WO2010106865A1 - ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法 - Google Patents

ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法 Download PDF

Info

Publication number
WO2010106865A1
WO2010106865A1 PCT/JP2010/052404 JP2010052404W WO2010106865A1 WO 2010106865 A1 WO2010106865 A1 WO 2010106865A1 JP 2010052404 W JP2010052404 W JP 2010052404W WO 2010106865 A1 WO2010106865 A1 WO 2010106865A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
hfp
fraction
hfpo
hexafluoropropylene
Prior art date
Application number
PCT/JP2010/052404
Other languages
English (en)
French (fr)
Inventor
英樹 中谷
市原 一義
靖英 仙波
幹雄 中越
和賀 森本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201080012128.XA priority Critical patent/CN102356073B/zh
Priority to JP2011504784A priority patent/JP5267657B2/ja
Priority to US13/256,949 priority patent/US8877017B2/en
Priority to EP10753360.6A priority patent/EP2409971B1/en
Publication of WO2010106865A1 publication Critical patent/WO2010106865A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/08Compounds containing oxirane rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals

Definitions

  • the present invention relates to a method for separating hexafluoropropylene oxide (hereinafter also referred to as HFPO) from hexafluoropropylene (hereinafter also referred to as HFP), and more particularly, from a mixture of hexafluoropropylene oxide and hexafluoropropylene.
  • HFPO hexafluoropropylene oxide
  • HFP hexafluoropropylene
  • the present invention relates to a method for obtaining an oxide.
  • Hexafluoropropylene oxide is an important compound in the production of fluorine-containing compounds, for example, used as a raw material for perfluorovinyl ether. Further, the oligomer of hexafluoropropylene oxide is used as a lubricating oil or a heat medium.
  • hexafluoropropylene oxide is produced by using hexafluoropropylene as a raw material and oxidizing it by various methods (see, for example, Patent Document 1).
  • the reaction mixture obtained in such a production method comprises HFPO as the target product and unreacted HFP. It is desirable to purify the reaction mixture to obtain high-purity HFPO, and it is desirable to recover unreacted HFP and reuse it as a raw material for HFPO production.
  • Distillation can usually be used for purification.
  • the boiling points of HFP and HFPO are ⁇ 29.4 ° C. and ⁇ 27.4 ° C. (both under atmospheric pressure), respectively, and since they are close to each other, it is difficult to separate them by distillation.
  • Patent Document 2 a method of distilling under low temperature and low pressure has been proposed (see Patent Document 2), there is a problem that the relative volatility cannot be sufficiently increased even by such a method.
  • the above-mentioned chlorine-containing compounds are concerned about the influence on the environment.
  • the chlorine-containing compound represented by the general formula (Y) can cause destruction of the ozone layer, for example, 1,1-dichloro-1-fluoroethane (HCFC-141b) has an ozone destruction coefficient of about 0.1.
  • the present invention is a method for separating hexafluoropropylene oxide from hexafluoropropylene, and an object thereof is to provide a novel method capable of reducing the burden on the environment.
  • HFPO hexafluoropropylene oxide
  • HFP hexafluoropropylene
  • a first fraction comprising hexafluoropropylene oxide by subjecting it to an extractive distillation operation using at least one fluorine-containing saturated compound (hereinafter also referred to simply as a fluorine-containing compound) represented by
  • a process comprising separating into a second fraction comprising propylene and a solvent.
  • Fluorine-containing compounds that do not contain chlorine have not been studied as solvents for extractive distillation because they are less polar than chlorine-containing compounds.
  • the fluorine-containing compound has a high relative volatility of HFPO to HFP.
  • such a fluorine-containing compound is used as a solvent, and HFPO is separated from the mixture containing HFPO and HFP by the extractive distillation operation in the form of the first fraction. Therefore, at least from the original mixture High-purity HFPO can be obtained, and the burden on the environment can be reduced as compared with the conventional method using a chlorine-containing compound.
  • such a fluorine-containing compound has an advantage that the ozone depletion coefficient is generally small as compared with the chlorine-containing compound represented by the general formula (Y).
  • the above-mentioned fluorine-containing compound may have a boiling point of ⁇ 5 ° C. or more and 100 ° C. or less (0.1 MPa or atmospheric pressure, hereinafter the same unless otherwise specified).
  • a fluorine-containing compound having a boiling point of ⁇ 5 ° C. or higher has a boiling point sufficiently higher than both HFPO and HFP, and these can be efficiently separated by an extractive distillation operation.
  • the fluorine-containing compound having a boiling point of 100 ° C. or less can change the state from the liquid phase to the gas phase (vapor) without requiring an excessively high temperature, it prevents the decomposition of HFP and HFPO, and the necessary amount of heat. Can be made as small as possible.
  • the above fluorine-containing compound is a saturated compound.
  • the fluorine-containing compound is preferably a so-called hydrofluorocarbon (HFC) containing hydrogen (in the general formula (X), a is an integer satisfying 1 ⁇ a ⁇ 2n + 1). Hydrofluorocarbons are generally higher in polarity than perfluorocarbons, and are characterized by the ability to dissolve polar substances.
  • HFC hydrofluorocarbon
  • Such hydrofluorocarbons include 1,1,1,3,3-pentafluoropropane (CHF 2 CH 2 CF 3 : HFC-245fa), 1,1,1,3,3-pentafluorobutane (CH 3 CF 2 CH 2 CF 3 : HFC-365mfc), 1,1,1,2,2,3,4,5,5,5-decafluoropentane (CF 3 CHFCHFCF 2 CF 3 : HFC-43-10mee), and It can be selected from the group consisting of 1,1,2,2,3,3,4-heptafluorocyclopentane (c-CH 2 CHFCF 2 CF 2 CF 2 : HFC-C-447ef). These all have the advantage that the ozone depletion coefficient is zero.
  • PFC perfluorocarbon
  • X hydrofluorocarbon
  • At least one of 1-bromopropane and 2-bromopropane can be used as a solvent in place of at least one of the fluorine-containing compounds (fluorine-containing saturated compounds) represented by the general formula (X).
  • a method for separating hexafluoropropylene oxide from hexafluoropropylene wherein a mixture comprising hexafluoropropylene oxide and hexafluoropropylene is mixed with 1-bromopropane and 2 Separation into a first fraction comprising hexafluoropropylene oxide and a second fraction comprising hexafluoropropylene and a solvent by subjecting it to an extractive distillation operation using at least one of the bromopropanes as a solvent; Is provided.
  • 1-Bromopropane and 2-bromopropane also do not contain chlorine, and thus have a lower polarity than chlorine-containing compounds, and thus have not been studied as solvents for extractive distillation.
  • 1-bromopropane and 2-bromopropane also have a high relative volatility of HFPO with respect to HFP.
  • at least one of 1-bromopropane and 2-bromopropane is used as a solvent, and HFPO is separated from the mixture comprising HFPO and HFP by the extractive distillation operation in the form of the first fraction.
  • the burden on the environment can be reduced.
  • 1-bromopropane and 2-bromopropane have the advantages of being inexpensive and relatively easy to handle, and are being used industrially as cleaning agents.
  • a fluorine-containing ether compound such as hydrofluoroter and perfluoroether can be used in place of at least one of the fluorine-containing compound (fluorine-containing saturated compound) represented by the general formula (X). is there.
  • the relative volatility of HFPO with respect to HFP is low and the degree of preference is inferior compared with the above-mentioned fluorine-containing compounds and 1-bromopropane and 2-bromopropane.
  • the second fraction obtained by the extractive distillation operation is subjected to a distillation operation into a third fraction comprising hexafluoropropylene and a fourth fraction comprising a solvent. It may further comprise separating.
  • HFPO can be separated from the mixture comprising HFPO and HFP in the form of the first fraction, and further, HFP can be separated in the form of the third fraction.
  • the separated and recovered HFP can be used as a raw material for producing HFPO from HFP.
  • the separated and recovered solvent can be used as a solvent for the previous extractive distillation operation.
  • the “mixture comprising hexafluoropropylene oxide and hexafluoropropylene” used in the present invention substantially consists of HFPO and HFP, but means that it may contain a small amount of other components.
  • the proportion of such other components in the mixture is, for example, about 10 mol% or less, preferably about 5 mol% or less, more preferably about 3 to 0 mol%.
  • the fraction comprising ...” means that it is substantially composed of the mentioned contained components but may contain a small amount of other components.
  • Such other components may be, for example, about 20 mol% or less, preferably about 10 mol% or less, more preferably about 5 to 0 mol%, depending on the mixture used in the present invention.
  • FIG. 1 is a schematic diagram illustrating a method for separating hexafluoropropylene oxide (HFPO) from hexafluoropropylene (HFP) in one embodiment of the present invention.
  • HFPO hexafluoropropylene oxide
  • HFP hexafluoropropylene
  • HFPO hexafluoropropylene oxide
  • HFP hexafluoropropylene
  • the mixture used in the present embodiment includes HFPO and HFP.
  • the mixing ratio of HFPO and HFP is not particularly limited.
  • the mixture will be described as being composed of two components of HFPO and HFP.
  • the present embodiment is not limited to this, and the mixture may contain a small amount of other components.
  • Such a mixture is not particularly limited.
  • a reaction mixture obtained by using HFP as a raw material and generating HFPO by oxidation of HFP is obtained by subjecting to a post-treatment if necessary. Good.
  • the mixing molar ratio of HFPO and HFP is typically 1: about 0.1-9.
  • the solvent preferably has a high relative volatility of HFPO to HFP.
  • the boiling point of the fluorine-containing compound is preferably ⁇ 5 ° C. or more and 100 ° C. or less, more preferably 10 ° C. or more and 90 ° C. or less.
  • the fluorine-containing compound is a fluorine-containing saturated compound, and may be an acyclic compound or a cyclic compound.
  • hydrofluorocarbon HFC
  • examples thereof include 1,1,1,3,3-pentafluoropropane (HFC-245fa, boiling point 15.3 ° C.), 1,1,1,3, 3-pentafluorobutane (HFC-365mfc, boiling point 40.2 ° C), 1,1,1,2,2,3,4,5,5,5-decafluoropentane (HFC-43-10mee, boiling point 55 ° C) And 1,1,2,2,3,3,4-heptafluorocyclopentane (HFC-C-447ef, boiling point 82.5 ° C.).
  • HFC-C-447ef 1,1,2,2,3,3,4-heptafluorocyclopentane
  • 1-bromopropane (boiling point 71 ° C.) and / or 2-bromopropane (boiling point 59.4 ° C.) may be used as a solvent.
  • Such a solvent has a high relative volatility of HFPO to HFP, and does not azeotrope with HFP and / or HFPO.
  • the mixture (HFPO + HFP) and the solvent as described above are supplied to the extractive distillation column 1, and the mixture is subjected to an extractive distillation operation.
  • the solvent supply section is located above the mixture supply section.
  • the space between these supply units is a concentration unit, the upper part is a solvent recovery unit, and the lower part is a recovery unit.
  • the first fraction is obtained as a residue obtained by condensing the top vapor fraction with a condenser and recirculating a part thereof to the extractive distillation column 1.
  • the second fraction is obtained as a residue obtained by sending a part of the column bottom liquid fraction to the reboiler, and the part sent to the reboiler is evaporated by heating and returned to the extractive distillation column 1.
  • the conditions for the extractive distillation operation can be appropriately set according to the solvent used, the target HFPO purity of the first fraction, and the like.
  • the feed molar ratio of mixture to solvent is 1: about 1-30, preferably 1: about 5-15.
  • the temperature and pressure in the extractive distillation column 1 can be about ⁇ 5 to 150 ° C. and about 0.2 to 0.5 MPaG (gauge pressure).
  • the second fraction (HFP + solvent) obtained from the extractive distillation tower 1 is supplied to the solvent recovery tower 3, and the second fraction is subjected to a distillation operation.
  • the third fraction containing HFP is taken out from the tower top side of the solvent recovery tower 3, and the fourth fraction containing the solvent is taken out from the tower bottom side. Thereby, HFP is obtained in the form of the third fraction.
  • the third fraction is obtained as a residue obtained by condensing the tower top vapor fraction with a condenser and recirculating a part thereof to the solvent recovery tower 3.
  • the fourth fraction is obtained as a residue obtained by sending a part of the tower bottom liquid fraction to the reboiler, and the part sent to the reboiler is evaporated by heating and returned to the solvent recovery tower 3.
  • the conditions for the distillation operation can be appropriately set according to the solvent to be used and the target HFP purity of the third fraction.
  • the temperature and pressure in the solvent recovery tower 3 can be about ⁇ 5 to 150 ° C. and about 0.2 to 0.5 MPaG (gauge pressure).
  • HFPO is separated from the mixture comprising HFPO and HFP in the form of the first fraction, and further, HFP is separated in the form of the third fraction.
  • the method of this embodiment can be implemented by a continuous type, it is not limited to this, You may implement by a batch type.
  • the HFPO purity of the first fraction can be, for example, about 90 mol% or more, preferably about 99 mol% or more.
  • the HFP purity of the third fraction can be, for example, about 90 mol% or more, preferably about 99 mol% or more.
  • the obtained third fraction may be returned to the reaction for generating HFPO from HFP, and thus HFP can be reused as a raw material (not shown).
  • the fourth fraction may be supplied to the extractive distillation column 1 together with a new solvent as required, as indicated by a one-dot chain line in FIG. 1, and the solvent can be reused.
  • the fourth fraction may contain a small amount of HFPO and HFP, but by returning the fourth fraction to the extractive distillation column 1 in this way, the HFPO and HFP in the fourth fraction can be recovered without being discarded. it can.
  • the mixture and the solvent are separately supplied to the extractive distillation tower, but may be supplied together.
  • this reaction solvent can also be used as a solvent for extraction distillation operation
  • solvents that can also be used as the reaction solvent include HFC-365mfc, 1-bromopropane, 2-bromopropane, and the like.
  • the second fraction obtained by the extractive distillation operation may be returned to the reaction for generating HFPO from HFP without being subjected to the next distillation operation, whereby HFP and the solvent are used as a raw material and a reaction solvent. Can be reused.
  • a fluorine-containing ether compound such as hydrofluoroether (C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 6 F 13 OCH 3 , C 3 HF 6 —CH (CH 3 ) O It is not impossible to use —C 3 HF 6 ) and perfluoroethers. However, the relative volatility of HFPO with respect to HFP is lower than that of the above fluorine-containing compounds and 1-bromopropane and 2-bromopropane.
  • HFC-365mfc An osmer-type vapor-liquid equilibrium measuring device was charged with 28 g of HFPO, 25 g of HFP, and 495 g of HFC-365mfc (CH 3 CF 2 CH 2 CF 3 ) as a solvent, respectively, so that the pressure became 0.5 MPaG (gauge pressure). When the liquidus temperature was adjusted, the liquidus temperature became 71.8 ° C. After elapse of 3 hours or more under these conditions, the condensate in the gas phase part and the liquid in the liquid phase part were sampled and measured by gas chromatography. From the obtained data, the molar ratio of HFP to HFPO was measured, and the relative volatility of HFPO to HFP was determined to be 2.67. These conditions and results are shown in Table 1.
  • Hydrofluoroether product name “HFE7200” In the case of the above 1) except that the conditions are slightly changed by using hydrofluoroether trade name “HFE7200” (manufactured by 3M, C 4 F 9 OC 2 H 5 ) instead of HFC-365mfc as the solvent. Similarly, the relative volatility of HFPO with respect to HFP was determined. The conditions and results are shown in Table 1.
  • Example A simulation was performed when the present invention was implemented according to the first embodiment described above with reference to FIG.
  • a mixture of HFPO and HFP (molar ratio 1: 1) was continuously supplied at 106 g / h from the lower part of the concentrating unit to an extractive distillation column of about 7 stages of solvent recovery unit, about 15 units of concentration unit, and 10 stages of recovery unit, Further, HFC-365mfc as a solvent is continuously supplied from the lower part of the solvent recovery section at 595 g / h, and the first fraction is continuously withdrawn at 56 g / h while controlling the reflux ratio at the tower top side, The second fraction was continuously withdrawn at 645 g / h to perform extractive distillation.
  • the pressure in the extractive distillation column (inside the system) was 0.2 MPaG (gauge pressure), the column top temperature was 0 ° C., and the column bottom temperature was 59 ° C.
  • the HFPO molar fraction in the first fraction obtained from the extractive distillation column was 0.995. Further, the solvent contained 3 mol ppm in the first fraction.
  • the HFP mole fraction in the second fraction obtained from the extractive distillation column was 0.077, and the balance was substantially occupied by HFC-365mfc.
  • the second fraction obtained from the above is continuously supplied to a solvent recovery tower having about 14 stages at a position of the fifth stage from the bottom at a rate of 645 g per hour and controlled at a reflux ratio of 10 on the top side of the tower.
  • the third fraction was continuously withdrawn at 50 g / h and the fourth fraction was continuously withdrawn at 595 g / h at the bottom of the column to carry out recovery distillation.
  • the pressure in the solvent recovery tower (inside the system) was 0.2 MPaG (gauge pressure)
  • the tower top temperature was ⁇ 3 ° C.
  • the tower bottom temperature was 75 ° C.
  • the HFP mole fraction in the third fraction obtained from the solvent recovery tower was 0.995 or more.
  • the HFC-365mfc mole fraction in the fourth fraction obtained from the solvent recovery tower was 0.999 or more.
  • the resulting fourth fraction was recycled to the extractive distillation column.
  • the hexafluoropropylene oxide separated by the method of the present invention can be used for the production of fluorine-containing compounds such as perfluorovinyl ether, and can also be used as a lubricating oil or heat medium in the form of oligomers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

 ヘキサフルオロプロピレンオキシド(HFPO)をヘキサフルオロプロピレン(HFP)から分離する方法であって、環境に対する負荷を低減することができる新規な方法を提供する。 HFPOおよびHFPを含んで成る混合物を、一般式C(式中、n、aおよびbは、n=3~8、0≦a≦2n+1、および1≦b≦2n+2を満たす整数である)で表わされる少なくとも1種の含フッ素飽和化合物を溶剤として用いて、抽出蒸留操作に付すことにより、HFPOを含んで成る第1フラクションと、HFPおよび溶剤を含んで成る第2フラクションとに分離する。溶剤としては、このような含フッ素飽和化合物に代えて、1-ブロモプロパンおよび2-ブロモプロパンの少なくとも一方を用いてもよい。

Description

ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
 本発明は、ヘキサフルオロプロピレンオキシド(以下、HFPOとも言う)をヘキサフルオロプロピレン(以下、HFPとも言う)から分離する方法、より詳細には、ヘキサフルオロプロピレンオキシドおよびヘキサフルオロプロピレンの混合物からヘキサフルオロプロピレンオキシドを得る方法に関する。
 ヘキサフルオロプロピレンオキシドは、例えばパーフルオロビニルエーテルの原料として用いられるなど、含フッ素化合物の製造において重要な化合物である。また、ヘキサフルオロプロピレンオキシドのオリゴマーは潤滑油や熱媒などとして利用されている。
 一般的に、ヘキサフルオロプロピレンオキシドは、ヘキサフルオロプロピレンを原料とし、これを種々の方法で酸化することにより製造されている(例えば特許文献1を参照のこと)。
 かかる製造方法において得られる反応混合物は、目的生成物であるHFPOと未反応のHFPを含んで成る。反応混合物を精製して、高純度のHFPOを得ることが望ましく、また、未反応のHFPを回収してHFPO生成の原料として再利用することが望ましい。
 精製には通常、蒸留が利用され得る。しかしながら、HFPおよびHFPOの沸点はそれぞれ-29.4℃および-27.4℃(いずれも大気圧下)であり、沸点が近いために蒸留によりこれらを分離するのは困難である。低温・低圧下にて蒸留する方法が提案されているが(特許文献2を参照のこと)、このような方法によっても、相対揮発度を十分に大きくすることはできないという難点がある。
 よって、HFPおよびHFPOの混合物からHFPOを分離するために、抽出蒸留が利用されている(特許文献1および3を参照のこと)。
 この抽出蒸留における溶剤として、以下の一般式(Y)で表わされる含塩素化合物を使用し得ることが知られている。
  Cn’a’Clb’c’   ・・・(Y)
(式中、n’、a’、b’およびc’は、n’=2~6、1≦a’≦n+1、1≦b’≦2n、1≦c’≦2n、およびa’+b’+c’=2n+2を満たす整数である。)
 具体的には、1,1-ジクロロ-1-フルオロエタン(HCFC-141b)、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)、1,2-ジクロロ-1,1,2-トリフルオロエタン(HCFC-123a)、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(HCFC-225ca)、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(HCFC-225cb)が挙げられる。
 また、上記抽出蒸留における溶剤として、CHCl、CHCl、CCl、CHClCHClなどの含塩素化合物も使用し得ることが知られている。
国際公開第2008/050760号パンフレット 特開平9-136882号公報 特許第3785652号公報
 しかしながら、上述したような含塩素化合物は、環境に対する影響が懸念される。特に上記一般式(Y)で表わされる含塩素化合物はオゾン層の破壊を招き得、例えば1,1-ジクロロ-1-フルオロエタン(HCFC-141b)は約0.1のオゾン破壊係数を有する。
 本発明は、ヘキサフルオロプロピレンオキシドをヘキサフルオロプロピレンから分離する方法であって、環境に対する負荷を低減することができる新規な方法を提供することを目的とするものである。
 ヘキサフルオロプロピレンオキシド(HFPO)をヘキサフルオロプロピレン(HFP)から抽出蒸留により分離するには、HFPに対するHFPOの相対揮発度が大きい溶剤を用いることが好ましい。しかしながら、ある物質について、HFPに対するHFPOの相対揮発度の値を予想することは不可能であり、HFPOをHFPから抽出蒸留により分離するための溶剤として使用できるかどうかを判断することはきわめて困難である。本発明者らは、種々の物質について鋭意検討を行った結果、本発明を完成するに至った。
 本発明の1つの要旨によれば、ヘキサフルオロプロピレンオキシドをヘキサフルオロプロピレンから分離する方法であって、ヘキサフルオロプロピレンオキシドおよびヘキサフルオロプロピレンを含んで成る混合物を、以下の一般式(X)
  C   ・・・(X)
(式中、n、aおよびbは、n=3~8、0≦a≦2n+1、および1≦b≦2n+2を満たす整数である)
で表わされる少なくとも1種の含フッ素飽和化合物(以下、単に含フッ素化合物とも言う)を溶剤として用いて、抽出蒸留操作に付すことにより、ヘキサフルオロプロピレンオキシドを含んで成る第1フラクションと、ヘキサフルオロプロピレンおよび溶剤を含んで成る第2フラクションとに分離することを含んで成る方法が提供される。
 塩素を含まない含フッ素化合物は、含塩素化合物に比べて極性が小さいために、抽出蒸留の溶剤として今まで検討されてこなかった。しかしながら、上記含フッ素化合物はHFPに対するHFPOの相対揮発度が高いことが、本発明者らの実験を通じて確認された。本発明によれば、このような含フッ素化合物を溶剤として用いて、HFPOおよびHFPを含んで成る混合物からHFPOを抽出蒸留操作により第1フラクションの形態で分離しているので、少なくとも元の混合物より高純度のHFPOを得ることができ、かつ、含塩素化合物を用いる従来の方法に比べて、環境に対する負荷を低減することができる。特にこのような含フッ素化合物は、上記一般式(Y)で表わされる含塩素化合物に比べて、概して、オゾン破壊係数が小さいという利点を有する。
 上記含フッ素化合物は、-5℃以上100℃以下の沸点(0.1MPaまたは大気圧下、以下、特に断りのない限り同様とする)を有し得る。-5℃以上の沸点を有する含フッ素化合物は、HFPOおよびHFPの双方より十分高い沸点を有し、これらを抽出蒸留操作により効率的に分離し得る。また、100℃以下の沸点を有する含フッ素化合物は、過剰な高温を要することなく液相から気相(蒸気)に状態変化させ得るので、HFPおよびHFPOの分解を防止し、かつ、必要な熱量をできるだけ小さくできる。
 上記含フッ素化合物は飽和化合物である。このような含フッ素飽和化合物は、非環式化合物(上記一般式(X)中、n、aおよびbは、a+b=2n+2を満たす)であっても、環式化合物(上記一般式(X)中、n、aおよびbは、a+b=2n+2-mを満たし、mは環構造の数を示す)であってもよい。
 上記含フッ素化合物は、水素を有して成る、いわゆるハイドロフルオロカーボン(HFC)(上記一般式(X)中、aは、1≦a≦2n+1を満たす整数である)であることが好ましい。ハイドロフルオロカーボンは、パーフルオロカーボンに比べて一般的に極性が高く、極性物質も溶解させ得るという特徴を有する。
 そのようなハイドロフルオロカーボンは、1,1,1,3,3-ペンタフルオロプロパン(CHFCHCF:HFC-245fa)、1,1,1,3,3-ペンタフルオロブタン(CHCFCHCF:HFC-365mfc)、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン(CFCHFCHFCFCF:HFC-43-10mee)、および1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(c-CHCHFCFCFCF:HFC-C-447ef)からなる群より選択され得る。これらは、いずれもオゾン破壊係数がゼロであるという利点を有する。
 しかしながら、上記含フッ素化合物は、水素を有しない、いわゆるパーフルオロカーボン(PFC)(上記一般式(X)中、a=0である)であってもよい。パーフルオロカーボンは、ハイドロフルオロカーボンに比べて極性が低く、安定性が極めて高いという特徴を有する。
 あるいは、溶剤として、前記一般式(X)で表わされる含フッ素化合物(含フッ素飽和化合物)の少なくとも1種に代えて、1-ブロモプロパンおよび2-ブロモプロパンの少なくとも一方を用いることも可能である。即ち、本発明のもう1つの要旨によれば、ヘキサフルオロプロピレンオキシドをヘキサフルオロプロピレンから分離する方法であって、ヘキサフルオロプロピレンオキシドおよびヘキサフルオロプロピレンを含んで成る混合物を、1-ブロモプロパンおよび2-ブロモプロパンの少なくとも一方を溶剤として用いて、抽出蒸留操作に付すことにより、ヘキサフルオロプロピレンオキシドを含んで成る第1フラクションと、ヘキサフルオロプロピレンおよび溶剤を含んで成る第2フラクションとに分離することを含んで成る方法が提供される。
 1-ブロモプロパンおよび2-ブロモプロパンも塩素を含まず、よって、含塩素化合物に比べて極性が小さいために、抽出蒸留の溶剤として今まで検討されてこなかった。しかしながら、1-ブロモプロパンおよび2-ブロモプロパンもHFPに対するHFPOの相対揮発度が高いことが、本発明者らの実験により確認された。本発明によれば、1-ブロモプロパンおよび2-ブロモプロパンの少なくとも一方を溶剤として用いて、HFPOおよびHFPを含んで成る混合物からHFPOを抽出蒸留操作により第1フラクションの形態で分離しているので、含塩素化合物を用いる従来の方法に比べて、環境に対する負荷を低減することができる。特に1-ブロモプロパンおよび2-ブロモプロパンは、安価であり、取扱いが比較的容易であるという利点を有し、工業的にも洗浄剤として利用が進んでいる。
 またあるいは、溶剤として、前記一般式(X)で表わされる含フッ素化合物(含フッ素飽和化合物)の少なくとも1種に代えて、含フッ素エーテル化合物、例えばハイドロフルオローテルおよびパーフルオロエーテルなども使用可能である。しかしながら、上記含フッ素化合物や1-ブロモプロパンおよび2-ブロモプロパンに比べて、HFPに対するHFPOの相対揮発度が低く、好ましさの程度は劣る。
 本発明のいずれの要旨による方法も、抽出蒸留操作によって得られた第2フラクションを蒸留操作に付して、ヘキサフルオロプロピレンを含んで成る第3フラクションと、溶剤を含んで成る第4フラクションとに分離することを更に含み得る。これにより、HFPOおよびHFPを含んで成る混合物からHFPOを第1フラクションの形態で分離し、更に、HFPを第3フラクションの形態で分離することができる。分離回収されたHFPは、HFPからHFPOを生成するための原料として利用可能である。また、分離回収された溶剤は、先の抽出蒸留操作の溶剤として利用可能である。
 尚、本発明に用いる「ヘキサフルオロプロピレンオキシドおよびヘキサフルオロプロピレンを含んで成る混合物」は、HFPOおよびHFPから実質的に成るが、他の成分を少量含んでいてもよいことを意味する。そのような他の成分の混合物中の割合は、例えば約10モル%以下、好ましくは約5モル%以下であり、より好ましくは約3~0モル%である。
 また、本発明において、「・・・を含んで成る・・フラクション」とは、言及した含有成分から実質的に成るが、他の成分を少量含んでいてもよいことを意味する。そのような他の成分は、本発明に用いる上記混合物にもよるが、例えば約20モル%以下、好ましくは約10モル%以下であり、より好ましくは約5~0モル%である。
 本発明によれば、ヘキサフルオロプロピレンオキシドをヘキサフルオロプロピレンから分離する方法であって、環境に対する負荷を低減することができる新規な方法が提供される。
本発明の1つの実施形態におけるヘキサフルオロプロピレンオキシド(HFPO)をヘキサフルオロプロピレン(HFP)から分離する方法を説明する概略模式図である。
 本発明の1つの実施形態におけるヘキサフルオロプロピレンオキシド(HFPO)をヘキサフルオロプロピレン(HFP)から分離する方法について以下に詳述する。
 まず、HFPOおよびHFPを含んで成る混合物と、溶剤とを用意する。
 本実施形態において用いる混合物は、HFPOおよびHFPを含んで成る。HFPOとHFPの混合比は、特に限定されない。以下、理解を容易にするために、混合物がHFPOおよびHFPの二成分から成るものとして説明する。しかし、本実施形態はこれに限定されず、混合物は他の成分を少量含んでいてよい。
 このような混合物は、特に限定されないが、例えばHFPを原料とし、HFPの酸化によりHFPOを生成させて得られた反応混合物を、必要に応じて後処理に付して得られたものであってよい。この場合、HFPOとHFPの混合モル比は、代表的には1:約0.1~9である。
 溶剤は、HFPに対するHFPOの相対揮発度が大きいほうが好ましい。
 そのような溶剤には、以下の一般式(X)
  C   ・・・(X)
(式中、n、aおよびbは、n=3~8、0≦a≦2n+1、および1≦b≦2n+2を満たす整数である)
で表わされる少なくとも1種の含フッ素化合物を用い得る。
 溶剤として使用するためには、含フッ素化合物の沸点は、-5℃以上100℃以下であることが好ましく、より好ましくは10℃以上90℃以下である。
 上記含フッ素化合物は含フッ素飽和化合物であり、非環式化合物であっても、環式化合物であってもよい。特にハイドロフルオロカーボン(HFC)が好適に使用され、その例としては、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa、沸点15.3℃)、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc、沸点40.2℃)、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン(HFC-43-10mee、沸点55℃)、および1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(HFC-C-447ef、沸点82.5℃)などが挙げられる。
 あるいは、溶剤として、1-ブロモプロパン(沸点71℃)および/または2-ブロモプロパン(沸点59.4℃)を使用してもよい。
 このような溶剤は、HFPに対するHFPOの相対揮発度が高く、かつ、HFPおよび/またはHFPOと共沸しない。
 次に図1を参照して、上記のような混合物(HFPO+HFP)および溶剤を抽出蒸留塔1に供給し、混合物を抽出蒸留操作に付す。一般的には、溶剤の供給部は、混合物の供給部より上方に位置する。抽出蒸留塔1において、これら供給部間が濃縮部であり、これより上方が溶剤回収部、下方が回収部である。
 上述した溶剤は、いずれも、HFPOよりもHFPとの親和力が大きく、溶剤添加によりHFPの揮発度が低下する。よって、抽出蒸留塔1の塔頂側から、HFPOを含んで成る第1フラクションが取り出され、塔底側からHFPおよび溶剤を含んで成る第2フラクションが取り出される。これにより、HFPOが第1フラクションの形態で得られる。
 図1に示す例では、第1フラクションは、塔頂蒸気フラクションをコンデンサーにて凝縮し、その一部を抽出蒸留塔1に還流させた残余として得られる。第2フラクションは、塔底液体フラクションの一部をリボイラーに送った残余として得られ、リボイラーに送られた部分は、加熱により蒸発させて抽出蒸留塔1に戻される。
 抽出蒸留操作の条件は、使用する溶剤や、第1フラクションの目的HFPO純度などに応じて適宜設定され得る。例えば、混合物と溶剤との供給モル比は、1:約1~30、好ましくは1:約5~15とされる。また例えば、抽出蒸留塔1内の温度および圧力は、約-5~150℃および約0.2~0.5MPaG(ゲージ圧)とされ得る。しかしながら、これらは例示であり、本実施形態はかかる条件に限定されない。
 次に、抽出蒸留塔1より得られた第2フラクション(HFP+溶剤)を溶剤回収塔3に供給し、第2フラクションを蒸留操作に付す。
 溶剤回収塔3の塔頂側から、HFPを含んで成る第3フラクションが取り出され、塔底側から溶剤を含んで成る第4フラクションが取り出される。これにより、HFPが第3フラクションの形態で得られる。
 図1に示す例では、第3フラクションは、塔頂蒸気フラクションをコンデンサーにて凝縮し、その一部を溶剤回収塔3に還流させた残余として得られる。第4フラクションは、塔底液体フラクションの一部をリボイラーに送った残余として得られ、リボイラーに送られた部分は、加熱により蒸発させて溶剤回収塔3に戻される。
 蒸留操作の条件は、使用する溶剤や、第3フラクションの目的HFP純度などに応じて適宜設定され得る。例えば、溶剤回収塔3内の温度および圧力は、約-5~150℃および約0.2~0.5MPaG(ゲージ圧)とされ得る。しかしながら、これらは例示であり、本実施形態はかかる条件に限定されない。
 以上のようにして、HFPOおよびHFPを含んで成る混合物からHFPOが第1フラクションの形態で分離され、更に、HFPが第3フラクションの形態で分離される。本実施形態の方法は連続式で実施することができるが、これに限定されず、バッチ式で実施してもよい。
 本実施形態によれば、第1フラクションのHFPO純度は、例えば約90モル%以上、好ましくは約99モル%以上とすることが可能である。また、第3フラクションのHFP純度は、例えば約90モル%以上、好ましくは約99モル%以上とすることが可能である。
 得られた第3フラクションは、HFPからHFPOを生成する反応に戻してよく、これにより、HFPを原料として再利用できる(図示せず)。また、第4フラクションは、図1に一点鎖線にて示すように、必要に応じて新たな溶剤と一緒に、抽出蒸留塔1に供給してよく、これにより、溶剤を再利用することができる。第4フラクション中には、HFPOおよびHFPも少量含まれ得るが、このように第4フラクションを抽出蒸留塔1に戻すことによって、第4フラクション中のHFPOおよびHFPを廃棄することなく回収することができる。
 以上、本発明の1つの実施形態について上述したが、本発明は上記実施形態に限定されず、種々の改変が可能である。
 例えば、上記実施形態においては、混合物と溶剤とを別々に抽出蒸留塔に供給するものとしたが、一緒に供給するようにしてもよい。具体的には、HFPからHFPOを生成する反応を反応溶媒中で実施し、この反応溶媒を抽出蒸留操作の溶剤としても使用し得る場合、反応後に得られるHFP、HFPOおよび溶剤(=反応溶媒)を含む混合物を抽出蒸留塔に供給してもよい。反応溶媒としても使用し得る溶剤の例としては、HFC-365mfc、1-ブロモプロパン、2-ブロモプロパンなどが挙げられる。更にこの場合、抽出蒸留操作によって得られた第2フラクションを、次の蒸留操作に付さずに、HFPからHFPOを生成する反応に戻してよく、これにより、HFPおよび溶剤を原料および反応溶媒として再利用できる。
 また例えば、溶剤として、含フッ素エーテル化合物、例えばハイドロフルオロエーテル(COCH、COC、C13OCH、CHF-CH(CH)O-CHF)およびパーフルオロエーテルなどを使用することも不可能ではない。しかしながら、上記含フッ素化合物や1-ブロモプロパンおよび2-ブロモプロパンに比べて、HFPに対するHFPOの相対揮発度は低い。
(相対揮発度)
 種々の溶剤を用いた場合および溶剤を用いなかった場合について、HFPに対するHFPOの相対揮発度を求めた。
1)HFC-365mfc
 オスマー型気液平衡測定装置にHFPOを28g、HFPを25g、溶剤としてHFC-365mfc(CHCFCHCF)を495gでそれぞれ仕込み、圧力が0.5MPaG(ゲージ圧)になるように液相温度を調節すると、液相温度は71.8℃となった。この条件で3時間以上経過させた後、気相部の凝縮液と液相部の液とをサンプリングし、これらをガスクロマトグラフィーにてそれぞれ測定した。得られたデータから、HFPとHFPOのモル比を測定し、HFPに対するHFPOの相対揮発度を求めたところ、2.67となった。これら条件および結果を表1に示す。
2)1-ブロモプロパン
 溶剤として、HFC-365mfcに代えて、1-ブロモプロパンを用いて条件を若干変更したこと以外は、上記1)の場合と同様にしてHFPに対するHFPOの相対揮発度を求めた。条件および結果を表1に示す。
3)溶剤なし
 溶剤を用いず、条件を若干変更したこと以外は、上記1)の場合と同様にしてHFPに対するHFPOの相対揮発度を求めた。条件および結果を表1に示す。
4)ハイドロフルオロエーテル 商品名「HFE7200」
 溶剤として、HFC-365mfcに代えて、ハイドロフルオロエーテル 商品名「HFE7200」(3M社製、COC)を用いて条件を若干変更したこと以外は、上記1)の場合と同様にしてHFPに対するHFPOの相対揮発度を求めた。条件および結果を表1に示す。
5)ジクロロメタン
 溶剤として、HFC-365mfcに代えて、ジクロロメタンを用いて条件を若干変更したこと以外は、上記1)の場合と同様にしてHFPに対するHFPOの相対揮発度を求めた。条件および結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、HFC-365mfcおよび1-ブロモプロパンを溶剤とした場合において、溶剤なしの場合に比べて非常に高い相対揮発度が得られた。よって、HFC-365mfcおよび1-ブロモプロパンは本発明において溶剤として好適に利用し得ることが理解される。他方、溶剤なしの場合に比べ、HFE7200およびジクロロメタンを溶剤とした場合には、それほど高い相対揮発度は得られなかった。
(実施例)
 図1を参照して上述した実施形態1に従って本発明を実施した場合をシミュレーションした。
 溶剤回収部約7段、濃縮部約15段、回収部10段の抽出蒸留塔に、HFPOとHFPの混合物(モル比1:1)を濃縮部の下部から毎時106gで連続的に供給し、また、溶剤回収部の下部から溶剤としてHFC-365mfcを毎時595gで連続的に供給し、塔頂側にて還流比16に制御しつつ第1フラクションを毎時56gで連続的に抜き出し、塔底側にて第2フラクションを毎時645gで連続的に抜き出して、抽出蒸留を行うものとした。この間の抽出蒸留塔内(系内)の圧力は0.2MPaG(ゲージ圧)とし、塔頂温度は0℃、塔底温度は59℃となった。
 抽出蒸留塔より得られる第1フラクション中のHFPOモル分率は0.995となった。また、第1フラクション中に溶剤は3モルppm含まれるものとなった。
 他方、抽出蒸留塔より得られる第2フラクション中のHFPモル分率は0.077となり、残部は実質的にHFC-365mfcが占めるものとなった。
 以上より得られる第2フラクションを、約14段の段数を有する溶剤回収塔へ、下から5段目の位置にて毎時645gで連続的に供給し、塔頂側にて還流比10に制御しつつ第3フラクションを毎時50gで連続的に抜き出し、塔底側にて第4フラクションを毎時595gで連続的に抜き出して、回収蒸留を行うものとした。この間の溶剤回収塔内(系内)の圧力は0.2MPaG(ゲージ圧)とし、塔頂温度は-3℃、塔底温度は75℃となった。
 溶剤回収塔より得られる第3フラクション中のHFPモル分率は0.995以上となった。
 他方、溶剤回収塔より得られる第4フラクション中のHFC-365mfcモル分率は0.999以上となった。
 得られる第4フラクションは、抽出蒸留塔へ再循環させるものとした。
 本発明の方法により分離されるヘキサフルオロプロピレンオキシドは、含フッ素化合物、例えばパーフルオロビニルエーテルの製造に利用され得、また、オリゴマーの形態で潤滑油や熱媒などとして利用され得る。
 1 抽出蒸留塔
 3 溶剤回収塔

Claims (6)

  1.  ヘキサフルオロプロピレンオキシドをヘキサフルオロプロピレンから分離する方法であって、ヘキサフルオロプロピレンオキシドおよびヘキサフルオロプロピレンを含んで成る混合物を、以下の一般式(X)
      C   ・・・(X)
    (式中、n、aおよびbは、n=3~8、0≦a≦2n+1、および1≦b≦2n+2を満たす整数である)
    で表わされる少なくとも1種の含フッ素飽和化合物を溶剤として用いて、抽出蒸留操作に付すことにより、ヘキサフルオロプロピレンオキシドを含んで成る第1フラクションと、ヘキサフルオロプロピレンおよび溶剤を含んで成る第2フラクションとに分離することを含んで成る方法。
  2.  含フッ素飽和化合物が0.1MPaにて-5℃以上100℃以下の沸点を有する、請求項1に記載の方法。
  3.  含フッ素飽和化合物が水素を有して成る、請求項1または2に記載の方法。
  4.  含フッ素飽和化合物が、1,1,1,3,3-ペンタフルオロプロパン、1,1,1,3,3-ペンタフルオロブタン、1,1,1,2,2,3,4,5,5,5-デカフルオロペンタン、および1,1,2,2,3,3,4-ヘプタフルオロシクロペンタンからなる群より選択される、請求項3に記載の方法。
  5.  溶剤として、前記一般式(X)で表わされる含フッ素飽和化合物の少なくとも1種に代えて、1-ブロモプロパンおよび2-ブロモプロパンの少なくとも一方を用いる、請求項1に記載の方法。
  6.  抽出蒸留操作によって得られた第2フラクションを蒸留操作に付して、ヘキサフルオロプロピレンを含んで成る第3フラクションと、溶剤を含んで成る第4フラクションとに分離することを更に含んで成る、請求項1~5のいずれかに記載の方法。
PCT/JP2010/052404 2009-03-18 2010-02-18 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法 WO2010106865A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080012128.XA CN102356073B (zh) 2009-03-18 2010-02-18 六氟环氧丙烷和六氟丙烯的分离方法
JP2011504784A JP5267657B2 (ja) 2009-03-18 2010-02-18 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
US13/256,949 US8877017B2 (en) 2009-03-18 2010-02-18 Method for separating hexafluoropropylene oxide from hexafluoropropylene
EP10753360.6A EP2409971B1 (en) 2009-03-18 2010-02-18 Method for separating hexafluoropropylene oxide from hexafluoropropylene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009065633 2009-03-18
JP2009-065633 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010106865A1 true WO2010106865A1 (ja) 2010-09-23

Family

ID=42739531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052404 WO2010106865A1 (ja) 2009-03-18 2010-02-18 ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法

Country Status (5)

Country Link
US (1) US8877017B2 (ja)
EP (1) EP2409971B1 (ja)
JP (1) JP5267657B2 (ja)
CN (1) CN102356073B (ja)
WO (1) WO2010106865A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521275A (ja) * 2010-07-23 2013-06-10 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの精製方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209086B (zh) * 2014-06-13 2017-06-27 郑州大学 可用于分离六氟丙烯和六氟环氧丙烷混合气体的吸附分离剂及分离方法
CN116020152B (zh) * 2022-12-30 2023-08-01 滨州黄海科学技术研究院有限公司 一种连续化分离六氟丙烯二聚体和六氟丙烯三聚体的系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920765A (ja) * 1995-07-10 1997-01-21 Asahi Glass Co Ltd ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
JPH09136882A (ja) * 1995-09-12 1997-05-27 Asahi Glass Co Ltd ヘキサフルオロプロピレンとヘキサフルオロプロピレンオキシドの分離方法
WO2008050760A1 (fr) * 2006-10-24 2008-05-02 Daikin Industries, Ltd. Procédé de production d'oxyde d'hexafluoropropylène

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1251300B (de) * 1964-12-29 1967-10-05 E I du Pont de Nemours and Company Wilmington Del (V St A) Verfahren zur Reinigung von Hexa fluorpropylenepoxyd unter Abtrennung von Hexafluorpropylen
US4134796A (en) * 1977-11-17 1979-01-16 Asahi Glass Company Ltd. Method of purifying hexafluoropropylene oxide
DE3107967A1 (de) * 1981-03-03 1982-09-16 Hoechst Ag, 6000 Frankfurt "verfahren zur herstellung von reinem hexafluorpropylenoxid"
EP0064293B1 (en) * 1981-05-06 1986-12-10 Asahi Kasei Kogyo Kabushiki Kaisha Process for the production of hexafluoropropylene oxide
EP1457506A4 (en) * 2001-11-13 2005-02-16 Daikin Ind Ltd PROCESS FOR PRODUCING FOAM BASED ON SYNTHETIC RESIN
CN1997615B (zh) * 2004-06-23 2013-03-13 埃克森美孚化学专利公司 分离混合物组分的方法
CN1955169A (zh) * 2005-10-24 2007-05-02 山东东岳神舟新材料有限公司 六氟环氧丙烷的合成方法
EP3345888B1 (en) * 2006-09-08 2020-11-25 The Chemours Company FC, LLC Extractive distillation processes to separate e-1,2,3,3,3-pentafluoropropene from z-1,2,3,3,3-pentafluoropropene
KR100816878B1 (ko) * 2006-10-16 2008-03-27 한국화학연구원 고효율의 헥사플루오로프로필렌 옥사이드 제조방법
JP2009020765A (ja) * 2007-07-12 2009-01-29 Hitachi Computer Peripherals Co Ltd リードライト方法及び該リードライト方法を使用したコンピュータシステム
JP2009136882A (ja) * 2007-12-03 2009-06-25 Nadex Co Ltd 電極チップ整形装置
CN101367778B (zh) 2008-09-28 2012-06-13 方海滔 六氟环氧丙烷的产业化生产工艺
ZA200907387B (en) * 2008-10-27 2010-07-28 Univ Kwazulu Natal Recovery of components making up a liquid mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920765A (ja) * 1995-07-10 1997-01-21 Asahi Glass Co Ltd ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
JPH09136882A (ja) * 1995-09-12 1997-05-27 Asahi Glass Co Ltd ヘキサフルオロプロピレンとヘキサフルオロプロピレンオキシドの分離方法
WO2008050760A1 (fr) * 2006-10-24 2008-05-02 Daikin Industries, Ltd. Procédé de production d'oxyde d'hexafluoropropylène

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521275A (ja) * 2010-07-23 2013-06-10 ダイキン工業株式会社 2,3,3,3−テトラフルオロプロペンの精製方法

Also Published As

Publication number Publication date
CN102356073B (zh) 2014-10-29
US8877017B2 (en) 2014-11-04
US20120006672A1 (en) 2012-01-12
EP2409971B1 (en) 2017-05-10
EP2409971A4 (en) 2016-03-23
JPWO2010106865A1 (ja) 2012-09-20
EP2409971A1 (en) 2012-01-25
CN102356073A (zh) 2012-02-15
JP5267657B2 (ja) 2013-08-21

Similar Documents

Publication Publication Date Title
RU2485086C2 (ru) Азеотропные композиции, содержащие 3,3,3-трифторпропен и фтороводород, и способ их разделения
KR100332392B1 (ko) 추출증류법을사용하여테트라플루오로에탄으로부터불순물을분리및제거하는방법
JP5551031B2 (ja) 弗化水素を精製する方法
JP6168068B2 (ja) テトラフルオロプロペンの精製方法
EP0353970A1 (en) Process for the separation of HF via phase separation and distillation
EP3919467A1 (en) Azeotropic composition containing 1,2-difluoroethylene or 1,1,2-trifluoroethylene and hydrogen fluoride
JP5267657B2 (ja) ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
US7396485B2 (en) Azeotrope-like compositions of difluoromethane
JP2018002603A (ja) クロロメタンとヘキサフルオロプロペンの分離方法およびクロロメタンの製造方法
KR20070056084A (ko) 1,1,1,3,3-펜타클로로프로판과 사염화탄소로 이루어진 공비혼합-성 조성물
JP4511827B2 (ja) 1,1,1,3,3−ペンタフルオロブタンと弗化水素との共沸混合物様組成物
JPH10513190A (ja) ペンタフルオロエタンの精製方法
KR20040002879A (ko) 디플루오로메탄의 정제
CN1292773A (zh) 提纯全氟环丁烷的方法
US6303838B1 (en) Separating 1,1,1,3,3-pentafluoropropane from hydrogen fluoride
US7888539B2 (en) Azeotrope compositions of octafluorocyclobutane and uses thereof
WO2024111416A1 (ja) クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法
JP2018002602A (ja) 2,3,3,3−テトラフルオロプロペンとヘキサフルオロプロペンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
WO1996007627A1 (en) Purification of pentafluoroethane

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012128.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753360

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504784

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13256949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010753360

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010753360

Country of ref document: EP