点を介して揺動自在に配置された揺動部材であつ て、その一端が前記各下型の下端部と当接されるとともに、その他端部がパネ部材 に連結されることにより前記下型を下方に向けて付勢する揺動部材を備え、下型に 作用する圧力を前記パネ部材が圧縮されることにより調整してもよい。
[0015] 前記上型圧力分配手段は、前記揺動部材の揺動支点が可変であり、前記パネ部 材の変更無しで前記各上型に作用する圧力が調整されてもよい。
前記下型圧力分配手段は、前記揺動部材の揺動支点が可変であり、前記パネ部 材の変更無しで前記各下型に作用する圧力が調整されてもよい。
[0016] 前記バネ部材は、巻きバネとしてもよい。
前記上型圧力発生手段からの圧力を前記各上型に分配する上型圧力分配手段と
、前記下型圧力発生手段からの圧力を前記各下型に分配する下型圧力分配手段を 更に具備してもよい。
[0017] 本発明に係る光学素子のプレス成形装置によれば、上記の調芯手段を有している ので、複数の上型、下型で同時にプレス成形する場合、上型に対して加わる力が常 に各上型をその場に支持し、胴型を押し上げ動作する際に胴型の移動軸線の中心 に向けて作用させることができ、かじり等の不具合がなぐ光学機能面が光軸に対し て正確に位置する、精度の高い光学素子を効率よく製造できる。
[0018] また、本発明では、梃子手段からなる圧力分配手段を有しているので、複数の上型 に対して複数のガイド孔を有する胴型を摺動動作し、ガラス素材に対してプレス成形 する場合、全ての上型を完全に押しきることができ、しかも、成形素材の寸法のばら つきや、加圧時における各型間の微妙な温度差等により、加圧開始の位置や成形の スピード (ガラスの変形速度)が各型間で異なっても、これらに対応して、調整できる ので、成形品の精度が良ぐ生産性も向上する。
図面の簡単な説明
[0019] [図 1]本発明の実施の形態に係る光学素子のプレス成形装置の全体構成図である。
[図 2]前記プレス成形装置の要部構造図である。
[図 3]前記プレス成型装置においてガラス素材を吸着搬送する吸着パッドの斜視図 である。
[図 4]前記プレス成型装置におけるロータリーポンプからのエア流系路を示した説明 図である。
[図 5]前記プレス成型装置における上型、胴型、上型加圧ロッドの位置関係を示した 断面図である。
[図 6]前記プレス成型装置における調芯部材の斜視図である。 [図 7]前記調芯部材の側面図
[図 8]前記調芯部材の分解状態と組立状態を示す斜視図である。
[図 9]前記プレス成型装置における下型の加圧調整機構の構造図である。
[図 10]前記プレス成型装置による加圧成形の動作を示した説明図である。
[図 11]前記プレス成型装置におけるガラス加熱機構の構造図である。
[図 12]前記プレス成型装置における成形品上型付着防止部材を横方向から見た側 面図である。
[図 13]前記成形品上型付着防止部材を上方向から見た平面図。
[図 14]本発明の他の実施の形態に係るプレス成型装置を示した縦断面図である。
[図 15]前記プレス成型装置における胴型の平面図である。
発明を実施するための最良の形態
[0020] 以下、本発明の実施の形態を、添付図面を参照して具体的に説明する。
図 1は、本発明の実施の形態に係るプレス装置の全体図、図 2はその要部構造で ある。これらに示すプレス成形装置は、ガラス素材 (ガラスブランク)を成形型 1内に装 填し、プレス操作機構 2の操作によって成形型 1の胴型(後述)を押し上げることにより 、プレス成形するもので、このプレス成形は、好ましくは、窒素ガス雰囲気などの不活 性ガス雰囲気中で行われる。このために、成形型 1、プレス操作機構 2等は、気密構 造の成形チャンバ 3内に装備される。
[0021] 成形チャンバ 3は架台 10上に配置され、ガラス素材 Gの搬入、及び成形品の搬出 のための出入口 301にゲートバルブ 11が装備され、これを介して外部と連通されて いる。
また、成形チャンバ 3内には、成形型 1に対するガラス素材 Gの導入、及び成形品 の導出を行うための入換手段 4が装備されている。入換手段 4は、成形チャンバ 3の 天井を貫通して、外部から成形チャンバ 3内へ垂直に導入された回転軸 401の下端 に、ガラス—成形品出入手段を構成する吸着ハンド 402が装着され、吸着ハンド 402 の先端に吸着パッド 403が設けられることにより構成されている。回転軸 401は、チヤ ンバ 3の天井に設けた電動シリンダ機構 14のピストンロッド 14Aに回転自在に連結さ れ、ピストンロッド 14Aの動作で軸方向に上下動作されるとともに、ピストンロッド 14A に設けた電動モータ 15によりギヤ列 16を介して回転動作される。なお、図 1では、同 一個所に符号 14A、 15、 16を付している。
[0022] 図 3に示すように、吸着ハンド 402の先端の吸着パッド 403を具備する吸着フィンガ 一 404は、吸着ハンド 402の先端に水平コンプライアンスバネ部 405を介して型揷入 部材である吸着パッド 403を保持している。また、吸着フィンガー 404には垂直動作 で案内される位置決め孔が設けられ、これに対応して成形用の胴型側に、前記位置 決め孔に案内される位置決めピンを有するガイド部材が装着されて!/、る。水平コンプ ライアンスパネ部 405は、上 ·中'下三段の保持ブロックと、上段及び中段の保持プロ ック間に架設した一対の板パネと、前記板パネとは 90度位相を替えて中段および下 段の保持ブロック間に架設した一対の板パネとから構成されており、その水平コンプ ライアンスの構造は、コンプライアンス用の板パネと、上 '中 ·下三段の保持ブロックと を結合するため、これらの熱膨張係数よりも大きい熱膨張係数の材質の結合部材が 用いられている。また、上記型揷入部材とガイド部材との間には、上下動作量を規制 する突き当て部材が配置されている。なお、吸着パッド 403は、ヒートショックで成形 品が割れることを防ぐ目的で熱伝導率の低い材料で製造されており、かつ高温の成 形品を吸着するため耐熱性のある材料で製造されて!/、る。一例を上げるとポリイミド 樹脂である。
[0023] しかして、吸着パッド 403にガラス素材 Gを吸着した状態で、シリンダ機構 14の制御 、及び電動モータ 15の回転制御に基づく回転軸 401の軸方向動作、及び回動動作 で吸着パッド 403を成形型 1内に導入し、また、吸着パッド 403で成形品を吸着した 状態で、回転軸 401の逆方向の軸方向動作、及び回動動作で成形型 1内から取り出 すように機能する。
[0024] なお、吸着パッド 403は 4個の金型それぞれに対応して独立に吸着、又は吸着解 除できるように構成されており、吸着源は、成形チャンバ 3の窒素(N )置換に用いる
2
ロータリーポンプ 40である。ロータリーポンプ 40から分岐したサブラインを吸着パッド 403に連通し、図 4に示すように 4本の各サブラインの 2本につき 1個の割合で流量調 整する絞り手段 41を配置し 4本の各サブラインの吸引圧力を半独立に制御する構 成となってレ、る。 4本のサブラインに圧力検出手段 42をそれぞれ装備して!/、るので、 吸引圧力が半独立でも問題なく保持圧力制御ができる。吸着力を解除するための真 空破壊のためには、窒素を逆噴射する機構がついており、逆噴射力を各ラインで独 立に制御できるように 4本のサブラインに絞り手段 43がそれぞれ配置されている。
[0025] 図 1の出入口 301の側面に位置して、架台 10の上には、成形チャンバ 3に対する ガラス素材 G、及び成形品の搬入 ·搬出手段 17が配置されている。搬入'搬出手段 1 7は、シリンダ機構 18から横方に延びるピストンロッド 18Aに入換チャンバ 171を装着 するとともに、入換チャンバ 171の一端に在る開口 171Aから左右に出入りできる置 台 172を装備し、置台 172を入換チャンバ 171内に設けた横移動手段(例えば、ビス トン'シリンダ機構) 173によって横移動できるようにしてある。
[0026] しかして、成形チャンバ 3に対してガラス素材 G、又は成形品を搬入'搬出するとき には、置台 172にガラス素材 Gを載せた状態で、シリンダ機構 18の制御により、ピスト ンロッド 18Aを作動させ、入換チャンバ 171を横移動して、その開口 171Aをゲートバ ルブ 11に気密に接触させる。この状態で、入換チャンバ 171内を真空ポンプ 40で真 空引きした後、窒素雰囲気に置換し、ゲートバルブ 11を開放して、成形チャンバ 3と 入換チャンバ 171とを連通し、更に、横移動手段 173によって置台 172を成形チャン ノ 3内に導入し、入換手段 4に対してガラス素材 Gの受け渡し、及び成形品の受け取 りを行うのである。そして、この後、横移動手段 173を逆に動作し、置台 172を入換チ ヤンバ 171に戻し、ゲートバルブ 11を閉じ、シリンダ機構 18の動作によって、入換チ ヤンバ 171を横移動し、置台 172からの成形品の取り出し、及び、そこへの新たなガ ラス素材 Gの持ち込みを行う。
[0027] 本実施の形態では、置台 172へのガラス素材 Gの持込み、そこからの成形品の取り 出しには、所要のロボット 19が用いられる。ロボット 19は、吸着手段などを用いてスト ッカー 20からガラス素材 Gを置台 172へ置き換えるとともに、置台 172から所要個所 に成形品を持ち出す。すなわち、ロボット 19は図 1ではスカラーロボットの場合を示し ているが、これに限られず、 X— Yロボットでもよい。
[0028] 〔型装置の説明〕
次に、図 2、図 4、図 5、図 6、図 7、及び図 8を参照して型装置を説明する。 図 2の胴型ベースプレート 337の上部には、断熱材 338を介して胴型 100とネジ結 合した底板 339が載置され、底板 339は胴型ベースプレート 337に断熱材 338を介 してネジ結合される。胴型 100は、図 15に示す平面図から明らかなように非直方体を 成し、図 2の図示紙面表面から裏面方向に向けて貫通した開口部 100Aが形成され 、直方体の開口部 100A、上方の天井部 100B1には 4つの貫通孔が形成され、これ らの貫通孔にそれぞれ 4つの上型 102が嵌入されている。また、胴型 100の非直方 体の底部 100B2には、上型 102と型セットとなる 4つの下型 101が嵌入される孔部が 形成されている。非直方体としたのは、胴型 100の熱容量を小さくするため、ヒーター の入る部分以外を必要な強度を落とさない程度に削除したためである。
[0029] 胴型 100の底部 100B2には切欠部 100Eが形成され、切欠部 100E内に突上部 材 300がそれぞれ配されており、各突上部材 300の上に各下型 101が載置されてい る。各突上部材 300は、各下型 101の軸線方向の寸法精度のバラツキを調整する役 目を担う。
[0030] そして、本実施の形態の構成では、複数個、例えば 4台の上 ·下型のセットの型によ つて 4個の成形品を同時に加圧成形する。 4台の上型 102には、後述するように、例 えば、総加荷 19. 6kNが加荷され、各上型 102には等分の加荷を作用することが必 要である。し力もながら、上型 102、下型 101、胴型 100の各部材の寸法の仕上げ精 度のばらつきにより胴型 100、下型 101のガラス成形のための移動ストロークにおい ては、 4つの型セットが多少ずれることがある。このストロークの調整のために突上部 材 300力 S設けられている。
[0031] 一方、底板 100Dの中央には、冷却用窒素ガスを供給する孔が設けられ、底板 10 0Dに吹き付けられた窒素ガスは、底板 100Dに設けられた通路に沿って各下型 101 に吹き付けられ、更に底板 100Dに設けられた通路により胴型 100の外に放出される 各上型 102には、図 5の如く大径部 102Aと上端のフランジ部 102Bとが形成されて いる。また、符号 105は 4台の上型 102を同時に吊り下げるための吊下部材であり、 円板部 105D、筒部 105E、フランジ部 105F力も構成され、円板部 105Aに 4台の上 型 102を嵌装するための 4つの孔が開口されている。
[0032] 図 5において、上型部材 102は、円形断面であり、それぞれ、その中心に位置して 、その頂部に小径の当て駒 104が装着されており、胴型 100を上昇させた時、その 中心でプレス圧を受けるようになつている。また、上型部材 102には、その上部に位 置して非円形断面のフランジ部 102Bが図 8の (A)、(B)に示すように形成され、前 述の大径部 102Aには、皿状の吊下部材 105が載せられている。そして、フランジ部 102Bと吊下部材 105との間には、上型部材 102の中心で吊り下げ力が働くように、 調芯手段 106が介装されている。吊下部材 105には、図 8に示すように、中央を横断 する形で、帯状の回り止め部材 107がビス 108で固定されていて、その側面を、各フ ランジ 102Bの側面に対応させ、吊下部材 105に対する上型部材 102の回り止めの 働きをしている。そして、吊下部材 105には、フランジ部 102Bが回り止め位置に対し て直交する向きの姿勢で揷通される揷通孔 105Bが形成されている。
[0033] 調芯部材 106は、図 6及び図 7に示すように、上型部材 102の摺動方向と直交する 面において互いに 90度ずらせて配置された各一対の半球形突起状の支持部 106A 及び 106Bを、上型部材 102及び吊下部材 105に対応させて、リング 106Cに設けた 構成になっている。また、リング 106Cの中央には、図 7及び図 8に示すように、上型 部材 102のフランジ部 102Bを揷通する揷通孔 106Dが形成されている。
また、吊下部材 105には、支持部 106Bを受け入れる支持溝孔 105Cが形成されて いる。
[0034] 吊下部材 105及び調芯手段 106に対して、上型部材 102を組み立てる際には、ま ず、上型部材 102のフランジ部 102Bを下側から、揷通孔 105B及び 106Dに揷通し 、調芯手段 106の上側に突出させ、この状態で、フランジ部 102Bを 90度旋回し、そ の下面を支持部 106Aに支持させる。その後、回り止め部材 107を吊下部材 105に 取り付けることで、上型部材 102と調芯手段 106との相対位置を保持できるようにす る。この場合、吊下部材 105及び調芯手段 106の相対位置は、支持部 106Bが支持 溝孔 105Cに入っていることで、確保されている。
[0035] 図 2の符号 212は、吊下部材 105をチャンバ 3内で吊り下げ固定するためのフック 部材であり、図 5の如く支持部 212A、下端フック部 212B、上端フック部 212Cから構 成される。下端フック部 212Bは、吊下部材 105のフランジ部 105Cに係合され、上端 フック部 212Cはホルダーブロック 203と係合可能に構成されている。 [0036] そして、複数の上型 102、下型 101のセットにより同時に多数の成形を行なうが、こ の実施の形態の成形装置において、 4台の上型 102と 4台の下型 101とによってガラ スをプレス成形してレンズを成形後、成形品レンズを各上 ·下型の間から取り出すた めに胴型 100を下方に引き下げ、下型 101の上に残っている成形品を胴型 100の開 口部 100Aから取り出す作業を行なう。
[0037] 本実施の形態では、調芯部材 106によって 4台の上型 102の調芯を行なっている。
すなわち、胴型 100を下方に引き下げると、下端フック部 212Bに、吊下部材 105の フランジ部 105Fが当たり、吊下部材 105はそこから下方に移動しない。
[0038] 図 8において、吊下部材 105は固定で胴型 100が下降する際に、吊下部材 105と 調芯部材 106とは、調芯部材 106の下面側突起部 106Aによって図 6の軸線 O— O に対する一平面の X— X方向の面が点接触状態になる。更に、 X— X方向と直交する Y— Y方向の面は、調芯部材 106の上面側の突起部 106Bと上型 102のフランジ部 102Bとの接触によって点接触状態になり、これにより、上型 102は、胴型 100の下降 する方向の軸線 O— Oに対して直交する二つの平面 X— X、Y— Yを互いに直交状 態に保ってその場に保持される。これにより、胴型 100を下降する際に、上型 102の 軸線 O— Oに対する胴型 100の傾きを防ぐことができ、胴型 100の摺動時の「かじり」 を防ぐこと力できる。
[0039] 図 2のフック部材 212により上型 102を保持した状態で胴型 100を下降させ、成形 品を取り出した後に、再びガラス素材 Gを各下型 101の上に載置して再び加圧成形 する場合は、フック部材 212により上型 102を保持した状態で胴型 100を上昇させる 。これにより、胴型 100は、その貫通孔が上型 102をガイドとして摺接しながら、吊下 部材 105、調芯部材 106を介して上昇する。このとき、上型 102は動作せず、ほぼそ の場に固定される。この場合、 4台の上型 102と胴型 100との「かじり」を生じさせるこ となく胴型 100を摺動移動させる必要がある力 S、調芯部材 106の前述した作用により 可能となる。
[0040] 胴型 100を引き下げた状態では、吊下部材 105、調芯部材 106によって、各上型 1 02は、図6の軸線0— 0に対する直交ニ平面 ー '¥—¥を直交状態に保ってぃる 。この状態から胴型 100を上昇させると、上型 102、調芯部材 106、吊下部材 105が 自重によって略その場に保持され、胴型 100の上昇時に前述の直交状態が保たれ るので、「かじり」を防ぐことができる。
[0041] 図 2の符号 104は、各上型 102のフランジ部 102Bの上面に設けた押圧板であり、 後述する上型加圧ロッド 202の押圧加荷重が各上型 102の軸線方向に集中的に作 用するようにする部材である。各押圧板 104は、上型 102との高さの合計が一致する ように構成される。また、符号 203のホルダーブロックによってフック部材 212がチヤ ンバ 3に固定される。チャンバ 3には 4つの貫通孔 203aが形成され、上型加圧ロッド 2 02が貫通孔 203aに揷通されている。 4本の上型加圧ロッド 202の下端は、前述した ように、押圧板 104に当接 (微小な隙間が形成される場合を含む。以下同様)され、 上端 202Aは、チャンバ 3の外にあり、チャンバ 3の外側の上部に設けられた梃子ロッ ド 230の一方の端 230Aと接して!/、る。
[0042] 梃子ロッド 230は、梃子支点部材 231によって揺動自在に支持され、上型加圧ロッ ド 202の上端 202Aと接する側の一端 230Aの反対側の他端 230Bが圧縮スプリング 232を介してチャンバ 3に固定されている。上型カロ圧ロッド 202と梃子ロッド 230と梃 子支点部材 231と圧縮スプリング 232によって、上型 102の後述する加圧調整機構 が構成されている。また、符号 233は 4本の上型加圧ロッド 202の中心部分に設けら れた窒素冷却パイプであり、その上端はチャンバ 3に設けられた冷却媒体供給口 23 4に結合され、下端は胴型 100の上部中心に面しており、胴型 100に設けられた窒 素ガス用溝に沿って窒素ガス冷却が行われる。
[0043] 〔上型の加圧調整機構〕
上型 102の加圧調整機構(上型圧力分配手段) 208は、上型加圧ロッド 202と梃子 ロッド 230と梃子支点部材 231と圧縮スプリング 232とから構成される。本発明の課題 の 1つは複数の上下型のセットにより、同時に多数の成形品を得る装置の提供にある 。そのためには、 4台の型セットに必要な押圧荷重を均一に作用させる必要がある。 図 2に示す装置において、胴型上昇シリンダの圧力を、胴型 100を介して 4台の上型 102に作用させる。 4台の上型 102に作用した圧力は 4本の上型加圧ロッド 202を介 して梃子ロッド 230の端 230Aを押し上げ、同時に端 230Bを押し下げて圧縮スプリン グ 232を圧縮する。この場合に、胴型上昇シリンダの押圧力(総荷重を 19. 6kN)を 各上型 102に均等に 4. 9kNの荷重を作用させるように構成することが望ましぐ各上 型 102への分布荷重のばらつきが生じると 4個の成形品の品質(例えば押圧によるレ ンズ肉厚のばらつき)への影響を生ずる。また、 4台の各組の上'下型、上型加圧ロッ ド 202等の寸法上のばらつきも当然有り、これにより胴型上昇シリンダの押圧力による 各型の押切りストロークに差が生じる。
[0044] ガラス材料を加熱圧力して高精度光学素子を成形するためには、各上型 102に高 い圧力(3. 92-5. 88kN)を発生させ、胴型上昇シリンダから前記各部材を介して 各上型 102に伝達する必要がある。更に、ガラス材料を型内で所定温度(400〜80 0°C)に加熱して、加圧成形後、成形品を取り出すプロセスを繰り返す方法の装置に おいては、成形品、型部材、胴型等の加熱 ·冷却を繰り返すために加熱 冷却 加 熱サイクルの短縮を要求されるので、型装置全体の熱容量を小さくする必要があり、 そのため装置の小型化を図る必要がある。
[0045] 図 5に示す上型加圧ロッド 202と上昇する胴型 100によって上型 102を押圧し、上 型 102の大径部 102Aの下端面に胴型 100の上端表面 100aを、スぺーサ 102Cを 介して押し当て、胴型 100の移動位置が規制されることにより成形品の肉厚寸法は 疋ま ·ο。
[0046] 4台の上型 102〜102に全ての胴型 100の上端表面 100aがスぺーサ 102Cを介し て突き当たること力 4台の型部材によって同じ成形品、例えば同一肉厚寸法のレン ズを得るために必要な条件である。そのためには 4台の上型 102に独立的に押圧力 を作用させ、かつ各上型 102に完全に胴型 100の上端表面 100aが突き当たり、更 に、充分な押圧力を上型 102に作用させる必要がある。
[0047] 本実施例では、上記の問題の解決のために、胴型 100の押圧力をパネ部材、特に 、図 2に示す圧縮スプリング 232をチャンバ 3の外部に設置した加圧調整機構(上型 圧力分配手段) 208を備えている。すなわち、一般的な圧縮スプリング 232と上型加 圧ロッド 202を図 2の如ぐ梃子支点部材 231で支持された梃子ロッド 230に接触、 又は連結することで加圧調整機構 208を構成している。
[0048] 胴型上昇シリンダ 210 (図 2参照:上型圧力発生手段)から押圧力が胴型 100に作 用すると、胴型 100とともに上昇する下型 101と上型 102とによるプレスが開始され、 この動作により上型 102を介して上型加圧ロッド 202が押し上げられるとともに梃子口 ッド 230が押し上げられる。これにより、圧縮スプリング 232が圧縮される。
プレスが進むにつれ胴型 100の貫通孔に上型 102が摺接しつつ移動し、上型 102 の大径部 102Aに胴型 100の上端表面 100aが当接するまで、胴型 100の移動が行 なわれる。各 4台の型セットにおいて、その中の 3台の上型 102の大径部 102Aに、 胴型 100の上端表面 100aが当接した状態の時に、他の 1台の大径部 102Aに、上 端表面 100aが当接しない状態を生じたとしても、胴型上昇シリンダ 210からの押圧 により上型加圧ロッド 202を介して圧縮スプリング 232が圧縮することにより前記未当 接の上型 102に胴型 100の上端表面 100aを押し当てることができる。これにより 4台 の上型 102の全ての位置は常に定位置に保障できるので、成形品の肉厚寸法を保 てる。
[0049] 次に、圧縮スプリング 232のパネの具体例について記述する。すなわち、一本の外 径が φ 18mm,内径が φ 9mm、バネ定数力 4. lN/mm、最大荷重が 568N、自 由高さが 45mmからなるシリコンクロム鋼線からなる平角線バネを 1本用い、梃子ロッ ド 230を支える梃子支点部材 231の位置を上型加圧ロッド 202までの距離と圧縮ス プリング 232までの距離の比が 1: 10になるように設定し各部材を組んだ。この結果、 梃子の原理により圧縮スプリング 232の最大荷重の 10倍の荷重に耐える(今回の場 合は 5. 68kN)加圧調整機構を構成できた。これを各上型 102に対応するように 4個 分組むことにより、 4個取り用の加圧調整機構が完成する(全圧で 22. 7kNまで耐え る)。よって、チャンバ内に皿ばねを組み込む特許文献 1の成形装置と比較して、大 量の皿パネを組む必要がないため調整の必要が無ぐまたチャンバの外側に設置す るのでスペースに余裕があり設計が容易になる。また、圧縮スプリング 232を冷却す る必要もない。
[0050] 通常のピアノ線を用いた圧縮スプリング 232でも同様の構成が可能である。具体的 には、一本の外径が φ 28mm,線径が φ 4.5mm,バネ定数が 68. 6N/mm、最大 荷重が 862N、自由高さ力 0mmからなるピアノ線からなる平角線バネを 1本用い、 梃子ロッド 230を支える梃子支点部材 231の位置を上型加圧ロッド 202までの距離と 圧縮スプリング 232までの距離の比が 1 : 6になるように設定し各部材を組んだ。この 結果、梃子の原理により圧縮スプリング 232の最大荷重の 6倍の荷重に耐える(今回 の場合は 5. 17kN)加圧調整機構を構成できた。これを各上型 102に対応するよう に 4個分組むことにより、 4個取り用の加圧調整機構が完成する(全圧で 20. 7kNま で耐える)。この状態で、胴型上昇シリンダロッドの推力(4台の上型 102に加わる総 加圧力)を 19. 6kNに設定し、各上型加圧ロッド 202間の圧力ばらつきを測定したと ころ、 98Nのばらつき範囲に納まる事を確認した。その後に、押圧板 104迄の高さの ばらつき力 S、 0. 2mm以内に調整された型セットを用いて、成形条件の一つである 19 . 6kNの胴型上昇圧力で、出来上がり寸法が φ 10mm、中心肉厚が 3. 5mm、レン ズ面の曲率が、それぞれ 15、 20mmであるビデオカメラ用のレンズを成形したところ 、 4台の型ともほぼ同時にかじり等の不都合を生じることなぐ完全に押し切り、出来 上がった成形品も各型で形成されるキヤビ空間と完全に一致し、肉厚精度と光学的 な面の傾きの許容値を十分に満足する成形品が得られた。
〔下型加圧機構〕
下型加圧機構(下型圧力分配手段)は図 9に示しているが、図 2の符号 300は、各 下型 101のフランジ部 101bの下面に設けた突上部材であり、下型加圧ロッド 302の 押圧加荷重が各下型 101の軸線方向に集中的に作用するようにする部材である。各 突上部材 300は、各下型 101との高さの合計が一致するように構成される。図 2の如 く、チャンバ 3には 4つの貫通孔 303aが形成され、下型加圧ロッド 302が貫通孔 303 aに揷通されている。 4本の下型加圧ロッド 302の上端は、前述したように、突上部材 300に近接し、その下端 302Aは図 9の如ぐチャンバ 3の外にあり、チャンバ 3の外 側の胴型上昇シリンダの途中に設けられた、梃子支点部材 331に連結した梃子ロッ ド 330の一端 330Aと接している。梃子ロッド 330は、梃子支点部材 331で連結され 下型加圧ロッド 302の下端 302Aと接する一端 330Aの反対側の他端 330Bで圧縮 スプリングユニット 333と連結されている。圧縮スプリングユニット 333は、圧縮スプリン グ 332と圧縮スプリング保持部材 334とによって構成される。また、図 2の符号 335は 、 4本の下型加圧ロッド 302の中心部分に設けられた窒素冷却パイプであり、その一 端はチャンバ 3に設けられた冷却媒体供給口 336に連結され、もう一端はベースプレ 一卜 337、断熱材 338、底板 339を貫通した穴 337a、 338a, 339aを通って月同型 10 0の下部中心 100bに面しており、胴型 100に設けられた窒素ガス用溝に沿って窒素 ガス冷却ができるようになつている。
[0052] 〔下型の加圧調整機構〕
下型 101の加圧調整機構は図 9の如ぐ下型加圧口ッド 302と梃子ロッド 330と梃子 支点部材 331と圧縮スプリング 332と圧縮スプリング保持部材 334とから構成される。 圧縮スプリング 332の付勢力によって、下型加圧ロッド 302は下方に付勢されている
[0053] 本発明の課題の 1つは複数の上下型のセットにより、同時に多数の成形品を得る装 置の提供にある。そのためには、冷却中に 4台の型セットに必要な押圧荷重を均一 に作用させる必要がある。図 2に示す成形装置において、下型上昇シリンダ 340 (下 型圧力発生手段)の圧力を下型 101の加圧調整機構を介して 4台の下型 101に作 用させる。下型上昇シリンダ 340の圧力は、 4本の梃子ロッド 330の一端 330Aを押し 上げると同時に、下型加圧ロッド 302の下端 302Aを押し上げる。その際に、梃子ロッ ド 330の他端 330Bを、梃子支点部材 331を介して下方向に下げ、同時に圧縮スプリ ング 332を圧縮する。この場合に、下型上昇シリンダ 340の押圧力(統荷重を 9· 8k N)を各下型に均等に 2. 45kNの荷重を作用させるように構成することが望ましぐ各 下型 101への分布荷重のばらつきが生じると 4個の成形品の品質(例えば押圧によ るレンズ肉厚のばらつき)への影響を生ずる。また、 4台の各組の上型及び下型、下 型加圧ロッド 302等の寸法上のばらつきも当然有り、これにより下型上昇シリンダ 340 の押圧力による各型の移動ストロークに差が生じる。
[0054] 本発明のガラス材料を加熱圧力して高精度光学素子を成形するためには、冷却中 に各下型 101に高い圧力(0. 98-3. 92kN)を発生させ、下型上昇シリンダ 340か ら前記各部材を介して各下型 101に伝達する必要がある。更に、ガラス材料を型内 で所定温度(400〜800°C)に加熱して、加圧成形後、成形品を取り出すプロセスを 繰り返す方法の装置においては、成形品、型部材、胴型等の加熱'冷却を繰り返す ために加熱 冷却 加熱サイクルの短縮を要求されるので、型装置全体の熱容量を 小さくする必要があり、そのため装置の小型化を図る必要がある。
[0055] 更に、本実施例の型装置において、 4台の型部材によって同じ成形品、例えば同 一肉厚寸法のレンズを得るためには、図 2、 9に示す下型加圧ロッド 302と上昇する 下型 101によって上型 102と下型 101で成形品を押圧し、胴型 100には下型 101を 押し当てずに、成形品の肉厚寸法が定まる。したがって、冷却中の成形品の押し込 み量を均等にするには、圧力が均等に 4分割されていることが絶対条件となる。
[0056] そのためには 4台の下型 101に独立的に均等な押圧力を作用させ、かつ各下型 1 01に充分な押圧力を作用させる必要がある。
本実施例では、上記の問題の解決のために、下型上昇シリンダ 340の押圧力をバ ネ部材、特に、図 9に示す圧縮スプリング 332をチャンバ 3の外部に設置した前述の ような加圧調整機構を備える。各 4台の型セットにおいて、その中の 3台の下型 101 にのみ圧力が作用する状態の時に、他の 1台の下型 101に圧力が作用しない状態 を生じても、下型上昇シリンダ 340からの押圧によって下型加圧ロッド 302を介して圧 縮スプリング 332荷重を加えることにより、前記未当接の下型 101に下型上昇シリン ダ 340からの圧力を作用させることができる。これにより 4台の下型 101に加わる圧力 は常に一定に保障できるので、成形品の肉厚寸法を保てる。
[0057] 次に、圧縮スプリング 332の具体例について記述する。すなわち、一本の外径が φ 18mm,内径が φ 9mm、ばね定数が 23. 5N/mm、最大荷重が 382N、自由高さ 力 5mmからなるシリコンクロム鋼線からなる平角線バネを 1本用い、梃子ロッド 330 を支える梃子支点部材 331の位置を上型加圧ロッド 202までの距離と圧縮スプリング 232までの距離の比が 1: 7になるように設定し各部材を組んだ。この結果、梃子の原 理により圧縮スプリング 332の最大荷重の 7倍の荷重に耐える(今回の場合は 2. 68 kN)加圧調整機構が構成できた。これを各下型 101に対応するように 4台分組むこと により、 4個取り用の加圧調整機構が完成する(全圧で 10. 7kNまで耐える)。よって 、チャンバ内に皿バネを組み込む特許文献 1の成形装置と比較して、大量の皿バネ を組む必要がないため調整の必要が無ぐまた、チャンバ 3の外側に設置するのでス ペースに余裕があり、設計が容易になる。また、圧縮スプリング 332を冷却する必要も ない。
[0058] 通常のピアノ線を用いた圧縮スプリングでも同様の構成が可能である。具体的には 、一本の外径が φ 25mm,線径が φ 3.5mm,ばね定数が 28. 4N/mm、最大荷重 が 0. 49kN、 自由高さが 40mmからなるピアノ線からなる平角線バネを 1本用い、梃 子ロッド 330を支える梃子支点部材 331の位置を下型加圧ロッド 302までの距離と圧 縮スプリング 332までの距離の比が 1 : 6になるように設定し各部材を組んだ。この結 果、梃子の原理により圧縮スプリング 332の最大荷重の 6倍の荷重に耐える(今回の 場合は 1. 96kN)加圧調整機構ができた。これを各下型 101に対応するように 4台分 組むことにより 4個取り用の加圧調整機構が完成する(全圧で 7. 84kNまで耐える)。 この状態で、下型上昇シリンダ 340のロッドの推力(4台の下型 101に加わる総加圧 力)を 6. 86kNに設定し、各下型加圧ロッド 302間の圧力ばらつきを測定したところ、 レンジで 98Nのばらつきに納まることを確認した。その後に、押圧板 104迄の高さの ばらつき力 S、 0. 2mm以内に調整された型セットを用いて、成形条件の一つであるプ レス時は 19. 6kNの胴型上昇圧力、冷却中は 6. 86kNの下型上昇圧力で、出来上 力り寸法が Φ 10mm、中心肉厚が 3. 5mm、レンズ面の曲率が、それぞれ 15、 20m mであるビデオカメラ用のレンズを成形したところ、 4台ともほぼ同時にかじり等の不具 合を生じることなく、完全に押し切り、出来上がった成形品も各型で形成されるキヤビ 空間と完全に一致し、肉厚精度と光学的な面の傾きの許容値を十分に満足する成 形品が得られた。
[0059] しかして、図 2のプレス操作機構 2を用いて、ガラス素材 Gをプレス成形する時には 、まず、図 10の(a)に示す状態から、シリンダ機構 210 (図 2参照)によって上型加圧 ロッド 202を下方移動させて胴型 100を下降させると、下端フック部 212Bに吊下部 材 105のフランジ部 105Cが当たる。このため、吊下部材 105は下降移動せず、上型 102も下降移動せず、これによつて、所謂、型開きをなす。そして、図 3に示した吸着 ノヽンド 402により、ガラス素材 Gを成形型 1内の下型 101に導入し、ヒーターで加熱す
[0060] 次に、シリンダ機構 210によって上型加圧ロッド 202を上方移動させて胴型 100を 上昇させると、図 10の(b)に示すように、上型 102にガラス素材 Gが押し付けられる。
[0061] 次いで、更にシリンダ機構 210により胴型 100を上昇させると、図 10の(c)の如ぐ 上型加圧ロッド 202が押圧板 104を介して、上型 102の中心にプレス圧を加える(そ の後、冷却時にシリンダ機構 340は上型加圧ロッド 202を押し上げ、突上部材 300を 介して下型 101を上向きに押圧する)。
[0062] したがって、胴型 100と上型 102との摺動部分に、摺動上必要なクリアランスがあつ ても、上型 102の姿勢が垂直に保たれた状態で胴型 100を上昇でき、結果として、水 平方向に関して、上型 102及び下型 101の各成形面の位置ずれがなぐ成形された 光学素子の光軸に対する光学機能面の位置を正しく保持した状態で成形できる。
[0063] 特に、この実施例では、共通のシリンダ機構 210で、胴型 100を駆動し、 4台の上 型 102で同時にプレスする関係から、上型 102、及び上型加圧ロッド 202の寸法誤 差を吸収する必要がある。しかし、上型カロ圧ロッド 202は、加圧調整機構 208で弹持 されているので、図 10の(c)に示すように、上型 102の大径部 102Aとスぺーサ 102 Cを介して胴型 100の上端表面 100aが当たった後、更に、胴型 100が上昇しても、 その位置で上昇を終了することができる。
[0064] また、成形後、型開きを行うため、シリンダ機構 210の働きで、胴型 100を下降させ ると、図 10の(d)に示すように、下端フック部 212Bが吊下部材 105を保持する力 こ の時、調芯部材 106が働いて自動調心作用をなす。したがって、上型 102は、その 中心で保持力を受けるので、上記クリアランスの範囲で傾くことがなぐたとえ、胴型 1 00に対してホルダーブロック 203、吊下部材 105、フランジ部 102Bが十分な精度を 保持していなくても、力、じりを生じること力 Sなく、上型 102はその場で保持され、胴型 1 00は垂直に下降できる。
[0065] なお、本実施の形態では、上型 102と下型 101の双方に圧力分配手段を設けたが 、これに限定されるものではなぐ双方に圧力分配手段を設けないか、又は上型 102 又は下型 101の少なくとも一方に設けてもよい。
[0066] (ガラス加熱機構)
ガラス加熱機構は、図 11に示すようにガラスカロ熱ヒーター 600と駆動部 604力、らな る。ガラス加熱ヒーター 600はカートリッジヒーター 602を内蔵し、独立した温度調節 機に接続され、ガラス加熱ヒーター 600に差し込まれた熱電対 603により制御される 。ガラスカロ熱ヒーター 600は、高温に設定される(例えば 900°C)ので、高温に耐える 材質で作られる(例えば、 SKD61、 SKD62、ハステロィ、より好ましくはァニビロイ、 超硬合金)。駆動部 604は、ヒーター部 601と駆動部 604とをつなぐ連結部 605を具 備し、胴型の開口部より、ガラス加熱ヒーター 600を揷入可能とする。
[0067] 次に、本実施の形態に係るプレス成形装置を用いて、具体的に光学素子成形品を 成形する工程を、ガラス素材 Gを中心に、搬入 '成形'搬出の順序で説明する。なお 、ここで成形される光学素子は、カメラ、ビデオカメラなどに用いられる非球面レンズ である。
[0068] ガラス素材 Gは、予め球形に成形されたガラスブランクで、まず、図 1のストッカー 20 のパレット 20C上に置かれる。そして、ロボット 19が稼動されて、その位置に吸着バン ド 193をもたらし、パレット 20Cから 1個のガラス素材 Gを吸着 '保持する。次に、ロボッ ト 19の動作で、吸着バンド 193は置台 172上に上記ガラス素材 Gを置く。これを 4回 繰返して 4個のガラス素材 Gを置台 172に置く。置台 172上のガラス素材 Gは、室温 であり、予め加温されていない、前述のように、搬入 ·搬出手段 17の働きで、成形チ ヤンバ 3内に搬入され、ポリイミド樹脂製の入換手段 4の吸着パッド 403によって吸着 •保持され、成形型 1内に導入される。また、ここでは、予め上型 102及び下型 101が 、例えば、ガラス粘度で 1016ポアズ程度の温度に加温されている。
[0069] 成形型 1内にガラス素材 Gが導入されると、図 1に示されるガラス素材センタリング機 構 500が成形型 1内に導入され、ガラス素材センタリングシリンダ 501の動きにより、 ガラス素材 Gを下型 101の中心に位置するようにセンタリング動作する。
[0070] そして、カートリッジヒーター 602により 900°Cに保持されたガラスカロ熱ヒーター 600 ヽシリンダ機構 604の作動により胴型 100の窓から下型 101とガラス素材 Gの上方 、上型 102の下方の間に挿入される。上型 102と下型 101は胴型 100に設けられた カートリッジヒーターにより、例えば、ガラス粘度で 109ポアズ程度の温度に加熱される 。一方、ガラス素材 Gはガラス加熱ヒーター 600により、例えば、ガラス粘度で 107ポア ズ程度の温度に加熱される。所望の時間、ガラス素材 G及び上型 102及び下型 101 が加温された後(例えば 90秒)、シリンダ機構 604を作動させてガラス加熱ヒーター 4 00を月同型 100の窓力、ら引き抜き、そこで、例えば、胴型上昇シリンダを 196MPaの圧 力で上昇させ、プレス成形する。フランジ部 102A力 スぺーサ 102Cを介して胴型 1 00の上端に十分接触した後 (例えば 10秒後)、胴型 100のヒーターを切り、上型 102 及び下型 101の冷却媒体導入部 101B、 102Dに冷却媒体を導入し、上型 102及び 下型 101の温度がガラス粘度で ΙΟ15から 1013ポアズ程度の間で、下型 101で下から プレス圧を加える (例えば全圧力で 98MPa)。一方で、上型 102の切り欠きと成形品 の間に成形品が型開き時に上型 102に張り付いた状態にならないようにするための 、シリンダを具備した抜き差し機構を装備した成形品上型付着防止部材 700 (図 1参 照)を揷入する。その後、冷却を継続し、成形品の温度が、例えばガラス粘度で ιο14·5 ポアズになった後、胴型 100を下降し (成形品上型付着防止部材 700は、胴型 100 と共に下降)、型開きをして、成形品上型付着防止部材 700を抜き、さきの吸着パッド 403で、成形品を下型 101と上型 102の間から取り出す。成形品上型付着防止部材 700と上型 102等との関係を図 12、図 13に示す。図 12には、成形品上型付着防止 部材 700を横方向から見た図であり、図 13は上方向から見た図である。
