WO2008041571A1 - Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif - Google Patents

Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif Download PDF

Info

Publication number
WO2008041571A1
WO2008041571A1 PCT/JP2007/068629 JP2007068629W WO2008041571A1 WO 2008041571 A1 WO2008041571 A1 WO 2008041571A1 JP 2007068629 W JP2007068629 W JP 2007068629W WO 2008041571 A1 WO2008041571 A1 WO 2008041571A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
optionally substituted
substituted
reaction
Prior art date
Application number
PCT/JP2007/068629
Other languages
English (en)
French (fr)
Inventor
Tatsuya Honda
Tatsuyoshi Tanaka
Masaru Mitsuda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to US12/311,325 priority Critical patent/US8207370B2/en
Priority to EP07828402A priority patent/EP2067769A1/en
Priority to JP2008537482A priority patent/JP5274256B2/ja
Publication of WO2008041571A1 publication Critical patent/WO2008041571A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/16Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions not involving the amino or carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups

Definitions

  • the present invention relates to a method for producing optically active / 3-hydroxy- ⁇ -aminocarboxylic acid ester which is important as a synthetic intermediate for pharmaceuticals, agricultural chemicals, chemical products and the like. More specifically, the present invention relates to a method for producing an optically active 0-hydroxy-a-amino carboxylic acid ester, particularly its anti-form, by asymmetric reduction of ⁇ -keto a-amino carboxylic acid ester.
  • the a-amino higher carboxylic acid ester is an important synthetic intermediate of a ceramide derivative useful as a skin protective agent.
  • / 3 Ketho
  • the following method has been conventionally known.
  • (iv) Carbonation of palmitoyl chloride with methyl acetate acetate followed by diazotization with phenyldiazonium salt and reduction of the diazo group with zinc / 3-keto ⁇ -acetylaminooctadecane Methyl acid method (Patent Document 1)
  • Patent Document 1 Patent No. 2976214
  • Patent Document 2 WO2005 / 005371
  • Patent Document 3 WO2005 / 069930
  • Patent Document 4 Patent No. 2733583
  • an anti-isomer can be obtained directly, but the ⁇ -amino group of the raw material ⁇ -ketoe ⁇ -aminocarboxylic acid ester must not have a substituent.
  • the synthesis method is limited.
  • there is a problem in versatility because the chemical structure of the raw material that can exhibit high stereoselectivity is limited.
  • the method (iv) has a large number of steps and is complicated, and must pass through an explosive diazo compound, which is not industrially advantageous.
  • the method (V) has many steps and is complicated, and uses dangerous hydrogen gas, which causes safety problems and is not industrially advantageous.
  • the present invention relates to a general formula (1)
  • R 3 is a hydrogen atom, substituted! /, May! /, An alkyl group having 1 to 21 carbon atoms, substituted! /, May!
  • Ar represents an aromatic compound which may be substituted
  • M represents a transition metal
  • Z represents a halogen atom
  • a good alkylsulfonyloxy group, an optionally substituted arylsulfonyloxy group, or an optionally substituted Y represents an oxygen atom, an optionally substituted alkylsulfonylamide group, an optionally substituted arylsulfonylsulfonyl group, or an optionally substituted aralkylenosulfonylamide group.
  • R 4 is a hydrogen atom, an optionally substituted alkyl group having 1 to 21 carbon atoms, substituted! /, May! /, An alkenyl group having 2 to 21 carbon atoms, substituted! /, May! /, An alkynyl group having 2 to 21 carbon atoms, an aralkyl group having 7 to 20 carbon atoms which may be substituted, or a substituted group /! Or even! / Represents an aryl group having 6 to 20 carbon atoms, R 5 is substituted! /, Or may! /, Carbon number;!
  • the present invention provides a compound of the general formula (5);
  • R 5 is an optionally substituted alkyl group having 1 to 10 carbon atoms, and may be substituted.
  • X is a halogen atom, an optionally substituted acyloxy group, may be substituted! /, An alkyloxycarbonyloxy group, substituted! /, May! /, A sulfonyloxy group, an optionally substituted alkyloxy group, an optionally substituted allyloxy group, or an optionally substituted imidazole group, and R 4 is a hydrogen atom, optionally substituted! / An alkyl group having 1 to 21 carbon atoms, substituted! /, May!
  • the present invention provides a compound of the general formula (15);
  • R 5 is an optionally substituted alkyl group having 1 to 10 carbon atoms; An aralkyl group having 7 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted; 0-ketoe ⁇ -stearoylaminooctadecanoic acid ester represented by
  • an optically active 0-hydroxy- ⁇ -aminocarboxylic acid ester anti-isomer can be produced efficiently and conveniently in an industrially advantageous manner.
  • examples of the substituent on the functional group constituting R′—R 8 , X, Y, Z, Ar, and M include, for example, an alkyl group, an aryl group, an aralkyl group, an amino group, and a nitro group.
  • a force including, but not limited to, a sulfonyl group, a halogen atom, a hydroxyl group, an acyloxy group, and an alkoxy group.
  • a carboxylic acid derivative represented by general formula (2) is reacted in the presence of a Lewis acid and an amine.
  • R 4 is a hydrogen atom, an optionally substituted alkyl group having 1 to 21 carbon atoms, an optionally substituted alkenyl group having 2 to 21 carbon atoms, or a substituted group.
  • the optionally substituted alkyl group having 1 to 21 carbon atoms includes a methyl group, an ethynole group, a propyl group, an isopropyl group, an isobutyl group, a tert butyl group, a cyclopentyl group, and a cyclohexyl group.
  • alkenyl group having 2 to 21 carbon atoms which may be substituted include a bur group, a aryl group, a trans 1 pentadecenyl group, a 3-hydroxy-trans 1 pentadecenyl group and the like.
  • alkynyl group having 2 to 21 carbon atoms examples include 1-pentadesur group.
  • Substituted! /, May! /, And an aralkyl group having 7 to 20 carbon atoms include a benzyl group and the like.
  • Examples of the optionally substituted aryl group having 6 to 20 carbon atoms include phenyl group, p methoxyphenyl group, p-clophenyl group, p-nitrophenyl group, p-trinole group, naphthyl group and the like.
  • R 4 may be an optionally substituted alkyl group having 10 to 21 carbon atoms, an optionally substituted alkenyl group having 10 to 21 carbon atoms, or a substituted group.
  • an alkynyl group having 10 to 21 carbon atoms is preferred, substituted! /, May! /, An alkyl group having 11 to 21 carbon atoms, an optionally substituted carbon number; ;!-21 alkenyl groups, substituted! /, May! /, Carbon number 1;! -21 alkynyl groups are more preferred! / ,.
  • X is a halogen atom, an optionally substituted acyloxy group, an optionally substituted alkyloxycarbonyloxy group, or an optionally substituted sulfonyloxy.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom
  • an acyloxy group such as an acetinoleoxy group, a trichloroacetylenoreoxy group or a pivaloinoreoxy group
  • Alkyloxycarbonyloxy groups such as xy group, ethoxycarbonyloxy group, isopropylinocarbonylcarbonyl group, isobutyloxycarbonyloxy group
  • sulfonyloxy groups such as methanesulfonyloxy group, p-toluenesulfonyloxy group, etc.
  • Xyl group alkyloxy group such as methoxy group, ethoxy group and benzyloxy group; aryloxy group such as phenyloxy group and p-nitrophenyl group; imidazole group such as imidazole group and N-methylimidazole group.
  • chlorine atom bromine atom, methoxy group, ethoxy group, methoxycarbonyloxy group, ethoxycarbonyloxy group, trichloroacetyloxy group, bivallooxy group, N-methylimidazole group Is preferred. Particularly preferred is a chlorine atom.
  • R 5 is an optionally substituted alkyl group having 1 to 10 carbon atoms, an optionally substituted aralkyl group having 7 to 20 carbon atoms, or a substituted group. It represents a good aryl group having 6 to 20 carbon atoms.
  • Examples of the optionally substituted alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, and a tert butyl group.
  • Specific examples of the optionally substituted aralkyl group having 7 to 20 carbon atoms and the optionally substituted aryl group having 6 to 20 carbon atoms include those described above. Of these, methyl, ethyl, isopropyl, and benzyl groups are preferred and ethyl groups are more preferred because of the ease of raw material synthesis and deesterification.
  • R 6 and R 7 may be the same or different and each may be a hydrogen atom or may be substituted.
  • An aryl group having 6 to 20 carbon atoms, Substituted! /, May! /, Carbon number; represents an acyl group having from 40 to 40, or an amino protecting group.
  • an optionally substituted alkyl group having 1 to 10 carbon atoms an optionally substituted alkyl group having 7 to 20 carbon atoms, an optionally substituted aryl group having 6 to 20 carbon atoms, etc. Specific examples are those mentioned above.
  • Substituted! /, May! /, And an acyl group having 1 to 40 carbon atoms includes formyl group, acetyl group, trifluoroacetyl group, trichloroacetyl group, chloroacetyl group, benzoyl group, octa Decanoyl group, 2-hydroxyoctadecanol group, 2-oxooctadecanol group, docosanol group, 2-hydroxydocosanoyl group, 30- (8,11-icosadienoloxy) And triacontanol group.
  • amino protecting group for example, the protecting group described in Protective Groups in Organic Synthesis 3rd ed. (Theodora W. Greene and Peter GM Wuts Ed., Wiley-Interscience: New York, 1999).
  • the alkyl group having 1 to 10 carbon atoms that may be substituted the aralkyl group that may be substituted, the aryl group having 6 to 20 carbon atoms that may be substituted, Other than those having 1 to 40 carbon atoms are preferred.
  • alkoxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, benzenoreoxycarbonyl group, tert-butoxycarbonyl group and the like, and sulfonyl groups such as p-ditrobenzenesulfonyl group, which can be easily deprotected, are preferable.
  • Examples of such a functional group in which R 6 and R 7 may be combined with an adjacent nitrogen atom to form a heterocyclic ring include a phthaloyl group.
  • R 6 and R 7 one of R 6 and R 7 which may be substituted is an acyl group having 1 to 40 carbon atoms, and an optionally substituted aralkyl group having 7 to 20 carbon atoms. Or an alkoxycarbonyl group having 1 to 21 carbon atoms and the other being hydrogen, or R 6 and R 7 together with an adjacent nitrogen atom to form a heterocyclic ring. Masle.
  • R 6 and R 7 are substituted! /, May! /,
  • To 40 is an aryl group, and the other is a hydrogen atom, and in this case,
  • the acyl group having 1 to 40 carbon atoms a formyl group, a acetyl group, Benzyl group, Octadecanol group, 2-Hydroxyoctadecanol group, 2-Oxotatadecanol group, Docosanoyl group, 2-Hydroxydocosanoyl group, 30-(8, 11-Eicosadenoyloxy) triacontanoy
  • the octadecanoyl group C is particularly preferred.
  • R 4 is a pentadecyl group
  • R 6 and R 7 are an octadecanol group and a hydrogen atom
  • R 5 is the same as defined above, but is preferably a methyl group or an ethyl group.
  • the amount of the carboxylic acid derivative 1 ⁇ 2) used in this step is not particularly limited, but the force S is usually 0.;! To 10 equivalents relative to the glycine derivative (5), preferably 0. 5 to 3 equivalents. If the carboxylic acid derivative (6) is cheaper than the glycine derivative (5), the amount of the carboxylic acid derivative)) used is greater! /, And the carboxylic acid derivative (6) is more expensive than the glycine derivative (5). If so, use less carboxylic acid derivative (6)! /, Better!
  • the amine used in this step is not particularly limited.
  • secondary amines such as jetylamine, diisopropylamine, diisobutyramine; trimethylamine, triethylamine, tributylamine, diisopropylethyl.
