WO2024111416A1 - クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法 - Google Patents

クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法 Download PDF

Info

Publication number
WO2024111416A1
WO2024111416A1 PCT/JP2023/040246 JP2023040246W WO2024111416A1 WO 2024111416 A1 WO2024111416 A1 WO 2024111416A1 JP 2023040246 W JP2023040246 W JP 2023040246W WO 2024111416 A1 WO2024111416 A1 WO 2024111416A1
Authority
WO
WIPO (PCT)
Prior art keywords
hfp
chlorodifluoromethane
mixture
hexafluoropropylene
compound
Prior art date
Application number
PCT/JP2023/040246
Other languages
English (en)
French (fr)
Inventor
覚人 三竹
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024111416A1 publication Critical patent/WO2024111416A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • C07C17/386Separation; Purification; Stabilisation; Use of additives by distillation with auxiliary compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • This disclosure relates to a method for separating chlorodifluoromethane and hexafluoropropylene.
  • Hexafluoropropylene is a compound used as a raw material for fluororesins and the like, and is obtained, for example, by the thermal decomposition reaction of chlorodifluoromethane.
  • HFP hexafluoropropylene
  • R22 chlorodifluoromethane
  • distillation utilizing the difference in boiling points can be mentioned, but since R22 and HFP form an azeotropic composition or an azeotrope-like composition, separation by distillation is difficult.
  • Patent Document 1 discloses extractive distillation using a polar organic solvent such as methanol as a method for separating R22 and HFP.
  • Patent Document 1 all of the polar organic solvents disclosed in Patent Document 1 are compounds with low flash points, as described below. Therefore, there is a need for an efficient separation of R22 and HFP without using compounds with low flash points.
  • One aspect of the present disclosure aims to provide a method for separating R22 and HFP with high efficiency from a mixture of R22 and HFP that is difficult to separate due to the formation of an azeotrope or azeotrope-like composition, using an extraction solvent that is a compound with a high or no flash point.
  • a mixing step of obtaining an extraction mixture which is a mixture of a first mixture containing chlorodifluoromethane and hexafluoropropylene and an extraction solvent containing at least one chlorine-containing compound selected from the group consisting of methylene chloride, chloroform, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, trichloroethylene, and tetrachloroethylene; an extractive distillation step of distilling the mixture for extraction to obtain a first distillate mainly composed of hexafluoropropylene and a first bottom product mainly composed of the extraction solvent and containing chlorodifluoromethane;
  • ⁇ 3> The method for separating chlorodifluoromethane and hexafluoropropylene according to ⁇ 1> or ⁇ 2>, wherein the chlorine-containing compound is a compound that makes the relative volatility Rv of chlorodifluoromethane to hexafluoropropylene smaller than 0.9 when the chlorine-containing compound is added in an amount three times the total molar amount of chlorodifluoromethane and hexafluoropropylene.
  • ⁇ 4> The method for separating chlorodifluoromethane and hexafluoropropylene according to any one of ⁇ 1> to ⁇ 3>, wherein the chlorine-containing compound is a compound that makes the relative volatility Rv of chlorodifluoromethane to hexafluoropropylene smaller than 0.9 when the chlorine-containing compound is added in an amount equal to the total molar amount of chlorodifluoromethane and hexafluoropropylene.
  • ⁇ 5> The method for separating chlorodifluoromethane and hexafluoropropylene according to any one of ⁇ 1> to ⁇ 4>, wherein the extraction solvent contains at least one chlorine-containing compound selected from the group consisting of 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, chloroform, and methylene chloride.
  • ⁇ 6> The method for separating chlorodifluoromethane and hexafluoropropylene according to any one of ⁇ 1> to ⁇ 5>, wherein a molar ratio of the amount of the chlorine-containing compound added in the mixing step is 1/1 to 30/1 relative to a total molar amount of chlorodifluoromethane and hexafluoropropylene.
  • ⁇ 7> The method for separating chlorodifluoromethane and hexafluoropropylene according to any one of ⁇ 1> to ⁇ 6>, further comprising a second distillation step of distilling the first bottoms to obtain a second distillate containing chlorodifluoromethane as a main component.
  • the first mixture further contains chlorotrifluoroethylene, The first can further comprises chlorotrifluoroethylene.
  • the first mixture further contains chlorotrifluoroethylene, The first can further comprises chlorotrifluoroethylene;
  • the second distillate further comprises chlorotrifluoroethylene.
  • ⁇ 7> A method for separating chlorodifluoromethane and hexafluoropropylene according to ⁇ 7>.
  • a method for separating R22 and HFP with high efficiency from a mixture of R22 and HFP that is difficult to separate due to the formation of an azeotrope or azeotrope-like composition, using an extraction solvent that is a compound with a high or no flash point.
  • FIG. 2 is a diagram showing an example of a material flow in the separation method of the present disclosure.
  • the term “step” includes not only a step that is independent of other steps, but also a step that cannot be clearly distinguished from other steps as long as the purpose of the step is achieved.
  • the numerical range indicated using “to” includes the numerical values before and after "to” as the minimum and maximum values, respectively.
  • each component may contain multiple types of the corresponding substance.
  • the ratio of each component means the total ratio of the multiple substances present in the composition, unless otherwise specified.
  • distillate refers to the material that is distilled from the top side of a distillation column
  • bottoms refers to the material that is distilled from the bottom side of a distillation column.
  • main component means that the amount of components other than the component in question is relatively small.
  • the amount of the "main component” is preferably 50 mol % or more of the total, more preferably 60 mol % or more, even more preferably 70 mol % or more, and most preferably 80 mol % or more.
  • the boiling point of a compound is a value at normal pressure, which is 1.013 ⁇ 10 5 Pa.
  • the separation method in one embodiment of the present disclosure includes a mixing step of obtaining an extraction mixture, which is a mixture of a first mixture containing chlorodifluoromethane (R22) and hexafluoropropylene (HFP) and an extraction solvent containing at least one chlorine-containing compound selected from the group consisting of methylene chloride, chloroform, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, trichloroethylene, and tetrachloroethylene, and an extractive distillation step of distilling the extraction mixture to obtain a first distillate mainly composed of HFP and a first bottom product mainly composed of the extraction solvent and containing R22.
  • an extraction mixture which is a mixture of a first mixture containing chlorodifluoromethane (R22)
  • At least one chlorine-containing compound selected from the group consisting of methylene chloride, chloroform, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, trichloroethylene, and tetrachloroethylene will also be referred to as a "CL compound”.
  • the separation method of the present embodiment may include steps other than the mixing step and the extractive distillation step.
  • the other steps include, for example, a second distillation step of distilling the first bottoms to obtain a second distillate containing R22 as a main component.
  • the separation method of the present embodiment preferably further includes a second distillation step.
  • the separation method of the present embodiment by using a CL compound as an extraction solvent, among compounds having high or no flash points, highly efficient separation of R22 and HFP was achieved.
  • the flash point values of some of the CL compounds used as the extraction solvent in the separation method of this embodiment are shown in Table 1 below.
  • the flash point values of methanol, dimethylformamide, and acetone which are examples of compounds with low flash points, are also shown in Table 1 below.
  • the flash point values shown in Table 1 below are values obtained by a measurement method in accordance with JIS K2265 (2007).
  • the CL compound used as the extraction solvent in the separation method of this embodiment is preferably a compound that has no flash point or a flash point of 250° C.
  • a compound that has no flash point or a flash point of 300° C. or higher more preferably a compound that has no flash point or a flash point of 300° C. or higher, even more preferably a compound that has no flash point or a flash point of 350° C. or higher, particularly preferably a compound that has no flash point or a flash point of 400° C. or higher, and extremely preferably a compound that has no flash point.
  • an extraction mixture is obtained, which is a mixture of a first mixture containing R22 and HFP and an extraction solvent containing a CL compound.
  • the first mixture contains at least R22 and HFP, and may further contain other compounds.
  • other compounds contained in the first mixture include compounds generated by the thermal decomposition reaction of R22.
  • Specific examples of other compounds contained in the first mixture include chlorotrifluoroethylene, tetrafluoroethylene, trifluoroethylene, perfluorocyclobutane, 1,1,1,2,3,3,3-heptafluoropropane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, and dichlorodifluoromethane.
  • chlorotrifluoroethylene is also referred to as "CTFE”
  • TFE tetrafluoroethylene
  • the number of other compounds contained in the first mixture may be only one type, or may be two or more types.
  • the total content of R22 and HFP in the entire first mixture is, for example, 50 mol% or more, may be 80 mol% or more, 90 mol% or more, 99 mol% or more, or may be 100 mol%.
  • the content of CTFE in the entire first mixture can be less than 10 mol%, can be 0.01 mol% to 5 mol%, or can be 0.01 mol% to 2 mol%.
  • the molar ratio of HFP to R22 contained in the first mixture is not particularly limited.
  • the molar ratio of the HFP content to the R22 content contained in the first mixture may be 1/99 to 50/50, 3/97 to 40/60, or 5/95 to 30/70.
  • the molar ratio of the HFP content to the R22 content contained in the first mixture is also referred to as "molar ratio (HFP/R22)".
  • a mixture of HFP and R22 with a molar ratio (HFP/R22) of 10/90 forms an azeotropic composition, which is difficult to separate by distillation.
  • R22 and HFP can be separated with high efficiency.
  • the extraction solvent contains at least a CL compound and may further contain other compounds. From the viewpoint of separating R22 and HFP with high efficiency, the content of CL compounds in the entire extraction solvent is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 99% by mass or more, and may be 100% by mass.
  • a CL compound having 1 to 2 carbon atoms is preferred because it has a preferred boiling point, and a CL compound having 1 carbon atom is more preferred because it has low toxicity.
  • the number of chlorine atoms contained in one molecule of the CL compound contained in the extraction solvent may be 1 to 6, and from the viewpoint of low toxicity, 1 to 4 is preferable, and 1 to 3 is more preferable.
  • the CL compound contained in the extraction solvent has a carbon number of 2 or more, it may be a saturated compound or an unsaturated compound.
  • CL compounds include methylene chloride, chloroform, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, trichloroethylene, and tetrachloroethylene.
  • the CL compound preferably includes at least one selected from the group consisting of 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, chloroform, and methylene chloride, more preferably includes at least one selected from the group consisting of chloroform and methylene chloride, and further preferably includes chloroform.
  • the extraction solvent may contain only one type of CL compound, or may contain two or more types of CL compounds.
  • the CL compound preferably has a boiling point of 40 to 130 ° C., more preferably has a boiling point of 40 to 80 ° C., and even more preferably has a boiling point of 40 to 65 ° C.
  • the boiling point of the CL compound is equal to or higher than the lower limit, the difference between the boiling point of R22 and the boiling point of HFP becomes large, making it easier to separate R22 and HFP with high efficiency, and also easier to separate R22 and the CL compound in the second distillation step described below.
  • the boiling point of the CL compound is equal to or lower than the upper limit, distillation at a low temperature is possible in the extractive distillation step and the second distillation step.
  • Table 2 The boiling points of some of the CL compounds used as the extraction solvent in the separation method of this embodiment are shown in Table 2 below.
  • the CL compound is preferably a compound that makes the relative volatility Rv of R22 to HFP smaller than 0.9 when the CL compound is added in an amount three times the total molar amount of R22 and HFP. That is, the value of relative volatility Rv when three times the amount of the CL compound is added relative to the total molar amount of R22 and HFP is preferably smaller than 0.9. From the viewpoint of separating R22 and HFP with high efficiency, the value of relative volatility Rv when three times the amount of the CL compound is added relative to the total molar amount of R22 and HFP is preferably 0.8 or less, more preferably 0.7 or less, even more preferably 0.6 or less, and particularly preferably 0.5 or less.
  • the CL compound is preferably a compound that makes the relative volatility Rv of R22 to HFP smaller than 0.9 when the CL compound is added in an amount equal to the total molar amount of R22 and HFP. That is, even when the CL compound is added in an amount equal to the total molar amount of R22 and HFP, the value of the relative volatility Rv is preferably smaller than 0.9. From the viewpoint of separating R22 and HFP more efficiently, the value of the relative volatility Rv when the CL compound is added in an amount equal to the total molar amount of R22 and HFP is preferably 0.8 or less, more preferably 0.7 or less, even more preferably 0.6 or less, and particularly preferably 0.5 or less.
  • a mixture of R22 and HFP with a molar ratio (HFP/R22) of about 10/90 forms an azeotropic composition, so that the relative volatility Rv is close to 1, making separation by normal distillation difficult.
  • the relative volatility Rv becomes a value farther away from 1, making separation easier. This is presumably because the boiling point of the CL compound is higher than that of R22 and HFP, and the high affinity between the CL compound and R22 makes it difficult for R22 to volatilize, while the low affinity between the CL compound and HFP makes it difficult to hinder the volatilization of HFP.
  • the mixing step from the viewpoint of separating R22 and HFP with high efficiency, it is preferable to select the type of CL compound and adjust the amount of CL compound added so that the relative volatility Rv in the mixture for extraction is less than 0.9.
  • the relative volatility Rv of R22 to HFP is measured as follows. Specifically, a mixture of HFP and R22 with a molar ratio (HFP/R22) of 10/90 and an extraction solvent as required are injected into a 1 L autoclave equipped with a pressure gauge, the temperature is adjusted so that the gauge pressure is 0.19 MPaG, and the mixture is held for one day to stabilize the composition inside the autoclave.
  • the relative volatility Rv means the value when the molar ratio (HFP/R22) is 10/90 and the gauge pressure is 0.19 MPaG.
  • the molar ratio of the amount of the CL compound added in the mixing step is preferably 1/1 to 30/1, more preferably 1/1 to 15/1, and even more preferably 3/1 to 10/1, relative to the total molar amount of R22 and HFP.
  • the molar ratio of the amount of the CL compound added relative to the total molar amount of R22 and HFP in the mixing step is also referred to as "molar ratio (CL/(R22+HFP))".
  • the "molar ratio (CL/(R22+HFP))" represents the molar ratio of the amount of the CL compound supplied to the extractive distillation column to the total amount of R22 and HFP supplied to the extractive distillation column.
  • the timing of adding the extractive solvent to the first mixture in the mixing step is not particularly important as long as it is before the extractive distillation step. From the viewpoint of efficiency of the distillation operation, it is preferable to carry out the extractive distillation step simultaneously with the mixing step in which the first mixture is supplied to the extractive distillation column and the extractive solvent is further supplied to the extractive distillation column to prepare the mixture for extraction in the column.
  • the mixing step for example, an extraction solvent is added to the first mixture to obtain a mixture of the first mixture and the extraction solvent, but an operation of mixing the first mixture with the extraction solvent may be performed separately.
  • the mixture for extraction obtained in the mixing step is distilled to obtain a first distillate mainly composed of HFP and a first bottoms product mainly composed of the extraction solvent and containing R22.
  • the extractive distillation process can be carried out using a commonly used distillation apparatus, for example, a distillation tower such as a plate tower, a packed tower, etc.
  • a distillation tower such as a plate tower, a packed tower, etc.
  • Various conditions of the extractive distillation process for example, the operating temperature, operating pressure, reflux ratio, total number of stages in the distillation tower, position of the charging stage, position of the extraction solvent supply stage, etc., are not particularly limited and can be appropriately selected to achieve the desired separation.
  • the number of stages of the distillation tower can be, for example, 1 to 100, and from the viewpoint of obtaining HFP with high purity, 30 or more is preferable, and 50 or more is more preferable. Since both R22 and HFP have low boiling points, it is preferable to carry out the extractive distillation under pressure, for example, at a pressure of 0 to 5 MPaG (gauge pressure).
  • the temperatures at the top and bottom of the distillation tower are determined according to the operating pressure and the composition of the distillate and bottom products.
  • the temperature at the top of the tower be -60 to 100°C and the temperature at the bottom of the tower be 20 to 300°C.
  • Extractive distillation can be performed in either a batch or continuous manner, or in a semi-continuous manner in which the distillate and bottom products are intermittently withdrawn or intermittently charged, but it is preferable to continuously supply the extraction solvent to the distillation apparatus.
  • the extraction solvent has an affinity for R22. Therefore, by subjecting the mixture for extraction containing R22, HFP, and the extraction solvent to extractive distillation, a first distillate containing HFP as the main component is obtained from the top side of the extractive distillation tower.
  • the composition of this first distillate is not limited as long as it contains HFP as the main component, but the molar fraction of HFP in the first distillate is preferably 90 mol% or more, more preferably 99 mol% or more, even more preferably 99.9 mol% or more, and may be 100 mol%.
  • the molar fraction of R22 in the first distillate is preferably 1/100 or less of the molar fraction of R22 in the first mixture, more preferably 1/500 or less, and may be 0.
  • the molar fraction of R22 in the first distillate is preferably 10 mol% or less, more preferably 1 mol% or less, even more preferably 0.1 mol% or less, and may be 0 mol%.
  • the separation method of the present embodiment may further include a first removal step of removing the other compounds from the first distillate, as necessary.
  • a first bottom product containing R22 which is mainly composed of the extractive solvent and has affinity for the extractive solvent, is obtained from the bottom side of the extractive distillation column.
  • the molar fraction of R22 relative to the total of R22 and HFP contained in the first bottom product is preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 90 mol% or more, particularly preferably 98 mol% or more, and may be 100 mol%.
  • the molar fraction of HFP relative to the total of R22 and HFP contained in the first bottom product is preferably 1/4 or less of the molar fraction of HFP in the first mixture, more preferably 1/10 or less, even more preferably 1/20 or less, and may be 0.
  • the molar fraction of HFP relative to the total of R22 and HFP contained in the first bottom product is preferably 30 mol% or less, more preferably 20 mol% or less, even more preferably 10 mol% or less, particularly preferably 2 mol% or less, and may be 0 mol%.
  • the first bottoms product contains CTFE.
  • the first bottom product preferably further undergoes a second distillation step described below.
  • ⁇ Second distillation step> the first bottom product is distilled to obtain a second distillate mainly composed of R22. At this time, a second bottom product mainly composed of the extracting solvent is obtained. Since the boiling point difference between the extracting solvent contained in the first bottom product and its affinity component R22 is large, the second distillation step can be easily carried out by a normal distillation separation operation.
  • the second distillation step can be carried out using a distillation apparatus similar to that of the above-mentioned extractive distillation step.
  • Various conditions of the second distillation step such as the operating temperature, operating pressure, reflux ratio, total number of stages of the distillation column, position of the charging stage, etc., are not particularly limited and can be appropriately selected to achieve the desired separation.
  • the second distillation step separates the extracting solvent and R22, and a second distillate containing R22 and having a molar fraction of R22 relative to the total of R22 and HFP increased from the molar fraction of R22 relative to the total of R22 and HFP in the first mixture, i.e., R22 is concentrated compared to the first mixture, is obtained from the top side of the distillation column.
  • the molar fraction of R22 in the second distillate is preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 98 mol% or more, and may be 100 mol%.
  • the second distillate containing R22 at a high concentration may be reused as a raw material for producing HFP.
  • the second distillate when the first mixture contains CTFE, the second distillate also contains CTFE.
  • the second distillate may further include an adsorption step of contacting the second distillate with an adsorbent to obtain a purified product mainly composed of R22.
  • the separation method of this embodiment may further include a second removal step of removing the other compounds from the second distillate as necessary.
  • a second bottom product containing an extremely high concentration of the extraction solvent is obtained from the bottom side of the distillation tower.
  • the obtained second bottom product can be directly supplied to the extractive distillation step and reused as the extraction solvent.
  • the second bottom product can also be further refined to recover the extraction solvent and reused in the extractive distillation step.
  • the R22 and HFP contained in the first mixture are efficiently separated in the manner described above.
  • HFP is obtained in high concentration as the main component of the first distillate in the extractive distillation process, and R22 that is more concentrated than the first mixture is obtained as the second distillate in the second distillation process.
  • a first mixture 1 containing R22 and HFP in a predetermined ratio for example, a molar ratio (HFP/R22) of 10/90
  • the extractive distillation column 2 has 1 to 100 stages, and the first mixture 1 is supplied to the extractive distillation column 2.
  • An extractive solvent 3 containing CL compounds at a molar fraction 1 to 30 times the total molar fraction of R22 and HFP contained in the first mixture 1 is supplied to a stage above the stage to which the first mixture 1 is supplied to the extractive distillation column 2.
  • a first distillate 4 containing HFP, which is a component that does not have affinity for the extractive solvent 3, as a main component is extracted from the top side of the extractive distillation column 2.
  • the molar fraction of HFP relative to the total of R22 and HFP is increased compared to a similar molar fraction in the first mixture 1.
  • a mixture having an increased molar fraction of HFP compared to the first mixture 1 that is, a mixture having a concentrated molar concentration of HFP, is obtained as the first distillate 4.
  • a mixture containing the extractive solvent as a main component and R22 is withdrawn as a first bottoms product 5 from the bottom side of the extractive distillation column 2.
  • the first bottoms product 5 is then fed to a solvent recovery column 6, which is another distillation column operated under pressure, for example, and a second distillate 7 substantially free of the extractive solvent is obtained from the top side of the column.
  • the molar fraction of R22 relative to the total of R22 and HFP is increased compared to the similar molar fraction in the first mixture 1.
  • a mixture having an increased molar fraction of R22 compared to the first mixture 1 i.e., a mixture having a concentrated molar concentration of R22, is obtained as the second distillate 7.
  • the term "substantially free of A" means that the content of A is 0.1 mol % or less.
  • a second bottom product 8 containing the extraction solvent 3 as a main component is obtained from the bottom side of the solvent recovery column 6.
  • the extraction solvent 3 is thus recovered, and the recovered extraction solvent 3 is reused.
  • the reused extraction solvent 3 is heated or cooled by a heat exchanger 9 as necessary, and then supplied to the extractive distillation column 2.
  • reference numeral 10 denotes a condenser
  • reference numeral 11 denotes a heater.
  • the position (stage) at which the extraction solvent 3 is supplied is preferably a stage located above the stage at which the first mixture 1 is supplied, and the extraction solvent 3 may be supplied to the same stage at which the reflux is supplied. In some cases, the extraction solvent 3 may be supplied to the same stage as the first mixture 1. Furthermore, the first mixture 1 may be mixed with the extraction solvent 3 in advance before being supplied to the extractive distillation column 2 and then supplied.
  • the flow of materials when the first mixture contains CTFE is as follows. Specifically, a first mixture 1 containing R22, HFP, and CTFE is supplied to a stage below the center of an extractive distillation column 2, and an extraction solvent 3 containing CL compounds is supplied to a stage of the extractive distillation column 2 above the stage to which the first mixture 1 is supplied, and distillation is performed. Then, a first distillate 4 containing HFP as a main component is withdrawn from the top side of the extractive distillation column 2, and a mixture containing the extraction solvent as a main component and R22 and CTFE as a first bottoms product 5 is withdrawn from the bottom side of the extractive distillation column 2.
  • the first bottom product 5 is supplied to a solvent recovery column 6 and distilled, and a second distillate 7 substantially free of the extractive solvent and containing R22 and CTFE is obtained from the top side of the solvent recovery column 6, and a second bottom product 8 mainly containing the extractive solvent 3 is obtained from the bottom side of the solvent recovery column 6.
  • the extractive solvent 3 recovered as the second bottom product 8 is supplied to the extractive distillation column 2 for reuse.
  • Example 1 A mixture of R22 and HFP having a molar ratio (HFP/R22) of 15/85 was continuously supplied at 1 kmol/h from the 50th plate from the top of a 60-plate distillation column, and distillation was performed, the first distillate was continuously withdrawn from the top side at 0.55 kmol/h, and the first bottom product was continuously withdrawn from the bottom side at 0.45 kmol/h.
  • the pressure in the distillation column was 0.5 MPaG (gauge pressure), the top temperature was 6.23°C, and the bottom temperature was 7.03°C.
  • each component in the first distillate as a whole was 94.4 mol % for R22 and 5.6 mol % for HFP, while the content of each component in the first bottoms as a whole was 73.6 mol % for R22 and 26.4 mol % for HFP.
  • Example 2 A mixture of R22 and HFP having a molar ratio (HFP/R22) of 15/85 was continuously supplied at a rate of 1 kmol per hour from the 50th plate from the top of a 60-plate extractive distillation column, and chloroform was continuously supplied at a rate of 3 kmol per hour from the 15th plate from the top of the column. Then, extractive distillation was continuously performed with the pressure in the extractive distillation column set to 0.5 MPaG (gauge pressure), the column top temperature set to 22.09° C., and the column bottom temperature set to 57.99° C. A first distillate was distilled from the top side of the extractive distillation column at a rate of 0.12 kmol per hour, and a first bottom product was discharged from the bottom side of the column at a rate of 3.88 kmol per hour.
  • HFP/R22 molar ratio
  • the first bottom product was continuously supplied at 1 kmol per hour from the 10th plate from the top of a 30-plate solvent recovery tower, and distillation was continuously performed at a pressure of 0.4 MPaG (gauge pressure) in the solvent recovery tower, a top temperature of 1.0° C., and a bottom temperature of 120.63° C.
  • the second distillate was distilled from the top side of the solvent recovery tower at a rate of 0.88 kmol per hour, and the second bottom product was withdrawn from the bottom side at a rate of 3 kmol per hour.
  • the composition of the second distillate and the second bottoms product was analyzed, and the content of each component relative to the entire second distillate was 96.1 mol % for R22, 3.9 mol % for HFP, and the remainder was the extraction solvent. On the other hand, the content of each component relative to the entire second bottoms product was 99.99 mol % or more for chloroform.
  • Example 2 is an embodiment and Example 1 is a comparative example. As shown in Table 4, in Example 2, R22 and HFP are separated more efficiently than in Example 1, and HFP with high purity is obtained.
  • R22 and HFP can be efficiently separated from a mixture containing R22 and HFP. Furthermore, according to one embodiment of the present disclosure, HFP, which is useful as a raw material for, for example, the production of fluororesins, can be obtained in high concentration, which has great economic benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

R22とHFPとを含む第1の混合物と、塩化メチレン、クロロホルム、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、トリクロロエチレン、及びテトラクロロエチレンからなる群より選択される少なくとも1つの含塩素化合物を含む抽出溶剤と、の混合物である抽出用混合物を得る混合工程と、抽出用混合物を蒸留してHFPを主成分とする第1の留出物と抽出溶剤を主成分としR22を含む第1の缶出物とをそれぞれ得る抽出蒸留工程と、を有するR22とHFPの分離方法。

Description

クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法
 本開示は、クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法に関する。
 ヘキサフルオロプロピレンは、フッ素樹脂等の原料として用いられる化合物であり、例えば、クロロジフルオロメタンの熱分解反応により得られる。以下、ヘキサフルオロプロピレンを「HFP」ともいい、クロロジフルオロメタンを「R22」ともいう。
 R22の熱分解反応により純度の高いHFPを得ようとする場合、未反応のR22と生成したHFPとの分離が求められる。原料と反応生成物とを分離する方法として、例えば沸点差を利用した蒸留が挙げられるが、R22とHFPとは共沸組成物又は共沸様組成物を形成するため、蒸留による分離は困難である。
 R22とHFPを分離する方法として、特許文献1には、メタノール等の有極性有機溶剤を用いた抽出蒸留が開示されている。
特公昭39-19624号公報
 しかしながら、特許文献1に開示された有極性有機溶剤はいずれも、後述するように、引火点が低い化合物である。そこで、引火点が低い化合物を用いない、R22とHFPの効率的な分離が求められる。
 本開示の一態様は、引火点が高い又は引火点が無い化合物である抽出溶剤を用いて、共沸組成物又は共沸様組成物の形成により分離が困難なR22とHFPとの混合物から、R22とHFPを高効率で分離する分離方法を提供することを目的とする。
 本開示は以下の態様を含む。
<1> クロロジフルオロメタンとヘキサフルオロプロピレンとを含む第1の混合物と、塩化メチレン、クロロホルム、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、トリクロロエチレン、及びテトラクロロエチレンからなる群より選択される少なくとも1つの含塩素化合物を含む抽出溶剤と、の混合物である抽出用混合物を得る混合工程と、
 前記抽出用混合物を蒸留して、ヘキサフルオロプロピレンを主成分とする第1の留出物と、前記抽出溶剤を主成分としクロロジフルオロメタンを含む第1の缶出物と、をそれぞれ得る抽出蒸留工程と、
 を有する、クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<2> 前記含塩素化合物は、40~130℃の沸点を有する、<1>に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<3> 前記含塩素化合物は、クロロジフルオロメタン及びヘキサフルオロプロピレンの合計モル量に対し3倍量の前記含塩素化合物を添加したときに、クロロジフルオロメタンのヘキサフルオロプロピレンに対する比揮発度Rvを0.9より小さくする化合物である、<1>又は<2>に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<4> 前記含塩素化合物は、クロロジフルオロメタン及びヘキサフルオロプロピレンの合計モル量に対し1倍量の前記含塩素化合物を添加したときに、クロロジフルオロメタンのヘキサフルオロプロピレンに対する比揮発度Rvを0.9より小さくする化合物である、<1>~<3>のいずれか1つに記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<5> 前記抽出溶剤は、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロホルム、及び塩化メチレンからなる群より選ばれる少なくとも1つの含塩素化合物を含む、<1>~<4>のいずれか1つに記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<6> 前記混合工程における前記含塩素化合物の添加量のモル比は、クロロジフルオロメタン及びヘキサフルオロプロピレンの合計モル量に対し、1/1~30/1である、<1>~<5>のいずれか1つに記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<7> 前記第1の缶出物を蒸留して、前記クロロジフルオロメタンを主成分とする第2の留出物を得る第2の蒸留工程をさらに有する、<1>~<6>のいずれか1つに記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<8> 前記第1の混合物は、クロロトリフルオロエチレンをさらに含み、
 前記第1の缶出物は、クロロトリフルオロエチレンをさらに含む、
 <1>~<7>のいずれか1つに記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
<9> 前記第1の混合物は、クロロトリフルオロエチレンをさらに含み、
 前記第1の缶出物は、クロロトリフルオロエチレンをさらに含み、
 前記第2の留出物は、クロロトリフルオロエチレンをさらに含む、
 <7>に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
 本開示の一態様によれば、引火点が高い又は引火点が無い化合物である抽出溶剤を用いて、共沸組成物又は共沸様組成物の形成により分離が困難なR22とHFPとの混合物から、R22とHFPを高効率で分離する分離方法が提供される。
本開示の分離方法における物質の流れの一例を示す図である。
 以下、本開示の実施形態について詳細に説明する。但し、本開示は以下の実施形態に限定されない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の割合は、特に記載しない限り、組成物中に存在する当該複数種の物質の合計の割合を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
 本開示において「留出物」とは、蒸留塔の塔頂側から留出される物質をいい、「缶出物」とは、蒸留塔の塔底側から留出される物質をいう。
 本開示において「主成分」とは、当該成分以外の成分の量が相対的に少ないことを意味する。「主成分」の量は全体の50モル%以上が好ましく、より好ましくは60モル%以上、さらに好ましくは70モル%以上、最も好ましくは80モル%以上である。
 本開示において、特に断りのない限り、化合物の沸点は常圧での値であり、常圧は1.013×10Paである。
[分離方法]
 本開示の一実施形態における分離方法は、クロロジフルオロメタン(R22)とヘキサフルオロプロピレン(HFP)とを含む第1の混合物と、塩化メチレン、クロロホルム、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、トリクロロエチレン、及びテトラクロロエチレンからなる群より選択される少なくとも1つの含塩素化合物を含む抽出溶剤と、の混合物である抽出用混合物を得る混合工程と、前記抽出用混合物を蒸留して、HFPを主成分とする第1の留出物と、前記抽出溶剤を主成分としR22を含む第1の缶出物と、をそれぞれ得る抽出蒸留工程と、を有する。以下、塩化メチレン、クロロホルム、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、トリクロロエチレン、及びテトラクロロエチレンからなる群より選択される少なくとも1つの含塩素化合物を「CL化合物」ともいう。
 本実施形態の分離方法は、混合工程及び抽出蒸留工程以外の他の工程を有してもよい。
 他の工程としては、例えば、第1の缶出物を蒸留して、R22を主成分とする第2の留出物を得る第2の蒸留工程等が挙げられる。本実施形態の分離方法は、第2の蒸留工程をさらに有していることが好ましい。
 本実施形態の分離方法では、引火点が高い又は引火点が無い化合物のなかでも、CL化合物を抽出溶剤として用いることで、R22とHFPの高効率な分離を実現した。
 本実施形態の分離方法において抽出溶剤として用いられるCL化合物の一部について、引火点の値を下記表1に示す。また、比較として、引火点が低い化合物の一例であるメタノール、ジメチルホルムアミド、及びアセトンについて、引火点の値を併せて下記表1に示す。なお、下記表1に示す引火点の値は、JIS K2265(2007年)に準拠した測定方法により得られた値である。
 本実施形態の分離方法において抽出溶剤として用いるCL化合物は、引火点が無い又は250℃以上の化合物が好ましく、引火点が無い又は300℃以上の化合物がより好ましく、引火点が無い又は350℃以上の化合物がさらに好ましく、引火点が無い又は400℃以上の化合物が特に好ましく、引火点が無い化合物が極めて好ましい。
 以下、本実施形態の分離方法が有する各工程について説明する。
<混合工程>
 混合工程では、R22とHFPとを含む第1の混合物と、CL化合物を含む抽出溶剤と、の混合物である抽出用混合物を得る。
(第1の混合物)
 第1の混合物は、少なくともR22とHFPとを含み、さらに他の化合物を含んでもよい。第1の混合物に含まれる他の化合物としては、R22の熱分解反応により生成する化合物等が挙げられる。第1の混合物に含まれる他の化合物として、具体的には、クロロトリフルオロエチレン、テトラフルオロエチレン、トリフルオロエチレン、パーフルオロシクロブタン、1,1,1,2,3,3,3-ヘプタフルオロプロパン、1,1,1,2-テトラフルオロエタン、1,1,1,2,2‐ペンタフルオロエタン、ジクロロジフルオロメタン等が挙げられる。以下、クロロトリフルオロエチレンを「CTFE」ともいい、テトラフルオロエチレンを「TFE」ともいう。
 第1の混合物が他の化合物を含む場合、第1の混合物に含まれる他の化合物は、1種のみでもよく、2種以上でもよい。
 第1の混合物全体に対するR22及びHFPの合計含有率としては、例えば50モル%以上が挙げられ、80モル以上であってもよく、90モル以上であってもよく、99モル%以上であってもよく、100モル%であってもよい。
 第1の混合物が他の化合物の中でもCTFEを含む場合、第1の混合物全体に対するCTFEの含有率は、10モル%未満が挙げられ、0.01モル%~5モル%であってもよく、0.01モル%~2モル%であってもよい。
 第1の混合物に含まれるHFPとR22とのモル比は、特に限定されるものではない。第1の混合物に含まれるHFPの含有量におけるR22含有量に対するモル比は、1/99~50/50であってもよく、3/97~40/60であってもよく、5/95~30/70であってもよい。以下、第1の混合物に含まれるHFPの含有量におけるR22含有量に対するモル比を「モル比(HFP/R22)」ともいう。
 特に、モル比(HFP/R22)が10/90であるHFPとR22との混合物は共沸組成物となり、蒸留による分離は困難であるが、本実施形態の分離方法によれば、R22とHFPを高効率で分離できる。
(抽出溶剤)
 抽出溶剤は、少なくともCL化合物を含み、さらに他の化合物を含んでもよい。
 抽出溶剤全体に対するCL化合物の含有率は、R22とHFPを高効率で分離する観点から、90質量%以上が好ましく、95質量%以上がより好ましく、99質量%以上がさらに好ましく、100質量%であってもよい。
 抽出溶剤に含まれるCL化合物としては、好ましい沸点を有する点から、炭素数が1~2であるCL化合物が好ましく、毒性が低い点から炭素数が1であるCL化合物がより好ましい。
 抽出溶剤に含まれるCL化合物の1分子中に含まれる塩素原子の個数としては、1~6が挙げられ、毒性が低い点から1~4が好ましく、1~3がより好ましい。
 抽出溶剤に含まれるCL化合物は、炭素数が2以上である場合、飽和化合物であってもよく、不飽和化合物であってもよい。
 CL化合物の具体例としては、塩化メチレン、クロロホルム、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、トリクロロエチレン、及びテトラクロロエチレンが挙げられる。
 CL化合物は、その中でも、R22とHFPを高効率で分離する観点から、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロホルム、及び塩化メチレンからなる群より選ばれる少なくとも1つを含むことが好ましく、クロロホルム及び塩化メチレンからなる群より選ばれる少なくとも1つを含むことがより好ましく、クロロホルムを含むことがさらに好ましい。
 抽出溶剤は、CL化合物を1種のみ含んでもよく、2種以上含んでもよい。
 CL化合物は、R22とHFPを高効率で分離する観点から、40~130℃の沸点を有することが好ましく、40~80℃の沸点を有することがより好ましく、40~65℃の沸点を有することがさらに好ましい。CL化合物の沸点が前記下限値以上であることにより、R22の沸点との差及びHFPの沸点との差が大きくなり、R22とHFPを高効率で分離しやすくなるとともに、後述する第2の蒸留工程等においてR22とCL化合物の分離もしやすくなる。また、CL化合物の沸点が前記上限値以下であることにより、抽出蒸留工程及び第2の蒸留工程において低い温度での蒸留が可能となる。
 本実施形態の分離方法において抽出溶剤として用いられるCL化合物の一部について、沸点の値を下記表2に示す。
 CL化合物は、R22とHFPを高効率で分離する観点から、R22及びHFPの合計モル量に対し3倍量のCL化合物を添加したときに、R22のHFPに対する比揮発度Rvを0.9より小さくする化合物であることが好ましい。
 つまり、R22及びHFPの合計モル量に対し3倍量のCL化合物を添加したときにおける比揮発度Rvの値は、0.9より小さいことが好ましい。R22及びHFPの合計モル量に対し3倍量のCL化合物を添加したときにおける比揮発度Rvの値は、R22とHFPを高効率で分離する観点から、0.8以下が好ましく、0.7以下がより好ましく、0.6以下がさらに好ましく、0.5以下が特に好ましい。
 CL化合物は、R22とHFPをさらに高効率で分離する観点から、R22及びHFPの合計モル量に対し1倍量のCL化合物を添加したときに、R22のHFPに対する比揮発度Rvを0.9より小さくする化合物であることが好ましい。
 つまり、R22及びHFPの合計モル量に対し1倍量のCL化合物を添加したときであっても、比揮発度Rvの値が0.9より小さいことが好ましい。R22及びHFPの合計モル量に対し1倍量のCL化合物を添加したときにおける比揮発度Rvの値は、R22とHFPをさらに高効率で分離する観点から、0.8以下が好ましく、0.7以下がより好ましく、0.6以下がさらに好ましく、0.5以下が特に好ましい。
 例えば、モル比(HFP/R22)が10/90付近のR22及びHFPからなる混合物は、共沸組成物を形成するため、比揮発度Rvが1に近く、通常の蒸留による分離は困難である。一方、上記R22とHFPとの混合物にCL化合物を添加することで、比揮発度Rvが1から離れた値となり、分離が容易となる。その理由は、CL化合物の沸点がR22及びHFPの沸点より高く、かつ、CL化合物とR22との親和性が高いことでR22を揮発しにくくするとともに、CL化合物とHFPとの親和性が低いことでHFPの揮発を妨げにくいためと推測される。
 そのため、混合工程においては、R22とHFPを高効率で分離する観点から、抽出用混合物における比揮発度Rvが0.9より小さくなるようにCL化合物の種類の選択及びCL化合物の添加量の調整を行うことが好ましい。混合工程においては、比揮発度Rvが0.8以下となるようにCL化合物の種類の選択及びCL化合物の添加量の調整を行うことがより好ましく、比揮発度Rvが0.7以下となるようにCL化合物の種類の選択及びCL化合物の添加量の調整を行うことがさらに好ましく、比揮発度Rvが0.6以下となるようにCL化合物の種類の選択及びCL化合物の添加量の調整を行うことが特に好ましく、比揮発度Rvが0.5以下となるようにCL化合物の種類の選択及びCL化合物の添加量の調整を行うことが極めて好ましく、比揮発度Rvが0.4以下となるようにCL化合物の種類の選択及びCL化合物の添加量の調整を行うことが最も好ましい。
 R22のHFPに対する比揮発度Rvは、下記式(3)で表される。
 式(3):Rv=(気相部におけるR22のモル分率/液相部におけるR22のモル分率)/(気相部におけるHFPのモル分率/液相部におけるHFPのモル分率)
 また、R22のHFPに対する比揮発度Rvは、以下のようにして測定される。
 具体的には、1Lの圧力計付きオートクレーブに、モル比(HFP/R22)が10/90であるHFP及びR22の混合物と、必要に応じて抽出溶剤と、を注入し、ゲージ圧が0.19MPaGとなるように温度を調整し、1日保持して、オートクレーブ内の組成を安定化させる。なお、R22及びHFPの合計モル量に対し3倍量のCL化合物を添加したときにおける比揮発度Rvの値を測定する場合は、上記必要に応じて注入する抽出溶剤として、R22及びHFPの合計モル量に対し3倍量のCL化合物を添加する。
 次いで、気相および液相からそれぞれ測定試料を採取して、完全にガス化させた後にガスクロマトグラフィーで分析を行い、R22のHFPに対する比揮発度Rvを算出する。
 つまり、上記比揮発度Rvは、モル比(HFP/R22)が10/90であり、かつ、ゲージ圧が0.19MPaGであるときの値を意味する。
 混合工程におけるCL化合物の添加量のモル比は、R22とHFPを高効率で分離する観点から、R22及びHFPの合計モル量に対し、1/1~30/1が好ましく、1/1~15/1がより好ましく、3/1~10/1がさらに好ましい。以下、混合工程におけるR22及びHFPの合計モル量に対するCL化合物の添加量のモル比を「モル比(CL/(R22+HFP))」ともいう。
 例えば後述するように、抽出蒸留塔にR22とHFPとを含む第1の混合物を供給し、さらに抽出蒸留塔にCL化合物を含む抽出溶剤を供給する場合、「モル比(CL/(R22+HFP))」は、抽出蒸留塔に供給するR22及びHFPの合計供給量に対する抽出蒸留塔に供給するCL化合物の供給量のモル比を表す。
 混合工程における第1の混合物に対する抽出溶剤の添加は、抽出蒸留工程の前であれば特にタイミングを問わない。なお、蒸留作業の効率の観点から、抽出蒸留塔に第1の混合物を供給した後、さらに抽出蒸留塔に抽出溶剤を供給して塔内で抽出用混合物を調製する混合工程と同時に、抽出蒸留工程を行うことが好ましい。
 なお、混合工程においては、例えば第1の混合物に対して抽出溶剤を添加することで、第1の混合物と抽出溶剤との混合物が得られるが、第1の混合物と抽出溶剤とを混合する操作を別途行ってもよい。
<抽出蒸留工程>
 抽出蒸留工程では、混合工程によって得られた抽出用混合物を蒸留して、HFPを主成分とする第1の留出物と、抽出溶剤を主成分としR22を含む第1の缶出物と、をそれぞれ得る。
 抽出蒸留工程は、一般に使用される蒸留装置、例えば棚段塔等の蒸留塔、充填塔などを使用して実施できる。抽出蒸留工程の種々の条件、例えば、操作温度、操作圧力、還流比、蒸留塔の総段数、仕込み段の位置、抽出溶剤供給段の位置等は、特に限定されるものではなく、目的とする分離を達成するために適宜選択できる。抽出蒸留工程に棚段塔である蒸留塔を用いる場合、蒸留塔の段数としては、例えば1~100が挙げられ、純度の高いHFPを得る観点から、30以上が好ましく、50以上がより好ましい。R22及びHFPはいずれも低い沸点を有するため、加圧下で抽出蒸留するのが好ましく、例えば0~5MPaG(ゲージ圧)の圧力とすることが好ましい。
 さらに、蒸留塔の塔頂部及び塔底部の温度は、操作圧力並びに留出物及び缶出物の組成に応じて決まる。塔頂部及び塔底部に設けられる凝縮器及び再加熱器の温度を考慮して、経済的に蒸留操作を行うためには、塔頂部の温度は-60~100℃、塔底部の温度は20~300℃とするのが好ましい。抽出蒸留は、バッチ式でも連続式でもよく、場合により留出物及び缶出物を間欠的に抜き出したり、間欠的に仕込みを行ったりする半連続式でも実施できるが、抽出溶剤については、蒸留装置に連続的に供給することが好ましい。
 抽出溶剤はR22と親和性を有する。したがって、R22とHFPと抽出溶剤とを含む抽出用混合物を抽出蒸留することにより、HFPを主成分とする第1の留出物が、抽出蒸留塔の塔頂側から得られる。この第1の留出物は、HFPを主成分として含むものであれば組成は限定されないが、第1の留出物におけるHFPのモル分率は、90モル%以上が好ましく、99モル%以上がより好ましく、99.9モル%以上がさらに好ましく、100モル%であってもよい。また、第1の留出物におけるR22のモル分率は、第1の混合物におけるR22のモル分率の1/100以下が好ましく、1/500以下がより好ましく、0であってもよい。第1の留出物におけるR22のモル分率は、10モル%以下が好ましく、1モル%以下がより好ましく、0.1モル%以下がさらに好ましく、0モル%であってもよい。
 第1の留出物がHFP及び後述するCTFE以外の他の化合物を含む場合、本実施形態の分離方法は、必要に応じて、第1の留出物から前記他の化合物を除去する第1の除去工程をさらに有してもよい。
 抽出蒸留塔の塔底側から、抽出溶剤を主成分とし、かつ、この抽出溶剤に対して親和性を有するR22を含む第1の缶出物が得られる。第1の缶出物に含まれるR22及びHFPの合計に対するR22のモル分率は、70モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上がさらに好ましく、98モル%以上が特に好ましく、100モル%であってもよい。また、第1の缶出物に含まれるR22及びHFPの合計に対するHFPのモル分率は、第1の混合物におけるHFPのモル分率の1/4以下が好ましく、1/10以下がより好ましく、1/20以下がさらに好ましく、0であってもよい。第1の缶出物に含まれるR22及びHFPの合計に対するHFPのモル分率は、30モル%以下が好ましく、20モル%以下がより好ましく、10モル%以下がさらに好ましく、2モル%以下が特に好ましく、0モル%であってもよい。
 なお、第1の混合物がCTFEを含む場合、第1の缶出物はCTFEを含む。
 第1の缶出物は、後述する第2の蒸留工程をさらに経ることが好ましい。
<第2の蒸留工程>
 第2の蒸留工程では、第1の缶出物を蒸留して、R22を主成分とする第2の留出物を得る。このとき、抽出溶剤を主成分とする第2の缶出物が得られる。第1の缶出物に含まれる抽出溶剤とその親和性成分であるR22とは沸点差が大きいため、第2の蒸留工程においては、通常の蒸留分離操作により容易に実施できる。第2の蒸留工程は、前述の抽出蒸留工程と同様の蒸留装置を使用して実施できる。第2の蒸留工程の種々の条件、例えば、操作温度、操作圧力、還流比、蒸留塔の総段数、仕込み段の位置等は、特に限定されるものではなく、目的とする分離を達成するために適宜選択できる。
 第2の蒸留工程により、抽出溶剤とR22とが分離され、R22を含み、かつR22及びHFPの合計に対するR22のモル分率が、第1の混合物におけるR22及びHFPの合計に対するR22のモル分率より増大された、すなわちR22が第1の混合物に比べて濃縮された第2の留出物が、蒸留塔の塔頂側より得られる。第2の留出物におけるR22のモル分率は、70モル%以上が好ましく、80モル%以上がより好ましく、98モル%以上がさらに好ましく、100モル%であってもよい。R22を高濃度で含む第2の留出物は、HFPを製造するための原料として再使用されてもよい。
 なお、第1の混合物がCTFEを含む場合、第2の留出物もCTFEを含む。第2の留出物がCTFEを含む場合、第2の留出物は、第2の留出物と吸着剤とを接触させ、R22を主成分とする精製物を得る吸着工程をさらに有してもよい。また、第2の留出物がR22及びCTFE以外の他の化合物を含む場合、本実施形態の分離方法は、必要に応じて、第2の留出物から前記他の化合物を除去する第2の除去工程をさらに有してもよい。
 第2の蒸留工程では、蒸留塔の塔底側から抽出溶剤を極めて高濃度で含有する第2の缶出物が得られる。得られる第2の缶出物は、そのまま抽出蒸留工程に供給し、抽出溶剤として再使用できる。また、第2の缶出物をさらに精製して抽出溶剤を回収し、抽出蒸留工程で再使用することもできる。
 本実施形態では、以上のようにして、第1の混合物中に含まれていたR22とHFPが効率よく分離される。それにより、HFPが、抽出蒸留工程における第1の留出物の主成分として高濃度で得られ、第2の蒸留工程において第2の留出物として、第1の混合物より濃縮されたR22が得られる。
 次に、本実施形態の分離方法における物質の流れを、図1を参照して説明する。
 図1に示すように、R22とHFPとを所定の割合、例えばモル比(HFP/R22)が10/90で含む第1の混合物1は、例えば加圧で操作される抽出蒸留塔2に供給される。抽出蒸留塔2としては、段数が1~100段のものが使用され、第1の混合物1は、抽出蒸留塔2に供給される。そして、第1の混合物1に含まれるR22及びHFPの合計モル分率に対して1~30倍のモル分率のCL化合物を含む抽出溶剤3を、抽出蒸留塔2の第1の混合物1の供給段より上側の段に供給する。こうして蒸留を行い、抽出溶剤3に対して親和性を有しない成分であるHFPを主成分とする第1の留出物4を、抽出蒸留塔2の塔頂側から抜き出す。得られる第1の留出物4においては、R22とHFPの合計に対するHFPのモル分率が、第1の混合物1における同様なモル分率に比べて増大されている。こうして第1の留出物4として、第1の混合物1に比べてHFPのモル分率が増大され、すなわちHFPのモル濃度が濃縮された混合物が得られる。
 また、抽出蒸留塔2の塔底側から、第1の缶出物5として、抽出溶剤を主成分としR22を含む混合物を抜き出す。次いで、この第1の缶出物5を、例えば加圧で操作される別の蒸留塔である溶剤回収塔6に供給し、実質的に抽出溶剤を含まない第2の留出物7を塔頂側から得る。得られる第2の留出物7においては、R22とHFPの合計に対するR22のモル分率が、第1の混合物1における同様なモル分率に比べて増大されている。こうして第2の留出物7として、第1の混合物1に比べてR22のモル分率が増大され、すなわちR22のモル濃度が濃縮された混合物が得られる。
 なお、本明細書において、「実質的にAを含まない」なる語は、Aの含有量が0.1モル%以下であることを意味する。
 溶剤回収塔6の塔底側からは、抽出溶剤3を主成分とする第2の缶出物8が得られる。こうして抽出溶剤3は回収され、回収された抽出溶剤3は再使用される。再使用される抽出溶剤3は、必要に応じて熱交換器9により加熱または冷却された後に、抽出蒸留塔2に供給される。
 なお、図1において、符号10は凝縮器を示し、符号11は加熱器を示す。
 抽出蒸留塔2において抽出溶剤3を供給する位置(段)は、第1の混合物1を供給する段より上方に位置する段であるのが好ましく、還流を供給する段と同じ段に抽出溶剤3を供給してもよい。場合により、第1の混合物1と同じ段に抽出溶剤3を供給してもよい。さらに、第1の混合物1は、抽出蒸留塔2に供給する前に、予め抽出溶剤3と混合してから供給してもよい。
 以上の装置及び操作により、R22及びHFPを含む第1の混合物1から、R22とHFPとを分離し、実質的にR22を含まないHFPを得ることができる。
 なお、第1の混合物がCTFEを含む場合における物質の流れは、以下のとおりである。
 具体的には、R22とHFPとCTFEとを含む第1の混合物1を抽出蒸留塔2の中央部より下側の段に供給し、CL化合物を含む抽出溶剤3を抽出蒸留塔2の第1の混合物1の供給段より上側の段に供給し、蒸留を行う。そして、HFPを主成分とする第1の留出物4を抽出蒸留塔2の塔頂側から抜き出し、抽出蒸留塔2の塔底側から第1の缶出物5として、抽出溶剤を主成分としR22とCTFEとを含む混合物を抜き出す。
 次いで、第1の缶出物5を溶剤回収塔6に供給して蒸留し、溶剤回収塔6の塔頂側から実質的に抽出溶剤を含まずR22とCTFEとを含む第2の留出物7を得て、溶剤回収塔6の塔底側から抽出溶剤3を主成分とする第2の缶出物8を得る。第2の缶出物8として回収された抽出溶剤3は、抽出蒸留塔2に供給されて再使用される。
 以上の装置及び操作により、R22、CTFE、及びHFPを含む第1の混合物1から、R22及びCTFEとHFPとを分離し、実質的にR22及びCTFEを含まないHFPを得ることができる。
 以下、実施例によって本開示の実施形態を詳細に説明するが、本開示の実施形態はこれらに限定されない。
[比揮発度Rvの測定]
 前述の方法により、モル比(HFP/R22)が10/90であるR22とHFPとの混合物にCL化合物を添加したときにおける、R22のHFPに対する比揮発度Rvの値を測定した。R22及びHFPの合計量に対するCL化合物の添加量のモル比(CL/(R22+HFP))とCL化合物添加後の比揮発度Rvとの関係を表3に示す。
 また、CL化合物の沸点を併せて表3に示す。
[蒸留シミュレーション]
 上記R22のHFPに対する比揮発度Rvの測定により求められた上記表に記載の結果を使用し、既知の熱力学特性に基づく計算手法(Chemcad)(Chemstations社の化学工学プロセスシミュレータ)により、以下に示す抽出蒸留および溶剤回収蒸留のシミュレーションを行った。結果を表4に示す。表中「-」は、溶剤を用いていないこと、又は溶剤回収塔を用いた蒸留を行っていないことを意味する。
(例1)
 段数60段の蒸留塔の塔頂部から50段目から、モル比(HFP/R22)が15/85であるR22とHFPとの混合物を毎時1キロモルで連続的に供給して蒸留を行い、塔頂側から第1の留出物を毎時0.55キロモルで連続的に抜き出し、塔底側から第1の缶出物を毎時0.45キロモルで連続的に抜き出した。この間の蒸留塔内の圧力は0.5MPaG(ゲージ圧)とし、塔頂温度は6.23℃、塔底温度は7.03℃とした。
 第1の留出物全体に対する各成分の含有率は、R22が94.4モル%、HFPが5.6モル%となった。他方、第1の缶出物全体に対する各成分の含有率は、R22が73.6モル%、HFPが26.4モル%となった。
(例2)
 段数60段の抽出蒸留塔の塔頂部から50段目から、モル比(HFP/R22)が15/85であるR22とHFPとの混合物を毎時1キロモルで連続的に供給するとともに、塔頂部から15段目から、クロロホルムを毎時3キロモルの速度で連続的に供給した。
 そして、抽出蒸留塔内の圧力を0.5MPaG(ゲージ圧)、塔頂温度を22.09℃、塔底温度を57.99℃として、連続的に抽出蒸留を行った。抽出蒸留塔の塔頂側から第1の留出物を毎時0.12キロモルの速度で留出し、塔底側から第1の缶出物を毎時3.88キロモルの速度で缶出した。
 抜き出した第1の留出物においては、クロロホルムが非検出であり、第1の留出物全体に対するHFPの含有率が99.9モル%であり、残りの成分はR22となった。他方、第1の缶出物全体に対する各成分の含有率は、R22が21.9モル%、HFPが0.9モル%となり、残部は抽出溶剤であるクロロホルムが占めていた。
 次に、第1の缶出物を、段数30段の溶剤回収塔の塔頂部から10段目から、毎時1キロモルで連続的に供給し、溶剤回収塔内の圧力を0.4MPaG(ゲージ圧)、塔頂温度を1.0℃、塔底温度を120.63℃として、連続的に蒸留を行った。溶剤回収塔の塔頂側から第2の留出物を毎時0.88キロモルの速度で留出し、塔底側から第2の缶出物を毎時3キロモルの速度で抜き出した。
 抜き出した第2の留出物及び第2の缶出物のそれぞれについて組成を分析すると、第2の留出物全体に対する各成分の含有率は、R22が96.1モル%となり、HFPが3.9モル%となり、残部は抽出溶剤であった。他方、第2の缶出物全体に対する各成分の含有率は、クロロホルムが99.99モル%以上となった。
 上記例において、例2は実施例であり、例1は比較例である。表4に示されるように、例2では、例1に比べて、R22とHFPを高効率で分離され、純度の高いHFPが得られている。
 本開示の一実施形態によれば、R22とHFPとを含む混合物からR22とHFPとを効率良く分離できる。また、本開示の一実施形態によれば、例えばフッ素樹脂製造等の原料としてとして有用なHFPを高濃度で得ることができ、経済的なメリットが大きい。
 2022年11月25日に出願された日本国特許出願第2022-188720号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
1 第1の混合物
2 抽出蒸留塔
3 抽出溶剤
4 第1の留出物
5 第1の缶出物
6 溶剤回収塔
7 第2の留出物
8 第2の缶出物
9 熱交換器
10 凝縮器
11 加熱器

Claims (9)

  1.  クロロジフルオロメタンとヘキサフルオロプロピレンとを含む第1の混合物と、塩化メチレン、クロロホルム、1,1,1-トリクロロエタン、1,1,2-トリクロロエタン、1,1,1,2-テトラクロロエタン、1,1,2,2-テトラクロロエタン、ペンタクロロエタン、ヘキサクロロエタン、トリクロロエチレン、及びテトラクロロエチレンからなる群より選択される少なくとも1つの含塩素化合物を含む抽出溶剤と、の混合物である抽出用混合物を得る混合工程と、
     前記抽出用混合物を蒸留して、ヘキサフルオロプロピレンを主成分とする第1の留出物と、前記抽出溶剤を主成分としクロロジフルオロメタンを含む第1の缶出物と、をそれぞれ得る抽出蒸留工程と、
     を有する、クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  2.  前記含塩素化合物は、40~130℃の沸点を有する、請求項1に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  3.  前記含塩素化合物は、クロロジフルオロメタン及びヘキサフルオロプロピレンの合計モル量に対し3倍量の前記含塩素化合物を添加したときに、クロロジフルオロメタンのヘキサフルオロプロピレンに対する比揮発度Rvを0.9より小さくする化合物である、請求項1に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  4.  前記含塩素化合物は、クロロジフルオロメタン及びヘキサフルオロプロピレンの合計モル量に対し1倍量の前記含塩素化合物を添加したときに、クロロジフルオロメタンのヘキサフルオロプロピレンに対する比揮発度Rvを0.9より小さくする化合物である、請求項1に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  5.  前記抽出溶剤は、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロホルム、及び塩化メチレンからなる群より選ばれる少なくとも1つの含塩素化合物を含む、請求項1に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  6.  前記混合工程における前記含塩素化合物の添加量のモル比は、クロロジフルオロメタン及びヘキサフルオロプロピレンの合計モル量に対し、1/1~30/1である、請求項1に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  7.  前記第1の缶出物を蒸留して、前記クロロジフルオロメタンを主成分とする第2の留出物を得る第2の蒸留工程をさらに有する、請求項1~6のいずれか1項に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  8.  前記第1の混合物は、クロロトリフルオロエチレンをさらに含み、
     前記第1の缶出物は、クロロトリフルオロエチレンをさらに含む、
     請求項1に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
  9.  前記第1の混合物は、クロロトリフルオロエチレンをさらに含み、
     前記第1の缶出物は、クロロトリフルオロエチレンをさらに含み、
     前記第2の留出物は、クロロトリフルオロエチレンをさらに含む、
     請求項7に記載のクロロジフルオロメタンとヘキサフルオロプロピレンの分離方法。
PCT/JP2023/040246 2022-11-25 2023-11-08 クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法 WO2024111416A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-188720 2022-11-25
JP2022188720 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111416A1 true WO2024111416A1 (ja) 2024-05-30

Family

ID=91195558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040246 WO2024111416A1 (ja) 2022-11-25 2023-11-08 クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法

Country Status (1)

Country Link
WO (1) WO2024111416A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128901A (en) * 1975-05-02 1976-11-10 Daikin Ind Ltd Separation method
WO2008001844A1 (fr) * 2006-06-30 2008-01-03 Showa Denko K.K. Procédé de production d'hexafluoropropylène à haut degré de pureté et gaz nettoyant
JP2018002602A (ja) * 2016-06-27 2018-01-11 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンとヘキサフルオロプロペンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
JP2018002603A (ja) * 2016-06-27 2018-01-11 旭硝子株式会社 クロロメタンとヘキサフルオロプロペンの分離方法およびクロロメタンの製造方法
CN110862295A (zh) * 2019-10-11 2020-03-06 江苏梅兰化工有限公司 一种制备高纯六氟丙烯的新工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128901A (en) * 1975-05-02 1976-11-10 Daikin Ind Ltd Separation method
WO2008001844A1 (fr) * 2006-06-30 2008-01-03 Showa Denko K.K. Procédé de production d'hexafluoropropylène à haut degré de pureté et gaz nettoyant
JP2018002602A (ja) * 2016-06-27 2018-01-11 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンとヘキサフルオロプロペンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
JP2018002603A (ja) * 2016-06-27 2018-01-11 旭硝子株式会社 クロロメタンとヘキサフルオロプロペンの分離方法およびクロロメタンの製造方法
CN110862295A (zh) * 2019-10-11 2020-03-06 江苏梅兰化工有限公司 一种制备高纯六氟丙烯的新工艺

Similar Documents

Publication Publication Date Title
JP5551031B2 (ja) 弗化水素を精製する方法
KR100332392B1 (ko) 추출증류법을사용하여테트라플루오로에탄으로부터불순물을분리및제거하는방법
US7183448B2 (en) Azeotropic composition, comprising 1, 1, 1, 3,3-pentafluoropropane and 1, 1, 1-trifluoro-3-chloro-2-propene, method of separation and purification of the same, and process for producing 1, 1, 1,3,3-pentafloropropane and 1, 1, 1-trifluoro-3-chloro-2-propene
JP5049320B2 (ja) ヘキサフルオロエタンの生成物の精製方法
JPH0269425A (ja) 純粋なテトラフルオロエチレンの製造方法
JP6863489B2 (ja) 1,2−ジフルオロエチレン又は1,1,2−トリフルオロエチレンと、フッ化水素とを含む共沸様組成物
JP2848980B2 (ja) クロロテトラフルオロエタンとオクタフルオロシクロブタンとの混合物の製造方法
WO2024111416A1 (ja) クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法
KR101191714B1 (ko) 디플루오로메탄의 아제오트로프형 조성물
JP2018002603A (ja) クロロメタンとヘキサフルオロプロペンの分離方法およびクロロメタンの製造方法
JP4715074B2 (ja) テトラフルオロエチレンの製造方法
JP5267657B2 (ja) ヘキサフルオロプロピレンオキシドとヘキサフルオロプロピレンの分離方法
JP2002505311A (ja) パーフルオロシクロブタンを精製する方法
JP2004532206A (ja) ジフルオロメタンの精製
US6175045B1 (en) Process for the preparation of pentafluoroethane
JP2003513059A5 (ja)
WO2020196843A1 (ja) 1,1,2-トリクロロエタン、トランス-1,2-ジクロロエチレン又はシス-1,2-ジクロロエチレンと、フッ化水素とを含む共沸又は共沸様組成物
JP2018002602A (ja) 2,3,3,3−テトラフルオロプロペンとヘキサフルオロプロペンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
JPH0912487A (ja) ペンタフルオロエタンと1,1,1−トリフルオロエタンの分離方法
JP2024076897A (ja) クロロジフルオロメタンとヘキサフルオロプロピレンの分離方法及び組成物
JP2018002601A (ja) 2,3,3,3−テトラフルオロプロペンとクロロトリフルオロエチレンの分離方法および2,3,3,3−テトラフルオロプロペンの製造方法
WO2015072305A1 (ja) フッ化ビニリデンとトリフルオロメタンの分離方法、およびフッ化ビニリデンの製造方法