WO2008038733A1 - Révélateur liquide, procédé de production de celui-ci et procédé de production d'affichage - Google Patents

Révélateur liquide, procédé de production de celui-ci et procédé de production d'affichage Download PDF

Info

Publication number
WO2008038733A1
WO2008038733A1 PCT/JP2007/068866 JP2007068866W WO2008038733A1 WO 2008038733 A1 WO2008038733 A1 WO 2008038733A1 JP 2007068866 W JP2007068866 W JP 2007068866W WO 2008038733 A1 WO2008038733 A1 WO 2008038733A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
liquid developer
thermoplastic resin
core particles
core
Prior art date
Application number
PCT/JP2007/068866
Other languages
English (en)
French (fr)
Inventor
Keita Ishii
Yasushi Shinjo
Hirofumi Takemura
Katsuyuki Aoki
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to JP2008536431A priority Critical patent/JP5091868B2/ja
Priority to EP07828612A priority patent/EP2077468A1/en
Priority to US12/054,705 priority patent/US20080248413A1/en
Publication of WO2008038733A1 publication Critical patent/WO2008038733A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/122Developers with toner particles in liquid developer mixtures characterised by the colouring agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/13Developers with toner particles in liquid developer mixtures characterised by polymer components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/12Developers with toner particles in liquid developer mixtures
    • G03G9/135Developers with toner particles in liquid developer mixtures characterised by stabiliser or charge-controlling agents
    • G03G9/1355Ionic, organic compounds