  • tertiary amines such as amines. Among them, triethylamine, tributylamine and diisopropylethylamine are preferred from the viewpoint of yield.
  • the amount of ammine used in this step is not particularly limited, but is usually 0.5 to 10 equivalents, preferably 1 to 5 equivalents, relative to the glycine derivative (5).
  • the Lewis acid used in this step is not particularly limited, and examples thereof include titanium tetrachloride, trichloroisopropyloxytitanium, titanium tetrabromide, zirconium tetrachloride, and tetrahydrochloride. Examples thereof include sulfur, aluminum chloride, iron trichloride, antimony chloride, tin tetrachloride, tin triflate, etc. Among them, titanium tetrachloride is preferable from the viewpoint of yield.
  • the amount of Lewis acid used in this step is not particularly limited, but is usually 0.5 to 10 equivalents, preferably 1 to 5 equivalents, relative to the glycine derivative (5).
  • N methylimidazole derivative in this step, depending on the substrate, it is preferable to add N methylimidazole derivative during the reaction.
  • N-methylimidazole derivative to be added include N-methylimidazole, 2-methyl-N-methylimidazole, 2-ethyl-N-methylimidazole, and 2-isopropyl-N-methylimidazole.
  • N-methylimidazole is preferable from the viewpoint of economy. preferable.
  • the amount used is not particularly limited, but is usually 0.5 to 10 equivalents to the carboxylic acid derivative (6), preferably 1 to 3 equivalents, more preferably 1 to 1.5 equivalents.
  • the reaction solvent used in this step is not particularly limited as long as it does not inhibit the reaction! /,
  • pentane, hexane, heptane, cyclohexane, methinorecyclohexane Hydrocarbon solvents such as ethylene and petroleum ether; ester solvents such as ethyl acetate and methyl acetate; aromatic hydrocarbon solvents such as toluene, black benzene, benzene and xylene; such as acetonitrile, propionitrile, etc.
  • Nitrile solvents such as tert butyl methyl ether, diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane; amide solvents such as N, N dimethylformamide and N, N dimethylacetamide; sulfoxides such as dimethyl sulfoxide Solvent; halogen such as methylene chloride, 1,2-dichloroethane, black mouth form, carbon tetrachloride And hydrocarbon solvents.
  • hexane, cyclohexane, methylol cyclohexane, tonolene, black benzene, chloromethylene, and 1,2-dichloroethane are preferable. Two or more of these solvents may be mixed and used. When a mixed solvent is used, the mixing ratio is not particularly limited.
  • the concentration of the carboxylic acid derivative 1 ⁇ 2) during the reaction varies depending on the reaction solvent used, but in general, the reaction can be carried out at 1 to 50% (w / v), preferably 2 to 30% (w / V).
  • the reaction temperature at the time of the reaction is glycine derivative (5), carboxylic acid derivative 1 ⁇ 2), Lewis
  • the power varies depending on the type and amount of acid and amine used, and the type of reaction solvent. In order to complete the reaction in a short time, it is better to increase the temperature. From the viewpoint of suppressing side reactions, it is better to set the temperature lower. Generally -100 ⁇ ; 100 ° C, more preferably -50 ⁇ 40 ° C
  • reaction time during the reaction depends on the type and amount of the glycine derivative (5), carboxylic acid derivative 1 ⁇ 2), Lewis acid, ammine and N-methylimidazole derivative used, the type of reaction solvent and the reaction temperature. When it is carried out at 50-40 ° C, it is usually about !!-24 hours.
  • the order of mixing the glycine derivative (5), carboxylic acid derivative (6), Lewis acid, ammine and N-methylimidazole derivative, reaction solvent, etc. used in this reaction is arbitrary and is not particularly limited. It is preferable to add the carboxylic acid derivative (6) to the mixture of the derivative (5) and the N-methylimidazole derivative, and further add a Lewis acid and an amine.
  • R 4 is substituted! /, May! /, Carbon number 1; ! /, May! /, C 1;! To 21 alkenyl group, substituted! /, May! /, C 1;! To 21 alkynyl compounds ( 9);
  • R 5 to R 7 are as described above.
  • R 9 may be substituted V, carbon number 1;! To 21 alkyl group, substituted! /, May! /, Carbon number 1;! To 21 alkenyl group, substituted It is an alkynyl group having 1 to 20 carbon atoms.
  • the reaction can be carried out by the above-described method.
  • an inexpensive N-methylimidazole is used as the N-methylimidazole derivative. It is preferable to use it.
  • the reaction temperature is preferably 50 ° C or higher, more preferably 40 ° C or higher, particularly preferably 20 ° C or higher.
  • black benzene as a solvent.
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • water, hydrochloric acid, alkaline water or the like is added to the reaction solution after completion of the reaction, and the extraction operation is performed using a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • the reaction solvent and the extraction solvent are distilled off under reduced pressure from the obtained extract, the desired product is obtained.
  • the product thus obtained may be further purified by performing general purification such as silica gel chromatography, distillation, recrystallization and the like.
  • the production method of compound (2) is not particularly limited, and may be the above-described method.
  • the / 3-ketoester is treated with sodium nitrite to oxime the ⁇ -position, It can also be produced by a known method, for example, by reducing only by hydrogenation to form an amino group.
  • * represents an asymmetric carbon atom.
  • represents a transition metal, for example, palladium, rhodium, ruthenium, iridium, platinum, zirconium, titanium, chromium, cobalt, copper, nickel, zinc, manganese, iron, ytterbium, lanthanum, samarium, etc. Of these, ruthenium, rhodium and iridium are preferred.
  • R 1 and R 2 may be the same or different and may be substituted alkyl groups having 1 to 21 carbon atoms, and optionally substituted carbon atoms 6 to 20 And an aryl group of 7 to 20 carbon atoms which may be substituted, and R 1 together with R 2 may form a ring.
  • Examples of the 7-20 aralkyl group include those described above, and examples of the group in which R 1 and R 2 together form a ring include a tetramethylene group.
  • R 1 and R 2 are preferably a phenyl group or a tetramethylene group from the viewpoint of stereoselectivity of the reaction.
  • R 3 is a hydrogen atom, an optionally substituted alkyl group having 1 to 21 carbon atoms, an optionally substituted aralkyl group having 7 to 20 carbon atoms, or a substituted! / ! / Represents an aryl group having 6 to 20 carbon atoms, and specific examples include those mentioned above. From the viewpoint of reaction yield and stereoselectivity, a methyl group and a hydrogen atom are preferred, and a hydrogen atom is particularly preferred.
  • Ar represents an aromatic compound which may be substituted.
  • Ar represents an aromatic compound which may be substituted.
  • pentagenyl and among them, p-cymene, benzene, and mesitylene are preferable.
  • Z is a halogen atom, substituted! /, May!
  • An alkylsulfonyloxy group, an optionally substituted arylsulfonylsulfonyl group, or an optionally substituted aralkylsulfonyloxy group For example, fluorine atom, chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy group, methanesulfonyloxy group, p-toluenesulfonyloxy group, etc., among them, chlorine atom, trifluoromethane, etc.
  • a sulfonyloxy group is preferred.
  • Y is an oxygen atom, substituted! /, May! /, An alkylsulfonylamide group, substituted! /, An arylsulfonylsulfonyl group, or an optionally substituted aralkylsulfone.
  • a diamide group for example, an oxygen atom, a methanesulfonylamide group, a trifluoromethanesulfonylamide group, a camphorsulfonylamide group, etc.! /, May!
  • optically active amine complex (1) examples include RuCl [(R, R) —TsDPEN] (p—cyme ne) complex, RuCl [(S, S) —TsDPEN] (p—cymene) complex, RuOTf [(R, R) —TsD PEN] (p—cymene) complex or RuOTf [(S, S) —TsDPEN] (p—cymene) complex.
  • (S, S) —TsDPEN represents (IS, 2S) —N monotosyl 1,2-diphenylethylene diamine
  • OTf represents a trifluoromethanesulfonyloxy group.
  • a RuCl [(R, R) —TsDPEN] (p—cymene) complex is represented by the following formula (25);
  • the optically active amine complex (1) can be synthesized by the method described in J. Am. Chem. So, 1996, 118, 2521. A commercially available product may also be used.
  • As the optically active amine complex (1) used in this step one prepared in advance and isolated and purified may be used, or one prepared in the system may be used as it is.
  • the amount of the optically active amine complex (1) used in this step is not particularly limited, but is generally 0.000 to the ⁇ -ketoe ⁇ -aminocarboxylic acid ester represented by the above formula (2); ! ⁇ 1 equivalent force S, preferably 0.0001 -0.2 equivalent.
  • Hydrogen or a hydrogen-donating compound used in this step is not particularly limited, and examples thereof include alcohols such as methanolol, ethanol, ⁇ -propanol, and isopropanol; formic acid; formate salts such as sodium formate and ammonium formate; hydrogen In particular, formic acid, formic acid, sodium formate, and hydrogen are particularly preferable from the viewpoint of yield.
  • the amount of the hydrogen-donating compound used in this step is not particularly limited, but is usually 1 to 100 per 100-ketol ⁇ -amino carboxylic acid ester represented by the above formula (4).
  • the amount is preferably 1 to 10 equivalents.
  • a base may coexist.
  • the base include inorganic bases such as sodium hydroxide, potassium hydroxide and potassium carbonate; alkoxides such as sodium methoxide and potassium tert-butoxide; and amines such as triethylamine, trimethylamine and ammonia.
  • inorganic bases such as sodium hydroxide, potassium hydroxide and potassium carbonate
  • alkoxides such as sodium methoxide and potassium tert-butoxide
  • amines such as triethylamine, trimethylamine and ammonia.
  • the amount used is not particularly limited, but is usually 0.0;! To 100 equivalents relative to the 13-ketoe ⁇ -aminocarboxylic acid ester represented by the formula (2). so A certain force is preferably 0.;! To 10 equivalents, more preferably 1 to 10 equivalents.
  • a reaction solvent is not particularly required, and the reaction can be completed in an extremely short time when the reaction is carried out without a solvent. It is preferable because the amount of catalyst used can be reduced.
  • a reaction solvent may be used depending on the reaction substrate.
  • the reaction solvent is not particularly limited as long as it does not inhibit the reaction.
  • hydrocarbon solvents for example, the above-mentioned hydrocarbon solvents; ester solvents; aromatic hydrocarbon solvents; nitrile solvents; ether solvents; Solvents; sulfoxide solvents; halogenated hydrocarbon solvents; methanol solvents such as methanol, ethanol, isopropanol and n-butanol; carboxylic acid solvents such as formic acid and acetic acid; water.
  • two or more of these solvents may be mixed and used.
  • the mixing ratio is not particularly limited
  • the concentration of the / 3-ketoe ⁇ -aminocarboxylic acid ester (2) during the reaction varies depending on the reaction solvent used. Generally, the reaction can be carried out at! ⁇ 50% (w / v). Preferably 4-30% (w / v).
  • the reaction temperature during the reaction varies depending on the type and amount of the optically active transition metal complex and hydrogen-donating compound used, and the type of reaction solvent, but is usually in the range from the freezing point to the boiling point of the reaction solvent used. It is. In order to complete the reaction in a short time, it is better to increase the temperature. From the viewpoint of suppressing side reactions, it is better to set the temperature lower. Generally, it is from 1 to 20; 150 ° C, and more preferably from 0 to 70 ° C.
