WO2008046316A1 - Régulateur de vitesse dynamique à étages multiples - Google Patents

Régulateur de vitesse dynamique à étages multiples Download PDF

Info

Publication number
WO2008046316A1
WO2008046316A1 PCT/CN2007/002987 CN2007002987W WO2008046316A1 WO 2008046316 A1 WO2008046316 A1 WO 2008046316A1 CN 2007002987 W CN2007002987 W CN 2007002987W WO 2008046316 A1 WO2008046316 A1 WO 2008046316A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shifting
shaft
control
output
Prior art date
Application number
PCT/CN2007/002987
Other languages
English (en)
French (fr)
Inventor
Shengtsai Tseng
Original Assignee
Hsu, Chihkang
Tseng, Huichen
Huang, Weihua
Tseng, Weifu
Tseng, Yufu
Tseng, Kaifu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hsu, Chihkang, Tseng, Huichen, Huang, Weihua, Tseng, Weifu, Tseng, Yufu, Tseng, Kaifu filed Critical Hsu, Chihkang
Priority to EP07816601A priority Critical patent/EP2082915A4/en
Publication of WO2008046316A1 publication Critical patent/WO2008046316A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3093Final output elements, i.e. the final elements to establish gear ratio, e.g. dog clutches or other means establishing coupling to shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/14Gearings for reversal only
    • F16H3/145Gearings for reversal only with a pair of coaxial bevel gears, rotatable in opposite directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/721Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with an energy dissipating device, e.g. regulating brake or fluid throttle, in order to vary speed continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/48Signals to a parking brake or parking lock; Control of parking locks or brakes being part of the transmission

Definitions

  • the invention relates to a governor, in particular to a multi-stage automatic power governor.
  • the conventional automotive transmission transmission system is divided into manual, automatic, and continuous transmission transmission systems.
  • the disadvantages are as follows:
  • the automatic transmission system uses liquid as the medium for engine power transmission (commonly known as torque converter). Its conversion efficiency is not ideal, so it is very fuel-intensive.
  • the continuous variable speed transmission system is composed of a belt combined with a pair of pulleys. Due to the friction transmission, the axial force of the pulley and the compression force of the belt are liable to cause slipping and belt breakage.
  • the object of the present invention is to improve the deficiencies in the prior art, and provide a controllable signal back-transfer PLC under electronic (PLC) control to enable automatic clutching and buffering, and can be based on various power sources.
  • PLC controllable signal back-transfer PLC under electronic
  • the present invention adopts a design scheme:
  • a multi-stage power governor includes a starting mechanism, a shifting mechanism, a gear selection mechanism and a shifting control mechanism, and the overall deployment structure is: the starting mechanism is sleeved on a power output shaft, and the starting mechanism includes power transmission An active component coupled to the mechanism and a driven component coupled to the shifting mechanism for transmitting power to the shifting mechanism, the active component and the driven component being coupled by a transmission;
  • the shifting mechanism includes an active component that transmits power and a driven component that transmits power and a different speed.
  • the active component and the driven component are coupled together by a shifting gear mechanism, and the shifting gear mechanism is provided with shifting adjustment Device
  • the gear selection mechanism includes an active component, a driven component and a shifting component, the active component being coupled to a driven component of the shifting mechanism, the driven component being sleeved on an output shaft or on the shifting
  • the component may be selectively connected to the active component or the driven component, or may be fixedly connected to the output shaft without connection, and transmit the corresponding power and rotation speed to the rear wheel, the front wheel, or the four wheels of the vehicle;
  • the shift control mechanism includes a control drive mechanism including a drive motor and/or a manual drive device; a control mechanism associated with the shift adjustment device of the shifting mechanism, and a shift in the select mechanism a control mechanism associated with the component, the control drive mechanism being coupled to the aforementioned control mechanism via a transmission;
  • a control mechanism associated with the shifting adjustment device in the shifting mechanism includes a control actuator and a control follower, the control follower being associated with a gear set in the shifting mechanism, the control actuating member and control The follower is connected by a transmission mechanism;
  • a control mechanism associated with the shifting member in the gear selection mechanism includes a control actuator and a control follower, the control follower is associated with the shifting member, and the control actuating member and the control actuating member are coupled through the transmission mechanism Connection
  • control active members of the two control mechanisms are all disposed on a shift control shaft, and the shifting and shifting can be performed as the shift control shaft rotates;
  • An engine auxiliary brake switching mechanism which is a switching device disposed on the driven member, one end of which is associated with an active component of the input power in the shifting mechanism, or the other end is associated with a parking gear to form Two states:
  • the actuating mechanism may be a planetary gear set buffer mechanism including a sun gear, a planetary gear, a ring gear, and two planet carriers disposed on both sides of the sun gear, as a planetary carrier of the active component and as described
  • the sun gear of the driven component is sleeved on the output shaft adjacent to the output shaft, and the other planet carrier is sleeved on the cylinder of the sun gear on the other side of the sun gear, between the carrier of the carrier and the sun gear
  • An active component in the shifting mechanism is disposed, and a planetary gear shaft is fixed between the two planetary carriers.
  • the planetary gear is meshed with the sun gear on the shaft, and the meshing ring gear is sleeved on the outer side of the planetary gear.
  • the device is a brake belt driving device, and the brake belt driving device comprises a brake belt motor and a brake bag with a top rod, and a brake bag motor and a brake bag with a top rod are provided between
  • the transmission device enables the brake bag to move with the ejector pin when the brake wrap motor is started, so that one end is fixed on the chassis bracket, and the other end is connected to the brake wrap with the brake wrap. Tightly tighten the gear or loosen it.
  • the engine auxiliary brake switching mechanism is: a switching device including an engine brake driving ring and two opposite-direction one-way bearings, the driving ring is fixed on the driven component in the starting mechanism, and one A one-way bearing is disposed between the driving ring and the active component in the shifting mechanism such that power is transmitted from the starting mechanism to the shifting mechanism when the rotational speed of the driving ring is greater than the active component, and vice versa without power transmission;
  • the bearing is disposed between the driving ring and the parking gear, such that when the rotation speed of the parking gear is greater than the driving ring, the power is transmitted from the parking gear to the driving ring and then to the starting mechanism, and vice versa.
  • the ratchet sliding sleeve may be an electronically controlled switching device comprising a ratchet sliding sleeve and a driving mechanism, the ratchet sliding sleeve being slidably fixed on the driven component of the starting mechanism, the ratchet sliding sleeve Between the active component in the shifting mechanism and the parking gear, two sides of the ratchet sliding sleeve are provided with ratchet teeth, and the active component and the side of the parking gear adjacent to the ratchet sliding sleeve Having an intermeshing ratchet;
  • the drive mechanism includes an engine brake switching fork having one end disposed in a circular groove on an outer circumferential surface of the ratchet sleeve and the other end fixed to a fork shaft, and a The engine brake switches the motor, and there is a transmission between the engine brake switching motor and the engine brake switching fork.
  • the accelerator pedal control switching device may be used, that is, on the basis of the electronically controlled switching device, the switching motor is canceled, an engine brake switching rope is set, and the upper end of the engine brake switching fork is provided with a handle, and the upper side thereof Connect the drawstring and connect a spring between the other side and the chassis.
  • the drawstring is connected to the accelerator pedal, and the engine brake is generated when the accelerator pedal is not stepped on.
  • the shifting deployment structure of the shifting mechanism is such that the shifting gear set mechanism in the shifting mechanism includes an intermeshing input gear set and an output gear set, which are respectively disposed on an input shaft and the output shaft,
  • the gears of the input gear set and the output gear set are meshed in one-to-one correspondence, and the pair of intermeshing gears and the output gears are a row of shifting gear sets, wherein the active component is the input driving gear and the input force
  • An input force passive gear is fixed on the shaft, and a gear is integrally fixed on the input shaft, and the input gear in the first shift gear set meshes with the first output gear in the first shift gear set, and the other
  • Each of the input gears is sleeved on the input shaft, and each of the output gears is sleeved on the output shaft, and is meshed with the corresponding gears in the input gear set to form a plurality of rows of shifting gear sets, and the last row of shifting gear sets
  • the output gear in the transmission is the driven component in the
  • the structure and the combined structure of the spring-like mechanism and the input gear are: one end of a spring-like end is fixed on an end surface of each of the second to the last row of gear wheels, and the spring is another One end forms a hollow chamber, and the barrel of the former input gear is placed in a chamber formed by a spring-like intermediate space, and the end of the one end of the spring-like chamber forming the hollow chamber is provided with a joint portion corresponding thereto Corresponding sides of the end-adjacent input gears are provided with engaging portions matching the joints on the spring-like springs, and a pushing mechanism is disposed on the input shaft between the two engaging portions on the input shaft The movement applies a compressive force to the spring-like spring to compress it such that it disengages from the engagement portion of the adjacent input gear, or cancels the compressive force, resumes engagement; the push mechanism and the control in the shift control mechanism
  • the institutions are connected.
  • the gear selection mechanism is a bevel gear shifting mechanism
  • the active component is an active bevel gear
  • the driven component is a passive bevel gear
  • a reversible intermediate bevel gear fixed to the chassis and a main body are connected therebetween
  • the passive bevel gears are respectively engaged, and a bearing is disposed between the passive bevel gear and the output shaft, and the reversing component is an output sliding sleeve, and the two sides thereof and the corresponding positions of the main and passive bevel gears are respectively disposed.
  • There is an engaging structure, and the output sliding sleeve is connected to a fork lifting mechanism as a control mechanism in the shift control mechanism.
  • the control drive mechanism in the shift control mechanism includes a drive motor and/or a manual drive device coupled to a shift control shaft via a transmission mechanism, and a shift adjustment in the shift control mechanism is provided on the shift control shaft a control mechanism associated with the device and a control mechanism associated with the shifting member of the gearshift mechanism; a control mechanism associated with the shifting adjustment device of the shifting mechanism is a simple pull device, the simple push device.
  • the control active member that is, the bead positioning active toothed disc, and the control follower, that is, the bead positioning passive toothed disc; correspondingly, the pushing mechanism includes a shifting control disc, and a shifting bracket;
  • n-1 shifting brackets and shifting control discs are provided, and correspondingly n-1 simple pulling devices are provided, the shifting control discs Nested on the input shaft, fixed to the spring-like end by a bearing, the shifting bracket is a sheet, and two holes are arranged thereon, and one of the shifting brackets is passed
  • the arcuate top structure of the shifting bracket includes: the control active member, that is, a front shift fork and a rear shift fork, and the control follower, that is, the forward and backward control cam disc,
  • the two shifting forks are disposed on the left and right sides of the output sliding sleeve, and the contact surface with the output sliding sleeve is opposite inclined surface; a balance board whose central portion is rotatably fixed on the balance board shaft fixed on the chassis.
  • Each of the balance plates is provided with a hinged long hole through which the middle of the front fork and the end of the rear fork are hinged; the lower end of the front fork is a closed frame; and a forward and backward control cam plate is fixed in the shift control On the shaft, which is disposed in the closed frame of the front fork, constitutes a cam mechanism, so that when the forward and backward control panel rotates with the shift control shaft, the front fork can be moved up and down, and then the vehicle is driven. It is stated that the force sliding sleeve moves left and right to engage the active bevel gear or engage the passive bevel gear or is in the center position corresponding to the forward gear, the reverse gear and the neutral gear.
  • a parking lock device including a parking cam and a parking lock lever fixed to the shift control shaft, the parking lock lever being rotatably fixed to the chassis, having two interlocking extensions One end has one end in contact with the parking cam, and the other end has a locking tooth.
  • the rotation of the parking cam forms a state in which the locking tooth meshes with the parking gear to lock the output shaft and disengage the parking gear to unlock the output shaft.
  • an automatic control sensing device that is deployed as:
  • a sensor is disposed on the active component of the starting mechanism and on a nearby chassis.
  • a plurality of sensor sub-components are disposed on a circumference of the turntable provided on the shift control shaft in the shift control mechanism, and correspondingly, a sensor sub-assembly is disposed on the corresponding chassis to form a sensor for detecting
  • the PLC presets the shifting speed and the engine speed that the driver controls at that time, and the automatic control motor drives the scroll to rotate the turbine disc to rotate the shifting shaft to automatically shift.
  • the sensor is also used to detect the rotational speed of the active member in the starting mechanism. Starting or stopping the brake-wrap motor when comparing the starting speeds set in the PLC; and/or
  • auxiliary brake switching mechanism being an electronically controlled switching device, further comprising: providing a sensor on the driven component of the shifting mechanism and the nearby chassis, and matching the sensor to control the motor in the electronically controlled switching device Start and stop.
  • a manual control device including a handrail shaft with a transmission between the shift control shaft and a gearbox, the rotatably fixedly mounted handrail shaft, and the handrail Fixing on the shaft and driving the hand row bar, so that the hand row bar can be rotated by pulling the hand row bar, thereby rotating the shift control shaft through the transmission device;
  • the hand row bar is provided with an elastic positioning device, correspondingly, Corresponding to the rotation of the hand row bar on the gear box, and the gear position hole at the movement track of the positioning device corresponds to the gear rotation angle of the hand row bar, that is, the gear position corresponding to the rotation angle of the corresponding shift control axis
  • the electronically controlled switching device further includes a sensor: a brake sensor and a transmission sensor disposed on the foot pedal and the corresponding position of the cab for assisting driving the electronic control
  • the motor in the switching device and the motor in the starting mechanism are provided with a part of the permanent magnet of the sensor on the foot pedal, and the corresponding part of the sensor is arranged in the following four positions in the cab: the corresponding throttle on the brake pedal a fully open position, a refueling termination or refueling start position, setting such that the ratchet sleeve is disengaged or engaged with the position and setting of the active member in the shifting mechanism such that the ratchet sleeve is disengaged or engaged with the parking gear
  • the corresponding throttle on the brake pedal a fully open position
  • a refueling termination or refueling start position setting such that the ratchet sleeve is disengaged or engaged with the position
  • setting of the active member in the shifting mechanism such that the ratchet slee
  • the PLC transmits a signal to turn the motor on or off for timely switching of the engine and the auxiliary brake.
  • the shifting bracket has six sets of arc-shaped apex pull-out groove rails, and each set of unloading groove rails is evenly distributed on the circumference.
  • One set of withdrawal groove rails is three, intersecting 120 degrees; the shifting bracket is provided with three concentric circles, and the same group of three withdrawal groove rails are respectively disposed on the three concentric circles, each group of groove rails
  • the multi-segment power automatic governor provided by the invention can be controlled under the electronic control to return to the PLC via the sensed signal, so that it can automatically clutch and buffer, and can be optimally driven according to various power sources and driving conditions.
  • the on-board condition determines the timing of shifting to achieve fuel economy.
  • FIG. 1 is a schematic view showing the overall structure of a mechanism of a preferred embodiment of a power governor according to the present invention, wherein the engine auxiliary brake switching mechanism includes two unidirectional bearings having opposite directions;
  • FIG. 2 is a schematic diagram of functional deployment of the preferred embodiment shown in FIG. 1;
  • FIG. 3 is a schematic front view showing the axial position of a part of the shaft in the rear wheel drive structure of the power governor provided by the present invention
  • FIG. 4 and 4A are schematic front and side views showing the starting mechanism of the power governor of the embodiment shown in Fig. 1;
  • FIG. 5A-5D are structural diagrams of an engine auxiliary brake switching mechanism of the power governor of the embodiment shown in FIG. 1.
  • FIG. 5A is a schematic structural view when power is transmitted to the shifting mechanism;
  • FIG. 5B is a structure when the brake is assisted.
  • FIG. 5C is a cross-sectional structural view of the CC of FIG. 5A, which is a cross-sectional structural view of the mechanism for automatically transmitting power to the input shaft state when the engine is accelerated;
  • FIG. 5D is a schematic cross-sectional view of the DD of FIG. 5B, which is a schematic view When the engine is decelerating, the mechanism automatically transmits the output shaft speed to the cross-sectional structure diagram of the engine;
  • FIG. 6 is a schematic diagram of deployment of a gear row of a shifting mechanism in a power governor provided by the present invention
  • FIG. 7 is a schematic diagram of the construction and control deployment of an intensive shift control mechanism in a power governor provided by the present invention.
  • Figure 8A is a schematic view showing the gear meshing of the shifting mechanism with four rows of gears having eight speeds
  • Figure 8B is a schematic view of the gear engagement of the five-row gear pair with a speed change mechanism that can adjust sixteen speeds;
  • Figure 8C is a schematic view of the gear engagement of the six-row gear pair shown in Figure 1, with a gear mechanism that can adjust thirty-two speeds;
  • Figure 9A is a schematic structural view of the gear selection mechanism, that is, the forward gear of the shifting mechanism and Schematic diagram of the movement of the reverse gear;
  • FIGS. 9B-9D are structural diagrams in which the gear selection mechanism is in three states; wherein, FIG. 9B is a neutral state; FIG. 9C is a forward gear state; FIG. 9D is a reverse gear state;
  • FIG. 9C is a front fork shifting, a rear fork insertion, a sliding fork sliding forward, a ratchet engagement of the output sliding sleeve and a ratchet gear of the active bevel gear, and a state of the forward gear;
  • FIG. 9D is a front fork The insertion, the rear fork pull out, the sliding fork slide backward, the ratchet of the output sliding sleeve and the ratchet gear of the passive bevel gear mesh, and the schematic diagram of the reverse gear state;
  • FIG. 10A and 10B are schematic structural views of a gear selection mechanism of the shifting mechanism shown in Fig. 9;
  • FIGS. 11A-11F are schematic structural views of a shifting mechanism and a shifting adjustment mechanism of a power governor provided by the present invention
  • FIGS. 11A and 11B are structural schematic diagrams in which two adjacent input gears are integrally connected and disengaged
  • Figure 11D is a schematic front view of the shifting control mechanism
  • Figure 11F is a front view of the shifting control mechanism (the bead positioning sprocket);
  • FIG. 12 is a schematic diagram of a system automatic control deployment in the embodiment of the power governor provided by the present invention
  • FIG. 13 is a schematic structural view of a front wheel drive of the power governor provided by the present invention
  • FIG. 14 is a schematic diagram of a four-wheel drive power transmission and distribution structure of a power governor provided by the present invention.
  • 15 and 15A and 15B are structural schematic views of the structure and control principle of the parking lock device
  • Figure 16 is a schematic structural view showing the structure and control principle of the front fork lifting and lowering device
  • Figure 16A is a side view showing the structure of Figure 16;
  • FIG. 17A and 17B are schematic views showing the structure of another engine brake switching mechanism of the power governor provided by the present invention; wherein, FIG. 17B is a schematic structural view when power is transmitted to the shifting mechanism; FIG. 17B is a schematic structural view of the auxiliary brake; There is no idling structure here; Figure 18 is a schematic structural view of the engine brake or transmission sensor installed on the accelerator pedal;
  • 19 is a schematic diagram showing the deployment of an automatic control structure of a shifting system of a power governor provided by the present invention.
  • FIG. 20 is a schematic overall structural view of an embodiment of an engine brake ⁇ electric control of the power governor shown in FIGS. 17A and 17B;
  • FIG. 21A and FIG. 21B are still another engine brake switching of the power governor provided by the present invention;
  • Figure 21A is a schematic structural view of the governor when the power is transmitted to the shifting mechanism;
  • FIG. 21B is a schematic structural view of the governor provided with the manual drive mechanism on the shift control shaft;
  • Figure 23 is a schematic structural view of manual drive shifting and gear selection
  • Figure 23A is a side elevational view of Figure 23;
  • the multi-stage automatic power governor provided by the present invention comprises an activation mechanism 1, an engine auxiliary brake switching mechanism 2, a shifting mechanism 3, a gear selection mechanism 4 and a shift control mechanism 5.
  • the above-mentioned various mechanisms of the governor are mounted on the output shaft 58 (coaxial with the output shaft 68, not shown), the output shaft 68, the input shaft 43 and the shift control shaft 71, and the output thereof.
  • the shaft 58 and the output shaft 68 are coaxially arranged, the adjacent shaft ends are fitted together, and the output shaft 58 and the output shaft 68 are independent of each other and are respectively rotated.
  • the forward, reverse, and reverse functions are generated by the action of the forward and backward bevel gear set 4 in the gear selection mechanism.
  • Both the input shaft 43 and the shift control shaft 71 are parallel to the axis of the output shaft 68 (as shown in Figure 3).
  • the starting mechanism 1 is sleeved on a power output shaft 58.
  • the starting mechanism 1 includes an active member 16 connected to the power transmission mechanism and a driven member 11 connected to the shifting mechanism 3 for transmitting power to the shifting mechanism 3, the active member 16 and The driven member 11 is connected by a transmission device;
  • the shifting mechanism 3 includes an active component 31 that transmits power and a driven component 56 that transmits power and different speeds.
  • the active component 31 and the driven component 56 are coupled together by a shifting gear mechanism.
  • Variable speed adjustment device
  • the gear selection mechanism 4 includes an active member 61, a driven member 63, and a shifting member 65.
  • the active member 61 is coupled to the driven member 56 of the shifting mechanism 3, and the driven member 63 is sleeved on an output shaft 68 or 83.
  • the shifting member 65 can be selectively connected to the active member 61 or the driven member 63, or can be fixedly coupled to the output shaft 68 or 83, and can be advanced, retracted or retracted to the rear wheel, or the front wheel, or the four wheels of the vehicle.
  • the corresponding power and speed of the neutral gear
  • the shift control mechanism 5 includes a control drive mechanism including a drive motor 728 and/or a manual drive device; a control mechanism associated with the shift adjustment device in the shifting mechanism 3, and the selector mechanism 4 a control mechanism associated with the shifting member 65, the control drive mechanism being coupled to the aforementioned control mechanism via a transmission;
  • the starting mechanism 1 in this embodiment is a planetary gear set buffer mechanism including a follower sun gear 11, a planetary gear 13, a ring gear 18, and left and right sides of the sun gear.
  • Planet carrier 16 is an active member and a carrier 17, a left planet carrier 16 as the active component and a sun gear 11 as the driven member are sleeved on the output shaft 58 and the other
  • the right planetary carrier 17 is sleeved on the cylinder of the right sun gear 11 of the sun gear 11, and the active component 31 in the shifting mechanism 3 is interposed between the carrier 17 and the cylinder of the sun gear 11, two planetary gears
  • a planetary gear shaft 14 is fixed between the frames 16, 17 , and the planetary gear 13 is sleeved on the shaft to mesh with the sun gear.
  • four planetary gears 13 are evenly distributed around the sun gear 11 , outside the planetary gear 13 .
  • the meshing ring gear 18 is sleeved.
  • the left planet carrier 16 is coupled to the power receiving disk (not shown) of the engine for input power.
  • An oil pump driving gear 22 is provided on the cylindrical portion of the left planetary carrier 16 via a key 23, which meshes with an oil pump driven gear 21, and a bearing 12 is provided between the casing and the oil pump driving gear 22. Thereby, a part of the power is used to drive the lubricating oil system of the motor vehicle.
  • One end of the starting mechanism 1 is connected to the power source, the other end is connected to the shifting mechanism 3 via the engine auxiliary brake switching mechanism 2, the shifting mechanism 3 is connected to the output shaft 68 through the gear selection mechanism 4, and the output shaft 68 is passed through, for example, a differential gear train.
  • the mechanism is connected to the front or rear or four wheels for driving through rear wheels, front wheels, or four-wheel drive vehicles.
  • the actuating mechanism 1 also includes means for rotating and not moving the ring gear, which in turn causes the sun gear 11 to move or rotate.
  • the brake wrap drive device includes a brake wrap motor 110 and a brake wrap ejector pin 19, and a brake wrap 15 is disposed on the outer circumference of the ring gear 18, One end is fixed to the chassis bracket by a fixing pin 40, and the other end is connected to a brake belt driving device.
  • a transmission device is disposed between the brake wrap motor 110 and the brake wrapper ejector pin 19, so that when the brake wrap motor 110 is activated, the brake wrapper ejector pin 19 is moved to fix one end to the chassis bracket.
  • the brake wrap 15 attached to the brake wrapper ejector pin 19 at the other end holds the ring gear 18 or releases it.
  • the transmission means may be, for example, a mechanism such as a screw transmission or the like that changes the rotation into a linear motion.
  • a screw-shaped ejector pin 19 is connected to the motor 110, and is screwed through a bushing 112 fixed to the frame.
  • the motor 110 rotates forward and the jack 19 moves downward. Tighten the brake wrap 15 and reverse the brake wrap 15 .
  • the starting mechanism 1 When the vehicle condition is the neutral N or the parking gear P, the starting mechanism 1 is in an idling state, that is, under the rotation of the engine output shaft, the left planetary carrier 16 and the right planetary gear carrier 17 rotate, and then the planetary gear 13 is driven.
  • the ring gear 18 is idling, at which time the sun gear 11 does not move.
  • the brake wrap motor 110 When the brake wrap motor 110 is rotated, the brake wrap 15 is brought tightly to the ring gear 18, and at this time, the sun gear 11 is rotated.
  • the shifting mechanism 3 includes an active component 31 that transmits power and a driven component 56 that transmits power and different speeds.
  • the active component 31 and the driven component 56 are coupled together by a shifting gear mechanism.
  • a shifting adjustment shifting adjustment device a parking gear 35 fixed to the output shaft 58 via a key 36;
  • An engine auxiliary brake switching mechanism 2 which is a switching member, is disposed on the output shaft 58, one end of which is associated with the driven member 11 in the starting mechanism 1, and the other end is alternatively
  • the active member 31 of the associated shifting mechanism 3 associates the driven member 11 in the starting mechanism 1 with the active member 31 of the incoming power in the shifting mechanism 3, and transmits power from the starting mechanism 1 to the shifting mechanism 3, in an engine state. Or, associated with the parking gear 35 fixed to the output shaft 58, in an auxiliary braking state.
  • the engine auxiliary brake switching mechanism 2 has two functions: one is to transmit power, that is, to transmit the power to the shifting mechanism 3, and the other is to reverse the inertia of the vehicle to assist the brakes.
  • the engine auxiliary brake switching mechanism 2 is a switching device including an engine brake-driven ring 32A and two opposite-direction one-way bearings 33A, 34A, and the driving ring 32A passes the flower
  • the key is fixed to the driven part of the starting mechanism 1
  • a one-way bearing 33A is disposed between the driving ring 32A and the driving member of the shifting mechanism 3, that is, the input driving gear 31 in the shifting mechanism 3, so that the rotational speed of the driving ring 32A is greater than the driving force gear 31.
  • the other one-way bearing 34A is disposed between the driving ring 32A and the parking gear 35, so that when the rotational speed of the parking gear 35 is greater than the driving ring 32A, the power is from The parking gear 35 is transmitted to the driving ring 32A and then to the starting mechanism 1, and vice versa. There is no bearing between the parking gear 35 and the casing.
  • the engine assisted brake switching mechanism 2 works like this:
  • the brake belt motor 110 is started by the sensing control device (described later) of the onboard device, and the driving system is driven.
  • the movable bag with the ejector pin 19 causes the brake wrap to be provided with the brake ring gear 18 so that it cannot rotate, whereby the originally fixed sun gear 11 can be rotated.
  • the rotation speed of the driving ring 32A with the sun gear 11 is greater than The driving gear 31 is driven, and the one-way bearing transmits power.
  • the driving force gear 31 is driven to rotate by the driving ring 32A and the one-way bearing 33A, and the power is output to the shifting mechanism 3, and the power transmission path is shown by the direction of the arrow in FIG. 5A.
  • the mechanism, the gear selection mechanism, and the output shaft 68 rotate at a required rotational speed to drive the vehicle forward or backward to perform power transmission.
  • the engine assisted braking process is realized as follows: When the driver lifts the accelerator pedal, the output shaft speed of the engine decreases, and the output shaft 68 still rotates at a higher speed, that is, the rotational speed of the input driving gear 31 is greater than that of the sun gear 11
  • the rotational speed of the one-way bearing 33A, 34A mounted on the inner side of the ring 32A is differently driven by the difference of the rotational speed and the slow speed, and the one-way bearing 33A is no longer transported to the input driving gear 31, that is, the shifting mechanism 3.
  • the driving ring 32A is idling.
  • Fig. 5C shows the C-C cross-sectional structure of Fig. 5A.
  • the one-way bearing 33A acts to drive the driving force of the driving gear 31, and vice versa.
  • 5D shows the DD cross-sectional structure of FIG. 5B.
  • the rotational speed of the output shaft 58 is greater than the rotational speed of the sun gear 11 or the driving ring 32A, and the power is transmitted from the output shaft 58 via the parking gear 35.
  • the one-way bearing 34A drives the driving ring 32A and the sun gear 11 to rotate, and generates the function of the engine brake.
  • One-way bearing 33A (shown in Fig.
  • FIG. 5C shows that when the rotation speed of the outer circle is larger than the inner circle rotation speed, the one-way bearing 33A acts to drive the inner circle to rotate together, and vice versa.
  • Fig. 5D shows that when the rotation speed of the inner circle of the one-way bearing 34A is larger than the outer rotation speed, it acts to drive the outer circle to rotate together, and vice versa.
  • the steering in the two states is the same, but the speed of the inner circle and the outer circle of the one-way bearing is generated or idling.
  • the bow I engine auxiliary brake switching mechanism 2 can also have two other structures to choose from. Referring to Figures 17A, 17B, 20, 21A, 21B, as shown in Figures 20 and 17A, 17B, an engine assisted brake switching mechanism for electronically controlled switching is illustrated. among them,
  • the utility model comprises a ratchet sliding sleeve 34 and a driving mechanism.
  • the ratchet sliding sleeve 34 is slidably fixed on the sun gear 11 by a spline, and the ratchet sliding sleeve 34 is placed between the input driving gear 31 and the parking gear 35.
  • the ratchet sleeve 34 is provided with ratchet teeth on both sides thereof, and the side surfaces of the input driving gear 31 and the parking gear 35 adjacent to the ratchet sleeve 34 are provided with ratchet teeth that can mesh with each other;
  • the utility model further comprises a driving mechanism, which comprises an engine brake switching fork 32 which is disposed at one end in a circular groove on the outer circumferential surface of the ratchet sleeve 34, and at the other end is fixed on a fork shaft 33, and also includes an engine brake switch.
  • the motor 39 is provided with a transmission between the engine brake switching motor 39 and the bow brake switching fork 32.
  • the transmission device provided in this embodiment is a worm gear composed of a fork shaft worm 38 and a fork shaft worm disk 37. Worm. Transmission.
  • a sensor 730 for starting or stopping the brake wrapping motor 110 is provided on the left planetary carrier 16 of the starting mechanism 1 and in the vicinity of the chassis, and is further disposed on the driven member 56 of the shifting mechanism 3 and the vicinity of the chassis.
  • the engine brake switching mechanism 2 works like this - when the vehicle condition is the forward or reverse gear, when the power source, that is, the engine output shaft speed is increased by 10% from the idle speed, the sensor 730 is installed on the mechanism to monitor the engine output shaft speed.
  • the control switch of the motorized belt motor 110 issues a command signal to activate the brake wrap motor 110, and drives the brake wrapper with the ejector pin 19 so that the brake wrap has the brake ring gear 18 so that it cannot rotate, thereby enabling
  • the original sun gear 11 rotates, and then, the engine brake ratchet sleeve 34 drives the input driving gear 31 to rotate, and outputs power to the shifting mechanism 3, and rotates through the shifting mechanism, the gear selection mechanism, and the output shaft 68 at a required rotational speed. Drive the vehicle forward or backward, etc., and transmit power.
  • the engine auxiliary braking process is realized: when the rotation speed of the output shaft 68 is greater than the rotation speed of the left planetary carrier 16, the engine brake switching motor 39 is activated, and the rotation of the driving scroll 37 drives the fork shaft 33 to rotate, so that the engine brakes The switching fork 32 swings counterclockwise, pushing the engine brake ratchet sleeve 34 to the right, disengaging from the input driving gear 31, and engaging with the parking gear 35 to realize the auxiliary braking.
  • FIGs. 21A and 21B Another manual mode control switching device is shown in Figs. 21A and 21B.
  • the motor 39 is removed and the transmission device is composed of the fork shaft worm 38 and the fork shaft scroll 37, or the sensor 731 is not installed, instead of the motor 39, and the cable pedal is used to control the cable pedal.
  • the fork 32 is swung, and a handle 312 is disposed at an upper end of the engine brake switching fork 32.
  • a throttle cable 315 is connected to one side of the engine, and a spring 316 is connected between the other side and the chassis.
  • the pull wire 315 is connected to the cab, and the driver can set the brake switch fork 32 to the auxiliary brake by pulling the pull cord to set the brake switch fork 32 as shown in Fig. 21B.
  • the pull wire is connected to the throttle, and the engine assist brake is generated when the throttle is not stepped on the throttle.
  • the throttle pedal acts when the range of the stroke stroke is about to accelerate, as shown in Fig. 21A. This structure can reduce costs and meet the needs of different grades.
  • a permanent magnet 314 can also be mounted on the accelerator pedal 313.
  • a sensor 737 and an engine brake sensor 736 are provided at corresponding positions of the frame, and the electric control switching device is used to turn on the motor. 39, Switch between the engine and the auxiliary brake.
  • the engine brake sensor 736 is disposed on the foot pedal 313, and the transmission sensor 737 is disposed at a corresponding position in the cab for assisting driving the motor 39 in the electronically controlled switching device, and the sensor is disposed on the foot pedal 313.
  • the corresponding pedal In the cab, the corresponding pedal is placed in the following four positions to set another part of the sensor: corresponding throttle full open position wl, fueling stop or starting position w2 on the brake pedal, so that the ratchet sleeve 34 is disengaged or engaged
  • the position W 3 of the active member 31 in the shifting mechanism 3 is set such that the ratchet sleeve 34 is disengaged or engaged with the position w4 of the parking gear 35.
  • the signal to turn the motor 39 on or off is transmitted to the PLC for timely switching of the engine and the auxiliary brake.
  • the motor 39 drives the shift fork 32 to start shifting to the right, and continues to step on the accelerator pedal to the corresponding w3, and the ratchet sleeve 34 and the parking gear are disengaged therefrom, which is the starting point of the transmission.
  • the accelerator pedal is stepped on the corresponding w2 position, and the refueling starts. Before reaching W 2, the ratchet sleeve 34 completes the engagement with the input drive gear 31.
  • the refueling throttle is fully open, at W1- When the W2 angle range is moving, it is in the stage of oil supply, and the transmission is also carried out at this stage.
  • the shifting device 3 is a shifting gear mechanism including an intermeshing input gear set and an output gear set.
  • the input gear assembly is disposed on the input shaft 43 and the output gear assembly is disposed on the output shaft 58.
  • the gears in the input gear set and the output gear set are meshed in one-to-one correspondence, and a pair of intermeshing input and output gears are a row of shifting gear sets, wherein the active components, namely the input drive gear 31 and the input shaft 43 are fixed.
  • An input force passive gear 41 is meshed, and a gear is integrally fixed on the input shaft 43 as an input gear in the first-row shift gear set meshes with the first output gear 51 in the first-row shift gear set, and other input gears 46, 47, 48, 49, 410, ... are all sleeved on the input shaft 43, and the output gears 52, 53, 54, 55, 56, ... are all sleeved on the output shaft 58 and combined with the input gear set
  • the corresponding gears in the one-to-one correspondence form a plurality of rows of shifting gear sets, and the output gears in the last row of shifting gear sets are the driven members 56 in the shifting mechanism 3.
  • the input driven gear 41 is fixed to the input shaft 43 by a key 42, which meshes with the input driving gear 31, that is, when the power is transmitted, the input shaft 43 receives power and rotates.
  • a gear is integrally fixed to the input shaft 43, that is, the first gear of the input gear set is meshed with the first output gear 51 disposed on the output shaft 58, so that the rotation of the input shaft 43 can make a one-to-one correspondence.
  • Each of the meshed input gear set and the output gear set rotates.
  • a series of input gears are sleeved on the input shaft 43.
  • the adjacent input gears are provided with a mechanism that can be connected to each other and rotate at the same rotational speed, and can be disengaged from each other and only idling; such a mechanism in the prior art Many, this embodiment uses a type of spring 45, the detailed structure of which is described later.
  • a series of output gears are arranged on the output shaft 58.
  • One-way bearings are arranged between adjacent gears to connect them to each other, so that a relatively high-speed output gear can drive the low-speed output gear to rotate, that is, when the low-speed transmission speed is low. Synchronous rotation, only high-speed gears rotate at high speeds, and low-speed gears are idling.
  • a pair of intermeshing input and output gears is called a row.
  • the number of such meshing gears is not limited.
  • the first working condition - the engine output power is transmitted to the shifting device via the power receiving disc, and the input driving gear 31 in the engine assisting brake switching device is applied to the input driven gear 41, so that the input shaft 43 is engaged by the integral gear on the input shaft.
  • the output gear 51, at this time, the output gear 2 52, the output gear 3 53 and the output gear 4 54 are all rotated at the same speed as the output gear 51, and then passed through the rear gear shifting mechanism 4
  • the output slip sleeve 65 transmits a certain rotational speed to the output shaft 68, and its power transmission route diagram is a as shown in FIG. 8A.
  • the engine engine speed is l lOOrpm
  • the transmission enters the first gear, and then the engine accelerates to 1824 rpm to prepare for the second gear.
  • the engine output power is transmitted to the shifting system via the power receiving disc: from the input driving gear 31, the input gear 23 to the input shaft 43, the output gear 51, the output gear 52, the output gear 22, the input gear 46, the spring 452,
  • the input gear 33, the output gear 3 53, the output gear 4 54, and the output sliding sleeve 65 in the gear selection mechanism 4 of the rear front and rear gear shifts transmit a certain rotational speed to the output shaft 68, and the power transmission route is schematic. As shown by e in Fig. 8A. When the engine speed is decelerated from 1824 rpm to 1152 rpm, the transmission enters the second gear, and the engine then accelerates to 2304 rpm to enter the third gear.
  • FIG. 8A A schematic diagram of the power transmission route of the third gear is shown as b in Fig. 8A.
  • the transmission enters third gear and then accelerates to 2760 rpm to enter the fourth gear mode.
  • the engine output power is transmitted to the shifting system through the power receiving disc: from the input driving gear 31, the input driving gear 41, the input shaft 43, the gear-like spring 451, the input gear 246, the spring-like 452, the input gear 37,
  • the output gear three 53 and the output gear four 54 are transmitted to the output shaft 68 through the output sliding sleeve 65 in the rear gear shifting mechanism 4, and the power transmission route diagram is as shown in FIG. 8A. c shows.
  • the engine speed is decelerated from 2760 rpm to 1742 rpm, the transmission enters the fourth gear, and then accelerates to 2738 rpm to enter the fifth gear mode.
  • the engine output power is transmitted to the shifting system through the power receiving disc: from the input driving gear 31, the input driving gear 41, the input shaft 43, the gear-like spring 451, the input gear 246, the spring-like 452, the input gear 37, The spring 453, the input gear four 48, the output gear four 54, and the output slip through the rear gear shifting mechanism 4 transmits a certain speed to the output speed
  • the output shaft 68 has a power transmission route diagram as shown by d in Fig. 8A. When the engine speed is decelerated from 2738 rpm to 1995 rpm, the transmission enters the fifth gear, and then accelerates to 6500 rpm. At this time, the engine speed is the highest speed.
  • the transmission runs at a constant speed.
  • the transmission is decelerated in the D gear by the fifth, fourth, third, second, and first gears, and finally decelerated to 1000 rpm, that is, the idle speed state of the engine.
  • the setting of the fifth gear that is, the five-speed
  • the four-row gear of this mechanism should be set to eight speeds. If the setting of the automatic control and the control panel increase, there will be an increase.
  • the other three gears set the power transmission path of each gear in the transmission as shown by f, g, h in Figure 8A below.
  • shifting device includes five rows of gears, there are sixteen speed variations to choose from, as shown in Figure 8B.
  • the governor shown in Figures 1, 6, 7, and 20 includes six rows of shifting mechanisms.
  • the input gear in the row of shifting gear sets (which is a shaft gear integrated with the input shaft) meshes with the first output gear 51 in the first shifting gear set, and the other input gears 46, 47, 48, 49, 410 is sleeved on the input shaft 43, and each of the output gears 52, 53, 54, 55, 56 is sleeved on the output shaft 58 and meshes with the corresponding gears in the input gear set to form a plurality of shifts.
  • the gear set, the output gear in the last row of shifting gear sets, is the driven member 56 in the shifting mechanism 3.
  • the device provided between the input gears that can be connected to each other and can be disengaged that is, the structure and the combined structure of the spring-like mechanism and the input gear are: Taking a six-row gear set as an example,
  • One end of the spring 45 is fixed to the end faces of each of the input gears 46, 47, 48, 49, 410 in the second to last row of gear shifting sets, and the other end of the spring forms a hollow chamber, the former
  • the cylinder of the input gear is placed in a hollow chamber formed by a spring-like 45
  • the barrel of the former input gear is placed in a hollow chamber formed by a spring-like (45)
  • the spring-like portion 45 forms one end of the hollow chamber.
  • the end portion is provided with a joint portion, for example a ratchet tooth, corresponding thereto, on a corresponding side surface of the input force gear adjacent to the end, a joint portion matching the joint portion on the spring-like type, for example, a ratchet tooth, is provided Between the two joints, a pushing mechanism is disposed, which moves on the input shaft 43 to apply a compressive force to the spring to compress it so as to disengage from the joint of the adjacent input gear, or cancel the compressive force , the recovery joint; the device that pushes the spring to engage and disengage the front input gear is a simple pull device.
  • a joint portion for example a ratchet tooth
  • the pushing mechanism is coupled to the control mechanism in the shift control mechanism 5.
  • the control mechanism associated with the shifting adjustment mechanism in the shifting mechanism 3 is a simple pulling device, as shown in FIGS. 11A-11F, the simple pulling device includes a control active member, that is, a bead positioning active toothed disc (724), and a controlled follower The top bead locates the passive toothed disc (726); correspondingly, the push mechanism includes a shift control disc (723), and a shifting bracket (73); as shown in Figures 1, 20, 7, 11A, 11B.
  • the shifting bracket 73 on the input shaft 43 is disposed between the two adjacent input gears 46, 47.
  • the number of the input and output gears is six, and there are five shifting gears.
  • the shifting carriage 73 is a sheet, as shown in Fig. 11D, and is provided with two holes 73A, 73C through which one end of the shifting bracket 73 is sleeved on the shift control shaft 71, and the shifting is performed through the hole 73C.
  • the bracket 73 is sleeved on the cylindrical portion of the front input gear 46.
  • a plurality of arcuate slot-shaped groove rails 73B are formed on the circumference concentric with the hole, and the groove rail 73B is divided into In several groups, the number of groups corresponds to the number of rows of input and output gears, or to the number of gears that need to be shifted.
  • the shift control disc 723 is sleeved on the outer end of the spring-like 45 on the output shaft 43.
  • the bearing is disposed between the spring-like flange 45 and the spring-like type 45.
  • the bearing is a deep groove ball bearing 727, so that the spring-like shifting control disc 723 is rotated with the output gear 47. Do not move. As shown in FIGS.
  • a pinion passive toothed disc 726 is disposed on the input shaft 43 between the shifting bracket 73 and the spring-like type 45, adjacent to the shifting control disc 723, and is disposed on the periphery of the top bead passive toothed disc 726.
  • a beaded hole 726a is disposed at the same angle as the corresponding set of grooved rails 73c on the edge of the hole 73c of the shifting bracket 73, correspondingly positioned, and the three holes are also distributed over three concentric circles.
  • a top bead active toothed disc 724 is secured to the shifting control shaft 71 by a key 721 that engages the top bead passive toothed disc 726.
  • top bead hole 726a of the top bead passive toothed disc and the groove rail 73c on the shifting bracket 73 are aligned to form an accommodating space, and a top bead 725 is disposed therein, the diameter of the top bead 725 is larger than the depth of the groove of the shifting bracket 73, and is also larger than the top bead
  • the hole of the passive toothed disc 726 is deeper than the sum of the depths of the groove rail 73c and the top bead hole 726a.
  • a series of output gears 51, 52, 53, 54, 55, 56 in the output gear set sleeved on the output shaft 58 are provided with a one-way bearing between the adjacent gears to make them connect to each other, so that a relative speed is formed therebetween.
  • the output gear can drive the low-speed output gear to rotate, that is, the low-speed gear rotates synchronously when the speed is low, and only the high-speed gear rotates at high speed, and the low-speed gear rotates.
  • the input gear ring set of the simple push-pull mechanism of the three-leaf three-channel rail and the push mechanism and the shifting mechanism 3 formed by the output gear set with the one-way bearing connected to each other at the shift control mechanism 5 The working process under control is like this:
  • the shifting bracket 73 has a grooved groove, that is, a grooved rail, whose depth is deeper than the ratchet-like height of the spring-like 45, and a bead 725 is placed in the groove.
  • a shift control panel 723 having a push-type spring 45 outside the top bead is provided, and a shift control passive toothed disc 726 is provided between the shift control disc 723 and the shift bracket 73.
  • the shift control drive gear 724 fixed to the shift control shaft 71 is provided. The shift control shaft 71 is rotated, and the top bead rolls down in the groove or outside the slot according to its depth. When the shift control panel 723 is rotated, the spring can be pushed or loosened.
  • the rotary shift control shaft 71 drives the shift control passive toothed disc 726 to rotate relative to the shift bracket 73 such that the top bead 725 comes out of the groove rail 73c, and then the shift control disc 723 is pushed to the right to compress the spring-like portion 45. It is opened, so that the front and rear load gears 46 and 47 are disengaged, and each is idling.
  • the shift control shaft 71 is rotated so that the top bead is caught in the groove on the shift bracket 73, and the spring-like 45 is pushed to the left.
  • the input gear 47 rotates at the same rotational speed as the input gear 46, and then the output gear 53 is driven to generate the variable speed transmission.
  • Each input gear of the input gear set drives the output gear to shift according to this principle.
  • each output gear has a one-way bearing tightly fitted to the inner circle of the gear.
  • the input gear transmits the power to the output gear one 51.
  • the power is transmitted to the output shaft via the function of the one-way bearing.
  • the product of the shift control mechanism 5 has the following characteristics -
  • the spring-like unit has a strong twisting force: the spring-like unit twists the strength of the shaft body. For each additional spring, the torque of the twisting force is increased by four times. If the first coiling force is 2.4/Kg-m, the twisting The force can be increased to infinity, and small springs are more than enough to drive large trucks.
  • the speed of the transmission is set to 0.5 seconds per shift. If the car shifts once every minute, the spring-like operating frequency is only one time, far more than 3,000 times the working frequency of the textile machine spring, engine valve spring The action per minute is low, there is no fatigue problem.
  • the spring-like unit is purely circular motion, suitable for high-speed operation, shrinking and opening, and the inner diameter change is only 0.8/mm (0.8 mm ), so there is no fatigue at all when it is actuated.
  • the inner and outer shafts of the spring-like unit are twisted and disengaged.
  • the push cylinder is pressed 4/mm (4mm) to disengage, and the 4/mm (4mm) exit is twisted.
  • the shift timing can be set according to the power curve of different engines to set the optimal speed and torque.
  • the time shift can be set in the PLC, so the best energy saving effect can be achieved.
  • the gear selection mechanism 4 as shown in Figs. 1, 6, 9, 9A-9D and 10A, 10B, includes an active bevel gear 61, an intermediate bevel gear 62, a passive bevel gear 63, a sliding fork shaft 69, and a forward and backward control panel 717.
  • the active bevel gear 61 is sleeved on the output shaft 58, the active bevel gear 61 and the output shaft 58 are made of flowers
  • the key is fixed and connected to the last gear 56 in the output gear set through the one-way bearing, and with the output rotation speed of the shifting mechanism 3 and the steering rotation n Q , a bearing is fixed on the output shaft 68, the bearing A fixed bevel gear 63 is disposed on the upper side, and an active bevel gear 61 and a passive bevel gear 63 are disposed between the active bevel gear 61 and the passive bevel gear 63 to engage the intermediate bevel gear 62, and the intermediate bevel gear shaft 64 is coupled thereto.
  • the output sliding sleeve 65 is slidably fixed to the output shaft 68 by splines, and ratchet teeth are provided on the left and right end faces thereof, and matched to the corresponding end faces of the active bevel gear 61 and the passive bevel gear 63. With ratchets.
  • the output sliding sleeve 65 moves to the left and meshes with the active bevel gear 61, it is disengaged from the passive bevel gear, and the power is directly transmitted from the driving gear 61 to the output shaft 68, and at this time, the rotation of the passive bevel gear 63 is independent of the output shaft 68.
  • the output shaft 68 obtains a rotational direction n 1 of the forward output ; when the output sliding sleeve 65 moves to the right and disengages from the active bevel gear to engage the passive bevel gear 63, the power is transmitted from the active bevel gear 61 to the intermediate bevel gear 62.
  • the output shaft 68 is given another reverse direction of rotation n 2 (see Figures 10A, 10B). This converts the forward and reverse gears.
  • the output slip sleeve 65 is located neither in mesh with the active bevel gear 61 nor in the intermediate position with the passive bevel gear 63, the output shaft 68 is stationary, which is a neutral position.
  • the left shift, the right shift, and the center of the output slip sleeve 65 are controlled by a set of control mechanisms mounted on the shift control shaft 71.
  • the set of control mechanisms includes: a front shift fork 710 and a rear shift fork 711, the two shift forks are disposed on the left and right sides of the output sliding sleeve 65, and the contact with the output sliding sleeve 65
  • the surface is an opposite slope;
  • a balance plate 712 has a central portion fixed to the balance plate shaft 713 fixed to the chassis, and a balance hole 712 on each side of the balance plate shaft 713 is provided with a hinged long hole through the pin. 714, the middle of the hinged front fork 710 and the end of the rear fork, the pin can move in the long hole; as shown in Fig.
  • the lower end of the front fork 710 is the only closed frame; a forward and backward control cam plate 717 passes The key 718 is fixed to the shift control shaft 71, and is disposed in the closed frame of the front fork 710.
  • the control panel 717 is provided with a roller shaft 715, and the roller shaft 715 is hinged to the roller 716, and the forward and backward control panel The 717 contacts form a cam mechanism, and the forward and backward control panel rotates on the shift control shaft 71 to drive the front fork ⁇ 10 to move up and down.
  • the shift control mechanism 5 includes a control drive mechanism including a drive motor 728 and/or a manual drive;
  • the control drive mechanism in the shift control mechanism 5 includes a drive motor 728 and/or a manual drive that is coupled to a shift control shaft 71 via a transmission mechanism, as shown in Figures 9A-9D and Figures 16 and 16A.
  • the transmission mechanism is a worm gear transmission mechanism: a worm wheel 719 is disposed on the shift control shaft 71, and is fixed to the control shaft 71 by a nut 722, and a motor 728 is disposed on the worm 720 engaged with the worm wheel.
  • the principle of the front and rear gear reversing is: the driving motor 728 is driven by the worm wheel 719 and the worm 720 to rotate the shift control shaft by an angle, and the front fork 710 can be pulled downward or pushed upward by the forward and backward control disc.
  • the motor 728 is driven in the reverse direction, the front fork 710 can be pushed upward, so that the output sliding sleeve 65 moves to the right, and the movement in the backward direction is output, and the front fork 710 is pulled downward, so that the output sliding sleeve moves to the left, and the output advances.
  • a control mechanism associated with the shift adjustment device in the shifting mechanism 3 and a control mechanism associated with the shifting member 65 in the shifting mechanism 4 are provided on the shift control shaft 71; the shift control shaft 71 is adjusted.
  • the simple pull-out devices of the group it is matched with the forward gear, the reverse gear and the neutral gear of the gear selection mechanism, and the corresponding speed can be output correspondingly in the corresponding forward gear, reverse gear, and the like.
  • the motor 728 drives the shift control shaft 71 to rotate, and at the same time, rotates a series of ball-pointing active toothed discs 724 fixed thereon, which in turn causes the bead positioning to be rotated by the fixed-toothed disc 726, so that the top beads 725 between some of the input gears enters Among the groove rails on the shifting bracket, some of the top beads come out of the groove rail, and the springs are pushed to disengage from the adjacent input gears or the thrust is lost, so that the adjacent input gears are integrated into one body, thereby The output speed of different gears can be obtained.
  • the grades of forward gear, reverse gear, neutral gear and output speed are matched according to the use requirements, which are designed by designing the length of the groove track of each group on the shifting bracket, the relative position of each group of groove rails, and its forward and backward control panel.
  • the angle of the cam and the mounting position, the angle of rotation of the pulling and pushing the front fork and the relationship between the forward gear, the reverse gear, the neutral gear and the parking gear described later match each other.
  • the foregoing matching relationship is:
  • the motor 110 does not start, that is, the sun gear 11 does not move, and when the driving force gear 31 is not driven, the active bevel gear 61, the intermediate bevel gear 62, and the passive bevel gear 63 are in a stationary state.
  • the shift control shaft 71 is at an angle such that the balance plate 712 is in a horizontal position, neither engaged with the movable bevel gear 61 nor engaged with the passive bevel gear 63, which is a neutral. See the angle N in Figure 11C
  • the power source is higher than the idle speed.
  • the forward forward transmission process it is the forward D gear: the motor 110 is started, and the power is transmitted from the input drive gear 31 to the shifting mechanism composed of the input gear and the output gear, driven by the PLC or by the key 729.
  • the shift control shaft 71 is rotated by the manual device by the angle; within the angle, the shifting brackets 72, 73, 74, 75 and 76, the bead positioning active and the passive toothed discs, etc.
  • the gear is up to the fifth gear so that the order of the more gears is increased or decreased.
  • the forward and reverse control panel 717 is also rotated through an angle such that the front fork 710 is pulled down and the rear fork 711 is topped.
  • the output sliding sleeve 65 is moved to the left side (see FIG. 9C), and meshes with the ratchet of the left end active bevel gear 61 to become a forward gear, and the power is along the active bevel gear, the 65 output sliding spline, and the 68 output shaft.
  • This The power transmission line will be positive output.
  • the intermediate bevel gear 62 and the passive bevel gear 63 are all performing powerless idling, and the power loss is small and the noise is low.
  • the stepper motor or servo motor 728 is driven by the PLC drive or by the key 729 to drive the scroll 720, and the turbine disk 719 is driven to reverse the shift control shaft 71 by an angle, see R in FIG. 11C.
  • the shift control shaft 71 is rotated through the angle, the forward and reverse control panel 717 is rotated, the front fork 710 is driven to be pushed up, and the rear fork 711 is pulled down to become the reverse R position, and at the same time, the top bead Positioning the active toothed disc 724 to rotate, driving the top bead to position the driven toothed disc 726, and interacting with the corresponding shifting bracket 72, so that the shifting controlled top bead 725 comes out of the groove rail, and the spring-like type 45 is pushed by the shifting control disc 723, that is, controlled at 2
  • the file performs the reverse reversing function.
  • the output slip sleeve 65 is moved to the right side so that the ratchet teeth on the right end face of the output slip sleeve 65 mesh with the ratchet teeth of the passive bevel gear 63.
  • the power is reversely outputted along the transmission path such as the active bevel gear 61, the intermediate bevel gear 62, the passive bevel gear 63, the output sliding spline 65, and the output shaft 68.
  • the governor provided by the present invention further includes a parking mechanism, as shown in Figs. 15, 15A, 15B, which includes a parking cam 77 disposed on the shift control shaft 71, and a parking lock lever 78 is connected in contact therewith, the parking
  • the lock lever 78 is hingedly fixed to the case by a lock lever fixing shaft 79.
  • the parking lock lever 78 has two fork levers, one of which is in contact with the parking cam, and the other of which is provided with a tooth and a parking gear 35 fixed to the output shaft 58 to be engaged and disengageable. When the parking lock lever 78 comes into contact with a part of the circumferential surface of the parking cam, the other fork lever and the parking gear are disengaged.
  • the forward or reverse gear or neutral is the forward or reverse gear or neutral.
  • the fork lever that the contact lock lever contacts is in contact with the other circumferential surface of the parking cam, the other fork can be engaged with the parking gear. Lead to parking. At this time, the corresponding parking gear is used.
  • a control device K1 for controlling the shift speed is provided, so that the governor provides the adjustment control of the first 32-speed in the range of the forward gear D range, and the control switch is provided.
  • the control device K2 of the gear enables the governor to provide a forward D gear, a neutral N gear, and a reverse R gear, and a control device K3 for controlling the parking lock is provided to provide parking lock control.
  • These controls are concentrated on a variable speed control shaft. As long as the shift control shaft 71 is rotated electrically or manually, it is possible to control a plurality of mechanism matching changes.
  • the control mechanism device of the intensive system includes the drive motor controlled by the electronic control system or the comparison between the rotational speed of the power source power shaft and the rotational speed of the output shaft 68 or the driver input through the electric key through the inductor.
  • the electric signal is activated to automatically adjust the shifting of the shifting, front and rear gears, etc.;
  • FIG. 12 is a schematic diagram of an automatic control circuit corresponding to the embodiment shown in FIG. 1.
  • a belt motor 110 and a motor 728 are controlled, and an automatic control sensing device is disposed on the governor.
  • the deployment of the automatic control sensing device is:
  • a sensor sub-assembly is arranged on the corresponding chassis to form a sensor 732 for starting or stopping the motor 728;
  • a sensor 730 is disposed on the active component 16 of the starting mechanism 1 and on the vicinity of the chassis;
  • a sensor 731 is provided on the driven member 56 of the shifting mechanism 3 and on the vicinity of the casing.
  • FIG. 12 is a schematic diagram showing the deployment of an electronic control structure according to the embodiment shown in FIG. 1.
  • the brake wrapping motor 110 is activated to cause power output.
  • the electronic control system returns the sensed signal to the PLC to control the drive of the stepper motor or servo motor 728 through the scroll 720, the turbine disk 719 drives the shift control shaft 71, and drives the forward and backward control panel 717 to drive the front fork.
  • the electronic control system When the neutral gear N, the electronic control system immediately drives the stepping motor or the servo motor 728 to rotate to a predetermined angle, through the scroll 720.
  • the turbine disk 719 drives the shift control shaft 71 to drive the shift control disk 723 such that the 710 front fork and the 711 rear fork are balanced, and the output sliding sleeve 65 is adjusted to the intermediate position and a neutral position is completed.
  • the output slip sleeve is neither engaged with the active bevel gear 61 nor meshed with the passive bevel gear 63.
  • the stepping motor or the servo motor 728 drives the scroll 720 and the turbine disk 719 to drive the shift control shaft 71, which in turn drives the forward and backward control panel 717, so that the front fork 710 is pulled down, and the rear fork 711 is topped. On, it becomes a forward gear.
  • the bead positioning active toothed disc 724 and the shifting bracket 72, the shifting control top bead 725, and the shifting control panel 723 are automatically changed according to the rotational speed of the power source, that is, when the rotational speed of the power source (the driver steps on the accelerator) reaches the set value. . Automatic shifting from 1st to 2nd, to 3rd...to 32.
  • the shift control shaft 71 drives the forward retracting control disc 717 such that the front shift fork 710 is pushed up, and the rear shift fork 711 is pulled down. Therefore, the movement 65 output slip sleeve meshes with the 63 passive bevel gear, and becomes the reverse R.
  • the top bead positioning active toothed disc 724 and the shifting bracket 72, the variable speed control top bead 725, and the shifting control disc 723 function as a spring to control the reverse reversing function in the second gear. See Figure 9, 10A, and chaos 11 for the above.
  • the control mechanism of the intensive electronic control system instructs the stepping motor or the servo motor 728 to drive the scroll 720 and the turbine disk 719 to rotate, and drives the shift control shaft 71 to rotate, and the front fork 710 is top and rear forks. The 711 is pulled down.
  • the bevel gear set is hung on the 63 passive bevel gear of the reverse.
  • the shift control shaft 71 drives the parking cam 77 mounted thereon to rotate, and pushes the parking lock lever 78 on the lock lever fixing shaft 79 through the hinge shaft to engage with the parking gear 35.
  • the parking gear 35 and the output shaft 68 are combined. , so the effect of parking lock is achieved.
  • the front wheel drive power governor see Figure 13, the basic structure is the same as the rear wheel drive, only the front fork and rear fork change the assembly direction.
  • an output shaft 83 that is, the aforementioned output shaft 68 is added, and the above-described bevel gear reversing mechanism is mounted on the output shaft 83, and a transmission driving gear 81 is fixedly added to the output shaft 58.
  • a one-way bearing is connected between the last output gear, and an active bevel gear 61 is sleeved on the end of the output shaft 83.
  • the gear portion of the bevel gear 61 is fixed to the transmission driving gear 81 by a gear 82.
  • the power output from the shifting mechanism rotates the active bevel gear 61 through the transmission driving gear 81, the passive bevel gear 63 is fixed on the output shaft 83, and the intermediate bevel gear 62 is similarly disposed between the passive bevel gear 63 and the active bevel gear 61.
  • the output sleeve 65 is slidably disposed on the output shaft 83 via a spline, and a differential 84 is further connected to the output shaft 83, and a main differential axle is provided thereon.
  • the transmission path of the intrusion power is: via the sun gear 11, the planetary gear 13, the driving ring 32 ⁇ , the input driving gear 31, the input driven gear 41, the input gear set 46, 47, 48, 49 and the output force on the input shaft 43
  • the gear sets 51, 52, 53, 54, 55, 56 are automatically shifted by electronic control according to the rotational speed of the power input under the control of the control mechanism of the intensive electronic control system.
  • the forward and reverse gear shifting is changed by the bevel gear set reversing mechanism, which is changed according to the gear position determined by the driver.
  • the control mechanism of the intensive electronic control system rotates the shift control shaft 71 to shift the fork 710.
  • the moving output sliding sleeve 65 meshes with the active bevel gear 61, and the power is driven by the output gear 56, the one-way bearing, the transmission driving gear 81, the transmission driven gear 82, the active bevel gear 61, and the output.
  • the driver decides to stop the vehicle, it is operated by the control mechanism of the intensive electronic control system.
  • the gear is automatically changed according to the input signal.
  • the shift control shaft 71 is rotated to lock the parking lever.
  • 78 is engaged with the parking gear 35, and the automatic transmission and the output shaft 83 are locked when the parking is reached, at which time the bevel gear set is hung on the reverse driven bevel gear 63.
  • the four-wheel drive power governor is shown in Figure 14.
  • the basic structure is the same as that of the front and rear wheel drives.
  • the different design is based on the front wheel drive, and the differential 84 is connected to the output shaft 83.
  • a differential 841 and a differential 842 are connected, and the front differential 85 and the rear differential 86 are connected behind.
  • the front differential axle 851, the front differential axle 852, the rear differential axle 861, and the rear differential axle 862 are respectively driven.
  • FIG 19 is a diagram showing an automatic control structure deployment diagram of the shifting system of the embodiment shown in Figure 20, the difference between this embodiment and the embodiment shown in Figure 1 is that the engine auxiliary brake switching mechanism is an electronically controlled control mechanism, which is more A motor 39 that drives the switching mechanism.
  • the circuit device is controlled by the manual switching control mechanism 733 (PLC), the electric control motor belt motor 110, the automatic control motor 728 and the engine brake switching motor 39.
  • the PLC operates according to the command motors 728, 110 and 39: If the D gear is used
  • the brake wrap motor 110 immediately rotates to generate a power output, which is mounted on the output shaft 68 during downhill or rapid deceleration.
  • the vehicle speed detecting sensor 731 near the transmission shaft 83 detects that the rotation speed thereof is higher than the engine output sensor 730 detects the engine speed
  • the starting engine auxiliary brake switching motor 39 cuts the engine brake switching fork 32 into the parking gear 35.
  • the engine assists the braking effect, and the throttle control automatically controls the motor 728 to monitor the speed detected by the engine output sensor 730 and the original set shift speed via the scroll positioning sensor 732 disposed near the scroll 719. Change gears yourself.
  • the set of mechanisms includes a manual switch control mechanism 733 (PLC), an engine speed detection signal 730, a vehicle speed detection signal 731, a starting planetary gear belt control device 110, a power transmission or an engine brake assist switching mechanism 39,
  • PLC system automatic control microcomputer
  • the pure hand row governor is configured to:
  • the starting mechanism is a conventional clutch instead of the starting planetary gear mechanism, and the worm disk and the worm device on the shift control shaft are replaced by a chain plate and a chain, and the manual gear drive chain is further used.
  • the disc rotates, which in turn causes the shifting control shaft to rotate the hand row bar to replace the motor and the electronic automatic control mechanism for automatic gear shifting.
  • the starting mechanism 1 is a clutch 9, and the active component on the clutch mechanism is connected to the clutch.
  • the source, the driven member, that is, the clutch driven shaft 91 is sleeved on the output shaft 58.
  • the bow I engine power is transmitted from the clutch shaft 91 into the governor from the clutch shaft 91, and reaches the cylinder of the clutch shaft 91.
  • the cylinder replacement sun gear 11 is sleeved on the output shaft 58, and the driving force gear 31 sets.
  • the cylinder is disposed on the cylinder, and a driving ring 32A is disposed between the cylinder and the cylinder 32A.
  • the one-way bearing 33A is disposed between the driving ring 32A and the driving gear 31.
  • the one-way bearing 34A is disposed between the driving ring 32A and the parking gear 35.
  • the rotation speed of the driving ring 32A is faster than that of the driving power gear 31. Therefore, the power of the driving ring 32A drives the driving gear 31 through the one-way bearing 33A, and drives the driving gear 41 to drive the engine power to the input shaft 43.
  • the subsequent shifting process is the same as that of the main embodiment of FIG.
  • the small chain plate 95 of the shift control shaft 71 is connected to the large chain sprocket 94 of the gear box by the chain 96, and the shift lever 921 is manually driven to shift.
  • the hand-gear outer unit includes: a hand row bar assembly 92, a gear box 93, a large chain plate 94, a small chain plate 95, and a chain 96.
  • the hand row bar assembly 92 is composed of a hand row bar 921, a hand row bar pivot 924, a pin shaft 925, a strong spring 926, a steel ball 922, and a ball spring 923.
  • the hand row bar 921 is a flat rod with a grip at the upper end and a fork at the lower end, and a pin hole at the center of the fork.
  • the upper end of the hand row lever 924 has a square flat shape, and a pin shaft hole is disposed from the side, and the lower end is a flat disk.
  • the center of the disk is vertically disposed with the shaft hole of the hand row lever shaft 97, and the hand row bar 92 and the hand row bar shaft 924 are
  • the pin 925 is latched into the pivotally pivotable coupling, and the protruding end of the pin 925 is fitted into the strong spring 926, and the two ends strongly press the hand row bar 921 and the hand bar lever 924 to bend the two backwards.
  • a steel ball 922 is placed at the same height as the gear hole 931 on the gear box 93, and the steel ball spring 923 is pressed against the protruding plane, but does not fall out.
  • the gear box 93 is a rectangular box body, and a hand row bar shaft seat 932 is arranged near the bottom of the center, and a center of the right wall has a semicircular protrusion.
  • the hand row bar shaft seat 932 is centered, and several gear positions are arranged according to the distribution angle.
  • the hand row bar assembly 92 is placed in the gear box 93, the hand row bar shaft 97 is passed through the hand row shaft seat 932, the hand row bar 924 H is good, and the hand row bar pivot key 927 is fastened.
  • the large chain plate 94 is placed on one end of the hand row lever shaft 97, and fastened by the large chain plate key 941. At this time, the hand row bar 921 is discharged, and the large chain plate 94 is rotated synchronously.
  • a small chain plate 95 is mounted at a position where the control shaft 71 is mounted with the worm disk 719, and is fastened by a small chain key 951.
  • the shift control shaft 71 is coupled. Synchronously rotating with the hand row bar 921, the manual row bar can accurately control the shift control shaft.
  • the device for rotating the purely manual control shifting control shaft 71 shown in this embodiment is made using the clutch of the existing manual transmission, which is only stepped on when the vehicle is started, and the intermediate shifting does not require the clutch to be disengaged.
  • the operation method is as follows: the driver pushes the clutch jaw plate, directly pushes the hand row bar 734 to push N from the N, and slowly puts down the clutch, and simultaneously depresses the throttle plate to refuel, and the vehicle is changed by the first gear and then the fuel is changed. Gears, no need to step on the clutch, the biggest advantage is that the four-row gear combination has eight gear changes available. From neutral to R, the button is designed for safety.
  • the power speed control structure of the present invention uses a planetary gear set with a brake wrap to generate a function of separating and disengaging the input of power.
  • the forward, engine-assisted brakes are pulled through the engine brake ratchet sleeve 34 or the one-way bearings 33A, 34A to form a mesh, disengaged to advance, neutral, and engine assisted brakes.
  • the power transmission can generate the clutch function through the push-and-release of the spring-like type on the gear, and the change of the one-way bearing disposed between the adjacent output gears in the shifting mechanism 3 can achieve the function of multi-speed shifting.
  • the bevel gear set is formed by the ratchet on both sides of the output sliding sleeve to form a meshing and disengaging action to generate forward, neutral and reverse.
  • the intensive electronic control system can make optimal operating conditions according to the power source and various road conditions and vehicle conditions according to the sensors installed in the above.
  • the requirements of various vehicles ⁇ the power source (engine) steering is positive, reverse (clockwise, reverse clock) rear wheel drive, front wheel drive, four-wheel drive, hand, automatic dual-purpose power speed control device, etc. Both can be applied;
  • the governor in the prior art is a gear train of a row to obtain a shift, how many shifts are required, and how many rows of gear sets are required.
  • the governor provided by the present invention has a variable speed that is higher than the number of rows of the gear set. The practical effects of these properties are industrially practical.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Gear-Shifting Mechanisms (AREA)

Description

名段式动力自动调速器
技术领域
本发明涉及一种调速器, 尤其是一种多段式动力自动调速器。
背景技术
目前, 传统的车用变速传动系统概分为手动、 自动、 及连续式变速传动系统。 其缺点如下:
•手动变速传动系统必须依靠驾驶者在不同的行车速度、 路面状况, 随时踩放离合器踏板并 操作排档杆才能变更其变速比, 很费神及浪费体力。
• 自动变速传动系统系采用液体作为发动机动力传输的介质 (俗称扭力转换器)其转换效率并 不尽理想, 所以很耗油。
•连续式变速传动系统是由皮带结合一对滑轮所组成, 因摩擦传动所以滑轮的轴向力及皮带 的压缩力易造成打滑、 皮带断裂的缺点。
发明内容
本发明的目的在于改进现有技术中的不足, 提供一种可在电子 (PLC)控制下经由感应到的信号回传 PLC来控制使其能自动离合及缓冲, 且可依各种不同动力源出力的最佳条件和行车路况、 车载状况决 定换档时机, 达到省油的目的。
为实现上述目的, 本发明采取一下设计方案:
一种多段式动力调速器,包括启动机构、变速机构、选挡机构和变速控制机构,其总体部署结构为: 所述启动机构套设在一出力轴上,所述启动机构包括与动力传递机构相连的主动部件和与变速机构 相连用于将动力传递给变速机构的从动部件, 所述主动部件和从动部件通过传动装置连接;
所述变速机构包括传入动力的主动部件和传出动力及不同速度的从动部件,该主动部件和从动部件 通过一变速齿轮组机构连接在一起, 该变速齿轮组机构上设有变速调节装置;
所述选档机构包括主动部件、从动部件和换档部件,所述主动部件与变速机构中的从动部件相连接, 所述从动部件套设在一输出轴或上,所述换档部件可与主动部件或从动部件择一连接,或都不连接地与 输出轴固连, 向车辆的后轮、 或前轮、 或四轮传递前进、 后退或空档相应的动力和转速;
所述变速控制机构包括控制驱动机构, 其包括一驱动电机和 /或手动驱动装置; 还包括与所述变速 机构中的变速调节装置相关联的控制机构、与所述选档机构中的换档部件相关联的控制机构,所述控制 驱动机构与前述的控制机构通过传动装置相连接;
与所述变速机构中的变速调节装置相关联的控制机构包括控制主动件和控制从动件,所述控制从动 件与所述变速机构中的齿轮组相关联, 所述控制主动件与控制从动件通过传动机构相连接;
与所述选档机构中的换档部件相关联的控制机构包括控制主动件和控制从动件,控制从动件与所述 换档部件相关联, 控制主动件与控制主动件通过传动机构相连接;
前述两个控制机构中的控制主动件均设置在一根变速控制轴上, 其随所述变速控制轴转动即可实 施换档和变速;
其特征还在于: 还包括:
一停车齿轮, 其固设在该出力轴上;
一引擎辅助刹车切换机构, 其为一切换装置, 设置在所述从动部件上,其一端与所述变速机构中的 传入动力的主动部件关联, 或者, 另一端与停车齿轮相关联, 形成两种状态:
与所述变速机构中的传入动力的主动部件相关联,而将动力从启动机构传给变速机构,处于引擎动 力输出状态; 或者,
和固于所述出力轴上的停车齿轮相关联, 处于引擎辅助刹车状态。
所述启动机构可以是一行星齿轮组缓冲机构, 包括太阳齿轮、 行星齿轮、 环齿轮和设于太阳齿轮 两侧的两个行星齿轮架,作为所述主动部件的一个行星齿轮架和作为所述从动部件的太阳齿轮相邻地套 设在所述出力轴上,另一个行星齿轮架套设在太阳齿轮另一侧太阳齿轮的筒体上,在该齿轮架和太阳齿 轮的筒体之间套设所述变速机构中的主动部件,两个行星齿轮架之间固设行星齿轮轴,该轴上套设行星 齿轮与太阳齿轮啮合, 在行星齿轮外面套设啮合环齿轮,
还包括一令所述环齿轮转动和不动, 继而使所述太阳齿轮不动或转动的装置。所述装置为制动包 带驱动装置,该制动包带驱动装置包括一制动包带电机和一制动包带顶杆,制动包带电机和制动包带顶 杆之间设有一传动装置, 使得当该制动包带电机启动时, 带动制动包带顶杆运动, 使一端固定在机箱支 架上、 另一端连接在制动制动包带顶杆上的制动包带抱紧环齿轮或将其松开。
所述引擎辅助刹车切换机构为:包括有一个引擎刹车带动环和二个方向相反的单向轴承的切换装 置,所述带动环固设在所述启动机构中的所述从动部件上,一个单向轴承设置在带动环和所述变速机构 中的所述主动部件之间,使得当带动环的转速大于主动部件时动力从启动机构传递到变速机构,反之空 转无动力传递;另一个单向轴承设置在带动环和所述停车齿轮之间,使得当停车齿轮的转速大于带动环 时动力从停车齿轮传递到带动环继而传递到启动机构, 反之空转无动力传递。
或者还可以是为电控控制切换装置, 包括一个棘齿滑套和一驱动机构, 该棘齿滑套可滑动地固联 在所述启动机构的从动部件上,所述棘齿滑套置于所述变速机构中的主动部件和所述停车齿轮之间,该 棘齿滑套的两侧设有棘齿,所述主动部件和所述停车齿轮与所述棘齿滑套相邻的侧面设有可相互啮合的 棘齿;所述驱动机构包括一端置于棘齿滑套外圆周面上的圆环槽中、另一端固定在一拨叉轴上的引擎刹 车切换拨叉,还包括一个引擎刹车切换电机,在引擎刹车切换电机和引擎刹车切换拨叉之间设有传动装 置;
或者也可以为油门踏板控制切换装置, 即在前述电控切换装置的基础上, 取消切换电机, 设置一 个引擎刹车切换拉绳, 在所述引擎刹车切换拨叉的上端设置柄,其上一侧连接所述拉绳, 另一侧与机箱 之间连接一弹簧。 拉绳与油门踏板连接, 油门踏板不踩时会产生引擎刹车。
所述变速机构的变速部署结构为:所述变速机构中的所述变速齿轮组机构包括相互啮合的入力齿 轮组和出力齿轮组,其分别装置在一入力轴和所述出力轴上,所述入力齿轮组和出力齿轮组中的各个齿 轮一一对应地啮合,一对相互啮合的所述入力齿轮和出力齿轮为一排变速齿轮组,其中的所述主动部件 即入力主动齿轮和所述入力轴上固设的一入力被动齿轮啮合,所述入力轴上一体固设一个齿轮,其作为 第一排变速齿轮组中的入力齿轮与第一排变速齿轮组中的第一出力齿轮啮合,其它各入力齿轮均套设在 入力轴上,各出力齿轮均套设在所述出力轴上,并与入力齿轮组中的相应齿轮一一对应啮合形成若干排 变速齿轮组,最后一排变速齿轮组中的出力齿轮即为所述变速机构中的从动部件,所述变速调节装置为: 包括所述入力轴上相邻的入力齿轮之间设有可以使相邻入力齿轮相互连成一体以同样的转速转动、又可 以彼此脱开只是空转的机构,所述机构为类弹簧机构;在所述出力轴上套设的所述出力齿轮组中的一系 列出力齿轮,相邻齿轮之间设置单向轴承使之相互连接,使得其间形成相对速度较快的出力齿轮可以带 动低速出力齿轮转动, 即低速档转速低时同步转, 高转速时仅髙速档齿轮旋转, 低速档齿轮则空转的运 动关系。
所述类弹簧机构与所述入力齿轮的构造与结合结构为:第二排到最后一排变速齿轮组中的每个所 述入力齿轮的端面上固设类弹簧的一端,该类弹簧的另一端形成中空的腔室,前一个入力齿轮的筒体置 于类弹簧形成的中间空中的腔室中, 类弹簧形成中空腔室的一端的端部设有接合部, 与之对应,在与该 端相邻的入力齿轮的相应的侧面上设有与类弹簧上的所述接合部匹配的接合部,在所述两个接合部之间 的入力轴上套设推动机构,其在入力轴上移动给所述类弹簧施加压缩力使之压缩使得其与相邻入力齿轮 的所述接合部脱离接合, 或取消压缩力, 恢复接合; 所述推动机构与所述变速控制机构中的所述控制机 构相连接。
所述选档机构为一伞齿轮换档机构, 所述主动件为主动伞齿轮, 所述从动件为被动伞齿轮, 其间 连接一个可转动的固定在机箱上的换向中间伞齿轮与主、被动伞齿轮分别啮合,所述被动伞齿轮与所述 输出轴之间设置一轴承, 所述换向部件为一个出力滑套, 其两侧以及所述主、被动伞齿轮相应位置上分 别设有接合结构, 所述出力滑套连接一拨叉升降机构作为所述变速控制机构中的控制机构相连接。
所述变速控制机构中的控制驱动机构包括一驱动电机和 /或手动驱动装置, 其通过一传动机构连接 一根变速控制轴,在该变速控制轴上设有与所述变速机构中的变速调节装置相关联的控制机构和与所述 选档机构中的换档部件相关联的控制机构;与所述变速机构中的变速调节装置相关联的控制机构为简易 拔推装置,该简易拔推装置包括所述控制主动件即顶珠定位主动齿盘、和所述控制从动件即顶珠定位被 动齿盘; 对应地, 所述推动机构包括变速控制盘、和变速托架; 所述变速控制轴上, 对应所述变速机构 中变速齿轮组的排数 n, 设有 n-1个所述变速托架和变速控制盘, 也相应地设有 n-1个简易拔推装置, 所述变速控制盘套设在所述入力轴上, 通过轴承固定在所述类弹簧端部, 所述变速托架为片状物,其上 设有两个孔,通过一孔使变速托架的一端套设在与所述类弹簧相邻的一入力齿轮的筒体上,通过另一孔 使变速托架的'另一端套设在变速控制轴上使该变速托架在入力轴上不转动地定位;所述简易拔推装置中 的主动件顶珠定位主动齿盘固定在所述变速控制轴上,所述从动件顶珠定位被动齿盘套设在所述入力齿 轮的筒体上位于所述变速控制盘和变速托架之间并与顶珠动为主动齿盘啮合;在所述顶珠定位被动齿盘 上设有顶珠孔, 孔中设有顶珠, 与所述变速控制盘对应, 且与其上顶珠孔对应地, 所述变速托架上设有 圆弧形顶构包括: 所述控制主动件即一个前拨叉和一个后拨叉、所述控制从动件即前进、后退控制凸轮 盘, 该两个拨叉设置在出力滑套的左右两侧, 其与出力滑套的接触面是相对的斜面; 一个平衡板, 其中 心部位可转动地固定在固于机箱上的平衡板轴上,在平衡板轴两侧的平衡板上各设有一个铰接长孔,通 过销子各铰接前拨叉的中部和后拨叉的端部;前拨叉的下端为一个封闭框架;一个前进后退控制凸轮盘 固联在变速控制轴上的, 其设在前拨叉的封闭框架中, 构成一个凸轮机构, 使得通过所述前进后退控制 盘在随所述变速控制轴转动时, 即可带动前拨叉上下移动,继而带动所述出力滑套左右移动接合主动伞 齿轮或接合被动伞齿轮或处于居中位置对应前进档、 后退档和空档。
还包括一停车锁定装置, 其包括一停车凸轮和一停车锁定杆, 该停车凸轮固定在所述变速控制轴 上, 该停车锁定杆可转动地固定在机箱上, 其具有两个联动的伸出端, 其中一端与所述停车凸轮接触, 另一端上具有锁定齿,随着停车凸轮的转动形成该锁定齿与所述停车齿轮啮合锁定出力轴和脱离停车齿 轮解开锁定出力轴的两个状态。
还包括自动控制感应装置, 该自动控制感应装置的部署为:
在所述启动机构的主动部件上及附近机箱上设有传感器,
在所述变速控制机构中的所述变速控制轴上设有的转盘的圆周上设有若干个传感器分部件,对应 地, 在相应的机箱上设有一个传感器分部件, 组成传感器, 用于检测 PLC事先设定换档转速及当时驾 驶者操控的发动机转速而由自动控制马达带动涡杆转动涡轮盘转动变速控轴而自动换档,所述传感器还 用于检测启动机构中主动件的转速与 PLC中设定的启动的转速比较而启动或停止制动包带电机的; 和 / 或
对应所述引擎辅助刹车切换机构为电控控制切换装置, 还包括: 在变速机构的从动部件上及附近 机箱上设传感器, 其与所述传感器配合控制电控控制切换装置中的所述电机的启动和停止。
或者, 还包括手动控制装置,其包括手排杆轴,其与所述变速控制轴之间设有传动装置,还包括档位箱, 其上可转动的固定装有手排杆轴,在手排杆轴上固设又驱动手排杆,使得通过扳动手排杆即可转动手排 杆, 从而通过所述传动装置使变速控制轴转动; 所述手排杆上设弹性定位装置, 对应地, 在所述档位箱 上对应手排杆转动而所述定位装置运动轨迹处设有档位孔与所述手排杆转动角度即相应变速控制轴转 动角度对应的档位相对应
对应所述引擎辅助刹车切换机构为电控控制切换装置还包括如下传感器:设置在脚踏板上和驾驶 室对应位置上的弓 I擎刹车传感器和传动传感器 ,用于辅助驱动所述电控控制切换装置中的电机和启动机 构中的电机,在脚踏板上设有传感器的一部分永久磁铁,在驾驶室中对应脚踏板处于以下四个位置设置 传感器的另一部分: 在刹车踏板上对应油门全开位置、加油终止或加油开始位置、设定使得棘齿滑套脱 开或接合所述变速机构中的主动部件的位置和设定使得棘齿滑套脱开或接合所述停车齿轮的位置,以向
PLC传递接通或切断电机的信号以便进行引擎和辅助刹车的适时切换。
为了适应设置 6排变速齿轮组可有 32档变速的变速机构, 所述变速托架上具有六组有圆弧形顶 珠退拔沟轨, 每一组退拔沟轨在圆周上均匀分布, 每一组退拔沟轨是三个, 相交 120度分布; 所述变速 托架上设置三个同心圆, 同一组的三个退拔沟轨分别设置在该三个同心圆上, 各组沟轨的长度不同, 以 适应 n=6排变速齿轮组的三十二档变速或低于此档数的调速需求。
本发明提供的多段式动力自动调速器可在电子控制下经由感应到的信号回传 PLC来控制使其能 自动离合及缓冲, 且可依各种不同动力源出力的最佳条件和行车路况、 车载状况决定换 档时机, 达到省油。
附图说明
下面结合附图对本发明作进一步说明。
图 1为本发明提供的动力调速器的一种较佳实施例的机构总体结构示意图,其中的引擎辅助刹车切 换机构包括两个方向相反的单向轴承;
图 2为图 1所示的较佳实施例功能部署示意图;
图 3为本发明提供的动力调速器的后轮驱动结构中部分轴的轴位主视结构示意图;
图 4及 4A为图 1所示实施例的动力调速器的启动机构的主视和侧视结构示意图;
图 5 A— 5D为图 1所示实施例的动力调速器的引擎辅助刹车切换机构的结构示意图; 其中, 图 5A 为向变速机构传递动力时的结构示意图; 图 5B为辅助刹车时的结构示意图; 图 5C为图 5A的 C-C剖 视结构示意图, 其为引擎加速时, 本机构自动将动力传递到入力轴状态的剖视结构示意图; 图 5D为图 5B的 D-D剖视结构示意图, 其为引擎减速时, 本机构自动将出力轴转速逆向传到引擎的剖视结构示意 图;
图 6为本发明提供的动力调速器中变速机构齿排部署示意图;
图 7为本发明提供的动力调速器中集约式变速控制机构的构造与控制部署示意图;
8A为具有四排齿轮对, 具有可调出八种速度的变速机构中齿轮啮合情况示意图;
图 8B为五排齿轮对, 具有可调出十六种速度的变速机构中齿轮啮合情况示意图;
图 8C为如图 1所示的六排齿轮对, 具有可调出三十二种速度的变速机构中齿轮啮合情况示意图; 图 9A为选档机构的结构示意图, 即换挡机构的前进档和后退档运动传递示意图;
图 9B— 9D为选档机构处于三个状态的结构示意图; 其中, 图 9B为空档状态; 图 9C为前进档状 态; 图 9D为后退档状态;
其中, 图 9C为前拨叉拉出、 后拨叉插入、 滑动拨叉向前滑动、 出力滑套的棘齿与主动伞齿轮的棘 齿啮合、 为前进档状态示意图; 图 9D为前拨叉插入、 后拨叉拉出、 滑动拨叉向后滑动、 出力滑套的棘 齿与被动伞齿轮的棘齿啮合、 为后退档状态示意图;
图 10A、 10B为图 9所示换挡机构的选档机构的结构简图;
图 11A-11F为本发明提供的动力调速器的变速机构和变速调节机构结构示意图;其中,图 11A、 11B 为两个相邻入力齿轮连成一体和脱开的结构示意图; 图 11C为托架控制角度分布图; 图 11D为托架的 主视结构示意图; 图 11E为变速控制机构的分解结构示意图; 图 11F为变速控制机构 (顶珠定位齿盘) 的主视结构示意图;
图 12本发明提供的动力调速器如图 1所示的实施例中的一种系统自动控制部署示意图; 图 13为本发明提供的动力调速器的前轮驱动的结构示意图;
图 14为本发明提供的动力调速器的四轮驱动动力传递与分配结构示意图;
图 15及图 15A、 图 15B为停车锁定装置的构造与控制原理的结构示意图;
图 16为前拨叉上升下降装置的构造与控制原理的结构示意图;
图 16A为图 16的侧视结构示意图;
图 17A、 17B为本发明提供的动力调速器的另一种引擎刹车切换机构的结构示意图; 其中, 图 ΠΑ 为向变速机构传递动力时的结构示意图; 图 17B为辅助刹车时的结构示意图; 此处不设空转结构; 图 18为油门踏板上装设之引擎刹车或传动之传感器的结构示意图;
图 19为本发明提供的动力调速器的变速系统之自动控制结构布署示意图;
图 20为如图 17A、 17B所示的动力调速器的引擎刹车釆电控的实施例的机构总体结构示意图; 图 21A、 21B为本发明提供的动力调速器的又一种引擎刹车切换机构的结构示意图; 其中, 图 21A 为向变速机构传递动力时采用拉线来传动的结构示意图; 图 21B为辅助刹车时的结构示意图; 图 22为变速控制轴上设置手动驱动机构的调速器总结构示意图;
图 23为手动驱动变速及选档的结构示意图;
图 23A为图 23的侧视结构示意图 。
具体实施方式
如图 1和 2所示,本发明提供的多段式动力自动调速器包括启动机构 1、引擎辅助刹车切换机构 2、 变速机构 3、 选档机构 4和变速控制机构 5。
该调速器的上述各个机构装设在出力轴 58 (与输出轴 68同轴线, 图中未显示出来)、 输出轴 68、 入力轴 43和变速控制轴 71四根轴上,其中的出力轴 58和输出轴 68同轴线设置,相邻的轴端契合在一 起, 出力轴 58和输出轴 68相互独立, 各自分别转动。但经由选档机构中的前进后退伞齿轮组 4的作动 产生前进、 空档、 后退的功能。 入力轴 43和变速控制轴 71均与输出轴 68的轴线平行 (如图 3所示)。
启动机构 1套设在一出力轴 58上,启动机构 1包括与动力传递机构相连的主动部件 16和与变速 机构 3相连用于将动力传递给变速机构 3的从动部件 11, 主动部件 16和从动部件 11通过传动装置连 接;
变速机构 3包括传入动力的主动部件 31和传出动力及不同速度的从动部件 56, 该主动部件 31 和从动部件 56通过一变速齿轮组机构连接在一起, 该变速齿轮组机构上设有变速调节装置;
选档机构 4包括主动部件 61、 从动部件 63和换档部件 65, 主动部件 61与变速机构 3中的从动 部件 56相连接, 从动部件 63套设在一输出轴 68或 83上, 换档部件 65可与主动部件 61或从动部件 63择一连接, 或都不连接地与输出轴 68或 83固连, 向车辆的后轮、 或前轮、 或四轮传递前进、 后退 或空档相应的动力和转速;
变速控制机构 5包括控制驱动机构, 其包括一驱动电机 728和 /或手动驱动装置; 还包括与所述 变速机构 3中的变速调节装置相关联的控制机构、 与所述选档机构 4中的换档部件 65相关联的控制机 构, 所述控制驱动机构与前述的控制机构通过传动装置相连接;
如图 1、 4、 4A所示, 本具体实施例中的启动机构 1是一行星齿轮组缓冲机构, 包括从动件太阳齿 轮 11、 行星齿轮 13、 环齿轮 18和设于太阳齿轮左右两侧的行星齿轮架 16即主动件和行星齿轮架 17, 作为所述主动部件的一个左行星齿轮架 16和作为所述从动部件的太阳齿轮 11相邻地套设在出力轴 58 上,另一个右行星齿轮架 17套设在太阳齿轮 11右侧太阳齿轮 11的筒体上,在该齿轮架 17和太阳齿轮 11的筒体之间套设变速机构 3中的主动部件 31 , 两个行星齿轮架 16、 17之间固设行星齿轮轴 14, 该 轴上套设行星齿轮 13与太阳齿轮啮合, 在本实施例中, 在太阳齿轮 11周围均布四个行星齿轮 13 , 在 行星齿轮 13外面套设啮合环齿轮 18。
左行星齿轮架 16与发动机的动力承接盘(图中未示出)连接输入动力。在左行星齿轮架 16的筒部 上通过键 23设油泵主动齿轮 22, 其与一油泵被动齿轮 21啮合, 在机箱和油泵主动齿轮 22之间设有轴 承 12。 由此, 分出一部分动力用于驱动机动车的润滑油系统。
启动机构 1一端与动力源相连接,另一端通过引擎辅助刹车切换机构 2与变速机构 3连接,变速机 构 3通过选档机构 4与输出轴 68连接,输出轴 68再通过诸如差动轮系等机构与前轮或后轮或四轮连接, 以实现通过后轮、 前轮、 或四轮驱动机动车行驶。
启动机构 1还包括一令环齿轮转动和不动, 继而使所述太阳齿轮 11不动或转动的装置。 其为制动 包带驱动装置, 该制动包带驱动装置包括一制动包带电机 110和一制动包带顶杆 19, 在环齿轮 18的外 圆周上设有制动包带 15, 其一端通过固定销 40固定在机箱支架上, 其另一端连接一制动包带驱动装置 上。 制动包带电机 110和制动包带顶杆 19之间设有一传动装置, 使得当该制动包带电机 110启动时, 带动制动包带顶杆 19运动,使一端固定在机箱支架上、另一端连接在制动制动包带顶杆 19上的制动包 带 15抱紧环齿轮 18或将其松开。在本实施例中,所述传动装置例如可以是螺旋传动装置等一类将转动 变为直线运动的机构。 例如, 如图 4、 4A所示, 电机 110上连接一螺杆状顶杆 19, 其螺接穿设在一固 定于机架上的衬套 112上, 电机 110正转, 顶杆 19下移, 绷紧制动包带 15 , 反转则放松制动包带 15。
当车况是空档 N或停车档 P时, 本启动机构 1是空转状态, 即在发动机输出轴转动的带动下, 左 行星齿轮架 16、 右行星车轮架 17转动, 继而, 带动行星齿轮 13以及环齿轮 18空转, 这时, 太阳齿轮 11不动。 而当制动包带电机 110转动起来后, 使得制动制动包带 15抱紧环齿轮 18, 此时, 太阳齿轮 11即转动起来。
变速机构 3包括传入动力的主动部件 31和传出动力及不同速度的从动部件 56, 该主动部件 31和 从动部件 56通过一变速齿轮组机构连接在一起, 该变速齿轮组机构上设有变速调节变速调节装置; 一停车齿轮 35, 其通过键 36固设在该出力轴 58上;
一引擎辅助刹车切换机构 2, 其为一切换部件, 设置在所述出力轴 58上, 其一端与启动机构 1中 的从动部件 11关联, 另一端择一地
关联变速机构 3的主动部件 31将启动机构 1中的从动部件 11与变速机构 3中的传入动力的主动部 件 31相关联, 而将动力从启动机构 1传给变速机构 3 , 处于引擎状态, 或者, 和固于所述出力轴 58上 的停车齿轮 35相关联, 处于辅助刹车状态。
引擎辅助刹车切换机构 2有两个作用:一是传递动力, 即将动力传递给变速机构 3, 二是使车辆惯 性动力逆向回流辅助刹车。
具体的, 如图 1、 5A— 5D所示, 引擎辅助刹车切换机构 2, 为包括有一个引擎刹车带动环 32A和 二个方向相反的单向轴承 33A, 34A的切换装置, 带动环 32A通过花键固设在启动机构 1中的从动部 件即太阳齿轮 11上,一个单向轴承 33A设置在带动环 32A和变速机构 3中的主动部件即变速机构 3中 的入力主动齿轮 31之间, 使得当带动环 32A的转速大于入力主动齿轮 31时动力从启动机构 1传递到 变速机构 3 , 反之空转无动力传递; 另一个单向轴承 34A设置在带动环 32A和停车齿轮 35之间, 使得 当停车齿轮 35的转速大于带动环 32A时动力从停车齿轮 35传递到带动环 32A继而传递到启动机构 1, 反之空转无动力传递; 停车齿轮 35与机箱之间还设有轴承。
引擎辅助刹车切换机构 2是这样工作的:
当车况是前进档或后退档时, 动力源即发动机输出轴的转速由怠速提升 10%时, 通过车上装置的 传感控制装置(后面述及)使制动包带电机 110启动,驱动制动包带顶杆 19使制动包带刹紧环齿轮 18, 令其不能转动, 由此, 可以使原来不动的太阳齿轮 11转动, 这时, 带动环 32A随太阳齿轮 11转动的 转速大于入力主动齿轮 31, 单向轴承传递动力, 所以, 通过带动环 32A和单向轴承 33A带动入力主动 齿轮 31转动, 向变速机构 3输出动力, 动力输送路径如图 5A中箭头方向所示, 通过变速机构、 选档 机构、 输出轴 68以所需要的转速转动, 驱动车辆前进或后退等, 进行动力传递。
发动机辅助刹车过程是这样实现的: 当驾驶员抬起油门踏板时, 发动机的输出轴的转速降低, 而输 出轴 68的转速仍然较大, 即入力主动齿轮 31的转速大于太阳齿轮 11即带动环的转速, 带动环 32A的 内两侧各装有的单向轴承 33A, 34A随着转动速度快与慢的差异产生不同带动, 单向轴承 33A不再向 入力主动齿轮 31也就是变速机构 3输送动力了, 带动环 32A空转, 同时, 由于出力轴 58与选档机构 的主动部件 61固联, 其转速大于带动环 32A的转速, 反向安装的单向轴承 34A将出力轴 58的动力传 递到带动环 32A上, 继而传给太阳齿轮 11, 动力传递路径见图 5B上的箭头所示, 由此, 产生辅助刹 车的效应。
图 5C显示了图 5A中 C-C剖视结构, 当带动环 32A转速大于入力主动齿轮 31时, 单向轴承 33A 产生作用带动入力主动齿轮 31转动, 反之则空转。 图 5D显示了图 5B中的 D-D剖视结构, 当车况是 下坡或没踩油门时, 出力轴 58的转速大于太阳齿轮 11即带动环 32A的转速, 动力就由出力轴 58经由 停车齿轮 35、单向轴承 34A带动带动环 32A、 太阳齿轮 11转动, 产生引擎刹车的功能。 即: 单向轴承 33A (图 5C所示) 外圆的转速大于内圆转速时单向轴承 33A就产生作用带动内圆一起旋转, 反之则空 转。 图 5D所表示的是单向轴承 34A内圆的转速大于外圆转速时, 就产生作用带动外圆一起旋转, 反之 则空转。 两种状态下的转向相同, 只是单向轴承内圆与外圆转速快慢产生带动或空转。
弓 I擎辅助刹车切换机构 2还可以有另外二种结构可供选用。参见图 17A、 17B、 20、 21A、 21B, 如 图 20和图 17A、 17B所示的是一种电控控制切换的引擎辅助刹车切换机构。 其中,
包括一个棘齿滑套 34和一驱动机构, 该棘齿滑套 34通过花键可滑动地固联在太阳齿轮 11上, 棘 齿滑套 34置于入力主动齿轮 31和停车齿轮 35之间, 该棘齿滑套 34的两侧设有棘齿, 入力主动齿轮 31和停车齿轮 35与棘齿滑套 34相邻的侧面设有可相互啮合的棘齿;
还包括一个驱动机构, 其包括一端置于棘齿滑套 34外圆周面上的圆环槽中、 另一端固定在一拨叉 轴 33上的引擎刹车切换拨叉 32, 还包括一个引擎刹车切换电机 39, 在引擎刹车切换电机 39和弓 I擎刹 车切换拨叉 32之间设有传动装置; 本实施例中提供的传动装置是由拨叉轴蜗杆 38和拨叉轴蜗盘 37组 成的蜗轮蜗杆.传动装置。
在启动机构 1的左行星齿轮架 16上及附近机箱上设有用于启动或停止制动包带电机 110的传感器 730的基础上,再在变速机构 3的从动部件 56上及附近机箱上设传感器 731 ,其与所述传感器 730配合 控制引擎刹车切换电机 39的启动和停止:
引擎刹车切换机构 2是这样工作的- 当车况是前进档或后退档时, 动力源即发动机输出轴的转速由怠速提升 10%时, 安装在本机构上 监测发动机输出轴转速的传感器 730向制动包带电机 110的控制开关发出指令信号, 使制动包带电机 110启动, 驱动制动包带顶杆 19使制动包带刹紧环齿轮 18, 令其不能转动, 由此, 可以使原来不动的 太阳齿轮 11转动, 继而, 通过引擎刹车棘轮滑套 34带动入力主动齿轮 31转动, 向变速机构 3输出动 力, 通过变速机构、 选档机构、 输出轴 68以所需要的转速转动, 驱动车辆前进或后退等, 进行动力传 递。
° 发动机辅助刹车过程是这样实现的:当输出轴 68的转速大于左行星齿轮架 16的转速时,引擎刹车 切换电机 39启动, 通过驱动蜗盘 37转动, 带动拨叉轴 33转动, 使引擎刹车切换拨叉 32逆时针摆动, 推动引擎刹车棘轮滑套 34向右移动, 与入力主动齿轮 31脱开, 而与停车齿轮 35咬合, 实现辅助刹车。
如图 21A、 21B 所示是另一种手动方式控制切换装置。 在上面电控切换装置的基础上, 去除电机 39和由拨叉轴蜗杆 38和拨叉轴蜗盘 37组成传动装置, 也可以不装置传感器 731, 替代电机 39, 采用 拉线方式由油门踏板来控制拨叉 32摆动, 在引擎刹车切换拨叉 32的上端设置柄 312, 其上一侧连接一 油门拉线 315, 另一侧与机箱之间连接弹簧 316。 拉线 315连到驾驶室中, 驾驶员可以通过拉动拉绳将 引擎刹车切换拨叉 32设置成如图 21B的位置, 进行辅助刹车。 当放松拉绳 315, 在弹簧 316的弹性力 的作用下恢复传动动力的状态, 如图 21A所示。 实际当中, 拉线与油门连接, 油门放到底没踩油门时 是产生引擎辅助刹车, 如图 21B所示, 油门踩下在游隙行程范围即将加速时产生作用, 如图 21A所示。 这种结构可以降低成本, 满足不同档次的需求。
如图 18所示, 还可以在油门踏板 313上安装一个永久磁铁 314, 在车架的相应位置处设有一个传 感器 737和一个引擎刹车传感器 736, 用其配合上述电控切换装置, 接通电机 39, 进行引擎和辅助刹车 的切换。 例如引擎刹车传感器 736设置在脚踏板 313上, 传动传感器 737设置在驾驶室内对应位置上, 用于辅助驱动所述电控控制切换装置中的电机 39, 在脚踏板 313上设有传感器的一部分永久磁铁 314, 在驾驶室中对应脚踏板处于以下四个位置设置传感器的另一部分:在刹车踏板上对应油门全开位置 wl、 加油终止或开始位置 w2、设定使得棘齿滑套 34脱开或接合所述变速机构 3中的主动部件 31的位置 W3 和设定使得棘齿滑套 34脱开或接合所述停车齿轮 35的位置 w4。 以向 PLC传递接通或切断电机 39的 信号以便进行引擎和辅助刹车的适时切换。
当踩下油门踏板 313时, 对应于 w4位置, 电机 39带动拨叉 32开始右移, 继续踩下油门踏板到对 应 w3,棘齿滑套 34与停车齿轮在此脱离啮合, 是传动起始点, 油门踏板踩到对应 w2位置, 加油开始, 在到达 W2之前, 棘齿滑套 34立完成与入力主动齿轮 31的啮合, 当油门踏板踩到对应 wl位置时, 加 油油门全开, 在 W1-W2角度范围运动时, 是处于给油的阶段, 传动也在这个阶段进行。 相反地, 当松 脚抬起油门过程中, 从油门全开对应的 wl位置到 w2位置, 加油停止, 继续抬起油门踏板, 使得棘齿 滑套 34脱离入力主动齿轮 31, 到达 w3位置, 与停车齿轮啮合完成, 油门踏板到 w4位置时, 弓 I擎辅 助刹车生效。
变速装置 3, 如图 6所示, 是一个变速齿轮组机构, 它包括相互啮合的入力齿轮组和出力齿轮组, 入力齿轮组装设在入力轴 43上, 出力齿轮组装设在出力轴 58上,入力齿轮组和出力齿轮组中的各个齿 轮一一对应地啮合,一对相互啮合的入力齿轮和出力齿轮为一排变速齿轮组,其中的主动部件即入力主 动齿轮 31和入力轴 43上固设的一入力被动齿轮 41啮合,入力轴 43上一体固设一个齿轮,其作为第一 排变速齿轮组中的入力齿轮与第一排变速齿轮组中的第一出力齿轮 51啮合, 其它各入力齿轮 46、 47、 48、 49、 410、 ……均套设在入力轴 43上, 各出力齿轮 52、 53、 54、 55、 56、 ……均套设在出力轴 58 上,并与入力齿轮组中的相应齿轮一一对应啮合形成若干排变速齿轮组,最后一排变速齿轮组中的出力 齿轮即为所述变速机构 3中的从动部件 56。 入力被动齿轮 41通过键 42固定在入力轴 43上, 其与入力 主动齿轮 31啮合, 即动力传递时, 入力轴 43获得动力而转动。 入力轴 43上一体固设一个齿轮, 即入 力齿轮组的第一个齿轮, 其与设置在出力轴 58上的第一个出力齿轮一 51啮合, 从而, 入力轴 43的转 动可以使得一一对应啮合的入力齿轮组和出力齿轮组中的各个齿轮都转动起来。 在该入力轴 43上套设 一系列入力齿轮,相邻的入力齿轮之间设有可以相互连成一体以同样的转速转动、又可以彼此脱开只是 空转的机构; 现有技术中这样的机构很多, 本实施例使用的是一类弹簧 45, 其详细结构描述见后。
在出力轴 58上套设的一系列出力齿轮, 相邻齿轮之间设置单向轴承使之相互连接, 使得其间形成 相对速度较快的出力齿轮可以带动低速出力齿轮转动, 即低速档转速低时同步转,高转速时仅高速档齿 轮旋转, 低速档齿轮则空转的运动关系。通过控制入力齿轮与其相邻的入力齿轮的接合和脱开, 就可以 使得通过本变速装置 3向输出轴 68传递多种速度, 从而达到变速目的。
一对相互啮合的入力齿轮和出力齿轮称之为一排, 本调速器中齿轮排数与变速的档数的相应关系 是: 四排有八速、 五排有十六速、 六排有三十二速, 七排或八排以上者皆以此类推, 如齿轮排数以 n 表示, 则变速档数是 2 , 例如七排齿轮的变速范围是 2W=64, 也就是说七排齿轮的变速范围是有 64 速, 十排齿轮的变速范围是有 21(M=512速可变化。 此种相对啮合齿轮的排列排数不受限制。
4排齿轮的变速状态如图 8A所示, 变速范围是 8速。
下面就举 4排齿轮的变速状态为例作说明, 如图 8A所示,
一档工况- 发动机输出动力, 经过动力承接盘传递给变速装置, 由引擎辅助刹车切换装置中的入力主动齿轮 31到入力被动齿轮 41, 使得入力轴 43 , 再通过入力轴上一体的齿轮啮合出力齿轮一 51 , 而此时, 出 力齿轮二 52、 出力齿轮三 53和出力齿轮四 54都是以与出力齿轮一 51同样的速度转动, 再通过后面 的前后档换档的选档机构 4中的出力滑套 65将一定的转速传递给输出轴 68,其动力传递路线简图如图 8A所示的 a。 当发动机引擎转速为 l lOOrpm时变速器进入一档, 接着发动机加速到 1824rpm准备进入 二档。
2) 二档工况:
发动机输出动力, 经过动力承接盘传递给变速系统: 从入力主动齿轮 31、 入力被动齿轮 41入力轴 43上一体的齿轮、 出力齿轮一 51、 出力齿轮二 52、 入力齿轮二 46、类弹簧 452、 入力齿轮三 47、 出力 齿轮三 53、出力齿轮四 54、再通过后面的前后档换档的选档机构 4中的出力滑套 65将一定的转速传递 给输出轴 68, 其动力传递路线简图如图 8A中的 e所示。 发动机引擎转速由 1824rpm减速到 1152rpm 时变速器进入二档, 发动机接着加速到 2304rpm准备进入三档。
3 ) 三档工况:
三档的动力传递路线简图如图 8A中的 b所示。发动机引擎转速由 2304rpm减速到 1577rpm时变速 器进入三档, 接着加速到 2760rpm准备进入四档模式。
4) 四档工况:
发动机输出动力, 经过动力承接盘传递给变速系统: 从入力主动齿轮 31、 入力被动齿轮 41、 入力 轴 43上一体的齿轮、 类弹簧 451、 入力齿轮二 46、 类弹簧 452、 入力齿轮三 47、 出力齿轮三 53、 出力 齿轮四 54,再通过后面的前后档换档的选档机构 4中的出力滑套 65将一定的转速传递给输出轴 68,其 动力传递路线简图如图 8A中的 c所示。发动机引擎转速由 2760rpm减速到 1742rpm时变速器进入四档, 接着加速到 2738rpm准备进入五挡模式。
5 ) 五档工况:
发动机输出动力, 经过动力承接盘传递给变速系统: 从入力主动齿轮 31、 入力被动齿轮 41、 入力 轴 43上一体的齿轮、 类弹簧 451、 入力齿轮二 46、 类弹簧 452、 入力齿轮三 47、 类弹簧 453、 入力齿 轮四 48、出力齿轮四 54,再通过后面的前后档换档的选档机构 4中的出力滑套 65将一定的转速传递给 输出轴 68, 其动力传递路线简图如图 8A中的 d所示。 发动机引擎转速由 2738rpm减速到 1995rpm时 变速器进入五档, 接着加速到 6500rpm, 此时发动机转速为最高转速, (目前设定五档, 就五档时是最 高档)变速器匀速运转, 如要刹车, 变速器经过五、 四、 三、 二、 一档在 D档逐档减速, 最终减速至 lOOOrpm, 即发动机的惰速状态。
目前设定前进五档即五速, 是应客户的要求而设定, 但本机构为四排齿轮应可设定为八速, 如果 在自动控制的设定和控制盘增加变化就会有增加其他三档。其他三档设定变速器各档动力传递路线图如 下图 8A中的 f、 g、 h所示。
如果变速装置包括五排齿轮, 就可以有十六速的变化可供挑选, 其变化如下图 8B所示。
如果变速装置包括六排齿轮, 就可以有三十二速的变化可供挑选, 如图 1、 6、 7、 20所示的调速器 中包括的都是六排的变速机构,其作为第一排变速齿轮组中的入力齿轮(其是与入力轴做成一体的轴齿 轮) 与第一排变速齿轮组中的第一出力齿轮 51啮合, 其它各入力齿轮 46、 47、 48、 49、 410均套设在 入力轴 43上, 各出力齿轮 52、 53、 54、 55、 56均套设在所述出力轴 58上, 并与入力齿轮组中的相应 齿轮一一对应啮合形成若干排变速齿轮组,最后一排变速齿轮组中的出力齿轮即为所述变速机构 3中的 从动部件 56。
由六排齿轮可以获得的三十二速各个齿轮的接合情况如图 8C所示的。
所述入力齿轮之间设置的可以相互连成一体、也可以脱开的装置即所述类弹簧机构与所述入力齿轮 的构造与结合结构为: 以六排齿轮组为例,
第二排到最后一排变速齿轮组中的每个入力齿轮 46、 47、 48、 49、 410的端面上固设类弹簧 45的 一端,该类弹簧的另一端形成中空的腔室,前一个入力齿轮的筒体置于类弹簧 45形成的中空的腔室中, 前一个入力齿轮的筒体置于类弹簧 (45 ) 形成的中空的腔室中, 类弹簧 45形成中空腔室的一端的端部 设有接合部, 例如为棘齿, 与之对应, 在与该端相邻的入力齿轮的相应的侧面上设有与类弹簧上的所述 接合部匹配的接合部, 例如为棘齿, 在两个接合部之间套设推动机构, 其在入力轴 43上移动给所述类 弹簧施加压缩力使之压缩使得其与相邻入力齿轮的所述接合部脱离接合, 或取消压缩力, 恢复接合; 推 动类弹簧与前面入力齿轮啮合和脱开的装置为一种简易拔推装置。
推动机构与变速控制机构 5中的控制机构相连接。
与变速机构 3中的变速调节装置相关联的控制机构即简易拔推装置,如图 11A-11F所示,该简易拔 推装置包括控制主动件即顶珠定位主动齿盘 (724)、 控制从动件即顶珠定位被动齿盘 (726); 对应地, 推动机构包括变速控制盘 (723 )、 和变速托架 (73 ); 如图 1、 20、 7、 11A、 11B所示。
在入力轴 43上的变速托架 73设于两相邻入力齿轮 46、 47之间, 对应如图 1所示的本实施例中, 入力、 出力齿轮的数目是六个, 则具有五个变速托架: 变速托架一 72、变速托架二 73、变速托架三 74、 变速托架四 75、 变速托架五 76, 现以其中一组简易拔推装置和推动机构为例, 如图 11A— 11F所示。 变速托架 73为片状物, 如图 11D所示, 其上设有两个孔 73A、 73C, 通过孔 73A使变速托架 73的一 端套设在变速控制轴 71上,通过孔 73C使变速托架 73套设在前面一个入力齿轮 46的筒部上,该孔 73C 的外面周边上, 在与该孔同心的圆周上设有若干个弧形槽孔状沟轨 73B, 该沟轨 73B分成若干组, 其 组数与入力、 出力齿轮的排数相对应, 或与需要变速的数目相对应。 在本实施例中, 具有六组沟轨, 每 一组沟轨在圆-周上均匀分布, 例如, 本实例中, 每一组沟轨是三个, 相交 120度分布。 为了使得六组沟 轨能够在圆周上分布开, 则考虑设置三个同心圆, 同一组的三个沟轨分别设置在该三个同心圆上, 各组 沟轨的长度不同, 以适应上述 36档的调速需求。变速控制盘 723套设在出力轴 43上类弹簧 45的外端, 其与类弹簧 45之间设置轴承, 该轴承为深沟滚珠轴承 727, 使得类弹簧随出力齿轮 47转动而变速控制 盘 723不动。 如图 11A、 11E所示, 在该变速托架 73和类弹簧 45之间的入力轴 43上套设顶珠被动齿 盘 726, 与变速控制盘 723邻接, 在顶珠被动齿盘 726的周边上设有顶珠孔 726a, 其与变速托架 73孔 73c边缘上的相应一组沟轨 73c在圆周上的分布角度相同, 位置对应, 该三个孔也分布在三个同心圆周 上。 在变速控制轴 71上通过键 721固定顶珠主动齿盘 724, 其与顶珠被动齿盘 726啮合。 在顶珠被动 齿盘的顶珠孔 726a和变速托架 73上的沟轨 73c对齐形成一个容置空间, 在其中设置顶珠 725, 该顶珠 725的直径大于变速托架 73沟轨的深度, 也大于顶珠被动齿盘 726的孔深, 但小于沟轨 73c和顶珠孔 726a深度之和。.
在出力轴 58上套设的出力齿轮组中的一系列出力齿轮 51、 52、 53、 54、 55、 56, 相邻齿轮之间设 置单向轴承使之相互连接,使得其间形成相对速度较快的出力齿轮可以带动低速出力齿轮转动, 即低速 档转速低时同步转, 高转速时仅高速档齿轮旋转, 低速档齿轮则空转的运动关系。
这种三顶珠三沟轨的简易拔推机构与推动机构连接的入力齿轮组和与之一一对应啮合相互之间连 接有单向轴承的出力齿轮组构成的变速机构 3在变速控制机构 5的控制下的工作过程是这样的:
A: 在入力齿轮组上设置的变速托架 73, 该变速托架 73的盘面上设有斜沟槽即沟轨, 其深度 比类弹簧 45棘齿高度深一些, 沟槽里放有顶珠 725 , 顶珠外有推拔类弹簧 45的变速控制盘 723 , 变速控制盘 723与变速托架 73的中间设有变速控制被动齿盘 726, 其由固定在变速控制轴 71上 的变速控制主动齿轮 724、 变速控制轴 71所带动旋转, 顶珠就在沟槽中或槽外依其深浅而滚下滚 上, 转动变速控制盘 723, 即可推动或放松类弹簧。 如图 1 1A所示, 转动变速控制轴 71带动变速 控制被动齿盘 726相对于变速托架 73转动, 使得顶珠 725从沟轨 73c中出来, 则向右推动变速控 制盘 723使类弹簧 45压缩被顶开, 使得前后两个入力齿轮齿轮 46和 47脱离, 各自空转, 如图 1 1B所示, 转动变速控制轴 71使得顶珠陷入变速托架 73上的沟槽中, 类弹簧 45向左推动变速控 制盘 723, 则类弹簧的棘齿与入力齿轮 46的棘齿啮合产生扭转, 此时类弹簧 45受到旋转扭曲内 径变小而抱住入力齿轮 46, 将动力传至入力齿轮 47, 入力齿轮 47将以同入力齿轮 46同样的转速 转动, 继而带动出力齿轮 53产生变速传输的作用。输入齿轮组各个入力齿轮带动出力齿轮皆依此 原理进行变速。
B: 输出齿轮组, 各出力齿轮, 都有单向轴承紧配于齿轮内圆, 1档时是入力齿轮将动力输入到出 力齿轮一 51时, 动力就经由单向轴承的功能传至输出轴, 档位变高速档时, 则低速档的单向轴承就不 等速空转。
所以: 上述结构导致的 A与 B作用的搭配产生多档变化。
该变速控制机构 5的产品具有以下特点-
,类弹簧单体有强大绞力:类弹簧单体绞住轴体的力量,弹簧每增加一圈,绞力的扭矩就增加四倍, 若第一圈绞力为 2.4/Kg-m, 绞力可增加到无限大, 小小类弹簧即使带动大卡车亦綽綽有余。
*没有疲劳问题: 该变速器每变速一次, 所需时间设定为 0.5秒, 假使汽车每分钟变速一次, 类弹 簧工作频率只有一次, 远较纺织机弹簧工作频率达 3千多次, 引擎气门弹簧每分钟作动万次为低, 没有 疲劳问题。
•没有磨擦问题: 类弹簧单体与内轴绞合与脱离, 绞合时一起旋转, 没有磨擦问题, 脱离时各自自 由旋转, 也没有磨擦问题, 除绞合的瞬时有轻微磨擦而能自行填补外, 几乎就没有磨擦。
•类弹簧单体为纯圆周运动, 适合高速运转, 收缩与张开, 内径变化只有 0.8/mm(0.8mm)以内, 所 以作动时根本没有疲劳可言。
•类弹簧单体内圆与轴外圆之绞合与脱离动作确实,推筒压入 4/mm(4mm)就脱离,退出 4/mm(4mm) 就绞合。
' ' ? ½制灵敏, 变速盘每旋转一个刻度, 就完成变速, 轻巧灵敏。
•前轮驱动、 后轮驱动、 四轮驱动三项功能、 利用此机构稍作修改很容易达成。 .
•手、 自动的变速器, 仅在自动控制(集约式系统之控制机构装置)稍作修改, 即可达到手、 自动 变速两项功能的要求。 关于手、 自动控制的结构后面述及。
换档时机可依不同发动机的动力曲线设定最佳转速、 扭力在 PLC里设定适时换档, 所以可作到最 佳节能效果。
选档机构 4, 如图 1、 6、 9、 9A-9D及 10A、 10B所示, 包括主动伞齿轮 61、 中间伞齿轮 62、 被动 伞齿轮 63、 滑动拨叉轴 69、 前进后退控制盘 717、 前滑动拨叉 66、 后滑动拨叉 67、 出力滑套 65, 其构 成一个伞齿轮换向机构;主动伞齿轮 61套设在出力轴 58上,主动伞齿轮 61与出力轴 58是由花键固联, 且其与出力齿轮组中的最后一个齿轮 56通过所述单向轴承连接, 其随变速机构 3的输出转速和转向转 动 nQ, 在输出轴 68上固设一轴承, 该轴承上套设固联被动伞齿轮 63, 在主动伞齿轮 61和被动伞齿轮 63之间设有一个与主动伞齿轮 61和被动伞齿轮 63啮合中间伞齿轮 62, 其上连接中间伞齿轮轴 64, 可 转动的固定在机箱上。 在主动伞齿轮 61、 被动伞齿轮 63与机箱之间均设有轴承。 出力滑套 65通过花 键可滑动地固设在输出轴 68上, 在其左右两端面上设有棘齿, 与之匹配地, 在主动伞齿轮 61和被动伞 齿轮 63的相应的端面上也设有棘齿。 当出力滑套 65向左移动, 与主动伞齿轮 61啮合时, 与被动伞齿 轮脱离啮合, 动力从主动齿轮 61直接传给输出轴 68, 而此时被动伞齿轮 63的转动与输出轴 68无关, 输出轴 68得到一种正向输出的转动方向 n1 ; 当出力滑套 65向右移动, 与主动伞齿轮脱开而啮合被动 伞齿轮 63时, 动力从主动伞齿轮 61经中间伞齿轮 62到被动伞齿轮 63 , 再到出力滑套 65, 使得输出轴 68获得了另一种逆向输出的转动方向 n2 (见图 10A、 10B)。 由此进行前进档和后退档的转化。 当出力 滑套 65位于既不与主动伞齿轮 61啮合,也不与被动伞齿轮 63啮合而处于中间位置时,输出轴 68静止 不动, 此为空挡。 而出力滑套 65的左移、 右移、居中, 受控于安装在变速控制轴 71上的一套控制机构 完成。
如图 9A— 9D所示, 该套控制机构包括: 一个前拨叉 710和一个后拨叉 711 , 该两个拨叉设置在出 力滑套 65的左右两侧, 其与出力滑套 65的接触面是相对的斜面; 一个平衡板 712, 其中心部位固定在 固于机箱上的平衡板轴 713上, 在平衡板轴 713两侧的平衡板 712上各设有一个铰接长孔, 通过销子 714各铰接前拨叉 710的中部和后拨叉的端部, 销子可以在长孔中移动; 如图 17所示, 前拨叉 710的 下端唯一个封闭框架; 一个前进后退控制凸轮盘 717通过键 718固联在变速控制轴 71上的, 其设在前 拨叉 710的封闭框架中, 在该控制盘 717上设有滚轮轴 715 , 在滚轮轴 715上铰接滚轮 716, 与前进后 退控制盘 717接触,构成一个凸轮机构,前进后退控制盘在变速控制轴 71上转动,即可带动前拨叉 Ϋ10 上下移动。
由上述可知, 选档和变速都是通过转动变速控制轴 71实现, 因此, 所述变速控制机构 5包括一控 制驱动机构, 其包括一驱动电机 728和 /或手动驱动装置;
现以驱动电机 728的结构为例说明:
所述变速控制机构 5中的控制驱动机构包括一驱动电机 728和 /或手动驱动装置, 其通过一传动机 构连接一根变速控制轴 71 , 如图 9A— 9D以及图 16、 16A所示的实施例中, 传动机构为蜗轮蜗杆传动 机构: 在变速控制轴 71上设有一个蜗轮盘 719, 其通过螺帽 722固定在控制轴 71上, 与蜗轮盘啮合的 蜗杆 720上设有一马达 728。
前后档换向的原理是: 驱动马达 728, 通过蜗轮盘 719和蜗杆 720传动使得变速控制轴转动一个角 度, 即可通过前进后退控制盘向下拉动或向上推动前拨叉 710。 反向驱动马达 728, 即可向上推动前拨 叉 710, 则使得出力滑套 65向右移动, 输出后退方向的运动, 向下拉动前拨叉 710, 则使得出力滑套向 左移动, 输出前进方向的运动, 如果凸轮盘 717转动到使得平衡板 712水平的位置, 则使得出力滑套 65处于中间位置, 即可使得输出轴 68不转动。 此时对应档位是空挡。 由此, 即可使输出轴 68通过伞 齿轮换向机构改变转向。
在该变速控制轴 71上设有与所述变速机构 3中的变速调节装置相关联的控制机构和与所述选档机 构 4中的换档部件 65相关联的控制机构;调整变速控制轴 71上各组简易拔推装置中,令其与选档机构 的前进档、 后退档和空档对应, 可以在相应的前进档、 后退档等上对应输出适当的速度。
马达 728驱动变速控制轴 71转动, 同时,也使得固定在其上的一系列顶珠定位主动齿盘 724转动, 继而使得顶珠定位被定齿盘 726转动, 使得有些入力齿轮之间的顶珠 725进入到变速托架上的沟轨中, 有些顶珠从沟轨中出来,及对类弹簧进行推动使之与相邻的入力齿轮脱开或推力消逝使相邻的入力齿轮 接合成一体, 由此, 即可得到不同档的输出转速。前进档、 后退档、 空挡和输出转速的档次是按照使用 要求匹配的,其通过设计变速托架上的每个组的沟轨的长度、各个组沟轨的相对位置以及其与前进后退 控制盘凸轮的角度和安装位置, 拉动和推动前拨叉的转动角度与前进档、后退档、空挡以及后面述及的 停车档的关系相互匹配。
具体地, 在本实施例中, 上述匹配关系是:
当动力源在惰速时, 电机 110不启动, 即太阳齿轮 11不动, 不驱动入力主动齿轮 31运动时, 主动 伞齿轮 61、 中间伞齿轮 62、 被动伞齿轮 63皆处于静止状态。 相对应地, 此时, 变速控制轴 71所处的 角度是使得平衡板 712处于水平位置, 既不与主动伞齿轮 61接合, 也不与被动伞齿轮 63接合,其为空 挡。 参见图 11C中的 N角度
动力源高于惰速, 在前进档正向传动过程中, 为前进 D档: 电机 110启动, 动力从入力主动齿轮 31传入入力齿轮和出力齿轮组成的变速机构,通过 PLC驱动或通过键 729驱动步进马达或伺服马达 728 驱动涡杆 720,带动涡轮盘 719,使变速控制轴 71转过一个角度,参见图 11C中的从 D到 1、 2、 3……、 25之间的角度或者通过手动装置使得变速控制轴 71转过该角度; 在该角度内, 通过变速托架 72、 73、 74、 75和 76、 顶珠定位主动和被动齿盘等按照设计设定, 可对应实现例如一档到五档以至于更多档位 的顺序升速或降速, 在该角度内, 前进后退控制盘 717也转过一个角度, 使得前拨叉 710被拉下, 而后 拨叉 711被顶上, 使得出力滑套 65移向左侧(见图 9C), 与左端面主动伞齿轮 61的棘齿啮合, 变为前 进档, 动力沿着主动伞齿轮、 65出力滑套花键、 68输出轴这样的传递路线将动力正向输出。
在正向输出过程中, 中间伞齿轮 62、被动伞齿轮 63都在做无动力空转, 损耗功率很小、噪声较低。 在后退档逆向传动过程中,通过 PLC驱动或通过键 729驱动步进马达或伺服马达 728驱动涡杆 720, 带动涡轮盘 719, 使变速控制轴 71逆向转过一个角度, 参见图 11C中的 R-R1 , 或者通过手动装置使得 变速控制轴 71转过该角度, 前进后退控制盘 717转动, 带动前拨叉 710被顶上, 而后拨叉 711被拉下, 变为后退 R档, 同时, 顶珠定位主动齿盘 724转动, 驱动顶珠定位被动齿盘 726, 与相应的变速托架 72作用, 使得变速控制的顶珠 725从沟轨中出来, 通过变速控制盘 723推动类弹簧 45, 即控制在 2档 执行后退倒车功能。出力滑套移 65向右侧,使出力滑套 65右端面的棘齿与被动伞齿轮 63的棘齿啮合。 动力沿着主动伞齿轮 61、 中间伞齿轮 62、 被动伞齿轮 63、 出力滑套花键 65、 输出轴 68这样的传递路 线将动力逆向输出。
在逆向输出过程中,所有的伞齿轮都在传递动力,会有一定的损耗功率。但是由于后退档速度较低, 并且是短时工作, 因而功率损耗和噪声都不大。
总之: 采用上述方案实现倒档是合理的设计方案。
本发明提供的调速器中还包括停车机构, 如图 15、 15A、 15B所示, 其包括设置在变速控制轴 71 上的停车凸轮 77, 其上接触地连接一停车锁定杆 78, 该停车锁定杆 78通过锁定杆固定轴 79铰接固定 在箱体上。 该停车锁定杆 78具有两个叉杆, 其中一个叉杆与停车凸轮接触, 另一个叉杆上设有齿与固 定在出力轴 58上的停车齿轮 35可接合、 可脱开。 当停车锁定杆 78与停车凸轮的一部分周面接触时, 另一个叉杆与停车齿轮处于脱开状态。此时对应的是前进档或后退档或空挡。当停车凸轮随变速控制轴 71转动一个角度时, 使得停车锁定杆的与之接触的叉杆跟停车凸轮的另一部分周面接触时, 另一叉杆 即可与停车齿轮啮合。 导致停车。 此时对应的是停车挡。
由此可知, 如图 7所示, 在变速控制轴 71上, 设有控制变速的控制装置 K1 , 使得本调速器提供前 进档 D档范围内 1一 32速的调节控制, 设有控制换档的控制装置 K2, 使得本调速器提供前进 D档、空 档 N档、 后退 R档, 还设有控制停车锁定的控制装置 K3, 提供停车锁定的控制。 这些控制都集约在一 根变速控制轴上了。 只要通过电动或手动转动该变速控制轴 71, 就可以控制诸多机构匹配变化。
集约式系统的控制机构装置即在上述机构基础上包含了通过电子控制系统控制的驱动马达或通过 感应器通过对动力源动力轴的转速和输出轴 68的转速的比较或驾驶人们通过电键输入的电信号而启动 相应的马达自动调节变速、 前后档等的变化;
如图 12提供了对应附图 1所示的实施例的自动控制线路示意图, 在该实施例中, 要控制的有包带 电机 110和马达 728, 在本调速器上设有自动控制感应装置, 该自动控制感应装置的部署为:
在变速控制机构 5中的所述变速控制轴 71上设有的蜗轮转盘 719的圆周上的 P、 R、 N、 D、 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12……设有若干个传感器分部件, 对应地, 在相应的机箱上设有一个 传感器分部件, 组成传感器 732, 用于启动或停止马达 728;
在所述启动机构 1的主动部件 16上及附近机箱上设有传感器 730;
在变速机构 3的从动部件 56上及附近机箱上设传感器 731。
如图 12所示为如图 1所示的实施例的电控结构部署示意图。 当传感器 730检测到启动机构 1的主 动部件 16的转速超过系统自动控制微机 735内设的惰速时, 即启动制动包带电机 110, 使得动力输出。 依驾驶者给予之信号, 空档 (N)、 后退档 (R)、 停车档 (P) 时, 电子控制系统将感应到的信号回 传 PLC来控制驱动步进马达或伺服马达 728通过涡杆 720、 涡轮盘 719驱动变速控制轴 71 , 带动前进 后退控制盘 717再带动前拨叉, 当空档 N时, 电子控制系统立即驱动步进马达或伺服马达 728转动到 预定的角度, 通过涡杆 720、 涡轮盘 719驱动变速控制轴 71 , 从而驱动变速控制盘 723, 使得 710前 拨叉和 711后拨叉平衡, 出力滑套 65调至中间位置一空档完成。这时, 出力滑套既不与主动伞齿轮 61 接合, 也不与被动伞齿轮 63啮合。
前进 D档, 步进马达或伺服马达 728驱动涡杆 720、涡轮盘 719, 带动变速控制轴 71 , 继而带动前 进后退控制盘 717, 再使得前拨叉 710被拉下, 后拨叉 711被顶上, 变为前进档。 同时, 顶珠定位主动 齿盘 724与变速托架 72、 变速控制的顶珠 725、 变速控制盘 723 , 依据动力源的转速即当动力源的转速 (驾驶者踩油门) 达到设定值时自动变档。 自动变档 1档到 2档, 到 3档…到 32。
后退 R挡,变速控制轴 71驱动前进后退控制盘 717使得前拨叉 710被顶上,则后拨叉 711被拉下, 因此, 移动 65出力滑套与 63被动伞齿轮啮合, 变为后退 R档, 同时, 顶珠定位主动齿盘 724和变速 托架 72、变速控制的頂珠 725、变速控制盘 723作用类弹簧, 控制在 2档执行后退倒车功能。上述情况 参见图 9、 10A、 亂 11。
停车档 P时,集约式电控系统之控制机构指示步进马达或伺服马达 728驱动涡杆 720、涡轮盘 719 转动, 并带动变速控制轴 71转动, 将前拨叉 710顶上、 后拨叉 711拉下, 此时, 伞齿轮组是挂在倒车 的 63被动伞齿轮上。 同时变速控制轴 71带动安装在其上的停车凸轮 77转动, 推动通过铰接轴即锁定 杆固定轴 79上的停车锁定杆 78与停车齿轮 35啮合,此时是停车齿轮 35和输出轴 68结合的,所以达 成停车锁定的效果。
以上所述为后轮驱动的结构。
前轮驱动的动力调速器, 参见图 13, 其基本结构与后轮驱动一样, 仅在最后端的前拨叉、 后拨叉 变更装配方向。 如图 13所示, 增加了输出轴 83即前述的输出轴 68, 将上述的伞齿轮换向机构安装在 该输出轴 83上, 并在出力轴 58上增加固设了传动主动齿轮 81 , 其与最后一个出力齿轮之间连接单向 轴承, 在输出轴 83的端头上套设主动伞齿轮 61, 在该伞齿轮 61的筒体部分上通过键固联一个齿轮 82 与传动主动齿轮 81啮合, 变速机构输出的动力通过传动主动齿轮 81使得主动伞齿轮 61转动起来, 在 输出轴 83上固设被动伞齿轮 63,在被动伞齿轮 63和主动伞齿轮 61间同样地设置中间伞齿轮 62。出力 滑套 65通过花键可滑动地设置在输出轴 83上, 在输出轴 83上还连接有差速器 84, 其上设有主差速器 轮轴 85
• ϊϊ入之动力的输送路径为: 经由太阳齿轮 11、 行星齿轮 13、 带动环 32Α、 入力主动齿轮 31、 入 力被动齿轮 41、 入力轴 43上的入力齿轮组 46、 47、 48、 49及出力齿轮组 51、 52、 53、 54、 55、 56 在集约式电控系统之控制机构作动下依据动力输入的转速由电控产生自动变速。
•前进、 后退档位切换是经由伞齿轮组换向机构, 依驾驶者所决定之档位而变更, 前进 D档时, 集 约式电控系统之控制机构转动变速控制轴 71将前拨叉 710拉下、 后拨叉 711顶上, 因此, 移动出力滑 套 65与主动伞齿轮 61啮合, 动力由出力齿轮 56、 单向轴承、 传动主动齿轮 81、 传动被动齿轮 82、 主 动伞齿轮 61、 出力滑套 65、 传动轴 83到差速器 84, 再到差速器轮轴 85、 输出。 后退 R档时, 前拨叉 710顶上、 后¾叉711拉下, 因此, 移动出力滑套 65与被动伞齿轮 63啮合, 动力由传动轴 83到差速 器 84, 再到差速器轮轴 85输出, 车速设定在二档的档位。
,驾驶者决定停车 Ρ档时, 是经由集约式电控系统之控制机构作动, 依据输入之信号由电控自动变 更档位在车速感应是 "零"时转动变速控制轴 71将停车锁定杆 78与停车齿轮 35啮合, 达到停车时自 动变速器与输出轴 83锁住, 此时伞齿轮组是挂在倒车的被动伞齿轮 63上。
四轮驱动的动力调速器如图 14所示, 基本结构与前、 后轮驱动一样, 其不同的设计是仅在前轮驱 动的基础上, 在输出轴 83上连接差速器 84, 在连接差速器一 841和差速器二 842, 后面在连接前差速 器 85和后差速器 86。 分别驱动前差速器轮轴一 851、 前差速器轮轴二 852以及后差速器轮轴一 861、 后差速器轮轴二 862转动。
图 19示出了如图 20所示的实施例的变速系统的自动控制结构布署图,此实施例与图 1所示实施例 差别在于引擎辅助刹车切换机构是电控控制机构, 其多出一个驱动该切换机构的电机 39。 其电路装置 是由手自排切换控制机制器 733 (PLC ) 的程序电控制动包带电机 110、 自动控制马达 728和引擎刹车 切换电机 39。 当驾驶者将选档控制按键 729依其需求设定在停车档 P、 后退档 R、 空档 N、 前进档 D 时, PLC就依其指令马达 728、 110和 39进行运作: 如果 D档时, 安装在发动机输出轴附近的发动机 输出感应器 730检测出其转速大于惰速 10%时, 制动包带电机 110马上转动, 产生动力输出, 在下坡 道或急减速时,安装在输出轴 68或传动轴 83附近的车速检出感应器 731测出其转速高于发动机输出感 应器 730检测出发动机的转速时,启动引擎辅助制动切换电机 39将引擎剎车切换拨叉 32切入停车齿轮 35,产生引擎辅助剎车的效果,油门加油则自动控制马达 728依发动机输出感应器 730检测出之转速与 原设定换档转速经由设置在蜗盘 719附近设置的涡盘定位感应器 732监控而自行换档。这组机构包含了 手自排切换控制机制器 733 (PLC)、 发动机转速检出讯号 730、 车速检出讯号 731、 起动行星齿轮包带 控制装置 110、 动力传递或引擎刹车辅助切换杌构 39、 各档档位按键 729P、 R、 N、 D、 1、 2、 3、 4、 5··· 32的档位, 采用系统自动控制微机 (PLC) 耒控制。 由于电控系统能依设定之程序落实执行各项作动, 所以可靠度高, 值得信赖。
还有一种手自动调节结构, 就是通过感应器自动调节和 /或通过电键 729调节, 这都是通过电路结 构实现的, 其部署结构如图 12、 19所示。 这些电结构都属于现有技术范畴, 在此不赘述。 纯手动控制变速控制轴 71转动的装置就是取消电机 728,换装手工操作转动变速控制轴 71的装置。 其结构如图 22、 23、 23A所示。
在本调速器之另一实施例, 纯手排调速器其构造为:
在图 1全自动调速器的构造基础上, 以启动机构为传统的离合器替代启动行星齿轮机构, 以链盘、 链条替代变速控制轴上的蜗盘、蜗杆装置, 再用人力打排档驱动链盘转动, 继而使变速控制轴转动的手 排杆, 以替代电机与电子自动控制机构自动打排档。
如图 22所示, 以包含自动切换装置的实施例为例,取消其中的行星齿轮机构和制动包带电机装置, 启动机构 1是一离合器 9, 其上的主动部件即离合主动轴连接动力源, 从动部件即离合从动轴 91套设 在所述出力轴 58上。 弓 I擎动力自离合器 9弓 I进后由离合器轴 91传入调速器内, 到达离合器轴 91之筒 体, 该筒体替换太阳齿轮 11套设在出力轴 58上, 入力主动齿轮 31套设在该筒体上, 其与筒体之间设 带动环 32A, 带动环 32A与入力主动齿轮 31之间设单向轴承 33A, 带动环 32A与停车齿轮 35之间设 单向轴承 34A。
当引擎加油时, 带动环 32A转速较入力主动齿轮 31为快, 故带动环 32A之动力经单向轴承 33A 带动入力主动齿轮 31 , 并带动入力被动齿轮 41, 将引擎动力传动到入轴 43 , 其后的变速过程与图 1之 主要实施例相同。
当引擎不加油时, 带动环 32A转速就较出力轴 58或停车齿轮 35为慢, 故车辆行驶时的惯性动力 逆向由出力轴 58及停车齿轮 35之筒部经单向轴承 34A传到带动环 32A, 经离合器轴 91及离合器总成 9传达到引擎, 产生引擎刹车。
在控制过程上, 本实施例将变速控制轴 71上装置小链盘 95, 以链条 96联至档位箱大链盘 94, 用 人力推动排档杆 921变速。
手排挡机外装置包含: 手排杆总成 92、 档位箱 93、 大链盘 94、 小链盘 95及链条 96。
手排杆总成 92由手排杆 921、 手排杆枢 924、 销轴 925、 强力弹簧 926、 钢珠 922、 钢珠弹簧 923 所组成。
手排杆 921为扁平之杆上端为握把,下端分叉,分叉中央设一销轴孔。手排杆枢 924上端呈方扁形, 自侧向设一销轴孔, 下端呈扁形之圆盘, 盘中央垂直设置手排杆轴 97之轴孔, 手排杆 92和手排杆轴 924由销轴 925闩入可弯曲地枢接联结, 销轴 925之突出端套入强力弹簧 926, 其两端强力压迫手排杆 921与手排杆枢 924使二者向后弯曲。 手排杆 921之后面, 在与档位箱 93上之档位孔 931同一高度处 设一钢珠 922, 由钢珠弹簧 923顶住突出平面, 但不掉出。
挡位箱 93为长方形箱体, 在其中央近底部设置手排杆轴座 932, 右墙上方中央呈半圆形突起, 以 手排杆轴座 932为中心, 按分布角度设置若干个档位孔, 其中后退档 R的档位孔较空档 N及其他前进 档档位孔向左突出一楷梯, 停车档 P的档位孔再突出一个阶梯。
将手排杆总成 92放置于档位箱 93内, 用手排杆轴 97穿过手排轴座 932, 将手排枢 924 H好, 并 用手排杆枢键 927紧固。 在箱外, 将大链盘 94套在手排杆轴 97之一端, 用大链盘键 941紧固, 此时, 排动手排杆 921, 大链盘 94即同步转动。
在控制轴 71安装蜗轮盘 719之位置上装置小链盘 95 , 以小链盘键 951紧固之, 在小链盘 95与大 链盘 94之间以链条 96相联, 则变速控制轴 71与手排杆 921同步转动, 手动排杆即可准确同步控制变 速控制轴。
再者用习用套管钢索联动方式左本调速器构造上亦适用。
本实施例示出的纯手动控制变速控制轴 71转动的装置是利用现有手动变速箱的离合器制成的, 其 仅在行驶起步时踩放它起步行驶,中间换档不需踩放离合器。其操作方法是:驾驶者将离合器碴板踩下, 直接拨动手排杆 734由 N推到 1, 徐徐放下离合器, 同时踩下油门碴板加油, 车辆由 1档前进尔后只要 一边加油一边换档, 不需踩放离合器, 最大优点是四排齿轮组合就有八档的变化可用。 由空档到 R档, 为安全而设计按钮 738必须按下才能操作手排杆 734(需踩放离合器才能行驶倒档但倒档固定在二档或 三档上, :)。 由 N到 R或由 1 到^ 同理由 R到 P, 由 P到 R也要 738按下按钮才能变档, 但必须在车 辆停止时才能排入 P档。 其结构图详见图 23,
综上所述本发明动力调速构造, 系以行星齿轮组搭配制动包带使动力的输入产生离、合的功能。前 进、 引擎辅助刹车经由引擎刹车棘轮滑套 34或单向轴承 33A、 34A拔推形成啮合、 脱离达到前进、 空 档、 引擎辅助刹车。动力传动可以透过齿轮上的类弹簧经由推、放产生离合的功能, 再加上设置在变速 机构 3中相邻出力齿轮之间单向轴承的变化可达到多档变速的功能。伞齿轮组经由出力滑套两侧的棘齿 在拨叉拔推形成啮合、 脱离产生前进、 空档、后退的功效。集约式电控系统根据设置在上述各处的传感 器能依据动力源与各种路况、车况作出最佳运转条件。各种车 ^的要求,动力源(发动机)的转向是正、 反转(顺时钟、 逆时钟)后轮驱动、 前轮驱动、 四轮驱动, 手、 自动两用型之动力调速装置…等, 皆可 适用; 现有技术中的调速器都是一排齿轮组得到一个变速, 需要多少个变速, 就要提供多少排齿轮组。 而本发明提供的调速器, 可变速的数量高于齿轮组的排数。这些特性所产生实用的功效, 具工业上实用 性。

Claims

权 利 要 求 书
1、一种多段式动力调速器,包括启动机构(1)、变速机构(3)、选档机构(4)和变速控制机构(5), 其总体部署结构为 ·
^、所 启^机构'(1)套设在一出力轴(58)上, 所述启动机构(1)包括与动力传递机构相连的主动 部件 (16)和与变速机构 (3) 相连用于将动力传递给变速机构 (3) 的从动部件 (11), 所述主动部件 (16)和从动部件 (II)通过传动装置连接;
所述变速机构(3)包括传入动力的主动部件(31)和传出动力及不同速度的从动部件(56), 该主 动部件(31)和从动部件(56)通过一变速齿轮组机构连接在一起, 该变速齿轮组机构上设有变速调节 装置;
^述选档机构 (4) 包括主动部件 (61)、 从动部件 (63) 和换档部件 (65), 所述主动部件 (61) 与变速机构 (3) 中的从动部件 (56) 相连接, 所述从动部件 (63)套设在一输出轴 (68) 或 (83) 上, 所述换档部件(65)可与主动部件(61)或从动部件(63)择一连接, 或都不连接地与输出轴(68)或 (83) 固连, 向车辆的后轮、 或前轮、 或四轮传递前进、 后退或空档相应的动力和转速;
所述变速控制机构 (5) 包括控制驱动机构, 其包括一驱动电机 (728) 和 /或手动驱动装置; 还包 括与所述变速机构(3)中的变速调节装置相关联的控制机构、与所述选档机构(4)中的换档部件(65) 相关联的控制机构, 所述控制驱动机构与前述的控制机构通过传动装置相连接;
其特征在于- 与所述变速机构 (3) 中的变速调节装置相关联的控制机构包括控制主动件 (724) 和控制从动件 (726), 所述控制从动件 (726) 与所述变速机构 (3) 中的齿轮组相关联, 所述控制主动件 (724) 与 控制从动件通过传动机构相连接;
与所述选档机构(4) 中的换档部件(65)相关联的控制机构包括控制主动件(717)和控制从动件 (710、 711), 控制从动件 (710、 711)与所述换档部件 (65)相关联, 控制主动件 (717)与控制主动 件通过传动机构相连接;
前述两个控制机构中的控制主动件(724、 717)均设置在一根变速控制轴(71)上, 其随所述变速 控制轴 (71)转动即可实施换档和变速;
其特征还在于: 还包括:
一停车齿轮 (35), 其固设在该出力轴 (58) 上;
一引擎辅助刹车切换机构 (2), 其为一切换装置, 设置在所述从动部件 (11或 91) 上, 其一端与 所述变速机构 (3) 中的传入动力的主动部件 (31) 关联, 或者, 另一端与停车齿轮 (35)相关联, 形 成两种状态:
与所述变速机构 (3) 中的传入动力的主动部件(31)相关联, 而将动力从启动机构(1)传给变速 机构 (3), 处于引擎动力输出状态;
或者,
和固于所述出力轴 (58) 上的停车齿轮 (35)相关联, 处于引擎辅助刹车状态。
2、根据权利要求 1所述的多段式动力调速器, 其特征在于: 所述启动机构(1)是一行星齿轮组缓 冲机构, 包括太阳齿轮 (11)、 行星齿轮 (13)、 环齿轮 (18) 和设于太阳齿轮两侧的两个行星齿轮架, 作为所述主动部件的一个行星齿轮架(16)和作为所述从动部件的太阳齿轮(Π)相邻地套设在所述出 力轴(58)上, 另一个行星齿轮架 (17)套设在太阳齿轮 (11) 另一侧太阳齿轮(11) 的筒体上, 在该 齿轮架(17)和太阳齿轮(11) 的筒体之间套设所述变速机构(3) 中的主动部件(31), 两个行星齿轮 架 (16、 17)之间固设行星齿轮轴 (14), 该轴上套设行星齿轮 (13) 与太阳齿轮 (11) 啮合, 在行星 齿轮(13)外面套设啮合环齿轮 (18),
还包括一令所述环齿轮(18)和太阳齿轮(11)不动或转动的装置, 所述装置为制动包带驱动装置, 该制动包带驱动装置包括一制动包带电机(110) 和一制动包带顶杆 (19), 制动包带电机(110) 和制 动包带顶杆(19)之间设有一传动装置,使得当该制动包带电机(110)启动时,带动制动包带顶杆(19) 运动,使一端固定在机箱支架上、另一端连接在制动包带顶杆(19)上的制动包带(15)抱紧环齿轮(18) 或将其松开; 或者,
所述启动机构 (1) 是一离合器 (9), 其上的主动部件即离合主动轴连接动力源, 从动部件即离合 从动轴 (91) 套设在所述出力轴 (58) 上。
3、 根据权利要求 1或 2所述的多段式动力调速器, 其特征在于: 所述引擎辅助刹车切换机构 (2) 为:
包括有一个引擎刹车带动环 (32A)和二个方向相反的单向轴承 (33A, 34A) 组成的所述切换装 置,所述带动环(32A)固设在所述启动机构(1)中的所述从动部件(11或 91)上,一个单向轴承(33A) 设置在带动环 (32A) 和所述变速机构 (3) 中的所述主动部件 (31) 之间, 当车辆行驶时引擎传递转 速高使得带动环 (32A) 的转速大于主动部件 (31) 时动力从启动机构 (1)传递到变速机构 (3), 反 之空转无动力传递; 另一个单向轴承 (34A) 设置在带动环 (32A) 和所述停车齿轮 (35) 之间, 当车 辆行驶于下坡时引擎传递转速低后面输出轴 (68) 的转速高使得停车齿轮的转速大于带动环(32A)时 动力从停车齿轮传递到带动环 (32A) 继而传递到启动机构 (1 ) 产生引擎辅助刹车,.反之空转无动力 传递; 或者:
5¾电控½制切换装置, 包括一个棘齿滑套(34)和一驱动机构, 该棘齿滑套(34)可滑动地固联在 所述启动机构 (1 ) 的从动部件 (11或 91 ) 上, 所述棘齿滑套 (34) 置于所述变速机构 (3) 中的主动 部件(31 )和所述停车齿轮(35)之间, 该棘齿滑套(34) 的两侧设有棘齿, 所述主动部件(31 )和所 述停车齿轮(35)与所述棘齿滑套(34)相邻的侧面设有可相互啮合的棘齿; 所述驱动机构包括一端置 于棘齿滑套(34)外圆周面上的圆环槽中、 另一端固定在一拨叉轴(33)上的引擎刹车切换拨叉(32), 还包括一个引擎刹车切换电机 (39), 在引擎刹车切换电机 (39) 和引擎刹车切换拨叉 (32) 之间设有 传动装置; 或者:
为油门踏板控制切换装置, 包括一个棘齿滑套(34)和一驱动机构, 该棘齿滑套(34)可滑动地固 联在所述启动机构 (1 ) 的从动部件 (11或 91 ) 上, 所述棘齿滑套 (34) 置于所述变速机构 (3) 中的 主动部件 (31 ) 和所述停车齿轮 (35 ) 之间, 该棘齿滑套 (34) 的两侧设有棘齿, 所述变速机构 (3) 中的主动部件 (31 ) 和所述停车齿轮 (35) 与所述棘齿滑套 (34) 相邻的侧面设有可相互啮合的棘齿; 所述驱动机构包括一端置于棘齿滑套(34)外圆周面上的圆环槽中、 另一端固定在一拨叉轴(33)上的 引擎刹车切换拨叉 (32), 还包括一个引擎刹车切换拉绳 (315), 在所述引擎刹车切换拨叉 (32) 的上 端设置柄(312), 其上一侧连接所述拉绳(315), 另一侧与机箱之间连接一弹簧(316); 拉绳与油门踏 板连接, 油门踏板不踩时会产生引擎刹车。
4、 根据权利要求 1或 2或 3所述的多段式动力调速器, 其特征在于: 所述变速机构的变速部署结 构为: '
所述变速机构 (3) 中的所述变速齿轮组机构包括相互啮合的入力齿轮组和出力齿轮组, 其分别装 置在一入力轴(43 )和所述出力轴(58)上, 所述入力齿轮组和出力齿轮组中的各个齿轮一一对应地啮 合,一对相互啮合的所述入力齿轮和出力齿轮为一排变速齿轮组,其中的所述主动部件即入力主动齿轮 (31 )和所述入力轴 (43)上固设的一入力被动齿轮(41 )啮合, 所述入力轴(43)上一体固设一个齿 轮, 其作为第一排变速齿轮组中的入力齿轮与第一排变速齿轮组中的第一出力齿轮(51 )啮合, 其它各 入力齿轮 (46、 47、 48、 49、 410、 ……)均套设在入力轴 (43 ) 上, 各出力齿轮 (52、 53、 54、 55、 56、 ……)均套设在所述出力轴(58)上, 并与入力齿轮组中的相应齿轮一一对应啮合形成若干排变速 齿轮组, 最后一排变速齿轮组中的出力齿轮即为所述变速机构(3)中的从动部件(56), 所述变速调节 装置为: 包括所述入力轴(43 )上相邻的入力齿轮之间设有可以使相邻入力齿轮相互连成一体以同样的 转速转动、又可以彼此脱开只是空转的机构, 所述机构为类弹簧机构; 在所述出力轴(58)上套设的所 述出力齿轮组中的一系列出力齿轮,相邻齿轮之间设置单向轴承使之相互连接,使得其间形成相对速度 较快的出力齿轮可以带动低速出力齿轮转动, 即低速档转速低时同步转, 高转速时仅高速档齿轮旋转, 低速档齿轮则空转的运动关系。
5、 .根据权利要求 4所述的多段式动力调速器, 其特征在于: 所述类弹簧机构与所述入力齿轮的构 造与结合结构为'
S兰 5到最^一排变速齿轮组中的每个所述入力齿轮 (46、 47、 48、 49、 410、 ……) 的端面上固 设类弹簧 (45) 的一端, 该类弹簧的另一端形成中空的腔室, 前一个入力齿轮的筒体置于类弹簧 (45) 形成的中空的腔室中, 类弹簧(45)形成中空腔室的一端的端部设有接合部, 与之对应, 在与该端相邻 的入力齿轮的相应的侧面上设有与类弹簧上的所述接合部匹配的接合部,在所述两个接合部之间的入力 轴(43 )上套设推动机构, 其在入力轴(43 )上移动给所述类弹簧施加压缩力使之压缩而使得其与相邻 入力齿轮的所述接合部脱离接合, 或取消压缩力, 恢复接合; 所述推动机构与所述变速控制机构 (5) 中的所述控制机构相连接。
6、根据权利要求 1或 2或 3所述的多段式动力调速器, 其特征在于: 所述选档机构(4)为一伞齿 轮换档机构, 所述主动件为主动伞齿轮(61 ), 所述从动件为被动伞齿轮(63 ), 其间连接一个可转动的 固定在机箱上的换向中间伞齿轮(62)与主、被动伞齿轮分别啮合, 所述被动伞齿轮(63 )与所述输出 轴(68或 83 )之间设置一轴承, 所述换向部件(65) 为一个出力滑套(65 ), 其两侧以及所述主、 被动 伞齿轮相应位置上分别设有接合结构, 所述出力滑套(65)连接一拨叉升降机构作为所述变速控制机构
(5) 中的控制机构相连接。
7、根据权利要求 5所述的多段式动力调速器, 其特征在于: 所述变速控制机构(5)中的与所述变 速机构 (3) 关联的控制机构为简易拔推装置, 该简易拔推装置包括所述控制主动件即顶珠定位主动齿 盘(724)、和所述控制从动件即顶珠定位被动齿盘(726);对应地,所述推动机构包括变速控制盘(723 )、 和变速托架(73 ); 所述变速控制轴(71 )上, 对应所述变速机构(3 )中变速齿轮组的排数 n, 设有 n-1 个所述变速托架(72、 73、 74、 75、 76、 ……)和变速控制盘, 也相应地设有 n-1个简易拔推装置, 所 述变速控制盘 (723) 套设在所述入力轴 (43)上, 通过轴承固定在所述类弹簧 (45)端部, 所述变速 托架 (73) 为片状物, 其上设有两个孔 (73A、 73C), 通过孔 (73C) 使变速托架 (73) 的一端套设在 与所述类弹簧 (45)相邻的一入力齿轮 (46) 的筒体上, 通过孔 (73A) 使变速托架(73 ) 的另一端套 设在变速控制轴(71 )上使该变速托架在入力轴(43)上不转动地定位; 所述简易拔推装置中的主动件 顶珠定位主动齿盘(724)固定在所述变速控制轴(71 )上, 所述从动件顶珠定位被动齿盘(726)套设 在所述入力齿轮 (46) 的筒体上位于所述变速控制盘 (723) 和变速托架 (73)之间并与顶珠动为主动 齿盘(724) 啮合; 在所述顶珠定位被动齿盘(726)上设有顶珠孔, 孔中设有顶珠(725), 与所述变速 控制盘(723)对应, 且与其上顶珠孔对应地, 所述变速托架(73)上设有圆弧形顶珠退拔沟轨(73B), 使得当所述变速控制轴(71 )转动时, 带动所述顶珠定位被动齿盘(726)转动, 使顶珠(725) 陷进变 速托架上的圆弧行顶珠退拔沟轨中, 所述类弹簧松弛接合相邻的入力齿轮, 或者使顶珠 (725) 不在变 速托架的沟轨中, 推动变速控制盘 (723) 压缩类弹簧脱离接合相邻的入力齿轮; 各个变速托架和对应 的顶珠定位被动齿盘 (726) 上的圆弧形顶珠退拔沟轨 (73B) 和顶珠容置孔位置分布在圆周上的不同 位置上, 该退拔沟轨 (73B) 分成若干组, 其组数与入力、 出力齿轮的排数相对应, 即与需要变速的数 目相对应。
8、 根据权利要求 6所述的多段式动力调速器, 其特征在于: 所述拨叉升降机构包括: 所述控制主 动件即一个前拨叉 (710)和一个后拨叉 (711 )、 所述控制从动件即前进、 后退控制凸轮盘 (717), 该 两个拨叉设置在出力滑套(65) 的左右两侧, 其与出力滑套(65) 的接触面是相对的斜面; 一个平衡板
(712), 其中心部位可转动地固定在固于机箱上的平衡板轴(713)上, 在平衡板轴(713)两侧的平衡 板 (712) 上各设有一个铰接长孔, 通过销子 (714) 各铰接前拨叉 (710) 的中部和后拨叉的端部; 前 拨叉 (710) 的下端为一个封闭框架; 一个前进后退控制凸轮盘 (717) 固联在变速控制轴 (71 ) 上的, 其设在前拨叉 (710) 的封闭框架中, 构成一个凸轮机构, 使得通过所述前进后退控制盘在随所述变速 控制轴 (71 ) 转动时, 即可带动前拨叉 (710) 上下移动, 继而带动所述出力滑套 (65)左右移动接合 主动伞齿轮或接合被动伞齿轮或处于居中位置对应前进档、 后退挡和空档。
9、 根据权利要求 1所述的多段式动力调速器, 其特征在于: 还包括一停车锁定装置, 其包括一停 车凸轮 (77) 和一停车锁定杆 (78), 该停车凸轮(77) 固定在所述变速控制轴 (71 ) 上, 该停车锁定 杆(78)可转动地固定在机箱上, 其具有两个联动的伸出端, 其中一端与所述停车凸轮(77)接触, 另 一端上具有锁定齿, 随着停车凸轮的转动形成该锁定齿与所述停车齿轮啮合锁定出力轴(58)和脱离停 车齿轮解开锁定出力轴 (58) 的两个状态。
10、 根据权利要求 1或 2或 3所述的多段式动力调速器, 其特征在于: 还包括自动控制感应装置, 该自动控制感应装置的部署为:
在所述启动机构 (1 ) 的主动部件 (16) 上及附近机箱上设有传感器 (730),
在所述变速控制机构(5)中的所述变速控制轴(71 )上设有的转盘(719)的圆周上设有若干个传 感器分部件, 对应地, 在相应的机箱上设有一个传感器分部件, 组成传感器 (732), 用于检测 PLC事 先设定换档转速及当时驾驶者操控的发动机转速 (730) 而由自动控制马达 (728) 带动涡杆 (720) 转 动涡轮盘 (719) 转动变速控轴 (71 ) 而自动换档, 所述传感器 (730) 还用于检测启动机构 (1 ) 中主 动件的转速与 PLC中设定的启动的转速比较而启动或停止制动包带电机 (110) 的; 和 /或
对应所述引擎辅助刹车切换机构(2)为电控控制切换装置, 还包括: 在变速机构(3 )的从动部件 (56) 上及附近机箱上设传感器 (731 ), 其与所述传感器 (730) 配合控制电控控制切换装置中的所述 电机 (39) 的启动和停止; 或者,
还包括手动控制装置, 其包括手排杆轴 (97), 其与所述变速控制轴 (71 ) 之间设有传动装置, 还 包括档位箱(93),其上可转动的固定装有手排杆轴(97),在手排杆轴(97)上固设又驱动手排杆(921 ), 使得通过扳动手排杆 (921 ) 即可转动手排杆 (97), 从而通过所述传动装置使变速控制轴 (71 ) 转动; 所述手排杆 (921 )上设弹性定位装置, 对应地, 在所述档位箱 (93 ) 上对应手排杆转动而所述定位装 置运动轨迹处设有档位孔与所述手排杆转动角度即相应变速控制轴 (71 ) 转动角度对应的档位相对应。
11、根据权利要求 10所述的多段式动力调速器,其特征在于:对应所述引擎辅助刹车切换机构(2) 为电控控制切换装置还包括如下传感器: 设置在脚踏板 (313 ) 上和驾驶室对应位置上的引擎刹车传感 器 (736) 和传动传感器 (737), 用于辅助驱动所述电控控制切换装置中的电机 (39) 和启动机构中的 电机 (110), 在脚踏板 (313 ) 上设有传感器的一部分永久磁铁 (314), 在驾驶室中对应脚踏板处于以 下四个位置设置传感器的另一部分: 在刹车踏板上对应油门全开位置(wl )、 加油终止或加油开始位置
(w2)、 设定使得棘齿滑套 (34) 脱开或接合所述变速机构 (3 ) 中的主动部件 (31 ) 的位置 (w3) 和 设定使得棘齿滑套 (34) 脱开或接合所述停车齿轮 (35) 的位置 (w4), 以向 PLC传递接通或切断电 机 (39) 的信号以便进行引擎和辅助刹车的适时切换。
12、 根据权利要求 7所述的多段式动力调速器, 其特征在于: 所述变速托架(73 )上具有六组有圆 弧形顶珠退拔沟轨 (73B), 每一组退拔沟轨在圆周上均匀分布, 每一组退拔沟轨是三个, 相交 120度 分布; 所述变速托架(73 )上设置三个同心圆, 同一组的三个退拔沟轨分别设置在该三个同心圆上, 各 组沟轨的长度不同, 以适应 n=6排变速齿轮组的三十二档变速或低于此档数的调速需求。
PCT/CN2007/002987 2006-10-18 2007-10-18 Régulateur de vitesse dynamique à étages multiples WO2008046316A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07816601A EP2082915A4 (en) 2006-10-18 2007-10-18 MULTI-STAGE DYNAMIC SPEED REGULATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610113842A CN101165371B (zh) 2006-10-18 2006-10-18 多段式动力自动调速器
CN200610113842.3 2006-10-18

Publications (1)

Publication Number Publication Date
WO2008046316A1 true WO2008046316A1 (fr) 2008-04-24

Family

ID=39313611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/002987 WO2008046316A1 (fr) 2006-10-18 2007-10-18 Régulateur de vitesse dynamique à étages multiples

Country Status (3)

Country Link
EP (1) EP2082915A4 (zh)
CN (1) CN101165371B (zh)
WO (1) WO2008046316A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014024A2 (ko) * 2009-07-31 2011-02-03 (주)유티글로발 기계식 다단 자동 변속기
CN106763559A (zh) * 2017-03-16 2017-05-31 芜湖华炬电动汽车技术有限公司 用于纯电动汽车的自动变速箱、自动变速系统、控制方法以及电动汽车
CN112193737A (zh) * 2020-11-11 2021-01-08 山东光普太阳能工程有限公司 一种流水线快慢速调节装置
CN116292671A (zh) * 2023-04-23 2023-06-23 浙江春风动力股份有限公司 摩托车
CN117699099A (zh) * 2024-02-06 2024-03-15 山东淄博新达制药有限公司 高粘度粉剂物料螺杆进料系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8302501B2 (en) * 2008-09-25 2012-11-06 Honda Motor Co., Ltd. Multistage transmission
US8327729B2 (en) * 2009-02-27 2012-12-11 Honda Motor Co., Ltd. Shift drive mechanism for multi-speed transmission
CN101665186B (zh) * 2009-07-31 2013-01-16 长春设备工艺研究所 工件步进输送驱动系统
CN103256355B (zh) * 2013-04-28 2015-07-15 河南科技大学 双行星排汇流式多离合器变速器
CN105370818A (zh) * 2014-08-25 2016-03-02 安宏亮 变力自变速机构
CN105065653B (zh) * 2015-07-15 2017-09-01 徐州南普机电科技有限公司 一种电动车两档变速器的选档机构
CN107290088B (zh) * 2017-06-29 2023-04-07 柳州上汽汽车变速器有限公司 拨叉衬套拔出力的测量方法
KR102262239B1 (ko) * 2019-10-07 2021-06-11 오토딘시스 주식회사 신규한 구조의 클러치 어셈블리
CN111940441A (zh) * 2020-08-12 2020-11-17 惠安畅悦工业产品设计有限公司 一种垃圾桶清洁用高效自动洗刷装置
CN113692978A (zh) * 2021-09-16 2021-11-26 浙江新至碳和数字科技有限公司 一种畜牧养殖用猪舍地面清洗装置
CN114322882A (zh) * 2021-12-14 2022-04-12 叶锋 一种用于管道外表面平整度检测的智能机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213086A (ja) * 1992-02-03 1993-08-24 Nissan Motor Co Ltd トランスファの2輪−4輪駆動切り換え制御装置
US5674147A (en) * 1994-09-21 1997-10-07 Nissan Motor Co., Ltd. Transmission system
US5830099A (en) * 1996-11-21 1998-11-03 New Venture Gear, Inc. Reverse gear mechanism in front wheel drive transaxles
DE19912817A1 (de) * 1999-02-17 2000-08-31 Mannesmann Sachs Ag Automatisiertes Getriebe
CN1705837A (zh) * 2002-10-21 2005-12-07 日产柴油机车工业株式会社 自动变速器的控制装置
CN1704631A (zh) * 2004-05-28 2005-12-07 曾盛财 一种动力调速器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111037B1 (en) * 1982-12-09 1986-08-06 Deere & Company Vehicle transmissions and vehicles incorporating transmissions
CA2013563C (en) * 1989-04-14 1995-05-02 Yasuyuki Horii Power transmission for driving vehicle
US5570605A (en) * 1994-09-13 1996-11-05 Kanzaki Kokyukoki Mfg. Co., Ltd. Transmission assembly for tractors
JP3520623B2 (ja) * 1995-09-07 2004-04-19 トヨタ自動車株式会社 自動変速機
AU2559299A (en) * 1998-01-16 1999-08-02 Joachim Horsch Multispeed powershift transmission
US6406400B1 (en) * 1999-10-01 2002-06-18 Meritor Heavy Vehicle System, Llc Integrated vehicle manual transmission and clutch with planetary gear arrangement
US6217475B1 (en) * 1999-11-03 2001-04-17 Zf Meritor Dual mass variable inertia flywheel assembly
CN2463612Y (zh) * 2001-01-11 2001-12-05 周学惠 行星齿轮单元式无级变速机构
JP3674561B2 (ja) * 2001-09-25 2005-07-20 日産自動車株式会社 自動クラッチ式変速機の変速制御装置
JP3763296B2 (ja) * 2001-12-10 2006-04-05 トヨタ自動車株式会社 自動変速機
CN2784673Y (zh) * 2004-04-29 2006-05-31 曾盛财 一种动力调速装置
CN201031948Y (zh) * 2006-10-27 2008-03-05 曾盛财 多段式动力自动调速器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213086A (ja) * 1992-02-03 1993-08-24 Nissan Motor Co Ltd トランスファの2輪−4輪駆動切り換え制御装置
US5674147A (en) * 1994-09-21 1997-10-07 Nissan Motor Co., Ltd. Transmission system
US5830099A (en) * 1996-11-21 1998-11-03 New Venture Gear, Inc. Reverse gear mechanism in front wheel drive transaxles
DE19912817A1 (de) * 1999-02-17 2000-08-31 Mannesmann Sachs Ag Automatisiertes Getriebe
CN1705837A (zh) * 2002-10-21 2005-12-07 日产柴油机车工业株式会社 自动变速器的控制装置
CN1704631A (zh) * 2004-05-28 2005-12-07 曾盛财 一种动力调速器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2082915A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011014024A2 (ko) * 2009-07-31 2011-02-03 (주)유티글로발 기계식 다단 자동 변속기
KR101029868B1 (ko) 2009-07-31 2011-04-15 (주)유티글로벌 기계식 다단 자동 변속기
WO2011014024A3 (ko) * 2009-07-31 2011-07-07 (주)유티글로발 기계식 다단 자동 변속기
CN106763559A (zh) * 2017-03-16 2017-05-31 芜湖华炬电动汽车技术有限公司 用于纯电动汽车的自动变速箱、自动变速系统、控制方法以及电动汽车
CN106763559B (zh) * 2017-03-16 2023-03-14 山东新瓦特动力科技有限公司 用于纯电动汽车的自动变速箱、自动变速系统、控制方法以及电动汽车
CN112193737A (zh) * 2020-11-11 2021-01-08 山东光普太阳能工程有限公司 一种流水线快慢速调节装置
CN116292671A (zh) * 2023-04-23 2023-06-23 浙江春风动力股份有限公司 摩托车
CN116292671B (zh) * 2023-04-23 2023-08-11 浙江春风动力股份有限公司 摩托车
CN117699099A (zh) * 2024-02-06 2024-03-15 山东淄博新达制药有限公司 高粘度粉剂物料螺杆进料系统

Also Published As

Publication number Publication date
EP2082915A1 (en) 2009-07-29
EP2082915A4 (en) 2010-12-01
CN101165371B (zh) 2010-05-12
CN101165371A (zh) 2008-04-23

Similar Documents

Publication Publication Date Title
WO2008046316A1 (fr) Régulateur de vitesse dynamique à étages multiples
CN205371477U (zh) 一种电动汽车用两挡变速器
CN106321744B (zh) 一种电动车用双电机两挡变速箱及其换挡控制方法
WO2020108696A1 (de) Zwei-gang-getriebe für ein elektrisch antreibbares kraftfahrzeug
CN102734458A (zh) 高效节能全自动变速系统
JP4351154B2 (ja) ランドビークル、特にカートのためのトランスミッション装置
CN209524058U (zh) 一种新型电动三轮车差速锁后桥
CN205429972U (zh) 自动变速装置
CN2553191Y (zh) 汽车机械自动变速器
TWI334911B (zh)
JP3803651B2 (ja) 自転車の走行中エネルギの蓄積・還元装置
CN201189939Y (zh) 车辆变速机构
CN211766095U (zh) 一种变级变速传动自行车
CN103133561A (zh) 新型离合器自控器和自动变速箱
CN211918922U (zh) 一种多级变速自行车
CN216623075U (zh) 一种遥控操作装置
CN2454268Y (zh) 一种摩托车自动换档变速传动的装置
KR200204508Y1 (ko) 윈치
CN2089446U (zh) 自行车自动变速装置
CN102442209A (zh) 具有双重变速器功能的双重变速系统
EP2480447B1 (en) Automatic motorised derailleur
CN2211409Y (zh) 高速省力自行车
CN2161553Y (zh) 自行车助力调速器
CN2182785Y (zh) 自行车无级变速器
JP2004251344A (ja) 車両用電動駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007816601

Country of ref document: EP