Definitions

  • Liquid developer method for producing the same, and method for producing a display device
  • the present invention relates to a method for manufacturing a display device such as a plasma display and a field “emission” display, a liquid developer used therefor, and a method for manufacturing a liquid developer.
  • a photolithography technique has played a central role as a technique for forming a fine pattern on the surface of a substrate.
  • this photolithography technology increases its resolution and performance, it requires huge and expensive manufacturing equipment, and the manufacturing cost is increasing according to the resolution.
  • electrophoretic techniques using liquid toner have excellent possibilities with regard to low price, high resolution, and high productivity.
  • a technique for forming a phosphor layer of a front substrate for a flat panel display using such an electrophoresis technique has been proposed.
  • a resin composed of a core part insoluble or swollen in the insulating solvent and an outer edge part swollen or dissolved in the insulating solvent is used as the resin component for the phosphor toner.
  • a dispersant and a charge control agent are added in order to impart particle dispersion and chargeability in the electrodeposition liquid.
  • a metal compound when used as the charge control agent, it is necessary to consider the influence on the host characteristics. Above all, it is used for phosphor screens such as cathode ray tube (CRT) and field emission display (field emission display; FED)! These transition metals are known to be so-called killer materials that degrade the light emission characteristics by entering the light emission sites of the ZnS matrix. For image display devices, it is important to increase the brightness and life of phosphors, so degradation of light emission characteristics is a fatal problem. Therefore, since the material as the charge control agent is limited, sufficient electrophoretic properties as a liquid developer cannot be obtained, and high-accuracy patterning by the electrophoresis technique is difficult. Disclosure of the invention
  • the present invention has been made in order to solve such problems, and the object thereof is a liquid developer that has excellent chargeability and dispersibility, and can form a toner layer with high resolution and high accuracy. Is to provide.
  • the present invention firstly provides an electrically insulating solvent
  • a liquid developer is provided.
  • the second aspect of the present invention is the step of performing silane coupling treatment on the surface of the core particles having an average particle diameter of 1 to 10 m to form a silane coupling treatment layer.
  • a method for producing a liquid developer is provided.
  • the present invention provides a step of forming a light shielding layer having a plurality of frame-like or stripe-like patterns on a transparent substrate,
  • An electrically insulating solvent a core particle contained in the electrically insulating solvent and having an average particle diameter of 1 to 10 m, a silane coupling treatment layer provided on the surface of the nucleus particle, and a silane force coupling treatment layer.
  • a liquid developer comprising a thermoplastic resin fine particle coating layer provided on the surface of the core particles, and toner particles containing a charge control agent added to the surface of the core particles coated with the thermoplastic resin particles.
  • a manufacturing method of a display device comprising: a transfer process for forming a phosphor layer in a region; and a front substrate forming process including a step of forming a metal back layer on the phosphor layer. A manufacturing method is provided.
  • the present invention provides:
  • thermoplastic resin particles Added as a charge control agent to the core particles, the coating layer of the thermoplastic resin particles provided on the surface of the core particles, and the surface of the core particles coated with the thermoplastic resin particles, contained in the electrically insulating solvent. And a toner particle containing an organometallic compound containing at least one lanthanoid metal prepared.
  • the present invention provides an electrically insulating solvent
  • the core particles made of ZnS-based phosphor contained in the electrically insulating solvent, the coating layer of the thermoplastic resin fine particles provided on the surface of the core particles, and the surface of the core particles coated with the thermoplastic resin fine particles are charged.
  • a liquid developer comprising toner particles containing a metal compound containing at least one Group 2A and Group 3A metal added as a control agent.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of toner particles in a liquid developer according to the present invention.
  • FIG. 2 is a flow diagram of a method for producing a liquid developer according to the present invention.
  • FIG. 3 is an external view showing an example of a pattern forming apparatus used in a front substrate forming process.
  • FIG. 4A is a plan view showing an original plate used in the pattern forming apparatus in FIG. 3.
  • FIG. 4A is a plan view showing an original plate used in the pattern forming apparatus in FIG. 3.
  • FIG. 4B is a cross-sectional view showing an original plate used in the pattern forming apparatus of FIG.
  • FIG. 5 is a partially enlarged plan view showing a partially enlarged version of the original plate in FIG. 4A.
  • FIG. 6 is a partially enlarged perspective view for explaining the structure of one concave portion of the original plate in FIG. 4B.
  • FIG. 7 is a schematic view showing a state in which the original plate of FIG. 4A is wound around a drum base tube.
  • FIG. 8 is a schematic view showing a configuration for charging the surface of the high-resistance layer of the original plate in FIG. 4B.
  • Fig. 9 shows the pattern of toner particles formed by supplying liquid developer to the original plate in Fig. 4A. It is the schematic which shows the structure for doing.
  • FIG. 10 is a schematic diagram showing a configuration for transferring a pattern formed on the original plate of FIG. 4A to a glass plate.
  • FIG. 11 is a schematic view showing a configuration of a main part of a rolling mechanism for rolling the original plate of FIG. 4A along the glass plate.
  • FIG. 12 is an operation explanatory diagram for explaining the operation of transferring the toner particles collected in the concave portion of the original plate to the glass plate.
  • FIG. 13 is a cross-sectional view schematically showing an example of the front substrate that is effective in the present invention.
  • FIG. 14 is a perspective view showing an example of an FED as a display device according to the present invention.
  • FIG. 15 is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 16 is a schematic diagram showing an example of an experimental apparatus that can be used in the present invention.
  • FIG. 17 is a schematic view showing an example of an experimental apparatus for forming a toner layer using a liquid developer.
  • FIG. 18 is an SEM photograph showing the surface structure of toner particles.
  • FIG. 19 is an SEM photograph showing the surface structure of toner particles.
  • FIG. 20 is a model diagram for explaining an example of the configuration of toner particles contained in the liquid developer of the present invention.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of toner particles in the liquid developer according to the present invention.
  • FIG. 22 is a schematic diagram showing the configuration of a sample for measuring the light emission characteristics.
  • FIG. 23 is a graph showing the light emission luminance of phosphor screens formed using various liquid developers.
  • FIG. 24 is a graph showing the relationship between the amount of electron beam irradiation on the phosphor screen formed using various liquid developers and the light emission luminance.
  • FIG. 25 is a graph showing the light emission luminance of the phosphor screen formed using various liquid developers.
  • FIG. 26 is a graph showing the relationship between the amount of electron beam irradiation on the phosphor screen formed using various liquid developers and the light emission luminance.
  • the present invention has the following five inventions.
  • the liquid developer according to the first invention includes an electrically insulating solvent and toner particles.
  • the toner particles include a core particle, a silane coupling treatment layer provided on the surface of the nucleus particle, a coating layer in which thermoplastic resin fine particles are coated on the core particle, and a silane coupling treatment layer.
  • the charge control agent added on the coating layer has a particle size of 1 to 10 m.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of toner particles in the liquid developer according to the present invention.
  • the toner particle 60 has a coating layer formed by attaching resin fine particles 63 to the core particle 61 having the silane coupling treatment layer 2 on the surface via the silane coupling treatment layer 62. Has been.
  • the coating layer covers at least a part of the toner particle surface.
  • the liquid developer according to the first invention can be manufactured with the force S that is produced by the method for producing a liquid developer according to the first invention.
  • the core particles are pre-treated with a silane coupling agent in advance, and heated in an electrically insulating solvent together with the core particles at a temperature not higher than the boiling point of the insulating solvent. While stirring, thermoplastic resin fine particles are adhered to the surface of the core particles through the silane coupling treatment layer. Subsequently, the charge control agent is added to the core particles coated with the thermoplastic resin fine particles by applying the charge control agent to the electrically insulating solvent containing the core particles coated with the thermoplastic resin fine particles.
  • FIG. 2 shows a flowchart of the method for producing a liquid developer of the present invention.
  • a silane coupling agent is added to the core particles, and a silane coupling process is performed on the core particle surfaces (ST1).
  • an electrically insulating solvent and thermoplastic resin fine particles are added to the silane-coupled core particles, and the mixture is stirred while being heated at a temperature equal to or lower than the boiling point of the electrically insulating solvent.
  • the thermoplastic resin fine particles are adhered to the surface of the core particles through the silane coupling agent to form a thermoplastic resin fine particle coating layer (ST2).
  • electric charge is contained in an electrically insulating solvent containing core particles coated with thermoplastic resin particles.
  • Add control agent (ST3). In this way, a liquid developer that is effective for the first invention can be obtained.
  • thermoplastic resin fine particles are difficult to adhere to the surface of the core particles.
  • the core particles are surface-treated with a silane coupling agent in advance, so that the silane coupling treatment layer makes the core particles and the thermoplastic resin fine particles have an affinity so as to act as a binder.
  • the thermoplastic resin fine particles can uniformly adhere to the core particles. For this reason, in the present invention, it is not necessary to apply another binder such as wax to the surface of the core particles.
  • the chargeability of the toner particles tends to decrease due to the wax that has oozed out on the surface of the toner particles.
  • the thermoplastic resin fine particles are uniformly present on the surface of the toner particles, so that the chargeability is remarkably improved.
  • a complicated operation is performed simply by pouring a raw material into a container capable of containing a solvent and basically performing a temperature operation and a stirring operation.
  • a liquid developer can be produced without any problem.
  • the method of the present invention is simple and low-cost without requiring a large and complicated apparatus.
  • thermoplastic resin fine particles By controlling the coating amount of the thermoplastic resin fine particles on the core particles surface-treated with the silane coupling agent, the adsorptivity of the charge control agent to the toner particles can be controlled, and the charging property can be adjusted. Controlling the coating amount of the thermoplastic resin fine particles can also adjust the adhesiveness and cohesion of the toner particles.
  • the concentration of an aqueous solution of a silane coupling agent or an aqueous alcohol solution that performs uniform surface treatment on the core particles, and an aqueous acetic acid solution of about ⁇ 4 can be 0.01% to 5% by weight.
  • the weight ratio of the toner particles to the insulating solvent is 2:98!
  • weight ratio is out of the above range, a large amount of solvent is required to obtain a predetermined film thickness, or toner particles adhere other than the pattern to be formed, which causes contamination. There is a tendency to.
  • the charge control agent can be added in an amount of 1 part by weight to the toner particles and 50 parts by weight with respect to the core particles.
  • the amount of the thermoplastic resin fine particles added is relative to the core particles.
  • the amount of the thermoplastic resin fine particles added is less than 5% by volume with respect to the core particles, the amount of the thermoplastic resin that adheres is too small, so the probability that the core particles are exposed increases, and the adsorptivity of the charge control agent and This tends to make it difficult to control the chargeability of the toner particles.
  • the thermoplastic resin cannot adhere to the core particles and tends to aggregate freely in the solution. In this case, even if a charge control agent or the like is added to give a charge to the toner particles, the toner particles tend to be adsorbed to the free thermoplastic resin and inhibit the charging characteristics of the toner particles.
  • the amount of the thermoplastic resin fine particles added can be 10% by volume or more and 150% by volume or less with respect to the core particles.
  • the charge control agent is less than 1 part by weight with respect to the toner particles, the amount of toner charge is insufficient, so that the electrodeposition film flows or the toner particles adhere to areas other than the part where the film should be formed. Tend to cause contamination.
  • the amount exceeds 50 parts by weight the amount of ionic components in the developer becomes excessive, and the resistance of the developer as a whole becomes too low, so that the electrophoretic properties of the toner particles tend to decrease.
  • Examples of the core particles include phosphor particles and colorants such as inorganic pigments.
  • Phosphors usable in the present invention include: YO: Eu: YVO: Eu, (Y, Gd) BO: Eu, YOS: Eu, ⁇ -Zn (PO): Mn, (ZnCd) S: Ag + InO (above red), Zn GeO:
  • Y A10 Tb
  • ZnO Zn (more green)
  • Sr (PO) CI Eu
  • BaMgAlO Eu
  • inorganic pigments examples include natural pigments such as ocher, chrome lead such as chrome lead, zinc yellow, norium yellow, chrome orange, molybdenum red, chrome green, and bitumen.
  • Ferrocyan compounds titanium oxide, titanium yellow, titanium white, bengara, yellow iron oxide, zinc oxide, zinc ferrite, zinc white, iron black, cobalt blue, chromium oxide, spinel green and other oxides, cadmium yellow, cadmium orange And sulfides such as force dome red, sulfates such as barium sulfate, silicates such as calcium silicate and ultramarine, metal powders such as bronze and aluminum.
  • the charge control agent usable in the liquid developer of the present invention is at least one selected from the group consisting of a metal sarcophagus, a surfactant, and a metal alkoxide.
  • metal stalagmites include copper naphthenate, cobalt naphthenate, nickel naphthenate, iron naphthenate, zinc naphthenate, zirconium octylate, mono-octylate, nickel octylate, zinc octylate, and dodecylic acid.
  • sulfonic acid metal salts such as cobalt, nickel dodecylate, zinc dodecylate, cobalt 2-ethylhexanoate, metal salts of petroleum sulfonates and metal salts of sulfosuccinates.
  • surfactants that can be used in the liquid developer of the present invention include sodium alkylbenzene sulfonate, calcium alkylbenzene sulfonate, sodium dioctyl sulfonate, calcium dioctyl sulfonate, and sodium dodecyl sulfate. 1 sodium octanesulfonate, di-2-ethylhexyl sulfone succinate, and the like.
  • examples of the metal alkoxide that can be used in the liquid developer of the present invention include titanium tetraisopropoxide, titanium tetra n butoxide, tetrastearyl titanate and the like.
  • the electrically insulating solvent used in the liquid developer of the present invention is , Having a boiling point in the temperature range of 70-250 ° C., having a volume resistivity of 10 9 Q ′ cm or more, or 10 1 () to 10 17 ⁇ ′ cm and a dielectric constant of less than 3.
  • Examples of such electrically insulating solvents include aliphatic hydrocarbons such as n-pentane, hexane and heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, chlorinated anolecan, and fluorine.
  • aliphatic hydrocarbons such as n-pentane, hexane and heptane
  • alicyclic hydrocarbons such as cyclopentane and cyclohexane
  • chlorinated anolecan and fluorine.
  • Halogenated hydrocarbon solvents such as fluorinated alkanes and black fluorocarbons, silicone oils and mixtures thereof can be used.
  • Isopar G (registered trademark), Isopar H (registered trademark), Isopar K (registered trademark), Isopar L (registered trademark), Isopar M (registered trademark) and Isopar V (registered trademark) manufactured by Exxon Corporation
  • the following branched paraffin solvent mixtures can be used.
  • thermoplastic resin fine particles used in the liquid developer of the present invention can be produced, for example, using a polymerization method represented by a suspension conformation method or an emulsion polymerization method.
  • the thermoplastic resin fine particles can have a force S having an average particle diameter of 0.3 ⁇ m ⁇ ⁇ ⁇ m.
  • thermoplastic resin fine particles for example, acrylic fine particles obtained as dried powder having a primary average particle diameter of about 0.1 ⁇ 111 to 5 m can be used. Even if it is not in the form of fine particles, it is physically pulverized by a granulated or pelletized thermoplastic resin such as acrylic resin, polyester resin, polyamide resin, nylon resin, etc., or by a fine grinder. Can be used.
  • a granulated or pelletized thermoplastic resin such as acrylic resin, polyester resin, polyamide resin, nylon resin, etc.
  • both amphiphilic resins having both hydrophilic and hydrophobic sites are non-aqueous dispersion resins (NAD) obtained in a state of being dispersed in an insulating solvent, for example.
  • NAD non-aqueous dispersion resins
  • a first polymer chain made of a bull polymer soluble in an electrically insulating medium liquid and a second polymer chain made of a bull polymer insoluble in the medium liquid are bonded to each other via an ester bond.
  • a non-gelled raft polymer having a molecular structure insoluble in the above-mentioned medium solution as a whole molecule for example, 200 parts of isooctane heated to a temperature of 90 ° C, 100 parts of dodecyl methacrylate and glycidinoremethacrylate 15 parts, 5 parts of azobisisobutyronitrile 5 parts
  • CH C (CH) COOCH CH OOCCH CH COOH 20 parts, lauryl
  • Non-aqueous resin dispersions with a particle size of 0.5 ⁇ 1 to 1 m obtained by dissolving the contents by heating to 80 to 90 ° C and quenching.
  • one having a molecular structure in which the first polymer chain and the second polymer chain are bonded to each other via a urethane bond for example, 96.3 g of 2-ethylhexyl methacrylate, hydroxypropyl methacrylate Mouth pill 3.7g, polymerization catalyst perbutyl D (trade name) (manufactured by NOF Corporation) 2.5g, and polymerization catalyst perbutyl G (trade name) (manufactured by NOF Corporation) 1.5g (Sosol Petroleum Co., Ltd.) was added dropwise to 100 g over 4 hours, stirred for 3 hours after the addition was completed, the temperature was lowered to 70 ° C, isophorone diisocyanate 5 ⁇ 7 g, dibutyltin dilaurate 0.04 g H5.7 Add 7 g and perform urethanization reaction at 70 ° C for 8 hours.
  • a urethane bond for example, 96.3 g of 2-ethylhexyl methacrylate
  • the liquid developer of the present invention has good electrical conductivity and is very excellent in chargeability and electrophoretic properties.
  • the phosphor layer and the color filter layer of the flat image display device can be easily formed.
  • a phosphor layer it is possible to use a phosphor as a core particle.
  • an inorganic pigment colorant or the like can be used as the core particle.
  • a method for manufacturing a flat-type image display device includes a process for forming a front substrate.
  • the process of forming the front substrate is:
  • the liquid developer according to the present invention is supplied to the surface of the image carrier through a supply member, and an electric field is formed between the supply member and the image carrier to form a dot or stripe pattern on the surface of the image carrier.
  • a development process for forming an image is supplied to the surface of the image carrier through a supply member, and an electric field is formed between the supply member and the image carrier to form a dot or stripe pattern on the surface of the image carrier.
  • An electric field is formed between the rolling image carrier and the transparent substrate, the pattern image on the surface of the image carrier is transferred to the transparent substrate, and the phosphor layer is formed in each region on the transparent substrate partitioned by the light shielding layer. And a transfer step of forming a metal back layer on the phosphor layer.
  • the film thickness of the phosphor layer and the color filter layer of the obtained display device can be controlled by adjusting the composition and concentration of the liquid developer.
  • the image carrier may have a patterned electrode layer for forming a pattern image on the surface thereof.
  • the phosphor layer and the color filter layer can be easily and inexpensively patterned into any shape.
  • FIG. 3 is an external view showing an example of a pattern forming apparatus used in the front substrate forming process.
  • the pattern forming apparatus 10 includes an original 1 (image holding member) wound around a peripheral surface of a drum base tube (described later) that rotates in a clockwise direction (arrow R direction) in the figure. ), A charger 2 that charges the high-resistance layer, which will be described later, to charge the original plate 1, and a liquid developer of each color (r: red, g: green, b: blue) is supplied to the original plate 1 for development.
  • development apparatus 3r, 3g, 3b (hereinafter sometimes collectively referred to as development apparatus 3), and a dryer 4 that vaporizes and drys the solvent component of the liquid developer adhering to the original plate 1 by development by air blow ( Dryer), stage 6 (holding mechanism) that holds glass plate 5 as a transparent substrate to be a transfer medium for transferring the developer particles attached to original plate 1 to form a pattern, in place, prior to transfer Application device 7 (wetting) that applies a high-resistance or insulating solvent to the surface of the glass plate 5.
  • Application device 7 wetting
  • Device a cleaner 8 that cleans the original plate 1 having been subjected to transfer, and discharger for removing charge of the original 1 9
  • the liquid developer stored in the developing devices 3r, 3g, and 3b for each color contains toner particles that are charged in an insulating solvent, and the fine particles are electrophoresed in an electric field to develop the liquid developer.
  • the toner particles include a core particle, a silane coupling treatment layer provided on the surface of the nucleus particle, a coating layer in which a thermoplastic resin fine particle is coated on the core particle, and a coating layer via the silane coupling treatment layer. And a particle size of 1 to 10 m.
  • the core particles for example, phosphor particles of each color having an average particle size of about 4 ( ⁇ m), a configuration in which pigment fine particles of each color are encapsulated inside the resin particles, or pigment fine particles of each color are supported on the surface of the resin particles. Configuration etc. can be implemented.
  • the original plate 1 is formed in a rectangular thin plate shape. This original version
  • the high-resistance layer 13 is formed on the surface of a rectangular metal film 12 having a length of 0 ⁇ l (mm) to 0 ⁇ 2 (mm).
  • the metal film 12 is flexible and can be made of materials such as aluminum, stainless steel, titanium, and amber.
  • a metal film deposited on a surface such as polyimide or PET may be used. In order to form with high positional accuracy, it is desirable to use a material that does not easily cause thermal expansion or elongation due to stress.
  • the high resistance layer 13 is made of, for example, a material having a volume resistivity of 10 1Q (Q C m) or more (including an insulator) such as polyimide, acrylic, polyester, urethane, epoxy, Teflon (registered trademark), and nylon.
  • the film thickness may be, for example, 10 ( ⁇ m) to 40 (m), or 20 (m) ⁇ 5 (m).
  • a dot-like pattern 14 in which a large number of rectangular recesses 14a are arranged in alignment as shown in a partially enlarged view in FIG. .
  • a dot-like pattern 14 in which a large number of rectangular recesses 14a are arranged in alignment as shown in a partially enlarged view in FIG. .
  • the concave portion 14a corresponding to one color pixel is recessed from the surface 13a of the high resistance layer 13.
  • no recess is formed! /, And only a space is secured.
  • FIG. 6 shows a cross-sectional view of the original 1 in which one concave portion 14a is enlarged.
  • the surface 12a of the metal film 12 is exposed at the bottom of the recess 14a.
  • the exposed surface 12a of the film 12 functions as the patterned electrode layer of the present invention.
  • the depth of the recess 14 a substantially corresponds to the thickness of the high resistance layer 13.
  • the thickness of the entire surface of the original plate 1 including the surface 12a of the metal film 12 exposed at the bottom of the recess 14a and the surface 13a of the high resistance layer 13 is about 0.5 (m)! /, About 3 (am) If the surface release layer is coated, transfer characteristics are improved and better characteristics can be obtained.
  • FIG. 7 is a schematic cross-sectional view illustrating a state in which the film-shaped original plate 1 having the above structure is wound around the drum base tube 31.
  • a notch 31a in the upper part of the drum base tube 31 in the drawing is provided with a clamp 32 for fixing one end of the original 1 and a clamp 33 for fixing the other end.
  • FIG. 8 is a partial configuration diagram for explaining a process of charging the surface 13 a of the high resistance layer 13 of the original 1 wound around the drum base tube 31 by the charger 4 in this manner.
  • the charger 4 is a well-known corona charger, and it is possible to improve the charging uniformity by providing the force basically constituted by the corona wire 42 and the shield case 43 and the mesh-like grid 44.
  • the static eliminator 9 shown in the figure is not shown in order to apply, for example, an AC voltage having an effective voltage of 6 () and a frequency of 50 (Hz) to the force corona wire 46 having substantially the same structure as the charger 4. If the shield case 47 and grid 48 are installed by connecting to an AC power source, the surface 13a of the high resistance layer 13 of the original 1 can be removed to approximately 0 (V) prior to charging by the charger 4. The repeated charging characteristics of the high resistance layer 13 can be stabilized.
  • FIG. 9 is a diagram for explaining the developing operation for the original 1 charged as described above.
  • the developing unit 3 of the color to be developed is opposed to the original plate 1 and its developing roller 51 (supply member) and the squeeze roller 52 are brought close to the original plate 1 to supply the liquid imaging agent described above to the original plate 1.
  • the developing roller 51 is opposed to the surface 13a of the high resistance layer 13 of the original 1 being conveyed. About 100 to 150 m), and the circumferential surfaces of the plates 1 and 2 are arranged so that they face each other.
  • the direction of rotation of the original 1 is the same as the direction of rotation (counterclockwise in the figure). It rotates at the speed of.
  • the liquid developer 53 supplied to the peripheral surface of the developing roller 51 by a supply system (not shown) is configured by dispersing charged toner particles 55 as developer particles in a solvent 54 as an insulating liquid.
  • a voltage of, for example, +250 (V) is applied to the image roller 51 by a power supply device (not shown)
  • the positively charged toner particles 55 migrate in the solvent 54 toward the metal film 12 at the ground potential. And collected in the recess 14a of the original 1.
  • the surface 13a of the high resistance layer 13 is charged to about +500 (V)
  • the positively charged toner particles 55 are repelled from the surface 13a and do not adhere.
  • the liquid developer 53 having a low concentration of the toner particles 55 is subsequently applied to the gap where the squeeze roller 52 and the original 1 face each other.
  • the gap distance between the insulating layer 13 surface 13a and the squeeze roller 52 surface
  • the squeeze roller potential is +250 (V)
  • the squeeze roller Since 52 is set to move at a speed 3 to 5 times the speed of the original plate 1 in the opposite direction to the original plate 1, it further accelerates development while simultaneously adhering to the original plate 1.
  • the effect which squeezes a part of 56 is produced.
  • the pattern 57 by the toner is formed in the concave portion 14a of the original 1.
  • the developing device 3b containing the liquid developer containing the blue phosphor particles is the original plate 1. Move right below, not shown here! / The developer 3b is lifted by the lifting mechanism and brought close to the master 1. In this state, the original plate 1 rotates in the direction of arrow R, and the pattern formed by the recesses 14a is developed. When the development of the blue pattern is completed, the developing device 3b is lowered and separated from the original 1.
  • the coating device 7 is shown by a broken line in the drawing along the surface of the glass plate 5 that has been transported in advance by a transport device (not shown) and is held on the stage 6, and is separated from the stage 6. It moves in the direction of arrow T1, and a solvent (insulating liquid) is applied to the surface of the glass plate 5.
  • a solvent insulating liquid
  • the original plate 1 carrying the blue pattern on the peripheral surface moves while rotating along the broken line arrow in the figure (this operation is called rolling), and the blue pattern image becomes a glass plate 5 It is transferred to the surface. Details of the transfer will also be described later.
  • the original 1 that has finished transferring the blue pattern moves to the left in the figure and returns to the initial position during development. At this time, contact with the original plate 1 where the stage 6 holding the glass plate 5 descends and returns to the initial position is avoided.
  • the three-color developing devices 3r, 3g, 3b move to the left in the figure, and stop when the green developing device 3g is located immediately below the original plate 1.
  • the developer 3g is raised, displayed, and lowered.
  • the green pattern is transferred from the original 1 to the surface of the glass plate 5 by the same operation as described above.
  • it goes without saying that the transfer position on the surface of the glass plate 5 having the green pattern is shifted by one color from the blue pattern.
  • the above operation is repeated for red development, and three-color patterns are arranged and transferred on the surface of the glass plate 5 to form a three-color pattern image on the surface of the glass plate 5.
  • the glass plate 5 is held and fixed in a fixed position, and the original plate 1 is moved with respect to the glass plate 5, thereby eliminating the need for reciprocal movement of the glass plate 5. Increase in size can be suppressed.
  • FIG. 11 shows the structure of the main part of a rolling mechanism for rolling the above-described original plate 1 along the glass plate 5.
  • Gears 71 called pinions are attached to both ends in the axial direction of the drum base tube 31 around which the original plate 1 is wound on the peripheral surface.
  • the original plate 1 is rotated by meshing the gear 71 and the drive gear 73 of the motor 72, and at the same time, the linear track rack 74 and pinion (gear 71) installed at both ends of the stage 6 are meshed.
  • the structure of each part of the rolling mechanism is designed so that there is no relative displacement between the surface of the glass plate 5 held on the stage 6 and the surface of the original 1. .
  • the movement that moves in parallel along the glass plate 5 while rotating in this way is called rolling!
  • the glass plate 5 (not shown in FIG. 11) is placed on the stage 6 as shown in FIG.
  • the flat contact surface 6a is disposed on the stage 6 so that the substantially entire surface of the back surface 5b (the surface on the side away from the original 1) is in contact with the flat contact surface 6a.
  • a vacuum pump (not shown) is connected to the glass plate 5 via a main pipe 77 from a connection pipe 75 to an intake port 76 that extends through the stage 6 to the contact surface 6a.
  • a negative pressure is applied through a suction hole (not shown) that opens to the contact surface 6a of the port 76, and is sucked onto the contact surface 6a of the stage 6.
  • the glass plate 5 is brought into close contact with the contact surface 6a having high flatness by pressing almost the entire surface of the back surface 5b, and is held on the stage 6 with high flatness.
  • the glass plate 5 against the flat contact surface 6a in this way, distortion and the like of the glass plate 5 can be corrected, and a transfer gap between the original plate 1 described later can be maintained with high accuracy.
  • FIG. 12 is a cross-sectional view of a principal part for explaining a state when the toner particles 55 are transferred from the original 1 to the glass plate 5.
  • a conductive layer 81 made of, for example, a conductive polymer is applied to the surface 5a of the glass plate 5 having a light shielding layer (not shown).
  • the surface 81a of the conductive layer 81 and the high resistance layer 13 of the original 1 It is installed in a non-contact state with the surface 13a through a gap d2.
  • d2 is set to a value in the range of 10 m) to 40 m).
  • the thickness of the high resistance layer 13 is, for example, 20 m)
  • the distance between the metal film 12 and the surface 81a of the conductive layer 81 is 30 (m) 3 ⁇ 4V and 60 ( ⁇ m).
  • the prewetting solvent is good if it is insulative or has high resistance! /, But if the solvent is the same as the solvent used in the liquid developer or a charge control agent is added to this, it is still better. Is preferred. As described with reference to FIG. 10, the prewetting solvent is applied onto the surface 5 a of the glass plate 5 at an appropriate application amount by an application device 7 at an appropriate timing.
  • the toner particles 55 developed by rolling the original plate 1 with respect to the glass plate 5 arranged at a fixed position are transferred to the surface 5 a of the glass plate 5.
  • the structure of the rolling mechanism for rolling the master 1 can be reduced in size, and the installation space for the apparatus can be reduced.
  • the transfer method using the flexographic plate as in the prior art is used. In comparison, the resolution of the transferred image can be increased, and a highly precise pattern can be formed.
  • FIG. 13 is a cross-sectional view schematically showing the front substrate thus obtained.
  • the obtained front substrate 111 is provided in the form of a lattice around the transparent substrate 5, the phosphor layer 116 provided thereon in the form of dots, and the phosphor layer 116. And a light shielding layer 117.
  • FIG. 14 is a perspective view showing an example of an FED as a display device according to the present invention.