  • reaction time during the reaction varies depending on the type and amount of the optically active transition metal complex and hydrogen donating compound used, the type of reaction solvent, and the reaction temperature, but the reaction temperature was 0 to 70 ° C. In some cases, it is usually 1 to 36 hours.
  • the order of mixing (1), hydrogen or a hydrogen-donating compound, reaction solvent, etc. is arbitrary and is not particularly limited, but the mixture of ⁇ -ketoe ⁇ -aminocarboxylic acid ester (2) and optically active amine complex (1) Hydrogen or a hydrogen donating compound is preferably added. Also in the case of adding a base, it is preferable to add hydrogen or a hydrogen-donating compound to the mixture of the / 3-ketoto ⁇ -aminocarboxylic acid ester (2), the optically active amine complex (1) and the base. hydrogen The donating compound may be added and reacted at once, or may be reacted continuously or intermittently. If gas is generated as the reaction progresses, it is preferable to add it sequentially as the reaction progresses, for safety reasons.
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • water, hydrochloric acid, alkaline water or the like is added to the reaction solution after completion of the reaction, and the extraction operation is performed using a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • the reaction solvent and the extraction solvent are distilled off under reduced pressure from the obtained extract, the desired product is obtained.
  • the product thus obtained may be further purified by performing general purification such as silica gel chromatography, distillation, recrystallization and the like.
  • the compound represented by the above formula (2) is subjected to an asymmetric hydrogenation reaction using a transition metal complex having an optically active phosphine ligand as a catalyst.
  • the process for producing the optically active / 3-hydroxy- ⁇ -aminocarboxylic acid ester represented by the above formula (3) or (4) by reversing the arrangement will be described.
  • transition metal in the transition metal complex having an optically active phosphine ligand used in this step include the same as those in the formula (1).
  • the optically active phosphine ligand is not particularly limited.
  • Biphenyl phosphine ligand represented by general formula (18) (hereinafter abbreviated as SEGPHOS)
  • Biphenyl phosphine ligand represented by general formula (19) (hereinafter abbreviated as TUNEPHOS)
  • Bisphosphine ligand represented by general formula (20) (hereinafter abbreviated as DUPHOS), alkylphosphine ligand represented by general formula (21) (hereinafter abbreviated as BISP), represented by general formula (22) Biphenylphosphine ligand (hereinafter referred to as DIOXANPHOS)
  • n represents an integer of ! to 6
  • BINAP DIOXANPHOS, TUNEPHOS, SE GPHOS, and MeO-BIPHEP are preferable.
  • the transition metal complex having an optically active phosphine ligand used in this step can be prepared by mixing the transition metal compound and the optically active phosphine ligand in an appropriate solvent. Those prepared in advance and isolated may be used, or those prepared in the reaction system may be used as they are.
  • the amount of the transition metal complex having an optically active phosphine ligand used in this step is not particularly limited, but is usually 0 with respect to the ⁇ -ketoe ⁇ -aminocarboxylic acid ester represented by the formula (2). 00001 ⁇ ;! Equivalent force is preferable (or 0.0001-0.2 equivalent)
  • the hydrogen used in this step is usually hydrogen gas, and the pressure of the hydrogen gas is not particularly limited, but is usually in the range of 1 to 150 atm, preferably 5 to; in the range of 100 atm. It is. In order to complete the reaction in a short time, it is better to increase the pressure.
  • the reaction solvent used in this step is not particularly limited as long as it does not inhibit the reaction!
  • And may be any solvent as long as it is, for example, the above-mentioned hydrocarbon solvent; ester solvent; aromatic Hydrocarbon solvents; nitrile solvents; ether solvents; amide solvents; sulfoxide solvents; halogenated hydrocarbon solvents; alcohol solvents; carboxylic acid solvents; Two or more of these solvents may be mixed and used.
  • the mixing ratio is not particularly limited.
  • the concentration of / 3-ketoe ⁇ -aminocarboxylic acid ester (2) during the reaction varies depending on the reaction solvent used, but in general; the reaction should be carried out at !!-50% (w / v) It is preferably 4 to 30% (w / v).
  • the reaction temperature during the reaction varies depending on the type and amount of the transition metal complex having the optically active phosphine ligand to be used, the type of reaction solvent, and the hydrogen pressure, but usually it is above the freezing point and below the boiling point of the reaction solvent used. Range. In order to complete the reaction in a short time, it is better to increase the temperature. From the viewpoint of suppressing side reactions, it is better to set the temperature lower. Generally, it is ⁇ 20 to; 150 ° C., more preferably 0 to 100 ° C.
  • reaction time during the reaction varies depending on the type and amount of the transition metal complex having the optically active phosphine ligand to be used, the hydrogen pressure, the type of reaction solvent, and the reaction temperature, but the reaction temperature is 0 to 100 ° C. When it is carried out, it is usually about 1 to 36 hours.
  • the mixing order of / 3-ketoto ⁇ -aminocarboxylic acid ester (2), transition metal complex having optically active phosphine ligand, hydrogen gas, reaction solvent, etc. used in this reaction is arbitrary and is not particularly limited.
  • hydrogen gas can be added to a mixture of a ⁇ -ketoe ⁇ -aminocarboxylic acid ester (2) and a transition metal complex having an optically active phosphine ligand.
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • the reaction solvent may be distilled off from the reaction solution.
  • water, hydrochloric acid, alkaline water, etc. are added to the reaction solution after completion of the reaction, and the extraction operation is performed using a general extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane and the like. I do .
  • a general extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane and the like. I do .
  • the reaction solvent and the extraction solvent are distilled off from the obtained extract under reduced pressure, the desired product is obtained.
  • the product obtained in this way is, if necessary, silica gel chromatography or steaming.
  • the purity may be further increased by performing general purification such as distillation and recrystallization.
  • the above formula (23) or (24), which is not an anti-form represented by the above formula (3) or (4), is used. There may be cases where a thin body as shown is generated. If a syn-form is generated, it is better to reverse the configuration of the hydroxyl group at the 3-position and convert it to an anti-form, if necessary.
  • the method for reversing the configuration of the hydroxyl group at the 3-position of the syn form is not particularly limited.
  • R 6 or R 7 of the compound (23) or (24) may be substituted with a acetyl group or decant decanol as necessary.
  • Examples thereof include a method in which thionyl chloride or the like is allowed to act after conversion to an acyl group such as a group.
  • the amount of thionyl chloride used in this case is not particularly limited, but is usually !! to 50 equivalents, preferably 1 to 10 equivalents, relative to compound (23) or (24). .
  • the reaction solvent used in this inversion operation does not inhibit the reaction, and is not particularly limited as long as it is a solvent.
  • hydrocarbon solvents, ester solvents, aromatic carbonization, etc. examples thereof include hydrogen solvents, nitrile solvents, ether solvents, amide solvents, sulfoxide solvents, halogenated hydrocarbon solvents, and thionyl chloride.
  • hexane, cyclohexane, methinorecyclohexane, tonorene, Chlorobenzene, methylene chloride, tetrahydrofuran, and thionyl chloride are preferred. Two or more of these solvents may be mixed and used. When a mixed solvent is used, the mixing ratio is not particularly limited.
  • the concentration of the compound (23) or (24) during the reversal operation varies depending on the reaction solvent to be used, but in general, the reaction can be carried out at;!-50% (w / v) , Preferably 4-30% (w / v).
  • the reaction temperature during the reversal operation varies depending on the type of compound (23) or (24) used, the amount of thionyl chloride used, and the type of reaction solvent, but usually ranges from the freezing point to the boiling point of the reaction solvent used. It is. In order to complete the reaction in a short time, it is better to increase the temperature. From the viewpoint of suppressing side reactions, it is better to set the temperature lower. Generally, the temperature is 40 to 100 ° C, and more preferably 10 to 50 ° C.
  • reaction time during the reversal operation depends on the type of compound (23) or (24) used and thionyl chloride. When the reaction temperature is -10 to 50 ° C, it is usually about 1 to 24 hours.
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • water, hydrochloric acid, alkaline water or the like is added to the reaction solution after completion of the reaction, and the extraction operation is performed using a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • the reaction solvent and the extraction solvent are distilled off under reduced pressure from the obtained extract, the desired product is obtained.
  • the product thus obtained may be further purified by performing general purification such as silica gel chromatography, distillation, recrystallization and the like.
  • Reduction of the ester moiety of a-amino carboxylic acid ester and conversion of the amino substituent to an acyl group as necessary, may be represented by general formula (7) or general formula (8);
  • R 4 of optically active 2-amino-1,3-diol derivative (7) or (8) is the same as above.
  • R 8 is substituted! /, May! /, Carbon number; ;
  • R 6 and R 7 in compound (3) or ( 4 ) is an asil group, and one of them is hydrogen, the compound is not required to be converted to an isyl group.
  • the force R 6 or R 7 that yields (8) or (9) may be eliminated and converted to a different acyl group.
  • the step of converting an amino substituent to an acyl group includes, for example, reduction of the ester moiety of compound (3) or (4), followed by elimination reaction of the amino amino group, and finally, removal of the unsubstituted amino group.
  • An acylation reaction may be performed, or after the elimination reaction of an amino group, an acylation reaction of an unsubstituted amino group may be performed, and finally an ester site may be reduced.
  • the reducing agent for reducing the ester moiety is not particularly limited! /,
  • the amount of the reducing agent used in the reduction reaction is not particularly limited, but optically active 0-hydro Xy ⁇ -Aminocarboxylic acid ester (3) or (4), or a compound in which the amino substituent of the compound represented by formula (3) or (4) is converted to an acyl group is usually 0.5%.
  • Noreis acid is not particularly limited, and examples thereof include titanium tetrachloride, tin tetrachloride, boron trifluoride jetyl ether complex, zinc chloride, zinc bromide, zinc iodide, magnesium chloride, magnesium bromide, Examples include magnesium iodide, aluminum chloride, lithium chloride, lithium bromide, calcium chloride, iron chloride, and nickel chloride. Above all, calcium chloride is preferred from the economic point of view.
  • the amount of Lewis acid to be coexisting is not particularly limited, but is optically active ⁇ -hydroxy- ⁇ -aminocarboxylic acid ester (3) or (4), or a compound represented by formula (3) or (4) Is usually 0.5 to 10 equivalents, preferably 1 to 3 equivalents, relative to the compound in which the amino substituent is converted to an acyl group.
  • the reaction solvent used in this step is not particularly limited as long as it does not inhibit the reaction! / And is a solvent.
  • a solvent for example, the above-mentioned hydrocarbon solvents; ester solvents; aromatics Hydrocarbon solvents; nitrile solvents; ether solvents; amide solvents; sulfoxide solvents; halogenated hydrocarbon solvents; alcohol solvents such as methanol, ethanol, isopropanol, and ⁇ -butanol; Of these, black-end benzene, ⁇ -butanol, tetrahydrofuran, and dioxane are preferable. Two or more of these solvents may be mixed and used. When using a mixed solvent, the mixing ratio is not particularly limited.
  • the concentration of the compound subjected to the reduction reaction varies depending on the reaction solvent to be used, but in general, the reaction can be carried out in a range of! To 50% (w / v), preferably 4 to 30% (w / v).
  • the reaction temperature during the reaction varies depending on the compound to be subjected to the reduction reaction, the kind and amount of the reducing agent used, and the kind of the reaction solvent, but is usually in the range from the freezing point to the boiling point of the reaction solvent used. In order to complete the reaction in a short time, it is better to increase the temperature. From the viewpoint of suppressing side reactions, it is better to set the temperature lower. Generally-70 ⁇ ; 120 ° C, more preferably 0 to 100 ° C.
  • reaction time during the reaction varies depending on the compound to be subjected to the reduction reaction, the type and amount of the reducing agent, the type of the reaction solvent, and the reaction temperature. Usually about 1 to 24 hours.
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • water, hydrochloric acid, alkaline water or the like is added to the reaction solution after completion of the reaction, and the extraction operation is performed using a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • the reaction solvent and the extraction solvent are distilled off under reduced pressure from the obtained extract, the desired product is obtained.
  • the product thus obtained may be further purified by performing general purification such as silica gel chromatography, distillation, recrystallization and the like.
  • the elimination reaction of the amino substituent differs depending on the substituent.
  • Protective Groups in urganic synthesis 3rd ed. Theodora W. reene and Peter GM Wuts Ed., Deprotection reaction described in Wiley- Interscience: New York, 1999.
  • the amino substituent when it is a acetyl group or a methoxycarbonyl group, it can be eliminated by an acid or a base, and when it is a phthaloyl group, it can be eliminated by treatment with methylamine or hydrazine.
  • a benzyloxycarbonyl group or a benzyl group it can be eliminated by hydrogenolysis.
  • the acylation reaction of an unsubstituted amino group is carried out with an acylating agent.
  • the acylating agent used include stearoyl chloride, bivaloyl chloride, docosanoic acid chloride, acid chlorides such as 30- (8,11 eicosadienoyloxy) triacontanoic acid chloride, methyl stearate, 2-hydroxy Examples include methyl stearate, methyl 2-oxostearate, methyl docosanoate, and methyl 2-hydroxydocosanoate.
  • the corresponding carbo can also be carried out with acid anhydrides or mixed acid anhydrides.
  • the amount of the acylating agent used in the acylation reaction is not particularly limited! /, But the optically active 0-hydroxy- ⁇ -aminocarboxylic acid ester (3) or (4), or its ester moiety reduced form To 0.5 to 10 forces, preferably 1 to 2 equivalents.
  • bases that may be used if necessary include organic bases such as the aforementioned inorganic bases, triethylamine, pyridine, 4-dimethylaminopyridine and the like.
  • the amount of the base used in the acylation reaction is not particularly limited, but is based on the optically active / 3-hydroxy ⁇ -aminocarboxylic acid ester (3) or (4), or its ester site reduced form.
  • the force S is usually 0.01 to 10 equivalents, preferably 0.0; to 2 equivalents.
  • reaction solvent used in this reaction is not particularly limited as long as it does not inhibit the reaction, but examples thereof include hydrocarbon solvents, ester solvents, aromatic hydrocarbon solvents, nitrile solvents, ethers. Solvent, amide solvent, sulfoxide solvent, halogenated hydrocarbon solvent, alcohol solvent, water, among others, black benzene, methylene chloride
  • ⁇ butanol, tetrahydrofuran and dioxane are preferred. Two or more of these solvents may be used in combination. When a mixed solvent is used, the mixing ratio is not particularly limited.
  • the concentration of (4) or its ester site reduced form varies depending on the reaction solvent used, the reaction can generally be carried out at 1 to 50% (w / v), preferably 4 to 30% ( w / V).
  • the reaction temperature during the reaction depends on the optically active ⁇ -hydroxy- ⁇ -aminocarboxylic acid ester (3) or (4) used, the ester site reduced form, the type and amount of the acylating agent, and the type of reaction solvent. Different force Normally, it is in the range from the freezing point to the boiling point of the reaction solvent used. In order to complete the reaction in a short time, it is better to increase the temperature. From the viewpoint of suppressing side reactions, it is better to set the temperature lower. Generally, it is 50 to 120 ° C, more preferably 0 to 100 ° C.
  • the reaction time during the reaction is the type and amount of the optically active ⁇ -hydroxy- ⁇ -aminocarboxylic acid ester (3) or (4) used, or its ester moiety reduced form, an acylating agent,
  • the reaction temperature varies from 0 to 100 ° C depending on the type of reaction solvent and the reaction temperature, it is usually about 1 to 24 hours.
  • a general treatment for obtaining a product from the reaction solution may be performed.
  • water, hydrochloric acid, alkaline water or the like is added to the reaction solution after completion of the reaction, and the extraction operation is performed using a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • a common extraction solvent such as ethyl acetate, jetyl ether, methylene chloride, toluene, hexane or the like.
  • the reaction solvent and the extraction solvent are distilled off under reduced pressure from the obtained extract, the desired product is obtained.
  • the product thus obtained may be further purified by performing general purification such as silica gel chromatography, distillation, recrystallization and the like.
  • N octadecanol glycine ethyl ester (3.70 g, lOmmol) and N methylimidazole (985 ⁇ 4 mg, 12 mmol) in methylene chloride (100 ml) was cooled to 45 ° C, and under a nitrogen atmosphere, palmitoyl chloride ( 2.76 g, 9.74 mmol) methylene chloride (10 ml) solution was added. After stirring for 20 minutes at the same temperature, a solution of titanium tetrachloride (6-81 g, 35 mmol) in methylene chloride (10 ml) and tributylamine (7.42 g, 40 mmol) in methylene chloride (1 Oml) was added.
  • Example 9 The N-octadecanol glycine ethyl ester in Example 9 was replaced with N-octadecanol glycine methyl ester in the same manner as in Example 9 to obtain the title compound (yield 36%).
  • (R, R) —TsDPEN means (1R, 2R) —N-tosinore-1,2-diphenenoethylenediamine (the same shall apply hereinafter).
  • Example 10 The title compound (yield 64%) was obtained in the same manner as in Example 10 except that N-octadecanol glycine ethyl ester in Example 10 was replaced with N-octadecanol glycine methyl ester.
  • Example 22 The solvent in Example 22 was changed from t-butyl methyl ether to ethanol. In the same manner as in 22, the title compound (yield 87%) was obtained. As a result of analysis by HPLC, the anti: syn ratio was 88:12, and the anti-optical purity was 99% ee.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
光学活性 βーヒドロキシー aーァミノカルボン酸エステルの製造方法 技術分野
[0001] 本発明は、医薬品、農薬、化成品等の合成中間体として重要な光学活性 /3—ヒド 口キシ— α—ァミノカルボン酸エステルの製造方法に関する。より詳細には、 β—ケト aーァミノカルボン酸エステルを不斉還元して、光学活性 0ーヒドロキシー a—了 ミノカルボン酸エステル、特にそのアンチ体を製造する方法に関する。
背景技術
[0002] 従来、 /3—ケトー α—ァミノカルボン酸エステルを不斉還元して、光学活性 βーヒド 口キシー α—ァミノカルボン酸エステルのアンチ体を製造する方法としては、次のよう な方法が知られていた。
[0003] ωルテニウム一光学活性ホスフィン錯体触媒を用いた触媒的不斉水素化反応によ り、ラセミ体の /3—ケトー α—ァセチルァミノカルボン酸エステルを不斉水素化し、シ ン選択的に光学活性 /3—ヒドロキシー α—ァミノカルボン酸エステルを合成し、これ の 0位水酸基の立体配置を反転させてアンチ体を合成する方法(特許文献 1)。
[0004] (ii)ルテニウム 光学活性ホスフィン錯体触媒を用 1/、た触媒的不斉水素化反応に より、窒素原子に置換基を有しない /3—ケトー α—ァミノカルボン酸エステルを不斉 水素化し、アンチ選択的に光学活性 /3—ヒドロキシー α—ァミノカルボン酸エステル を合成する方法 (特許文献 2)。
[0005] (iii)ルテニウム 光学活性ホスフィン錯体触媒を用レ、た触媒的不斉水素化反応に より、ラセミ体の 0ーケトー α フタルイミドカルボン酸エステルを不斉水素化し、アン チ選択的に光学活性 /3—ヒドロキシー α フタルイミドカルボン酸エステルを合成す る方法(特許文献 3)。
[0006] また、 βーケトー α—ァミノカルボン酸エステルの中でも、炭素鎖長が長い /3—ケト
aーァミノ高級カルボン酸エステルは、皮膚保護剤として有用なセラミド誘導体の 重要合成中間体となる。 /3—ケトー α—ァミノ高級カルボン酸エステルを製造する方 法としては、従来、次のような方法が知られていた。 [0007] (iv)塩化パルミトイルをァセト酢酸メチルで増炭した後、フエニルジァゾニゥム塩で ジァゾ化し、亜鉛でジァゾ基を還元して /3—ケトー α—ァセチルアミノォクタデカン酸 メチルとする方法 (特許文献 1 )
[0008] (V) βーケト キサデカン酸メチルを亜硝酸ナトリウムでォキシム化し、ォキシム の水酸基をァセチル化後、水素化反応によりォキシム部位を還元する方法(特許文 献 4)。
特許文献 1:特許第 2976214号
特許文献 2: WO2005/005371
特許文献 3: WO2005/069930
特許文献 4:特許第 2733583号
発明の開示
発明が解決しょうとする課題
[0009] しかしな力 Sら、(i)の方法では、まずシン体が選択的に得られるため、水酸基の立体 配置を反転させなければならず、余分な工程が必要となる。
[0010] また、(ii)の方法では、直接的にアンチ体を得ることができるものの、原料である β ーケトー α—ァミノカルボン酸エステルの α—ァミノ基に置換基を有していてはなら ず、その合成方法が限定される。さらに、高い立体選択性を発現できる原料の化学 構造が限定されるため汎用性に問題がある。
[0011] また、(iii)の方法では、危険な水素ガスを高圧で使用するため、安全上の問題があ る上、高価な光学活性ホスフィン配位子を使用するため、工業的に有利でない。さら に、原料の化学構造が限定されるため汎用性に問題がある。
[0012] (iv)の方法は工程数が多く煩雑である上、爆発性を有するジァゾ化合物を経由し なくてはならず、工業的に有利ではない。
[0013] また、(V)の方法も工程数が多く煩雑である上、危険な水素ガスを使用するため、 安全上の問題があり、工業的に有利ではない。
課題を解決するための手段
[0014] 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、所定の光学活性 アミン錯体を触媒として、 /3—ケトー α—ァミノカルボン酸エステルを不斉還元して、 アンチ体の光学活性 /3—ヒドロキシー α—ァミノカルボン酸エステルを直接的かつ選 択的に製造する方法を完成するに至った。
[0015] すなわち、本発明は、一般式(1) ;
[0016] [化 11]
Figure imgf000004_0001
[0017] (式中、 *は不斉炭素原子であることを示し、 R R2はそれぞれ同一または異なって いてもよく、置換されていてもよい炭素数 1〜21のアルキル基、置換されていてもよい 炭素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリー ル基を示す。また、 R1は R2と一緒になつて環を形成してもよい。 R3は水素原子、置換 されて!/、てもよ!/、炭素数 1〜21のアルキル基、置換されて!/、てもよ!/、炭素数 7〜20 のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリール基を示し、 A rは置換されていてもよい芳香族化合物を示し、 Mは遷移金属を示し、 Zはハロゲン 原子、置換されていてもよいアルキルスルホニルォキシ基、置換されていてもよいァリ 一ルスルホニルォキシ基、または、置換されていてもよいァラルキルスルホ二ルォキ シ基を示し、 Yは酸素原子、置換されていてもよいアルキルスルホニルアミド基、置換 されていてもよいァリールスルホニルアミド基、または、置換されていてもよいァラルキ ノレスルホニルアミド基を示す。)で示される光学活性アミン錯体、及び、水素または水 素供与性化合物存在下、一般式 (2);
[0018] [化 12]
Figure imgf000004_0002
(式中、 R4は水素原子、置換されていてもよい炭素数 1〜21のアルキル基、置換され て!/、てもよ!/、炭素数 2〜21のアルケニル基、置換されて!/、てもよ!/、炭素数 2〜21の アルキニル基、置換されていてもよい炭素数 7〜20のァラルキル基、または、置換さ れて!/、てもよ!/、炭素数 6〜20のァリール基を示し、 R5は置換されて!/、てもよ!/、炭素数 ;!〜 10のァノレキノレ基、置換されていてもよい炭素数 7〜20のァラルキル基、または、 置換されていてもよい炭素数 6〜20のァリール基を示し、 R6、 R7はそれぞれ同一また は異なっていてもよぐ水素原子、置換されていてもよい炭素数 1〜; 10のアルキル基 、置換されていてもよい炭素数 7〜20のァラルキル基、置換されていてもよい炭素数 6〜20のァリール基、置換されていてもよい炭素数 1〜40のァシル基、または、ァミノ 保護基を示す。また、 R6と R7は隣接する窒素原子と一緒になつて複素環を形成して もよい。)で示される βーケトー α—ァミノカルボン酸エステルを不斉還元することを 特徴とする、下記一般式 (3)または一般式 (4);
[0020] [化 13]
Figure imgf000005_0001
[0021] [化 14]
Figure imgf000005_0002
[0022] (式中、 *は不斉炭素原子であることを示し、 R4、 R5、 R6及び R7は前記と同じ。)で示 される光学活性 /3—ヒドロキシー α—ァミノカルボン酸エステルの製造方法に関する
[0023] また、本発明は、一般式(5) ;
[0024] [化 15]
Figure imgf000005_0003
[0025] (式中、 R5は置換されていてもよい炭素数 1〜; 10のアルキル基、置換されていてもよ い炭素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリ 一ル基を示し、 R6、 R7はそれぞれ同一または異なってもよぐ水素原子、置換されて V、てもよ!/、炭素数 1〜; 10のアルキル基、置換されて!/、てもよ!/、炭素数 7〜20のァラ ルキル基、置換されていてもよい炭素数 6〜20のァリール基、置換されていてもよい 炭素数 1〜40のァシル基、または、ァミノ保護基を示す。また、 R6と R7は隣接する窒 素原子と一緒になつて複素環を形成してもよい。)で示されるグリシン誘導体と、一般 式 (6) ;
[0026] [化 16]
Figure imgf000006_0001
[0027] (式中、 Xはハロゲン原子、置換されていてもよいァシルォキシ基、置換されていても よ!/、アルキルォキシカルボニルォキシ基、置換されて!/、てもよ!/、スルホニルォキシ基 、置換されていてもよいアルキルォキシ基、置換されていてもよいァリールォキシ基、 または、置換されていてもよいイミダゾール基を示し、 R4は水素原子、置換されていて もよ!/、炭素数 1〜21のアルキル基、置換されて!/、てもよ!/、炭素数 2〜21のアルケニ ル基、置換されていてもよい炭素数 2〜21のアルキニル基、置換されていてもよい炭 素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリール 基を示す。)で示されるカルボン酸誘導体を、ルイス酸及びアミン存在下で反応させ ることを特徴とする前記式(2)で示される /3—ケトー α—ァミノカルボン酸エステルの 製造方法に関する。
[0028] また、本発明は、一般式(15) ;
[0029] [化 17]
Figure imgf000006_0002
[0030] (式中、 R5は置換されていてもよい炭素数 1〜; 10のアルキル基、置換されていてもよ い炭素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリ 一ル基を示す。)で示される 0ーケトー α—ステアロイルアミノォクタデカン酸エステ ルに関する。
発明の効果
[0031] 本発明に力、かる方法によれば、光学活性 0ーヒドロキシー α—ァミノカルボン酸ェ ステルのアンチ体を効率的かつ簡便に、工業的に有利に製造することができる。 発明を実施するための最良の形態
[0032] 以下、本発明について詳細に説明する。
なお、本明細書において、 R'-R8, X、 Y、 Z、 Ar、および Mを構成する官能基上の 置換基としては、例えばアルキル基、ァリール基、ァラルキル基、アミノ基、ニトロ基、 スルホニル基、ハロゲン原子、水酸基、ァシルォキシ基、アルコキシ基等が挙げられ る力 これらに限定されるものではない。
[0033] まず、一般式(5) ;
[0034] [化 18]
Figure imgf000007_0001
[0035] で示されるグリシン誘導体と一般式 ½);
[0036] [化 19]
Figure imgf000007_0002
[0037] で示されるカルボン酸誘導体を、ルイス酸及びアミン存在下で反応させ、一般式(2)
[0038] [化 20]
Figure imgf000008_0001
[0039] で示される /3—ケトー α—ァミノカルボン酸エステルを製造する工程について説明す
[0040] 前記式(6)において、 R4は水素原子、置換されていてもよい炭素数 1〜21のアルキ ル基、置換されていてもよい炭素数 2〜21のアルケニル基、置換されていてもよい炭 素数 2〜21のァノレキニノレ基、置換されていてもよい炭素数 7〜20のァラルキル基、 置換されてレ、てもよ!/、炭素数 6〜20のァリール基を示す。
[0041] 例えば、置換されていてもよい炭素数 1〜21のアルキル基としては、メチル基、ェ チノレ基、プロピル基、イソプロピル基、イソブチル基、 tert ブチル基、シクロペンチ ル基、シクロへキシル基、ペンタデシル基、 1ーヒドロキシペンタデシル基、ドデシル 基等があげられる。
[0042] 置換されていても良い炭素数 2〜21のアルケニル基としては、ビュル基、ァリル基、 トランス 1 ペンタデセニル基、 3—ヒドロキシートランス 1 ペンタデセ二ル基等 があげられる。置換されていてもよい炭素数 2〜21のアルキニル基としては、 1—ぺ ンタデシュル基等があげられる。
[0043] 置換されて!/、てもよ!/、炭素数 7〜20のァラルキル基としては、ベンジル基等があげ られる。
[0044] 置換されていてもよい炭素数 6〜20のァリール基としてはフエニル基、 p メトキシ フエニル基、 p クロ口フエ二ル基、 p ニトロフエニル基、 p トリノレ基、ナフチル基等 が挙げられる。
[0045] 中でも化合物(2)の有用性から、 R4としては、置換されていてもよい炭素数 10〜21 のアルキル基、置換されていてもよい炭素数 10〜21のアルケニル基、置換されてい てもよレ、炭素数 10〜21のアルキニル基が好ましく、置換されて!/、てもよ!/、炭素数 11 〜21のアルキル基、置換されていてもよい炭素数;!;!〜 21のアルケニル基、置換さ れて!/、てもよ!/、炭素数 1;!〜 21のアルキニル基がより好まし!/、。とりわけ好ましくはぺ ンタデシル基、 1ーヒドロキシペンタデシル基、トランス 1 ペンタデセニル基、 1 ペンタデシュル基である。
[0046] また、前記式(6)において、 Xは、ハロゲン原子、置換されていてもよいァシルォキ シ基、置換されていてもよいアルキルォキシカルボニルォキシ基、置換されていても よいスルホニルォキシ基、置換されていてもよいアルキルォキシ基、置換されていて もよ!/、ァリールォキシ基、置換されてレ、てもよ!/、イミダゾール基を示す。
[0047] 具体的には、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン 原子;ァセチノレオキシ基、トリクロロアセチノレオキシ基、ピバロイノレオキシ基等のァシ ルォキシ基;メトキシカルボニルォキシ基、エトキシカルボニルォキシ基、イソプロピノレ ォキシカルボニルォキシ基、イソブチルォキシカルボニルォキシ基等のアルキルォキ シカルボニルォキシ基;メタンスルホニルォキシ基、 p トルエンスルホニルォキシ基 等のスルホニルォキシ基;メトキシ基、エトキシ基、ベンジルォキシ基等のアルキルォ キシ基;フエニルォキシ基、 p 二トロフエニルォキシ基等のァリールォキシ基;イミダ ゾール基、 N メチルイミダゾール基等のイミダゾール基が挙げられる。
[0048] 中でも経済性及び収率の観点から、塩素原子、臭素原子、メトキシ基、エトキシ基、 メトキシカルボニルォキシ基、エトキシカルボニルォキシ基、トリクロロアセチルォキシ 基、ビバロイルォキシ基、 N メチルイミダゾール基が好ましい。特に好ましくは塩素 原子である。
[0049] 前記式(5)において、 R5は置換されていてもよい炭素数 1〜; 10のアルキル基、置換 されていてもよい炭素数 7〜20のァラルキル基、または、置換されていてもよい炭素 数 6〜20のァリール基を示す。
[0050] 置換されていてもよい炭素数 1〜; 10のアルキル基としては、例えば、メチル基、ェ チル基、プロピル基、イソプロピル基、イソブチル基、 tert ブチル基等があげられる 。置換されていてもよい炭素数 7〜20のァラルキル基、置換されていてもよい炭素数 6〜20のァリール基の具体例としては、前述のものがあげられる。中でも原料合成の 容易さや脱エステル反応の容易さから、メチル基、ェチル基、イソプロピル基、ベンジ ル基が好ましぐより好ましくはェチル基である。
[0051] R6、 R7はそれぞれ同一または異なっていてもよぐ水素原子、置換されていてもよい 炭素数 1〜 10のァノレキノレ基、置換されて!/、てもよ!/、炭素数 7〜20のァラルキル基、 置換されてレ、てもよ!/、炭素数 6〜20のァリール基、置換されて!/、てもよ!/、炭素数;!〜 40のァシル基、または、ァミノ保護基を表す。
[0052] 置換されていてもよい炭素数 1〜; 10のアルキル基、置換されていてもよい炭素数 7 〜20のァラノレキノレ基、置換されていてもよい炭素数 6〜20のァリール基などの具体 例としては、前述のものがあげられる。
[0053] 置換されて!/、てもよ!/、炭素数 1〜40のァシル基としてはホルミル基、ァセチル基、ト リフルォロアセチル基、トリクロロアセチル基、クロロアセチル基、ベンゾィル基、ォクタ デカノィル基、 2—ヒドロキシォクタデカノィル基、 2—ォキソォクタデカノィル基、ドコ サノィル基、 2—ヒドロキシドコサノィル基、 30—(8, 11—アイコサジエノィルォキシ) トリアコンタノィル基等が挙げられる。
[0054] また、ァミノ保護基としては、例えば、 Protective Groups in Organic Synthesis 3rd e d. (Theodora W. Greene and Peter G. M. Wuts Ed., Wiley- Interscience: New York, 1999)に記述されている保護基のうち、前述の置換されていてもよい炭素数 1〜; 10の アルキル基、置換されていてもよいァラルキル基、置換されていてもよい炭素数 6〜2 0のァリール基、置換されていてもよい炭素数 1〜40のァシル基以外のものが挙げら れる。中でも、脱保護が容易なメトキシカルボニル基、エトキシカルボニル基、ベンジ ノレォキシカルボニル基、 tert—ブトキシカルボニル基等のアルコキシカルボニル基、 p—二トロベンゼンスルホニル基等のスルホニル基が好ましい。
[0055] また、 R6と R7は隣接する窒素原子と一緒になつて複素環を形成してもよぐそのよう な官能基としては、例えば、フタロイル基が挙げられる。
[0056] R6及び R7としては、 R6及び R7のうち一方が置換されていてもよい炭素数 1〜40のァ シル基、置換されていてもよい炭素数 7〜20のァラルキル基または炭素数 1〜21の アルコキシカルボニル基であり、かつ、他方が水素である力、、 R6と R7が隣接する窒素 原子と一緒になつて複素環を形成してレ、るのが好ましレ、。
[0057] より好ましくは R6及び R7のうち一方が置換されて!/、てもよ!/、炭素数;!〜 40のアシノレ 基かつ他方が水素原子であり、この場合、置換されていてもよい炭素数 1〜40のァ シル基としては、脱保護の容易性や化合物の有用性からホルミル基、ァセチル基、 ベンゾィル基、ォクタデカノィル基、 2—ヒドロキシォクタデカノィル基、 2—ォキソオタ タデカノィル基、ドコサノィル基、 2—ヒドロキシドコサノィノレ基、 30 - (8, 11—アイコ サジエノィルォキシ)トリアコンタノィル基が好ましぐ特に好ましくはォクタデカノイノレ 基 Cある。
[0058] なお、生成する化合物(2)において、 R4がペンタデシル基、 R6および R7がォクタデ カノィル基および水素原子である一般式(15);
[0059] [化 21]
Figure imgf000011_0001
[0060] で表される化合物は、本発明者らによって見出された新規化合物であり、化粧品成 分として有用なセラミド類の重要合成中間体となる。前記式(15)中、 R5は前記に同じ であるが、メチル基またはェチル基が好ましい。
[0061] 本工程で使用するカルボン酸誘導体 ½)の使用量は、特に制限はないが、グリシン 誘導体(5)に対して、通常 0. ;!〜 10当量である力 S、好ましくは 0. 5〜3当量である。 カルボン酸誘導体(6)がグリシン誘導体(5)よりも安価であればカルボン酸誘導体 ½ )の使用量が多!/、ほうが好ましく、カルボン酸誘導体(6)がグリシン誘導体(5)よりも 高価であればカルボン酸誘導体(6)の使用量が少な!/、ほうが好まし!/、。
[0062] 本工程で使用するァミンとしては、特に制限はないが、例えば、ジェチルァミン、ジ イソプロピルァミン、ジイソブチルァミン等の 2級ァミン;トリメチルァミン、トリェチルアミ ン、トリブチルァミン、ジイソプロピルェチルァミン等の 3級ァミンが挙げられ、中でも収 率の観点から、トリェチルァミン、トリブチルァミン、ジイソプロピルェチルァミンが好ま しい。
[0063] 本工程で使用するァミンの使用量は、特に制限はないが、グリシン誘導体(5)に対 して、通常 0. 5〜; 10当量、好ましくは 1〜5当量である。
[0064] 本工程で使用するルイス酸としては、特に制限はないが、例えば、四塩化チタン、ト リクロロイソプロピルォキシチタン、四臭化チタン、四塩化ジルコニウム、四塩化ハフ二 ゥム、塩化アルミニウム、三塩化鉄、塩化アンチモン、四塩化スズ、スズトリフラート等 が挙げられ、中でも収率の観点から、四塩化チタンが好ましい。
[0065] 本工程で使用するルイス酸の使用量は、特に制限はないが、グリシン誘導体(5)に 対して、通常 0. 5〜10当量、好ましくは 1〜5当量である。
[0066] また、本工程では、基質によっては N メチルイミダゾール誘導体を反応の際に添 カロすること力 S好ましい。添加する N メチルイミダゾール誘導体としては、例えば、 N ーメチルイミダゾール、 2—メチルー N メチルイミダゾール、 2—ェチルー N メチル イミダゾール、 2—イソプロピル N メチルイミダゾールが挙げられ、中でも経済性 の観点から N メチルイミダゾールが好ましい。
[0067] 本工程で N メチルイミダゾール誘導体を使用する場合、使用量は特に制限はな いが、カルボン酸誘導体(6)に対して、通常 0. 5〜; 10当量である力 好ましくは 1〜3 当量、さらに好ましくは 1〜; 1. 5当量である。
[0068] 本工程にお!/、て使用する反応溶媒は、反応を阻害しな!/、溶媒であれば特に制限 はなく、例えば、ペンタン、へキサン、ヘプタン、シクロへキサン、メチノレシクロへキサ ン、石油エーテル等の炭化水素系溶媒;酢酸ェチル、酢酸メチル等のエステル系溶 媒;トルエン、クロ口ベンゼン、ベンゼン、キシレン等の芳香族炭化水素系溶媒;ァセト 二トリル、プロピオ二トリル等の二トリル系溶媒; tert ブチルメチルエーテル、ジェチ ルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジォキサン等のエーテル系 溶媒; N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド等のアミド系溶媒; ジメチルスルホキシド等のスルホキシド系溶媒;塩化メチレン、 1 , 2—ジクロロェタン、 クロ口ホルム、四塩化炭素等のハロゲン化炭化水素系溶媒が挙げられる。中でも、へ キサン、シクロへキサン、メチノレシクロへキサン、トノレェン、クロ口ベンゼン、塩ィ匕メチレ ン、 1 , 2—ジクロロェタンが好ましい。これら溶媒の 2種以上を混合して用いても良い 。混合溶媒を用いる場合、混合割合に特に制限はない。
[0069] 反応を行う際のカルボン酸誘導体 ½)の濃度は、用いる反応溶媒によって異なるが 、一般的には l〜50% (w/v)で反応を実施することができ、好ましくは 2〜30% (w / V)でめる。
[0070] 反応時の反応温度は、用いるグリシン誘導体(5)、カルボン酸誘導体 ½)、ルイス 酸、及びァミンの種類と使用量、反応溶媒の種類により異なる力 通常は用いる反応 溶剤の凝固点以上、沸点以下の範囲である。反応を短時間で完了させるためには温 度を高めて実施する方が良ぐ副反応を抑える観点からは温度は低く設定して実施 する方が良い。一般的には— 100〜; 100°Cであり、更に好適には— 50〜40°Cであ
[0071] 反応時の反応時間は、用いるグリシン誘導体(5)、カルボン酸誘導体 ½)、ルイス 酸、ァミン及び N メチルイミダゾール誘導体の種類と使用量、反応溶媒の種類及び 反応温度により異なる力 反応温度を 50〜40°Cで実施した場合、通常;!〜 24時 間程度である。
[0072] 本反応に用いるグリシン誘導体(5)、カルボン酸誘導体(6)、ルイス酸、ァミン及び N メチルイミダゾール誘導体、反応溶媒等の混合順序は、任意であり、特に制限さ れないが、グリシン誘導体(5)と N メチルイミダゾール誘導体の混合物に、カルボン 酸誘導体(6)を添加し、さらにルイス酸とアミンを添加するのが好ましい。
[0073] 本工程の反応において、特に、前記式(6)で表される化合物において、 R4が置換 されて!/、てもよ!/、炭素数 1;!〜 21のアルキル基、置換されて!/、てもよ!/、炭素数 1;!〜 2 1のアルケニル基、置換されて!/、てもよ!/、炭素数 1;!〜 21のアルキニル基である化合 物(9) ;
[0074] [化 22]
Figure imgf000013_0001
[0075] で示されるカルボン酸誘導体を用いて反応を実施し、一般式(10);
[0076] [化 23]
Figure imgf000013_0002
[0077] で示される /3 [0078] 前記式(9)、 (10)中、 R5〜R7は前述のとおりである。また、 R9は置換されていてもよ V、炭素数 1;!〜 21のアルキル基、置換されて!/、てもよ!/、炭素数 1;!〜 21のアルケニル 基、置換されてレ、てもよ!/、炭素数 1;!〜 21のアルキニル基である。
[0079] この場合も、前述の方法で反応を実施することができるが、本反応においては、高 収率で反応を進行させるためには、 N メチルイミダゾール誘導体として、安価な N ーメチルイミダゾールを使用することが好ましい。反応温度としては、 50°C以上が 好ましく、 40°C以上がより好ましぐ 20°C以上が特に好ましい。また、溶媒として クロ口ベンゼンを用いることがより好ましレ、。
[0080] 本反応の後処理としては、反応液から生成物を取得するための一般的な処理を行 えば良い。例えば、反応終了後の反応液に水、塩酸、アルカリ水等を添加し、一般的 な抽出溶媒、例えば、酢酸ェチル、ジェチルエーテル、塩化メチレン、トルエン、へキ サン等を用いて抽出操作を行う。得られた抽出液から反応溶媒及び抽出溶媒を減圧 留去すると、 目的物が得られる。このようにして得られる生成物は、必要であれば、シ リカゲルクロマトグラフィーや蒸留、再結晶等の一般的精製を行い、さらに純度を高 めても良い。
[0081] 次に、一般式(1) ;
[0082] [化 24]
Figure imgf000014_0001
[0083] で示される光学活性アミン錯体及び、水素または水素供与性化合物存在下、前記式
(2)で示される /3—ケトー α—ァミノカルボン酸エステルの不斉還元反応を行い、一 般式 (3)または一般式 (4) ;
[0084] [化 25]
Figure imgf000015_0001
Figure imgf000015_0002
[0086] で示される光学活性 (3ーヒドロキシー α—ァミノカルボン酸エステルを製造する工程 について説明する。
[0087] 前記式(2)、 (3)、 (4)において、 R4、 R5、 R6、及び R7は前記と同じである。
[0088] 前記式(3)、 (4)にお!/、て、 *は不斉炭素原子を表す。化合物(3)または(4)は 2 つの不斉炭素原子を有するので、 2種類のジァステレオマーが存在する力 化合物( 3)または (4)のような相対立体配置を有する化合物をアンチ体と!/、う。もう一方のジ ァステレオマーをシン体といい、下記一般式(23)または(24);
[0089] [化 27]
Figure imgf000015_0003
(式中、 *は不斉炭素原子を示し、 R4, R5、 R6、 R7は前記と同じ。)で表すことができ る。本方法によれば、アンチ体である前記式(3)または(4)で表される化合物を優先 して得ること力 Sでさる。 [0092] なお、 R4が水素原子の場合、当然のことながら化合物(3)または (4)の 3位の水酸 基の根元の炭素原子は、不斉炭素原子とはならない。従って不斉炭素原子は 1つし かないので、アンチ体やシン体のようなジァステレオマーは存在しない。
[0093] 化合物(2)の製造方法としては、特に制限されるものではなぐ前述の方法でもよい し、例えば、 /3—ケトエステルを亜硝酸ナトリウムで処理して、 α位をォキシム化し、ォ キシムのみを水素化などで還元してアミノ基とするなど既知の方法で製造することも 可能である。
[0094] 本工程で使用する光学活性アミン錯体(1)において、 *は不斉炭素原子を表す。
[0095] Μは遷移金属を示し、例えば、パラジウム、ロジウム、ルテニウム、イリジウム、白金、 ジルコニウム、チタン、クロム、コバルト、銅、ニッケル、亜鉛、マンガン、鉄、イツテルビ ゥム、ランタン、サマリウム等が挙げられ、中でもルテニウム、ロジウム、イリジウムが好 ましい。
[0096] 前記式(1)において、 R1, R2はそれぞれ同一または異なってもよぐ置換されてい てもよい炭素数 1〜21のアルキル基、置換されていてもよい炭素数 6〜20のァリール 基、置換されていてもよい炭素数 7〜20のァラルキル基を示し、 R1は R2と一緒になつ て環を形成してもよい。置換されていてもよい炭素数 1〜21のアルキル基、置換され て!/、てもよ!/、炭素数 6〜20のァリール基、置換されて!/、てもよ!/、炭素数 7〜20のァラ ルキル基としては前述のものがあげられ、 R1および R2が一緒になつて環を形成する 基としては、テトラメチレン基などがあげられる。 R1, R2としては反応の立体選択性の 観点から、フエニル基、テトラメチレン基が好ましい。
[0097] R3は水素原子、置換されていてもよい炭素数 1〜21のアルキル基、置換されてい てもよレ、炭素数 7〜20のァラルキル基、置換されて!/、てもよ!/、炭素数 6〜20のァリー ル基を示し、具体例としては前述のものがあげられる。反応の収率、立体選択性の観 点から、メチル基、水素原子が好ましぐ特に好ましくは、水素原子である。
[0098] Arは置換されていてもよい芳香族化合物を示し、例えば、ベンゼン、トルエン、キシ レン、メシチレン、へキサメチノレベンゼン、ェチノレベンゼン、 tert—ブチノレベンゼン、 p ーシメン、タメン、ペンタメチルシクロペンタジェニル等が挙げられ、中でも、 p—シメン 、ベンゼン、メシチレンが好ましい。 [0099] Zはハロゲン原子、置換されて!/、てもよ!/、アルキルスルホニルォキシ基、置換されて いてもよいァリールスルホニルォキシ基、または、置換されていてもよいァラルキルス ルホニルォキシ基を示し、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ト リフルォロメタンスルホニルォキシ基、メタンスルホニルォキシ基、 p トルエンスルホ ニルォキシ基等が挙げられ、中でも、塩素原子、トリフルォロメタンスルホニルォキシ 基が好ましい。
[0100] Yは酸素原子、置換されて!/、てもよ!/、アルキルスルホニルアミド基、置換されて!/、て もよぃァリールスルホニルアミド基、または、置換されていてもよいァラルキルスルホ二 ルアミド基を示し、例えば、酸素原子、メタンスルホニルアミド基、トリフルォロメタンス ルホニルアミド基、カンファースルホニルアミド基等の置換されて!/、てもよ!/、アルキル スルホニルアミド基、ベンゼンスルホニルアミド基、 p トルエンスルホニルアミド基、 p トリフルォロメチルベンゼンスルホニルアミド基、 p ドデシルベンゼンスルホニルァ ミド基、 o, m, p 二トロベンゼンスルホニルアミド基等の置換されていてもよいァリー ルスルホニルアミド基、ベンジルスルホニルアミド基などの置換されて!/、てもよ!/、ァラ ルキルスルホニルアミド基が挙げられ、中でも反応収率、反応の立体選択性の観点 から p トルエンスルホニルアミド基、力ンファースルホニルアミド基が好ましい。
[0101] 光学活性アミン錯体(1)としては、例えば、 RuCl[ (R, R)—TsDPEN] (p— cyme ne)錯体、 RuCl[ (S, S) -TsDPEN] (p— cymene)錯体、 RuOTf [ (R, R)—TsD PEN] (p— cymene)錯体または RuOTf [ (S, S) -TsDPEN] (p— cymene)錯体 などがあげられる。ここで、 (S, S)— TsDPENとは、 (IS, 2S)— N モノトシル一 1 , 2—ジフエニルエチレンジァミンを表し、 OTfはトリフルォロメタンスルホニルォキシ 基を表す。
[0102] 例えば、 RuCl[ (R、 R)—TsDPEN] (p— cymene)錯体は下記式(25);
[0103] [化 29]
Figure imgf000017_0001
[0104] で表され、 RuOTf [ (R, R)—TsDPEN] (p— cymene)錯体は下記式 (26) ;
[0105] [化 30]
Figure imgf000018_0001
[0106] で表される。
[0107] 光学活性アミン錯体(1)は、 J. Am. Chem. So , 1996, 118, 2521に記載の方法で 合成可能である。また、市販のものを用いてもよい。本工程で使用する光学活性アミ ン錯体(1)は、前もって調製し、単離精製したものを使用してもよいし、系中で調製し たものをそのまま使用してもよい。
[0108] 本工程で使用される光学活性アミン錯体(1)の使用量は、特に制限されないが、前 記式(2)で示される βーケトー α—ァミノカルボン酸エステルに対して通常 0. 0000 ;!〜 1当量である力 S、好ましくは 0. 0001 -0. 2当量である。
[0109] 本工程で使用する水素または水素供与性化合物としては、特に制限されないが、 例えば、メタノーノレ、エタノーノレ、 η—プロパノール、イソプロパノール等のアルコール ;ギ酸;ギ酸ナトリウム、ギ酸アンモユウム等のギ酸塩;水素等が挙げられ、特に収率 の観点からギ酸、ギ酸ナトリウム、水素が好ましぐギ酸がとりわけ好ましい。
[0110] 本工程で使用する水素供与性化合物の使用量としては、特に制限はないが、前記 式(4)で示される /3—ケトー α—ァミノカルボン酸エステルに対して通常 1〜; 100当 量であるが、好ましくは 1〜; 10当量である。
[0111] また、本工程において、塩基を共存させてもよい。塩基としては、例えば、水酸化ナ トリウム、水酸化カリウム、炭酸カリウム等の無機塩基;ナトリウムメトキシド、カリウム ter t—ブトキシド等のアルコキシド;トリェチルァミン、トリメチルァミン、アンモニア等のアミ ンが挙げられる。水素供与性化合物としてギ酸を使用した場合、塩基を共存させるこ と力 S好ましく、トリェチルァミンの使用が特に好ましい。
[0112] 本工程で塩基を使用する場合、使用量としては、特に制限はないが、前記式(2)で 示される 13ーケトー α—ァミノカルボン酸エステルに対して通常 0. 0;!〜 100当量で ある力 好ましくは 0. ;!〜 10当量であり、より好ましくは 1〜; 10当量である。
[0113] 本工程において水素供与性化合物が溶液であったり、共存させる塩基が溶液であ る場合は、反応溶媒は特に必要とせず、無溶媒で反応を行うと極めて短時間で反応 を完結でき、触媒使用量を削減できるため好ましい。しかし反応基質によっては反応 溶媒を使用してもよい。反応溶媒は、反応を阻害しない溶媒であれば特に制限はな いが、例えば、前述の炭化水素系溶媒;エステル系溶媒;芳香族炭化水素系溶媒; 二トリル系溶媒;エーテル系溶媒;アミド系溶媒;スルホキシド系溶媒;ハロゲン化炭化 水素系溶媒;メタノール、エタノール、イソプロパノール、 n—ブタノール等のアルコー ノレ溶媒;ギ酸、酢酸等のカルボン酸系溶媒;水が挙げられる。また、これら溶媒の 2種 以上を混合して用いても良い。混合溶媒を用いる場合、混合割合に特に制限はない
[0114] 反応を行う際の /3—ケトー α—ァミノカルボン酸エステル(2)の濃度は用いる反応 溶媒によって異なる力 一般的には;!〜 50% (w/v)で反応を実施することができ、 好ましくは 4〜30% (w/v)である。
[0115] 反応時の反応温度は、用いる光学活性な遷移金属錯体及び水素供与性化合物の 種類と使用量、反応溶媒の種類により異なるが、通常は用いる反応溶剤の凝固点以 上、沸点以下の範囲である。反応を短時間で完了させるためには温度を高めて実施 する方が良ぐ副反応を抑える観点からは温度は低く設定して実施する方が良い。一 般的には一 20〜; 150°Cであり、更に好適には 0〜70°Cである。
[0116] 反応時の反応時間は、用いる光学活性な遷移金属錯体及び水素供与性化合物の 種類と使用量、反応溶媒の種類及び反応温度により異なるが、反応温度を 0〜70°C で実施した場合、通常 1〜36時間程度である。
[0117] 本反応に用いる /3—ケトー α—ァミノカルボン酸エステル(2)、光学活性アミン錯体
(1)、水素または水素供与性化合物、反応溶媒等の混合順序は、任意であり、特に 制限されないが、 βーケトー α—ァミノカルボン酸エステル(2)と光学活性アミン錯体 (1)の混合物に、水素または水素供与性化合物を添加するのが好ましい。塩基を添 加する場合も、 /3—ケトー α—ァミノカルボン酸エステル(2)と光学活性アミン錯体( 1)と塩基の混合物に、水素または水素供与性化合物を添加するのが好ましい。水素 供与性化合物は、一括添加して反応させてもよいし、連続的、または断続的に添カロ しながら反応させてもよい。反応の進行に伴ってガスが発生する場合、安全性の面か ら反応の進行に合わせて逐次添加するのが好ましレ、。
[0118] 本反応の後処理としては、反応液から生成物を取得するための一般的な処理を行 えば良い。例えば、反応終了後の反応液に水、塩酸、アルカリ水等を添加し、一般的 な抽出溶媒、例えば、酢酸ェチル、ジェチルエーテル、塩化メチレン、トルエン、へキ サン等を用いて抽出操作を行う。得られた抽出液から反応溶媒及び抽出溶媒を減圧 留去すると、 目的物が得られる。このようにして得られる生成物は、必要であれば、シ リカゲルクロマトグラフィーや蒸留、再結晶等の一般的精製を行い、さらに純度を高 めても良い。
[0119] 次に、前記式(2)で表される化合物を、光学活性ホスフィン配位子を有する遷移金 属錯体を触媒として不斉水素化反応を行い、必要に応じて 3位水酸基の立体配置を 反転し、前記式(3)または(4)で示される光学活性 /3—ヒドロキシー α—ァミノカルボ ン酸エステルを製造する工程にっレ、て説明する。
[0120] 本工程で使用する光学活性ホスフィン配位子を有する遷移金属錯体における遷移 金属としては、前記式(1)での Μと同じものがあげられる。
[0121] また、光学活性なホスフィン配位子は、特に限定されるものではないが、例えば、 一般式(16)で示されるビナフチル型ホスフィン配位子(以下、 ΒΙΝΑΡと略す。)、一 般式(17)で示されるビフエ二ル型ホスフィン配位子(以下、 MeO— ΒΙΡΗΕΡと略す
。)、
一般式(18)で示されるビフエ二ル型ホスフィン配位子(以下、 SEGPHOSと略す。 ) 一般式(19)で示されるビフエ二ル型ホスフィン配位子(以下、 TUNEPHOSと略す。 )、
一般式(20)で示されるビスホスフィン配位子(以下、 DUPHOSと略す。)、 一般式 (21)で示されるアルキルホスフィン配位子(以下、 BISPと略す。 ) 一般式(22)で示されるビフエ二ルホスフィン配位子(以下、 DIOXANPHOSと略す
。)が挙げられる。 [0122] [化 31]
Figure imgf000021_0001
[0126] (式中、 nは;!〜 6の整数を表す。)
[0127] [化 35]
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
[0130] 中でも、立体選択性の観点から、 BINAP、 DIOXANPHOS、 TUNEPHOS、 SE GPHOS、 MeO— BIPHEPが好ましい。
[0131] 本工程で使用する光学活性ホスフィン配位子を有する遷移金属錯体は、遷移金属 化合物及び光学活性ホスフィン配位子を適当な溶媒中、混合することにより調製する ことができる。事前に調整し、単離したものを使用してもよいし、反応系中で調製した ものをそのまま使用してもよい。
[0132] 本工程で使用する光学活性ホスフィン配位子を有する遷移金属錯体の使用量は、 特に制限されないが、前記式(2)で示される βーケトー α—ァミノカルボン酸エステ ノレに対して通常 0. 00001〜;!当量である力 好ましく (ま 0. 0001—0. 2当量である
[0133] 本工程で使用する水素は通常水素ガスを使用し、水素ガスの圧力としては、特に 制限はないが、通常 1〜150気圧の範囲であり、好ましくは、 5〜; 100気圧の範囲で ある。反応を短時間で完了させるためには圧力を高めて実施する方が良い。 [0134] 本工程にお!/、て使用する反応溶媒は、反応を阻害しな!/、溶媒であれば特に制限 はないが、例えば、前述の炭化水素系溶媒;エステル系溶媒;芳香族炭化水素系溶 媒;二トリル系溶媒;エーテル系溶媒;アミド系溶媒;スルホキシド系溶媒;ハロゲン化 炭化水素系溶媒;アルコール溶媒;カルボン酸系溶媒;水が挙げられる。また、これら 溶媒の 2種以上を混合して用いても良い。混合溶媒を用いる場合、混合割合に特に 制限はない。
[0135] 反応を行う際の /3—ケトー α—ァミノカルボン酸エステル(2)の濃度は用いる反応 溶媒によって異なるが、一般的には;!〜 50% (w/v)で反応を実施することができ、 好ましくは 4〜30% (w/v)である。
[0136] 反応時の反応温度は、用いる光学活性ホスフィン配位子を有する遷移金属錯体の 種類と使用量、反応溶媒の種類、水素圧により異なるが、通常は用いる反応溶剤の 凝固点以上、沸点以下の範囲である。反応を短時間で完了させるためには温度を高 めて実施する方が良ぐ副反応を抑える観点からは温度は低く設定して実施する方 が良い。一般的には— 20〜; 150°Cであり、更に好適には 0〜; 100°Cである。
[0137] 反応時の反応時間は、用いる光学活性ホスフィン配位子を有する遷移金属錯体の 種類と使用量、水素圧、反応溶媒の種類及び反応温度により異なるが、反応温度を 0〜100°Cで実施した場合、通常 1〜36時間程度である。
[0138] 本反応に用いる /3—ケトー α—ァミノカルボン酸エステル(2)、光学活性ホスフィン 配位子を有する遷移金属錯体、水素ガス、反応溶媒等の混合順序は、任意であり、 特に制限されないが、例えば、 βーケトー α—ァミノカルボン酸エステル(2)と光学 活性ホスフィン配位子を有する遷移金属錯体の混合物に、水素ガスを添加することも できる。
[0139] 本反応の後処理としては、反応液から生成物を取得するための一般的な処理を行 えば良い。例えば、反応液から反応溶媒を留去するだけでもよい。また、反応終了後 の反応液に水、塩酸、アルカリ水等を添加し、一般的な抽出溶媒、例えば、酢酸ェチ ル、ジェチルエーテル、塩化メチレン、トルエン、へキサン等を用いて抽出操作を行う 。得られた抽出液から反応溶媒及び抽出溶媒を減圧留去すると、 目的物が得られる 。このようにして得られる生成物は、必要であれば、シリカゲルクロマトグラフィーや蒸 留、再結晶等の一般的精製を行い、さらに純度を高めてもよい。
[0140] 本工程における不斉水素化では、用いる 0ーケトー α—ァミノカルボン酸エステル
(2)や光学活性ホスフィン配位子を有する遷移金属錯体の種類により、前記式 (3)ま たは(4)で表されるようなアンチ体ではなぐ前記式(23)または(24)で表されるよう なシン体が生成する場合もある。シン体が生成した場合、必要に応じて、 3位水酸基 の立体配置を反転し、アンチ体に変換するとよい。
[0141] シン体の 3位水酸基の立体配置を反転させる方法としては、特に制限されないが、 例えば化合物(23)または(24)の R6または R7を、必要に応じてァセチル基ゃォクタ デカノィル基等のァシル基に変換した後、塩化チォニル等を作用させる方法が挙げ られる。
[0142] この際の塩化チォニルの使用量は、特に制限はないが、化合物(23)または(24) に対して、通常;!〜 50当量であるが、好ましくは 1〜; 10当量である。
[0143] 本反転操作にお!/、て使用する反応溶媒は、反応を阻害しな!/、溶媒であれば特に 制限はないが、例えば、炭化水素系溶媒、エステル系溶媒、芳香族炭化水素系溶 媒、二トリル系溶媒、エーテル系溶媒、アミド系溶媒、スルホキシド系溶媒、ハロゲン 化炭化水素系溶媒、塩化チォニルが挙げられ、中でも、へキサン、シクロへキサン、 メチノレシクロへキサン、トノレェン、クロ口ベンゼン、塩化メチレン、テトラヒドロフラン、塩 化チォニルが好ましい。これら溶媒の 2種以上を混合して用いても良い。混合溶媒を 用いる場合、混合割合に特に制限はない。
[0144] 反転操作を行う際の化合物(23)または(24)の濃度は、用いる反応溶媒によって 異なるが、一般的には;!〜 50% (w/v)で反応を実施することができ、好ましくは 4〜 30% (w/v)である。
[0145] 反転操作時の反応温度は、用いる化合物(23)または(24)の種類と塩化チォニル の使用量、反応溶媒の種類により異なるが、通常は用いる反応溶剤の凝固点以上、 沸点以下の範囲である。反応を短時間で完了させるためには温度を高めて実施する 方が良ぐ副反応を抑える観点からは温度は低く設定して実施する方が良い。一般 的には 40〜100°Cであり、更に好適には 10〜50°Cである。
[0146] 反転操作時の反応時間は、用いる化合物(23)または(24)の種類と塩化チォニル の使用量、反応溶媒の種類及び反応温度により異なるが、反応温度を—10〜50°C で実施した場合、通常 1〜24時間程度である。
[0147] 反転操作に用いる化合物(23)または(24)と塩化チォニル、反応溶媒等の混合順 序は、任意であり、特に制限されない。
[0148] 本反応の後処理としては、反応液から生成物を取得するための一般的な処理を行 えば良い。例えば、反応終了後の反応液に水、塩酸、アルカリ水等を添加し、一般的 な抽出溶媒、例えば、酢酸ェチル、ジェチルエーテル、塩化メチレン、トルエン、へキ サン等を用いて抽出操作を行う。得られた抽出液から反応溶媒及び抽出溶媒を減圧 留去すると、 目的物が得られる。このようにして得られる生成物は、必要であれば、シ リカゲルクロマトグラフィーや蒸留、再結晶等の一般的精製を行い、さらに純度を高 めても良い。
[0149] 次に、上記で製造した前記式(3)または (4)で示される光学活性 /3—ヒドロキシー
aーァミノカルボン酸エステルのエステル部位を還元し、必要に応じてァミノ置換基 をァシル基に変換し、一般式(7)または一般式(8);
[0150] [化 38]
Figure imgf000025_0001
[0152] で示される光学活性 2—アミノー 1 , 3—ジオール誘導体を製造する工程について説 明する。
[0153] 光学活性 2—ァミノ一 1 , 3—ジオール誘導体(7)または(8)の R4は前記と同じであ [0154] R8は置換されて!/、てもよ!/、炭素数;!;!〜 40のアルキル基またはアルカノィル基を示 し、例えば、ペンタデシル基、ヘプタデシル基、 1ーヒドロキシヘプタデシル基、 1ーォ キソヘプタデシル基、へニコシル基、 1ーヒドロキシへニコシル基、 29—(8, 11 アイ コサジエノィルォキシ)ノナコシル基等が挙げられ、中でも、セラミド誘導体としての有 用性から、ヘプタデシル基、 1ーヒドロキシヘプタデシル基、 1 ォキソヘプタデシル 基、へニコシル基、 1ーヒドロキシへニコシル基、 29—(8, 11 アイコサジエノィルォ キシ)ノナコシル基が好ましレ、。
[0155] 「必要に応じてァミノ置換基をァシル基に変換する」とは、化合物(3)または (4)に おけるァミノ置換基 (R6及び R7)の R6をァシル基及び R7を水素に変換してもよレ、し、し なくても良レ、ことを指す。化合物(3)または (4)の R6及び R7の!/、ずれか一方が水素で ある場合は、水素でない置換基を脱離し、ァシル基に変換してやればよいし、 R6及 び R7のいずれも置換されており、水素でない場合は、両方のァミノ置換基を脱離し、 一方をァシル基に変換してやればょレ、。
[0156] 化合物(3)または(4)の R6及び R7のいずれか一方がァシル基であり、いずれか一 方が水素である場合、ァミノ置換基をァシル基に変換しなくとも、化合物(8)または(9 )が得られることになる力 R6または R7のァシル基を脱離し、異なるァシル基に変換し てもよい。また、ァミノ置換基をァシル基に変換する工程は、例えば、化合物(3)また は(4)のエステル部位の還元後、ァミノ置換基の脱離反応を行い、最後に無置換アミ ノ基のァシル化反応を行ってもよいし、ァミノ置換基の脱離反応後、無置換アミノ基の ァシル化反応を行レ、、最後にエステル部位の還元を行ってもょレ、。
[0157] まず、化合物(3)または (4)、または、化合物(3)または (4)のァミノ置換基をアシノレ 基に変換した化合物のエステル部位を還元する方法について説明する。
[0158] エステル部位を還元する還元剤としては、特に限定されな!/、が、例えば、水素化ホ ゥ素ナトリウム、水素化ホウ素リチウム、水素化アルミニウムリチウム、ボラン、水素化ジ イソブチルアルミニウム、水素等が挙げられ、なかでも経済性の観点から水素化ホウ 素ナトリウムが好ましい。
[0159] 還元反応で使用する還元剤の使用量は、特に制限はないが、光学活性 0ーヒドロ キシー α—ァミノカルボン酸エステル(3)または(4)、または、前記式(3)または(4) で表される化合物のァミノ置換基がァシル基に変換された化合物に対して、通常 0. 5〜10当量である力 好ましくは 1〜3当量である。
[0160] 還元剤として水素化ホウ素ナトリウムを使用する場合、ルイス酸共存下で還元を行う と、反応が活性化される及び/又は反応中のェピメリ化を抑制できる場合があり好ま しい。
[0161] ノレイス酸としては特に限定されないが、例えば、四塩化チタン、四塩化スズ、三フッ 化ホウ素ジェチルエーテル錯体、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化マグネシゥ ム、臭化マグネシウム、ヨウ化マグネシウム、塩化アルミニウム、塩化リチウム、臭化リ チウム、塩化カルシウム、塩化鉄、塩化ニッケル等が挙げられる。中でも経済性の観 点から塩化カルシウムが好ましレ、。
[0162] 共存させるルイス酸の使用量は、特に制限はないが、光学活性 βーヒドロキシー α ーァミノカルボン酸エステル(3)または(4)、または、前記式(3)または(4)で表される 化合物のァミノ置換基がァシル基に変換された化合物に対して、通常 0. 5〜; 10当量 であるが、好ましくは 1〜3当量である。
[0163] 本工程にお!/、て使用する反応溶媒は、反応を阻害しな!/、溶媒であれば特に制限 はないが、例えば、前述の炭化水素系溶媒;エステル系溶媒;芳香族炭化水素系溶 媒;二トリル系溶媒;エーテル系溶媒;アミド系溶媒;スルホキシド系溶媒;ハロゲン化 炭化水素系溶媒;メタノール、エタノール、イソプロパノール、 η—ブタノール等のアル コール溶媒;水が挙げられ、中でも、クロ口ベンゼン、 η—ブタノール、テトラヒドロフラ ン、ジォキサンが好ましい。これら溶媒の 2種以上を混合して用いても良い。混合溶 媒を用いる場合、混合割合に特に制限はない。
[0164] 還元反応に付す化合物の濃度は、用いる反応溶媒によって異なるが、一般的には ;!〜 50% (w/v)で反応を実施することができ、好ましくは 4〜30% (w/v)である。
[0165] 反応時の反応温度は、還元反応に付す化合物、還元剤の種類と使用量、反応溶 媒の種類により異なるが、通常は用いる反応溶剤の凝固点以上、沸点以下の範囲で ある。反応を短時間で完了させるためには温度を高めて実施する方が良ぐ副反応 を抑える観点からは温度は低く設定して実施する方が良い。一般的には— 70〜; 120 °Cであり、更に好適には 0〜; 100°Cである。
[0166] 反応時の反応時間は、還元反応に付す化合物、還元剤の種類と使用量、反応溶 媒の種類及び反応温度により異なるが、反応温度を 0〜100°Cで実施した場合、通 常 1〜24時間程度である。
[0167] 本反応に還元反応に付す化合物、還元剤、反応溶媒等の混合順序は、任意であり
、特に制限されない。
[0168] 本反応の後処理としては、反応液から生成物を取得するための一般的な処理を行 えば良い。例えば、反応終了後の反応液に水、塩酸、アルカリ水等を添加し、一般的 な抽出溶媒、例えば、酢酸ェチル、ジェチルエーテル、塩化メチレン、トルエン、へキ サン等を用いて抽出操作を行う。得られた抽出液から反応溶媒及び抽出溶媒を減圧 留去すると、 目的物が得られる。このようにして得られる生成物は、必要であれば、シ リカゲルクロマトグラフィーや蒸留、再結晶等の一般的精製を行い、さらに純度を高 めても良い。
[0169] 次に、必要に応じて、ァミノ置換基をァシル基に変換する工程について説明する。
ァシル基への変換反応は、通常、ァミノ基の置換基を脱離させ、無置換のァミノ基と した後、ァシル化剤によって N ァシル化すればよい。
[0170] ァミノ置換基の脱離反応は、置換基によって異なり、ァミノ保護基であった場合、例 えは、 Protective Groups in urganic synthesis 3rd ed. (Theodora W. reene and Pet er G. M. Wuts Ed., Wiley- Interscience: New York, 1999)に記述されている脱保護 反応が挙げられる。例えば、ァミノ置換基がァセチル基ゃメトキシカルボニル基である 場合、酸や塩基によって脱離することができ、フタロイル基である場合、酸加水分解 ゃメチルァミン、ヒドラジン処理によって脱離することができる。ベンジルォキシカルボ ニル基やべンジル基である場合、加水素分解によって脱離できる。
[0171] 無置換アミノ基のァシル化反応は、ァシル化剤によって行う。用いるァシル化剤とし ては、例えば、塩化ステアロイル、塩化ビバロイル、ドコサン酸クロリド、 30—(8, 11 アイコサジエノィルォキシ)トリアコンタン酸クロリド等の酸クロリド、ステアリン酸メチ ル、 2—ヒドロキシステアリン酸メチル、 2—ォキソステアリン酸メチル、ドコサン酸メチ ノレ、 2—ヒドロキシドコサン酸メチル等のエステルが挙げられる。また、対応するカルボ ン酸の酸無水物または混合酸無水物でも実施できる。
[0172] ァシル化反応で使用するァシル化剤の使用量は、特に制限はな!/、が、光学活性 0 ーヒドロキシー α—ァミノカルボン酸エステル(3)または(4)、またはそのエステル部 位還元体に対して、通常 0. 5〜; 10当量である力 好ましくは 1〜2当量である。
[0173] 本ァシル化反応において、必要であれば塩基を使用してもよぐ用いる塩基として は前述の無機塩基、トリェチルァミン、ピリジン、 4—ジメチルァミノピリジン等の有機 塩基が挙げられる。
[0174] ァシル化反応で使用する塩基の使用量は、特に制限はないが、光学活性 /3—ヒド 口キシー α—ァミノカルボン酸エステル(3)または(4)、またはそのエステル部位還元 体に対して、通常 0. 01〜; 10当量である力 S、好ましくは 0. 0;!〜 2当量である。
[0175] 本反応において使用する反応溶媒は、反応を阻害しない溶媒であれば特に制限 はないが、例えば、炭化水素系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、二 トリル系溶媒、エーテル系溶媒、アミド系溶媒、スルホキシド系溶媒、ハロゲン化炭化 水素系溶媒、アルコール溶媒、水が挙げられ、中でも、クロ口ベンゼン、塩化メチレン
、 η ブタノール、テトラヒドロフラン、ジォキサンが好ましい。これら溶媒の 2種以上を 混合して用いても良い。混合溶媒を用いる場合、混合割合に特に制限はない。
[0176] 反応を行う際の光学活性 βーヒドロキシー α—ァミノカルボン酸エステル(3)または
(4)、またはそのエステル部位還元体の濃度は、用いる反応溶媒によって異なるが、 一般的には 1〜50% (w/v)で反応を実施することができ、好ましくは 4〜30% (w/ V)である。
[0177] 反応時の反応温度は、用いる光学活性 βーヒドロキシー α—ァミノカルボン酸エス テル(3)または(4)、またはそのエステル部位還元体、ァシル化剤の種類と使用量、 反応溶媒の種類により異なる力 通常は用いる反応溶剤の凝固点以上、沸点以下の 範囲である。反応を短時間で完了させるためには温度を高めて実施する方が良ぐ 副反応を抑える観点からは温度は低く設定して実施する方が良い。一般的には 5 0〜; 120°Cであり、更に好適には 0〜; 100°Cである。
[0178] 反応時の反応時間は、用いる光学活性 βーヒドロキシー α—ァミノカルボン酸エス テル(3)または(4)、またはそのエステル部位還元体、ァシル化剤の種類と使用量、 反応溶媒の種類及び反応温度により異なる力、反応温度を 0〜100°Cで実施した場 合、通常 1〜24時間程度である。
[0179] 本反応に用いる光学活性 /3—ヒドロキシー α—ァミノカルボン酸エステル(3)また は(4)、またはそのエステル部位還元体、ァシル化剤、反応溶媒等の混合順序は、 任意であり、特に制限されない。
[0180] 本反応の後処理としては、反応液から生成物を取得するための一般的な処理を行 えば良い。例えば、反応終了後の反応液に水、塩酸、アルカリ水等を添加し、一般的 な抽出溶媒、例えば、酢酸ェチル、ジェチルエーテル、塩化メチレン、トルエン、へキ サン等を用いて抽出操作を行う。得られた抽出液から反応溶媒及び抽出溶媒を減圧 留去すると、 目的物が得られる。このようにして得られる生成物は、必要であれば、シ リカゲルクロマトグラフィーや蒸留、再結晶等の一般的精製を行い、さらに純度を高 めても良い。
実施例
[0181] 以下に例を挙げて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定 されるものではない。
[0182] (実施例 1 ) 2—ァセチルアミノー 3—ォキソォクタデカン酸ェチルの製造
Ν—ァセチルグリシンェチルエステル(72. 5mg、 0. 50mmol)と N—メチルイミダ ゾール(50· 4mg、0. 61mmol)の塩化メチレン(5· Oml)溶液を一 45°Cまで冷却し 、窒素雰囲気下、塩化パルミトイル(142· 6mg、 0. 50mmol)の塩化メチレン(0· 5 ml)溶液を添加した。これを同温度で 20分攪拌した後、四塩化チタン(340. 4mg、 1. 78mmol)の塩ィ匕メチレン(0. 5ml)溶 ί夜とトリフ、、チノレアミン(372. 4mg、 2. 01m mol)の塩化メチレン(0. 5ml)溶液を加え、— 45°Cで 2時間撹拌した。これに水を加 えて、室温まで昇温し、有機層を分液した。水層をさらに塩化メチレンで 2回抽出し、 有機層を合わせて、硫酸マグネシウムで乾燥後した。溶媒を減圧留去して、得られた 粗生成物をシリカゲルクロマトグラフィー(Merck社 Kieselgel 60、へキサン:酢酸ェチ ル = 3 : 2)により精製し、表題化合物(148. 8mg、収率 88%)を得た。
[0183] :H NMR (400MHZ, CDCl /ppm): δ 0. 88 (t, 3H) , 1. 25— 1. 36 (m, 29
3
H) , 2. 07 (s, 3H) , 2. 71 (m, 2H) , 4. 26 (q, 2H) , 5. 23 (d, 1H) , 6. 62 (d, 1 H)。
[0184] (実施例 2) 2 ァセチルアミノー 3 ォキソォクタデカン酸ェチルの製造
N ァセチルグリシンェチルエステノレ(1. 50g、 10. 33mmol)と N メチルイミダゾ ール(1. 02g、 12. 40mmol)のジクロロメタン(45. Oml)溶液を 45°Cまで冷却し 、窒素雰囲気下、塩化パルミトイル(2. 84g、 10. 33mmol)を添加した。これを同温 度で 20分擾持した後、四塩ィ匕チタン(6. 86g、 36. 16mmol)とトリエチノレアミン(4. 18g、 41. 31mmol)を加え、 45°Cで 2時間撹拌した。これに水(20mUを加えて 、室温まで昇温し、有機層を分液した。有機層を HPLCで標品と比較分析した結果、 表題化合物が 2. 81g含有されて!/ゝることが確認された(収率 71 %)。
[0185] (実施例 3) 2 ァセチルアミノ 3 ォキソォクタデカン酸ェチルの製造
N ァセチルグリシンェチルエステノレ(1. 00g、 6. 89mmol)と N メチルイミダゾ ール(679mg、 8. 27mmol)のトルエン(33· 0ml)溶液を— 20°Cまで冷却し、窒素 雰囲気下、塩化パルミトイル(1. 89g、 6. 89mmol)を添加した。これを同温度で 30 分擾持した後、四塩ィ匕チタン(4· 57g、 24. 12mmol)とトリエチノレアミン(2· 79g、 2 7. 56mmol)を加え、 20°Cで 2時間撹拌した。これに水(20mUを加えて、室温ま で昇温し、有機層を分液した。有機層を HPLCで標品と比較分析した結果、表題化 合物が 1. 75g含有されて!/、ること力 S確認された(収率 66%)。
[0186] (実施例 4) 2 ァセチルアミノ 3 ォキソォクタデカン酸ェチルの製造
N ァセチルグリシンェチルエステノレ(1. 50g、 10. 33mmol)と N メチルイミダゾ 一ノレ(1. 02g、 12. 40mmol)のクロ口ベンゼン(45· Oml)溶液を 20°Cまで冷却し 、窒素雰囲気下、塩化パルミトイル(2. 84g、 10. 33mmol)を添加した。これを同温 度で 45分擾持した後、四塩ィ匕チタン(6. 86g、 36. 16mmol)とトリエチノレアミン(4. 18g、 41. 31mmol)を加え、 20°Cで 2時間撹拌した。これに水(20mUを加えて 、室温まで昇温し、有機層を分液した。有機層を HPLCで標品と比較分析した結果、 表題化合物が 2. 92g含有されて!/ゝることが確認された(収率 74%)。
[0187] (実施例 5) 2 ァセチルアミノー 3 ォキソォクタデカン酸ェチルの製造
N ァセチルグリシンェチルエステノレ(1. 50g、 10. 33mmol)と N メチルイミダゾ 一ノレ(1. 02g、 12. 40mmol)のクロ口ベンゼン(45· Oml)溶液を 10°Cまで冷却し 、窒素雰囲気下、塩化パルミトイル(2. 84g、 10. 33mmol)を添加した。これを同温 度で 45分擾持した後、四塩ィ匕チタン(6. 86g、 36. 16mmol)とトリエチノレアミン(4. 18g、 41. 31mmol)を加え、 10°Cで 2時間撹拌した。これに水(20mUを加えて 、室温まで昇温し、有機層を分液した。有機層を HPLCで標品と比較分析した結果、 表題化合物が 2. 92g含有されて!/ゝることが確認された(収率 80%)。
[0188] (実施例 6) 2 ァセチルアミノー 3 ォキソォクタデカン酸ェチルの製造
N ァセチルグリシンェチルエステノレ(1. 50g、 10. 33mmol)と N メチルイミダゾ 一ノレ(1. 02g、 12. 40mmol)のクロ口ベンゼン(45· Oml)溶液を 10°Cまで冷却し 、窒素雰囲気下、塩化パルミトイル(2. 84g、 10. 33mmol)を添加した。これを同温 度で 45分擾持した後、四塩ィ匕チタン(6. 86g、 36. 16mmol)とトリプ、チノレアミン(7. 66g、 41. 32mmol)を加え、 10°Cで 2時間撹拌した。これに水(20mUを加えて 、室温まで昇温し、有機層を分液した。有機層を HPLCで標品と比較分析した結果、 表題化合物が 3. 33g含有されて!/ゝることが確認された(収率 84%)。
[0189] (実施例 7) 2 ァセチルアミノー 3 ォキソォクタデカン酸ェチルの製造
N ァセチルグリシンェチルエステノレ(1. 50g、 10. 33mmol)と N メチルイミダゾ 一ノレ(1. 02g、 12. 40mmol)のクロ口ベンゼン(45· Oml)溶液を 0°Cまで冷却し、窒 素雰囲気下、塩化パルミトイル(2. 84g、 10. 33mmol)を添加した。これを同温度で 25分擾持した後、四塩ィ匕チタン(6 · 86g、 36. 16mmol)とトリエチノレアミン(4· 18g 、 41. 31mmol)を加え、 0°Cで 2時間撹拌した。これに水(20mUを加えて、室温ま で昇温し、有機層を分液した。有機層を HPLCで標品と比較分析した結果、表題化 合物が 2. 93g含有されて!/、ること力 S確認された(収率 74%)。
[0190] (実施例 8) 2 ホルミルアミノー 3 ォキソォクタデカン酸ェチルの製造
N—ホルミルグリシンェチルエステル(1. 31g、 lOmmol)と N メチルイミダゾール (985. 4mg、 12mmol)の塩化メチレン(100ml)溶液を— 45°Cまで冷却し、窒素雰 囲気下、塩化パルミトイル(2. 85g、 lOmmol)の塩化メチレン(10ml)溶液を添加し た。これを同温度で 20分攪拌した後、四塩化チタン(6. 78g、 35mmol)の塩化メチ レン(10ml)溶液とトリブチルァミン(7· 42g、 40mmol)の塩化メチレン(10ml)溶液 を加え、 45°Cで 3時間撹拌した。これに水 100mlを加えて、室温まで昇温し、有機 層を分液した。水層をさらに塩化メチレン 100mlで 2回抽出し、有機層を合わせて、 硫酸マグネシウムで乾燥後した。溶媒を減圧留去して、得られた粗生成物をシリカゲ ルクロマトグラフィー(Merck社 Kieselgel 60、酢酸ェチル単独)により精製し、表題化 合物(3· 15g、収率 85%)を得た。
[0191] :H NMR (400MHz, CDC1 /ppm): δ 0. 88 (t, 3Η) , 1. 25— 1. 33 (m, 29
3
Η) , 2. 73 (m, 2Η) , 4. 26 (q, 2H) , 5. 28 (d, 1H) , 6. 78 (bs, 1H) , 8. 25 (s, 1H)。
[0192] (実施例 9) 2 ォクタデカノィルアミノー 3 ォキソォクタデカン酸ェチルの製造
N ォクタデカノィルグリシンェチルエステル(3. 70g、 lOmmol)と N メチルイミ ダゾール(985· 4mg、 12mmol)の塩化メチレン(100ml)溶液を 45°Cまで冷却し 、窒素雰囲気下、塩化パルミトイル(2· 76g、9. 74mmol)の塩化メチレン(10ml)溶 液を添加した。これを同温度で 20分攪拌した後、四塩化チタン(6· 81g、 35mmol) の塩化メチレン(10ml)溶液とトリブチルァミン(7· 42g、 40mmol)の塩化メチレン(1 Oml)溶液を加え、 45°Cで 2時間撹拌した。これに水 100mlを加えて、室温まで昇 温し、有機層を分液した。水層をさらに塩化メチレン 100mlで 2回抽出し、有機層を 合わせて、硫酸マグネシウムで乾燥後した。溶媒を減圧留去して、得られた粗生成物 をシリカゲルクロマトグラフィー(Merck社 Kieselgel 60、へキサン:酢酸ェチル =4: 1) により精製し、表題化合物(3· 20g、収率 54%)を得た。
[0193] :H NMR (400MHZ, CDCl /ppm): δ 0. 88 (m, 6H) , 1. 25— 1. 32 (m, 59
3
H) , 2. 27 (t, 2H) , 2. 70 (m, 2H) , 4. 25 (m, 2H) , 5. 22 (d, 1H) , 6. 58 (d, 1H)。
[0194] (実施例 10) 2 ォクタデカノィルアミノー 3 ォキソォクタデカン酸ェチルの製造
N ォクタデカノィルグリシンェチルエステル(2. 00g、 5. 41mmol)と N メチルイ ミダゾ一ノレ(533mg、 6. 49mmol)のクロ口ベンゼン(33· Oml)溶液を一 10。Cまで冷 却し、窒素雰囲気下、塩化パルミトイル(1. 49g、 5. 41mmol)を添加した。これを同 温度で 45分擾持した後、四塩ィ匕チタン(3. 60g、 18. 94mmol)とトリプ、チノレアミン(4 . 01g、 21. 64mmol)をカロ免、 10。Cで 1. 5日寺間携持した。これに水(25mL)をカロ えて、室温まで昇温し、有機層を分液した。有機層を HPLCで標品と比較分析した 結果、表題化合物が 2.52g含有されていることが確認された (収率 77%)。
[0195] (実施例 11)2—ォクタデカノィルアミノー 3—ォキソォクタデカン酸メチルの製造
実施例 9における N—ォクタデカノィルグリシンェチルエステルを N—ォクタデカノィ ルグリシンメチルエステルに代えて、実施例 9と同様の方法で実施し、表題化合物( 収率 36%)を得た。
[0196] :H NMR (400MHz, CDC1 /ppm): δ 0.88 (m, 6Η) , 1.25 (m, 56Η) , 2.
27 (t, 2Η), 2.70 (m, 2H) , 3.80(s, 3H) , 5.24 (d, 1H), 6.59(d, 1H)。
[0197] (実施例 12) (2R.3R)— 2—ァセチルアミノー 3—ヒドロキシォクタデカン酸ェチル の製造
RuCl[(R, R) -TsDPEN] (p— cymene)錯体(19· 6mg、 0.03mmol)と実施 例 1と同様の方法で合成した 2—ァセチルアミノー 3—ォキソォクタデカン酸ェチル(7 7.0mg、 0.20mmol)の脱水 THF(4. Oml)溶 ί夜 ίこ、トリエチノレアミン(131.9mg、 1.30mmol)の脱水 THF(0.5ml)溶液とギ酸(64· 2mg、 1.37mmol)の脱水 TH F(0.5ml)溶液を添加した。これを室温で 3日間攪拌した後、反応溶媒を減圧留去 した。これに水を加えて、酢酸ェチルで 3回抽出し、有機層を合わせて、硫酸マグネ シゥムで乾燥後した。溶媒を減圧留去して、得られた粗生成物をシリカゲルクロマトグ ラフィー(Merck社 Kieselgel 60、酢酸ェチル単独)により精製し、表題化合物(71· 3 mg、収率 94%)を得た。これを HPLC分析した結果、アンチ体:シン体 = 93: 7、アン チ体光学純度 98%eeであった。
[0198] ここで、 (R, R)— TsDPENとは(1R, 2R)— N—トシノレ一 1, 2—ジフエニノレエチレ ンジァミンのことである(以下同様)。
[0199] アンチ体:1 H NMR (400MHz, CDC1 /ppm): δ 0.88 (t, 3H) , 1.25— 1.3
5(m, 29Η), 1.43— 1.49 (m, 2H) , 2.07(s, 3H) , 3.90— 97(m, 1H), 4.2 4(m, 2H), 4.67 (dd, 1H), 6.45(d, 1H)。
[0200] シン体:1 H NMR (400MHz, CDC1 /ppm): δ 0.88 (t, 3H) , 1.25— 1.35 ( m, 29H), 1.43-1.49 (m, 2H) , 2.07(s, 3H) , 4.09— 4.15(m, 1H), 4. 24 (m, 2H), 4.65 (dd, 1H), 6.20 (d, 1H)。
[0201] [光学純度 HPLC分析条件] カラム: CHIRALPAK AD— H
カラム温度: 25°C
移動相:へキサン/イソプロパノール = 95/5
流速: 0. 5mレ min
検出波長: 210nm
保持時間:アンチ体 = 18. 9分と 24. 1分、シン体 = 29. 7分と 56. 6分。
[0202] (実施例 13) (2R. 3R)— 2—ァセチルアミノー 3—ヒドロキシォクタデカン酸ェチル の製造
RuCl[ (R, R) -TsDPEN] (p— cymene)錯体(17· 6mg、 0. 03mmol)と実施 例 1と同様の方法で合成した 2—ァセチルアミノー 3—ォキソォクタデカン酸ェチル( 1 • 00g、 2. 61mmol)のクロ口ベンゼン(10· 0ml)溶 ί夜 ίこ、トリエチノレアミン(1 · 32g、 13. 05mmol)とギ酸(350mg、 7. 82mmol)を添カロした。これを 40。Cで 15. 5日寺間 攪拌した後、反応溶液に水(10mUを加えて、 40°Cにて分液操作を実施し、有機層 を取得した。有機層を HPLCで標品と比較分析した結果、表題化合物が 0. 96g含 有されていることが確認された(収率 96%)。またアンチ体:シン体 = 95 : 5、アンチ体 光学純度 97%eeであった。
[0203] (実施例 14) (2R. 3R)— 2—ァセチルアミノー 3—ヒドロキシォクタデカン酸ェチル の 告
RuCl[ (R, R)— TsDPEN] (p— cymene)錯体(8. 8mg、 0. Olmmol)と実施例 1と同様の方法で合成した 2—ァセチルアミノー 3—ォキソォクタデカン酸ェチル( 1. 00g、 2. 61mmol)のクロ口ベンゼン(10· Oml)溶 ί夜 ίこ、トリエチノレアミン(1 · 32g、 1 3. 05mmol)とギ酸(350mg、 7. 82mmol)を添加した。これを 40°Cで 3日間攪拌し た後、反応溶液に水(lOmL)を加えて、 40°Cにて分液操作を実施し、有機層を取得 した。有機層を HPLCで標品と比較分析した結果、表題化合物が 0. 96g含有されて いることが確認された(収率 96%)。またアンチ体:シン体 = 98 : 2、アンチ体光学純 度 97%eeであった。
[0204] (実施例 15) (2R. 3R)— 2—ホルミルアミノー 3—ヒドロキシォクタデカン酸ェチル の製造 RuCl[ (R, R) -TsDPEN] (p— cymene)錯体(19· 6mg、 0. 03mmol)と実施 例 8と同様の方法で合成した 2—ホルミルアミノー 3—ォキソォクタデカン酸ェチル(7 3. 5mg、 0. 20mmol)の脱水 THF (4. 0ml)溶 ί夜 ίこ、トリエチノレアミン(131. 7mg、 1. 30mmol)の脱水 THF (0. 5ml)溶液とギ酸(64· 2mg、 1. 37mmol)の脱水 TH F (0. 5ml)溶液を添加した。これを室温で 3日間攪拌した後、反応溶媒を減圧留去 した。これに水を加えて、酢酸ェチルで 3回抽出し、有機層を合わせて、硫酸マグネ シゥムで乾燥後した。溶媒を減圧留去して、得られた粗生成物をシリカゲルクロマトグ ラフィー(Merck社 Kieselgel 60、へキサン:酢酸ェチル = 1: 2)により精製し、表題化 合物(64. 6mg、収率 87%)を得た。これを HPLC分析した結果、アンチ体:シン体 = 95 : 5、アンチ体光学純度 96%eeであった。
[0205] アンチ体:1 H NMR (400MHz, CDC1 /ppm): δ 0. 88 (t, 3H) , 1. 25— 1. 3
8 (m, 29H) , 1. 43— 1. 58 (m, 2H) , 3. 95 (m, 1H) , 4. 23 (m, 2H) , 4. 73 (d d, 1H) , 6. 61 (d, 1H) , 8. 24 (s, 1H)。
[0206] シン体:1 H NMR (400MHz, CDC1 /ppm): δ 0. 88 (t, 3H) , 1. 25— 1. 38 ( m, 29H) , 1. 43- 1. 58 (m, 2H) , 3. 95 (m, 1H) , 4. 23 (m, 2H) , 4. 73 (dd, 1H) , 6. 52 (d, 1H) , 8. 31 (s, 1H)。
[0207] [光学純度 HPLC分析条件]
カラム: CHIRALPAK AD— H 2本
カラム温度: 25°C
移動相:へキサン/イソプロパノール = 9/1
流速: 0. 5mレ min
検出波長: 210nm
保持日寺間:アンチ体 = 22. 2分と 24. 3分、シン体 = 39. 2分と 40. 3分。
[0208] (実施例 16) (2R. 3R)— 2—ォクタデカノィルアミノー 3—ヒドロキシォクタデカン酸 ェチルの製造
RuCl[ (R, R) -TsDPEN] (p— cymene)錯体(18· 9mg、 0. 03mmol)と実施 例 9と同様の方法で合成した 2—ォクタデカノィルアミノー 3—ォキソォクタデカン酸ェ チノレ(121 · 6mg、 0. 20mmol)の塩ィ匕メチレン(4· 0ml)溶 ί夜に、トリエチノレアミン(1 31. 6mg、 1. 30mmol)の塩ィ匕メチレン(0. 5ml)溶 ί夜とギ酸(64. 5mg、 1. 37mm ol)の塩化メチレン(0. 5ml)溶液を添加した。これを室温で 16時間攪拌した後、水を 加えて、塩化メチレンで 3回抽出した。有機層を合わせて、硫酸マグネシウムで乾燥 後し、溶媒を減圧留去して得られた粗生成物をシリカゲルクロマトグラフィー(Merck 社 Kieselgel 60、へキサン:酢酸ェチル =4: 1)により精製し、表題化合物(109. 6mg 、収率 90%)を得た。これを HPLC分析した結果、アンチ体:シン体 = 91 : 9、アンチ 体光学純度 95%eeであった。
[0209] アンチ体:1 H NMR (400MHz, CDC1 /ppm): δ 0. 88 (t, 6H) , 1. 25- 1. 4
0 (m, 59Η) , 1. 43- 1. 58 (m, 2H) , 2. 27 (t, 2H) , 3. 94 (m, 1H) , 4. 23 (m , 2H) , 4. 66 (dd, 1H) , 6. 43 (d, 1H)。
[0210] シン体:1 H NMR (400MHz, CDC1 /ppm): δ 0. 88 (t, 6H) , 1. 25— 1. 40 ( m, 59H) , 1. 43- 1. 58 (m, 2H) , 2. 27 (t, 2H) , 4. 12 (m, 1H) , 4. 23 (m, 2 H) , 4. 66 (dd, 1H) , 6. 15 (d, 1H)。
[0211] [光学純度 HPLC分析条件]
カラム: SUMICHIRAL OA— 4700
カラム温度: 25°C
移動相:へキサン/イソプロパノール = 98/2
流速: 0. 5mレ min
検出波長: 210nm
保持時間:アンチ体 = 16. 6分と 18. 9分、シン体 = 25. 9分と 34. 2分。
[0212] (実施例 17) (2R. 3R)— 2—ォクタデカノィルアミノー 3—ヒドロキシォクタデカン酸 ェチルの製造
RuCl[ (R, R) -TsDPEN] (p— cymene)錯体(11 · 0mg、 0. 03mmol)と実施 例 10と同様の方法で合成した 2—ォクタデカノィルアミノー 3—ォキソォクタデカン酸 ェチノレ(1 · 00g、 1. 64mmol)のクロ口ベンゼン(15· 0ml)溶 ί夜 ίこ、トリエチノレアミン (830mg、 8. 20mmol)とギ酸(227mg、 4. 93mmol)を添カロした。これを 40。Cで 3 日間攪拌した後、反応溶液に水(10mUを加えて、 40°Cにて分液操作を実施し、有 機層を取得した。有機層を全量が 3. l lgとなるまで濃縮した後、 AcOEtを 10mL加 え、再結晶を行い、表題化合物 0. 73gを得た (収率 74%)。アンチ体:シン体 = 100 : 0、アンチ体光学純度 100%eeであった。
[0213] (実施例 18) (2R. 3R)— 2 アミノー 3 ヒドロキシォクタデカン酸ェチル塩酸塩の 製造
実施例 13と同様の方法で合成した(2R, 3R)—2 ァセチルァミノ一 3 ヒドロキシ ォクタデカン酸ェチル(1. 00g、 2. 59mmol)を約 30wt%塩化水素エタノール溶液 に懸濁させ、還流下、 15. 5時間攪拌した。エタノール(10. OmL)を添加後、 26°C まで冷却を行った。析出した固体をろ別により取得し、表題化合物 0. 61gを得た (収 率 62% )。
[0214] :H NMR (400MHZ, DMSO— d6/ppm): δ 1. 16 (t, 3H) , 1. 53— 1. 61 ( m, 29H) , 1. 71 - 1. 79 (m, 2H) , 4. 26 (br, 1H) , 4. 27 (s, 1H)、 4. 44— 4. 59 (m, 2H)、 5. 91 (d, 1H) , 8. 61 (br, 2H)。
[0215] (実施例 19) (2R. 3R)— 2 ォクタデカノィルアミノー 3 ヒドロキシォクタデカン醉 ェチルの製造
実施例 18と同様の方法で合成した(2R, 3R)—2 ァミノ一 3 ヒドロキシォクタデ カン酸ェチノレ塩酸塩(300mg、 0. 79mmol)、トリエチノレアミン(239mg、 2. 37mm ol)の THF (5. OmL)溶 ί夜に、 27。C下、塩ィ匕ステアロイノレ(227mg、 4. 93mmol)を 添加した。これを 60°Cで 3時間攪拌した後、反応溶液に水(5mL)および AcOEt (5 mUを加えて分液操作を実施し、有機層を取得した。有機層を濃縮し、表題化合物 を含む粗生成物 0. 48gを得た (粗収率 100%)。
[0216] (実施例 20) (2S. 3R)— 2 ォクタデカノィルアミノォクタデカン 1 , 3 ジオール の製造
実施例 19と同様の方法で合成した(2R, 3R)—2 ォクタデカノィルァミノ一 3 ヒ ドロキシォクタデカン酸ェチル(150mg、 0. 25mmol)の THF (5. OmU溶液に、 6 0°C下、水素化ホウ素ナトリウム(18. 6mg、 0. 50mmol)を添加した。これを 60°Cで 2. 5時間攪拌した後、反応溶液に水(1. 5mUおよび AcOEt (5mUを加えて分液 操作を実施し、有機層を取得した。有機層を水(1. 5mL X 2回)で洗浄した後、濃縮 を行った。 EtOHから再結晶を行い、表題化合物 76mgを得た(収率 55% )。 HPLC で分析した結果、アンチ:シン比は 92 : 8であり、アンチ体光学純度 99%eeであった
[0217] :H NMR (400MHz, CDC1— DMSO— d /ppm): δ 0. 88 (t, 3H) , 1. 18—
1. 29 (m, 54H) , 1. 45— 1. 52 (m, 2H) , 1. 61 - 1. 65 (m, 2H) , 2. 22 (dd, 2 H) , 3. 65- 3. 68 (m, 2H)、 3. 81— 3. 93 (m, 1H)、 6. 64 (d, 1H)。
[0218] [光学純度 HPLC分析条件]
カラム: SUMICHIRAL OA— 4700
カラム温度: 25°C
移動相:へキサン/イソプロパノール = 98/2
流速: 1. 0mレ min
検出波長: 210nm
保持時間:アンチ体 = 32. 3分と 37. 1分、シン体 = 19. 1分と 23. 1分。
[0219] (室 列 21) 2 ォクタデカノィルアミノー 3 ォキソォクタデカン酸メチルの製造
実施例 10における N ォクタデカノィルグリシンェチルエステルを N ォクタデカノ ィルグリシンメチルエステルに代えて、実施例 10と同様の方法で実施し、表題化合 物(収率 64%)を得た。
[0220] (実施例 22) (2S. 3R)— 2—ォクタデカノィルアミノォクタデカン一 1. 3 ジオール の 告
実施例 17と同様の方法で合成した(2R, 3R)—2 ォクタデカノィルァミノ一 3 ヒ ドロキシォクタデカン酸ェチル(100mg、 0. 16mmol)、水素化ホウ素ナトリウム(20 . 3mg, 0. 54mmmol)からなる t ブチルメチルエーテル(2mL)懸濁液を 23°C下 、 48時間の攪拌を行った。反応液に水(5mL)を加えたのち、 40°C下で分液し有機 層を分離した。得られた有機層を HPLCで標品と比較分析した結果、表題化合物が 86. 6mg含有されていることが確認された(収率 93%)。 HPLCで分析した結果、ァ ンチ:シン比は 93 : 7であり、アンチ体光学純度 100%eeであった。
[0221] (実施例 23) (2S. 3R)— 2 ォクタデカノィルアミノォクタデカン 1 , 3 ジオール の製造
実施例 22における溶媒を t ブチルメチルエーテルからエタノールに代え、実施例 22と同様の方法で実施し、表題化合物(収率 87%)を得た。 HPLCで分析した結果 、アンチ:シン比は 88 : 12であり、アンチ体光学純度 99%eeであった。
[0222] (実施例 24) (2S. 3R)— 2—ァセチルアミノォクタデカン 1 , 3 ジオールの製造
実施例 14と同様の方法で合成した(2R, 3R)—2 ァセチルァミノ一 3 ヒドロキシ ォクタデカン酸ェチル(68· 9mg、 0. 18mmol)、水素化ホウ素ナトリウム(21 · lmg , 0. 53mmmol)からなるエタノール(3mL)懸濁液を 23°C下、 21時間の攪拌を行つ た。反応液に酢酸ェチルと水を加えた後、 60°C下で 1時間攪拌した。有機層を分離 した後、得られた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒 を減圧留去して、表題化合物が 54. Omg含有されていることが確認された (収率 88 %)。 HPLCで分析した結果、アンチ体光学純度 99%eeであった。
[0223] :H NMR (400MHZ, CDCl— CD OD/ppm) : δ 0. 88 (t, 3H) , 1. 18— 1.
3 3
30 (m, 26H) , 1. 45— 1. 52 (m, 2H) , 2. 03 (s, 3H) , 3. 65— 3. 70 (m, 2H)、 3. 73- 3. 80 (m, 1H)、 3. 85— 3. 95 (m, 1H)、 6. 93 (d, 1H)。
[0224] [光学純度 HPLC分析条件]
カラム: CHIRALPAK AD— H
カラム温度: 25°C
移動相:へキサン/イソプロパノール = 95/5
流速: 0. 5mレ min
検出波長: 210nm
保持時間:アンチ体 = 13. 7分と 18. 4分、シン体 = 11. 2分と 12. 7分。
[0225] (実施例 25) (2S. 3R)— 2 ァセチルアミノォクタデカン 1 , 3 ジオールの製造
水素化ホウ素ナトリウム(38. 2mg, 0. 93mmmol)の THF (0. 3mL)懸濁液を 60 °Cに加熱し、これに実施例 14と同様の方法で合成した(2R, 3R)— 2 ァセチルアミ ノー 3 ヒドロキシォクタデカン酸ェチル(250· lmg, 0. 62mmol)の THF (2. 5mL )溶液を 5. 5時間で滴下した。滴下後さらに 60°Cで 17時間攪拌した。反応液に酢酸 ェチルと水を加えた後、 60°C下で 1時間攪拌した。有機層を分離した後、得られた有 機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧留去して、 表題化合物が 178. 7mg含有されていることが確認された(収率 84%)。 HPLCで分 析した結果、アンチ体光学純度 99%eeであった。
[0226] (実施例 26) (2S. 3R)—2 ォクタデカノィルアミノォクタデカン 1 , 3 ジオール の製造
水素化ホウ素ナトリウム(39· 2mg, 0. 96mmmol)の THF (2mL)懸濁液を 60°C に加熱し、これに実施例 17と同様の方法で合成した(2R, 3R) 2 ォクタデカノィ ノレアミノー 3 ヒドロキシォクタデカン酸ェチル(300· Omg、 0. 49mmol)を 2· 5時 間で添加した。滴下後さらに 60°Cで 24時間攪拌した。反応液に酢酸ェチルと水を加 えた後、 60°C下で 1時間攪拌した。有機層を分離した後、得られた有機層を飽和食 塩水で洗浄し、硫酸マグネシウムで乾燥した。溶媒を減圧留去して、表題化合物が 2 19. 4mg含有されていることが確認された(収率 78%)。 HPLCで分析した結果、ァ ンチ体:シン体比は 81: 19であり、アンチ体光学純度 99%eeであった。
[0227] (実施例 27) (2S. 3R)—2 ォクタデカノィルアミノォクタデカン一 1. 3 ジオール の 告
水素化ホウ素ナトリウム(271. 9mg, 7. 38mmmol)の THF (15mL)懸濁液に実 施例 17と同様の方法で合成した(2R, 3R)—2 ォクタデカノィルァミノ一 3 ヒドロ キシォクタデカン酸ェチル(1. 50g、 2. 46mmol)を室温下 0. 5時間で添加した。滴 下終了後塩化アルミニウム(984. Omg、 7. 38mmol)を 1時間で添加した。反応液 に水を加えた後、濃塩酸を添加し、系内の pHを 1. 5とし、さらに 50°C下で 1時間攪 拌した。有機層を分離した後、有機層を取得した。有機層を HPLCで標品と比較分 析した結果、表題化合物が 1. 18g含有されていることが確認された (収率 84%)。ま たアンチ体:シン体比は 98: 2であり、アンチ体光学純度は 97%eeであった。
[0228] (実施例 28) (2S. 3R)—2 ォクタデカノィルアミノォクタデカン 1 , 3 ジオール の製造
水素化ホウ素ナトリウム(0· 62g, 16. 34mmmol)の THF (48mL)懸濁液に実施 例 17と同様の方法で合成した(2R, 3R)—2 ォクタデカノィルァミノ一 3 ヒドロキ シォクタデカン酸ェチル(5. 00g、 8. 17mmol)を 0°C下 5時間で添加した。滴下終 了後塩化カルシウム(1. 82g、 16. 40mmol)を 1時間で添加した。反応液に水を加 えた後、濃塩酸と添加し、系内の pHを 1. 5とし、さらに 50°C下で 1時間攪拌した。有 機層を分離した後、有機層を取得した。有機層を HPLCで標品と比較分析した結果 、表題化合物が 4. 41g含有されていることが確認された (収率 95%)。またアンチ体 :シン体 = 98: 2、アンチ体光学純度 99%eeであった。

Claims

請求の範囲 [1] 一般式 (1) ;
[化 1]
Figure imgf000043_0001
(式中、 *は不斉炭素原子であることを示し、 R1, R2はそれぞれ同一または異なって いてもよく、置換されていてもよい炭素数 1〜21のアルキル基、置換されていてもよい 炭素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリー ル基を示す。また、 R1, R2と一緒になつて環を形成してもよい。 R3は水素原子、置換 されて!/、てもよ!/、炭素数 1〜21のアルキル基、置換されて!/、てもよ!/、炭素数 7〜20 のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリール基を示し、 A rは置換されていてもよい芳香族化合物を示し、 Mは遷移金属を示し、 Zはハロゲン 原子、置換されていてもよいアルキルスルホニルォキシ基、置換されていてもよいァリ 一ルスルホニルォキシ基、または、置換されていてもよいァラルキルスルホ二ルォキ シ基を示し、 Yは酸素原子、置換されていてもよいアルキルスルホニルアミド基、置換 されていてもよいァリールスルホニルアミド基、または、置換されていてもよいァラルキ ルスルホニルアミド基を示す。)で示される光学活性アミン錯体、及び、水素または水 素供与性化合物存在下、一般式 (2);
[化 2]
Figure imgf000043_0002
(式中、 R4は水素原子、置換されていてもよい炭素数 1〜21のアルキル基、置換され て!/、てもよ!/、炭素数 2〜21のアルケニル基、置換されて!/、てもよ!/、炭素数 2〜21の アルキニル基、置換されていてもよい炭素数 7〜20のァラルキル基、または、置換さ れて!/、てもよ!/、炭素数 6〜20のァリール基を示し、 R5は置換されて!/、てもよ!/、炭素数 ;!〜 10のァノレキノレ基、置換されていてもよい炭素数 7〜20のァラルキル基、または、 置換されていてもよい炭素数 6〜20のァリール基を示し、 R6、 R7はそれぞれ同一また は異なっていてもよぐ水素原子、置換されていてもよい炭素数 1〜; 10のアルキル基 、置換されていてもよい炭素数 7〜20のァラルキル基、置換されていてもよい炭素数 6〜20のァリール基、置換されていてもよい炭素数 1〜40のァシル基、または、ァミノ 保護基を示す。また、 R6と R7は隣接する窒素原子と一緒になつて複素環を形成して もよい。)で示される /3—ケトー α—ァミノカルボン酸エステルの不斉還元反応を行う ことを特徴とする、下記一般式 (3)または一般式 (4);
[化 3]
Figure imgf000044_0001
(式中、 *は不斉炭素原子であることを示し、 R4、 R5、 R6及び R7は前記と同じ。)で示 される光学活性 /3—ヒドロキシー α—ァミノカルボン酸エステルの製造方法。
[2] 水素供与性化合物として、ギ酸を使用する請求項 1に記載の製造方法。
[3] 反応の際、塩基を共存させることを特徴とする請求項 1または 2に記載の製造方法
[4] 一般式 (5) ;
[化 5]
Figure imgf000044_0002
(式中、 R5は置換されていてもよい炭素数 1〜; 10のアルキル基、置換されていてもよ い炭素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリ 一ル基を示し、 R6、 R7はそれぞれ同一または異なっていてもよぐ水素原子、置換さ れて!/、てもよ!/、炭素数 1〜; 10のアルキル基、置換されて!/、てもよ!/、炭素数 7〜20の ァラルキル基、置換されていてもよい炭素数 6〜20のァリール基、置換されていても よい炭素数 1〜40のァシル基、または、ァミノ保護基を示す。また、 R6と R7は隣接する 窒素原子と一緒になつて複素環を形成してもょレ、。 )で示されるグリシン誘導体と一般 式 (6) ;
[化 6]
Figure imgf000045_0001
(式中、 Xはハロゲン原子、置換されていてもよいァシルォキシ基、置換されていても よ!/、アルキルォキシカルボニルォキシ基、置換されて!/、てもよ!/、スルホニルォキシ基 、置換されていてもよいアルキルォキシ基、置換されていてもよいァリールォキシ基、 または、置換されていてもよいイミダゾール基を示し、 R4は水素原子、置換されていて もよ!/、炭素数 1〜21のアルキル基、置換されて!/、てもよ!/、炭素数 2〜21のアルケニ ル基、置換されていてもよい炭素数 2〜21のアルキニル基、置換されていてもよい炭 素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリール 基を示す。)で示されるカルボン酸誘導体を、ルイス酸及びアミン存在下で反応させ ることを特徴とする一般式 (2) ;
[化 7]
Figure imgf000045_0002
(式中、 R4、 R5, R。および R7は前記に同じ)で示される /3—ケトー α—ァミノカルボン 酸エステルの製造方法。 [5] ルイス酸が四塩化チタンである請求項 4記載の製造方法。
[6] R4が置換されていてもよい炭素数;!;!〜 21のアルキル基、置換されていてもよい炭 素数 1 1〜21のアルケニル基または置換されて!/、てもよ!/、炭素数 1;!〜 21のアルキニ ル基である請求項 4または 5記載の製造方法。
[7] 反応を— 40°C以上で実施することを特徴とする請求項 4から 6のいずれかに記載 の製造方法。
[8] 請求項 4〜7のいずれかに記載の製造方法で得られた前記式(2)で表される /3— ケトー α—ァミノカルボン酸エステルを、光学活性ホスフィン配位子を有する遷移金 属錯体を触媒として、不斉水素化反応を行い、必要に応じて 3位水酸基の立体配置 を反転させることを特徴とする、前記式(3)または(4)で表される光学活性 /3—ヒドロ キシー α—ァミノカルボン酸エステルの製造方法。
[9] 請求項 4〜7のいずれかに記載の製造方法で得られた前記式(2)で表される /3— ケトー α—ァミノカルボン酸エステルを用いることを特徴とする請求項 1〜3のいずれ かに記載の製造方法。
[10] 請求項 1、 2、 3、 8または 9記載の製造方法で製造した前記式(3)または (4)で示さ れる光学活性 /3—ヒドロキシー α—ァミノカルボン酸エステルのエステル部位を還元 し、必要に応じてァミノ置換基をァシル基に変換することを特徴とする下記一般式(7 )または一般式(8) ;
[化 8]
Figure imgf000046_0001
[化 9]
(8)
Figure imgf000046_0002
(式中、 *は不斉炭素原子を示し、 R4は前記と同じ。 R8は置換されていてもよい炭素 数;!;!〜 40のアルキル基またはアルカノィル基を示す。)で示される光学活性 2—アミ ノー 1 , 3—ジオール誘導体の製造方法。
[11] エステル部位を還元する還元剤が水素化ホウ素ナトリウムである請求項 10記載の 製造方法。
[12] ルイス酸を共存させ還元することを特徴とする請求項 11記載の製造方法。
[13] ルイス酸が塩化カルシウムである請求項 12記載の製造方法。
[14] 一般式(15) ;
[化 10]
Figure imgf000047_0001
(式中、 R5は置換されていてもよい炭素数 1〜; 10のアルキル基、置換されていてもよ い炭素数 7〜20のァラルキル基、または、置換されていてもよい炭素数 6〜20のァリ 一ル基を示す。)で示される 0ーケトー α—ステアロイルアミノォクタデカン酸エステ ル。
PCT/JP2007/068629 2006-09-26 2007-09-26 Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif WO2008041571A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/311,325 US8207370B2 (en) 2006-09-26 2007-09-26 Process for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
EP07828402A EP2067769A1 (en) 2006-09-26 2007-09-26 Process for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
JP2008537482A JP5274256B2 (ja) 2006-09-26 2007-09-26 光学活性β−ヒドロキシ−α−アミノカルボン酸エステルの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-261107 2006-09-26
JP2006261107 2006-09-26
JP2006-314035 2006-11-21
JP2006314035 2006-11-21

Publications (1)

Publication Number Publication Date
WO2008041571A1 true WO2008041571A1 (fr) 2008-04-10

Family

ID=39268433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068629 WO2008041571A1 (fr) 2006-09-26 2007-09-26 Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif

Country Status (4)

Country Link
US (1) US8207370B2 (ja)
EP (1) EP2067769A1 (ja)
JP (1) JP5274256B2 (ja)
WO (1) WO2008041571A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065867A1 (en) * 2011-10-31 2013-05-10 Takasago International Corporation METHOD FOR PRODUCING OPTICALLY ACTIVE β-HYDROXY-α-AMINOCARBOXYLIC ACID ESTER
WO2013094108A1 (ja) * 2011-12-22 2013-06-27 高砂香料工業株式会社 高純度セラミド類の製造方法
WO2014177977A1 (en) 2013-05-02 2014-11-06 Pfizer Inc. Imidazo-triazine derivatives as pde10 inhibitors
JP2016515142A (ja) * 2013-03-14 2016-05-26 アヴァンティ ポーラー リピッズ, インコーポレイテッドAvanti Polar Lipids, Inc. 新規化合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2805031A1 (en) * 2010-07-07 2012-01-12 Biodel, Inc. Compositions and methods for modulating the pharmacokinetics and pharmacodynamics of insulin
CN112441864B (zh) * 2019-08-30 2023-03-28 凯特立斯(深圳)科技有限公司 一种hiv蛋白酶抑制剂中间体化合物的合成方法
CN112759535B (zh) * 2019-11-01 2024-04-05 广东东阳光药业股份有限公司 一种pf-06651600中间体的制备方法
CN113354554B (zh) * 2021-07-07 2022-10-11 浙江工业大学 一种(2R,3S)-β′-羟基-β-氨基酸酯类衍生物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680617A (ja) * 1992-09-01 1994-03-22 Takasago Internatl Corp 光学活性ジヒドロスフィンゴシン類の製造方法
JP2733583B2 (ja) 1993-10-04 1998-03-30 クエスト・インターナショナル・ビー・ブイ セラミドの製造方法
WO2005005371A1 (ja) 2003-07-10 2005-01-20 Nissan Chemical Industries, Ltd. 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法
WO2005069930A2 (en) 2004-01-15 2005-08-04 The Penn State Research Foundation Asymmetric hydrogenation of alpha-amino carbonyl compounds
JP2006182681A (ja) * 2004-12-27 2006-07-13 Nippon Synthetic Chem Ind Co Ltd:The 光学活性な(2R,3R)−3−置換−D−セリン誘導体の製造方法、新規なオキサゾール化合物、及び新規なβ−ケトアミノ酸誘導体有機酸塩

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7504508B2 (en) * 2002-10-04 2009-03-17 Millennium Pharmaceuticals, Inc. PGD2 receptor antagonists for the treatment of inflammatory diseases

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680617A (ja) * 1992-09-01 1994-03-22 Takasago Internatl Corp 光学活性ジヒドロスフィンゴシン類の製造方法
JP2976214B2 (ja) 1992-09-01 1999-11-10 高砂香料工業株式会社 光学活性ジヒドロスフィンゴシン類の製造方法
JP2733583B2 (ja) 1993-10-04 1998-03-30 クエスト・インターナショナル・ビー・ブイ セラミドの製造方法
WO2005005371A1 (ja) 2003-07-10 2005-01-20 Nissan Chemical Industries, Ltd. 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法
WO2005069930A2 (en) 2004-01-15 2005-08-04 The Penn State Research Foundation Asymmetric hydrogenation of alpha-amino carbonyl compounds
JP2006182681A (ja) * 2004-12-27 2006-07-13 Nippon Synthetic Chem Ind Co Ltd:The 光学活性な(2R,3R)−3−置換−D−セリン誘導体の製造方法、新規なオキサゾール化合物、及び新規なβ−ケトアミノ酸誘導体有機酸塩

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Synthesis", 1999, WILEY-INTERSCIENCE
BARBARA M. ET AL.: "Highly enantioselective synthesis via dynamic kinetic resolution under transfer hydrogenation using Ru(eta6-arene)-N-perfluorosulfonyl-1,2-diamine catalysts: a first insight into the relationship of the ligand's pKa and the catalyst activity", CHEM. COMMUN., no. 24, 2001, pages 2572 - 2573, XP002270702 *
HAACK K.J. ET AL.: "The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between Alcohols and Ketones", ANGEW. CHEM. INT. ED. ENGL., vol. 36, no. 3, 1997, pages 285 - 288, XP009046847 *
RYOJI N. ET AL.: "Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes", ACC. CHEM. RES., vol. 30, no. 2, 1997, pages 97 - 102, XP002474775 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065867A1 (en) * 2011-10-31 2013-05-10 Takasago International Corporation METHOD FOR PRODUCING OPTICALLY ACTIVE β-HYDROXY-α-AMINOCARBOXYLIC ACID ESTER
JP2015501282A (ja) * 2011-10-31 2015-01-15 高砂香料工業株式会社 光学活性β−ヒドロキシ−α−アミノカルボン酸エステルの製造方法
WO2013094108A1 (ja) * 2011-12-22 2013-06-27 高砂香料工業株式会社 高純度セラミド類の製造方法
CN103974930A (zh) * 2011-12-22 2014-08-06 高砂香料工业株式会社 高纯度神经酰胺类的制造方法
US9079826B2 (en) 2011-12-22 2015-07-14 Takasago International Corporation Method for producing high-purity ceramide
JP2016515142A (ja) * 2013-03-14 2016-05-26 アヴァンティ ポーラー リピッズ, インコーポレイテッドAvanti Polar Lipids, Inc. 新規化合物
WO2014177977A1 (en) 2013-05-02 2014-11-06 Pfizer Inc. Imidazo-triazine derivatives as pde10 inhibitors

Also Published As

Publication number Publication date
JP5274256B2 (ja) 2013-08-28
JPWO2008041571A1 (ja) 2010-02-04
EP2067769A1 (en) 2009-06-10
US20100022795A1 (en) 2010-01-28
US8207370B2 (en) 2012-06-26

Similar Documents

Publication Publication Date Title
WO2008041571A1 (fr) Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif
Malkov et al. Organocatalysis with a fluorous tag: asymmetric reduction of imines with trichlorosilane catalyzed by amino acid-derived formamides
Vishwanatha et al. Synthesis of β-lactam peptidomimetics through Ugi MCR: first application of chiral Nβ-Fmoc amino alkyl isonitriles in MCRs
CN108794357B (zh) 一种n-二氟甲基腙类化合物及其合成方法
Fustero et al. Nitrogen-containing organofluorine derivatives: an overview
CN113214180B (zh) 一锅两步合成光学活性苯并羧酸酯类化合物的方法
CN113200933B (zh) 不对称加成反应合成光学活性苯并羧酸酯类化合物的方法
JP5548129B2 (ja) 不斉有機触媒
Alimardanov et al. Practical enantioselective synthesis of a 3-aryl-3-trifluoromethyl-2-aminopropanol derivative
Smitha et al. ZrCl4-catalyzed aza-Michael addition of carbamates to enones: Synthesis of Cbz-protected β-amino ketones
CN102381988B (zh) 利伐斯的明的中间体化合物的制备方法及中间体化合物
CN113896662A (zh) 一种氨基环丙烷羧酸类化合物及其制备方法和应用
EP4186882A1 (en) Method for producing optically active compound
JP4308155B2 (ja) δ−イミノマロン酸誘導体の製造方法、及びそのための触媒
Eagles et al. Synthesis of d-camphor based γ-amino acid (1S, 3R)-3-amino-2, 2, 3-trimethylcyclopentane carboxylic acid
US8524913B2 (en) Process for production of α-trifluoromethyl-β-substituted-β-amino acid
JP3140698B2 (ja) 4−ヒドロキシ−2−ピロリジノンの製造方法ならびに精製方法
WO2004103990A1 (ja) 光学活性n-モノアルキル-3-ヒドロキシ-3-アリールプロピルアミン類の製造方法および中間体
JP5704763B2 (ja) トランス−4−アミノシクロペンタ−2−エン−1−カルボン酸誘導体の製造
US7659424B2 (en) Process for the allylation of n-acylhydrazones
JP2008115178A (ja) ジフェニルアラニン−Ni(II)錯体の製造方法
WO2009098935A1 (ja) 光学活性1-(2-トリフルオロメチルフェニル)エタノールの精製方法
CN116554056A (zh) 一种具有多官能团化的环己烷化合物及其制备方法
JP2005232103A (ja) 光学活性なビシナルジアミンおよびその製造方法
WO2011062139A1 (ja) 光学活性3-tert-ブトキシカルボニルアミノ-2-フルオロ-1-プロパノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008537482

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2007828402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12311325

Country of ref document: US

Ref document number: 2007828402

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE