WO2010106942A1 - ヘキサフルオロプロピレンオキシドの製造方法 - Google Patents

ヘキサフルオロプロピレンオキシドの製造方法 Download PDF

Info

Publication number
WO2010106942A1
WO2010106942A1 PCT/JP2010/053858 JP2010053858W WO2010106942A1 WO 2010106942 A1 WO2010106942 A1 WO 2010106942A1 JP 2010053858 W JP2010053858 W JP 2010053858W WO 2010106942 A1 WO2010106942 A1 WO 2010106942A1
Authority
WO
WIPO (PCT)
Prior art keywords
hfp
phase
organic solvent
hfpo
water
Prior art date
Application number
PCT/JP2010/053858
Other languages
English (en)
French (fr)
Inventor
市原 一義
英樹 中谷
麻衣 平井
靖英 仙波
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US13/257,176 priority Critical patent/US9169225B2/en
Priority to JP2011504812A priority patent/JP5454567B2/ja
Priority to CN201080012185.8A priority patent/CN102356072B/zh
Priority to EP10753434.9A priority patent/EP2409970B1/en
Publication of WO2010106942A1 publication Critical patent/WO2010106942A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/48Compounds containing oxirane rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms, e.g. ester or nitrile radicals

Definitions

  • the present invention relates to a method for producing hexafluoropropylene oxide, and more particularly to a method for obtaining hexafluoropropylene oxide by oxidation of hexafluoropropylene.
  • Hexafluoropropylene oxide is an important compound in the production of fluorine-containing compounds, for example, used as a raw material for perfluorovinyl ether. Further, the oligomer of hexafluoropropylene oxide is used as a lubricating oil or a heat medium.
  • HFPO hexafluoropropylene oxide
  • a method of obtaining HFPO by oxidizing HFP with hypochlorite in the presence of a phase transfer catalyst such as a quaternary ammonium salt or a quaternary phosphonium salt in a two-phase system of an aqueous phase and an organic phase Is known (see Patent Documents 1 to 3).
  • HFPO is produced from HFP when an aqueous solution of hypochlorite is used in the presence of an aprotic solvent such as acetonitrile or diglyme.
  • phase transfer catalyst such as a quaternary ammonium salt or a quaternary phosphonium salt
  • the method of generating HFPO from HFP using an aqueous solution of hypochlorite in the presence of an aprotic solvent such as acetonitrile or diglyme has a problem that the HFPO selectivity is low.
  • An object of the present invention is to provide a novel method for producing hexafluoropropylene oxide, which can achieve a high HFPO selectivity without using a phase transfer catalyst.
  • Non-Patent Document 1 In a known method of the type of generating HFPO from HFP using an aqueous solution of hypochlorite in the presence of an aprotic solvent such as acetonitrile or diglyme (see Non-Patent Document 1), HFPO The reason why the selectivity is low is considered to be that the produced HFPO easily decomposes by reacting with water under alkaline conditions (see Patent Document 1, third column, lines 13 to 27 and Patent Document 2). (See column 3, lines 27-41). On the other hand, the present inventors have established a reactor with a conventional size of this type of known method (according to the example of Non-Patent Document 1, a reactor capable of reacting with a reaction mixture of about 100 mL). As a result of intensive studies, the present invention has been completed.
  • hexafluoropropylene (HFP), a water-soluble and aprotic organic solvent, and an oxidizing agent aqueous solution are brought into contact with each other through a minute space to react hexafluoropropylene with the oxidizing agent.
  • HFP hexafluoropropylene
  • a water-soluble and aprotic organic solvent a water-soluble and aprotic organic solvent
  • an oxidizing agent aqueous solution are brought into contact with each other through a minute space to react hexafluoropropylene with the oxidizing agent.
  • HFPO hexafluoropropylene oxide
  • a high HFPO selectivity can be obtained without using a phase transfer catalyst (a quaternary ammonium salt or a quaternary phosphonium salt).
  • a phase transfer catalyst a quaternary ammonium salt or a quaternary phosphonium salt.
  • a “microspace” may be present as a fluid for reaction (in the present invention, a liquid phase mixture comprising hexafluoropropylene, a water-soluble and aprotic organic solvent, and an aqueous oxidizing agent solution, and optionally.
  • Such a “microspace” may be each flow path (or channel) of a reactor or mixer known as “microreactor” or “micromixer” in fields such as pharmaceutical and synthetic chemistry, for example ( For example, see Patent Document 3).
  • the “water-soluble and aprotic organic solvent” used in the present invention may be an organic solvent that is at least partially dissolved in water and does not dissociate to generate protons (or hardly generate). .
  • At least one selected from the group consisting of acetonitrile, glyme, and N, N-dimethylformamide is preferably used as the water-soluble and aprotic organic solvent. These have the advantage that they have a high solubility in water and a particularly high selectivity can be obtained.
  • the oxidizing agent aqueous solution is not particularly limited, but a hypohalite aqueous solution or a hydrogen peroxide solution can be used.
  • the hypohalite aqueous solution has an advantage of high function as an oxidizing agent.
  • the hydrogen peroxide solution has a high function as an oxidant and can be obtained at a low price.
  • the side reaction product is water, the waste has an advantage that the environmental load is small.
  • hypohalite an alkali metal or alkaline earth metal salt of hypohalous acid can be used. Specifically, it is preferable to use at least one selected from the group consisting of sodium hypochlorite and calcium hypochlorite as the hypohalite. All of these can be obtained at low cost.
  • a novel method for producing hexafluoropropylene oxide that can achieve high HFPO selectivity without using a phase transfer catalyst is provided.
  • HFPO hexafluoropropylene oxide
  • HFP hexafluoropropylene
  • a water-soluble and aprotic organic solvent a water-soluble and aprotic organic solvent
  • an oxidizing agent aqueous solution a water-soluble and aprotic organic solvent
  • the reaction raw material hexafluoropropylene (HFP) is not particularly limited, but can be obtained from, for example, tetrafluoroethylene.
  • the water-soluble and aprotic organic solvent is composed of an organic compound that is at least partially soluble in water.
  • the water-soluble and aprotic organic solvent is preferably one that can be dissolved in water to form a homogeneous phase, but is not limited thereto.
  • water-soluble and aprotic organic solvents are composed of organic compounds that dissociate and do not generate protons (or are unlikely to generate protons), and typically include atoms with large electronegativity (such as nitrogen and oxygen atoms). It does not have a bonded hydrogen atom.
  • organic solvents examples include nitrile (acetonitrile, propionitrile, etc.), glyme (monoglyme (1,2-dimethoxyethane), diglyme, triglyme, tetraglyme), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), hexamethylphosphoric triamide (HMPA), dioxane, acetone, sulfolane and the like can be mentioned.
  • acetonitrile, glyme, and N, N-dimethylformamide are preferably used alone or in combination of two or more thereof.
  • the ratio of HFP and organic solvent can be selected as appropriate, and is, for example, about 1 to 500 g, preferably about 10 to 300 g of HFP per liter of organic solvent.
  • HFP and an organic solvent are mixed in advance to prepare an organic phase, but it should be noted that this is not essential to the present invention.
  • the solubility of HFP in an organic solvent may depend on the temperature and pressure conditions depending on the type of organic solvent used.
  • the organic phase Prior to supplying the organic phase containing HFP to the microspace, the organic phase (or in a state where HFP and an organic solvent coexist) is substantially equal to or closer to the temperature and pressure conditions in the microspace. It is preferable to apply the conditions (also referred to as preliminary adjustment in this specification).
  • the organic phase is preliminarily brought to a temperature of about ⁇ 40 to 100 ° C., preferably ⁇ 20 to 50 ° C., and a pressure of about 0.0 to 10 MPaG (gauge pressure), preferably about 0.0 to 2 MPaG (gauge pressure). Can be maintained appropriately.
  • the preconditioning conditions are preferably temperature and pressure conditions that make the HFP substantially liquid. In order to allow the liquid phase reaction to proceed efficiently, it is more preferable to dissolve as much of the reaction raw material HFP as possible in the organic phase. However, since HFP is a gas at normal temperature and normal pressure (boiling point -29.4 ° C.), when supplying the organic phase to the microspace, it is preliminarily applied to the temperature and pressure conditions at which the HFP is substantially in a liquid state. More preferably, preferably substantially all of the HFP is dissolved in the organic phase. As will be described later, the reaction time (residence time) in the micro space is extremely short, and the redistribution of HFP from the organic phase to the gas phase is negligible.
  • the conditions may be different from the temperature and pressure conditions of the microspace in which the organic phase is to be supplied.
  • an aqueous oxidizer solution is prepared as the aqueous phase.
  • a hypohalite aqueous solution or a hydrogen peroxide solution can be used as the oxidizing agent aqueous solution.
  • the hypohalite salt is, for example, M (OX) n (wherein M is an alkali metal or alkaline earth metal, preferably Na or Ca, X is a halogen, preferably Cl, and n is a valence of M). 1 or 2 depending on the number.)
  • An alkali metal salt or alkaline earth metal salt of hypohalous acid represented by the following formula.
  • hypochlorite is preferable because it produces hypochlorite ions under the reaction conditions, reacts with HFP to become chlorine ions, and forms a salt having no oxidizing action.
  • Hypochlorite sodium and calcium salts are preferred because they are industrially mass-produced for uses such as bleaching agents and bactericides, and can be obtained at low cost.
  • sodium salts are particularly preferable because they have high water solubility and are less likely to clog piping.
  • hydrogen peroxide is preferable because it has a low environmental load.
  • an alkali can be added to the aqueous oxidizing agent solution.
  • examples of such an alkali include M (OH) n (wherein M is an alkali metal or alkaline earth metal, preferably Na or Ca, and n is 1 or 2 depending on the valence of M).
  • the concentration of the oxidizing agent in the aqueous solution can be selected as appropriate, but the effective halogen concentration is about 1 to 20 wt%, preferably about
  • the hydrogen peroxide concentration is about 1 to 80 wt%, preferably about 5 to 60 wt%.
  • the organic phase and the aqueous phase prepared as described above are supplied to a minute space.
  • HFP and an organic solvent are continuously mixed, and the resulting mixture (organic phase) and a separately prepared oxidant aqueous solution (aqueous phase) are continuously supplied to a minute space and mixed. It may be reacted.
  • the minute space may have a width of a flow path of 3 cm or less through which a reaction fluid (liquid phase and optionally a gas phase) flows.
  • the width of the flow path is about 1 ⁇ m to 1 cm, preferably about It can be 10 to 5000 ⁇ m.
  • the length and the cross-sectional area of the flow path are not particularly limited.
  • the cross-sectional area of the flow path is about 3.1 ⁇ 10 ⁇ 6 to 7.9 ⁇ 10 ⁇ 1 cm 2. It can be.
  • a reactor (or reaction tube) having at least one minute space with an equivalent diameter of 20 ⁇ m to 2000 ⁇ m, a so-called “microreactor” or “micromixer” can be used.
  • the flow path defining the minute space can be formed of, for example, a metal, preferably a corrosion-resistant metal such as SUS (SUS316, SUS316L, SUS304, etc.), Hastelloy, Monel, Inconel or the like.
  • the flow path defining the minute space is made of glass or fluororesin (tetrafluoroethylene / hexafluoropropylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene).
  • PTFE polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • PVF polyvinyl fluoride
  • the HFP, the water-soluble and aprotic organic solvent, and the oxidizing agent aqueous solution come into contact with each other through the minute space. Reacts with an oxidant to produce HFPO.
  • the organic solvent dissolves in the aqueous solution to form a mixed liquid phase.
  • the mixed liquid phase is preferably in a state of forming a homogeneous phase, but it may be separated into two phases by the salting out effect (typically depending on the case where hypohalite is used as the oxidizing agent).
  • HFP is considered to exist in a state dissolved in a water-soluble and aprotic organic solvent, but is not limited thereto.
  • HFP and the oxidizing agent can be brought into molecular contact, whereby the reaction shown below (in the case of hypohalite as an example) proceeds and HFPO Can be generated.
  • the oxidant is considered to be in an ionic state, but is not limited thereto and may be in an arbitrary state.
  • the supply flow ratio of the organic phase / water phase can be appropriately set according to the specific situation, and is, for example, about 0.1 to 10, preferably about 0.2 to 5.
  • the temperature and pressure in the micro space are not particularly limited as long as the reaction for obtaining HFPO from HFP proceeds, but the temperature is about ⁇ 40 to 100 ° C., preferably about ⁇ 20 to 50 ° C., and about 0.0 to 10 MPaG ( (Gauge pressure), preferably about 0.0 to 2 MPaG (gauge pressure). Exceeding 100 ° C. and / or 10 MPaG (gauge pressure) is not preferable from the viewpoint of pressure resistance and corrosion resistance, safety, and apparatus cost. On the other hand, if the temperature is lower than ⁇ 40 ° C. and / or 0.0 MPaG (gauge pressure), solids are likely to be precipitated, which may cause clogging of piping and the like.
  • reaction time (or residence time) in the minute space may be extremely short compared with the conventional method, for example, about 0.01 to 1000 seconds, particularly about 0.01 to 100 seconds, further about 0.01 to 50. Can be seconds.
  • the liquid phase (reaction mixture) after the reaction is extracted from the minute space. Since HFPO is gasified by depressurization, HFPO can be easily recovered from the obtained liquid phase (reaction mixture). Further, the liquid phase after the reaction may be subjected to a post-treatment as necessary to separate, for example, unreacted HFP, a side reaction product, and an organic solvent.
  • the side reaction products when using a hypohalite M (OX) n solution as oxidizing agent solution, CO 2, M (OH) n, MX n, MF n, (CF 3 COO) n M (In these formulas, M is an alkali metal or alkaline earth metal, preferably Na or Ca, and n is 1 or 2 depending on the valence of M).
  • side reaction products include CO 2 , H 2 O, MF n , (CF 3 COO) n M (wherein M is an alkali metal or Alkaline earth metals, preferably Na and Ca.
  • alkali is added as described above, it can be derived from this, and the same applies in this specification).
  • distillation is an industrially widely used operation as a general separation operation, but the boiling points of unreacted HFP, which is the main component of the reaction mixture, and HFPO, which is the target product, are each ⁇ 29.4 ° C. And ⁇ 27.4 ° C. (both under atmospheric pressure), and since the boiling points are close, separation by distillation is difficult. Therefore, extractive distillation is preferably performed in order to separate HFP and HFPO to obtain high-purity HFPO. In addition, you may reuse the HFP isolate
  • hexafluoropropylene oxide is produced. This method for producing hexafluoropropylene oxide can be carried out continuously.
  • the organic phase comprising HFP and the organic solvent may contain other components in addition to HFP and the organic solvent.
  • a treatment such as purification if necessary and then reused, water, an oxidant and the above-mentioned side reaction products, specifically, for example, hypochlorite as an oxidant aqueous solution.
  • salt M (OX) n aqueous solution M (OH) n, MX n, MF n, (CF 3 COO) n M (wherein, M is an alkali metal or alkaline earth metal, preferably Na , Ca, X is halogen, preferably Cl, and n is 1 or 2 depending on the valence of M).
  • M is an alkali metal or alkaline earth metal, preferably Na , Ca
  • X is halogen, preferably Cl
  • n is 1 or 2 depending on the valence of M.
  • You may contain other components, for example, additives, such as surfactant.
  • the aqueous oxidant solution may also contain other components in addition to the oxidant and water, and optionally added alkali.
  • a treatment such as purification if necessary and then reused, HFP, an organic solvent and the above-mentioned side reaction products, specifically, for example, hypohalite as an oxidizing agent aqueous solution.
  • M when using salt M (OX) n aqueous solution, M (OH) n, MX n, MF n, (CF 3 COO) n M (wherein, M is an alkali metal or alkaline earth metal, preferably Na , Ca, X is halogen, preferably Cl, and n is 1 or 2 depending on the valence of M).
  • a high HFPO selectivity for example, an HFPO selectivity of 80% or higher, preferably 90% or higher can be obtained.
  • a high HFP conversion rate can be obtained, and thus a high HFPO yield. The rate can be obtained.
  • the method of the present embodiment does not use a phase transfer catalyst, and thus HFPO can be produced by a simple process and at a lower cost.
  • HFP when HFP, a water-soluble and aprotic organic solvent, and an oxidizing agent aqueous solution are supplied to a minute space, HFP is added in advance to the water-soluble and aprotic organic solvent to form an organic phase.
  • the organic phase and the aqueous phase were separately supplied using the aqueous oxidizing agent solution as the aqueous phase.
  • the present invention is not limited to this, and it is preferable that the HFP and the oxidizing agent aqueous solution come into contact with each other for the first time when supplied to the minute space.
  • HFP, a water-soluble and aprotic organic solvent, and an oxidizing agent aqueous solution may be supplied separately, or HFP is used as an organic phase, and a water-soluble and aprotic organic solvent and an oxidizing agent aqueous solution are added.
  • the organic phase and the mixed liquid phase are separately supplied as a mixed liquid phase (preferably a homogeneous phase, but may be finely dispersed in the case of non-uniformity due to solubility). Also good.
  • Example 1 Referring to FIG. 1, the present embodiment relates to an example in which an internal space of a narrow tube 21 (shown by a dotted line in the figure) is used as a minute space.
  • a SUS316 tube having a nominal inner diameter of 1.0 mm and a length of 0.5 m was used.
  • the thin tube 21 was temperature-controllable using a jacket 21a.
  • the inlet side of this thin tube 21 is connected to a SUS T-type connector 21b (applicable outer diameter 1/16 inch, manufactured by Swagelok), and two kinds of fluids, an organic phase and an aqueous phase, are connected to the thin tube 21 from lines 9 and 19, respectively. It was configured so that it could be supplied according to In addition, a nut etc. were used suitably for the connection part.
  • HFP from the HFP cylinder 1 and organic solvent (water-soluble and aprotic organic solvent) from the organic solvent tank 3 were drawn into the pump chamber 7 a of the syringe pump 7 from the line 5. .
  • Acetonitrile was used as the organic solvent.
  • the mixture of HFP and the organic solvent was cooled to about ⁇ 5 ° C. by the cooling jacket 7b covering the periphery thereof. And this mixture was extruded from the syringe chamber 7a, and was supplied to the thin tube 21 through the line 9 as an organic phase.
  • the periphery of the line 9 was also cooled to about ⁇ 5 ° C. (in the figure, the cooling part around the line 9 is indicated by shading).
  • the organic phase at the time of supply to the thin tube 21 was about ⁇ 5 ° C. and about 0.5 MPaG (gauge pressure). At this time, substantially all of the HFP was liquefied, and the HFP concentration was about 67 g per liter of the organic solvent.
  • the aqueous oxidant solution was drawn from the aqueous solution tank 13 into the pump chamber 17 a of the syringe pump 17 through the line 15.
  • This aqueous oxidizing agent solution is obtained by dissolving sodium hypochlorite (NaClO) as an oxidizing agent in water at about 10 wt% and sodium hydroxide at 1.7 wt% in water. Then, this aqueous solution was extruded from the syringe chamber 17 a and supplied as an aqueous phase to the thin tube 21 through the line 19.
  • the aqueous phase at the time of supply to the thin tube 21 was about 5 ° C. and about 0.5 MPaG (gauge pressure).
  • the NaClO concentration in the aqueous phase is the same as that in the aqueous solution used.
  • the supply flow rate of the organic phase was about 30 mL / min, and the supply flow rate of the aqueous phase was about 30 mL / min.
  • the organic phase and the aqueous phase supplied to the thin tube 21 are mixed and flow through a minute space in the thin tube 21.
  • the thin tube 21 was maintained at about 10 ° C. by the jacket 21 a and the pressure was adjusted by the back pressure valve 25 existing in the line 21. Thereby, the inside of the thin tube 21 was maintained at about 10 ° C. and about 0.5 MPaG (gauge pressure).
  • HFPO was generated by reacting HFP with NaClO in a minute space in the narrow tube 21.
  • carbon dioxide CO 2
  • CF 3 COONa sodium trifluoroacetate
  • CF 3 CFHCONOA sodium 2,3,3,3-tetrafluoropropionate
  • CF 3 CFClCOONa sodium 2-chloro-2,3,3,3-tetrafluoropropionate
  • the reaction mixture was extracted from the thin tube 21 to the recovery tank 27.
  • the residence time of the fluid (including the liquid phase and optionally a gas phase) in the capillary 21 was about 2.9 seconds.
  • the recovered reaction mixture was allowed to stand at atmospheric pressure and room temperature (about 21 ° C.) to separate into a gas phase and a liquid phase.
  • gas phase of the recovered reaction mixture was analyzed by gas chromatography and the liquid phase was analyzed by NMR and ion chromatography, the conversion of HFP was 70% and the selectivity of HFPO was about 99%. From these, the yield was about 69%.
  • the results are shown in Table 1.
  • Example 2 The organic solvent was the same as Example 1 except that diglyme and N, N-dimethylformamide (DMF) were used in place of acetonitrile.
  • Diglyme and N, N-dimethylformamide (DMF) are both water-soluble and aprotic organic solvents. The results are also shown in Table 1.
  • Example 4 Example 1 was the same as Example 1 except that calcium hypochlorite (Ca (ClO) 2 ) was used in place of sodium hypochlorite (NaClO) as the oxidizing agent. The results are also shown in Table 1. In this example, CaF 2 was precipitated in the recovered reaction mixture.
  • Ca (ClO) 2 calcium hypochlorite
  • NaClO sodium hypochlorite
  • Example 1 The same procedure as in Example 1 was conducted except that 1,1-dichloro-1-fluoroethane (HCFC-141b) was used as the organic solvent in place of acetonitrile. HCFC-141b is a nonpolar organic solvent that does not dissolve in water. The results are also shown in Table 1. In Comparative Example 1, the conversion was 0% (because it was below the detection limit of gas chromatography), the progress of the reaction was not observed, and the yield was 0%.
  • HCFC-141b 1,1-dichloro-1-fluoroethane
  • Example 1 an HFPO selectivity of 80% or more was obtained, and in particular, an HFPO selectivity of 90% or more was obtained in Example 1. Particularly in Examples 1 and 2 (when acetonitrile or diglyme was used as the water-soluble and aprotic organic solvent and sodium hypochlorite was used as the oxidizing agent), a high HFP conversion rate and HFPO yield were obtained. .
  • the hexafluoropropylene oxide obtained by the production method of the present invention can be used for the production of a fluorine-containing compound such as perfluorovinyl ether, and can be used as a lubricating oil or a heat medium in the form of an oligomer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 ヘキサフルオロプロピレンオキシドの製造方法であって、相間移動触媒を用いずに、高いHFPO選択率を達成し得る新規な製造方法を提供する。  ヘキサフルオロプロピレン(HFP)と、水溶性かつ非プロトン性の有機溶媒と、酸化剤水溶液とを微小空間に通じて接触させ、ヘキサフルオロプロピレンを酸化剤と反応させてヘキサフルオロプロピレンオキシド(HFPO)を得る。

Description

ヘキサフルオロプロピレンオキシドの製造方法
 本発明はヘキサフルオロプロピレンオキシドの製造方法、より詳細には、ヘキサフルオロプロピレンの酸化によりヘキサフルオロプロピレンオキシドを得る方法に関する。
 ヘキサフルオロプロピレンオキシドは、例えばパーフルオロビニルエーテルの原料として用いられるなど、含フッ素化合物の製造において重要な化合物である。また、ヘキサフルオロプロピレンオキシドのオリゴマーは潤滑油や熱媒などとして利用されている。
 従来、ヘキサフルオロプロピレンオキシド(以下、HFPOとも言う)の製造方法として、次亜塩素酸塩を酸化剤として用いて、ヘキサフルオロプロピレン(以下、HFPとも言う)の酸化によりHFPOを得る方法が開発されている。
 例えば、水相および有機相の2相系において、第4級アンモニウム塩または第4級ホスホニウム塩などの相間移動触媒の存在下にて、次亜塩素酸塩によりHFPを酸化してHFPOを得る方法が知られている(特許文献1~3を参照のこと)。
 また、アセトニトリルやジグライムなどの非プロトン性溶媒の存在下にて、次亜塩素酸塩の水溶液を用いた場合に、HFPからHFPOが生成することが知られている。
特公昭64-11021号公報 特公平3-75546号公報 国際公開第2008/050760号パンフレット
Kolenkoら、Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya、1979年、No. 11、p2509-2512
 水相および有機相の2相系において、第4級アンモニウム塩または第4級ホスホニウム塩等の相間移動触媒の存在下にて、次亜塩素酸塩によりHFPを酸化してHFPOを得る方法では、使用後の相間移動触媒を再生することが困難であるため、相間移動触媒の費用が高くつき、このため、HFPOの製造費用が高くなっているという問題がある。また、実用的には、反応後、相間移動触媒を回収する工程などの追加の工程が必要となり、全体としてプロセスが複雑化するという難点もある。
 他方、アセトニトリルやジグライムなどの非プロトン性溶媒の存在下にて、次亜塩素酸塩の水溶液を用いて、HFPからHFPOを生成させる方法では、HFPO選択率が低いという問題がある。
 本発明は、ヘキサフルオロプロピレンオキシドの製造方法であって、相間移動触媒を用いずに、高いHFPO選択率を達成し得る新規な製造方法を提供することを目的とするものである。
 アセトニトリルやジグライムなどの非プロトン性溶媒の存在下にて、次亜塩素酸塩の水溶液を用いて、HFPからHFPOを生成させるタイプの既知の方法(非特許文献1を参照のこと)において、HFPO選択率が低いのは、生成したHFPOが容易にアルカリ性条件下で水と反応して分解するためであると考えられている(特許文献1の第3欄第13~27行および特許文献2の第3欄第27~41行を参照のこと)。これに対し、本発明者らは、このタイプの既知の方法が常套的なサイズの反応器(非特許文献1の実施例によれば、100mL程度の反応混合物を入れて反応させ得るリアクター)を用いていることに着目し、鋭意検討の結果、本発明を完成するに至った。
 本発明の1つの要旨によれば、ヘキサフルオロプロピレン(HFP)と、水溶性かつ非プロトン性の有機溶媒と、酸化剤水溶液とを微小空間に通じて接触させ、ヘキサフルオロプロピレンを酸化剤と反応させてヘキサフルオロプロピレンオキシド(HFPO)を得る、ヘキサフルオロプロピレンオキシドの製造方法が提供される。
 上記本発明によれば、相間移動触媒(第4級アンモニウム塩または第4級ホスホニウム塩など)を用いずに、高いHFPO選択率が得られることが、本発明者らの実験により確認された。
 これは、本発明はいずれの理論によっても拘束されるものではないが、次のような理由によるものと考えられる。
 水溶性かつ非プロトン性の有機溶媒と酸化剤水溶液を混合すると、この有機溶媒は水に溶解して溶解相を形成し得、酸化剤に由来するイオンがHFPの二重結合に求核的にアタックしてHFPOを生成するのを促進させ得る。
 しかしながら、この反応を常套的なサイズの反応器で実施した場合、酸化剤に由来するイオンとHFPの分子的接触(換言すれば、微視的混合)が起こり難いため、反応の進行が非常に遅く、40%以上のHFP転化率を得るには長い反応時間(例えば100時間)を要する。反応時間が長くなると、その間にHFPOが水と反応して分解され得るので、最終的に得られるHFPOが減少する。また、上記反応は発熱反応であり、除熱が不十分なためにホットスポットが形成されると、副反応が起こり易くなり、その分、HFPが消費されてしまう。これらの結果、高いHFPO選択率を得ることができないものと考えられる。
 これに対し、かかる反応を本発明のように微小空間にて実施すると、酸化剤に由来するイオンとHFPの分子的接触(換言すれば、微視的混合)を十分に達成でき、反応を迅速に進行させ得るので、反応時間(または滞留時間)を短くでき、よって、生成したHFPOを瞬時に反応系(微小空間)の外部に排出して、HFPOの分解または更なる反応(オーバーリアクション)を防止できる。また、反応を微小空間にて進行させることによって、効率的な除熱および厳密な温度制御が可能となり、ホットスポットの形成を防止でき、よって、副反応を抑制することができる。これらの結果、本発明により、高いHFPO選択率を得ることができるものと考えられる。
 本発明において「微小空間」とは、反応のための流体(本発明ではヘキサフルオロプロピレン、水溶性かつ非プロトン性の有機溶媒、および酸化剤水溶液を含んで成る液相混合物ならびに場合により存在し得る気相を包含する)が流れる流路の幅が3cm以下、好ましくは1μm以上1cm未満(マイクロオーダーまたはミリオーダー)である空間を意味し、流路の幅とは、流路の対向する壁面間の最小距離を言うものとする。このような「微小空間」は、例えば製薬および合成化学などの分野において「マイクロリアクター」または「マイクロミキサー」として知られている反応器または混合機の各流路(またはチャネル)であってよい(例えば特許文献3を参照のこと)。
 本発明において使用される「水溶性かつ非プロトン性の有機溶媒」は、水に対して少なくとも部分的に溶解し、かつ、解離してプロトンを生じない(または生じ難い)有機溶媒であればよい。
 具体的には、水溶性かつ非プロトン性の有機溶媒には、アセトニトリル、グライム、およびN,N-ジメチルホルムアミドからなる群より選択される少なくとも1種を用いることが好ましい。これらは、水に対して高い溶解性を有し、特に高い選択率を得ることができるという利点がある。
 酸化剤水溶液としては、特に限定されないが、次亜ハロゲン酸塩水溶液または過酸化水素水を用いることができる。次亜ハロゲン酸塩水溶液は、酸化剤としての機能が高いという利点がある。また、過酸化水素水は、酸化剤としての機能が高く、安価に入手でき、更に、副反応生成物が水であるので、その廃棄物は環境負荷の少ないものとなるという利点がある。
 次亜ハロゲン酸塩には、次亜ハロゲン酸のアルカリ金属またはアルカリ土類金属の塩を用い得る。具体的には、次亜ハロゲン酸塩には、次亜塩素酸ナトリウムおよび次亜塩素酸カルシウムからなる群より選択される少なくとも1種を用いることが好ましい。これらは、いずれも安価に入手できる。
 本発明によれば、相間移動触媒を用いずに、高いHFPO選択率を達成し得る新規なヘキサフルオロプロピレンオキシドの製造方法が提供される。
本発明の実施例においてHFPOを製造するために用いた装置の概略模式図である。
 本発明の1つの実施形態におけるヘキサフルオロプロピレンオキシド(HFPO)の製造方法について以下に詳述する。
 まず、ヘキサフルオロプロピレン(HFP)、水溶性かつ非プロトン性の有機溶媒、および酸化剤水溶液を用意する。
 反応原料のヘキサフルオロプロピレン(HFP)は、特に限定されないが、例えばテトラフルオロエチレンなどから得ることができる。
 水溶性かつ非プロトン性の有機溶媒は、水に対して少なくとも部分的に溶解する有機化合物で構成される。水溶性かつ非プロトン性の有機溶媒は、その全使用分が水に溶解して均一相を形成し得るものが好ましいが、これに限定されない。また、水溶性かつ非プロトン性の有機溶媒は、解離してプロトンを生じない(または生じ難い)有機化合物で構成され、代表的には、電気陰性度の大きな原子(窒素および酸素原子など)に結合した水素原子を有しないものである。
 このような有機溶媒の例としては、ニトリル(アセトニトリル、プロピオニトリルなど)、グライム(モノグライム(1,2-ジメトキシエタン)、ジグライム、トリグライム、テトラグライム)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)、ジメチルスルホキシド(DMSO)、ヘキサメチルリン酸トリアミド(HMPA)、ジオキサン、アセトン、スルホランなどが挙げられる。
 なかでも、アセトニトリル、グライム、N,N-ジメチルホルムアミドを単独でまたはこれらの2種以上を組み合わせて用いることが好ましい。
 HFPと有機溶媒の割合は、適宜選択され得るが、例えば有機溶媒1LあたりHFP約1~500g、好ましくは約10~300gである。
 本実施形態においては、HFPおよび有機溶媒を予め混合して有機相を調製するものとするが、このことは本発明に必須でないことに留意されたい。
 HFPの有機溶媒への溶解度は、用いる有機溶媒の種類にもよるが、温度および圧力条件に依存し得る。HFPを含む有機相を微小空間に供給するに先立って、この有機相(またはHFPと有機溶媒とを共存させた状態で)を、微小空間における温度および圧力条件と実質的に同等またはこれにより近い条件に付すことが好ましい(本明細書において予備調整とも言う)。例えば、有機相を予め約-40~100℃、好ましくは-20~50℃の温度、および約0.0~10MPaG(ゲージ圧)、好ましくは約0.0~2MPaG(ゲージ圧)の圧力にて適宜に維持し得る。この予備調整条件はHFPを実質的に液体状態とする温度および圧力条件とすることが好ましい。液相反応を効率的に進行させるには、反応原料であるHFPを有機相中にできるだけ多く溶解させることがより好ましい。しかしながら、HFPは常温常圧下では気体であるので(沸点 -29.4℃)、有機相を微小空間に供給するに際し、HFPが実質的に液体状態となる温度および圧力条件に予め付して、より多く、望ましくは実質的に全てのHFPを有機相中に溶解させることが好ましい。尚、後述するように、微小空間における反応時間(滞留時間)は極めて短く、その間におけるHFPの有機相から気相への再分配は無視し得る程度であるので、予備調整の際の温度および圧力条件は、有機相を供給すべき微小空間の温度および圧力条件と相異していてもよい。
 他方、水相として、酸化剤水溶液を用意する。酸化剤水溶液には、次亜ハロゲン酸塩水溶液または過酸化水素水を使用できる。次亜ハロゲン酸塩は、例えばM(OX)(式中、Mはアルカリ金属またはアルカリ土類金属、好ましくはNa、Caであり、Xはハロゲン、好ましくはClであり、nはMの価数に応じて1または2である。)で表わされる次亜ハロゲン酸のアルカリ金属塩またはアルカリ土類金属塩であり得る。
 次亜ハロゲン酸塩のうち次亜塩素酸塩は、反応条件下で次亜塩素酸イオンを生じ、HFPと反応して塩素イオンとなり、酸化作用のない塩を形成するので好ましい。次亜塩素酸塩のナトリウム塩およびカルシウム塩はいずれも漂白剤、殺菌剤などの用途向けに工業的に大量生産されており、安価で入手できるので好ましい。なかでもナトリウム塩は、水溶性が高く、配管などを詰まらせる恐れが少ないので、特に好ましい。また、過酸化水素水は、環境負荷が少ないので好ましい。
 次亜ハロゲン酸イオンあるいは過酸化水素イオンを安定的に生じさせ、かつ、反応で生じた酸により酸化剤が分解されるのを防止するために、酸化剤水溶液にアルカリを添加することができる。このようなアルカリとしては、例えば、M(OH)(式中、Mはアルカリ金属またはアルカリ土類金属、好ましくはNa、Caであり、nはMの価数に応じて1または2である)がある。
 水溶液中の酸化剤の濃度は、適宜選択され得るが、微小空間供給時(または反応初期)にて、例えば次亜ハロゲン酸塩の場合は、有効ハロゲン濃度が約1~20wt%、好ましくは約5~15wt%、また例えば過酸化水素の場合は、過酸化水素濃度が約1~80wt%、好ましくは約5~60wt%である。
 次に、以上のようにして準備した有機相と水相とを微小空間に供給する。例えば、HFPと有機溶媒とを連続的に混合し、これにより得られた混合物(有機相)と、別途調製した酸化剤水溶液(水相)とを連続的に微小空間に供給して混合し、反応させるものとしてよい。
 微小空間は、反応のための流体(液相および場合により存在し得る気相)が流れる流路の幅が3cm以下であればよく、例えば、流路の幅は約1μm~1cm、好ましくは約10~5000μmであり得る。流路の幅が上記範囲内にある限り、流路の長さや断面積は特に制限されないが、例えば流路の断面積は約3.1×10-6~7.9×10-1cmであり得る。例えば相当直径が20μm~2000μmの微小空間を少なくとも1つ有する反応器(または反応管)や、いわゆる「マイクロリアクター」または「マイクロミキサー」を利用できる。
 微小空間を規定する流路は、例えば金属、好ましくはSUS(SUS316、SUS316L、SUS304など)、ハステロイ、モネル、インコネルなどの耐食性金属で形成され得る。また例えば、微小空間を規定する流路は、ガラスまたはフッ素樹脂(テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリビニリデンフルオライド(PVdF)、ポリクロロトリフルオロチレン(PCTFE)、ポリビニルフルオライド(PVF)など)で形成されていてもよい。ガラスおよびフッ素樹脂は上記した耐食性金属より一層高い耐食性を示し、腐食により酸化剤が消費されるのを実質的に防止できる。加えて、透明のガラスを用いれば、その中の様子を外部から観察することもできる。
 上記のように有機相と水相とを微小空間に供給することにより、HFPと、水溶性かつ非プロトン性の有機溶媒と、酸化剤水溶液とが微小空間を通って互いに接触し、この間、HFPは酸化剤と反応してHFPOを生成する。
 より詳細には、HFPと、水溶性かつ非プロトン性の有機溶媒と、酸化剤水溶液とが微小空間を通る間、有機溶媒が水溶液に溶解して、混合液相となる。混合液相は均一相を形成した状態となることが好ましいが、塩析効果(典型的には酸化剤として次亜ハロゲン酸塩を用いた場合による)などにより2相分離してもよい。このとき、HFPは水溶性かつ非プロトン性の有機溶媒に溶解した状態で存在すると考えられるが、これに限定されない。この混合液相、好ましくは均一相中でHFPと酸化剤とが分子的に接触でき、これにより、以下に示す反応(一例として、次亜ハロゲン酸塩の場合を示す)が進行して、HFPOが生成し得る。尚、この反応において、酸化剤は、イオンの状態であると考えられるが、これに限定されず、任意の状態であってよい。
Figure JPOXMLDOC01-appb-C000001
 有機相/水相の供給流量比は、具体的な状況に応じて適宜設定され得るが、例えば約0.1~10、好ましくは約0.2~5である。
 微小空間内の温度および圧力は、HFPからHFPOを得る反応が進行する限り特に限定されないが、約-40~100℃、好ましくは約-20~50℃の温度、および約0.0~10MPaG(ゲージ圧)、好ましくは約0.0~2MPaG(ゲージ圧)の圧力にて適宜に維持し得る。100℃および/または10MPaG(ゲージ圧)を超えると、耐圧性および耐食性の問題、安全性、および装置コストの観点から好ましくない。他方、-40℃および/または0.0MPaG(ゲージ圧)を下回ると、固体が析出し易くなり、配管などを詰まらせる恐れがあるためため好ましくない。
 微小空間における反応時間(または滞留時間)は、従来の方法に比べて極めて短時間でよく、例えば約0.01~1000秒、特に約0.01~100秒、更には約0.01~50秒とし得る。
 反応後の液相(反応混合物)は微小空間より抜き出される。HFPOは脱圧によりガス化するため、得られた液相(反応混合物)よりHFPOを容易に回収できる。また、反応後の液相を必要に応じて後処理に付して、例えば未反応HFP、副反応生成物および有機溶媒を分離してもよい。副反応生成物には、酸化剤水溶液として次亜ハロゲン酸塩M(OX)水溶液を用いたときは、CO、M(OH)、MX、MF、(CFCOO)M(これら式中、Mはアルカリ金属またはアルカリ土類金属、好ましくはNa、Caであり、nはMの価数に応じて1または2である)などが挙げられ、特に次亜ハロゲン酸カルシウムを用いた場合には、CaFが析出する。また、酸化剤水溶液として過酸化水素水を用いたときは、副反応生成物には、CO、HO、MF、(CFCOO)M(これら式中、Mはアルカリ金属またはアルカリ土類金属、好ましくはNa、Caであり、上述したようにアルカリを添加した場合にこれに由来するものであり得、本明細書において同様とする)などが挙げられる。
 反応混合物を精製するために、蒸留、抽出、カラムクラマトグラフィ、膜分離、再結晶などの公知の方法を用いてよい。これらのうち蒸留は一般的な分離操作として工業的に幅広く用いられている操作であるが、反応混合物の主成分である未反応のHFPおよび目的生成物のHFPOの沸点はそれぞれ-29.4℃および-27.4℃(いずれも大気圧下)であり、沸点が近いために蒸留操作での分離は困難である。よって、HFPとHFPOを分離して高純度のHFPOを得るには、抽出蒸留を行うことが好ましい。尚、これにより分離したHFPは反応原料として再利用してよい。
 以上のようにしてヘキサフルオロプロピレンオキシドが製造される。このヘキサフルオロプロピレンオキシドの製造方法は連続式で実施することができる。
 HFPおよび有機溶媒を含んで成る有機相は、HFPおよび有機溶媒に加えて、他の成分を含んでいてもよい。例えば、反応混合物を必要に応じて精製などの処理を施した後、再利用する場合には、水、酸化剤および前述した副反応生成物、具体的には、例えば酸化剤水溶液として次亜ハロゲン酸塩M(OX)水溶液を用いたときは、M(OH)、MX、MF、(CFCOO)M(式中、Mはアルカリ金属またはアルカリ土類金属、好ましくはNa、Caであり、Xはハロゲン、好ましくはClであり、nはMの価数に応じて1または2である)などを含んでいてよい。しかし、これらに限定されず、別の成分、例えば界面活性剤などの添加剤を含んでいてもよい。
 また、酸化剤水溶液(水相)も、酸化剤および水、ならびに場合により添加されるアルカリに加えて、他の成分を含んでいてもよい。例えば、反応混合物を必要に応じて精製などの処理を施した後、再利用する場合には、HFP、有機溶媒および前述した副反応生成物、具体的には、例えば酸化剤水溶液として次亜ハロゲン酸塩M(OX)水溶液を用いたときは、M(OH)、MX、MF、(CFCOO)M(式中、Mはアルカリ金属またはアルカリ土類金属、好ましくはNa、Caであり、Xはハロゲン、好ましくはClであり、nはMの価数に応じて1または2である)などを含んでいてよい。
 本実施形態によれば、高いHFPO選択率、例えば80%以上、好ましくは90%以上のHFPO選択率を得ることができる。また、本実施形態によれば、用いる水溶性かつ非プロトン性の有機溶媒および酸化剤水溶液にもよるが、高いHFPO選択率に加えて、高いHFP転化率を得ることができ、ひいては高いHFPO収率を得ることが可能となる。
 また、本実施形態の方法は、相間移動触媒を使用しておらず、よって、シンプルなプロセスで、かつより低い費用で、HFPOを製造することができる。
 以上、本発明の1つの実施形態について上述したが、本発明は上記実施形態に限定されず、種々の改変が可能である。
 例えば、上記実施形態においては、HFP、水溶性かつ非プロトン性の有機溶媒、および酸化剤水溶液を微小空間に供給する際、HFPを水溶性かつ非プロトン性の有機溶媒に予め添加して有機相とし、酸化剤水溶液を水相として、これら有機相と水相とを別個に供給するものとした。しかし、これに限定されず、HFPと酸化剤水溶液とが微小空間に供給される際に初めて接触するものが好ましい。例えばHFP、水溶性かつ非プロトン性の有機溶媒、および酸化剤水溶液をそれぞれ別個に供給してもよく、あるいは、HFPを有機相とし、水溶性かつ非プロトン性の有機溶媒と酸化剤水溶液とを予め混合して混合液相(好ましくは均一相であるが、溶解度の関係上不均一になる場合は、微分散状態としてもよい)として、これら有機相と混合液相とを別個に供給してもよい。
 本発明の実施例について図面を参照しながら詳述する。
(実施例1)
 図1を参照して、本実施例は微小空間として細管21(図中、点線にて示す)の内部空間を利用したものに関する。細管21には公称内径1.0mmおよび長さ0.5mのSUS316製チューブを使用した。細管21はジャケット21aを用いて温度制御可能とした。この細管21の入口側をSUS製T型コネクター21b(適合外径1/16インチ、スウェージロック社製)に連結し、有機相と水相との2種の流体をそれぞれライン9および19から細管21へ合わせて供給できるように構成した。尚、接続部にはナットなどを適宜使用した。
 まず、図1に示すように、HFPボンベ1からHFPを、そして有機溶媒槽3から有機溶媒(水溶性かつ非プロトン性の有機溶媒)を、ライン5よりシリンジポンプ7のポンプ室7aに引き込んだ。この有機溶媒にはアセトニトリルを用いた。そしてポンプ室7aにて、その周囲を覆う冷却ジャケット7bによりHFPおよび有機溶媒の混合物を約-5℃に冷却した。そしてこの混合物をシリンジ室7aから押し出し、ライン9を通じて細管21へ有機相として供給した。ライン9もその周囲を約-5℃に冷却するものとした(図中、ライン9の周囲の冷却部を網掛けにて示す)。
 細管21への供給時の有機相は約-5℃および約0.5MPaG(ゲージ圧)であった。またこのとき、HFPはその実質的に全てが液化しており、HFP濃度は、有機溶媒1Lあたり約67gであった。
 他方、水溶液槽13から酸化剤水溶液を、ライン15よりシリンジポンプ17のポンプ室17aに引き込んだ。この酸化剤水溶液は、酸化剤として次亜塩素酸ナトリウム(NaClO)を約10wt%で、および水酸化ナトリウムを1.7wt%で、水に溶解させたものである。そしてこの水溶液をシリンジ室17aから押し出し、ライン19を通じて細管21へ水相として供給した。
 細管21への供給時の水相は約5℃および約0.5MPaG(ゲージ圧)であった。水相中のNaClO濃度は使用した水溶液中における濃度と同じである。
 有機相の供給流量は約30mL/minとし、水相の供給流量は約30mL/minとした。
 細管21に供給された有機相および水相は混合され、細管21内の微小空間を流れる。このとき、細管21をジャケット21aにより約10℃に維持し、ライン21に存在する背圧弁25により圧力調整した。これにより、細管21内を約10℃および約0.5MPaG(ゲージ圧)に維持した。
 細管21内の微小空間にて、HFPをNaClOと反応させてHFPOを生じさせた。このときの主たる副反応生成物として、二酸化炭素(CO)は気相に、トリフルオロ酢酸ナトリウム(CFCOONa)、2,3,3,3-テトラフルオロプロピオン酸ナトリウム(CFCFHCOONa)、2-クロロ-2,3,3,3-テトラフルオロプロピオン酸ナトリウム(CFCFClCOONa)は水相に存在することが確認された。
 図1を参照して、細管21より反応混合物を回収槽27へ抜き出した。細管21における流体(液相ならびに場合により存在し得る気相を含む)の滞留時間は約2.9秒であった。
 回収した反応混合物を大気圧および室温(約21℃)にて静置して気相と液相とに分離した。回収した反応混合物の気相をガスクロマトグラフィーで分析し、液相をNMRおよびイオンクロマトグラフィーで分析したところ、HFPの転化率は70%であり、HFPOの選択率は約99%であった。これらより、収率は約69%であった。結果を表1に示す。
(実施例2および3)
 有機溶媒として、アセトニトリルに代えて、ジグライムおよびN,N-ジメチルホルムアミド(DMF)をそれぞれ用いたこと以外は、実施例1と同様とした。ジグライムおよびN,N-ジメチルホルムアミド(DMF)は、いずれも水溶性かつ非プロトン性の有機溶媒である。結果を表1に併せて示す。
(実施例4)
 酸化剤として、次亜塩素酸ナトリウム(NaClO)に代えて、次亜塩素酸カルシウム(Ca(ClO))を用いたこと以外は、実施例1と同様とした。結果を表1に併せて示す。尚、本実施例においては、回収した反応混合物中にCaFが析出していた。
(比較例1)
 有機溶媒として、アセトニトリルに代えて、1,1-ジクロロ-1-フルオロエタン(HCFC-141b)を用いたこと以外は、実施例1と同様とした。HCFC-141bは、水に溶解しない非極性の有機溶媒である。結果を表1に併せて示す。この比較例1では、転化率0%(ガスクロマトグラフィーの検出限界以下のため)であり、反応の進行は認められず、よって収率は0%であった。
(比較例2)
 HFPO生成反応を常套のサイズの反応器で実施した。
 反応器として、容量200mLのSUS316製オートクレーブ反応器を用い、有機溶媒としてアセトニトリル3.3g、酸化剤水溶液として次亜塩素酸ナトリウム(NaClO)を13wt%含む水溶液77.0g、48wt%水酸化ナトリウム(NaOH)水溶液7.0gを仕込んだ。反応器内を-0.1MPaG(ゲージ圧)および4℃に調整した後、HFP13gを15分かけて仕込んだ。HFP仕込み後に、反応器内の温度および圧力を21~27℃および0.0~0.6MPaG(ゲージ圧)に維持し、液相を撹拌しながら反応させた。反応開始後100時間経過した時点で、反応器から反応混合物を取り出した。
 回収した反応混合物を実施例1と同様に分析した。結果を表1に併せて示す。
Figure JPOXMLDOC01-appb-T000002
 表1を参照して、実施例1~4においては80%以上のHFPO選択率が得られ、特に実施例1においては90%以上のHFPO選択率が得られた。特に実施例1および2(水溶性かつ非プロトン性の有機溶媒としてアセトニトリルまたはジグライムを用い、酸化剤として次亜塩素酸ナトリウムを用いた場合)において、高いHFP転化率およびHFPO収率が得られた。
 本発明の製造方法により得られるヘキサフルオロプロピレンオキシドは、含フッ素化合物、例えばパーフルオロビニルエーテルの製造に利用され得、また、オリゴマーの形態で潤滑油や熱媒などとして利用され得る。
 1 HFPボンベ
 3 有機溶媒槽(水溶性かつ非プロトン性の有機溶媒)
 5、9、15、19 ライン
 7、17 シリンジポンプ
 7a、17a ポンプ室
 7b 冷却ジャケット
 13 水溶液槽(酸化剤水溶液)
 21 細管
 21a ジャケット
 21b コネクター
 25 背圧弁
 27 回収槽

Claims (6)

  1.  ヘキサフルオロプロピレンと、水溶性かつ非プロトン性の有機溶媒と、酸化剤水溶液とを微小空間に通じて接触させ、ヘキサフルオロプロピレンを酸化剤と反応させてヘキサフルオロプロピレンオキシドを得る、ヘキサフルオロプロピレンオキシドの製造方法。
  2.  微小空間は3cm以下の流路幅を有する、請求項1に記載の製造方法。
  3.  水溶性かつ非プロトン性の有機溶媒が、アセトニトリル、グライム、およびN,N-ジメチルホルムアミドからなる群より選択される少なくとも1種を含んで成る、請求項1または2に記載の方法。
  4.  酸化剤水溶液が、次亜ハロゲン酸塩水溶液または過酸化水素水である、請求項1~3のいずれかに記載の方法。
  5.  次亜ハロゲン酸塩が、次亜塩素酸塩を含んで成る、請求項4に記載の方法。
  6.  次亜ハロゲン酸塩が、次亜塩素酸ナトリウムおよび次亜塩素酸カルシウムからなる群より選択される少なくとも1種を含んで成る、請求項5に記載の方法。
PCT/JP2010/053858 2009-03-17 2010-03-09 ヘキサフルオロプロピレンオキシドの製造方法 WO2010106942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/257,176 US9169225B2 (en) 2009-03-17 2010-03-09 Method for producing hexafluoropropylene oxide
JP2011504812A JP5454567B2 (ja) 2009-03-17 2010-03-09 ヘキサフルオロプロピレンオキシドの製造方法
CN201080012185.8A CN102356072B (zh) 2009-03-17 2010-03-09 六氟环氧丙烷的制造方法
EP10753434.9A EP2409970B1 (en) 2009-03-17 2010-03-09 Method for producing hexafluoropropylene oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009064137 2009-03-17
JP2009-064137 2009-03-17

Publications (1)

Publication Number Publication Date
WO2010106942A1 true WO2010106942A1 (ja) 2010-09-23

Family

ID=42739603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053858 WO2010106942A1 (ja) 2009-03-17 2010-03-09 ヘキサフルオロプロピレンオキシドの製造方法

Country Status (5)

Country Link
US (1) US9169225B2 (ja)
EP (2) EP2409970B1 (ja)
JP (1) JP5454567B2 (ja)
CN (2) CN102356072B (ja)
WO (1) WO2010106942A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201651A (ja) * 2011-03-28 2012-10-22 Nissan Chem Ind Ltd フローリアクターを用いたシャープレス不斉エポキシ化反応

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103044362A (zh) * 2012-12-28 2013-04-17 浙江大学 气相氧化法制备六氟环氧丙烷的方法
CN104672177B (zh) * 2013-12-03 2018-05-15 浙江化工院科技有限公司 一种六氟环氧丙烷连续生产工艺
CN105524030A (zh) * 2015-12-29 2016-04-27 天津市长芦化工新材料有限公司 常压下采用两液相缓冲溶液法合成六氟环氧丙烷的方法
CN105439981B (zh) * 2015-12-31 2019-03-15 天津市长芦化工新材料有限公司 一种常压条件下连续制备六氟环氧丙烷的装置及方法
CN110845448B (zh) * 2019-10-25 2020-07-24 山东东岳未来氢能材料有限公司 氧气氧化法制备hfpo中溶剂和副产物的综合利用方法
CN114315761A (zh) * 2021-11-22 2022-04-12 浙江巨化技术中心有限公司 一种六氟丙烯三聚体环氧化物的连续化制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411021U (ja) 1987-07-09 1989-01-20
JPH04247078A (ja) * 1990-08-29 1992-09-03 E I Du Pont De Nemours & Co ヘキサフルオロプロピレンのエポキシ化方法
JP3075546B2 (ja) 1992-05-11 2000-08-14 日本電信電話株式会社 触覚センサをもちいた6自由度ポインティング装置
JP2001521816A (ja) * 1997-11-05 2001-11-13 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー 化学反応実施方法
JP2003532646A (ja) * 2000-04-27 2003-11-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング オレフィンをエポキシ化する方法
WO2008050760A1 (fr) 2006-10-24 2008-05-02 Daikin Industries, Ltd. Procédé de production d'oxyde d'hexafluoropropylène

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183773A (en) 1981-05-06 1982-11-12 Asahi Chem Ind Co Ltd Preparation of hexafluoropropylene oxide
EP0064293B1 (en) 1981-05-06 1986-12-10 Asahi Kasei Kogyo Kabushiki Kaisha Process for the production of hexafluoropropylene oxide
JPH03148270A (ja) * 1989-08-25 1991-06-25 E I Du Pont De Nemours & Co ペルフルオロオレフインの3液相エポキシ化

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411021U (ja) 1987-07-09 1989-01-20
JPH04247078A (ja) * 1990-08-29 1992-09-03 E I Du Pont De Nemours & Co ヘキサフルオロプロピレンのエポキシ化方法
JP3075546B2 (ja) 1992-05-11 2000-08-14 日本電信電話株式会社 触覚センサをもちいた6自由度ポインティング装置
JP2001521816A (ja) * 1997-11-05 2001-11-13 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー 化学反応実施方法
JP2003532646A (ja) * 2000-04-27 2003-11-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング オレフィンをエポキシ化する方法
WO2008050760A1 (fr) 2006-10-24 2008-05-02 Daikin Industries, Ltd. Procédé de production d'oxyde d'hexafluoropropylène

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOLENKO ET AL.: "Izvestiya Akademii Nauk SSSR", 1979, SERIYA KHIMICHE SKAYA, pages: 2509 - 2512
See also references of EP2409970A4 *
YOSUKE KOBAYASHI ET AL.: "Micro-Reactor no Ekiso Hanno ni Okeru Seiseki Hyoka", THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, DAI 70 NENKAI, KENKYU HAPPYO KOEN YOSHISHU, 2005, pages J214, XP008168591 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201651A (ja) * 2011-03-28 2012-10-22 Nissan Chem Ind Ltd フローリアクターを用いたシャープレス不斉エポキシ化反応

Also Published As

Publication number Publication date
JP5454567B2 (ja) 2014-03-26
EP2409970B1 (en) 2014-12-17
CN102356072A (zh) 2012-02-15
US20120016142A1 (en) 2012-01-19
CN104974111A (zh) 2015-10-14
JPWO2010106942A1 (ja) 2012-09-20
EP2409970A4 (en) 2012-08-29
CN102356072B (zh) 2016-03-02
EP2857390B1 (en) 2017-12-06
EP2857390A1 (en) 2015-04-08
EP2409970A1 (en) 2012-01-25
US9169225B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
JP5454567B2 (ja) ヘキサフルオロプロピレンオキシドの製造方法
CN111349018B (zh) 通过直接氟化来氟化无机或有机化合物的工艺
US20210053913A1 (en) Process for the Synthesis of Fluorinated Conductive Salts for Lithium Ion Batteries
JP2007105668A (ja) 気液反応方法及びそのための装置
WO2010117029A1 (ja) ペルフルオロ有機過酸化物の製造方法
US20110071325A1 (en) Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane
WO2020057013A1 (zh) 一种卤代乙酰氯的光氧化制备方法
JPWO2008050760A1 (ja) ヘキサフルオロプロピレンオキシドの製造方法
JP6017710B2 (ja) 流通反応器を用いたケトマロン酸化合物の連続製造方法
JP5621296B2 (ja) 3−ハロ−ペンタフルオロプロピレンオキシドの製造方法
CN105439981B (zh) 一种常压条件下连续制备六氟环氧丙烷的装置及方法
JP2010241807A (ja) トリクロロトリフルオロ酸化プロピレン及びその製造方法
JP4587464B2 (ja) グリセリルエーテルの製造方法
US7413722B2 (en) Method and apparatus for manufacturing nitrogen trifluoride
JP4738169B2 (ja) グリセリルエーテルの製造方法
CN111377795B (zh) 通过直接氟化制备氟苯的工艺
US20220251007A1 (en) Industrial Process for Manufacturing of Perfluoropentane (PFP)
JP2024055301A (ja) ヘキサフルオロプロピレンオキシドの製造方法および製造装置
WO2022160762A1 (en) New industrial process for manufacturing of perfluoropentane (pfp)
JP2006206518A (ja) 液相酸化反応の方法
CN114728873A (zh) 工业化合成全氟甲基乙烯基醚和1,1,2,2-四氟-1-三氟甲氧基乙烷的新工艺
CN114341085A (zh) 工业化合成全氟正戊烷的新工艺
CN105461663A (zh) 一种温和条件下连续制备六氟环氧丙烷的装置及方法
JP2024055302A (ja) ヘキサフルオロプロピレンオキシドの製造方法および製造装置
CN114450269A (zh) 合成5-氟-3-(二氟甲基)-5-氟-1-甲基-1h-吡唑-4-羧酸衍生物及其游离酸的新方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012185.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504812

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257176

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010753434

Country of ref document: EP