  • FIG. 15 is a cross-sectional view taken along the line AA ′.
  • this FED includes a front substrate 111 and a rear substrate 112 each made of a rectangular glass plate as insulating substrates, and these substrates have a gap of 1 to 2 mm. Are placed opposite each other.
  • the front substrate 111 and the back substrate 112 constitute a flat rectangular vacuum envelope 110 whose peripheral portions are bonded to each other via a rectangular frame-shaped side wall 113 and the inside is maintained in a vacuum state! /
  • a plurality of spacers 114 are provided to support an atmospheric pressure load applied to the front substrate 111 and the rear substrate 112.
  • the spacer 114 a plate-like or columnar spacer or the like can be used.
  • a phosphor screen 115 having red, green, and blue phosphor layers 116 and a matrix-shaped light shielding layer 117 is formed as an image display surface! . These phosphor layers 116 may be formed in stripes or dots.
  • a metal back 120 made of an aluminum film or the like is formed on the phosphor screen 115. Further, in order to lower the internal pressure of the vacuum envelope 110, a getter film 121 is formed to adsorb unnecessary gas inside. Getter Powder is mixed with an adhesive material.
  • a number of surface conduction electron-emitting devices 118 that emit electron beams are provided as electron sources that excite the phosphor layer 116 of the phosphor screen 115. These electron-emitting devices 118 are arranged in a plurality of columns and a plurality of rows corresponding to each pixel. Each electron-emitting device 118 includes an electron-emitting portion (not shown) and a pair of device electrodes for applying a voltage to the electron-emitting portion.
  • a large number of wirings 121 for supplying a potential to the electron-emitting devices 118 are provided in a matrix shape, and the ends thereof are drawn out of the vacuum envelope 110! / .
  • an anode voltage is applied to the phosphor screen 115 and the metal back 120, and the electron beam emitted from the electron-emitting device 118 is accelerated by the anode voltage to accelerate the phosphor screen. Collide with. As a result, the phosphor layer 116 of the phosphor screen 115 is excited to emit light and display a color image.
  • the liquid developer of the present invention includes an electrically insulating solvent and toner particles.
  • the toner particles include core particles, a coating layer of thermoplastic resin fine particles provided on the core particles, and a coating layer.
  • the charge control agent added and used above is an organic compound containing at least one lanthanoid metal.
  • the coating layer covers at least a part of the surface of the toner particles.
  • the liquid developer of the present invention is resin-coated for imparting charge to toner particles by using an organometallic compound containing at least one lanthanoid metal as a charge control agent.
  • the influence of the uneven state of the core particle surface can be reduced. This is because the lanthanoid metal has a high chargeability due to adsorption and coordination on the surface of the core particles, and furthermore, since the equilibrium of adsorption and coordination is fast, the charged state is kept stable. Conceivable.
  • the charge control agent when an organometallic compound containing at least one lanthanoid metal is used as the charge control agent, it is excellent in charge imparting properties, and is not affected by such uneven surface state of the resin-coated core particles.
  • the chargeability of individual particles becomes more uniform, and stable chargeability can be maintained for a long time.
  • the change in chargeability due to changes in the usage environment is reduced.
  • the electrophoretic control is good and a high-definition toner layer can be electrodeposited.
  • the uniform chargeability of the individual particles improves the dispersibility of the toner particles due to electrical repulsion in the toner solution.
  • FIG. 20 is a model diagram for explaining an example of the configuration of the toner particles contained in the liquid developer of the present invention.
  • the toner particles 160 are composed of the core particles 161, the thermoplastic resin particle coating layer 163 coated on the surface of the core particle 161, and the surface of the thermoplastic resin particle coating layer 163. Does not contain charge control agents.
  • the core particles can have an average particle size of 0 ⁇ 01 force, 10 m. If it is less than 0.01 m, the intermolecular aggregation of the core particles tends to increase and uniform dispersion tends to be difficult. This If the material has a small average particle size and poor dispersibility! /, For example, fine pigment particles with an average particle size of several nanometers are used, the core particles are powerful cores such as resins with a larger average particle size. By supporting it, the dispersibility can be improved and applied. On the other hand, if it exceeds 10 m, it is difficult to uniformly stir the core particles, and as a result, it is difficult to form a uniform resin layer.
  • the weight ratio of toner particles to insulating solvent is from 2:98 to 50:
  • the weight ratio of the toner particles is less than the above range, a large amount of solvent tends to be required to form a toner layer having a predetermined thickness. On the other hand, if the weight ratio of the toner particles is larger than the above range, the toner particles may adhere to the portion other than the portion where the toner layer is to be formed, causing contamination.
  • the liquid developer according to the fourth invention has, as a charge control agent, a metal component corresponding to, for example, 0.001 to 10% by weight with respect to the weight of the core particle. It may contain organometallic compounds.
  • the toner particles tend to be insufficiently charged. Since toner particles that are not sufficiently charged are difficult to control with an electric field, if the number of such toner particles increases, the electrodeposited film flows or the toner particles adhere to areas other than the part where the film should be formed, causing contamination. Tend to be.
  • these charge control agents may be added in an amount of 0.01 to 2% by weight based on the core particles.
  • the amount of the thermoplastic resin fine particles added may be 1.0 to 20 wt% with respect to the weight of the core particles.
  • thermoplastic resin fine particles If the addition amount of the thermoplastic resin fine particles is less than 1% by weight with respect to the core particles, the ratio of the core particles exposed becomes too high, and the surface state of the core particles becomes non-uniform. The distribution of the charge control agent is non-uniform, and it becomes difficult to control the chargeability of the toner particles. There is a direction. If the amount of the thermoplastic resin fine particles added exceeds 20% by weight, the amount of the thermoplastic resin fine particles coated on the core particles becomes excessive, and the free thermoplastic resin that cannot be attached or adsorbed on the surface of the core particles. Fine particles tend to increase.
  • the charge control agent added in the liquid image forming agent tends to be adsorbed on the free thermoplastic resin fine particles and inhibit the charging characteristics of the toner particles.
  • the amount of the thermoplastic resin fine particles added is 3% by weight or 10% by weight with respect to the core particles.
  • Examples of the core particles include phosphor particles, pigment particles, and colored resin particles containing a colorant.
  • the phosphor that can be used in the present invention is the same as that used in the first to third inventions, with a force S.
  • inorganic pigments include natural pigments such as ocher, chromate such as chrome yellow, zinc yellow, yellow yellow, chrome orange, molybdenum red, and chrome green, ferrocyan compounds such as bitumen, and titanium oxide.
  • natural pigments such as ocher, chromate such as chrome yellow, zinc yellow, yellow yellow, chrome orange, molybdenum red, and chrome green
  • ferrocyan compounds such as bitumen
  • titanium oxide Titanium yellow, titanium white, bengara, yellow iron oxide, zinc oxide, zinc ferrite, zinc white, iron black, cobalt blue, chromium oxide, spinel green and other oxides, cadmium yellow, cadmium orange, cadmium red, etc.
  • Products sulfates such as barium sulfate, silicates such as calcium silicate and ultramarine, metal powders such as bronze and aluminum, and carbon black.
  • organic pigments include, for example, natural lakes such as Madare Lake, ditron-based pigments such as naphthol Darin and naphthol orange, Benzidine Yellow G, Hansa Yellow G, Hansa Yellow 10G, Nonrecan Age Range, Lake Red R, Lake Red C, Lake Red KD, Watching Red, Brilliantamine 6B, Pyrarozone Orange, Bordeaux 10G, (Formaloon) and other soluble azos, Pyrarozone Red, Para Red, Toluidine Red, ITR Red, Toluidine Red (Rake red 4R), toluidine maroon, brilliant fist scarred, lake bordeaux 5B, etc.
  • natural lakes such as Madare Lake
  • ditron-based pigments such as naphthol Darin and naphthol orange
  • Benzidine Yellow G Hansa Yellow G, Hansa Yellow 10G
  • Nonrecan Age Range Lake Red R, Lake Red C, Lake Red KD
  • Watching Red Brilliantamine 6B
  • Pyrarozone Orange Pyrarozone Orange
  • insoluble azo type condensed azo type azo type pigments, phthalocyanine blue, phthalocyanine green, brominated phthalocyanine green, fast Tosky Blue etc.
  • Phthalocyanine pigments anthraquinones such as selenium blue, perylenes such as perylene maroon, perinones such as perino orange, quinacridone, dimethyl chloride Quinacridones such as natalidone, dioxazines such as dioxazine violet, condensed polycyclic pigments such as isoindrine and quinophthalone, basic dye lakes such as rhodamine 6B, lake, rhodamine lake 8, and malachite green, alizarin lake And mordant dyes such as Indanthrene Blue, Indigo Blue, and Antanthrone Orange, vat dyes, fluorescent pigments, azine pigments (diamond black), and green gold.
  • Resin materials for resin particles used in colored resin particles containing colorants include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3 , 4-Dichlorostyrene, p-ethylene styrene, 2, 4 dimethyl styrene, p- n butyl styrene, p- tert butyl styrene, p- n hexino styrene, p- n-otatinole styrene, p- n non-no styrene Styrene and derivatives thereof such as p-n-decylstyrene and p-n dodecylstyrene; ethylenically unsaturated monoo
  • Typical binder resins include polystyrene, styrene-acrylic acid copolymer, styrene-methacrylic acid co-aggregate, styrene acrylonitrile co-aggregate, styrene-butadiene co-aggregate, polyester, polyurethane, epoxy resin, and silica. Examples thereof include con resins and polyamides.
  • the charge control agent used in the fourth invention is an organic compound containing at least one lanthanoid metal.
  • the lanthanoid metal include La, Ce, Eu, Gd, Tb, and the like.
  • the metal compound is composed of organic acid metal salts such as naphthenic acid metal salts, octylic acid metal salts, lauric acid metal salts, oleic acid metal salts, secanonic acid metal salts, dodecyl acid metal salts, and acetyl acetate.
  • Chelate complex compounds such as metal salts
  • the electrically insulating solvent used in the liquid developer of the fourth invention is the same as the electrically insulating solvent used in the first to third inventions, for example, in a temperature range of 70 to 250 ° C. It has a boiling point and may have a volume resistivity of 10 9 ⁇ ′ cm or more, or 10 1 () to 10 17 ⁇ ′ cm and an electrical conductivity of less than 3.
  • thermoplastic resin fine particles can be produced by using a polymerization method represented by, for example, a suspension method or an emulsion polymerization method.
  • the average particle size of the thermoplastic resin fine particles may be from 0.1 to 5111.
  • the average particle size of the thermoplastic resin particles is less than 0.1 am, the composition distribution at the time of synthesis becomes uneven and the resin component that does not immediately adhere to or adsorb to the core particles increases and floats due to the charge control agent. Since the remaining resin is also charged, the toner composition becomes non-uniform and high-definition buttering becomes difficult.
  • the length is 5 m or more, the main chain of the resin has a large entanglement, and the main chain does not spread easily and the adhesion or adsorption to the surface of the core particles tends to be uneven.
  • thermoplastic resin fine particles for example, acrylic fine particles obtained as a dried powder having a primary average particle diameter of about 0.1 am to 5 m can be used. Even if it is not in the form of fine particles, acrylic resin, polyester resin, polyamide resin, nylon resin, and other thermoplastic resins such as granules and pellets can be physically removed using a fine grinder. It can also be used after being crushed.
  • a bead mill such as a sand grinder or a ball mill.
  • thermoplastic resin fine particles on the core particles, for example, a method of heating and stirring a dispersion containing the core particles and the thermoplastic resin fine particles at a temperature equal to or higher than the softening point of the thermoplastic resin fine particles.
  • a hydrophilic phosphor is used as the core particle, it may be difficult to adhere even if hydrophobic thermoplastic resin fine particles are applied.
  • the core particles are surface-treated with a silane coupling agent in advance, and this silane coupling treatment layer makes the core particles and the thermoplastic resin fine particles have an affinity to function as a binder, and heat
  • the thermoplastic resin fine particles can be adhered to the core particles by depositing the plastic resin fine particles on the core particles or by depositing wax or the like together with the thermoplastic resin fine particles on the core particles.
  • the concentration of an aqueous solution of a silane coupling agent or an aqueous alcohol solution, and an aqueous acetic acid solution having a pH of about 4 for performing uniform surface treatment on the core particles may be 0.01 to 5 wt%.
  • the phosphor screen of the image display device and the front substrate including the phosphor screen can be formed in the same manner as the first to third inventions.
  • the film thickness of the phosphor layer of the obtained display device can be controlled by adjusting the composition and concentration of the liquid developer.
  • the liquid developer according to the fifth invention includes an electrically insulating solvent and toner particles.
  • the toner particles include the core particles and the core particles.
  • a core particle comprising a coating layer of thermoplastic resin fine particles provided on the surface and a charge control agent added to the surface of the coating layer and made of a ZnS phosphor is used.
  • the charge control agent used in the fifth invention contains at least one metal compound containing at least one of Group 2A and Group 3A metals.
  • the charge control agent by applying at least one kind of metal compound containing Group 2A and Group 3A metals, sufficient chargeability is imparted to the toner particles, and electrodeposition is performed. Even after being distributed uniformly on the particle surface, it is possible to obtain an effect of suppressing luminance deterioration due to heat treatment in the phosphor screen preparation process and luminance deterioration (light emission lifetime) in the light emission display process due to electron beams or the like. This is thought to be because the Group 2A and Group 3A metals suppress the luminance degradation caused by the generation of lattice defects on the surface of the ZnS matrix.
  • FIG. 21 is a schematic cross-sectional view showing the configuration of toner particles in the liquid developer according to the fifth invention.
  • the toner particles 260 are formed with a coating layer of core particles 261 made of a ZnS-based phosphor and resin fine particles 263 attached on the core particles 261.
  • the coating layer covers at least a part of the toner particle surface.
  • a charge control agent (not shown) is added to the surface of the toner particles.
  • the charge control agent added to the surface of the toner particles can be adsorbed on the surface, or can take an acid-base coordination with a functional group on the surface.
  • the charge control agent present in the electrically insulating solvent and at least one of the organic compounds are adsorbed or coordinated by being added to the surface of the thermoplastic resin particle coating layer.
  • the remaining charge control agent and the organic compound may be present in an electrically insulating solvent that does not act on the surface of the thermoplastic resin particle coating layer.
  • the core particles may have an average particle size of 1 to 10 m. 1
  • the interaggregation of the core particles becomes large and uniform dispersion tends to be difficult. If it exceeds ⁇ , it becomes difficult to uniformly stir the core particles, and as a result, it becomes difficult to form a uniform resin layer, and the distribution of the charge control material present on the surface becomes non-uniform. In addition, the chargeability of individual particles is biased, making it difficult to control with an electric field. In addition, since the distribution of the charge control agent becomes non-uniform, there is a tendency that the luminance deterioration due to heat treatment in the film forming process and the luminance deterioration (light emission lifetime) in the light emission display process due to electron beams or the like tend to progress.
  • the toner particles and the insulating solution are added to 100 parts by weight of the liquid developer.
  • the weight ratio of the medium can be 2:98 force, 50:50, etc.
  • the charge control agent may include a metal component corresponding to 0.001 to 10% by weight based on the weight of the core particle.
  • the charge control agent is less than 0.001% by weight based on the toner particles, there are many particles that cannot be controlled by the electric field due to insufficient charge of the toner, and the electrodeposition film flows or forms a film. There is a tendency that toner particles adhere to other than the part and cause contamination. Also, the amount of group 2A and group 3A metal remaining on the surface of the nucleus particles becomes too small, and a sufficient suppression effect of luminance deterioration cannot be obtained.
  • these charge control agents can be added so as to be 0.01 wt% or more and 2 wt% or less with respect to the core particles.
  • the content of the thermoplastic resin fine particles can correspond to 1.0 to 20 wt% with respect to the weight of the core particles.
  • the content of the thermoplastic resin is less than 1% by weight with respect to the core particles, the amount of the resin adhering or adsorbing is too small. There is a tendency that the probability that the particles are exposed increases. Therefore, the surface state of the core particles becomes non-uniform, and therefore, the distribution of the charge control agent tends to be non-uniform, and it tends to be difficult to control the chargeability of the toner particles.
  • the distribution of the 2A and 3A metal components remaining after electrodeposition is also non-uniform, resulting in luminance degradation during heat treatment in the film formation process, and luminance degradation in the light emission display process due to electron beams (emission lifetime). Tend to progress easily
  • thermoplastic resin When the content of the thermoplastic resin exceeds 20% by weight, the resin cannot be attached to or adsorbed to the core particles, and tends to be released into the solution. In this case, even if a charge control agent is added to give charge to the toner particles, it is adsorbed to the released resin. As a result, the charging characteristics of the toner particles are hindered.
  • these thermoplastic resins can be added so as to be 3 wt% or more and 10 wt% or less with respect to the core particles.
  • Examples of the core particles used in the fifth invention include phosphor particles based on ZnS.
  • (Zn, Cd) S Ag, Cl, (Zn, Cd) S: Ag, and blue emitting phosphors such as CI, Al, Zn S: Cu, Al, ZnS: Cu, ZnS: Cu, Al, Au, (Zn, Cd) S: Cu, Al, (Zn, Cd) S: Cu, and (Zn, Cd) S: Green-emitting phosphors such as Cu, Al, Au, etc. (Zn, Cd) S: Ag + Red light emitting phosphors such as InO.
  • a compound containing at least one group 2A and group 3A metal is used.
  • Such compounds include metal organic acid salts having 6 to 30 carbon atoms, such as organic acid salts such as naphthenate, octylate, laurate, oleate, secanoic acid salt, dodecylate, and the like.
  • organic compounds such as chelate complex compounds and metal alkoxides. It is also possible to use inorganic compounds such as phosphates and nitrates.
  • the electrically insulating solvent used in the liquid developer may be the same as in the first to fourth inventions.
  • thermoplastic resin fine particles used in the present invention can be produced using a polymerization method represented by, for example, a suspension polymerization method or an emulsion polymerization method.
  • the thermoplastic resin fine particles may have an average particle diameter of 0.3 ⁇ m ⁇ ⁇ ⁇ m.
  • the average particle size of the thermoplastic resin fine particles is 0.1 m or less, the composition distribution at the time of synthesis becomes non-uniform, and the resin component that does not immediately adhere to or adsorb to the core particles increases, which is caused by the charge control agent. Since the floating residual resin is also charged, the toner composition tends to be non-uniform and high-precision notating tends to be difficult.
  • thermoplastic resin fine particles exceeds 5 ⁇ m, the entanglement of the main chain of the resin is large, so that the main chain does not spread easily in the solvent, and adheres to the surface of the core particle. Adsorption tends to be non-uniform.
  • thermoplastic resin fine particles for example, acrylic fine particles obtained as a dried powder having a primary average particle diameter of about 0.1 a to 5 m can be used. Even if it is not in the form of fine particles, a thermoplastic resin such as acrylic resin, polyester resin, polyamide resin, nylon resin, etc., in the form of granules or pellets, or physically pulverized by a fine pulverizer Things can be used.
  • a bead mill such as a sand grinder or a ball mill.
  • thermoplastic resin fine particles on the core particles, for example, a method of heating and stirring a dispersion containing the core particles and the thermoplastic resin fine particles at a temperature equal to or higher than the softening point of the thermoplastic resin fine particles.
  • a hydrophilic phosphor is used as the core particle, it may be difficult to adhere even if hydrophobic thermoplastic resin fine particles are applied.
  • the core particles are surface-treated with a silane coupling agent in advance, and this silane coupling treatment layer makes the core particles and the thermoplastic resin fine particles have an affinity to function as a binder, and heat
  • the thermoplastic resin fine particles can be adhered to the core particles by depositing the plastic resin fine particles on the core particles or by depositing wax or the like together with the thermoplastic resin fine particles on the core particles.
  • the concentration of an aqueous solution of a silane coupling agent or an aqueous alcohol solution, and an aqueous acetic acid solution having a pH of about 4 for performing uniform surface treatment on the core particles can be 0.01% to 5% by weight.
  • the phosphor screen of the image display device and the front substrate including the phosphor screen can be formed in the same manner as the first to fourth inventions.
  • the front substrate thus obtained can be represented by a cross-sectional view similar to FIG.
  • FIG. 15 shows an AA ′ cross-sectional view of FIG. 14 as an example of the FED as a display device.
  • FIG. 16 shows a schematic diagram showing an example of an experimental apparatus that can be used in the present invention.
  • this experimental apparatus has a three-necked separable flask that is separable up and down.
  • the relay temperature control unit was set as a temperature controller at 100 ° C, and the mixture was heated and stirred with a stirrer. Stirring was continued for 2 hours at a temperature of solution temperature S of 100 ° C, followed by stirring while cooling to room temperature (25 ° C) over 1.5 hours. Obtained in this way 2 g of zirconium naphthenate manufactured by Dainippon Ink & Chemicals, Inc. was added to the phosphor particle dispersion having a solid content concentration of 10% by weight to obtain a red light emitting phosphor-containing liquid developer.
  • FIG. 17 is a schematic view showing an example of an experimental apparatus for forming a toner layer using the liquid developer.
  • the sandwich cell as an experimental apparatus has a Teflon (registered trademark) spacer 213 disposed between a pair of ITO electrodes 211 and 212, and a voltage is applied between the ITO electrodes 211 and 212. I can do it.
  • Spacer 213 made of Teflon is a square with a side of 40 mm, a square hole with a 30 mm square is provided in the center, and from one side of the spacer 213, two paths leading to the hole are formed. Some have been removed. One of the two passes is used as an air vent hole 215 and the other is used as a liquid developer injection path 214.
  • the red light emitting phosphor-containing liquid developer was injected into a sandwich cell as shown in the figure, and after applying a DC voltage of 300 V for 5 seconds, the cell was disassembled. When the state of the obtained electrodeposited film was observed, a uniform phosphor electrodeposited film was formed on the ground-side ITO electrode 211 even in the case of V, deviation, and nothing on the ITO electrode 212 on the positive electrode side. It was not attached.
  • Fig. 18 shows an SEM photograph showing the surface structure of the toner particles. As shown in FIG. 18, the resin particles adhered uniformly to the phosphor surface via a silane coupling agent!
  • the blue light emitting phosphor-containing liquid developer thus obtained was poured into a sandwich cell, and a DC voltage of 300 V was applied for 5 seconds, and then the cell was disassembled.
  • a uniform phosphor electrodeposition film was formed on the ground-side ITO electrode even in the case of V and deviation, and the ITO electrode on the positive electrode side was attached to nothing. There was no!
  • the red light-emitting phosphor-containing liquid developer, the green light-emitting phosphor-containing liquid developer, and the blue light-emitting phosphor-containing liquid developer obtained in Examples 1 to 3 have the same configuration as that in FIG.
  • transfer is performed using the following formula from the volume or weight of each transferred phosphor layer and the volume or weight after drying of the liquid developer adhering to each dot-like pattern of the original plate before transfer. The rate was determined.
  • Transfer rate (%) (Volume or weight of each phosphor layer / volume or weight after drying of liquid developer adhering to each dot pattern of the original plate) X 100
  • the transfer rate was 99. 47%.
  • the charge control agent to which the toner particles containing no wax as in Example 1 are added is more preferable than the toner particles containing wax as in Experimental Example 1.
  • the conductivity was very good because it could be sufficiently adsorbed.
  • a thick developer layer can be electrodeposited with high definition.
  • the developer layer once electrodeposited on the adherend is transferred to another adherend, the releasability is improved.
  • Fig. 19 shows an SEM photograph showing the surface structure of the toner particles. As shown in FIG. 19, the toner particles were covered with the wax exuded on the surface. For this reason, it is considered that the chargeability was lower than that of the toner particles of Example 1 not containing wax.
  • Y O S Eu-based red-emitting phosphor particles without silane coupling treatment
  • the transfer rate was determined in the same manner as in Examples 1 to 3, and it was 84.36%. As a result, it was found that the liquid developer containing no wax has a better transfer rate than the liquid developer containing wax.
  • insulative hydrocarbon solvent manufactured by Exon Chemical Co., Ltd. with boiling point range S 191 to 205 ° C 180 g of Isopar U, average particle size 0.4 ⁇ m, softening point is Charge 2g of acrylic fine particles (MP4009) made by Soken Chemical Co., Ltd. with a specific gravity of 1.0 at 80 ° C and 18g of ZnS: Cu, A1-based green light emitting phosphor particles (average particle size 5.
  • the temperature controller was set to 100 ° C and the mixture was heated and stirred.When the solution temperature reached 100 ° C, stirring was continued for 2 hours at a constant temperature, and then the room temperature (over 1.5 hours) Stirring was continued while cooling to 25 ° C.
  • the phosphor particle dispersion having a solid content of 10% by weight thus obtained was used as a charge control agent, gadolinium octylate manufactured by Nippon Chemical Industry Co., Ltd. 1. Og was added to obtain a liquid developer containing a green-emitting phosphor.
  • the electrodeposition film was formed and evaluated as follows.
  • the softening point is JIS K 7206: 1999 Plastic-Thermoplastic materials-Vicat softening temperature (VST) test method: Plastic-Thermoplastic materials-detemination oi Vicat preservationening temperature (V3 ⁇ 4 ⁇ ) (I3 ⁇ 40 d0 :
  • the temperature of the medium was increased at a constant speed while applying a predetermined load through a needle-shaped indenter placed perpendicular to the test piece in the heating bath or the heating phase, and the propagation when the needle-shaped indenter entered lmm. Check the temperature of the heat medium.
  • a green light emitting phosphor-containing liquid developer was obtained in the same manner except that 1. Og of lanthanum octylate manufactured by Nippon Kagaku Sangyo was added as a charge control agent.
  • Atalinole fine particles (MP4009) are assumed to be lg, and 19 g of Y O S: Eu red light-emitting phosphor particles (average particle size 4.3 111) are added instead of ZnS: Cu, A1-based green light-emitting phosphor particles.
  • a developer is injected into a sandwich cell as shown in the figure, and a DC voltage of 800 V is applied.
  • the cell After applying for 5 seconds, the cell was disassembled, and the state of the obtained electrodeposition film was observed.
  • a red light emitting phosphor-containing liquid developer was obtained in the same manner as in Example 6 except that 1. Og of titanium octylate manufactured by Nippon Kagaku Sangyo Co., Ltd. was used as the charge control agent.
  • the resulting red light-emitting phosphor-containing liquid developer was treated at 10 ° C, 25 ° C, and 50 ° C for 1 day.
  • Deterioration of electrodeposition in storage at 50 ° C is considered to be because the surface state of the particles changes due to the activation of the resin on the surface of the core particles, and the adsorption state of titanium octylate is not stable immediately.
  • insulative hydrocarbon solvent manufactured by Exon Chemical Co., Ltd. with boiling point range S 191 to 205 ° C 180 g of Isopar U, average particle size 0.4 ⁇ m, softening point is Acrylic resin fine particles (MP4009) made by Soken Chemical Co., Ltd. with a specific gravity of 1.0 at 80 ° C, 2g, and 18g of ZnS: Cu, A1-based green light emitting phosphor particles (average particle size 5.6m)
  • the temperature controller was set to 100 ° C and the mixture was heated and stirred.After the solution temperature reached 100 ° C, stirring was continued at a constant temperature for another 2 hours.
  • a phosphor layer having a thickness of about 10 m was formed on a glass substrate (100 mm X 100 mm) by electrophoresis.
  • a metal back layer with a thickness of approximately 120 nm formed by vapor deposition of A1 was formed on the top surface, and a sample for measuring the emission characteristics was produced.
  • FIG. 22 is a schematic diagram showing the configuration of a sample for measuring luminescence characteristics.
  • this sample 65 has a coating layer 67 made of acrylic resin fine particles 260 on a glass substrate 66, and a metal back layer 68 provided thereon.
  • This sample was irradiated with an electron beam having an acceleration voltage of 10 kV and a current density of 0.36 A / mm 2 (current 250 A, raster size 10 mm X 70 mm), and the phosphor was allowed to emit light, and the emission luminance was measured.
  • electron beam irradiation was continuously performed, and the change in light emission luminance with respect to the amount of electron beam irradiation was measured.
  • a spectroradiometer SR-3A manufactured by Topcon Tetano House was used for the measurement of emission luminance.
  • a green light emitting phosphor dispersion having a solid content of 10% by weight was obtained in the same manner as in Example 7 except that the charge control agent was not added.
  • a phosphor layer having a thickness of about 10 m was formed on a glass substrate (lOOmm x 100mm) by sedimentation deposition.
  • a metal back layer with a film thickness of approximately 120 nm formed by vapor deposition of A1 was formed on the top surface, and a sample for measuring light emission characteristics was produced.
  • Example 7 In comparison with Example 7, the emission luminance is about 5.0 in Example 7 as shown in FIG.
  • the emission lifetime is defined as the maintenance ratio of the peak intensity of the emission spectrum at a dose of 20 C / cm 2. Approximately 11% lifespan improved.
  • Example 8 Compared with Example 8, the emission luminance is about 3.5 in Example 2 as shown in FIG.
  • emission lifetime as shown in FIG. 24, when defined as a dose of 20C / cm 2 when the light-emitting scan Bae Tato Le retention of the peak intensity of the found the following Example 7 than in Comparative Example 4 Approximately 9% lifespan improved.
  • Comparative Example 4 Magnesium octylate manufactured by Nippon Kagaku Sangyo Co., Ltd. Instead of Og, zirconium naphthenate manufactured by Dainippon Ink Co., Ltd. Got.
  • the emission luminance was measured in the same manner as in Example 7.
  • the initial emission luminance was shown in Fig. 23, and the change in emission luminance with respect to the amount of electron beam irradiation was shown in graph 104 in Fig. 24. I will show you.
  • the emission lifetime is defined as the maintenance rate of the peak intensity of the emission spectrum at a dose of 20 C / cm 2, the lifetime was deteriorated by about 12% as compared with Comparative Example 4.
  • transition metal component such as zirconium is a so-called killer material that deteriorates the light emission characteristics by entering the light emission site of the ZnS matrix.
  • ZnS Cu
  • ZnS Ag
  • C1-based blue light-emitting phosphor particles (average particle size 6.5 m) were used in the same manner as in Example 7 except that 18 g was used.
  • a blue light emitting phosphor-containing liquid developer was obtained.
  • a green light-emitting phosphor dispersion liquid having a solid content concentration of 10% by weight was obtained in the same manner as in Example 9 except that the charge control agent was not added.
  • a phosphor layer having a thickness of about 10 m was formed on a glass substrate (lOOmm x 100mm) by sedimentation deposition.
  • a metal back layer with a film thickness of approximately 120 nm formed by vapor deposition of A1 was formed on the top surface, and a sample for measuring light emission characteristics was produced.
  • Example 9 In comparison with Example 9, the emission luminance was about 8.0 in Example 6 as shown in FIG.
  • emission lifetime as shown in FIG. 24, when defined as a dose of 20C / cm 2 when the light-emitting scan Bae Tato Le retention of the peak intensity of the found the following Example 9 than in Comparative Example 6 Approximately 11% lifespan improved.
  • the emission luminance was measured in the same manner as in Example 7.
  • the initial emission luminance was shown in Fig. 19, and the change in emission luminance with respect to the electron beam dose was shown in graph 108 in Fig. 26. I will show you.
  • the emission lifetime is defined as the maintenance ratio of the peak intensity of the emission spectrum at a dose of 20 C / cm 2, the lifetime deteriorated by about 15% compared to Comparative Example 6.
  • transition metal component such as zirconium is a so-called killer material that deteriorates the light emission characteristics by entering the light emission site of the ZnS matrix.

Description

明 細 書
液体現像剤、その製造方法、及び表示装置の製造方法
技術分野
[0001] 本発明は、例えばプラズマディスプレイ、及びフィールド 'ェミッション 'ディスプレイ 等の表示装置の製造方法、それに使用される液体現像剤、及び液体現像剤の製造 方法に関する。
背景技術
[0002] 従来、基材の表面に微細なパターンを形成する技術として、フォトリソグラフィー技 術が中心的な役割を果たしてきた。し力もながら、このフォトリソグラフィー技術は、そ の解像度やパフォーマンスをますます高まる反面、巨大で高額な製造設備を必要と し、製造コストも解像度に応じて高くなりつつある。
[0003] 一方、半導体デバイスはもとより、画像表示装置などの製造分野においては、性能 の改良とともに低価格化の要求が高まっている。し力もながら、上記フォトリソグラフィ 一技術では、このような要求を十分に満足できなくなってきている。
[0004] このような状況下で、デジタル印刷技術を用いたパターン形成技術が注目されてレヽ る。例えばインクジェット技術は、装置の簡便さや非接触パターユングといった特徴を 生力、したパターユング技術として実用化され始めている。し力もながら、高解像度化 や高生産性には限界があった。
[0005] これに対し、液体トナーを用いた、電子写真技術等を含む電気泳動技術は、低価 格、高解像度化、及び高生産性に関して、優れた可能性を有している。例えば特開 平 9— 202995号公報に開示されるように、このような電気泳動技術を用いて、フラッ トパネルディスプレイ用の前面基板の蛍光体層を形成する技術が提案されている。こ の方法では、蛍光体トナー用樹脂成分として、絶縁性溶媒に不溶又は膨潤する核部 分と、絶縁性溶媒に膨潤又は溶解する外縁部分とからなる樹脂を使用してレ、る。
[0006] しかしながら、トナー粒子製造時に樹脂を完全に十分に溶解し得る良溶媒を使用 する必要がある。このため、絶縁性溶媒以外の揮発性有機溶媒を使用しなければな らない上に、 SP値をコントロールした樹脂を設計しなければならず、本来のトナー特 性である帯電性や、粘着性、凝集性などをコントロールすることが困難であり、材料選 定の幅が非常に制限されていた。
[0007] また、この液体トナーでは電着液中での粒子の分散や荷電性を付与させるために 分散剤や電荷制御剤を添加して!/、る。
[0008] 高解像度化のためには、個々のトナー粒子の挙動制御が重要であり、電気泳動技 術を用いる場合には、トナー粒子の帯電性の制御が重要なファクタ一となる。
[0009] ここで、電荷制御剤を用いてトナー粒子の帯電性をコントロールするには、電荷制 御剤のトナー粒子表面への相互作用が重要であり、トナー粒子表面状態により帯電 性が大きく変化する。トナー粒子に樹脂を被覆して使用する場合などは、その被覆し た樹脂表面を均一な状態にコントロールすることは困難であり、したがって個々のトナ 一粒子の帯電性をコントロールすることが困難となるため、高精度なパターユングが 困難となる。
[0010] さらに、ここで、電荷制御剤として金属系化合物を用いる場合、母体特性への影響 を考慮する必要がある。中でも、陰極線管(CRT)や電界放出型表示装置 (フィール ドエミッションディスプレイ; FED)などの蛍光面に用いられて!/、る ZnS (硫化亜鉛)を 母体とした蛍光体においては、鉄族などの遷移金属は、 ZnS母体の発光サイトに入 ることにより発光特性を劣化させる、いわゆるキラー材料であることが知られている。 画像表示装置にとって蛍光体の高輝度化 ·高寿命化は重要課題であるため発光特 性の劣化は致命的な問題となる。ゆえに、電荷制御剤としての材料が限定されるた め、液体現像剤として十分な電気泳動性が得られず、電気泳動技術による高精度な パターユングが困難であった。 発明の開示
[0011] 本発明は、このような問題を解決するためになされたものであり、その目的は、帯電 性、分散性に優れ、トナー層を、高解像度、高精度で形成し得る液体現像剤を提供 することにある。
[0012] 本発明は、第 1に、電気絶縁性溶媒と、
該電気絶縁性溶媒中に包含され、 1ないし 10 inの平均粒径を有する核粒子、該 核粒子表面に設けられたシラン力ップリング処理層、該シラン力ップリング処理層を介 して該核粒子表面に設けられた熱可塑性樹脂微粒子被覆層、及び熱可塑性樹脂微 粒子被覆された核粒子表面に添加された電荷制御剤を含有するトナー粒子とを含 むことを特徴とする液体現像剤を提供する。
[0013] 本発明は、第 2に、 1ないし 10 mの平均粒径を有する核粒子表面にシランカップ リング処理を行い、シランカップリング処理層を形成する工程、
電気絶縁性溶媒中で、シランカップリング処理された核粒子と、前記核粒子よりも低 V、平均粒径を有する、該電気絶縁性溶媒に実質的に不溶の熱可塑性樹脂微粒子と を、該電気絶縁性溶媒の沸点以下の温度で加熱攪拌して、該シランカップリング処 理された核粒子表面に該熱可塑性樹脂微粒子を付着せしめ、熱可塑性樹脂微粒子 被覆層を形成する工程、及び
熱可塑性樹脂微粒子被覆された核粒子を含む電気絶縁性溶媒に、電荷制御剤を 適用して、該熱可塑性樹脂微粒子被覆された核粒子表面に該電荷制御剤を添加せ しめる工程を具備することを特徴とする液体現像剤の製造方法を提供する。
[0014] 本発明は、第 3に、透明基板上に、複数の枠状またはストライプ状のパターンを有 する遮光層を形成する工程、
電気絶縁性溶媒と、該電気絶縁性溶媒中に包含され、 1ないし 10 mの平均粒径 を有する核粒子、該核粒子表面に設けられたシランカップリング処理層、該シラン力 ップリング処理層を介して該核粒子表面に設けられた熱可塑性樹脂微粒子被覆層、 及び熱可塑性樹脂微粒子被覆された核粒子表面に添加された電荷制御剤を含有 するトナー粒子とを含む液体現像剤を、供給部材を介して像保持体の表面に供給し 、該供給部材と像保持体との間に電界を形成して該像保持体表面に、ドット状または ストライプ状のパターン像を形成する現像工程、
液体現像剤によるパターン像が形成された前記像保持体を、定位置に保持された 、遮光層を有する透明基板に沿って転動させる転動工程、
転動する前記像保持体と前記透明基板との間に電界を形成し、前記像保持体表 面上のパターン像を前記透明基板へ転写し、該遮光層で区画された該基板上の各 領域に、蛍光体層を形成する転写工程、及び該蛍光体層上にメタルバック層を形成 する工程を含む前面基板の形成プロセスを具備することを特徴とする表示装置の製 造方法を提供する。
[0015] 本発明は、第 4に、
電気絶縁性溶媒と、
該電気絶縁性溶媒中に包含された、核粒子、該核粒子表面に設けられた熱可塑 性樹脂微粒子の被覆層、及び該熱可塑性樹脂微粒子被覆された核粒子表面に電 荷制御剤として添加されたランタノイド金属を少なくとも 1種含む有機金属化合物を含 有するトナー粒子とを含むことを特徴とする液体現像剤を提供する。
[0016] 本発明は、第 5に、電気絶縁性溶媒と、
該電気絶縁性溶媒中に包含された、 ZnS系蛍光体からなる核粒子、該核粒子表面 に設けられた熱可塑性樹脂微粒子の被覆層、及び該熱可塑性樹脂微粒子被覆され た核粒子表面に電荷制御剤として添加された 2A族および 3A族の金属を少なくとも 1 種含む金属化合物を含有するトナー粒子を含むことを特徴とする液体現像剤を提供 する。
図面の簡単な説明
[0017] [図 1]図 1は、本発明にかかる液体現像剤中のトナー粒子の構成を表す模式的な断 面図である。
[図 2]図 2は、本発明の液体現像剤の製造方法のフロー図である。
[図 3]図 3は、前面基板の形成プロセスに使用されるパターン形成装置の一例を表す 外観図である。
[図 4A]図 4Aは、図 3のパターン形成装置で使用する原版を示す平面図である。
[図 4B]図 4Bは、図 3のパターン形成装置で使用する原版を示す断面図である。
[図 5]図 5は、図 4Aの原版を部分的に拡大して示す部分拡大平面図である。
[図 6]図 6は、図 4Bの原版の 1つの凹部の構造を説明するための部分拡大斜視図で ある。
[図 7]図 7は、図 4Aの原版をドラム素管に巻き付けた状態を示す概略図である。
[図 8]図 8は、図 4Bの原版の高抵抗層の表面を帯電させるための構成を示す概略図 である。
[図 9]図 9は、図 4Aの原版に液体現像剤を供給してトナー粒子によるパターンを形成 するための構成を示す概略図である。
[図 10]図 10は、図 4Aの原版に形成したパターンをガラス板に転写するための構成を 示す概略図である。
[図 11]図 11は、図 4Aの原版をガラス板に沿って転動させるための転動機構の要部 の構成を示す概略図である。
園 12]図 12は、原版の凹部に集めたトナー粒子をガラス板に転写する動作を説明す るための動作説明図である。
園 13]図 13は、本発明に力、かる前面基板の一例を模式的に表す断面図である。 園 14]図 14は、本発明に係る表示装置としての FEDの一例を表す斜視図である。
[図 15]図 15は、図 14の A— A'断面図である。
園 16]図 16は、本発明に使用し得る実験装置の一例を表す概略図である。
園 17]図 17は、液体現像剤を用いてトナー層を形成するための実験装置の一例を 表す概略図である。
[図 18]図 18は、トナー粒子の表面構造を表す SEM写真である。
[図 19]図 19は、トナー粒子の表面構造を表す SEM写真である。
園 20]図 20は、本発明の液体現像剤に含まれるトナー粒子の構成の一例を説明す るためのモデル図である。
園 21]図 21は、本発明にかかる液体現像剤中のトナー粒子の構成を表す模式的な 断面図である。
園 22]図 22は、発光特性測定用のサンプルの構成を表す模式図である。
[図 23]図 23は、種々の液体現像剤を用いて形成された蛍光面の発光輝度を表すグ ラフ図である。
園 24]図 24は、種々の液体現像剤を用いて形成された蛍光面の電子線照射量と発 光輝度との関係を表すグラフ図である。
[図 25]図 25は、種々の液体現像剤を用いて形成された蛍光面の発光輝度を表すグ ラフ図である。
[図 26]図 26は、種々の液体現像剤を用いて形成された蛍光面の電子線照射量と発 光輝度との関係を表すグラフ図である。 発明を実施するための最良の形態
[0018] 本発明は、以下の 5つの発明を有する。
[0019] 第 1の発明にかかる液体現像剤は、電気絶縁性溶媒とトナー粒子とを含む。
[0020] このトナー粒子は、核粒子と、核粒子表面に設けられたシランカップリング処理層と 、核粒子上に熱可塑性樹脂微粒子を被覆させた被覆層と、シランカップリング処理層 を介して被覆層上に添加された電荷制御剤とを有し、その粒径は 1ないし 10 mで ある。
[0021] 図 1に、本発明にかかる液体現像剤中のトナー粒子の構成を表す模式的な断面図 を示す。
[0022] 図示するように、このトナー粒子 60は、表面にシランカップリング処理層 2を有する 核粒子 61に、シランカップリング処理層 62を介して樹脂微粒子 63が付着して、被覆 層が形成されている。
[0023] ここで、被覆層は、トナー粒子表面の少なくとも一部を覆っているものとする。
[0024] 第 1の発明にかかる液体現像剤は、第 1の発明にかかる液体現像剤の製造方法で 製造すること力 Sでさる。
[0025] 力、かる液体現像剤の製造方法では、核粒子を予めシランカップリング剤で表面処 理し、電気絶縁性溶媒中で、この核粒子とともに、絶縁性溶媒の沸点以下の温度で 加熱攪拌しながら、核粒子表面に、シランカップリング処理層を介して熱可塑性樹脂 微粒子を付着させる。続いて、熱可塑性樹脂微粒子被覆された核粒子を含む電気 絶縁性溶媒に、電荷制御剤を適用することにより、熱可塑性樹脂微粒子被覆された 核粒子に、電荷制御剤を添加する。
[0026] 図 2に、本発明の液体現像剤の製造方法のフロー図を示す。
[0027] 図示するように、まず、核粒子にシランカップリング剤を加えて、核粒子表面にシラ ンカップリング処理を行う(ST1)。次に、シランカップリング処理された核粒子に電気 絶縁性溶媒、及び熱可塑性樹脂微粒子を添加し、電気絶縁性溶媒の沸点以下の温 度で加熱しながら、撹拌する。これにより、核粒子表面に、シランカップリング剤を介し て熱可塑性樹脂微粒子を付着させ、熱可塑性樹脂微粒子被覆層を形成する(ST2) 。さらに、熱可塑性樹脂微粒子被覆された核粒子を含む電気絶縁性溶媒中に電荷 制御剤を添加する(ST3)。このようにして、第 1の発明に力、かる液体現像剤が得られ
[0028] 通常、核粒子表面に、直接、熱可塑性樹脂微粒子を適用しても、熱可塑性樹脂微 粒子は、核粒子表面に付着しにくい。例えば核粒子として、親水性を有する蛍光体 を使用し、疎水性を有する熱可塑性樹脂微粒子を適用しても付着しにくい。しかしな がら、本発明によれば、核粒子を予めシランカップリング剤で表面処理することにより 、このシランカップリング処理層が核粒子と熱可塑性樹脂微粒子とを親和させて、結 合剤のように機能し、熱可塑性樹脂微粒子が核粒子上に、均一に付着し得る。この ため、本発明では、核粒子表面に他の結合剤例えばワックス等を適用する必要がな い。例えば被覆層中にワックスが含まれていると、トナー粒子表面に滲出したワックス によりトナー粒子の帯電性が低下する傾向がある。これに対し、本発明では、トナー 粒子表面に熱可塑性樹脂微粒子が均一に存在しているため、帯電性が格段に良好 となる。
[0029] 本発明の液体現像剤の製造方法によれば、溶媒を収容可能な容器内に原料を投 与し、基本的に温度操作、及び撹拌操作を行うだけで、複雑な操作を行うことなく液 体現像剤を製造することが出来る。また、本発明の方法では、大掛かりで複雑な装置 を必要とすることがなく低コストで簡便である。
[0030] また、上述のようにワックス等の余剰な有機物成分が混在しないようにすると、厚膜 のトナー層を形成後の脱バインダ工程 (熱工程)を削減でき、大幅なコストダウンを達 成し得 θ。
[0031] シランカップリング剤で表面処理した核粒子上の熱可塑性樹脂微粒子による被覆 量を制御することにより、トナー粒子に対する電荷制御剤の吸着性を制御でき、帯電 性を調整し得る。熱可塑性樹脂微粒子の被覆量を制御することは、トナー粒子の粘 着性や凝集性を調整し得ることにもなる。
[0032] 核粒子に均一な表面処理を行うシランカップリング剤の水溶液もしくは水 アルコ ール溶液、 ρΗ4程度の酢酸水溶液の濃度は 0. 01重量%ないし 5重量%にすること ができる。
[0033] 0. 01重量%未満であると、核粒子表面に十分なシランカップリング処理が行えず 、熱可塑性樹脂微粒子の付着が不十分となる傾向があり、 5重量%を超えると、シラ ンカップリング剤が溶媒に溶解しきれな!/、ため、かえってシランカップリング処理にム ラが発生してしまったり、凝集してしまう傾向がある。
[0034] 液体現像剤 100重量部に対し、トナー粒子と絶縁性溶媒の重量比は、 2: 98な!/、し
50 : 50にすることカできる。
[0035] 重量比が上記範囲外であると、所定の膜厚を得るために大量の溶媒を必要となつ たり、膜形成されるべきパターン以外にもトナー粒子が付着し、汚染の原因となったり する傾向がある。
[0036] また、本発明の一態様によれば、核粒子に対し、電荷制御剤はトナー粒子に対し 1 重量部なレ、し 50重量部添加することができる。
[0037] また、本発明の一態様によれば、熱可塑性樹脂微粒子の添加量は、核粒子に対し
5体積%ないし 200体積%にすることができる。
[0038] 熱可塑性樹脂微粒子の添加量力 核粒子に対し 5体積%未満であると、付着する 熱可塑性樹脂の量が少なすぎるため核粒子が露出する確立が高くなり、電荷制御剤 の吸着性及びそれによるトナー粒子の帯電性をコントロールすることが困難になる傾 向がある。また、 200体積%を超えると核粒子に対して熱可塑性樹脂が付着しきれな くなり、溶液中に遊離'凝集する傾向がある。この場合では電荷制御剤等を添加して トナー粒子に電荷を与えようとしても遊離した熱可塑性樹脂に吸着して、トナー粒子 の帯電特性を阻害する傾向がある。これらの問題を加味し、本発明のさらなる態様に よれば、熱可塑性樹脂微粒子の添加量は、核粒子に対して体積比率で 10体積%以 上 150体積%以下にすることができる。
[0039] また、電荷制御剤がトナー粒子に対し 1重量部未満であると、トナー電荷量が不十 分なため電着膜が流れたり、膜形成されるべき部分以外にもトナー粒子が付着し汚 染の原因となったりする傾向がある。また、 50重量部を超えると、現像液中のイオン 成分量が過剰となり現像液全体の抵抗が低くなりすぎるためトナー粒子の電気泳動 性が低下する傾向がある。
[0040] 核粒子としては、例えば蛍光体粒子、及び無機顔料等の着色剤等があげられる。
[0041] 本発明に使用可能な蛍光体としては、 Y O : Eu :YVO : Eu、(Y, Gd) BO : Eu、 Y O S : Eu, γ -Zn (PO ) : Mn、(ZnCd) S : Ag + InO (以上赤色)、 Zn GeO :
2 2 3 4 2 2 2
Mn、 BaAl O : Mn、 Zn SiO : Mn、 LaPO : Tb、 ZnS : (Cu, Al)、 ZnS : (Au, C
12 19 2 4 4
u, Al)、 (ZnCd) S : (Cu, Al)、 Zn SiO : (Mn, As)、 Y Al O : Ce、 Gd O S :Tb
2 4 3 5 12 2 2
、Y A1 0 : Tb、 ZnO : Zn (以上緑色)、 Sr (PO ) CI : Eu、 BaMgAl O : Eu、B
3 5 12 5 4 3 14 23 aMgAl O : Eu、ZnS :Ag +赤色顔料、 Y SiO : Ce (以上青色)等が挙げられる。
16 27 2 3
[0042] 本発明に使用可能な 無機顔料の例としては、黄土色等の天然顔料、黄鉛、ジンク イェロー、ノ リウムイェロー、クロムオレンジ、モリブデンレッド、クロムグリーン等のクロ ム酸塩、紺青等のフエロシアン化合物、酸化チタン、チタンイェロー、チタン白、ベン ガラ、黄色酸化鉄、酸化亜鉛、亜鉛フェライト、亜鉛華、鉄黒、コバルトブルー、酸化 クロム、スピネルグリーン等の酸化物、カドミウムイェロー、カドミウムオレンジ、力ドミゥ ムレッド等の硫化物、硫酸バリウム等の硫酸塩、珪酸カルシウム、群青等の珪酸塩、 ブロンズ、アルミニウム等の金属粉等が挙げられる。
[0043] 本発明の液体現像剤に使用可能な電荷制御剤は、金属石鹼、界面活性剤、及び 金属アルコキシドからなる群から選択される少なくとも 1種である
このような金属石鹼としては、例えばナフテン酸銅、ナフテン酸コバルト、ナフテン 酸ニッケル、ナフテン酸鉄、ナフテン酸亜鉛、ォクチル酸ジルコニウム、ォクチル酸コ ノ ノレト、ォクチル酸ニッケル、ォクチル酸亜鉛、ドデシル酸コバルト、ドデシル酸ニッ ケル、ドデシル酸亜鉛、 2—ェチルへキサン酸コバルト、石油系スルホン酸金属塩、 スルホコハク酸エステルの金属塩等のスルホン酸金属塩類等などがあげられる。
[0044] また、本発明の液体現像剤に使用可能な界面活性剤としては、例えばアルキルべ ンゼンスルホン酸ナトリウム、アルキルベンゼンスルホン酸カルシウム、ジォクチルス ルホン酸ナトリウム、ジォクチルスルホン酸カルシウム、 n ドデシル硫酸ナトリウム、 1 オクタンスルホン酸ナトリウム、スルホンコハク酸ジー 2—ェチルへキシルナトリウム 等があげられる。
[0045] また、本発明の液体現像剤に使用可能な金属アルコキシドとしては、例えばチタ二 ゥムテトライソプロポキシド、チタニウムテトラー n ブトキシド、テトラステアリルチタネ ート等があげられる。
[0046] 本発明の一態様によれば、本発明の液体現像剤に用いられる電気絶縁性溶媒は 、 70〜250°Cの温度範囲に沸点を有し、 109 Q ' cm以上、さらには 101()ないし 1017 Ω ' cmの体積比抵抗と 3未満の誘電率を有することができる。
[0047] このような電気絶縁性溶媒として、例えば n—ペンタン,へキサン,ヘプタン等の脂 肪族炭化水素、シクロペンタン,シクロへキサン等脂環族炭化水素,塩素化されたァ ノレカン,フッ素化されたアルカン,クロ口フルォロカーボン等のハロゲン化された炭化 水素溶媒,シリコンオイル類及びこれら混合物等を使用することが出来る。例えば、 E xxon Corporation製 ァイソパー G (登録商標),ァイソパー H (登録商標),ァイソ パー K (登録商標),ァイソパー L (登録商標),ァイソパー M (登録商標)及びアイソ パー V (登録商標)などの分枝型パラフィン溶媒混合物を使用することが出来る。
[0048] また本発明の液体現像剤に用いられる熱可塑性樹脂微粒子は、例えば懸濁従合 法や乳化重合法に代表される重合方法を用いて製造され得る。
[0049] 本発明の一態様によれば、熱可塑性樹脂微粒子は、 0. Ι μ ηι^ δ μ mの平均粒子 径を有すること力 Sできる。
[0050] このような熱可塑性樹脂微粒子として、例えば乾燥された 1次平均粒子径 0. 1 μ 111〜5 m程度の粉末として得られるアクリル系微粒子などが利用できる。また微粒 子状でなくとも、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ナイロン系 樹脂等の熱可塑性樹脂を顆粒状、あるいはペレット状にしたもの、または微粉砕機な どにより物理的に粉砕したものを使用することが出来る。
[0051] また、サンドグラインダなどのビーズミルや、ボールミルなどによって絶縁性溶媒中 で微粒子化した後に使用することも出来る。また、ブロックポリマーゃグラフトポリマー などのように親水性部位と疎水性部位を併せ持った両新媒性樹脂が、例えば絶縁性 溶媒中に分散された状態で得られる非水分散樹脂 (NAD)であっても、その平均粒 子径が 0· 1 m〜5 m程度のものであれば使用できる。
[0052] 例えば電気絶縁性媒体液に可溶性のビュル重合体よりなる第 1の高分子鎖と媒体 液に不溶性のビュル重合体よりなる第 2の高分子鎖とがエステル結合を介して相互 に結合した分子構造を有し、分子全体として上記媒体液に不溶性の非ゲル状のダラ フト重合体、例えば 90°Cの温度に加熱したイソオクタン 200部にドデシルメタクリレー ト 100部、グリシジノレメタタリレート 15部、ァゾビスイソブチロニトリル 5部を投入して 5 時間重合後、 CH =C (CH ) COOCH CH OOCCH CH COOHを 20部、ラウリル
2 3 2 2 2 2
ジメチルァミン 0. 0004部を加えて 90°Cで 5時間反応させ、ビュルトルエン 50重量部 、ベンゾィルパーオキサイド 1部を加え、 85°Cで 10時間グラフト反応させて、 ACポリ エチレン 50部を加えて 80ないし 90°Cに加熱して内容物を溶解し、急冷して得られた 粒径 0· 5 mないし 1 mの非水系樹脂分散液があげられる。あるいは同様に、第 1 の高分子鎖と第 2の高分子鎖とがウレタン結合を介して相互に結合した分子構造を 有するもの、例えばメタクリル酸 2—ェチルへキシル 96. 3g、メタクリル酸ヒドロキシプ 口ピル 3. 7g、重合触媒 パーブチル D (商品名)(日本油脂社製) 2. 5g、及び重合 触媒 パーブチル G (商品名)(日本油脂社製) 1 · 5gの混合物を、ァイソパー H (エツ ソスタンダード石油社製) 100gに、 4時間にわたって滴下し、滴下終了後 3時間撹拌 し、温度を 70°Cに下げて、イソホロンジイソシァネート 5· 7g、ジブチル錫ジラウレート 0. 04gとアイソノ一 H5. 7gを加え、 70°Cで 8時間ウレタン化反応を行い、得られた 溶液 80gにァイソパー Hを加えて 110°Cに加熱し、そこに、メタクリル酸ヒドロキシプロ ピノレ 2. 7g、メタクリル酸 2—ェチルへキシル 22· 9g、メタクリノレ酸メチノレ 34. 4g、パー ブチル D (商品名)(日本油脂社製) 0. 3g、及びパーブチル Z0. 3gを混合したものを 2時間滴下し、 4時間反応させて得られた不揮発成分 39. 5%、 NCO分 0. 05重量 %のグラフト重合体液があげられる。
[0053] 本発明の液体現像剤は、導電率が良好であり、帯電性、電気泳動性に非常に優れ
[0054] 本発明の液体現像剤を用いると平面型画像表示装置の蛍光体層やカラーフィルタ 層の形成が簡便にできる。蛍光体層を形成する場合、核粒子として蛍光体を使用す ること力 Sできる。また、カラーフィルタを形成する場合には、核粒子として、無機顔料の 着色剤等を使用することができる。
[0055] 第 3の発明にかかる平面型画像表示装置の製造方法は、前面基板を形成するプロ セスを含む。
[0056] この前面基板の形成プロセスは、
透明基板上に、格子状またはストライプのパターンを有する遮光層を形成する工程 と、 本発明にかかる液体現像剤を、供給部材を介して像保持体の表面に供給し、供給 部材と像保持体との間に電界を形成して像保持体表面に、ドットまたはストライプ状 のパターン像を形成する現像工程と、
パターン像が形成された像保持体を、定位置に保持された、遮光層を有する透明 基板に沿って転動させる転動工程と、