[0071] この後、成形品は、入換え手段 4の逆の働きで、置台 172へ戻され、搬入'搬出手 段 17によって成形チャンバ 3から取出され、更にロボット 19の働きで、ノ レット 20Cに 戻される。
[0072] なお、本実施の形態では、成形型 1は 4台(組)の上型 102、及び下型 101を共通 の胴型 100内で稼動するようにした力 S、図 8と同様の構造を、 1台の上型 102、及び 下型 101について、前述のような調芯部材 106の構造を採用してもよい。また、本実 施の形態では、成形型 1は 4台の上型 102、及び下型 101を共通の胴型 100内で稼 動するようにしたが、図 14の如ぐ胴型 100を上胴型 702、下胴型 704に分割すると とともに、上胴型 702に 4台の上型 102を一体的に保持させ、かつ、下胴型 704に 4 台の下型 101を一体的に保持させ、そして、上胴型 702及び下胴型 704を長めのピ ン 706によってガイドしつつ摺動するタイプの構造を採用してもよい。この構造では、 上胴型 702が調芯部材 106によって吊り下げ支持されている。
[0073] 以上説明したように、少なくとも、上型 102の中心で胴型 100との摺動面と平行なプ レス圧が働くように、吊下部材 105が押圧板 104を介して対応し、かつ、上記中心で 引き下げ力が働くように、フック部材 212に吊り下げ支持される吊下部材 105が調芯 部材 6を介して連動される構成にしたので、ガラス素材 Gに対してプレス成形する場 合、及び成形された光学素子成形品を離型する際、上型 102に対して加える胴型上 下部材の力が、常に、上型 102の中心を通るように作用させることができ、光学機能 面が光軸に対して正確に位置する、精度の高い光学素子を、効率的に製造できる。 本発明により、耐久性や光学ガラスとの離型性に優れた精密プレス成形法に好適 な光学ガラス用成形型を提供できる。また、本型を使用して光学ガラスをプレス成形 することにより各種光学素子を成形後に研磨等することなく製造できるため、量産性 があり、かつ、原価面でも有利な光学素子製造法を提供できる。

Claims

請求の範囲
[1] ガラス素材を複数対の上型及び下型でプレスして光学素子を成形するプレス成形 装置であって、
前記複数の下型に圧力を付与する下型圧力付与手段と、
前記複数対の上型及び下型をガイドする胴型と、
前記胴型を押し上げ動作する圧力発生手段と、
前記複数の上型に沿って前記胴型を摺動させることにより各上型を調芯する調芯 手段とを具備しており、
前記調芯手段は、前記各上型を吊り下げ支持するとともに、前記圧力発生手段に より前記胴型を前記各上型に沿って押し上げ動作する際に前記胴型の移動軸線に 対して直交する平面において前記各上型を移動可能とする吊り下げ部材を有する。
[2] 前記各上型を下方に向けて押圧するとともに前記各上型に独立的に圧力を負荷さ せるための梃子手段を有する上型圧力分配手段を更に備えている請求項 1に記載 のプレス成形装置。
[3] 前記複数の下型を上方に向けて押圧するとともに各下型に独立的に圧力を負荷さ せるための梃子手段を有する下型圧力分配手段を更に備えている請求項 1又は 2に 記載のプレス成形装置。
[4] 前記上型圧力分配手段は、支点を介して揺動自在に配置された揺動部材であつ て、その一端が前記各上型の上端部と当接されるとともに、その他端部がパネ部材 に連結されることにより前記各上型を下方に向けて付勢する揺動部材を備え、前記 各上型に作用する圧力を前記パネ部材が圧縮されることにより調整する請求項 2に 記載のプレス成形装置。
[5] 前記下型圧力分配手段は、支点を介して揺動自在に配置された揺動部材であつ て、その一端が前記各下型の下端部と当接されるとともに、その他端部がパネ部材 に連結されることにより前記各下型を下方に向けて付勢する揺動部材を備え、前記 各下型に作用する圧力を前記パネ部材が圧縮されることにより調整する請求項 3に 記載のプレス成形装置。
[6] 前記上型圧力分配手段は、前記揺動部材の揺動支点が可変であり、前記パネ部 材の変更無しで前記各上型に作用する圧力が調整される請求項 4に記載のプレス 成形装置。
[7] 前記下型圧力分配手段は、前記揺動部材の揺動支点が可変であり、前記パネ部 材の変更無しで前記各下型に作用する圧力が調整される請求項 5に記載のプレス 成形装置。
[8] 前記パネ部材は、巻きパネである請求項 4又は 5に記載のプレス成形装置。
[9] 前記上型圧力発生手段からの圧力を前記各上型に分配する上型圧力分配手段と 、前記下型圧力発生手段からの圧力を前記各下型に分配する下型圧力分配手段を 更に具備して!/、る請求項 1に記載の光学素子のプレス成形装置。
PCT/JP2007/070850 2006-10-25 2007-10-25 Appareil de compression d'un élément optique WO2008050846A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008541028A JPWO2008050846A1 (ja) 2006-10-25 2007-10-25 光学素子のプレス成形装置
US12/429,780 US20090205375A1 (en) 2006-10-25 2009-04-24 Optical element pressing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-290260 2006-10-25
JP2006290260 2006-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/429,780 Continuation US20090205375A1 (en) 2006-10-25 2009-04-24 Optical element pressing apparatus

Publications (1)

Publication Number Publication Date
WO2008050846A1 true WO2008050846A1 (fr) 2008-05-02

Family

ID=39324630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070850 WO2008050846A1 (fr) 2006-10-25 2007-10-25 Appareil de compression d'un élément optique

Country Status (5)

Country Link
US (1) US20090205375A1 (ja)
JP (1) JPWO2008050846A1 (ja)
KR (1) KR20090082369A (ja)
CN (1) CN101528615A (ja)
WO (1) WO2008050846A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131168A1 (ja) * 2008-04-23 2009-10-29 旭硝子株式会社 光学素子のプレス成形装置
US20110185770A1 (en) * 2008-09-19 2011-08-04 Kazuyuki Ogura Device for Manufacturing Molded Glass Body
JP2016188374A (ja) * 2016-05-23 2016-11-04 旭化成株式会社 ポリオレフィン微多孔膜の製造方法、電池用セパレータ、及び非水電解液二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974915B (zh) * 2012-01-05 2016-06-15 旭硝子株式会社 玻璃框体的成形装置以及成形方法
JP6047802B2 (ja) * 2013-05-10 2016-12-21 Hoya株式会社 ガラス成形体の製造装置、及び、ガラス成形体の製造方法
EP3132909B1 (de) * 2015-08-19 2019-10-09 HIB Trim Part Solutions GmbH Verfahren und werkzeug zur herstellung von zierteilen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815037B2 (ja) * 1991-06-26 1998-10-27 キヤノン株式会社 光学素子のプレス成形装置
JP2001122632A (ja) * 1999-10-20 2001-05-08 Olympus Optical Co Ltd 光学素子成形用金型の保持方法
JP2005179073A (ja) * 2003-12-16 2005-07-07 Olympus Corp 光学素子の成形装置及び成形方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815037B2 (ja) * 1991-06-26 1998-10-27 キヤノン株式会社 光学素子のプレス成形装置
JP2001122632A (ja) * 1999-10-20 2001-05-08 Olympus Optical Co Ltd 光学素子成形用金型の保持方法
JP2005179073A (ja) * 2003-12-16 2005-07-07 Olympus Corp 光学素子の成形装置及び成形方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131168A1 (ja) * 2008-04-23 2009-10-29 旭硝子株式会社 光学素子のプレス成形装置
US20110185770A1 (en) * 2008-09-19 2011-08-04 Kazuyuki Ogura Device for Manufacturing Molded Glass Body
US8408030B2 (en) * 2008-09-19 2013-04-02 Konica Minolta Opto, Inc. Device for manufacturing molded glass body
JP2016188374A (ja) * 2016-05-23 2016-11-04 旭化成株式会社 ポリオレフィン微多孔膜の製造方法、電池用セパレータ、及び非水電解液二次電池

Also Published As

Publication number Publication date
KR20090082369A (ko) 2009-07-30
US20090205375A1 (en) 2009-08-20
CN101528615A (zh) 2009-09-09
JPWO2008050846A1 (ja) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2008050846A1 (fr) Appareil de compression d'un élément optique
JP5059019B2 (ja) モールドプレス成形型、及び成形体の製造方法
US20140283555A1 (en) Molding apparatus and molding method of glass casings
JPH0524857A (ja) 光学素子のプレス成形方法
KR100839731B1 (ko) 몰드 프레스 성형 몰드 및 광학소자의 제조방법
KR101215514B1 (ko) 몰드 프레스 성형장치와 그 프레스 헤드, 및 광학소자의제조방법
US5417730A (en) Apparatus for molding an optical element
CN105164067A (zh) 玻璃成型体的制造装置和玻璃成型体的制造方法
WO2009131168A1 (ja) 光学素子のプレス成形装置
CN1765786B (zh) 压模成型装置及压模成型方法
KR101165475B1 (ko) 성형 주형의 조립 장치 및 광학 소자의 제조 방법
JP4939677B2 (ja) 光学素子の製造方法、及びモールドプレス成形装置
JP4141983B2 (ja) モールドプレス成形方法及び光学素子の製造方法
JP2815037B2 (ja) 光学素子のプレス成形装置
JP2020007176A (ja) 成形型の分解組立装置
JP3850109B2 (ja) 光学素子の成形方法
JP4382529B2 (ja) モールドプレス成形装置及び光学素子の製造方法
JPH0517171A (ja) 光学素子のプレス成形装置
JP2009114044A (ja) ガラス成形装置
JPH05116964A (ja) 光学素子のプレス成形装置
CN100404449C (zh) 铸模加压成形装置及光学元件的制造方法
JPH0523988A (ja) 吸着フインガーの位置決め装置
JPH10265230A (ja) 光学素子のプレス成形装置
JPH0597448A (ja) 光学素子の成形法
JP2009280448A (ja) 光学素子の製造方法及びその製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780040122.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008541028

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097008391

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830584

Country of ref document: EP

Kind code of ref document: A1