WO2008050760A1 - Procédé de production d'oxyde d'hexafluoropropylène - Google Patents

Procédé de production d'oxyde d'hexafluoropropylène Download PDF

Info

Publication number
WO2008050760A1
WO2008050760A1 PCT/JP2007/070638 JP2007070638W WO2008050760A1 WO 2008050760 A1 WO2008050760 A1 WO 2008050760A1 JP 2007070638 W JP2007070638 W JP 2007070638W WO 2008050760 A1 WO2008050760 A1 WO 2008050760A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic phase
phase
reaction
hfp
hexafluoropropylene
Prior art date
Application number
PCT/JP2007/070638
Other languages
English (en)
French (fr)
Inventor
Hideki Nakaya
Michio Asano
Hideya Saitou
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2008540996A priority Critical patent/JPWO2008050760A1/ja
Priority to US12/447,130 priority patent/US20100016615A1/en
Priority to EP07830372A priority patent/EP2090572A1/en
Publication of WO2008050760A1 publication Critical patent/WO2008050760A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/48Compounds containing oxirane rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to a method for producing hexafluoropropylene oxide, and more particularly to a method for obtaining hexafluoropropylene oxide by oxidation of hexafluoropropylene.
  • Hexafluoropropylene oxide is an important compound in the production of fluorine-containing compounds, for example, used as a raw material for perfluorovinyl ether. Hexafluoropropylene oxide oligomers are used as lubricants and heat transfer media.
  • Patent Document 1 Japanese Patent Publication No. 45-11683
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-83152
  • Patent Document 3 Japanese Patent Publication No. 64-11021
  • Patent Document 4 Japanese Patent Publication No. 3-75546
  • Patent Document 5 Japanese Patent No. 3785652
  • Non-Patent Document 1 Hideho Okamoto, “Applicability of microreactor to green 'process”, Falmasia, 2005, Japan Pharmaceutical Association, Vol. 41, No. 7, p664
  • the present invention relates to a process for producing hexafluoropropylene oxide, which comprises a higher HFP.
  • An object of the present invention is to provide a novel production method capable of achieving O yield.
  • HFP hexafluoropropylene oxide
  • a quaternary ammonium salt in a two-phase system of an aqueous phase and an organic phase.
  • a liquid phase reaction method has been proposed to oxidize with chlorate to obtain HFPO! (See Patent Documents 3 and 4).
  • the inventors of the present invention pay particular attention to this method, and as a result of intensive studies, the present invention has been completed.
  • an organic phase containing hexafluoropropylene and an aqueous phase containing an oxygen-containing oxidizing agent are brought into contact with each other through a minute space, and the hexafluoropropylene is converted into an acid.
  • a method for producing hexafluoropropylene oxide which is reacted with an oxygen-containing oxidizing agent to obtain hexafluoropropylene oxide.
  • a yield due to HFP 3 O is significantly higher than that of any conventional method. This is because the present invention is not bound by any theory, but is considered to be due to the following reasons.
  • the oxidation reaction to obtain hexafluoropropylene oxide (HF PO) from hexafluoropropylene (HFP) is an exothermic reaction. Temperature control is possible, which suppresses side reactions, The selectivity of HFPO can be improved.
  • the reaction to obtain HFPO from HFP involves diffusion, it can be made to react sufficiently in a shorter reaction time by allowing the reaction to proceed in a minute space.
  • the reaction rate can be increased. Therefore, sufficient heat removal and strict temperature control are possible, so that the selectivity does not decrease even when the reaction rate increases, and the reaction time and residence time) can be shortened.
  • HF PO can be discharged to the outside of the reaction system (microspace) instantly to prevent further reaction of the product (overreaction). As a result, the reaction with high selectivity and high conversion can be achieved. It can be realized and the yield of HFPO can be improved.
  • the “microspace” means a flow path through which a fluid for reaction (in the present invention, including a liquid substance including an aqueous phase and an organic phase and an optionally present gas phase) flows. It means a space with a width of 3 cm or less, preferably 1 m or more and less than lcm (micro order or milliorder), and the width of the flow channel means the minimum distance between the opposing wall surfaces of the flow channel.
  • Such “microspaces” are known as “microreactors” or “micromixers” in fields such as pharmaceutical and synthetic chemistry, for example! /, Each flow path or channel of a reactor or mixer. )! /, (See Non-Patent Document 1, for example).
  • an organic phase containing hexafluoropropylene and an aqueous phase containing an oxygen-containing oxidizing agent are brought into contact in the presence of a phase transfer catalyst, and the hexafluoropropylene is oxidized with oxygen.
  • the reaction is caused by the action of the agent and the phase transfer catalyst. This makes it possible to cause the reaction to occur more efficiently.
  • the microspace is about 40-; a temperature of 100 ° C and about 0.
  • Hexafluoropropylene is a gas at normal temperature and pressure (boiling point: 29.4 ° C), so when supplying the organic phase to the microspace, this pre-adjustment makes it possible to obtain more HFP. It can be dissolved in the organic phase, allowing the liquid phase reaction to proceed efficiently.
  • the reaction time in the minute space can be about 0.01 to 1000 seconds. Such a reaction time is extremely shorter than a reaction time in a normal reaction space volume generally used in the past.
  • phase transfer catalyst used in the preferred embodiment of the present invention! /, The embodiment! /, Has an affinity for both the aqueous phase and the organic phase, so that the aqueous phase and the organic phase are separated.
  • Any substance can be used as long as it can move in any form, and promotes the reaction by transferring the nucleophilic part of the oxygen-containing oxidant distributed mainly in the aqueous phase to the organic phase.
  • the "oxygen-containing oxidant" used in the present invention may be any oxidant containing an oxygen atom and capable of oxidizing HFP to HFPO.
  • FIG. 1 is a schematic diagram of an apparatus used for producing HFPO in Example 1 of the present invention.
  • FIG. 2 is a reaction schematic diagram in Example 1 of the present invention.
  • FIG. 3 is a schematic diagram of an apparatus used for producing HFPO in Example 2 of the present invention. It is.
  • Organic solvent tank (Organic solvent includes phase transfer catalyst)
  • Aqueous solution tank (aqueous solution contains oxygen-containing oxidant)
  • an aqueous phase containing an oxygen-containing oxidant and an organic phase containing hexafluoropropylene (HFP) are prepared, and a phase transfer catalyst is prepared.
  • hypochlorite for example, hypochlorite, chlorite, chlorate, perchlorate, ozone water, hydrogen peroxide solution and the like can be used.
  • hypochlorite is preferred because it produces hypochlorite ions under the reaction conditions and reacts with HFP to form chlorine ions, which does not oxidize and forms salts.
  • Hypochlorite includes alkali metal salts and alkaline earth metal salts, among which sodium salts are industrially mass-produced for uses such as bleaching agents and fungicides, and are inexpensive. It is more preferable because it is available at Oxygen-containing oxidizing agents can be used with alkalis such as sodium hydroxide and potassium oxide. By adding potassium to make it alkaline, it is possible to prevent the decomposition of the oxidant by the acid as the reaction proceeds.
  • aqueous phase solvent an aqueous substance capable of dissolving the oxygen-containing oxidizing agent, generally water, can be used.
  • the concentration of the oxygen-containing oxidant in the aqueous phase is, for example, about;! To 2 Owt%, preferably about 515wt% at the time of supplying the microspace (or at the beginning of the reaction).
  • organic solvent for the organic phase an inert solvent that is substantially immiscible or poorly miscible with the aqueous phase can be used.
  • organic solvents include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, fluorinated hydrocarbons (CFC HCFC HFC), perfluorocarbons.
  • examples include polyethers.
  • a halogen-containing compound such as chlorinated hydrocarbons, fluorinated hydrocarbons, perfluoropolyether and a mixture thereof. That is, fluorine-based hydrocarbons (black-mouthed fluorocarbon (CFC), hide-opened fluorocarbon (HCFC), hide-opened fluorocarbon (HFC)) and perfluoropolyether are more preferred.
  • Aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons are not particularly limited.
  • hexane, heptane, isoheptane, octane, isooctane, methylcyclopentane, cyclohexane, methylcyclohexane. , Toluene and the like are preferable.
  • CFCs examples include 1,1,2 trichloro 1,2,2 trifluoroethane (CFC-113).
  • HCFCs include difluorochloromethane (HCFC-22), 1,1-dichloro-1-1-fluoroethane (HCFC-141b), 1,1-dichloro-1-2,2,2-trifluoroethane (HCFC 123), Examples include 1-chloro 1, 1-difluoroethane (HCFC-142b) and diclonal pentafluoropropane (HCFC-225).
  • Fluoroaliphatic hydrocarbons represented by 2), and more specifically, C F H C F H C F H C F H C F H C F H C F H C F H C F H C F H C F H
  • HCF Hexafnorolepentane
  • HFC particularly 1, 1, 1, 3, 3-pentafluorobutane, is more preferable.
  • perfonoreo mouth polyethers examples include compounds represented by the following general formula (I).
  • the molecular weight of the compound represented by the general formula (I) is preferably about 100 to 100000, more preferably about 250 to 50,000, more preferably about 500 to 10,000, more preferably 10,000.
  • R, R, R, R and R are each independently a fluorine atom or a perfluoroalkyl.
  • 1, m, n each independently represents 0 or a natural number, and at least one of 1, m, n is not 0. )
  • perfluoropolyether a compound represented by the following general formula (II) or a compound represented by the following general formula (III) may be used.
  • the solubility of HFP in an organic solvent may depend on the temperature and pressure conditions, although it depends on the type of organic solvent used. Prior to supplying the organic phase containing HFP to the micro space, this organic phase (with HFP and organic solvent coexisting) is substantially equivalent to the temperature and pressure conditions in the micro space. Alternatively, it is preferable to apply conditions closer to this (also referred to as preliminary adjustment in this specification).
  • the organic phase is suitably maintained in advance at a temperature of about 40 to; a temperature of about 100 ° C, preferably about 10 to 50 °, a pressure of about 0.2;! To 20 MPa, preferably about 0.2 to 5 MPa. Can do.
  • This preconditioning condition is preferably a temperature and pressure condition that makes the HFP substantially liquid.
  • HFP is a gas at normal temperature and pressure (boiling point: 29.4 ° C)
  • the organic phase when supplied to the microspace, it is preliminarily attached to the temperature and pressure conditions at which the HFP is substantially in a liquid state. More preferably, it is preferred to dissolve substantially all of the HFP in the organic phase.
  • the reaction time (residence time) in the micro space is extremely short, and the redistribution of the HFP from the organic phase to the gas phase is negligible.
  • the pressure condition may be different from the temperature and pressure conditions of the microspace in which the organic phase is to be supplied.
  • the HFP concentration in the organic phase is, for example, about 0.5 to 100 wt%, preferably about 1 to 50 wt%, more preferably about 2 to 20 wt%, when supplying the microspace (or at the beginning of the reaction). .
  • phase transfer catalyst for example, quaternary ammonium salts, quaternary phosphoyu salts, and macrocyclic ethers can be used. Of these, quaternary ammonium salts are preferred because they have excellent affinity for both organic and aqueous phases, have a wide variety of commercially available reagents, and are relatively inexpensive.
  • the quaternary ammonium salt is represented by the following formula (wherein Rl, R2, R3, and R4 are hydrocarbon groups such as alkyl groups, and X- is an anion).
  • Rl, R2, R3, R4 are hydrocarbon groups such as alkyl groups, and X- is an anion.
  • the type and number of carbon chains of this hydrocarbon group (Rl, R2, R3, R4) can be arbitrarily selected.
  • (X_) type can also be selected arbitrarily.
  • This selection can be appropriately made based on the type and amount (or concentration) of the oxygen-containing oxidizing agent used in the reaction system, the type and amount of the solvent, the temperature and pressure of the reaction, and the like.
  • tri-n-octylmethylammonium chloride (TOMAC), tetrabutylammonium hydrogensulfate (TBAS), tetrabutylammonium bromide (TBAB) can be used as quaternary ammonium salts.
  • TOMAC tri-n-octylmethylammonium chloride
  • TBAS tetrabutylammonium hydrogensulfate
  • TBAB tetrabutylammonium bromide
  • S The reaction of the present invention has a high partition to the organic phase in which HFP is present, and quaternary ammonium salts, especially TOMAC are preferred! /.
  • the quaternary phosphonium salt is represented by the following formula (wherein R5, R6, R7 and R8 are hydrocarbon groups, for example, alkyl groups, and Y— is an anion).
  • R5, R6, R7 and R8 are hydrocarbon groups, for example, alkyl groups, and Y— is an anion).
  • the type and number of carbon chains of the hydrocarbon group (R5, R6, R7, R8) can be arbitrarily selected, and the anion (Y type can also be arbitrarily selected).
  • This selection can also be made appropriately based on the type and amount (or concentration) of the oxygen-containing oxidizing agent used in the reaction system, the type and amount of the solvent, the temperature and pressure of the reaction, and the like.
  • the 4th For example, tetra-n-butylphosphonium bromide, tetra-n-butylphosphonium bromide, n-amyltriphenylphosphonium bromide, benzyltriphenylphosphonium chloride, etc. are particularly preferred.
  • the phase transfer catalyst may be supplied to the microspace in any form as long as it exists when the aqueous phase and the organic phase are brought into contact with each other, but is generally added to the aqueous phase or the organic phase.
  • the concentration of the phase transfer catalyst in the aqueous phase or the organic phase is, for example, about 0.5 to 20 wt%, preferably about;
  • the aqueous phase containing the oxygen-containing oxidant prepared as described above and the organic phase containing HFP are supplied to the micro space together with the phase transfer catalyst.
  • the minute space is sufficient if the width of the flow path through which the reaction fluid (water phase and organic phase and optionally a gas phase) flows is 3 cm or less.
  • the width of the flow path is about 1 m to l cm, preferably about 10 to 5000 m.
  • the length and cross-sectional area of the flow path is not particularly limited, for example, the cross-sectional area of the channel is about 3 ⁇ 1 X 10_ 6 ⁇ 7. 9 X 10- ⁇ m 2 possible.
  • a reactor or reaction tube having at least one minute space with an equivalent diameter of 20 111 to 2000 111), a so-called “microreactor” or “micro-mouth mixer” can be used.
  • aqueous phase containing the oxygen-containing oxidant and the organic phase containing hexafluoropropylene (HFP) flow and contact with each other in the micro space together with the phase transfer catalyst, and during this time, the HFP interacts with the oxygen-containing oxidant. Reacts in the presence of a transfer catalyst to produce hexafluoropropylene oxide (HF PO).
  • HFP hexafluoropropylene oxide
  • the contact between the organic phase and the aqueous phase in the minute space is not particularly limited, but the laminar flow state is preferable. Laminar flow can be judged based on the Reynolds number, depending on the structure of the device used.
  • the temperature and pressure in the micro space are not particularly limited as long as the reaction for obtaining HFPO from HFP proceeds, but is about 40 to 100 ° C, preferably about 10 to 50 ° C, and about 0 Can be suitably maintained at a pressure of 20 to 20 MPa, preferably at a pressure of about 0.2 to 5 MPa.
  • the volume ratio of the organic phase / water phase in the micro space (or the ratio of the supply flow rate of the organic phase / water phase) can be appropriately set according to the specific situation. 10, preferably about 0.2-5.
  • reaction time and residence time in a micro-space are very short compared to the conventional method.
  • ⁇ , ⁇ column free approx. 0.01-; 1000 less, special approx. 0. 01 ⁇ ; 100 less, more or less about 0. 01— 5
  • the organic phase and the aqueous phase after the reaction are extracted from the micro space in an arbitrary form, for example, in a mixed state or a separated state. Since HFPO is distributed in the organic phase, the FPO produced by the reaction can be recovered from the organic phase after the reaction. In particular, since HFPO is gasified by depressurization, it can be easily recovered from the organic phase.
  • the organic phase after the reaction may be subjected to post-treatment as necessary to remove unnecessary substances such as unreacted HFP, side reaction products and solvent! /.
  • distillation is a force that is widely used industrially as a general separation operation
  • the unreacted HFP that is the main component of the reaction mixture and the boiling point of the target product HFPO is 29.4 ° respectively. C and 27.4 ° C.
  • extractive distillation is preferred to obtain high purity HFPO by separating HFP and HFPO (see Patent Document 5).
  • the separated HFP may be reused as a reaction raw material.
  • extractive distillation it is preferable to use a solvent that can be used as an extractive distillation solvent as the solvent used in the organic phase.
  • the effectiveness of extractive distillation solvents can be evaluated by the relative volatility of HFP and HFPO.
  • the relative volatility can be measured by a method well known in the art or a method described in Patent Document 5.
  • the relative volatility of HFPO with respect to HFP should be greater than 1, but in general it is preferably 1.1 or higher.
  • HCFC-141b 1, 1-dichloro-1-1-fluoroethane (HCFC-141b), 2,2-dichloro opening—1, 1,1-trifunoleoleotane (HCFC-123), 1,2-dichloro- 1, 1, 2—Trif Norolethan (HCFC—123a), 3,3-dichloro-1,1,1,1,2,2-pentafunoleorov. Mouth bread (HCFC—225ca), 1,3-dichloro-1,1,2,2,3-pentafluoropropane (HCFC—225cb) and the like can be used.
  • Such solvents include CH CI, CHC1, CC1, CH
  • Hexafluoropropylene oxide is produced as described above.
  • the process for producing hexafluoropropylene oxide can be carried out continuously.
  • the yield of HFPO can be significantly improved as compared with the conventional production method.
  • the present embodiment relates to an example in which the internal space of a narrow tube 21 (shown by a dotted line in the figure) is used as a minute space.
  • the thin tube 21 was a SUS tube having a nominal inner diameter of 250 111 and a length of 1.5 m.
  • the thin tube 21 can be controlled by heating using a heating jacket 21a.
  • the inlet side of this narrow tube 21 is connected to a SUS T-type connector 21b (applicable outer diameter 1/16 inch, manufactured by Swagelok), and two kinds of fluids, an organic phase and an aqueous phase, are connected from lines 9 and 19, respectively. It was configured so that it could be supplied to the narrow tube 21.
  • a line 23 is connected to the outlet side of the thin tube 21, and a SUS tube having a nominal inner diameter of 500 mm is used for the line 23.
  • a nut etc. were used suitably for the connection part.
  • the HFP tank 1 from the HFP and the organic solvent tank 3 from the organic solvent were drawn into the pump chamber 7 a of the syringe pump 7 from the line 5.
  • This organic solvent contains 1, 1-Dichloro 1 Fluoroethane (HCFC—141b) was used, and tri-octylmethylammonium chloride (TOMAC: (CH) CH NC1) was used as the phase transfer catalyst.
  • the organic phase at the time of supply to the capillary tube 21 was about 5 ° C and about 2 MPa. At this time, substantially all of the HFP was liquefied, and the HFP concentration in the organic phase was about 1. lwt%.
  • the concentration of TOMAC (phase transfer catalyst) in the organic phase is substantially equivalent to the concentration in the organic solvent used.
  • the aqueous solution was drawn from the aqueous solution tank 13 into the pump chamber 17 a of the syringe pump 17 through the line 15.
  • This aqueous solution is obtained by dissolving sodium hypochlorite (NaCIO) as an oxygen-containing oxidant in water at about 10 wt%.
  • NaCIO sodium hypochlorite
  • This aqueous solution was pushed out of the syringe chamber 17a and supplied as a thin tube 21 aqueous phase through a line 19.
  • the aqueous phase at the time of supply to the capillary 21 was approximately room temperature (approximately 20 ° C) and approximately 2 MPa.
  • the concentration of NaCIO (oxygen-containing oxidizer) in the aqueous phase is the same as that in the aqueous solution used.
  • the supply flow rate of the organic phase was about lmL / min, and the supply flow rate of the aqueous phase was about 250 ⁇ L / min.
  • the organic phase and the aqueous phase supplied to the narrow tube 21 flow in a minute space in the narrow tube 21 in a laminar flow state while contacting each other in the presence of the catalyst.
  • the thin tube 21 was heated to about 45 ° C. by the heating jacket 21a, and the pressure was adjusted by the back pressure valve 25 existing in the downstream line 23.
  • the inside of the narrow tube 21 was maintained at about 45 ° C. and about 2 MPa.
  • the reaction mixture (the mixture of the organic phase and the aqueous phase after the reaction) was extracted from capillary tube 21 through line 23 to recovery tank 27.
  • Line 23 was maintained at about 0 ° C with an ice bath (in the figure, the cooling area around line 23 is shaded).
  • the residence time of the fluid (including the organic and aqueous phases and optionally a gas phase) in the capillary 21 was about 1.1 seconds.
  • the line 23 is maintained at a low temperature of about 0 ° C., it can be considered that the reaction does not substantially occur in the line 23. Therefore, you can consider the residence time of the fluid in the narrow tube 21 as the reaction time! /.
  • the recovered reaction mixture was allowed to stand to separate into an organic phase and an aqueous phase.
  • the obtained organic phase was analyzed by gas chromatography.
  • the conversion of HFP was 99% and the selectivity of HFPO was about 94%. From these, the yield was about 92%.
  • Example 2 The same apparatus as in Example 1 was used except that a SUS tube having a nominal inner diameter of 500 m and a length of 4 m was used as the thin tube 21. Then, a mixture of the components shown in Table 1 was used as the organic phase, this organic phase was supplied at the supply flow rate shown in Table 1, and an aqueous sodium hypochlorite solution of about 1 Owt% as in Example 1 was used as the aqueous phase. However, the same operation as in Example 1 was performed except that the supply flow rate was about 24 ml / min. Table 2 shows the results of analysis of the organic phase obtained by gas chromatography.
  • the present embodiment relates to a unit that uses a unit space in micromixer 31 as a minute space.
  • micromixer 31 As the micromixer 31, SSIMM (Standard Slit Interdigital Micro Mixer, manufactured by IMM, nominal slit width: 40 m) was used.
  • tetraptyl ammonium hydrogen sulfate (T BAS) was used as a phase transfer catalyst instead of TOMAC.
  • T BAS tetraptyl ammonium hydrogen sulfate
  • the organic phase and the aqueous phase are supplied to the micromixer 31.
  • the inside of the micromixer 31 is provided with a plurality of slits (nominal width 40 m) separated by corrugated vertical walls and alternately closed at the left and right ends. It is supplied to the slits alternately (striped) from the left and right directions, and then rises vertically in the slits. After exceeding the upper end of the slits, they contact each other in a laminar flow state, and then mix in a mixed state. It comes out of Sir 31.
  • the organic phase and the aqueous phase flow in multiple layers that are alternately overlapped, and a pair of layers of the organic phase and the aqueous phase is a unit space, and this unit space is a minute space. Therefore, the organic phase and the aqueous phase supplied to the micromixer 31 flow through a plurality of micro spaces in the micromixer 31 in a laminar flow state while contacting each other in the presence of the catalyst.
  • the micromixer 31 was heated to about 35 ° C. by the heating jacket 31a, and the pressure was adjusted by the back pressure valve 25 existing in the downstream line 23 in the same manner as in Example 1. Thereby, the inside of the micromixer 31 was maintained at about 35 ° C. and about 2 MPa.
  • HFP was reacted with NaCIO by the catalytic action of TBAS to generate HFPO.
  • the residence time of the fluid (including the organic and aqueous phases and optionally the gas phase) in the micromixer 31 was 1 second or less. Therefore, you can safely assume that the reaction time is less than 1 second.
  • the recovered reaction mixture was allowed to stand to separate into an organic phase and an aqueous phase.
  • the obtained organic phase was analyzed by gas chromatography, the conversion of HFP was about 100% and the selectivity for HFPO was about 85%. From these, the yield was about 85%.
  • This comparative example relates to a batch reaction in a milliliter order reactor without using a minute space.
  • a 200 mL capacity pressure vessel was used for the reactor.
  • Hexafluoropropylene oxide obtained by the production method of the present invention can be used for the production of a fluorine-containing compound, for example, perfluorovinyl ether, and the lubricating oil is heated in the form of an oligomer. It can be used as a medium.
  • a fluorine-containing compound for example, perfluorovinyl ether
  • the lubricating oil is heated in the form of an oligomer. It can be used as a medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

技術分野
[0001] 本発明はへキサフルォロプロピレンォキシドの製造方法、より詳細には、へキサフ ルォロプロピレンの酸化によりへキサフルォロプロピレンォキシドを得る方法に関する
背景技術
[0002] へキサフルォロプロピレンォキシドは、例えばパーフルォロビニルエーテルの原料 として用いられるなど、含フッ素化合物の製造において重要な化合物である。また、 へキサフルォロプロピレンォキシドのオリゴマーは潤滑油ゃ熱媒などとして利用され ている。
[0003] 従来、へキサフルォロプロピレンォキシド(以下、 HFPOとも言う)の製造方法として 、へキサフルォロプロピレン(以下、 HFPとも言う)の酸化により HFPOを得る様々な 方法が開発されている。
[0004] 例えば、 SiO 、 CuOまたは BaOなどの触媒存在下にて、あるいは、無触媒条件下
2
にて、 HFPを酸素により酸化して HFPOを得る高温気相反応法がある。また、紫外 線を利用して HFPから HFPOを得る方法もある。加えて、 HFPを HF溶媒中にて過 マンガン酸カリウムにより酸化して HFPOを得る低温液相反応法や、 HFPをメタノー ノレ溶媒中にて過酸化水素により酸化して HFPOを得る低温液相反応法などがある。
[0005] また、 HFPを 1 , 1 , 2—トリクロ口一 1 , 2, 2—トリフルォロェタン(CFC— 113)など の溶媒中にて酸素により酸化して HFPOを得る液相反応法も知られている(特許文 献 1を参照のこと)。この製造方法によれば、上記の従来法よりも高い収率 (約 60%) を工業的に得ることが可能である。
[0006] 更に近年、高収率化を指向して、一般式 RCHO (式中、 Rは一価の電子吸引性炭 化水素基である)で表わされる電子吸引基を有するアルデヒドの存在下にて HFPを 酸素により酸化させる方法も提案されて!/、る(特許文献 2を参照のこと)。
[0007] 特許文献 1 :特公昭 45— 11683号公報 特許文献 2:特開 2006— 83152号公報
特許文献 3:特公昭 64— 11021号公報
特許文献 4:特公平 3— 75546号公報
特許文献 5:特許第 3785652号公報
非特許文献 1:岡本秀穂、「グリーン 'プロセスへのマイクロリアクターの適用可能性」、 フアルマシア、 2005年、 日本薬学会、 Vol. 41、 No. 7、 p664
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、上述のような従来の製造方法により得られる HFPOの収率は必ずし も十分ではなぐ一層の向上が望まれている。
[0009] 本発明は、へキサフルォロプロピレンォキシドの製造方法であって、より高い HFP
O収率を達成し得る新規な製造方法を提供することを目的とするものである。
課題を解決するための手段
[0010] ところで、へキサフルォロプロピレンォキシド(HFPO)の製造方法として、水相およ び有機相の 2相系において、第 4級アンモニゥム塩等の存在下にて、 HFPを次亜塩 素酸塩により酸化して HFPOを得る液相反応法が提案されて!/、る(特許文献 3およ び 4を参照のこと)。本発明者らはとりわけこの方法に着目し、鋭意検討の結果、本発 明を完成するに至った。
[0011] 本発明の 1つの要旨によれば、へキサフルォロプロピレンを含む有機相と酸素含有 酸化剤を含む水相とを微小空間に通じて接触させ、へキサフルォロプロピレンを酸 素含有酸化剤と反応させてへキサフルォロプロピレンォキシドを得る、へキサフルォ 口プロピレンォキシドの製造方法が提供される。
[0012] 上記本発明によれば、反応条件にもよる力 いずれの従来法よりも著しく高い HFP Oの収率が得られることが、本発明者らの実験により確認された。これは、本発明は いずれの理論によっても拘束されるものではないが、次のような理由によるものと考え られる。へキサフルォロプロピレン(HFP)からへキサフルォロプロピレンォキシド(HF PO)を得る酸化反応は発熱反応であり、反応を微小空間にて進行させることによって 、効率的な除熱および厳密な温度制御が可能となり、これにより、副反応を抑制し、 HFPOの選択率を向上させることができる。また、 HFPから HFPOを得る反応は拡 散を伴うため、反応を微小空間にて進行させることによって、より短い反応時間で十 分に反応させること力できる。更に、有機相と水相とを微小空間にて接触させることに より、液 液界面積が増大するので、反応速度を上昇させることができる。よって、十 分な除熱および厳密な温度制御が可能となることで、反応速度が上昇しても選択率 の低下を招かず、また、反応時間ほたは滞留時間)を短くできることで、生成した HF POを瞬時に反応系(微小空間)の外部に排出して、生成物の更なる反応 (オーバー リアクション)を防止でき、これらの結果、高転化率でありながらも高選択率の反応を 実現でき、 HFPOの収率を向上させることができる。
[0013] 本発明において「微小空間」とは、反応のための流体(本発明では水相および有機 相を含んで成る液状物ならびに場合により存在し得る気相を包含する)が流れる流 路の幅が 3cm以下、好ましくは 1 m以上 lcm未満(マイクロオーダーまたはミリォー ダー)である空間を意味し、流路の幅とは、流路の対向する壁面間の最小距離を言う ものとする。このような「微小空間」は、例えば製薬および合成化学などの分野におい て「マイクロリアクター」または「マイクロミキサー」として知られて!/、る反応器または混 合機の各流路ほたはチャネル)であってよ!/、 (例えば非特許文献 1を参照のこと)。
[0014] 本発明の好ましい態様においては、へキサフルォロプロピレンを含む有機相と酸素 含有酸化剤を含む水相とを相間移動触媒の存在下にて接触させ、へキサフルォロ プロピレンを酸素含有酸化剤と相間移動触媒の作用により反応させる。これにより、 反応をより効率的に起こさせることが可能となる。
[0015] 本発明の 1つの態様においては、微小空間を約 40〜; 100°Cの温度および約 0.
;!〜 20MPaの圧力にて適宜に維持する。 100°Cおよび/または 20MPaを超えると 、 HFPOの爆発条件に近づくため好ましくない。他方、—40°Cおよび/または 0. 1 MPaを下回ると、水相の水が氷になるため好ましくない。上記のような温度および圧 力範囲とすることによって、相間移動触媒の使用の有無および種類などの他の条件 にもよる力 例えば約 70%以上、更には約 90%以上の収率を得ることが可能となる。
[0016] 本発明の好ましい態様においては、有機相を微小空間に供給するに先立って、約
40〜100°Cの温度および約 0. ;!〜 20MPaの圧力にて、より好ましくはへキサフ ノレォロプロピレン (HFP)を実質的に液体状態とする温度および圧力条件にて、適宜 に維持するよう予備調整する。へキサフルォロプロピレンは常温常圧下では気体であ るので (沸点 29. 4°C)、有機相を微小空間に供給するに際し、このように予備調 整することにより、より多くの HFPを有機相中に溶解させることができ、液相反応を効 串的に進ネ亍させることカでさる。
[0017] 微小空間における反応時間は約 0. 01〜; 1000秒とし得る。このような反応時間は、 従来一般的に用いられている通常の反応空間容積における反応時間に比べて極め て短い。
[0018] 本発明の好まし!/、態様にお!/、て使用される「相間移動触媒」は水相および有機相 の両相への親和性を有することにより水相と有機相との間を任意の形態で移動する ことが可能であり、主に水相に分配される酸素含有酸化剤の求核部を有機相へ移送 することにより反応を促進する物質であればよい。例えば、相間移動触媒には第 4級 アンモニゥム塩を用いることが好ましぐこれは有機相および水相の両相に対して優 れた親和性を有し、市販されている試薬の種類も豊富であり、更に比較的安価であ るという利点がある。
[0019] また、本発明に使用される「酸素含有酸化剤」は、酸素原子を含有する酸化剤であ つて、 HFPを酸化して HFPOにさせ得るものであればよい。例えば、酸素含有酸化 剤として次亜塩素酸塩を用いることが好ましぐこれは反応条件下で次亜塩素酸ィォ ンを生じ、 HFPと反応して塩素イオンとなり、酸化作用のない塩を形成するという利 点、かある。
発明の効果
[0020] 本発明によれば、いずれの従来法よりも著しく高い収率を達成し得るへキサフルォ 口プロピレンォキシドの製造方法が提供される。
図面の簡単な説明
[0021] [図 1]本発明の実施例 1において HFPOを製造するために用いた装置の概略模式図 である。
[図 2]本発明の実施例 1における反応模式図である。
[図 3]本発明の実施例 2において HFPOを製造するために用いた装置の概略模式図 である。
符号の説明
[0022] 1 HFPタンク
3 有機溶媒槽 (有機溶媒は相間移動触媒を含む)
5、 9、 15、 19、 23 ライン
7a、 17a ポンプ室
7b 冷却ジャケット
13 水溶液槽 (水溶液は酸素含有酸化剤を含む)
21 細管
21a 加熱ジャケット
21b コネクター
25 背圧弁
27 回収槽
31 マイクロミキサー
31a 加熱ジャケット
発明を実施するための最良の形態
[0023] 本発明の 1つの実施形態におけるへキサフルォロプロピレンの製造方法について 以下に詳述する。
[0024] まず、酸素含有酸化剤を含む水相と、へキサフルォロプロピレン (HFP)を含む有 機相をそれぞれ調製すると共に、相間移動触媒を用意する。
[0025] 酸素含有酸化剤としては、例えば次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過塩素 酸塩、オゾン水、過酸化水素水などを用いることができる。このうち次亜塩素酸塩は、 反応条件下で次亜塩素酸イオンを生じ、 HFPと反応して塩素イオンとなり、酸化作用 のな!/、塩を形成するので好ましレ、。次亜塩素酸塩にはアルカリ金属塩およびアル力 リ土類金属塩などが含まれるが、このうちナトリウム塩は漂白剤、殺菌剤などの用途向 けに工業的に大量生産されており、安価で入手できるので、より好ましい。酸素含有 酸化剤は、アルカリと共に使用してもよぐ水酸化ナトリウム、酸化カリウムなどのァノレ カリを加えてアルカリ性にすることによって、反応進行に伴う酸化剤の酸による分解を 防ぐこと力 Sできる。
[0026] 水相の溶媒 (水性溶媒)には、酸素含有酸化剤を溶解させ得る水性物質、一般的 には水を用い得る。
[0027] 水相中の酸素含有酸化剤濃度は、微小空間供給時 (または反応初期)にて、例え ば約;!〜 2 Owt %、好ましくは約 5 15wt %である。
[0028] 他方、有機相の有機溶媒には、水相に対して実質的に不混和性または難混和性 であり、不活性な溶剤を用い得る。そのような有機溶媒の例として、脂肪族炭化水素 類、脂環式炭化水素類、芳香族炭化水素類、塩素系炭化水素類、フッ素系炭化水 素類(CFC HCFC HFC)、パーフルォロポリエーテルなどが挙げられる。 HFPを 溶解させるには、含ハロゲン化合物、例えば塩素系炭化水素類、フッ素系炭化水素 類、パーフルォロポリエーテルおよびそれらの混合物などを用いることが好ましぐ特 にフルオラス性を有するもの、即ち、フッ素系炭化水素類(クロ口フルォロカーボン(C FC)、ハイド口クロ口フルォロカーボン(HCFC)、ハイド口フルォロカーボン(HFC)) およびパーフルォロポリエーテルがより好ましい。
脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類としては、特に制限さ れないが、例えばへキサン、ヘプタン、イソヘプタン、オクタン、イソオクタン、メチルシ クロペンタン、シクロへキサン、メチルシクロへキサン、トルエンなどが好ましい。
CFCとしては、 1, 1, 2 トリクロ 1, 2, 2 トリフルォロェタン(CFC— 113)など が挙げられる。
HCFCとしては、ジフルォロクロロメタン(HCFC— 22)、 1, 1—ジクロロ一 1—フ ォロェタン(HCFC— 141b)、 1, 1—ジクロロ一 2, 2, 2 トリフルォロェタン(HCFC 123)、 1—クロ 1, 1—ジフルォロェタン(HCFC— 142b)、ジクロ口ペンタフル ォロプロパン(HCFC— 225)などが挙げらる。
HFCとしては、一般式 C F H (式中、 Xおよび yは、 4≤x≤6および 6≤y≤ 1
2x+2
2を満たす整数である)で表わされるフッ化脂肪族炭化水素などが挙げられ、具体的 には、 C F H C F H C F H C F H C F H C F H C F H C F H
4 5 5 4 6 4 4 8 2 5 7 5 5 8 4 5 9 3 5 10 2 6 9 5 C F Hで表わされる化合物などを例示でき、好ましくは 1, 1, 1, 3, 3—ペンタフ ルォロブタン(HFC— 365)、 1, 1, 2, 3, 4, 4—へキサフルォロブタン(HCF CFH
2
CFHCF H)、 1, 1, 1, 2, 2, 3, 3, 4—オタタフノレォロブタン(CF CF CF CH F)
2 3 2 3 2
、 1, 1, 2, 2, 3, 3, 4—ヘプタフノレォロペンタン(HCF (CF ) CFHCH ), 1, 1, 2
2 2 2 3
, 3, 3, 4, 5, 5—オタタフノレォロペンタン(HCF CFHCF CFHCF H)、 1, 1, 2, 2
2 2 2
, 3, 3, 4, 4, 5—ノナフノレ才ロペンタン(HCF (CF ) CH F)、 1, 1, 1, 2, 3, 3, 4
2 2 3 2
, 4, 5, 5—デカフノレォロペンタン(CF CF(CHF )CF CF H)、 1, 1, 1, 2, 2, 3,
3 2 2 2
3, 4, 4—ノナフノレ才口へキサン(CF (CF ) CH CH ), 1, 1, 2, 2, 3, 3, 4, 4, 5
3 2 3 2 3
, 5, 6, 6—ドデカフルォ口へキサン(HCF (CF ) CF H)、 2—トリフルォロメチル一
2 2 4 2
1, 1, 1, 3, 4, 4, 5, 5, 5—ノナノレフノレォロペンタン(CF ) CHCFHCF CFなど
3 2 2 3 である。
これらフッ素系炭化水素類のうち、 HFC、特に 1, 1, 1, 3, 3—ペンタフルォロブタ ンがより好ましい。
パーフノレオ口ポリエーテルとしては、以下の一般式 (I)に表される化合物などが挙 げられる。一般式 (I)に表される化合物の分子量は、約 100〜; 100000が好ましぐ 約 250〜50000カより好まし <、約 500〜; 10000カ更に好ましレヽ。
[化 1]
R (CFR3- CF2- CF2-0)-(CFR4- CF2- 0)m- (CFR5- 0)n- R2 ■■■ (I)
(式中、 R、 R、 R、 R、 Rはそれぞれ独立にフッ素原子またはパーフルォロアルキ
1 2 3 4 5
ル基を表し、 1、 m、 nはそれぞれ独立に 0または自然数を表し、かつ 1、 m、 nの少なく とも一つは 0ではないものとする。 )
また、パーフルォロポリエーテルとしては、以下の一般式 (II)に示される化合物や、 以下の一般式 (III)に示される化合物を使用してもよい。
[化 2]
CF3
CF3-(0-CF-CF2)p-(OCF2)q-CF3 ■■■ (II)
(式中、 p、 qはそれぞれ独立に自然数を表す。 )
[化 3]
F-(CF2-CF2-CF2-0)-CF2CF3 ■■■ (III) (式中、 rは自然数を表す。 ) ど力、ら得ることもできる。
[0030] HFPの有機溶媒への溶解度は、用いる有機溶媒の種類にもよるが、温度および圧 力条件に依存し得る。 HFPを含む有機相を微小空間に供給するに先立って、この有 機相ほたは HFPと有機溶媒とを共存させた状態で)を、微小空間における温度およ び圧力条件と実質的に同等またはこれにより近い条件に付すことが好ましい(本明細 書において予備調整とも言う)。例えば、有機相を予め約 40〜; 100°C、好ましくは 10〜50°じの温度、ぉょび約0. ;!〜 20MPa、好ましくは約 0. 2〜5MPaの圧力に て適宜に維持し得る。この予備調整条件は HFPを実質的に液体状態とする温度お よび圧力条件とすることが好ましい。液相反応を効率的に進行させるには、反応原料 である HFPを有機相中にできるだけ多く溶解させることがより好ましい。しかしながら 、 HFPは常温常圧下では気体であるので(沸点 29. 4°C)、有機相を微小空間に 供給するに際し、 HFPが実質的に液体状態となる温度および圧力条件に予め付し て、より多ぐ望ましくは実質的に全ての HFPを有機相中に溶解させることが好ましい 。尚、後述するように、微小空間における反応時間(滞留時間)は極めて短ぐその間 における HFPの有機相から気相への再分配は無視し得る程度であるので、予備調 整の際の温度および圧力条件は、有機相を供給すべき微小空間の温度および圧力 条件と相異していてもよい。
[0031] 有機相中の HFP濃度は、微小空間供給時 (または反応初期)にて、例えば約 0. 5 〜100wt%、好ましくは約 l〜50wt%、更に好ましくは約 2〜20wt%である。
[0032] 相間移動触媒としては、例えば第 4級アンモユウム塩、第 4級ホスホユウム塩、大環 状エーテルを用いることができる。このうち第 4級アンモニゥム塩は、有機相および水 相の両相に対して優れた親和性を有し、市販されている試薬の種類も豊富であり、 更に比較的安価であるので好ましい。
[0033] 第 4級アンモニゥム塩は下記の式(式中、 Rl、 R2、 R3、 R4は炭化水素基、例えば アルキル基であり、 X—は陰イオンである)にて表現される。この炭化水素基 (Rl、 R2 、 R3、 R4)の炭素鎖の種類および炭素数は任意に選択することができ、また、陰ィォ ン (x_)の種類も任意に選択することができる。
[化 4]
Figure imgf000010_0001
この選択は、反応系に用いる酸素含有酸化剤の種類および量 (または濃度)、溶媒 の種類および量、反応の温度および圧力などに基づいて適切に行い得る。第 4級ァ ンモニゥム塩には、例えばトリ一 n—ォクチルメチルアンモニゥムクロライド(TOMAC )、テトラブチルアンモニゥム硫酸水素(TBAS)、テトラブチルアンモニゥムブロマイド (TBAB)などを用い得る力 S、本発明の反応には HFPの存在する有機相への分配が 高レ、第 4級アンモニゥム塩、特に TOMACが好まし!/、。
また、第 4級ホスホニゥム塩は下記の式(式中、 R5、 R6、 R7、 R8は炭化水素基、例 えばアルキル基であり、 Y—は陰イオンである)にて表現される。この炭化水素基 (R5 、 R6、 R7、 R8)の炭素鎖の種類および炭素数は任意に選択することができ、また、 陰イオン (Y の種類も任意に選択することができる。
[化 5]
Figure imgf000010_0002
この選択もまた、反応系に用いる酸素含有酸化剤の種類および量 (または濃度)、 溶媒の種類および量、反応の温度および圧力などに基づいて適切に行い得る。第 4 級ホスホニゥム塩には、例えばテトラー n ブチルホスホニゥムブロミド、 n ァミルトリ フエニルホスホニゥムブロミド、ベンジルトリフエニルホスホニゥムクロリドなどを用い得 る力 特にテトラー n ブチルホスホニゥムブロミドが好ましい。
[0035] 相間移動触媒は水相と有機相とを接触させる際に存在する限り、どのような形態で 微小空間に供給してもよいが、一般的には水相または有機相に添加した状態で供給 し得る。例えば、第 4級アンモニゥム塩または第 4級ホスホニゥム塩が脂溶性と水溶性 のいずれの性質が強いかによつて、水相および有機相のどちらの相に最初に入れて おくかを判断でき、脂溶性がより強いときは有機相に添加するのが好ましい。
[0036] 水相または有機相における相間移動触媒濃度は、微小空間供給時ほたは反応初 期)にて、例えば約 0. 5〜20wt%、好ましくは約;!〜 10wt%である。
[0037] 次に、以上のようにして準備した酸素含有酸化剤を含む水相と HFPを含む有機相 とを相間移動触媒と共に微小空間に供給する。
[0038] 微小空間は、反応のための流体(水相および有機相ならびに場合により存在し得る 気相)が流れる流路の幅が 3cm以下であればよぐ例えば、流路の幅は約 1 m〜l cm、好ましくは約 10〜 5000 mであり得る。流路の幅が上記範囲内にある限り、流 路の長さや断面積は特に制限されないが、例えば流路の断面積は約 3· 1 X 10_6〜 7. 9 X 10— ^m2であり得る。例ぇば相当直径が20 111〜2000 111の微小空間を少 なくとも 1つ有する反応器ほたは反応管)や、いわゆる「マイクロリアクター」または「マ イク口ミキサー」を利用できる。
[0039] 酸素含有酸化剤を含む水相およびへキサフルォロプロピレン(HFP)を含む有機 相は相間移動触媒と共に微小空間内を流れて接触し、この間、 HFPは酸素含有酸 化剤と相間移動触媒の存在下にて反応してへキサフルォロプロピレンォキシド (HF PO)を生成する。
[0040] 微小空間における有機相と水相との接触は特に限定されないが、層流状態で実施 することが好ましい。層流状態であることは、使用する装置の構造にもよるが、レイノ ノレズ数に基づ!/、て判断し得る。
[0041] 微小空間内の温度および圧力は、 HFPから HFPOを得る反応が進行する限り特 に限定されないが、約 40〜; 100°C、好ましくは約 10〜50°Cの温度、および約 0 . ;!〜 20MPaの圧力、好ましくは約 0. 2〜5MPaの圧力にて適宜に維持し得る。
[0042] また、微小空間における有機相/水相の体積比(または有機相/水相の供給流量 比)は、具体的な状況に応じて適宜設定され得るが、例えば約 0.;!〜 10、好ましくは 約 0. 2〜5である。
[0043] 微小空間における反応時間ほたは滞留時間)は、従来の方法に比べて極めて短 日寺 でよ <、 ί列免 ίま、約 0. 01〜; 1000禾少、特 ίこ約 0. 01〜; 100禾少、更 ίこ ίま約 0. 01— 5
0禾少とし得る。
[0044] 反応後の有機相および水相は微小空間より任意の形態で、例えば混合状態または 分離状態で抜き出される。 HFPOは有機相中に分配されるので、反応により生じた Η FPOは反応後の有機相より回収できる。特に、 HFPOは脱圧によりガス化するため、 有機相より HFPOを容易に回収できる。
[0045] また、反応後の有機相を必要に応じて後処理に付して、不要な物質、例えば未反 応 HFP、副反応生成物および溶媒を除去してもよ!/、。
本実施形態後に、反応混合物を精製するために、蒸留、抽出、カラムクラマトグラフ ィ、膜分離、再結晶などの公知の方法を用いてよい。これらのうち蒸留は一般的な分 離操作として工業的に幅広く用いられている操作である力、反応混合物の主成分で ある未反応の HFPおよび目的生成物の HFPOの沸点はそれぞれ 29. 4°Cおよび 27. 4°Cであり、沸点が近いために蒸留操作での分離は困難である。よって、 HFP と HFPOを分離して高純度の HFPOを得るには、抽出蒸留を行うことが好ましい(特 許文献 5を参照のこと)。尚、これにより分離した HFPは反応原料として再利用してよ い。
抽出蒸留による場合、有機相に用いる溶媒として、抽出蒸留溶媒として利用できる 溶媒を用いることが好ましい。抽出蒸留溶媒の有効性は HFPと HFPOの相対揮発 度などにより評価できる。相対揮発度は、当該技術分野において周知の方法や、特 許文献 5に記載の方法により測定され得る。 HFPに対する HFPOの相対揮発度は、 1より大きければよいが、一般的には 1. 1以上であることが好ましい。
そのような溶媒 (抽出蒸留溶媒を兼ねる)には、以下の一般式 (IV)で表わされる含 水素ハロゲン炭化水素を用い得る。 [化 6]
CnHsClbF。 ' (1 )
(式中、 nは 2〜6の整数、 aは l≤a≤n+ lを満たす整数、 bは 1≤b≤2nを満たす整 数、 cは l≤c≤2nを満たす整数であり、かつ a + b + c = 2n + 2である。 )
具体的には、 1 , 1—ジクロロ一 1—フルォロェタン(HCFC— 141b)、 2, 2—ジクロ 口— 1 , 1 , 1—トリフノレオロェタン(HCFC— 123)、 1 , 2—ジクロロ— 1 , 1 , 2—トリフ ノレォロェタン(HCFC— 123a)、 3, 3—ジクロロ一 1 , 1 , 1 , 2, 2—ペンタフノレオロフ。 口パン(HCFC— 225ca)、 1 , 3—ジクロロ一 1 , 1 , 2, 2, 3—ペンタフルォロプロパン (HCFC— 225cb)などを用い得る。
また、そのような溶媒 (抽出蒸留溶媒を兼ねる)には、 CH CI、 CHC1、 CC1、 CH
2 2 3 4
C1CH Cl、トルエン、ジイソプロピルエーテルなども用い得る。
2 2
[0046] 以上のようにしてへキサフルォロプロピレンォキシドが製造される。このへキサフノレ ォロプロピレンォキシドの製造方法は連続式で実施することができる。
[0047] 本実施形態によれば、 HFPOの収率を従来の製造方法より著しく向上させることが できる。
実施例
[0048] 本発明の実施例について図面を参照しながら詳述する。
[0049] (実施例 1)
図 1を参照して、本実施例は微小空間として細管 21 (図中、点線にて示す)の内部 空間を利用したものに関する。細管 21には公称内径 250 111および長さ 1. 5mの S US製チューブを使用した。細管 21は加熱ジャケット 21aを用いて加熱により温度制 御可能とした。この細管 21の入口側を SUS製 T型コネクター 21b (適合外径 1/16ィ ンチ、スウェージロック社製)に連結し、有機相と水相との 2種の流体をそれぞれライ ン 9および 19から細管 21へ合わせて供給できるように構成した。細管 21の出口側に はライン 23を接続し、このライン 23には公称内径 500〃 mの SUS製チューブを用い た。尚、接続部にはナットなどを適宜使用した。
[0050] まず、図 1に示すように、 HFPタンク 1から HFPを、そして有機溶媒槽 3から有機溶 媒を、ライン 5よりシリンジポンプ 7のポンプ室 7aに引き込んだ。この有機溶媒には 1 , 1ージクロ 1 フルォロェタン(HCFC— 141b)を用い、これに相間移動触媒とし てトリー n ォクチルメチルアンモニゥムクロライド(TOMAC : (C H ) CH NC1)を
8 17 3 3 約 6wt%となるように予め溶解させておいた。そしてポンプ室 7aにて、その周囲を覆 う冷却ジャケット 7bにより HFPおよび有機溶媒の混合物 (相間移動触媒を含む)を約 — 5°Cに冷却した。そしてこの混合物をシリンジ室 7aから押し出し、ライン 9を通じて 細管 21 有機相として供給した。ライン 9もその周囲を約一 5°Cに冷却するものとした (図中、ライン 9の周囲の冷却部を網掛けにて示す)。
[0051] 細管 21への供給時の有機相は約 5°Cおよび約 2MPaであった。またこのとき、 H FPはその実質的に全てが液化しており、有機相中の HFP濃度は約 1. lwt%であつ た。有機相中の TOMAC (相間移動触媒)濃度は使用した有機溶媒中の濃度と実質 的に同等である。
[0052] 他方、水溶液槽 13から水溶液を、ライン 15よりシリンジポンプ 17のポンプ室 17aに 引き込んだ。この水溶液は、酸素含有酸化剤として次亜塩素酸ナトリウム(NaCIO) を水に約 10wt%で溶解させたものである。そしてこの水溶液をシリンジ室 17aから押 し出し、ライン 19を通じて細管 21 水相として供給した。
[0053] 細管 21への供給時の水相はほぼ室温(約 20°C)および約 2MPaであった。水相中 の NaCIO (酸素含有酸化剤)濃度は使用した水溶液中における濃度と同じである。
[0054] 有機相の供給流量は約 lmL/minとし、水相の供給流量は約 250 μ L/minとし た。
[0055] 細管 21に供給された有機相および水相は触媒存在下にて互いに接触しながら層 流状態で細管 21内の微小空間を流れる。このとき、細管 21を加熱ジャケット 21aによ り約 45°Cに加熱し、下流のライン 23に存在する背圧弁 25により圧力調整した。これ により、細管 21内を約 45°Cおよび約 2MPaに維持した。
[0056] 細管 21内の微小空間にて、 TOMACの触媒作用により HFPを NaCIOと反応させ て HFPOを生じさせた。本発明はいかなる理論によっても拘束されないが、このとき の予想反応模式図を図 2に示す(図中、本実施例では 4つのアルキル基のうち 3つは n = 8であり、残り 1つは n= lである)。また、このときの主たる副反応生成物として、二 酸化炭素(CO )は気相に、トリフルォロ酢酸(CF COOH)は水相に存在することが 確認された。
[0057] 図 1を参照して、細管 21より反応混合物(反応後の有機相および水相の混合物)を ライン 23に通じて回収槽 27へ抜き出した。ライン 23は氷浴により約 0°Cに維持するも のとした(図中、ライン 23の周囲の冷却部を網掛けにて示す)。
[0058] 細管 21における流体(有機相および水相ならびに場合により存在し得る気相を含 む)の滞留時間は約 1. 1秒であった。上記のようにライン 23は約 0°Cの低温に維持し ているため、ライン 23内では反応は実質的に起こらないと考えてよい。よって、細管 2 1における流体の滞留時間を反応時間と考えて差し支えな!/、。
[0059] 回収した反応混合物を静置して有機相と水相とに分離した。得られた有機相をガス クロマトグラフィーで分析したところ、 HFPの転化率は 99%であり、 HFPOの選択率 は約 94%であった。これらより、収率は約 92%であった。
[0060] (実施例 2〜4)
細管 21として公称内径 500 mおよび長さ 4mの SUS製チューブを使用したこと以 外は実施例 1と同様の装置を用いた。そして、有機相として表 1に示す成分の混合物 を用い、この有機相を表 1に示す供給流量で供給し、水相として実施例 1と同じく約 1 Owt%の次亜塩素酸ナトリウム水溶液を用いながらも供給流量を約 24ml/minとし たことを除いて、実施例 1と同様の操作を行った。これにより得られた有機相をガスク 口マトグラフィ一で分析した結果を表 2に示す。
[0061] [表 1]
有機相
実施例 成分 供給流量
溶媒 相問移動触媒 HFP (ml/rain)
2 なし なし HFP 7g 0. 5
3 シクロへキサン 72ml TOMAC 0. 48g HFP 7g 0. 5
4 HFC-365 72ml TOMAC 0. 48g HFP 7g 0. 1
[表 2]
実施例 転化率 (%) 選択率 (%) 収率 (%)
2 6 99 6
3 98 99 98
4 22 99 22 [0062] (実施例 5)
図 3を参照して、本実施例は微小空間としてマイクロミキサー 31における単位空間 を利用したものに関する。マイクロミキサー 31には SSIMM (Standard Slit Interdigital Micro Mixer, IMM社製、公称スリット幅 40 m)を使用した。また、本実施例におい ては、相間移動触媒として TOMACに代えてテトラプチルアンモニゥム硫酸水素 (T BAS)を用いた。その他、特に断りのない限り実施例 1と同様である。
[0063] マイクロミキサー 31に有機相および水相を供給する。マイクロミキサー 31の内部下 方には、波形垂直壁で隔離され、かつ左右端部が交互に閉じている複数のスリット( 公称幅 40 m)が備えられており、水相および有機相は複数のスリットへ交互 (ストラ イブ状)に左右反対方向から供給され、やがてスリット内を鉛直方向に上昇し、スリット の上端部を超えてからは層流状態で互いに接触し、その後、混合状態でマイクロミキ サー 31から取り出されるようになつている。即ち、有機相および水相は交互に重なつ た多層状で流れ、有機相および水相の 1対の層が単位空間となっており、この単位 空間が微小空間である。よって、マイクロミキサー 31に供給された有機相および水相 は、触媒存在下にて互いに接触しながら層流状態で、マイクロミキサー 31内の複数 の微小空間を流れる。このとき、マイクロミキサー 31を加熱ジャケット 31aにより約 35 °Cに加熱し、実施例 1と同様に下流のライン 23に存在する背圧弁 25により圧力調整 した。これにより、マイクロミキサー 31内を約 35°Cおよび約 2MPaに維持した。
[0064] マイクロミキサー 31内の各微小空間にて、 TBASの触媒作用により HFPを NaCIO と反応させて HFPOを生じさせた。
[0065] マイクロミキサー 31より反応混合物(反応後の有機相および水相の混合物)をライン
23から回収槽 27へ抜き出した。マイクロミキサー 31における流体(有機相および水 相ならびに場合により存在し得る気相を含む)の滞留時間は 1秒以下であった。よつ て、反応時間も 1秒以下であると考えて差し支えない。
[0066] 回収した反応混合物を静置して有機相と水相とに分離した。得られた有機相をガス クロマトグラフィーで分析したところ、 HFPの転化率は約 100%であり、 HFPOの選択 率は約 85%であった。これらより、収率は約 85%であった。
[0067] 以上、本発明のさまざまな実施例について説明したが、これら実施例にて用いた装 置は実験室レベルでの実施に際して適用したものに過ぎず、有機相および水相の調 製方法、供給方法、温度および圧力の制御方法などは適宜改変し得る。
[0068] (比較例 1)
本比較例は微小空間を利用せず、ミリリットルオーダーの反応器内でバッチ式にて 反応させたものに関する。反応器には容量 200mLの耐圧容器を用いた。
[0069] まず、 TBAS 0. 48gを HCFC— 141bに予め溶解させた有機溶媒 72mLを反 応器に入れて封止した。反応器内の空気を窒素で置換し、真空状態とした後、 HFP 5. Ogを添加して有機相を準備した。この反応器を 0°Cの恒温槽内に配置し、反応 器内の有機相の温度が平衡状態になるまで撹拌子により撹拌した。別途、水相とし て、 NaCIOを水に約 10wt%で溶解させた水溶液を準備した。そしてこの水相を 2m L/minで反応器内の有機相 ίこ加えた。
[0070] 添加開始から所定時間経過時に得られるガス相をガスクロマトグラフィーで分析し た。その結果、 30分経過時では選択率は約 97%、転化率は約 41 %であり、これらよ り収率は約 40%であった。また、 60分経過時では選択率は約 97%、転化率は約 55 %であり、これらより収率は約 53%であった。更に、 120分経過時では選択率は約 5 9%、転化率は約 88%であり、これらより収率は約 52%であった。
[0071] (比較例 2)
有機相として HFPのみを用いた(即ち、溶媒および相間移動触媒を用いな力、つた) ことを除いて、比較例 1と同様の操作を行った。添加開始から所定時間経過時に得ら れるガス相をガスクロマトグラフィーで分析したところ、 30分、 60分、 120分経過時の いずれにおいても、転化率 0%であり、反応の進行は認められず、よって収率は 0% であった。
産業上の利用可能性
[0072] 本発明の製造方法により得られるへキサフルォロプロピレンォキシドは、含フッ素化 合物、例えばパーフルォロビニルエーテルの製造に利用され得、また、オリゴマーの 形態で潤滑油ゃ熱媒などとして利用され得る。

Claims

請求の範囲
[1] へキサフルォロプロピレンを含む有機相と酸素含有酸化剤を含む水相とを微小空 間に通じて接触させ、へキサフルォロプロピレンを酸素含有酸化剤と反応させてへキ
[2] 微小空間は 3cm以下の流路幅を有する、請求項 1に記載の製造方法。
[3] へキサフルォロプロピレンを含む有機相と酸素含有酸化剤を含む水相とを相間移 動触媒の存在下にて接触させ、へキサフルォロプロピレンを酸素含有酸化剤と相間 移動触媒の作用により反応させる、請求項 1または 2に記載の製造方法。
[4] 微小空間を 40〜100°Cおよび 0. ;!〜 20MPaに維持する、請求項 1〜3のいず れかに記載の製造方法。
[5] 有機相を微小空間に供給するに先立って、 40〜; 100°Cおよび 0. ;!〜 20MPaの 条件に付す、請求項 1〜4のいずれかに記載の製造方法。
[6] 有機相を微小空間に供給するに先立って、へキサフルォロプロピレンを実質的に 液体状態とする温度および圧力条件に付す、請求項 5に記載の製造方法。
[7] 微小空間における反応時間が 0. 01〜; 1000秒である、請求項 1〜6のいずれかに 記載の製造方法。
[8] 相間移動触媒が第 4級アンモユウム塩である、請求項 3に記載の製造方法。
[9] 酸素含有酸化剤が次亜塩素酸塩である、請求項 1〜8のいずれかに記載の製造方 法。
PCT/JP2007/070638 2006-10-24 2007-10-23 Procédé de production d'oxyde d'hexafluoropropylène WO2008050760A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008540996A JPWO2008050760A1 (ja) 2006-10-24 2007-10-23 ヘキサフルオロプロピレンオキシドの製造方法
US12/447,130 US20100016615A1 (en) 2006-10-24 2007-10-23 Process for production of hexafluoropropylene oxide
EP07830372A EP2090572A1 (en) 2006-10-24 2007-10-23 Process for production of hexafluoropropylene oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006288467 2006-10-24
JP2006-288467 2006-10-24

Publications (1)

Publication Number Publication Date
WO2008050760A1 true WO2008050760A1 (fr) 2008-05-02

Family

ID=39324557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070638 WO2008050760A1 (fr) 2006-10-24 2007-10-23 Procédé de production d'oxyde d'hexafluoropropylène

Country Status (5)

Country Link
US (1) US20100016615A1 (ja)
EP (1) EP2090572A1 (ja)
JP (1) JPWO2008050760A1 (ja)
CN (1) CN101528719A (ja)
WO (1) WO2008050760A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106865A1 (ja) * 2009-03-18 2010-09-23 ダイキン工業株式会社 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
WO2010106942A1 (ja) 2009-03-17 2010-09-23 ダイキン工業株式会社 ヘキサフルオロプロピレンオキシドの製造方法
WO2017002938A1 (ja) * 2015-06-30 2017-01-05 エム・テクニック株式会社 有機化合物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2688973A1 (en) * 2011-03-25 2014-01-29 3M Innovative Properties Company Fluorinated oxiranes as heat transfer fluids
CN103044362A (zh) * 2012-12-28 2013-04-17 浙江大学 气相氧化法制备六氟环氧丙烷的方法
CN104672177B (zh) * 2013-12-03 2018-05-15 浙江化工院科技有限公司 一种六氟环氧丙烷连续生产工艺
US10245525B1 (en) * 2017-11-10 2019-04-02 NextLeaf Solutions Ltd. Closed-loop multi-stage chilled filter system
KR102675267B1 (ko) * 2021-12-08 2024-06-17 한국과학기술연구원 헥사플루오로프로필렌 옥사이드의 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183773A (en) * 1981-05-06 1982-11-12 Asahi Chem Ind Co Ltd Preparation of hexafluoropropylene oxide
JPS58105978A (ja) * 1981-12-19 1983-06-24 Asahi Chem Ind Co Ltd ヘキサフルオロプロピレンオキシドの製造方法
JP3075546B2 (ja) 1992-05-11 2000-08-14 日本電信電話株式会社 触覚センサをもちいた6自由度ポインティング装置
JP2001521816A (ja) * 1997-11-05 2001-11-13 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー 化学反応実施方法
JP2002273206A (ja) * 2001-03-16 2002-09-24 Mitsubishi Chemicals Corp 合成反応装置及びそれを用いる合成反応方法
JP2003299946A (ja) * 2002-04-05 2003-10-21 Casio Comput Co Ltd 化学反応装置及び電源システム
JP2003532646A (ja) * 2000-04-27 2003-11-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング オレフィンをエポキシ化する方法
JP2004249286A (ja) * 2003-01-30 2004-09-09 Tosoh Corp 化学反応実施方法及びそのための微小流路構造体
JP2006503894A (ja) * 2002-10-22 2006-02-02 バッテル メモリアル インスティテュート 多相マイクロチャネル反応
JP2006083152A (ja) 2004-08-19 2006-03-30 Daikin Ind Ltd ヘキサフルオロプロピレンオキシドの製造方法
JP3785652B2 (ja) 1995-07-10 2006-06-14 旭硝子株式会社 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
JP2006206518A (ja) * 2005-01-28 2006-08-10 Mitsubishi Gas Chem Co Inc 液相酸化反応の方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411021B2 (ja) 1981-05-06 1989-02-23 Asahi Chemical Ind
JPS57183773A (en) * 1981-05-06 1982-11-12 Asahi Chem Ind Co Ltd Preparation of hexafluoropropylene oxide
JPS58105978A (ja) * 1981-12-19 1983-06-24 Asahi Chem Ind Co Ltd ヘキサフルオロプロピレンオキシドの製造方法
JP3075546B2 (ja) 1992-05-11 2000-08-14 日本電信電話株式会社 触覚センサをもちいた6自由度ポインティング装置
JP3785652B2 (ja) 1995-07-10 2006-06-14 旭硝子株式会社 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
JP2001521816A (ja) * 1997-11-05 2001-11-13 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー 化学反応実施方法
JP2003532646A (ja) * 2000-04-27 2003-11-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング オレフィンをエポキシ化する方法
JP2002273206A (ja) * 2001-03-16 2002-09-24 Mitsubishi Chemicals Corp 合成反応装置及びそれを用いる合成反応方法
JP2003299946A (ja) * 2002-04-05 2003-10-21 Casio Comput Co Ltd 化学反応装置及び電源システム
JP2006503894A (ja) * 2002-10-22 2006-02-02 バッテル メモリアル インスティテュート 多相マイクロチャネル反応
JP2004249286A (ja) * 2003-01-30 2004-09-09 Tosoh Corp 化学反応実施方法及びそのための微小流路構造体
JP2006083152A (ja) 2004-08-19 2006-03-30 Daikin Ind Ltd ヘキサフルオロプロピレンオキシドの製造方法
JP2006206518A (ja) * 2005-01-28 2006-08-10 Mitsubishi Gas Chem Co Inc 液相酸化反応の方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEHO OKAMOTO: "FARUMASHIA", vol. 41, 2005, PHARMACEUTICAL SOCIETY OF JAPAN, article "Possibility of application of the micro reactor to green process", pages: 664

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454567B2 (ja) * 2009-03-17 2014-03-26 ダイキン工業株式会社 ヘキサフルオロプロピレンオキシドの製造方法
US9169225B2 (en) 2009-03-17 2015-10-27 Daikin Industries, Ltd. Method for producing hexafluoropropylene oxide
CN102356072B (zh) * 2009-03-17 2016-03-02 大金工业株式会社 六氟环氧丙烷的制造方法
WO2010106942A1 (ja) 2009-03-17 2010-09-23 ダイキン工業株式会社 ヘキサフルオロプロピレンオキシドの製造方法
CN102356072A (zh) * 2009-03-17 2012-02-15 大金工业株式会社 六氟环氧丙烷的制造方法
CN104974111A (zh) * 2009-03-17 2015-10-14 大金工业株式会社 六氟环氧丙烷的制造方法
EP2409970A4 (en) * 2009-03-17 2012-08-29 Daikin Ind Ltd PROCESS FOR PREPARING HEXAFLUORO PROPYLENE OXIDE
EP2857390A1 (en) 2009-03-17 2015-04-08 Daikin Industries, Limited Method for producing hexafluoropropylene oxide
EP2409970A1 (en) * 2009-03-17 2012-01-25 Daikin Industries, Ltd. Method for producing hexafluoropropylene oxide
US20120016142A1 (en) * 2009-03-17 2012-01-19 Kazuyoshi Ichihara Method for producing hexafluoropropylene oxide
JP5267657B2 (ja) * 2009-03-18 2013-08-21 ダイキン工業株式会社 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
CN102356073A (zh) * 2009-03-18 2012-02-15 大金工业株式会社 六氟环氧丙烷和六氟丙烯的分离方法
US8877017B2 (en) 2009-03-18 2014-11-04 Daikin Industries, Ltd. Method for separating hexafluoropropylene oxide from hexafluoropropylene
CN102356073B (zh) * 2009-03-18 2014-10-29 大金工业株式会社 六氟环氧丙烷和六氟丙烯的分离方法
WO2010106865A1 (ja) * 2009-03-18 2010-09-23 ダイキン工業株式会社 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
US10287232B2 (en) 2015-06-30 2019-05-14 M. Technique Co., Ltd. Method for producing an organic compound in a rotating forced thin-film microreactor
WO2017002938A1 (ja) * 2015-06-30 2017-01-05 エム・テクニック株式会社 有機化合物の製造方法
KR20180022636A (ko) 2015-06-30 2018-03-06 엠. 테크닉 가부시키가이샤 유기 화합물의 제조 방법

Also Published As

Publication number Publication date
EP2090572A1 (en) 2009-08-19
JPWO2008050760A1 (ja) 2010-02-25
CN101528719A (zh) 2009-09-09
US20100016615A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
WO2008050760A1 (fr) Procédé de production d&#39;oxyde d&#39;hexafluoropropylène
JP6014584B2 (ja) ペンタクロロプロパンの液相フッ素化による2−クロロ−3,3,3−トリフルオロプロペン(HCFO1233xf)の製造方法
JP5027670B2 (ja) 光化学反応用の末端官能化パーフルオロ(アルキルビニルエーテル)反応器壁の官能化共重合体、炭化水素およびハロ炭化水素中のフッ素含有率の増加方法およびオレフィン製造方法
JP5899227B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP2009543787A (ja) 液液抽出によってフルオロオレフィンをhfから分離する方法
RU2433992C2 (ru) Способ получения простых фторгалогенированных эфиров
JPH07500112A (ja) フルオロカーボン類とフッ化水素との混合物からそれらを分離および回収する改良方法
RU2425022C2 (ru) Способ получения простых фторгалогенированных эфиров
JPH07179365A (ja) 管式反応器系におけるフッ素化法
RU2585672C2 (ru) Процесс получения 2-хлор-3, 3, 3-трифторпропена (hcfo 1233xf) фторированием пентахлорпропана в жидкой фазе
JP5454567B2 (ja) ヘキサフルオロプロピレンオキシドの製造方法
Francesco et al. Recent developments in the chemistry of organic perfluoro hypofluorites
EP0297947B1 (fr) Synthèse du chloro-1-difluoro-1,1-éthane
US10654778B2 (en) Method for producing 1-chloro-2,3,3-trifluoropropene
JP2010001244A (ja) 含フッ素オレフィン化合物の製造方法
JP2014024821A (ja) (z)−1−クロロ−3,3,3−トリフルオロプロペンの精製方法
JP4997975B2 (ja) フッ化カルボニルの製造方法
JP5621296B2 (ja) 3−ハロ−ペンタフルオロプロピレンオキシドの製造方法
JP2010090045A (ja) フッ化水素の分離方法
TWI737064B (zh) 用於鹵碳化合物的回收或處置的方法
KR100309364B1 (ko) 테트라플루오로메탄의제조방법
EP3303273A1 (en) Method for producing fluorinated olefins
RU2157805C2 (ru) Способ получения перфторированных эпоксидов
JP2006083152A (ja) ヘキサフルオロプロピレンオキシドの製造方法
JP4390306B2 (ja) ペルフルオロアルカン類の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039661.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008540996

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12447130

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007830372

Country of ref document: EP