転動する像保持体と透明基板との間に電界を形成し、像保持体表面上のパターン 像を透明基板へ転写し、遮光層で区画された透明基板上の各領域に、蛍光体層を 形成する転写工程と、該蛍光体層上にメタルバック層を形成する工程とを含む。
[0057] この方法では、液体現像剤の組成及び濃度等を調整することにより、得られる表示 装置の蛍光体層やカラーフィルタ層の膜厚を制御できる。
[0058] また、本発明の一実施態様においては、像保持体は、その表面にパターン像を形 成するためのパターン状の電極層を有し得る。電極層の形状を変えることで、任意の 形状に蛍光体層やカラーフィルタ層を簡便にかつ低コストにパターユングすることが できる。
[0059] 次に、図 3ないし図 12を用いて、本発明に用いられる前面基板の形成プロセスの 一例を説明する。
[0060] 図 3は、前面基板の形成プロセスに使用されるパターン形成装置の一例を表す外 観図を示す。
[0061] 図 3に示すように、このパターン形成装置 10は、図中時計回り方向(矢印 R方向)に 回転するドラム素管(後述する)の周面に巻かれた原版 1 (像保持体)、この原版 1の 後述する高抵抗層に電荷を与えて帯電させる帯電器 2、原版 1に各色 (r :赤、 g :緑、 b :青)の液体現像剤を供給して現像する複数の現像装置 3r、 3g、 3b (以下、総称し て現像装置 3と称する場合もある)、現像によって原版 1に付着した液体現像剤の溶 媒成分をエアブローによって気化して乾燥させる乾燥器 4 (乾燥装置)、原版 1に付 着した現像剤粒子を転写してパターンを形成する被転写媒体となる透明基板として のガラス板 5を定位置で保持するステージ 6 (保持機構)、転写に先立ってガラス板 5 の表面に高抵抗もしくは絶縁性の溶媒を塗布する塗布装置 7 (濡らし装置)、転写を 終えた原版 1をクリーニングするクリーナ 8、および原版 1の電荷を除去する除電器 9 を有する。
[0062] 各色の現像装置 3r、 3g、 3bに収納される液体現像剤は、絶縁性溶媒中に帯電し たトナー粒子が含まれたもので、この微粒子が電界で電気泳動することによって現像 が行われる。このトナー粒子は、核粒子と、核粒子表面に設けられたシランカップリン グ処理層と、核粒子上に熱可塑性樹脂微粒子を被覆させた被覆層と、シランカツプリ ング処理層を介して被覆層上に添加された電荷制御剤とを有し、その粒径は 1な!/ヽ し 10 mである。核粒子としては、例えば平均粒径 4 ( μ m)程度の各色の蛍光体粒 子、樹脂粒子の内部に各色の顔料微粒子を内包する構成、もしくは樹脂粒子の表面 に各色の顔料微粒子を担持する構成などが実施可能である。
[0063] 図 4Aに平面図を示すように、原版 1は、矩形の薄板状に形成されている。この原版
1は、図 4Bに断面図を示すように、本発明の一態様によれば、厚さ 0. 05 (mm)ない し 0· 4 (mm)、本発明の更なる態様によれば、厚さ 0· l (mm)ないし 0· 2 (mm)の矩 形の金属フィルム 12の表面に高抵抗層 13を形成して構成されて!/、る。金属フィルム 12は可撓性を有し、アルミニウム、ステンレス、チタン、アンバーなどの素材で構成可 能であるほかに、ポリイミドゃ PETなどの表面に金属を蒸着したものなどでも良いが、 転写パターンを高い位置精度で形成するためには、熱膨張や応力による伸びなどが 生じにくい素材で構成することが望ましい。また、高抵抗層 13は、例えば、ポリイミド、 アクリル、ポリエステル、ウレタン、エポキシ、テフロン(登録商標)、ナイロンなどの体 積抵抗率が 101Q ( Q Cm)以上の材料 (絶縁体を含む)により形成され、その膜厚は、 例えば 10 ( μ m)〜40 ( m)、さらには、 20 ( m) ± 5 ( m)に形成され得る。
[0064] また、原版 1の高抵抗層 13の表面 13aには、図 5に部分的に拡大して示すような矩 形の凹部 14aを多数整列配置したドット状のパターン 14が形成されている。本実施 の形態では、例えば平面型画像表示装置の前面基板に形成する蛍光体スクリーン を製造する凹版として、 1色分の画素に相当する凹部 14aだけを高抵抗層 13の表面 13aから凹ませて形成し、図 5中に破線で示す他の 2色分の領域 14bには凹部を形 成しな!/、でスペースだけを確保してある。
[0065] 図 6には、 1つの凹部 14aを拡大した原版 1の断面図を示してある。本実施の形態 では、凹部 14aの底には金属フィルム 12の表面 12aが露出しており、この金属フィノレ ム 12の露出した表面 12aがこの発明のパターン状の電極層として機能する。凹部 14 aの深さは、高抵抗層 13の層厚に概ね相当する。凹部 14aの底に露出した金属フィ ルム 12の表面 12a、および高抵抗層 13の表面 13aを含む原版 1の表面全体に、厚 さ 0. 5 ( m)な!/、し 3 ( a m)程度の表面離型層をコーティングすれば、転写特性が 向上し、より良い特性が得られる。
[0066] 図 7には、上記構造のフィルム状の原版 1をドラム素管 31に巻きつける様子を描い た概略断面図を示してある。ドラム素管 31の図中上部の切り込み部 31aには、原版 1 の一端を固定するクランプ 32と他端を固定するクランプ 33が設けられている。原版 1 をドラム素管 31の周面上に巻き付ける場合、まず、原版 1の一端をクランプ 32に固定 し、その後、原版 1を架張しつつその他端 34をクランプ 33で固定する。これにより、た るみ無く原版 1をドラム素管 31周面の規定位置に巻き付けることができる。
[0067] 図 8は、このようにしてドラム素管 31に巻きつけられた原版 1の高抵抗層 13の表面 1 3aを帯電器 4によって帯電する工程を説明するための部分構成図である。帯電器 4 は、周知のコロナ帯電器であり、コロナワイヤー 42とシールドケース 43で基本的に構 成されている力、メッシュ状のグリッド 44を設けることで帯電の均一性を向上できる。 例えば、原版 1の金属フィルム 12とシールドケース 43を接地し、コロナワイヤー 42に 不図示の電源装置によって + 5· 5 (kV)の電圧を印加し、更にグリッド 44に + 500 ( V)の電圧を印加して原版 1を図中矢印 R方向に移動させると、高抵抗層 13の表面 1 3aは略 + 500 (V)に均一に帯電される。
[0068] 同図に示した除電器 9は、帯電器 4とほぼ同様の構造である力 コロナワイヤー 46 に例えば実効電圧 6 ( )、周波数 50 (Hz)の交流電圧を印加すべく不図示の交流 電源に接続し、シールドケース 47とグリッド 48を設置すると、帯電器 4による帯電に先 立って原版 1の高抵抗層 13の表面 13aを略 0 (V)となるよう除電することが可能で、 高抵抗層 13の繰り返し帯電特性を安定化させることができる。
[0069] 図 9には、上記のように帯電された原版 1に対する現像動作を説明するための図を 示してある。現像時には、現像する色の現像器 3を原板 1に対向させて、その現像口 ーラ 51 (供給部材)とスクイズローラ 52を原版 1に近接させ、原版 1に上述した液体現 像剤を供給する。現像ローラ 51は、搬送される原版 1の高抵抗層 13の表面 13aに対 して 100〜; 150 m)程度のギャップを介してその周面が対向する位置に配置され 、原版 1の回転方向と同じ方向(図中反時計回り方向)に 1. 5倍ないし 4倍程度の速 度で回転する。
[0070] 図示しない供給系によって現像ローラ 51周面に供給される液体現像剤 53は、絶縁 性液体としての溶媒 54に現像剤粒子としての帯電したトナー粒子 55を分散させて構 成されており、現像ローラ 51の回転に伴って原版 1の周面に供給される。ここで、現 像ローラ 51に図示しない電源装置によって例えば + 250 (V)の電圧を印加すると、 正に帯電しているトナー粒子 55は、接地電位の金属フィルム 12に向かって溶媒 54 中を泳動し、原版 1の凹部 14a内に集められる。このとき、高抵抗層 13の表面 13aは 、 + 500 (V)程度に帯電されているので正帯電したトナー粒子 55は表面 13aから反 発されて付着しない。
[0071] このようにして原版 1の凹部 14a内にトナー粒子 55が集められた後、トナー粒子 55 の濃度が薄くなつた液体現像剤 53が引き続いてスクイズローラ 52と原版 1が対向す るギャップに進入する。ここでは、ギャップ(絶縁層 13表面 13aとスクイズローラ 52表 面の間の距離)が 30 ( H m)な!/、し 50 m)、スクイズローラの電位が + 250 (V)で、 スクイズローラ 52は原版 1とは逆向きに原版 1の速度の 3倍から 5倍程度の速度で移 動するように設定されているため、現像をさらに促進しつつ、同時に原版 1に付着し ている溶媒 56の一部を絞り取る効果を奏する。このようにして、原版 1の凹部 14aにト ナ一によるパターン 57が形成される。
[0072] ところで、ガラス板 5上に 3色の蛍光体のパターンを形成する場合、図 10に示すよう に、まず、青色蛍光体粒子を含む液体現像剤を収納する現像器 3bが原版 1の直下 に移動し、ここで図示しな!/、昇降機構によって現像器 3bが上昇して原版 1に近接さ せる。この状態で、原板 1が矢印 R方向に回転して凹部 14aによるパターンが現像さ れる。青色パターンの現像が終了すると、現像器 3bが下降して原版 1から離間する。
[0073] この青色現像プロセスの間に、図示しない搬送装置によって予め搬送されてステー ジ 6上に保持されているガラス板 5のステージ 6から離間した表面に沿って塗布装置 7 が図中の破線矢印 T1方向に移動し、ガラス板 5の表面に溶媒 (絶縁性液体)が塗布 される。この溶媒の役割と材料組成につ!/、ては後述する。 [0074] しかる後に、青色のパターンを周面に担持した原版 1が回転しつつ図中の破線矢 印に沿って移動(この動作を転動と称する)し、青色のパターン像がガラス板 5の表面 に転写される。転写の詳細についても後述する。青パターンの転写を終えた原版 1は 図中左方に平行移動し、現像時の初期位置に戻る。このとき、ガラス板 5を保持した ステージ 6が下降して初期位置に戻る原版 1との接触が避けられる。
[0075] 次に、 3色の現像器 3r、 3g、 3bが図中左方に移動し、緑色の現像器 3gが原版 1の 直下に位置するところで停止し、青色の現像のときと同様にして現像器 3gの上昇、現 像、下降が行われる。引き続いて、上記と同様の操作で緑パターンが原版 1からガラ ス板 5の表面に転写される。このとき、緑色のパターンのガラス板 5表面上の転写位 置は、上述した青色のパターンから 1色分ずらされることは言うまでもない。
[0076] そして、上記の動作を赤色の現像についても繰り返し、ガラス板 5の表面上に 3色パ ターンを並べて転写して 3色のパターン像をガラス板 5の表面に形成する。このように 、ガラス板 5を定位置に保持して固定し、原版 1をガラス板 5に対して移動させることで 、ガラス板 5の往復移動が不要になり、大きな移動スペースの確保や装置の大型化を 抑制できる。
[0077] 図 11には、上述した原版 1をガラス板 5に沿って転動させるための転動機構の要部 の構造を示してある。原版 1を周面上に巻き付けたドラム素管 31の軸方向両端には 、ピニオンと呼ばれる歯車 71が取り付けられている。原版 1は、この歯車 71とモータ 一 72の駆動歯車 73のかみ合わせによって回転するとともに、ステージ 6の両端に設 置されている直線軌道のラック 74とピニオン (歯車 71 )の嚙み合わせによって図中右 方向に並進する。このとき、ステージ 6上に保持されたガラス板 5の表面と原版 1の表 面との間に相対的なズレを生じることのないように、転動機構の各部の構造が設計さ れている。特許請求の範囲では、このように回転しながらガラス板 5に沿って平行に 移動する動作を転動と称して!/、る。
[0078] このようなラック 'アンド '·ピニオン機構によれば、駆動伝達用のアイドラが無いため、 ノ ックラッシュの無い高精度の回転 ·並進駆動を実現でき、ガラス板 5上に例えば ± 5 m)と!/、つた位置精度の高!/、高精細パターンを転写することが可能となる。
[0079] 一方、ガラス板 5 (図 11では図示していない)は、図 10に示すように、ステージ 6の 平らな接触面 6aに対して、その裏面 5b (原版 1から離間した側の面)の略全面を面接 させるようにステージ 6上に配置される。その上、ガラス板 5には、ステージ 6を貫通し て接触面 6aまで延びた吸気口 76に、接続パイプ 75から主パイプ 77を経由して不図 示の真空ポンプを接続することによって、吸気口 76の接触面 6aに開口した図示しな い吸着孔を介して負圧が作用され、ステージ 6の接触面 6a上に吸着される。この吸 着機構によって、ガラス板 5は、高い平面度を持った接触面 6aにその裏面 5bの略全 面を押圧させて密着され、平面性が高い状態でステージ 6上に保持される。このよう に平らな接触面 6aにガラス板 5を押し付けることにより、ガラス板 5の歪み等をも矯正 でき、後述する原版 1との間の転写ギャップを高精度に維持できる。
[0080] 図 12は、原版 1からガラス板 5にトナー粒子 55を転写する際の様子を説明する要 部断面図である。図示しない遮光層を有するガラス板 5の表面 5aには、例えば導電 性高分子などで構成される導電層 81が塗布されており、この導電層 81の表面 81aと 原版 1の高抵抗層 13の表面 13aとは、ギャップ d2を介して非接触状態に設置される 。 d2は例えば 10 m)ないし 40 m)の範囲の値に設定される。高抵抗層 13の厚 さが例えば 20 m)の場合は、金属フィルム 12と導電層 81表面 81aとの間の距離 は、 30 ( m) ¾V、し 60 ( μ m)となる。
[0081] この状態で、電源装置 82 (転写装置)を介して導電層 81に例えば一 500 (V)の電 圧を印加すると、接地電位の金属フィルム 12との間に 500 (V)の電位差が形成され 、その電界によってトナー粒子 55が溶媒 54中を電気泳動して導電層 81の表面 81a に転写される。このように、トナー粒子 55は非接触状態でも転写が可能なので、オフ セット印刷やフレキソ印刷の場合のように、ブランケットやフレキソ版とレ、つた弾性体を 介在させる必要がなぐ常に位置精度の高い転写を実現することが可能となる。導電 層 81は、トナー粒子 55の転写後、ガラス板 5を図示しないべ一ク炉へ投入して焼成 することで消失させる。このようにして、本発明に力、かる表示装置の前面基板が得ら れる。
[0082] なお、上記のように、電界を用いてトナー粒子をガラス板 5に転写する場合、転写ギ ヤップに溶媒が存在してガラス板 5側の導電層 81と原版 1との間を濡らすことが必須 条件となるため、転写に先立ってガラス板 5の表面 5aを溶媒でプリウエットしておくこと が有効である。プリウエット溶媒としては絶縁性もしくは高抵抗であれば良!/、が、液体 現像剤に用いられている溶媒と同一の溶媒、もしくはこれに帯電制御剤などが添加さ れたものであればなお好適である。プリウエット溶媒は、図 10を用いて説明したように 、塗布装置 7によって適切なタイミングで適当な塗布量でガラス板 5の表面 5a上に塗 布される。
[0083] 以上のように、上述した実施の形態によると、定位置に配置したガラス板 5に対して 原版 1を転動させて現像したトナー粒子 55をガラス板 5の表面 5aに転写するようにし たため、原版 1を転動させる転動機構の構成を小型化でき、装置の設置スペースを 小さくできる。また、上述した実施の形態によると、非接触状態で対向配置した原版 1 力もガラス板 5へ電界を用いてトナー粒子 55を転写するようにしたため、従来のように フレキソ版を用いた転写方式と比較して、転写像の解像度を高めることができ、高精 細なパターンを形成できる。
[0084] また、上述した実施の形態では、原版 1の凹部 14aに集めた(現像した)トナー粒子
55を乾燥器 4からのエアブローによって一旦適度に乾燥させた後、ガラス板 5の表面 5aを溶媒によって濡らして(プリウエットして)トナー粒子 55を転写するようにしたため 、ガラス板 5の表面 5aに転写されるトナー像の形状を安定させることができ、パターン の輪郭を鮮明にできる。
[0085] 図 13にこのようにして得られた前面基板を模式的に表す断面図を示す。
[0086] 図 13に示すように、得られた前面基板 111は、透明基板 5とその上にドット状に設 けられた蛍光体層 116と、蛍光体層 116の周囲に格子状に設けられた遮光層 117と を有する。
[0087] 図 14は、本発明に係る表示装置としての FEDの一例を表す斜視図を示す。
[0088] また、図 15には、その A— A'断面図を示す。
[0089] 図 14および図 15に示すように、この FEDは、絶縁基板としてそれぞれ矩形状のガ ラス板からなる前面基板 111、および背面基板 112を備え、これらの基板は l〜2m mの隙間を置いて対向配置されている。そして、前面基板 111および背面基板 112 は、矩形枠状の側壁 113を介して周縁部同士が接合され、内部が真空状態に維持 された扁平な矩形状の真空外囲器 110を構成して!/、る。 [0090] 真空外囲器 110の内部には、前面基板 111および背面基板 112に加わる大気圧 荷重を支えるため、複数のスぺーサ 114が設けられている。スぺーサ 114としては、 板状あるいは柱状のスぺーサ等を用いることができる。
[0091] 前面基板 111の内面上には、画像表示面として、赤、緑、青の蛍光体層 116とマト リクス状の遮光層 117とを有した蛍光面 115が形成されて!/、る。これらの蛍光体層 11 6はストライプ状あるいはドット状に形成してもよい。この蛍光面 115上には、アルミ二 ゥム膜等からなるメタルバック 120が形成されている。さらに真空外囲器 110の内部 圧力を下げるためにゲッタ膜 121を形成し、内部の不要ガスを吸着している。ゲッタ 粉末に接着効果のある材料を混ぜて接着している。
[0092] 背面基板 112の内面上には、蛍光面 115の蛍光体層 116を励起する電子源として 、それぞれ電子ビームを放出する多数の表面伝導型の電子放出素子 118が設けら れている。これらの電子放出素子 118は、画素毎に対応して複数列および複数行に 配列されている。各電子放出素子 118は、図示しない電子放出部、この電子放出部 に電圧を印加する一対の素子電極等で構成されている。また、背面基板 112の内面 には、電子放出素子 118に電位を供給する多数本の配線 121がマトリクス状に設け られ、その端部は真空外囲器 110の外部に引出されて!/、る。
[0093] このような FEDでは、画像を表示する場合、蛍光面 115およびメタルバック 120に アノード電圧を印加して、電子放出素子 118から放出された電子ビームをアノード電 圧により加速して蛍光面へ衝突させる。これにより、蛍光面 115の蛍光体層 116が励 起されて発光し、カラー画像を表示する。
[0094] 次に、本発明に力、かる第 4の発明につ!/、て説明する。
[0095] 本発明の液体現像剤は、電気絶縁性溶媒と、トナー粒子とを含み、このトナー粒子 は、核粒子と、核粒子上に設けられた熱可塑性樹脂微粒子の被覆層と、被覆層上に 添加された電荷制御剤とを有し、かつ使用される電荷制御剤は、ランタノイド金属を 少なくとも 1種含む有機化合物である。
[0096] ここで、被覆層は、トナー粒子表面の少なくとも一部を覆っているものとする。
[0097] 本発明の液体現像剤は、電荷制御剤にランタノイド金属を少なくとも 1種含む有機 金属化合物を用いることにより、トナー粒子への帯電付与において、樹脂被覆された 核粒子表面の不均一な状態の影響を小さくすることができる。これは、ランタノイド金 属の核粒子表面へ吸着および配位などによる帯電付与性が高いこと、さらに吸着お よび配位の平衡が速いために、帯電状態が安定な状態で保たれることによると考えら れる。
[0098] 例えば、核粒子表面が樹脂により被覆されて!/、る場合、電荷制御剤はその樹脂の 被覆層表面に吸着したり、あるいは樹脂被覆表面の官能基に対して酸 ·塩基的な配 位をとることにより帯電性をおびる。ここで、樹脂被覆された核粒子表面の吸着サイト や配位サイトはすべてが均一な表面状態とは限らない。樹脂の分子量や官能基の不 均一な配置、および立体障害などにより、この吸着サイトや配位サイトは、不均一な 表面状態をとる。このような粒子の表面状態に対し、帯電付与性が小さいとその表面 状態の影響が大きぐ粒子表面の帯電性が不均一になる。さらに、吸着および配位 の平衡が遅くなると、帯電状態が安定しなくなり、帯電性の経時変化や使用環境によ る帯電性の変化が大きくなる。結果として、電気泳動性の制御が困難となり高精細な トナー層を電着することが困難となる。一方で、ランタノイド金属を少なくとも 1種含む 有機金属化合物を電荷制御剤に用いると、帯電付与性に優れるために、樹脂被覆さ れた核粒子のこのような不均一な表面状態に影響されずに個々の粒子の帯電性が より均一になり、長時間にわたって安定な帯電性を保持することが可能となる。また、 使用環境の変化による帯電性の変化が小さくなる。結果として、電気泳動性の制御 が良好となり、高精細なトナー層を電着することが出来るようになる。また、個々の粒 子の帯電性の均一化により、トナー溶液中における電気的反発によるトナー粒子の 分散性も向上する。
[0099] 図 20に、本発明の液体現像剤に含まれるトナー粒子の構成の一例を説明するた めのモデル図を示す。
[0100] 図示するように、このトナー粒子 160は、核粒子 161と、核粒子 161表面に被覆さ れた、熱可塑性樹脂微粒子被覆層 163およびその熱可塑性樹脂微粒子被覆層 163 表面に存在する図示しない電荷制御剤を含む。
[0101] 核粒子は、その平均粒径が 0· 01力、ら 10 mにすること力 Sできる。 0. 01 m未満 であると、核粒子の分子間凝集が大きくなり、均一な分散が難しくなる傾向がある。こ のように平均粒径が小さく分散性の悪!/、材料例えば数 nmの平均粒径を持つ微小顔 料粒子などを用いる場合には、より大きな平均粒径を持つ樹脂など力 なる核粒子 に担持させることにより分散性を改善し、適用すること力 Sできる。また、 10 mを超え ると、核粒子を均一に攪拌することが困難となり、結果的に均一な樹脂層を形成する ことが困難となる頃向がある。
[0102] 本発明の一態様によれば、トナー粒子と絶縁性溶媒の重量比は、 2 : 98ないし 50 :
50にすることカでさる。
[0103] トナー粒子の重量比が上記範囲より少ないと、所定の膜厚のトナー層を形成するた めに大量の溶媒が必要となる傾向がある。また、トナー粒子の重量比が上記範囲より 多いと、トナー層を形成すべき部分以外にもトナー粒子が付着し、汚染の原因となる 傾向がある。
[0104] 第 4の発明にかかる液体現像剤は、本発明の一態様によれば、電荷制御剤として、 核粒子の重量に対して、例えば 0. 001から 10重量%に相当する金属分を含む有機 金属化合物を含有し得る。
[0105] 電荷制御剤の金属分が、核粒子に対し 0. 001重量%未満であると、トナー粒子の 帯電が不十分となる傾向がある。帯電が不十分なトナー粒子は、電界で制御しにくい ため、そのようなトナー粒子が多くなると、電着膜が流れたり、膜形成すべき部分以外 にもトナー粒子が付着して、汚染の原因となる傾向がある。
[0106] また、電荷制御剤の金属分が、核粒子に対し 10重量%を超えると、液体現像剤中 のイオン成分量が過剰となり、液体現像剤全体の抵抗が低くなりすぎるため、トナー 粒子の電気泳動性が低下する傾向がある。
[0107] これらの問題を加味し、本発明の更なる態様によれば、これら電荷制御剤は、核粒 子に対して 0. 01重量%ないし 2重量%となるよう添加され得る。
[0108] 本発明の一態様によれば、熱可塑性樹脂微粒子の添加量は、核粒子の重量に対 して、 1. 0から 20重量%にし得る。
[0109] 熱可塑性樹脂微粒子の添加量が、核粒子に対し 1重量%未満であると、核粒子が 露出する割合が高くなりすぎ、核粒子の表面状態が不均一になって、これにより、電 荷制御剤の分布が不均一となり、トナー粒子の帯電性のコントロールが困難になる傾 向がある。また、熱可塑性樹脂微粒子の添加量が 20重量%を超えると、核粒子に対 して熱可塑性樹脂微粒子の被覆量が過剰となり、核粒子表面に付着、あるいは吸着 しきれない遊離した熱可塑性樹脂微粒子が増加しやすい。このような場合、液体現 像剤内に添加した電荷制御剤が、遊離した熱可塑性樹脂微粒子にも吸着し、トナー 粒子の帯電特性を阻害する傾向がある。これらの問題を加味し、本発明の更なる態 様によれば、これら熱可塑性樹脂微粒子の添加量は、核粒子に対して 3重量%ない し 10重量%である。
[0110] 核粒子としては、例えば蛍光体粒子、顔料粒子、及び着色剤を含有する着色樹脂 粒子等があげられる。
[0111] 本発明に使用可能な蛍光体としては、第 1ないし第 3の発明に用いられるものと同 様のあのを使用すること力 Sでさる。
[0112] 無機顔料の具体例としては、黄土色等の天然顔料、黄鉛、ジンクイエロー、ノ リウム イェロー、クロムオレンジ、モリブデンレッド、クロムグリーン等のクロム酸塩、紺青等の フエロシアン化合物、酸化チタン、チタンイェロー、チタン白、ベンガラ、黄色酸化鉄 、酸化亜鉛、亜鉛フェライト、亜鉛華、鉄黒、コバルトブルー、酸化クロム、スピネルグ リーン等の酸化物、カドミウムイェロー、カドミウムオレンジ、カドミウムレッド、等の硫化 物、硫酸バリウム等の硫酸塩、珪酸カルシウム、群青等の珪酸塩、ブロンズ、アルミ二 ゥム等の金属粉、カーボンブラック等が挙げられる。
[0113] 有機顔料の具体例としては、例えば、マダレーキ等の天然レーキ、ナフトールダリー ン、ナフトールオレンジ等の二トロン系顔料、ベンジジンイェロー G、ハンザイェロー G 、ハンザイェロー 10G, ノ ノレカン才レンジ、レーキレッド R、レーキレッド C、レーキレツ KD、ウォッチングレッド、ブリリアンカーミン 6B、ピラロゾンオレンジ、ボルドー 10G、 ( ホルマルーン)等の溶性ァゾ系、ピラロゾンレッド、パラレッド、トルイジンレッド、 ITRレ ッド、トルィジンレッド(レーキレッド 4R)、トルイジンマルーン、ブリリアントファイストス カーレッド、レーキボルドー 5B、等の不溶性ァゾ系、縮合ァゾ系等のァゾ系顔料、フ タロシアニンブルー、フタロシアニングリーン、ブロム化フタロシアニングリーン、ファス トスカイブルー等のフタロシアニン顔料、スレンブルー等のアントラキノン系、ペリレン マルーン等のペリレン系、ペリノォオレンジ等のペリノン系、キナクリドン、ジメチルキ ナタリドン等のキナクリドン系、ジォキサジンバイオレット等のジォキサジン系、イソイン ドリン系、キノフタロン系等の縮合多環系顔料、ローダミン 6B、レーキ、ローダミンレー キ8、マラカイトグリーン等の塩基性染料レーキ、ァリザリンレーキ、等の媒染染料系 顔料、インダスレンブルー、インジゴブルー、アントアントロンオレンジ等の建染染料 系顔料、蛍光顔料、ァジン顔料 (ダイヤモンドブラック),グリーンゴールド等が挙げら れる。
着色剤を含有する着色樹脂粒子に用いられる樹脂粒子のための樹脂材料として、 スチレン、 o メチルスチレン、 m メチルスチレン、 p メチルスチレン、 p メトキシス チレン、 p—フエニルスチレン、 p—クロルスチレン、 3, 4—ジクロルスチレン、 p ェチ ノレスチレン、 2, 4 ジメチルスチレン、 p— n ブチルスチレン、 p— tert ブチルスチ レン、 p— n へキシノレスチレン、 p— n—オタチノレスチレン、 p— n ノニノレスチレン、 p —n—デシルスチレン、 p— n ドデシルスチレン等のスチレン及びその誘導体;ェチ レン、プロピレン、イソブチレンなどのエチレン不飽和モノォレフィン類;塩化ビュル、 塩化ビニリデン、フッ化ビュルなどのハロゲン化ビュル類;酢酸ビュル、プロピオン酸 ビュル、ベンゾェ酸ビュルなどのビュルエステル類;メタクリル酸メチル、メタクリル酸 ェチル、メタクリル酸プロピル、メタクリル酸 n ブチル、メタクリル酸イソブチル、メタク リル酸 n ォクチル、メタクリル酸ドデシル、メタクリル酸 2—ェチルへキシル、メタク リル酸ステアリル、メタクリル酸フエニル、メタクリル酸ジメチルアミノエチル、メタクリノレ 酸ジェチルアミノエチルなどの α—メチレン脂肪族モノカルボン酸エステル類;アタリ ル酸メチル、アクリル酸ェチル、アクリル酸 η ブチル、アクリル酸イソブチル、アタリ ル酸プロピル、アクリル酸 η ォクチル、アクリル酸ドデシル、アクリル酸 2—ェチルへ キシル、アクリル酸ステアリル、アクリル酸 2—クロルェチル、アクリル酸フエニルなどの アクリル酸エステル類;ビュルメチルエーテル、ビュルェチルエーテル、ビュルイソブ チルエーテルなどのビュルエーテル類;ビュルメチルケトン、ビュルへキシルケトン、 メチルイソプロぺニルケトンなどのビニルケトン類; Ν—ビュルピロール、 η—ビュル力 ノレバゾール、 Ν ビュルインドール、 Ν ビュルピロリドンなどの Ν ビュル化合物; ビュルナフタリン酸;アクリロニトリル、メタタリロニトリル、アクレルアミドなどのアクリル 酸及びメタクリル酸誘導体などのビュル系単量体等の単独重合体あるいは共重合体 をあげること力 Sできる。特に代表的な結着樹脂としては、ポリスチレン、スチレン一ァク リル酸共重合体、スチレンーメタクリル酸共集合体、スチレン アクリロニトリル共集合 体、スチレン ブタジエン共集合体、ポリエステル、ポリウレタン、エポキシ樹脂、シリ コン樹脂、ポリアミド等をあげることができる。
[0115] 第 4の発明に使用される電荷制御剤は、ランタノイド金属を少なくとも 1種含む有機 化合物であり、例えばランタノイド金属としては La、 Ce、 Eu、 Gd、 Tbなどがあげられ 、これらと有機金属化合物を構成するものとしては、ナフテン酸金属塩、ォクチル酸 金属塩、ラウリン酸金属塩、ォレイン酸金属塩、セカノイツク酸金属塩、ドデシル酸金 属塩などの有機酸金属塩や、ァセチルアセトン金属塩などのキレート錯体化合物や
[0116] 第 4の発明の液体現像剤に用いられる電気絶縁性溶媒は、第 1ないし第 3の発明 に使用される電気絶縁性溶媒と同様であり、例えば 70〜250°Cの温度範囲に沸点 を有し、 109 Ω ' cm以上、さらには 101()ないし 1017 Ω ' cmの体積比抵抗と 3未満の誘 電率を有し得る。
[0117] また、熱可塑性樹脂微粒子は、例えば懸濁従合法や乳化重合法に代表される重 合方法を用いて製造され得る。
[0118] 本発明の一態様によれば、熱可塑性樹脂微粒子の平均粒径は 0. 1から 5 111にし 得る。
[0119] 熱可塑性樹脂の微粒子平均粒径 0. 1 a m未満であると合成時の組成分布が不均 一になりやすぐ核粒子に付着あるいは吸着しない樹脂成分が増加し、電荷制御剤 により浮遊残存樹脂も帯電してしまうため、トナー組成が不均一になり高精細なバタ 一ユングが困難になる。また 5 m以上になると樹脂の主鎖のからみつきが大きぐ溶 媒中への主鎖のひろがりが悪くなり、核粒子表面への付着あるいは吸着が不均一と なりやすい。
[0120] 熱可塑性樹脂微粒子としては、例えば、乾燥された 1次平均粒子径 0. 1 a m〜5 m程度の粉末として得られるアクリル系微粒子などが利用できる。また、微粒子状 でなくとも、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ナイロン系樹脂 その他、熱可塑性樹脂で、顆粒状やペレット状の樹脂を、微粉砕機などにより物理的 に粉砕して使用することも出来る。
[0121] また、サンドグラインダなどのビーズミルや、ボールミルなどによって絶縁性溶媒中 で微粒子化した後に使用することも出来る。
[0122] 核粒子上に熱可塑性樹脂微粒子を設けるには、例えば核粒子及び熱可塑性樹脂 微粒子を含む分散系を熱可塑性樹脂微粒子の軟化点以上温度で加熱撹拌する方 法等があげられる。し力もながら、この核粒子として、親水性を有する蛍光体を使用 すると、疎水性を有する熱可塑性樹脂微粒子を適用しても付着しにくいことがある。こ のような場合には、核粒子を予めシランカップリング剤で表面処理し、このシランカツ プリング処理層が核粒子と熱可塑性樹脂微粒子とを親和させて、結合剤のように機 能し、熱可塑性樹脂微粒子が核粒子上に付着させるか、もしくはワックス等を熱可塑 性樹脂微粒子と一緒に核粒子に析出させることで該核粒子表面に熱可塑性樹脂微 粒子を付着させることができる。
[0123] 核粒子に均一な表面処理を行うシランカップリング剤の水溶液もしくは水 アルコ ール溶液、 pH4程度の酢酸水溶液の濃度は 0. 01重量%ないし 5重量%とし得る。
[0124] 0. 01重量%未満であると、核粒子表面に十分なシランカップリング処理が行えず 、熱可塑性樹脂微粒子の付着が不十分となる傾向があり、 5重量%を超えると、シラ ンカップリング剤が溶媒に溶解しきれな!/、ため、かえってシランカップリング処理にム ラが発生してしまったり、凝集してしまう傾向がある。
[0125] 第 4の発明にかかる液体現像剤を用い、第 1ないし第 3の発明と同様にして、画像 表示装置の蛍光面、さらにはこの蛍光面を含む前面基板を形成することができる。
[0126] この方法では、液体現像剤の組成及び濃度等を調整することにより、得られる表示 装置の蛍光体層の膜厚を制御できる。
[0127] 以下に、第 5の発明にかかる液体現像剤を用い、 本発明の液体現像剤は、電気 絶縁性溶媒と、トナー粒子とを含み、このトナー粒子は、核粒子と、核粒子上に設け られた熱可塑性樹脂微粒子の被覆層と、被覆層表面に添加された電荷制御剤とを 有し、かつ ZnS系蛍光体からなる核粒子が使用される。
[0128] 第 5の発明に使用される電荷制御剤は、 2A族および 3A族金属の少なくとも 1種を 含む金属化合物を少なくとも 1種含む。 [0129] 第 5の発明によれば、電荷制御剤として、 2A族および 3A族金属を含む金属化合 物を少なくとも 1種類適用することにより、トナー粒子に十分な帯電性を付与し、かつ 電着後にも粒子表面に均一に分布し残存することにより、蛍光面作成工程における 熱処理などによる輝度劣化や、電子線等による発光表示過程における輝度劣化 (発 光寿命)を抑制する効果が得られる。これは ZnS母体表面の格子欠陥の生成による 輝度劣化を、 2A族および 3A族金属が抑制しているためと考えられる。
[0130] 図 21に、第 5の発明にかかる液体現像剤中のトナー粒子の構成を表す模式的な断 面図を示す。
[0131] 図示するように、このトナー粒子 260は、 ZnS系蛍光体からなる核粒子 261と、核粒 子 261上に付着された樹脂微粒子 263による被覆層が形成されている。
[0132] ここで、被覆層は、トナー粒子表面の少なくとも一部を覆っているものとする。
[0133] トナー粒子表面には、図示しない電荷制御剤が添加されている。
[0134] トナー粒子表面に添加された電荷制御剤は、この表面に吸着したり、あるいは表面 の官能基に対して酸 ·塩基的な配位をとり得る。
[0135] また、液体現像剤において、熱可塑性樹脂微粒子被覆層表面に添加されて、吸着 あるいは配位されているのは、電気絶縁性溶媒中に存在する電荷制御剤及びこの 有機化合物の少なくとも一部である。残部の電荷制御剤及びこの有機化合物は、熱 可塑性樹脂微粒子被覆層表面に作用することなぐ電気絶縁性溶媒中に存在し得る
[0136] 本発明の一態様によれば、核粒子は、その平均粒径が 1から 10 mであり得る。 1
未満であると、核粒子の分子間凝集が大きくなり、均一な分散が難しくなる傾向 力 る。 ΙΟ πιを超えると、核粒子を均一に攪拌することが困難となり、結果的に均 一な樹脂層を形成することが困難となり、その表面に存在する電荷制御材の分布も 不均一になるために、個々の粒子の帯電性に偏りが生じ、電界での制御が困難とな る。また電荷制御剤の分布が不均一になることから、成膜工程の熱処理などによる輝 度劣化や、電子線等による発光表示過程における輝度劣化 (発光寿命)も進行しや すくなる傾向がある。
[0137] 本発明の一態様によれば、液体現像剤 100重量部に対し、トナー粒子と絶縁性溶 媒の重量比は、 2: 98力、ら 50: 50にすること力 Sできる。
[0138] 重量比が上記範囲外であると、所定の膜厚を得るために大量の溶媒が必要となつ たり、膜形成されるべきパターン以外にもトナー粒子が付着し、汚染の原因となったり する傾向がある。
[0139] 本発明の一態様によれば、電荷制御剤は、核粒子の重量に対して、 0. 001から 1 0重量%に相当する金属分を含み得る。
[0140] 電荷制御剤がトナー粒子に対し 0. 001重量%未満であると、トナーの帯電が不十 分のため電界で制御できない粒子が多く存在し、電着膜が流れたり、膜形成したい 部分以外にもトナー粒子が付着して汚染の原因となったりする傾向がある。また核粒 子表面に残存する 2A族および 3A族金属分が少なくなりすぎ、輝度劣化の十分な抑 制効果が得られなくなる。
[0141] また、 10重量%を超えると、現像液中のイオン成分量が過剰となり現像液全体の抵 抗が低くなりすぎるためトナー粒子の電気泳動性が低下する傾向がある。
[0142] これらの問題を加味し、本発明の更なる態様によれば、これら電荷制御剤は、核粒子 に対して 0. 01重量%以上 2重量%以下となるよう添加することができる。
[0143] 本発明の一態様によれば、熱可塑性樹脂微粒子の含有量は、核粒子の重量に対 して、 1. 0から 20重量%に相当することができる。
[0144] 熱可塑性樹脂の含有量が、核粒子に対し 1重量%未満であると、付着、あるいは吸 着する樹脂の量が少なすぎるため、樹脂の付着していない核粒子の存在など、核粒 子が露出する確率が高くなる傾向がある。よって、核粒子の表面状態が不均一になり 、ゆえに電荷制御剤の分布が不均一となり、トナー粒子の帯電性をコントロールする ことが困難になる傾向がある。加えて、電着後に残存する 2A族および 3A族金属分 の分布も不均一になることから、成膜工程の熱処理などにおける輝度劣化や、電子 線等による発光表示過程における輝度劣化 (発光寿命)も進行しやすくなる傾向があ
[0145] また、熱可塑性樹脂の含有量が、 20重量%を超えると、核粒子に対して樹脂が付 着、あるいは吸着しきれなくなり、溶液中に遊離してしまう傾向がある。この場合、電 荷制御剤を添加してトナー粒子に電荷を与えようとしても遊離した樹脂にも吸着して しまい、トナー粒子の帯電特性を阻害してしまう。これらの問題を加味し、本発明の更 なる態様によれば、これら熱可塑性樹脂は核粒子に対して 3重量%以上 10重量% 以下となるよう添加され得る。
[0146] 第 5の発明に使用される核粒子としては、 ZnSを母体とする蛍光体粒子があげられ
[0147] ZnSを母体とする蛍光体としては、 ZnS : Ag, Cl、 ZnS : Ag, CI, Al、 (Zn, Cd) S :
Ag、(Zn、 Cd) S : Ag, Cl、(Zn、 Cd) S : Ag,及び CI, Al等の青色発光蛍光体、 Zn S: Cu, Al、 ZnS: Cu、 ZnS: Cu, Al, Au、(Zn、 Cd) S: Cu, Al、(Zn、 Cd) S: Cu、 及び(Zn、 Cd) S : Cu, Al, Au等の緑色発光蛍光体、(Zn、 Cd) S: Ag + InO等の赤 色発光蛍光体があげられる。
[0148] 第 5の発明に使用される電荷制御剤としては、 2A族および 3A族金属を少なくとも 1 種含む化合物が使用される。このような化合物として、 6から 30の炭素数を有する金 属有機酸塩例えばナフテン酸塩、ォクチル酸塩、ラウリン酸塩、ォレイン酸塩、セカノ イツク酸塩、ドデシル酸塩などの有機酸塩や、キレート錯体化合物や、金属アルコキ シドなどの有機化合物があげられる。また燐酸塩、硝酸塩などの無機化合物も使用 することが可能である。
[0149] 液体現像剤に用いられる電気絶縁性溶媒は、第 1ないし第 4の発明と同様のものが 使用できる。
[0150] また、本発明に用いられる熱可塑性樹脂微粒子は、例えば懸濁重合法や乳化重 合法に代表される重合方法を用いて製造され得る。
[0151] 本発明の一態様によれば、熱可塑性樹脂微粒子は、 0. Ι μ ηι^ δ μ mの平均粒子 径を有し得る。
[0152] 熱可塑性樹脂微粒子の平均粒子径が 0. 1 m以下であると合成時の組成分布が 不均一になりやすぐ核粒子に付着あるいは吸着しない樹脂成分が増加し、電荷制 御剤により浮遊残存樹脂も帯電してしまうため、トナー組成が不均一になり高精細な ノ ターユングが困難になる傾向がある。
[0153] また、熱可塑性樹脂微粒子の平均粒子径が 5 μ mを超えると樹脂の主鎖のからみ つきが大きぐ溶媒中への主鎖のひろがりが悪くなり、核粒子表面への付着あるいは 吸着が不均一となる傾向がある。
[0154] このような熱可塑性樹脂微粒子として、例えば乾燥された 1次平均粒子径 0. 1 a m 〜5 m程度の粉末として得られるアクリル系微粒子などが利用できる。また微粒子 状でなくとも、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ナイロン系樹 脂等の熱可塑性樹脂を顆粒状、あるいはペレット状にしたもの、または微粉砕機など により物理的に粉砕したものを使用することが出来る。
[0155] また、サンドグラインダなどのビーズミルや、ボールミルなどによって絶縁性溶媒中 で微粒子化した後に使用することも出来る。
[0156] 核粒子上に熱可塑性樹脂微粒子を設けるには、例えば核粒子及び熱可塑性樹脂 微粒子を含む分散系を熱可塑性樹脂微粒子の軟化点以上温度で加熱撹拌する方 法等があげられる。し力もながら、この核粒子として、親水性を有する蛍光体を使用 すると、疎水性を有する熱可塑性樹脂微粒子を適用しても付着しにくいことがある。こ のような場合には、核粒子を予めシランカップリング剤で表面処理し、このシランカツ プリング処理層が核粒子と熱可塑性樹脂微粒子とを親和させて、結合剤のように機 能し、熱可塑性樹脂微粒子が核粒子上に付着させるか、もしくはワックス等を熱可塑 性樹脂微粒子と一緒に核粒子に析出させることで該核粒子表面に熱可塑性樹脂微 粒子を付着させることができる。
[0157] 核粒子に均一な表面処理を行うシランカップリング剤の水溶液もしくは水 アルコ ール溶液、 pH4程度の酢酸水溶液の濃度は 0. 01重量%ないし 5重量%にすること ができる。
[0158] 0. 01重量%未満であると、核粒子表面に十分なシランカップリング処理が行えず 、熱可塑性樹脂微粒子の付着が不十分となる傾向があり、 5重量%を超えると、シラ ンカップリング剤が溶媒に溶解しきれな!/、ため、かえってシランカップリング処理にム ラが発生してしまったり、凝集してしまう傾向がある。
[0159] 第 5の発明の液体現像剤を用い、第 1ないし第 4の発明と同様にして、画像表示装 置の蛍光面、さらにはこの蛍光面を含む前面基板を形成することができる。
[0160] このようにして得られた前面基板は、図 13と同様の断面図で表すことができる。
[0161] また、その平面図は、図 14と同様の構成を有する。 [0162] さらに、表示装置としての FEDの一例として、図 15には、図 14の A— A'断面図を 示す。
[0163] 実施例
以下に、第 1なレ、し第 3の発明にかかる実施例を示す。
[0164] 図 16に、本発明に使用し得る実験装置の一例を表す概略図を示す。
[0165] 図示するように、この実験装置は、上下に分離可能な三つ口のセパラブルフラスコ
30と、中央の口に差し込まれた撹拌羽根を有する攪拌機 136、攪拌機 136を回転駆 動させ、かつ中央の口を封止する防爆モータ 132、中央の口の両側の口の一方に設 けられ、ジムロート還流冷却器 131、他の一方のロカもセパラブルフラスコ 130内部 まで差し込まれた熱電対 133、熱電対 133に接続されたリレー温調ユニット 134、及 びリレー温調ユニット 134に接続されたマントルヒータ 135を有する。
[0166] この実験装置では、セパラブルフラスコ 130の内容物を撹拌機 136を用いて撹拌し ながら、熱電対 133で常に温度を計測し、計測された温度を基にリレー温調ユニット 134にてマントルヒータ 35の加熱を制御し、内容物の温度を常に一定に保つことが できる。内容物からの溶媒蒸気は、ジムロート還流冷却器 131により冷却、凝縮させ て再び下部の容器内に戻され、これにより、セパラブルフラスコ 130内圧力の過度な 上昇を防ぐことができる。
[0167] 実施例 1
1000mlビーカーに信越化学社製シランカップリング剤(KBM— 603)水溶液を 70 0g作成し、 Y O S : Eu系赤色発光蛍光体粒子(平均粒子径 4. δ μ ΐη^比重 5. 0)を
2 2
50gを投入し、 2時間攪拌した。その後、濾過して乾燥炉で 120°C、 3時間乾燥させる ことによりシランカップリング処理を行った後、篩にかけた。次に、 500mlセパラブル フラスコに、沸点範囲が 19;!〜 205°Cのェクソン化学社製 絶縁性炭化水素溶媒 (ァ イソパー L)を 180gを注ぎ、さらに比重 1. 0である綜研化学株式会社製 アクリル微 粒子(MP4009) 2gとシランカップリング処理を行った Y O S : Eu系赤色発光蛍光体
2 2
粒子 18gを投入し、温度コントローラとしてリレー温調ユニットを 100°Cにセットして、 攪拌機により加熱攪拌を行った。溶液温度力 S 100°Cの状態で 2時間攪拌を続け、そ の後 1. 5時間かけて室温(25°C)まで冷却しながら攪拌を続けた。このようにして得ら れた固形分濃度 10重量%の蛍光体粒子分散体に対し、大日本インキ化学工業社 製 ナフテン酸ジルコニウムを 2g添加し、赤色発光蛍光体含有液体現像剤を得た。
[0168] 図 17に、上記液体現像剤を用いてトナー層を形成するための実験装置の一例を 表す概略図を示す。
[0169] 図示する様に、実験装置としてのサンドイッチセルは、一対の ITO電極 211 , 212 間に、テフロン (登録商標)製スぺーサ 213を配置し、 ITO電極 211 , 212間に電圧 を印可できるようになつている。テフロン製スぺーサ 213は、一辺が 40mmの正方形 で、中央に 30mm角の正方形の開孔が設けられ、その一辺から、開孔に通じる 2つ のパスを形成するようにスぺーサ 213の一部が除去されている。 2つのパスの一方は 、空気抜き穴 215として、もう一方は、液体現像剤の注入路 214として使用される。
[0170] 上記赤色発光蛍光体含有液体現像剤を、図示するようなサンドイッチセルに注入し 、直流電圧 300Vを 5秒間印加した後にセルを分解した。得られた電着膜の様子を 観察したところ、 V、ずれの場合もグランド側の ITO電極 211に均一な蛍光体電着膜 が形成されており、正極側の ITO電極 212にはなにも付着していなかった。
[0171] このこと力、ら、これらの現像剤はすべて正極性に帯電しており、逆極性に帯電して いるものは無いことが分かった。なお、このときの負極側の電着膜の厚みは平均で 11 a mであり、十分な厚さの電着膜が形成されていることがわ力、つた。
[0172] 蛍光体電着膜の電子線励起での輝度を測定したところ、スクリーン印刷で形成した 蛍光膜と同程度となった。
[0173] また、得られた赤色発光蛍光体含有液体現像剤のトナー粒子の表面構造を SEM により撮影して観察した。図 18に、トナー粒子の表面構造を表す SEM写真を示す。 図 18に示すように、蛍光体表面にシランカップリング剤を介して樹脂微粒子が均一 に付着して!/、ることがわ力、つた。
[0174] 実施例 2
1000mlビーカーに信越化学社製シランカップリング剤(KBM— 603)水溶液を 70 Og作成し、 ZnS : Cu, A1系緑色発光蛍光体粒子(平均粒子径 5. 6 m、比重 4. 1) を 50gを投入し、 2時間攪拌した。その後、濾過して乾燥炉で 120°C、 3時間乾燥さ せた後、篩に力、けた。次に、 500mlセパラブルフラスコに、沸点範囲力 S19;!〜 205°C のェクソン化学社製絶縁性炭化水素溶媒 (ァイソパー L)を 180gを注ぎ、さらに比重 1. 0である綜研化学株式会社製 アクリル微粒子(MP4009) 2gと、シランカップリン グ処理を行った ZnS : Cu, A1系緑色発光蛍光体粒子 18gを投入し、温度コントロー ラとしてリレー温調ユニットを 100°Cにセットして、攪拌機により加熱攪拌を行った。溶 液温度が 100°Cの状態で 2時間攪拌を続け、その後 1. 5時間かけて室温 (25°C)ま で冷却しながら攪拌を続けた。このようにして、得られた固形分濃度 10重量%の蛍光 体粒子分散体に対し、大日本インキ化学工業社製 ナフテン酸ジルコニウムを 2g添 加し、緑色発光蛍光体含有液体現像剤を得た。
[0175] このようにして得られた緑色発光蛍光体含有液体現像剤をサンドイッチセルに注入 し、直流電圧 300Vを 5秒間印加した後にセルを分解した。得られた電着膜の様子を 観察したところ、いずれの場合もグランド側の ITO電極に均一な蛍光体電着膜が形 成されており、正極側の ITO電極にはなにも付着していなかった。
[0176] このこと力、ら、これらの現像剤はすべて正極性に帯電しており、逆極性に帯電して いるものは無いことが分かった。このときの負極側の電着膜の厚みは平均で 12〃 m であり、十分な厚さの電着膜が形成されていることがわ力、つた。
[0177] 蛍光体電着膜の電子線励起での輝度を測定したところ、スクリーン印刷で形成した 蛍光膜と同程度となった。
[0178] 実施例 3
1000mlビーカーに信越化学社製 シランカップリング剤(KBM— 603)水溶液を 7 00g作成し、 ZnS :Ag, A1系青色発光蛍光体粒子(平均粒子径 5. 6 m、比重 4. 1 )を 50gを投入し、 2時間攪拌した。その後、濾過して乾燥炉で 120°C、 3時間乾燥さ せた後、篩に力、けた。次に、 500mlセパラブルフラスコに、沸点範囲力 S19;!〜 205°C のェクソン化学社製絶縁性炭化水素溶媒 (ァイソパー L)を 180gを注ぎ、さらに比重 1. 0である綜研化学株式会社製 アクリル微粒子(MP4009) 2gと、 ZnS :Ag, A1系 青色発光蛍光体粒子 18gを投入し、温度コントローラとしてリレー温調ユニットを 100 °Cにセットして、攪拌機により加熱攪拌を行った。溶液温度が 100°Cの状態で 2時間 攪拌を続け、その後、 1. 5時間かけて室温 (25°C)まで冷却しながら攪拌を続けた。 このようにして得られた固形分濃度 10重量%の蛍光体粒子分散体に対し、大日本ィ ンキ化学工業社製 ナフテン酸ジルコニウムを 2g添加し、青色発光蛍光体含有液体 現像剤を得た。
[0179] このようにして得られた青色発光蛍光体含有液体現像剤を、サンドイッチセルに注 入し、直流電圧 300Vを 5秒間印加した後にセルを分解した。得られた電着膜の様子 を観察したところ、 V、ずれの場合もグランド側の ITO電極に均一な蛍光体電着膜が 形成されており、正極側の ITO電極はなにも付着して!/、なかった。
[0180] このこと力、ら、これらの現像剤はすべて正極性に帯電しており、逆極性に帯電して いるものは無いことが分かった。このときの負極側の電着膜の厚みは平均で 12〃 m であり、十分な厚さの電着膜が形成されていることがわ力、つた。
[0181] 蛍光体電着膜の電子線励起での輝度を測定したところ、スクリーン印刷で形成した 蛍光膜と同程度となった。
[0182] 上記実施例 1ないし 3で得られた赤色発光蛍光体含有液体現像剤、緑色発光蛍光 体含有液体現像剤、及び青色発光蛍光体含有液体現像剤を、図 3と同様の構成を 有する装置の現像装置 3r、 3g、 3bに各々収容し、幅 147 m X長さ 247 mの大き さのドットを多数整列配置したパターンを有する l Omm X 100mmの大きさを有する 原版を適用して、現像、乾燥、及び転写を行うことにより、 10mm X 10mmの大きさを 有する透明基板上に赤色発光蛍光体層、緑色発光蛍光体層、青色発光蛍光体層を 形成した。
[0183] 得られた各蛍光体層から無作為に 30箇所選択し、その幅を計測し、標準偏差を測 定した。その結果、横幅平均 151. 72 111、標準偏差 1. 66という結果が得られた。
[0184] また、転写された各蛍光体層の体積または重量と、転写前の原版の各ドット状バタ ーンに付着した液体現像剤の乾燥後の体積または重量とから下記式を用いて転写 率を求めた。
[0185] 転写率(%) = (各蛍光体層の体積または重量/原版の各ドット状パターンに付着 した液体現像剤の乾燥後の体積または重量) X 100
その結果、転写率は 99. 47%であった。
[0186] 実験例 1
500mlセパラブルフラスコに、沸点範囲が 19;!〜 205°Cのェクソン化学社製絶縁 性炭化水素溶媒 (ァイソパー L)を 180gを注ぎ、さらに融点が 99°C〜; 105°Cであり、 比重 0. 96であるクラリアントジャパン株式会社製 エチレン酢酸ビュル共重合体系ヮ ックス(371FP)を 2gと、シランカップリング処理を行っていない Y O S : Eu系赤色発
2 2
光蛍光体粒子(平均粒子径 4. δ πι、比重 5. 0)を 18gと綜研化学株式会社製 ァ クリノレ微粒子(MP4009) 2gとを投入し、温度コントローラとして、リレー温調ユニット 3 4を 150°Cにセットして、攪拌機 36により加熱攪拌を行った。溶液温度が 150°Cに到 達した段階で上記ワックス成分は完全に溶融し、溶媒に溶解した。溶液温度が 150 °Cの状態で 2時間攪拌を続け、その後、 1. 5時間かけて室温 (25°C)まで冷却しなが ら攪拌を続けた。このようにして得られた固形分濃度 10重量%の蛍光体粒子分散体 に対し、大日本インキ化学工業社製 ナフテン酸ジルコニウム(ナフテネート Zr)を 2g 添加し、赤色発光蛍光体含有液体現像剤を得た。
[0187] 得られた現像剤すなわちワックスを含む場合と、実施例 1と同様にして得られたヮッ タスを含まない場合とで、トナー粒子の導電性を、 Scientifica社製 導電率計 M— 627を用いて調べたところ、ワックスを含むトナー粒子の導電性は 64 (pS/cm)、ヮ ックスを含まな!/、トナー粒子の導電性は 315 (pS/cm)であった。
[0188] このこと力、ら、実験例 1のようにワックスを含有しているトナー粒子よりも、実施例 1の ようにワックスを含有していないトナー粒子の方力 添加された電荷制御剤が十分吸 着され得ることから導電性が非常に良好であった。これにより、高精細に厚膜の現像 剤層を電着することが出来ることがわかった。また、一旦被着体に電着された現像剤 層を他の被着体に転写する場合にその離型性が良好となることが分力、つた。
[0189] また、得られた赤色発光蛍光体含有液体現像剤のトナー粒子の表面構造を SEM により撮影して観察した。図 19に、トナー粒子の表面構造を表す SEM写真を示す。 図 19に示すように、トナー粒子が表面に滲出したワックスに覆われていた。このため 、ワックスを含有していない実施例 1のトナー粒子よりも帯電性が低下したと考えられ
[0190] 実験例 2
シランカップリング処理を行っていない Y O S : Eu系赤色発光蛍光体粒子(平均粒
2 2
子径 4. 5 μ ΐη、比重 5. 0)を 18gの代わりに、 ZnS : Cu, A1系緑色発光蛍光体粒子 1 8gを使用すること以外は、実験例 1同様にして、緑色発光蛍光体含有液体現像剤を 得た。
[0191] 実験例 3
さらに、シランカップリング処理を行っていない Y O S : Eu系赤色発光蛍光体粒子
2 2
(平均粒子径 4. δ μ ΐη^比重 5. 0)を 18gの代わりに、 ZnS : Ag, A1系青色発光蛍光 体粒子 18gを使用すること以外は、実験例 1同様にして、青色発光蛍光体含有液体 現像剤を得た。
[0192] 上記実験例 1ないし 3で得られたワックスを含有する赤色発光蛍光体含有液体現像 剤、ワックスを含有する緑色発光蛍光体含有液体現像剤、及びワックスを含有する青 色発光蛍光体含有液体現像剤を、実施例 1ないし 3で得られた液体現像剤と同様に して、図 3と同様の構成を有する装置の現像装置 3r、 3g、 3bに各々収容し、幅 147 m X長さ 247 mの大きさのドットを多数整列配置したパターンを有する l Omm X 100mmの大きさを有する原版を適用して、現像、乾燥、及び転写を行うことにより、 透明基板上に赤色発光蛍光体層、緑色発光蛍光体層、青色発光蛍光体層を形成し た。
[0193] 得られた各蛍光体層から無作為に 30箇所選択し、その幅を計測し、標準偏差を測 定した。その結果、横幅平均 139. 72 111、標準偏差 22. 4という結果が得られた。
[0194] また、上記実施例 1ないし 3と同様に転写率を求めたところ、 84. 36 %であった。こ れにより、ワックスを含有しない液体現像剤は、ワックスを含有する液体現像剤よりも その転写率が良好であることがわ力、つた。
[0195] この結果より、ワックスを含有しない液体現像剤を用いると、原版のドットの大きさに 相当する大きさの蛍光体層が転写され、その標準偏差が低いことから、得られた蛍光 体層のドット形状にばらつきが小さいことから、パターン精度が良好であることが分か つた。一方、ワックスを含有する液体現像剤を用いた場合は転写が不十分であり、そ の標準偏差が高いことから、得られた蛍光体層のドット形状にばらつきが大きぐバタ ーン精度が不十分であること分力、つた。
[0196] 次に、第 4の発明にかかる実施例を示す。
[0197] ここでは、図 16と同様の実験装置を用いる。 [0198] 実施例 4
図に示すような 500mlセパラブルフラスコに、沸点範囲力 S 191〜205°Cのェクソン 化学社製 絶縁性炭化水素溶媒 (ァイソパー Uを 180gを注ぎ、平均粒子径 0. 4 μ m、軟化点が 80°Cであり、比重 1. 0である総研化学株式会社製 アクリル微粒子(M P4009) 2gと、 ZnS : Cu, A1系緑色発光蛍光体粒子(平均粒子径 5. 6 111)を 18g を投入し、温度コントローラを 100°Cにセットして加熱攪拌を行った。溶液温度が 100 °Cに到達して力、らも 2時間一定温度で攪拌を続け、その後 1. 5時間かけて室温(25 °C)まで冷却しながら攪拌を続けた。このようにして得られた固形分濃度 10重量%の 蛍光体粒子分散体に対し、電荷制御剤として、 日本化学産業製ォクチル酸ガドリ二 ゥムを 1. Og添加し、緑色発光蛍光体含有液体現像剤を得た。
[0199] 緑色発光蛍光体含有液体現像剤につ!/、て、電荷制御剤添加直後から 30日間、導 電率、と、この液体現像剤を用いて形成される電着膜の様子を調べた。得られた結 果を下記表 1に示す。
[0200] 現像剤のトナー粒子の導電性の測定は、 Scientifica社製 導電率計 M— 627を 用いて fiつた。
[0201] 電着膜は、以下のように形成し、評価した。
[0202] 上記緑色発光蛍光体含有液体現像剤を、図 17に示すようなサンドイッチセルに注 入し、直流電圧 200Vおよび 800Vを 5秒間印加した後にセルを分解した。得られた 電着膜の様子を観察したところ、 V、ずれの場合もグランド側の ITO電極 211に均一な 蛍光体電着膜が形成されており、正極側の ITO電極 212にはなにも付着していなか つた。
[0203] 導電率の経時変化量は小さく安定しており、ォクチル酸ガドリニウムの添加初期か ら核粒子の表面に安定した帯電特性を付与していることがわ力、つた。
[0204] このことにより、現像剤はすべて正極性に帯電しており、帯電性のない粒子および 経時変化により帯電性が消失した粒子は存在しないことがわ力、つた。
[0205] 得られた電着膜を、正極側への粒子残りがな!/、場合を〇、正極側への粒子残りが ある場合を△、及び正極側への粒子残り 50%以上の場合を Xとして評価し、各々下 記表 1に示す。 [表 1] 表 1
Figure imgf000039_0001
[0206] なお、ここで、軟化点は JIS K 7206 : 1999 プラスチック一熱可塑性プラスチ ック—ビカット軟化温度 (VST)試験方法: Plastic—Thermoplastic materials - detemination oi Vicat soitening temperature (V¾ Γ) (I¾0 d0り :
1994)に示されるように、加熱浴槽または加熱相の試験片に垂直においた針状圧子 を通じて、所定の荷重を加えながら一定速度で媒体を昇温させ、針状圧子が lmm 侵入したときの伝熱媒体の温度をレ、う。
[0207] 実施例 5
電荷制御剤として、 日本化学産業製ォクチル酸ランタンを 1. Og添加すること以外 は同様にして、緑色発光蛍光体含有液体現像剤を得た。
[0208] 得られた緑色発光蛍光体含有液体現像剤について、その導電率の測定と電着膜 の評価を実施例 4と同様にして行った。その結果を下記表 2に示す。
[表 2] 表 2
Figure imgf000039_0002
[0209] 導電率の経時変化量は小さく安定しており、ォクチル酸ランタンの添加初期から核 粒子の表面に安定した帯電特性を付与していることがわかった。
[0210] 電着膜は、いずれの場合もグランド側の ITO電極に均一な蛍光体電着膜が形成さ れており、正極側の ITO電極にはなにも付着していなかった。
[0211] これにより、現像剤はすべて正極性に帯電しており、帯電性のない粒子および経時 変化により帯電性が消失した粒子は存在しないことがわかった。
[0212] 比較例 1
電荷制御剤として、大日本インキ社製ナフテン酸ジルコニウムを 1. Og添加し、それ ぞれ緑色発光蛍光体含有液体現像剤を得た。
[0213] 得られた緑色発光蛍光体含有液体現像剤について、その導電率の測定と電着膜 の評価を実施例 4と同様にして行った。その結果を下記表 3に示す。
[表 3]
表 3
Figure imgf000040_0001
[0214] 特に添加初期の導電率の変化が大きぐ核粒子の表面に安定した帯電特性を付 与して!/、な!/、ことが示唆される。
[0215] 電着膜は、グランド側の ITO電極に均一な蛍光体電着膜が形成されずに、正極側 の ITO電極にも粒子が残っている現象が見られた。添加初期に見られる場合は、粒 子表面との吸着平衡反応が遅いために、粒子表面に配向しないナフテン酸ジルコ二 ゥムが多く存在し、帯電していない粒子が存在しているためと考えられる。添加後期 に見られる場合は、粒子表面との吸着平衡の安定性が低ぐ経時変化により帯電付 与性が劣化したものと考えられる。
[0216] 比較例 2
電荷制御剤として、 日本化学産業製ォクチル酸チタンを 1. Og添加し、それぞれ緑 色発光蛍光体含有液体現像剤を得た。 得られた緑色発光蛍光体含有液体現像剤について、その導電率の測定と電着膜 の評価を実施例 4と同様にして行った。その結果を下記表 4に示す。
[表 4コ
表 4
Figure imgf000041_0001
[0218] 特に、添加初期の導電率の変化が大きぐ核粒子の表面に安定した帯電特性を付 与して!/、な!/、ことが示唆される。
[0219] 電着膜は、グランド側の ITO電極に均一な蛍光体電着膜が形成されずに、正極側 の ITO電極にも粒子が残っている現象が見られた。添加初期に見られる場合は、粒 子表面との吸着平衡反応が遅いために、粒子表面に配向しないォクチル酸チタンが 多く存在し、帯電していない粒子が存在しているためと考えられる。添加後期に見ら れる場合は、粒子表面との吸着平衡の安定性が低ぐ経時変化により帯電付与性が 劣化したものと考えられる。
[0220] 実施例 6
アタリノレ微粒子(MP4009)を lgとし、 ZnS : Cu, A1系緑色発光蛍光体粒子の代わ りに Y O S : Eu系赤色発光蛍光体粒子(平均粒子径 4. 3 111)を 19g投入すること
2 2
以外は実施例 1と同様にして、赤色発光蛍光体含有液体現像剤を得た。
[0221] このようにして得られた赤色発光蛍光体含有液体現像剤を 10°C、 25°C、 50°Cにお いて 1日間、 3日間および 10日間保管した場合の、導電率の測定と電着膜の評価を 実施例 1と同様にして行った。その結果を下記表 5に示す。
[表 5] 表 5
Figure imgf000042_0001
[0222] 電着膜は、現像液を図に示したようなサンドイッチセルに注入し、直流電圧 800Vを
5秒間印加した後にセルを分解し、得られた電着膜の様子を観察した。
[0223] いずれの場合もグランド側の ITO電極に均一な蛍光体電着膜が形成されており、 正極側の ITO電極にはなにも付着していなかった。
[0224] このことは、現像剤はすべて正極性に帯電しており、帯電性のない粒子および経時 変化により帯電性が消失した粒子は存在しないことを意味する。
[0225] 比較例 3
電荷制御剤として、 日本化学産業製ォクチル酸チタンを 1. Ogを用いること以外は 実施例 6と同様にして、赤色発光蛍光体含有液体現像剤を得た。
[0226] 得られた赤色発光蛍光体含有液体現像剤を 10°C、 25°C、 50°Cにおいて 1日間、 3
日間、及び 10日間保管した場合の、導電率の測定と電着膜の評価を実施例 1と同 様にして行った。その結果を下記表 6に示す。
[表 6] 表 6
Figure imgf000042_0002
[0227] 電着膜は、グランド側の ITO電極に均一な蛍光体電着膜が形成されずに、正極側 の ITO電極にも粒子が残って!/、る現象が見られた。
[0228] 50°C保管における電着性の劣化は、核粒子表面の樹脂の活性化により粒子の表 面状態が変化しやすぐォクチル酸チタンの吸着状態が安定しないためと考えられる
。また 10°C保管での電着性の劣化は、ォクチル酸チタンの吸着平衡反応が遅くなる ために、帯電状態が不安定になることによると考えられる。 [0229] 次に、第 5の発明にかかる実施例を示す。
[0230] ここでは、図 16と同様の実験装置を用いる。
[0231] 実施例 7
図に示すような 500mlセパラブルフラスコに、沸点範囲力 S 191〜205°Cのェクソン 化学社製 絶縁性炭化水素溶媒 (ァイソパー Uを 180gを注ぎ、平均粒子径 0. 4 μ m、軟化点が 80°Cであり、比重 1. 0である総研化学株式会社製 アクリル樹脂微粒 子(MP4009) 2gと、 ZnS: Cu, A1系緑色発光蛍光体粒子(平均粒子径 5· 6 m)を 18gを投入し、温度コントローラを 100°Cにセットして加熱攪拌を行った。溶液温度が 100°Cに到達してから、さらに 2時間一定温度で攪拌を続け、その後、 1. 5時間かけ て 25°Cの室温まで冷却しながら攪拌を続けた。このようにして得られた固形分濃度 1 0重量%の蛍光体粒子分散体に対し、帯電制御剤として、 日本化学産業製ォクチル 酸マグネシウムを 2. Og添加し、緑色発光蛍光体含有液体現像剤を得た。
[0232] 得られた緑色発光蛍光体含有液体現像剤を用いて、ガラス基板(100mm X 100 mm)上に、膜厚がおよそ 10 mの蛍光体層を電気泳動法にて形成した。その上面 に A1の蒸着で形成した膜厚およそ 120nmのメタルバック層を形成し、発光特性測定 用のサンプルを作製した。
[0233] 図 22に、発光特性測定用のサンプルの構成を表す模式図を示す。
[0234] 図示するように、このサンプル 65は、ガラス基板 66上に、アクリル樹脂微粒子 260 力、らなる被覆層 67と、その上に設けられたメタルバック層 68とを有する。
[0235] このサンプルに加速電圧 10kV、電流密度 0. 36A/mm2 (電流 250A、ラスターサ ィズ 10mm X 70mm)の電子線を照射して蛍光体を発光させて発光輝度を測定した 。また、発光寿命を評価するため、連続して電子線照射を行って、電子線照射量に 対する発光輝度の変化を測定した。
[0236] 初期発光輝度を図 23のグラフ図に示す。
[0237] 電子線照射量と発光輝度との関係を表すグラフ図を図 24のグラフ 101に示す。
[0238] 発光輝度の測定には、トプコンテタノハウス製分光放射計 SR—3Aを用いた。
[0239] 実施例 8
日本化学産業製ォクチル酸マグネシウム 2. Ogの代わりに、 日本化学産業製ォクチ ル酸ガドリニウム 2. Ogを添加すること以外は、実施例 7と同様にして、緑色発光蛍光 体含有液体現像剤を得た。
[0240] 得られた緑色発光蛍光体含有液体現像剤を用いて、実施例 7と同様にして発光特 性測定用のサンプルを作製した。
[0241] 得られたサンプルを用い、実施例 7と同様にして発光輝度を測定し、初期発光輝度 を図 23に、及び電子線照射量に対する発光輝度の変化を図 24のグラフ 102に、各 々示す。
[0242] 比較例 4
電荷制御剤を添加しないこと以外は実施例 7と同様にして固形分濃度 10重量%の 緑色発光蛍光体分散液を得た。
[0243] 得られた緑色発光蛍光体分散液を用い、ガラス基板(l OOmm X 100mm)上に、 膜厚がおよそ 10 mの蛍光体層を沈降堆積法にて形成した。その上面に A1の蒸着 で形成した膜厚およそ 120nmのメタルバック層を形成し、発光特性測定用のサンプ ルを作製した。
[0244] 得られたサンプルを用い、実施例 7と同様にして発光輝度を測定し、初期発光輝度 を図 23に、及び電子線照射量に対する発光輝度の変化を図 24のグラフ 103に、各 々示す。
[0245] 実施例 7と比較すると、発光輝度は、図 23に示す通り、実施例 7の方がおよそ 5. 0
%向上していることがわかった。
[0246] また、発光寿命は、図 24に示すように、ドーズ量 20C/cm2時点の発光スぺタト ルのピーク強度の維持率と定義すると、比較例 4よりも実施例 7の方がおよそ 11 %寿 命が改善した。
[0247] 実施例 8と比較すると、発光輝度は図 23に示す通り、実施例 2の方が、およそ 3. 5
%向上していることがわかった。
[0248] また、発光寿命は、図 24に示すように、ドーズ量 20C/cm2時点の発光スぺタト ルのピーク強度の維持率と定義すると、比較例 4よりも実施例 7の方がおよそ 9%寿 命が改善した。
[0249] 比較例 4 日本化学産業製ォクチル酸マグネシウム 2. Ogの代わりに、大日本インキ社製ナフ テン酸ジルコニウム 2. Ogを添加すること以外は、実施例 7と同様にして、緑色発光蛍 光体含有液体現像剤を得た。
[0250] 得られた緑色発光蛍光体含有液体現像剤を用いて、実施例 7と同様にして発光特 性測定用のサンプルを作製した。
[0251] 得られたサンプルを用い、実施例 7と同様にして発光輝度を測定し、初期発光輝度 を図 23に、及び電子線照射量に対する発光輝度の変化を図 24のグラフ 104に、各 々示す。
[0252] 発光輝度は図 23に示す通り、比較例 4と比較して、およそ 4. 5%低下した。
[0253] また、発光寿命はドーズ量 20C/cm2時点の発光スペクトルのピーク強度の維持率 と定義すると、比較例 4と比較しておよそ 12%寿命が劣化した。
[0254] これは、ジルコニウム等の遷移金属成分は、 ZnS母体の発光サイトに入ることにより 発光特性を劣化させる、いわゆるキラー材料であることによると考えられる。
[0255] 実施例 9
ZnS : Cu, A1系緑色発光蛍光体粒子の代わりに、 ZnS :Ag、 C1系青色発光蛍光体 粒子(平均粒子径 6. 5 m)を 18gをすること以外は実施例 7と同様にして、青色発 光蛍光体含有液体現像剤を得た。
[0256] 得られた緑色発光蛍光体含有液体現像剤を用いて、実施例 7と同様にして発光特 性測定用のサンプルを作製した。
[0257] 得られたサンプルを用い、実施例 7と同様にして発光輝度を測定し、初期発光輝度 を図 25に、及び電子線照射量に対する発光輝度の変化を図 26のグラフ 105に、各 々示す。
[0258] 発光輝度は図 25に示す通り、比較例 6と比較して、およそ 8. 0%向上した。
[0259] また、発光寿命はドーズ量 20C/cm2時点の発光スペクトルのピーク強度の維持率 と定義すると、比較例 6と比較しておよそ 11 %寿命が改善した。
[0260] 実施例 10
日本化学産業製ォクチル酸マグネシウム 2. Ogの代わりに、 日本化学産業製ォクチ ル酸ランタン 2. Ogを添加すること以外は実施例 9と同様にして、青色発光蛍光体含 有液体現像剤を得た。
[0261] 得られた緑色発光蛍光体含有液体現像剤を用いて、実施例 9と同様にして発光特 性測定用のサンプルを作製した。
[0262] 得られたサンプルを用い、実施例 7と同様にして発光輝度を測定し、初期発光輝度 を図 25に、及び電子線照射量に対する発光輝度の変化を図 26のグラフ 106に、各 々示す。
[0263] 発光輝度は図 25に示す通り、比較例 6と比較して、およそ 5. 0%向上した。
[0264] また、発光寿命はドーズ量 20C/cm2時点の発光スペクトルのピーク強度の維持率 と定義すると、比較例 6と比較しておよそ 18%寿命が改善した。
[0265] 比較例 6
電荷制御剤を添加しないこと以外は実施例 9と同様にして固形分濃度 10重量%の 緑色発光蛍光体分散液を得た。
[0266] 得られた緑色発光蛍光体分散液を用い、ガラス基板(l OOmm X 100mm)上に、 膜厚がおよそ 10 mの蛍光体層を沈降堆積法にて形成した。その上面に A1の蒸着 で形成した膜厚およそ 120nmのメタルバック層を形成し、発光特性測定用のサンプ ルを作製した。
[0267] 得られたサンプルを用い、実施例 7と同様にして発光輝度を測定し、初期発光輝度 を図 25に、及び電子線照射量に対する発光輝度の変化を図 26のグラフ 107に、各 々示す。
[0268] 実施例 9と比較すると、発光輝度は、図 24に示す通り、実施例 6の方がおよそ 8. 0
%向上していることがわかった。
[0269] また、発光寿命は、図 24に示すように、ドーズ量 20C/cm2時点の発光スぺタト ルのピーク強度の維持率と定義すると、比較例 6よりも実施例 9の方がおよそ 11 %寿 命が改善した。
[0270] 比較例 7
日本化学産業製ォクチル酸マグネシウム 2. Ogの代わりに、大日本インキ社製ナフ テン酸ジルコニウム 2. Ogを添加すること以外は、実施例 9と同様にして、緑色発光蛍 光体含有液体現像剤を得た。 [0271] 得られた緑色発光蛍光体含有液体現像剤を用いて、実施例 7と同様にして発光特 性測定用のサンプルを作製した。
[0272] 得られたサンプルを用い、実施例 7と同様にして発光輝度を測定し、初期発光輝度 を図 19に、及び電子線照射量に対する発光輝度の変化を図 26のグラフ 108に、各 々示す。
[0273] 発光輝度は図 25に示す通り、比較例 6と比較して、およそ 7. 0%低下した。
[0274] また、発光寿命はドーズ量 20C/cm2時点の発光スペクトルのピーク強度の維持率 と定義すると、比較例 6と比較しておよそ 15%寿命が劣化した。
[0275] これは、ジルコニウム等の遷移金属成分は、 ZnS母体の発光サイトに入ることにより 発光特性を劣化させる、いわゆるキラー材料であることによると考えられる。

Claims

請求の範囲
[1] 電気絶縁性溶媒と、
該電気絶縁性溶媒中に包含され、 1ないし 10 inの平均粒径を有する核粒子、該 核粒子表面に設けられたシラン力ップリング処理層、該シラン力ップリング処理層を介 して該核粒子表面に設けられた熱可塑性樹脂微粒子被覆層、及び熱可塑性樹脂微 粒子被覆された核粒子表面に添加された電荷制御剤を含有するトナー粒子とを含 むことを特徴とする液体現像剤。
[2] 前記シランカップリング剤は、アタリロキシ基、エポキシ基、アミノ基、メタクリロキシ基 、スチリル基から選択される前記熱可塑性樹脂微粒子との反応性に優れる官能基を 少なくとも 1つ有することを特徴とする請求項 1に記載の液体現像剤。
[3] 前記電荷制御剤は、金属石鹼、界面活性剤、及び金属アルコキシドからなる群から 選択される少なくとも 1種であることを特徴とする請求項 1に記載の液体現像剤。
[4] 前記核粒子は、蛍光体粒子からなる請求項 1に記載の液体現像剤。
[5] 前記熱可塑性樹脂微粒子は、 0. 1な!/、し 5 a mの平均粒径を有する請求項 1に記 載の液体現像剤。
[6] 電気絶縁性溶媒と、
該電気絶縁性溶媒中に包含された、核粒子、該核粒子表面に設けられた熱可塑 性樹脂微粒子の被覆層、及び該熱可塑性樹脂微粒子被覆された核粒子表面に電 荷制御剤として添加されたランタノイド金属を少なくとも 1種含む有機金属化合物を含 有するトナー粒子とを含むことを特徴とする液体現像剤。
[7] 前記核粒子は 0. 01から 10 mの平均粒径を有することを特徴とする請求項 6に記 載の液体現像剤。
[8] 前記有機金属化合物の添加量は、その金属分が、核粒子の重量に対して、 0. 00 1から 10重量%に相当する量であることを特徴とする請求項 6に記載の液体現像剤。
[9] 前記有機金属化合物は、その炭素数が 6ないし 30であることを特徴とする請求項 6 に記載の液体現像剤。
[10] 前記熱可塑性樹脂微粒子は、 0. 1な!/、し 5 a mの平均粒径を有する請求項 6に記 載の液体現像剤。
[11] 前記熱可塑性樹脂微粒子の添加量は、核粒子の重量に対して 1ないし 20重量% であることを特徴とする請求項 6に記載の液体現像剤。
[12] 電気絶縁性溶媒と、
該電気絶縁性溶媒中に包含された、硫化亜鉛系蛍光体からなる核粒子、該核粒 子表面に設けられた熱可塑性樹脂微粒子の被覆層、及び該熱可塑性樹脂微粒子 被覆された核粒子表面に電荷制御剤として添加された 2A族および 3A族の金属を 少なくとも 1種含む金属化合物を含有するトナー粒子を含むことを特徴とする液体現 像剤。
[13] 前記核粒子は 1ないし 10 mの平均粒径を有することを特徴とする請求項 12に記 載の液体現像剤。
[14] 前記金属化合物は、 6から 30の炭素数を有する金属有機酸塩であることを特徴と する請求項 12に記載の液体現像剤。
[15] 前記金属化合物は、前記核粒子の重量に対して、 0. 001から 10重量%に相当す る金属分を含むことを特徴とする請求項 12に記載の液体現像剤。
[16] 前記熱可塑性樹脂微粒子は、 0. 1から 5 a mの平均粒径を有することを特徴とする 請求項 12に記載の液体現像剤。
[17] 前記熱可塑性樹脂微粒子は、その平均粒径が、核粒子の平均粒径よりも小さレ、こ とを特徴とする請求項 12に記載の液体現像剤。
[18] 前記熱可塑性樹脂微粒子は、その添加量が、核粒子の重量に対し 1ないし 20重量
%に相当することを特徴とする請求項 12に記載の液体現像剤。
[19] 1ないし 10 mの平均粒径を有する核粒子表面にシランカップリング処理を行い、 シラン力ップリング処理層を形成する工程、
電気絶縁性溶媒中で、シランカップリング処理された核粒子と、前記核粒子よりも低
V、平均粒径を有する、該電気絶縁性溶媒に実質的に不溶の熱可塑性樹脂微粒子と を、該電気絶縁性溶媒の沸点以下の温度で加熱攪拌して、該シランカップリング処 理された核粒子表面に該熱可塑性樹脂微粒子を付着せしめ、熱可塑性樹脂微粒子 被覆層を形成する工程、及び
熱可塑性樹脂微粒子被覆された核粒子を含む電気絶縁性溶媒に、電荷制御剤を 適用して、該熱可塑性樹脂微粒子被覆された核粒子表面に該電荷制御剤を添加せ しめる工程を具備することを特徴とする液体現像剤の製造方法。
[20] 前記シランカップリング剤は、アタリロキシ基、エポキシ基、アミノ基、メタクリロキシ基
、スチリル基から選択される前記熱可塑性樹脂微粒子との反応性に優れる官能基を 少なくとも 1つ有することを特徴とする請求項 19に記載の液体現像剤の製造方法。
[21] 前記熱可塑性樹脂微粒子は、 0. 1ないし 5 mの平均粒径を有する請求項 19に 記載の液体現像剤の製造方法。
[22] 前記電荷制御剤は、金属石鹼、界面活性剤、及び金属アルコキシドからなる群から 選択される少なくとも 1種であることを特徴とする請求項 19に記載の液体現像剤の製 造方法。
[23] 透明基板上に、複数の枠状またはストライプ状のパターンを有する遮光層を形成す る工程と、
電気絶縁性溶媒、該電気絶縁性溶媒中に包含され、 1ないし lO ^ mの平均粒径を 有する核粒子、該核粒子表面に設けられたシランカップリング処理層、該シランカツ プリング処理層を介して該核粒子表面に設けられた熱可塑性樹脂微粒子被覆層、 及び熱可塑性樹脂微粒子被覆された核粒子表面に添加された電荷制御剤を含有 するトナー粒子とを含む液体現像剤を、供給部材を介して像保持体の表面に供給し 、該供給部材と像保持体との間に電界を形成して該像保持体表面に、ドット状または ストライプ状のパターン像を形成する現像工程と、
液体現像剤によるパターン像が形成された前記像保持体を、定位置に保持された 、遮光層を有する透明基板に沿って転動させる転動工程と、
転動する前記像保持体と前記透明基板との間に電界を形成し、前記像保持体表 面上のパターン像を前記透明基板へ転写し、該遮光層で区画された該基板上の各 領域に、蛍光体層を形成する転写工程と、
該蛍光体層上にメタルバック層を形成する工程とを含む前面基板の形成プロセス を具備することを特徴とする表示装置の製造方法。
[24] 前記転写工程の前に、前記像保持体表面に形成された前記パターン像を乾燥さ せる乾燥工程をさらに有することを特徴とする請求項 23に記載の表示装置の製造方 法。
[25] 前記転写工程の前に、前記透明基板の表面を前記絶縁性液体によって濡らす濡 らし工程をさらに有することを特徴とする請求項 23に記載の表示装置の製造方法。
[26] 前記像保持体は、その表面に前記パターン像を形成するためのパターン状の電極 層を有することを特徴とする請求項 23に記載の表示装置の製造方法。
PCT/JP2007/068866 2006-09-29 2007-09-27 Révélateur liquide, procédé de production de celui-ci et procédé de production d'affichage WO2008038733A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008536431A JP5091868B2 (ja) 2006-09-29 2007-09-27 液体現像剤、その製造方法、及び表示装置の製造方法
EP07828612A EP2077468A1 (en) 2006-09-29 2007-09-27 Liquid developer, process for producing the same, and process for producing display
US12/054,705 US20080248413A1 (en) 2006-09-29 2008-03-25 Liquid developing agent, method of producing the same and method of producing display device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006269402 2006-09-29
JP2006-269402 2006-09-29
JP2007082781 2007-03-27
JP2007-082781 2007-03-27
JP2007085717 2007-03-28
JP2007-085717 2007-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/054,705 Continuation US20080248413A1 (en) 2006-09-29 2008-03-25 Liquid developing agent, method of producing the same and method of producing display device

Publications (1)

Publication Number Publication Date
WO2008038733A1 true WO2008038733A1 (fr) 2008-04-03

Family

ID=39230168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068866 WO2008038733A1 (fr) 2006-09-29 2007-09-27 Révélateur liquide, procédé de production de celui-ci et procédé de production d'affichage

Country Status (5)

Country Link
US (1) US20080248413A1 (ja)
EP (1) EP2077468A1 (ja)
JP (1) JP5091868B2 (ja)
TW (1) TW200830065A (ja)
WO (1) WO2008038733A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330487A1 (en) * 2009-06-29 2010-12-30 Xerox Corporation Toner compositions

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
WO2007119309A1 (ja) * 2006-03-28 2007-10-25 Kabushiki Kaisha Toshiba 液体現像剤、及びその製造方法
JP4786406B2 (ja) * 2006-05-12 2011-10-05 株式会社東芝 パターン形成方法
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
JP5636925B2 (ja) 2010-12-07 2014-12-10 富士ゼロックス株式会社 液体現像剤、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP5614304B2 (ja) * 2011-01-24 2014-10-29 富士ゼロックス株式会社 液体現像剤、現像剤カートリッジ、画像形成方法、及び画像形成装置
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9382427B2 (en) * 2011-06-09 2016-07-05 E Ink California, Llc Silane-containing pigment particles for electrophoretic display
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) * 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
JP6268694B2 (ja) * 2012-09-26 2018-01-31 コニカミノルタ株式会社 液体現像剤およびその製造方法
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
WO2015127174A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
EP3374450A1 (en) 2016-03-04 2018-09-19 Hp Indigo B.V. Security liquid electrostatic ink composition
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196155A (ja) * 1989-12-26 1991-08-27 Sony Corp 静電潜像現像用湿式現像剤
JPH05333606A (ja) * 1992-05-29 1993-12-17 Dainippon Printing Co Ltd 湿式トナーの製造方法
JPH07509074A (ja) * 1992-07-20 1995-10-05 インディゴ ナムローゼ フェンノートシャップ 電気的に安定化された液体トナー
JPH09106113A (ja) * 1995-10-13 1997-04-22 Dainippon Ink & Chem Inc 静電荷現像用固形トナー
JPH09202995A (ja) * 1996-01-26 1997-08-05 Dainippon Printing Co Ltd 蛍光体電着液、および蛍光体層形成方法
JPH10319646A (ja) * 1997-05-23 1998-12-04 Dainippon Ink & Chem Inc 静電荷現像用正帯電性液体現像剤
JP2002527783A (ja) * 1998-10-13 2002-08-27 エレクトロック コーポレイション 電子生産応用分野に適した機能性トナー材料の静電印刷
JP2003533741A (ja) * 2000-05-17 2003-11-11 ヒューレット−パッカード・インデイゴ・ビー・ブイ 蛍光液体トナー並びにこれを用いたプリント方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897002B2 (en) * 2002-03-25 2005-05-24 Ricoh Company, Ltd. Liquid developer, image-fixing apparatus using the same, and image-forming apparatus using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196155A (ja) * 1989-12-26 1991-08-27 Sony Corp 静電潜像現像用湿式現像剤
JPH05333606A (ja) * 1992-05-29 1993-12-17 Dainippon Printing Co Ltd 湿式トナーの製造方法
JPH07509074A (ja) * 1992-07-20 1995-10-05 インディゴ ナムローゼ フェンノートシャップ 電気的に安定化された液体トナー
JPH09106113A (ja) * 1995-10-13 1997-04-22 Dainippon Ink & Chem Inc 静電荷現像用固形トナー
JPH09202995A (ja) * 1996-01-26 1997-08-05 Dainippon Printing Co Ltd 蛍光体電着液、および蛍光体層形成方法
JPH10319646A (ja) * 1997-05-23 1998-12-04 Dainippon Ink & Chem Inc 静電荷現像用正帯電性液体現像剤
JP2002527783A (ja) * 1998-10-13 2002-08-27 エレクトロック コーポレイション 電子生産応用分野に適した機能性トナー材料の静電印刷
JP2003533741A (ja) * 2000-05-17 2003-11-11 ヒューレット−パッカード・インデイゴ・ビー・ブイ 蛍光液体トナー並びにこれを用いたプリント方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100330487A1 (en) * 2009-06-29 2010-12-30 Xerox Corporation Toner compositions
US8394562B2 (en) * 2009-06-29 2013-03-12 Xerox Corporation Toner compositions

Also Published As

Publication number Publication date
JPWO2008038733A1 (ja) 2010-01-28
TW200830065A (en) 2008-07-16
EP2077468A1 (en) 2009-07-08
US20080248413A1 (en) 2008-10-09
JP5091868B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5091868B2 (ja) 液体現像剤、その製造方法、及び表示装置の製造方法
TWI684829B (zh) 自發光感光性樹脂組成物、彩色濾光器及圖像顯示裝置
JP4366330B2 (ja) 蛍光体層形成方法及び形成装置、プラズマディスプレイパネルの製造方法
TWI583744B (zh) 色材、色材分散液、彩色濾光片用著色樹脂組成物、彩色濾光片、液晶顯示裝置及有機發光顯示裝置
JP2003005227A (ja) 画像表示装置及び表示駆動方法
Sasaki et al. Deposition of powder phosphors for information displays
JPH0853667A (ja) 陰極線管
JP2016182579A (ja) 粉体塗装装置、及び粉体塗装方法
JPH09124972A (ja) ブラックマトリックス用組成物、ブラックマトリックスの形成方法及びブラックマトリックスを付した物品
US8786936B2 (en) Ink compositions, methods of preparing ink compositions and display panels including ink compositions
KR102622963B1 (ko) 백색 감광성 수지 조성물, 이를 이용하여 제조된 컬러필터 및 화상표시장치
US20090087773A1 (en) Liquid developing agent and process for producing the same
US6372349B1 (en) High-resistivity carbon black
JP2008249760A (ja) 液体現像剤、及びこれを用いた表示装置の製造方法
JP2007219005A (ja) 画像表示媒体、画像表示装置、及び画像表示方法
US7582332B2 (en) Particles having charge-controlling group on outer surface for electronic-paper display device and method for preparing the same
JP2008256858A (ja) 液体現像剤、及び表示装置の製造方法
JPH09134686A (ja) 画像表示装置
JP2005284234A (ja) 隔壁をもつ垂直泳動による電気泳動表示素子と電気泳動表示方法及び電気泳動表示装置
TWI272450B (en) Photosensitive transfer film
JPH0940945A (ja) 蛍光体及びその製造方法
JP2008268600A (ja) 液体現像剤
JP2008233815A (ja) 液体現像剤
TWI282580B (en) Manufacturing method of plasma display panel and transfer film for forming partition wall
TWI300234B (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007828612

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828612

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536431

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE