WO2008038440A1 - Moteur à combustion interne utilisant une large diversité de types de carburant - Google Patents

Moteur à combustion interne utilisant une large diversité de types de carburant Download PDF

Info

Publication number
WO2008038440A1
WO2008038440A1 PCT/JP2007/061818 JP2007061818W WO2008038440A1 WO 2008038440 A1 WO2008038440 A1 WO 2008038440A1 JP 2007061818 W JP2007061818 W JP 2007061818W WO 2008038440 A1 WO2008038440 A1 WO 2008038440A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustion
combustion mode
combustion chamber
engine
Prior art date
Application number
PCT/JP2007/061818
Other languages
English (en)
French (fr)
Inventor
Yasushi Ito
Shiro Tanno
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to BRPI0719441A priority Critical patent/BRPI0719441B1/pt
Priority to CN2007800360113A priority patent/CN101517214B/zh
Priority to US12/442,668 priority patent/US7853396B2/en
Publication of WO2008038440A1 publication Critical patent/WO2008038440A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0665Tanks, e.g. multiple tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0694Injectors operating with a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/081Adjusting the fuel composition or mixing ratio; Transitioning from one fuel to the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1527Digital data processing dependent on pinking with means allowing burning of two or more fuels, e.g. super or normal, premium or regular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0673Valves; Pressure or flow regulators; Mixers
    • F02D19/0676Multi-way valves; Switch-over valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention mainly introduces at least one of at least two kinds of fuels having different properties into the combustion chamber or introduces a mixed fuel consisting of the at least two kinds of fuel cartridges into the combustion chamber.
  • the present invention relates to a multi-fuel internal combustion engine operated at a theoretical air-fuel ratio.
  • Patent Document 1 discloses a multi-fuel internal combustion engine that is operated using a mixed fuel of gasoline and light oil.
  • This multi-fuel internal combustion engine operates by diffusion combustion with a high mixing ratio of light oil with high ignitability at the start of the engine, and also has a smoke suppression effect when there is a large amount of smoke emission or when knocking occurs.
  • N Pre-mixed combustion is performed at a high mixing ratio of gasoline with high knock resistance.
  • Patent Document 2 below discloses a multi-fuel internal combustion engine that can be operated using a fuel selected from a variety of fuels such as gasoline, light oil, and ethanol.
  • Patent Document 2 describes a multi-fuel internal combustion engine that is operated in a spark ignition mode when the engine load is lighter than a predetermined load, and that is operated in a compression auto-ignition diffusion combustion mode when the engine load is high. This is also described, and the higher the ignitability of the fuel used, the wider the operating range in the compression auto-ignition diffusion combustion mode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 968061
  • Patent Document 2 Japanese Patent Laid-Open No. 2004-245126
  • the present invention provides a multi-fuel internal combustion engine that improves the disadvantages of the conventional example, and can perform optimal combustion control according to the fuel characteristics of the fuel guided into the combustion chamber. And its purpose.
  • At least one of at least two types of fuels having different properties is led to the combustion chamber or a mixed fuel comprising the at least two types of fuels
  • the fuel characteristic determination means for determining the ignitability and knock resistance of the fuel guided to the combustion chamber, and the combustion chamber If the ignitability of the fuel is good, the compression self-ignition diffusion combustion mode is set. If the ignitability of the fuel introduced into the combustion chamber is poor and the knock resistance is good, the premixed spark ignition flame propagation combustion mode is set and the combustion is performed.
  • the spark-assisted compression auto-ignition diffusion combustion mode setting means for setting the combustion mode and the combustion mode setting means It comprises a combustion control execution unit that is operated at a constant combustion mode, and Ru.
  • the multi-fuel internal combustion engine according to claim 1 if the fuel is highly ignitable, compression self-ignition diffusion combustion that exhibits good engine performance (output performance, emission performance, fuel consumption performance, etc.) is performed. Done.
  • this multi-fuel internal combustion engine is capable of premixed spark ignition flame propagation combustion that exhibits good engine performance (output performance, emission performance, fuel consumption performance, etc.), even if it has poor ignitability and is highly knock-resistant fuel. Done.
  • this multi-fuel internal combustion engine has both poor ignitability and knock resistance, and if it is a fuel, it assists ignition in the spark-assisted compression auto-ignition diffusion combustion mode, thereby improving the engine performance (output performance, energy).
  • Mission Compression self-ignition diffusion combustion is performed to achieve performance and fuel efficiency.
  • the evaporability of fuel introduced into the combustion chamber or PMZ smoke generation characteristics is further determined.
  • Combustion mode setting means is configured so that the combustion mode is not selected.
  • PM and smoke can be generated by selecting a combustion mode other than the compression auto-ignition diffusion combustion mode (premixed spark-ignition flame propagation combustion mode or spark-assisted compression auto-ignition diffusion combustion mode) for fuels with different fuel characteristics Can be suppressed.
  • the fuel guided into the combustion chamber has a plurality of types of combustion modes.
  • the combustion mode setting means is configured to select a combustion mode that is superior in fuel efficiency and / or emission performance.
  • FIG. 1 is a diagram showing a configuration of Examples 1 to 4 of a multifuel internal combustion engine according to the present invention.
  • FIG. 2 is a diagram showing an example of ignitability limit value map data.
  • FIG. 3 is a diagram showing an example of knock resistance limit value map data.
  • FIG. 4 is a flowchart for explaining the operation of the multifuel internal combustion engine of the first embodiment.
  • FIG. 5 is a diagram showing an example of evaporation resistance limit value map data.
  • FIG. 6 is a flowchart for explaining the operation of the multifuel internal combustion engine of the second embodiment.
  • FIG. 7 is a flowchart for explaining the operation of the multifuel internal combustion engine of the third embodiment.
  • FIG. 8 is a flowchart for explaining the operation of the multifuel internal combustion engine of the third embodiment, and is a continuation of the flowchart of FIG.
  • FIG. 9 is a flowchart for explaining the operation of the multifuel internal combustion engine of the fourth embodiment.
  • FIG. 10 is a flowchart for explaining the operation of the multifuel internal combustion engine of the fourth embodiment, and is a continuation of the flowchart of FIG. 9.
  • FIG. 11 is a view showing a configuration of a fifth embodiment of the multi-fuel internal combustion engine according to the present invention.
  • FIG. 12 is a view showing a configuration of a modified example of the fifth embodiment of the multifuel internal combustion engine according to the present invention.
  • a first embodiment of a multi-fuel internal combustion engine according to the present invention will be described with reference to Figs.
  • This multi-fuel internal combustion engine is operated by introducing at least one of at least two types of fuels having different properties into the combustion chamber or introducing a mixed fuel consisting of the at least two types of fuel into the combustion chamber. It is an internal combustion engine.
  • the latter multi-fuel internal combustion engine will be described as an example.
  • the electronic control unit 1 includes a CPU (central processing unit) (not shown), a ROM (Read Only Memory) that stores a predetermined control program in advance, and a RAM (Random Access) that temporarily stores the calculation results of the CPU.
  • Memory is composed of a knock-up RAM that stores previously prepared information.
  • FIG. 1 the configuration of the multi-fuel internal combustion engine exemplified here will be described with reference to FIG. Although only one cylinder is shown in FIG. 1, the present invention is not limited to this, and can be applied to a multi-cylinder multifuel internal combustion engine.
  • This multi-fuel internal combustion engine is provided with a cylinder head 11, a cylinder block 12 and a piston 13 that form a combustion chamber CC.
  • the cylinder head 11 and the cylinder block 12 are fastened with bolts or the like via the head gasket 14 shown in FIG. 1, and the concave portion 1 la and the cylinder block 12 on the lower surface of the cylinder head 11 formed thereby.
  • the piston 13 is disposed so as to be capable of reciprocating in the space with the cylinder bore 12a.
  • the above-described combustion chamber CC is constituted by a space surrounded by the wall surface of the recess 11a of the cylinder head 11, the wall surface of the cylinder bore 12a, and the top surface 13a of the piston 13.
  • the multi-fuel internal combustion engine of the first embodiment sends air and fuel to the combustion chamber CC according to the operating conditions such as the engine speed and engine load and the combustion mode, and performs the combustion control according to the operating conditions. Execute.
  • the air is sucked in from the outside through the intake passage 21 and the intake port l ib of the cylinder head 11 shown in FIG.
  • the fuel is supplied using a fuel supply device 50 shown in FIG.
  • an air cleaner 22 for removing foreign substances such as dust contained in air introduced with an external force
  • an air flow meter 23 for detecting the amount of intake air from the outside.
  • the detection signal of the air flow meter 23 is sent to the electronic control unit 1, and the electronic control unit 1 calculates the intake air amount, the engine load, and the like based on the detection signal.
  • a throttle valve 24 for adjusting the amount of intake air into the combustion chamber CC, and a throttle valve actuating for opening and closing the throttle valve 24.
  • Eta 25 is provided on the intake passage 21 downstream of the air flow meter 23, there is a throttle valve 24 for adjusting the amount of intake air into the combustion chamber CC, and a throttle valve actuating for opening and closing the throttle valve 24.
  • Eta 25 is provided on the intake passage 21 downstream of the air flow meter 23, there is a throttle valve 24 for adjusting the amount of intake air into the combustion chamber CC, and a throttle valve actuating for opening and closing the throttle valve 24.
  • Eta 25 is provided on the intake passage 21 downstream of the air flow meter 23, there is a throttle valve 24 for adjusting the amount of intake air into the combustion chamber CC, and a throttle valve actuating for opening and closing the throttle valve 24.
  • Eta 25 is provided on the intake passage 21 downstream of the air flow meter 23, there is a throttle valve 24 for adjusting the amount of intake air into the combustion chamber
  • one end of the intake port l ib opens to the combustion chamber CC, and the intake port l ib An intake nozzle 31 for opening and closing the opening is provided.
  • An intake valve 31 is provided for each opening, which may have one or more openings. Therefore, in this multi-fuel internal combustion engine, air is sucked into the combustion chamber CC from the intake port l ib by opening the intake valve 31, while the combustion chamber is closed by closing the intake valve 31. Air inflow into the CC is blocked.
  • the intake valve 31 for example, there is an intake valve that is driven to open and close in accordance with the rotation of an intake camshaft (not shown) and the elastic member (string rod panel).
  • the intake camshaft is interlocked with the rotation of the crankshaft 15 by interposing a power transmission mechanism, such as a chain sprocket, between the intake camshaft and the crankshaft 15. Open / close drive at preset opening / closing timing.
  • the intake valve 31 that is opened and closed in synchronization with the rotation of the crankshaft 15 is applied.
  • this multi-fuel internal combustion engine may be provided with a variable valve mechanism such as a so-called variable valve timing & lift mechanism that can change the opening / closing timing and lift amount of the intake valve 31, thereby The opening / closing timing and lift amount of the valve 31 can be changed to a suitable one according to the operating conditions and the combustion mode.
  • a so-called electromagnetically driven valve that opens and closes the intake valve 31 by using an electromagnetic force that obtains the same effect as that of a powerful variable valve mechanism may be used.
  • the fuel supply device 50 guides a plurality of types of fuels having different properties to the combustion chamber CC.
  • two types of fuels having different properties are preliminarily determined in advance.
  • An example is shown in which fuel is mixed at a fuel mixing ratio and the mixed fuel is injected directly into the combustion chamber CC.
  • the fuel supply device 50 includes a first feed pump 52A that draws up the first fuel F1 from the first fuel tank 41A and sends it to the first fuel passage 51A, and a second fuel F2.
  • the second feed pump 52B that sucks the fuel from the second fuel tank 41B and delivers it to the second fuel passage 51B, and the first and second fuels F sent from the first and second fuel passages 51A and 51B, respectively.
  • Fuel mixing means 53 that mixes 1 and F2, and the mixture produced by this fuel mixing means 53
  • a high-pressure fuel pump 55 that pressurizes and pumps the combined fuel to the high-pressure fuel passage 54
  • a delivery passage 56 that distributes the mixed fuel in the high-pressure fuel passage 54 to each cylinder, and the mixed fuel supplied from the delivery passage 56
  • a fuel injection valve 57 for each cylinder that injects into the combustion chamber CC.
  • the first feed pump 52A, the second feed pump 52B, and the fuel mixing means 53 are driven and controlled by the fuel mixing control means of the electronic control device 1, whereby predetermined fuel mixing is performed.
  • the fuel mixture means 53 is configured so that the mixed fuel of the ratio is generated.
  • the fuel supply device 50 adjusts the fuel mixing ratio of the mixed fuel by adjusting the discharge amount of the first feed pump 52A and the second feed pump 52B to the fuel mixing control means of the electronic control device 1.
  • the fuel mixing ratio of the mixed fuel may be adjusted by increasing or decreasing the mixing ratios of the first and second fuels Fl and F2 in the fuel mixing means 53 in accordance with the instructions of the fuel mixing control means.
  • the fuel mixture ratio may be set in advance and may be a constant value or a variable value.
  • the fuel supply device 50 causes the high-pressure fuel pump 55 and the fuel injection valve 57 to be driven and controlled by the fuel injection control means of the electronic control device 1, thereby providing a desired fuel injection amount, fuel injection timing, and
  • the generated mixed fuel is configured to be injected under fuel injection conditions such as a fuel injection period.
  • the fuel injection control means of the electronic control unit 1 pumps the mixed fuel from the high-pressure fuel pump 55 and causes the fuel injection valve 57 to execute injection under fuel injection conditions according to operating conditions, combustion modes, and the like.
  • the mixed fuel supplied to the combustion chamber CC in this way is combusted by an ignition operation in an ignition mode corresponding to the combustion mode in combination with the air described above.
  • the in-cylinder gas (combustion gas) after the combustion is discharged to the exhaust port 11c shown in FIG.
  • the exhaust port 11c is provided with an exhaust valve 61 for opening and closing an opening between the exhaust port 11c and the combustion chamber CC.
  • the number of openings may be one or more, and the exhaust valve 61 described above is provided for each opening. Therefore, in this multi-fuel internal combustion engine, combustion gas is discharged from the combustion chamber CC to the exhaust port 11c by opening the exhaust valve 61, and the exhaust gas 61 is exhausted by closing the exhaust valve 61.
  • the exhaust valve 61 is similar to the intake valve 31 described above, and is provided with a power transmission mechanism, a so-called variable valve timing & lift mechanism, or a so-called variable valve timing & lift mechanism.
  • An electromagnetically driven valve can be applied.
  • exhaust gas the combustion gas discharged to the exhaust port 11c (hereinafter referred to as "exhaust gas”) is discharged to the atmosphere via the exhaust passage 71 shown in FIG. Released.
  • an exhaust catalyst device 72 for purifying harmful components in the exhaust gas is disposed on the exhaust passage 71.
  • the exhaust catalyst device 72 hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide (NOx) in exhaust gas generated by theoretical air-fuel ratio operation or rich air-fuel ratio operation are used.
  • HC hydrocarbon
  • CO carbon monoxide
  • NOx nitrogen oxide
  • NOx storage reduction catalyst a lean NOx catalyst is currently more expensive than the three-way catalyst.
  • the lean NOx catalyst has a limit in the amount of NOx stored, so if the capacity is small, the stored NOx must be reduced by frequent theoretical air-fuel ratio operation or rich air-fuel ratio operation. There is a risk that some of the HC, CO and NOx generated during this reduction will be released to the atmosphere.
  • the multifuel internal combustion engine of the first embodiment is operated by controlling the air-fuel ratio in the combustion chamber CC mainly to the stoichiometric air-fuel ratio, and in the exhaust gas generated at that time, HC, CO and A three-way catalyst that effectively purifies NOx is applied as the exhaust catalyst device 72.
  • combustion modes are roughly classified into a diffusion combustion mode and a flame propagation combustion mode, and a compression auto-ignition mode and a premixed spark ignition mode are prepared as ignition modes corresponding to the combustion modes. Is done. Hereinafter, they are collectively referred to as a combustion mode, and are referred to as a compression auto-ignition diffusion combustion mode and a premixed spark ignition flame propagation combustion mode, respectively.
  • the compression auto-ignition diffusion combustion mode is a method in which a part of fuel is self-ignited by injecting high-pressure fuel into high-temperature compressed air formed in the combustion chamber CC in the compression stroke. It is a combustion mode in which combustion proceeds while diffusing and mixing the fuel and air.
  • a fuel with excellent ignitability such as the following, when diffusive combustion is performed. Such a fuel with good ignitability waits for the entire injection amount to be injected.
  • the premixed spark ignition flame propagation combustion mode the premixed gas in the combustion chamber CC in which fuel and air are mixed in advance is given sparks by spark ignition, and the flame is propagated around that fire type.
  • This is a combustion mode in which combustion is advanced while being performed.
  • homogeneous combustion is performed to ignite the homogeneously mixed premixed gas, and a highly concentrated premixed gas is formed around the ignition means and further diluted around the premixed gas. It includes a combustion mode such as stratified combustion in which a premixed gas is formed and the premixed gas is ignited.
  • this premixed spark ignition flame propagation combustion mode operation is different from the compression self-ignition diffusion combustion mode operation in that knocking easily occurs due to abnormal combustion.
  • a fuel suitable for the premixed spark ignition flame propagation combustion mode a fuel having high knock resistance typified by gasoline is generally considered.
  • fuel with high knock resistance in addition to gasoline, GTL fuel and alcohol fuel produced with high knock resistance and properties are known.
  • the multifuel internal combustion engine of the first embodiment is configured to enable operation in both combustion modes. Accordingly, the multifuel internal combustion engine of the first embodiment is provided with the spark plug 81 shown in FIG. 1 for spark ignition of the premixed gas in order to enable operation in the premixed spark ignition flame propagation combustion mode. To do.
  • This spark plug 81 performs spark ignition at the ignition timing according to the operating conditions in the premixed spark ignition flame propagation combustion mode in accordance with the instruction of the electronic control unit 1.
  • fuel having high ignitability and low knock resistance is stored as the first fuel F1 in the first fuel tank 41A, and is used as the second fuel F2 in the second fuel tank 41B.
  • Store fuel with high knock resistance and low ignitability For example, light oil is stored as the first fuel F1, and gasoline is stored as the second fuel F2. Therefore, for the fuel introduced into the combustion chamber CC of the first embodiment, the various fuel characteristics of the respective fuels Fl and F2 must be taken into consideration, but the fuel of the first fuel F1 If the mixing ratio is high, the fuel characteristics are good with good ignitability and inferior knock resistance, and if the fuel mixing ratio of the second fuel F2 is high, the fuel characteristics are inferior and the fuel characteristics are good with knock resistance.
  • the "fuel introduced into the combustion chamber CC" shown here is a mixture of the fuels Fl and F2 mixed by the fuel mixing means 53 as in the multifuel internal combustion engine of the first embodiment. When it is sent to the CC, it means the mixed fuel.
  • each fuel Fl, F2 is individually supplied to the combustion chamber CC as in the multi-fuel internal combustion engine shown in FIG. 12 to be described later, each of the supplied fuel Fl, F2 The whole thing is called “fuel guided into the combustion chamber CC".
  • fuel characteristics are good and the resistance to knocking is poor
  • the supply ratio of the second fuel F2 is large, the ignition characteristics are poor and the knock resistance is good. Fuel characteristics.
  • the electronic control device 1 of the first embodiment includes a fuel characteristic determination unit that determines the fuel characteristics (here, at least ignitability and knock resistance) of the fuel guided into the combustion chamber CC; Combustion mode setting means for setting the combustion mode according to the determination result is prepared.
  • the fuel characteristic judging means of the first embodiment includes a combustion chamber CC.
  • the index value of the ignitability of the fuel (hereinafter referred to as “ignitability index value”) Pc and the index value of knock resistance (hereinafter referred to as “knock resistance index value”) Pk are detected, By comparing these with a predetermined threshold value that is a condition for switching the combustion mode, it is determined whether the ignitability and knock resistance of the fuel introduced into the combustion chamber CC are good or bad.
  • the cetane number of the fuel introduced into the combustion chamber CC and the ignition delay period during the compression auto-ignition diffusion combustion can be used.
  • the cetane number of the fuel introduced into the combustion chamber CC can grasp the property forces of the respective fuels Fl and F2 recognized by the fuel characteristic judging means at the time of refueling.
  • the respective fuels Fl and F2 are mixed in the fuel mixing means 53 at a predetermined fuel mixing ratio and then sent to the combustion chamber CC. If the ratio is not taken into account, the exact cetane number of the fuel (mixed fuel) introduced into the combustion chamber CC cannot be determined.
  • the fuel characteristic determination means of the first embodiment is based on the cetane numbers of the respective fuels Fl and F2 and their fuel mixture ratios! /, And the fuel (mixed fuel) introduced into the combustion chamber CC. Let the cetane number be calculated.
  • the cetane number of each fuel Fl, F2 acquired by the fuel characteristic determination means at the time of refueling may be recognized by, for example, providing an input device on the vehicle for inputting the properties of each fuel Fl, F2 to the refueling operator.
  • Refueling information such as the type, properties, and amount of refueling fuel can be recognized by sending and receiving information from the refueling facility to the vehicle via each communication device.
  • the ignition delay period during compression auto-ignition diffusion combustion can be detected using the detection signals of the in-cylinder pressure sensor 91, the ignition timing sensor 92, or the crank angle sensor 16 shown in FIG. 1 during compression auto-ignition diffusion combustion. it can.
  • ignitability limit value the ignitability index value (hereinafter referred to as “ignitability limit value”) PcO for the limited (ie, lowest) ignitability.
  • This ignitability limit value PcO increases as the engine speed Ne increases and the engine load K1 decreases.
  • the ignitability limit value PcO corresponding to the operating conditions (engine speed Ne and engine load K1) is obtained in advance by experiments and simulations, and the correspondence between these values is shown in FIG. Prepare as map data for the ignitability limit value shown.
  • the knock resistance index value Pk information on the trace knock ignition timing at the time of the octane knock control of the fuel guided into the combustion chamber CC can be used.
  • the octane number may be obtained in the same manner as the cetane number described above.
  • the relationship between the trace knock ignition timing and the reference ignition timing at the time of knock control based on the detection signal of the knock sensor 93 shown in FIG. It can be used as
  • the threshold for determining the knock resistance is, for example, premixed spark ignition flame propagation at least without causing knocking due to abnormal combustion (more preferably without deteriorating engine performance)
  • This knock resistance limit value PkO increases as the engine speed Ne becomes lower and higher, and as the engine load K1 becomes higher.
  • the knock resistance limit value PkO corresponding to the operating conditions (the engine speed Ne and the engine load K1) is obtained in advance by simulation, and the correspondence between these is shown in FIG. Prepared as knock resistance limit value map data shown in Fig. 1.
  • an internal combustion engine has a compression auto-ignition rather than a premixed spark ignition flame propagation combustion mode operation. Higher output can be obtained in the diffusion combustion mode operation. Therefore, in the first embodiment, if the fuel introduced into the combustion chamber CC has good ignitability, the combustion mode setting means sets the compression autoignition diffusion combustion mode.
  • the combustion mode setting means is made to set the premixed spark ignition flame propagation combustion mode.
  • the multi-fuel internal combustion engine of the first embodiment is also provided with a spark assist compression auto-ignition diffusion combustion mode in which the ignition plug 81 is used to assist ignition and perform compression auto-ignition diffusion combustion (spark-assisted compression auto-ignition diffusion combustion).
  • the spark assist compression auto-ignition diffusion combustion mode is set in the combustion mode setting means.
  • the electronic control unit 1 of the first embodiment is provided with combustion control execution means, and this combustion control execution means operates the multi-fuel internal combustion engine in the combustion mode set by the combustion mode setting means.
  • this combustion control execution means includes any combustion mode in normal operation except during operation that requires a rapid increase in combustion temperature, such as when the engine is cold. Even if it exists, it is operated mainly at the theoretical air-fuel ratio.
  • Value Pk) and the operating conditions (engine speed Ne and engine load K1) in which the detected signal force of the crank angle sensor 16 and the air flow meter 23 are also grasped are input (steps ST5 and ST10).
  • the combustion mode setting means of the electronic control unit 1 determines the operation conditions (engine speed Ne and engine load K1) of step ST10 according to the ignitability limit value map data of FIG. 2 and the knock resistance of FIG. Each is applied to the limit value map data, and the corresponding combustion mode switching conditions (ignitability limit value PcO and knock resistance limit value PkO) are obtained (step ST15).
  • the combustion mode setting means compares the ignitability index value Pc and the ignitability limit value PcO (Pc P PcO?), And determines whether the ignitability of the fuel introduced into the combustion chamber CC is good or bad. Is determined (step ST20).
  • the combustion mode setting means determines whether or not the compression ignition diffusion Set the combustion mode as the combustion mode (step ST25).
  • step ST20 when an affirmative determination is made in step ST20 and it is clear that the fuel introduced into the combustion chamber CC is inferior in ignitability, the combustion mode setting means determines that the knock resistance index Pk Is compared with the knock resistance limit value PkO (Pk P PkO?) To determine whether the knock resistance of the fuel led into the combustion chamber CC is good or bad (step ST30).
  • step ST30 when an affirmative determination is made in step ST30 and it becomes clear that the fuel introduced into the combustion chamber CC is inferior in both ignitability and knock resistance, the combustion mode setting means Then, the spark assist compression auto-ignition diffusion combustion mode is set as the combustion mode (step ST35).
  • this combustion mode setting means makes a negative determination in step ST30, and when it is clear that the fuel guided into the combustion chamber CC has high knock resistance, premixed spark ignition The flame propagation combustion mode is set as the combustion mode (step ST40).
  • the combustion control execution means performs the combustion control so that the stoichiometric air-fuel ratio operation is performed in the combustion mode thus set (step ST45).
  • the multifuel internal combustion engine of the first embodiment can perform compression auto-ignition diffusion combustion under a good stoichiometric air-fuel ratio if the fuel introduced into the combustion chamber CC is a highly ignitable fuel.
  • the fuel is a high knock-resistant fuel
  • premixed spark ignition flame propagation combustion can be performed under a good stoichiometric air-fuel ratio.
  • spark-assisted compression auto-ignition By assisting ignition in the diffusion combustion mode operation, this multi-fuel internal combustion engine can perform good compression auto-ignition diffusion combustion at a theoretical air-fuel ratio.
  • the stoichiometric air-fuel ratio operation is mainly performed in the combustion mode adapted to the fuel characteristics of the fuel guided into the combustion chamber CC. While ensuring the output performance and fuel economy performance suitable for the combustion mode, the exhaust catalyst device 72 (three-way catalyst) can be used to purify harmful components in the generated exhaust gas. With good combustion control, good engine performance (output performance, emission performance, fuel consumption performance, etc.) can be exhibited.
  • the compression auto-ignition diffusion combustion mode is selected based on this alone. It is configured to be. However, when operating in the compression auto-ignition diffusion combustion mode, even if it is a highly ignitable fuel, if the evaporability is low, the mixed state of the fuel and air becomes uneven, causing incomplete combustion. Particulate matter (PM) and smoke are generated.
  • PM particulate matter
  • the fuel characteristic determination means also determines the evaporability of the fuel introduced into the combustion chamber CC, and if the fuel has a predetermined evaporability! A combustion mode other than the ignition diffusion combustion mode is selected.
  • evaporability index value an index value obtained by indexing the evaporability of the fuel introduced into the combustion chamber CC
  • evaporation limit value PvO as a combustion mode switching condition
  • the evaporability index value Pv the amount of smoke in the exhaust gas during compression auto-ignition diffusion combustion can be used.
  • the smoke amount is detected from, for example, the smoke sensor 94 shown in FIG. 1 disposed on the exhaust passage 71. Therefore, the fuel characteristic determination means of the second embodiment uses a similar amount of smoke instead of such evaporability. Configure to make it easier to determine the characteristics of PM and smoke generation (PMZ smoke generation characteristics).
  • the evaporative limit value PvO the minimum (ie, the lowest) evaporative vaporization that can suppress the generation of PM and smoke when operating in the compression auto-ignition diffusion combustion mode.
  • This evaporative limit value PvO increases as the engine speed Ne increases and the engine load K1 increases.
  • the operating conditions engine speed Ne
  • the values corresponding to the engine load K1 are obtained in advance by simulation and the corresponding relationship is prepared as the evaporative limit value map data shown in FIG.
  • the fuel characteristics (ignitability index value Pc, knock resistance index) of the fuel guided into the combustion chamber CC detected as described above by the fuel characteristic determination means.
  • Value Pk and evaporative index value Pv) and operating conditions are input (steps ST6 and ST10).
  • the combustion mode setting means of this electronic control unit 1 uses the operating conditions (engine speed Ne and engine load K1) of step ST10 as ignitability limit value map data in FIG. 2, and knock resistance in FIG. Applying to the limit value map data and the evaporative limit value map data in Fig. 5 respectively, the corresponding combustion mode switching conditions (ignitability limit value PcO, knock resistance limit value P kO and evaporability limit value PvO) (Step ST16).
  • the combustion mode setting means of the second embodiment compares the ignitability index value Pc and the ignitability limit value PcO as in the first embodiment, and determines whether the ignitability of the fuel led into the combustion chamber CC is good or bad. However, if a negative determination is made in this step ST20 and it is clear that the fuel introduced into the combustion chamber CC has high ignitability, then the evaporative index value Pv and evaporability By comparing the limit value PvO (Pv ⁇ PvO?), It is judged whether the evaporability of the fuel introduced into the combustion chamber CC is good or bad (step ST22).
  • step ST22 an affirmative determination is made in step ST22, and the fuel introduced into the combustion chamber CC is high.
  • the combustion mode setting means sets the compression self-ignition diffusion combustion mode as the combustion mode (step ST25).
  • step ST22 if a negative determination is made in step ST22 and the fuel guided into the combustion chamber CC has high ignitability but is inferior in evaporation, the combustion mode setting means Compares the knock resistance index value Pk and the knock resistance limit value PkO to determine whether the fuel introduced into the combustion chamber CC has good or bad knock resistance (step ST30), and depending on whether this knock resistance is good or bad.
  • a combustion mode similar to that in the first embodiment spark-assisted compression autoignition diffusion combustion mode or premixed spark ignition flame propagation combustion mode is selected (steps ST35 and ST40).
  • the combustion control execution means of the electronic control device 1 executes the combustion control so that the stoichiometric air-fuel ratio operation is performed in the combustion mode thus set (step ST45). .
  • the fuel introduced into the combustion chamber CC is a highly ignitable fuel and also has a high evaporability, soot and smoke can be generated. It becomes possible to perform compression auto-ignition diffusion combustion under a very good theoretical air-fuel ratio.
  • the fuel introduced into the combustion chamber CC when the fuel introduced into the combustion chamber CC is inferior in evaporation property, it is good if the fuel introduced into the combustion chamber CC is a highly knock-resistant fuel.
  • premixed spark ignition flame propagation combustion is executed under the air-fuel ratio, and if the fuel is inferior in knock resistance, spark assisted compression autoignition diffusion combustion is executed.
  • the multifuel internal combustion engine in the case of power is ignited by the ignition plug 81 in any combustion mode, so that incomplete combustion is caused even if the evaporability of the fuel is low. Less likely.
  • the multi-fuel internal combustion engine of the second embodiment is excellent in conformity to each combustion mode without generating soot and smoke even if the fuel introduced into the combustion chamber CC is inferior in evaporation. A theoretical air-fuel ratio operation can be performed.
  • the stoichiometric air-fuel ratio is mainly used in the combustion mode further adapted to the fuel characteristics of the fuel introduced into the combustion chamber CC than in the first embodiment. Because it was driven, it was generated while ensuring output performance and fuel efficiency suitable for each combustion mode. Harmful components in the exhaust gas can be purified by the exhaust catalyst device 72 (three-way catalyst), and optimal engine control (according to the fuel characteristics) is performed to achieve good engine performance (output performance, emission performance, Fuel efficiency, etc.) can be exhibited.
  • the multi-fuel internal combustion engine of the first and second embodiments described above there are a plurality of selectable combustion modes based on the fuel characteristics of the fuel guided into the combustion chamber CC. Only a predetermined combustion mode determined in advance according to the characteristics is selected. For example, when the ignitability of the fuel is high in Example 1, and when both the ignitability and evaporation of the fuel are high in Example 2, the fuel has knock resistance. However, it is configured to select the compression self-ignition diffusion combustion mode even though it is high and the premixed spark ignition flame propagation combustion mode operation is possible. In the first and second embodiments, the compression auto-ignition diffusion combustion mode is selected in the case of fuel that requires high output.
  • the expected fuel efficiency and the expected energy for each combustion mode according to the fuel characteristics of the fuel introduced into the combustion chamber CC and the operating conditions (engine speed Ne and engine load K1). Taking into account the mission emissions, it is configured to select a combustion mode that is superior in fuel efficiency and / or emission performance.
  • a configuration based on Example 2 is illustrated, but a configuration based on Example 1 can also be configured using the same idea.
  • the expected fuel consumption level for each combustion mode and the expected emissions are reduced.
  • An index value that can be used to comprehensively judge the amount of emissions hereinafter referred to as “expected fuel consumption” emission index value).
  • Combustion mode setting means that C1, C2, and C3 are determined for each combustion mode. Make the configuration.
  • the predicted fuel consumption emission index values C1, C2, C3 for each combustion mode are index values obtained by indexing the levels of the expected fuel consumption for each combustion mode (hereinafter referred to as “expected fuel consumption index values”).
  • expected emission index values Cfl, Cf2, Cf3, and index values obtained by indexing some of the expected emission emissions for each combustion mode
  • fuel consumption emission performance weighting Based on kl, k2, and k3, the following formulas 1 to 3 are used to calculate the weight.
  • the “C1,” “C2,” and “C3” are respectively the estimated fuel consumption and the mission index value (hereinafter referred to as “compressed autoignition diffusion combustion mode” when operating in the compression autoignition diffusion combustion mode.
  • Expected fuel economy ⁇ Emission index value) Expected fuel economy when operated in premixed spark ignition flame propagation combustion mode ⁇ ⁇ Mission index value (hereinafter referred to as “predicted fuel consumption during premixed spark ignition flame propagation combustion ⁇ Emission index value ”), Expected fuel consumption when operating in spark-assisted compression auto-ignition diffusion combustion mode Emission index value (hereinafter referred to as“ Estimated fuel consumption during spark-assisted compression auto-ignition diffusion combustion ” It is referred to as an “index value”.)
  • the combustion mode is set so that the combustion mode having a smaller value among “C1,” “
  • the "Cf 1", “Cf 2", and “Cf 3" are respectively the expected fuel consumption index values when operating in the compression auto-ignition diffusion combustion mode (hereinafter referred to as “compression auto-ignition diffusion combustion”).
  • the expected fuel economy index value when operating in the premixed spark ignition flame propagation combustion mode (hereinafter referred to as the “predicted fuel economy index value during premixed spark ignition flame propagation combustion”). )
  • the expected fuel economy index value when operated in the Spark Assist Compression Auto-Ignition Diffusion Combustion Mode hereinafter referred to as “Expected Fuel Efficiency Index Value during Spark Assist Compression Auto-Ignition Diffusion Combustion”). Then, the smaller the value, the better the fuel efficiency.
  • the expected fuel consumption index values Cfl, Cf2, and Cf3 for each combustion mode are calculated based on the operating conditions (the engine speed Ne and the engine load K1) and the combustion chamber, as shown in the following equation 4 and force 6 as well. Calculation is made based on the fuel characteristics (ignitability index value Pc, knock resistance index value Pk, and evaporability index value Pv) of the fuel introduced into the CC. The correspondence of each parameter in these equations 4 to 6 is set based on the results of experiments and simulations in advance.
  • Cfl Fcl (Ne, Kl, Pc, Pk, Pv)... (4)
  • Cf2 Fc2 (Ne, Kl, Pc, Pk, Pv)... (5)
  • Cf2 Fc3 (Ne, Kl, Pc, Pk, Pv)... (6)
  • the above-mentioned “Cel”, “Ce2”, and “Ce3” are respectively the predicted soot mission index values when operated in the compression auto-ignition diffusion combustion mode (hereinafter referred to as “compressed auto-ignition diffusion combustion mode”).
  • Predicted emission index value when operating in premixed spark ignition flame propagation combustion mode hereinafter “predicted mission index value during premixed spark ignition flame propagation combustion”
  • expected emission index value during spark-assisted compression auto-ignition diffusion combustion hereinafter referred to as “expected emission index value during spark-assisted compression auto-ignition diffusion combustion”.
  • expected emission index value during spark-assisted compression auto-ignition diffusion combustion it is assumed that the smaller the value, the better the emission performance.
  • Equation 7 to Equation 9 For the predicted emission index values Cel, Ce2, and Ce3 for each combustion mode, the operating conditions (engine speed Ne and engine load K1) and the combustion chamber are determined as shown in Equation 7 to Equation 9 below. Calculation is made based on the fuel characteristics (ignitability index value Pc, knock resistance index value Pk, and evaporative index value Pv) of the fuel introduced into the CC. The correspondence of each parameter in these equations 7 to 9 is also set based on the results of experiments and simulations in advance.
  • Ce2 Gc2 (Ne, Kl, Pc, Pk, Pv)... (8)
  • Ce3 Gc3 (Ne, Kl, Pc, Pk, Pv)... (9)
  • map data corresponding to the above equations 4 to 9 is prepared. You may ask for it.
  • the above-mentioned “kl”, “k2”, and “k3” are weighted for fuel consumption and emission performance when operated in the compression auto-ignition diffusion combustion mode (hereinafter referred to as “compression auto-ignition diffusion combustion”).
  • Fuel efficiency / emission performance weighting) fuel consumption / emission performance weighting when operating in premixed spark ignition flame propagation combustion mode (hereinafter referred to as “fuel consumption during premixed spark ignition flame propagation combustion.
  • Performance weighting fuel consumption when operating in spark-assisted compression auto-ignition diffusion combustion mode (hereinafter referred to as“ weighting of fuel efficiency / emission performance during spark-assisted compression auto-ignition diffusion combustion ”).
  • the fuel consumption for each combustion mode 'emission performance weighting kl, k2, k3 is a value that varies depending on whether you want to improve fuel consumption performance or emission performance.
  • the emission performance is improved as the value becomes smaller.
  • the fuel efficiency emission performance weights kl, k2, and k3 for each combustion mode may be determined by the combustion mode setting means according to the remaining fuel amount, the actual emission amount, and the like. In this case, these correspondence relationships may be prepared in the form of map data or the like based on the results of experiments or simulations performed in advance. Further, the fuel efficiency emission weights kl, k2, k3 for each combustion mode may be specified by the driver.
  • Knock resistance index value Pk and evaporative index value Pv) and operating conditions (engine speed Ne and engine load K1) are input (steps ST55 and ST60).
  • the combustion mode setting means of this electronic control unit 1 is based on the operating conditions of the step ST60 (engine speed Ne and engine load K
  • the combustion mode switching conditions (ignitability limit value PcO, knock resistance limit value PkO, and evaporative limit value PvO) according to 1) are determined in the same manner as in Example 2 (step ST65).
  • the combustion mode setting means of the third embodiment includes the expected fuel consumption index values Cf1, Cf2, Cf3 for each combustion mode, the expected emission index values Cel, Ce2, Ce3 for each combustion mode, Fuel consumption for each combustion mode (emission performance weighting kl, k2, k3) is obtained as described above (steps ST70, ST75, ST80), and these are substituted into the above equations 1 to 3, respectively. Calculate the expected fuel efficiency emission index values CI, C2, and C3 for each combustion mode (step ST85).
  • this combustion mode setting means compares the ignitability index value Pc with the ignitability limit value PcO, and compares the knock resistance index value Pk with the knock resistance limit value PkO (Pc> PcO and Pk > PkO?), It is determined whether or not the fuel introduced into the combustion chamber CC is highly ignitable and highly knock resistant (step ST90).
  • this combustion mode Estimated fuel consumption during compression auto-ignition diffusion combustion Predicted emission index value C1 Estimated fuel consumption during mixed spark ignition flame propagation combustionEmission index value C2 and expected fuel consumption during spark-assisted compression auto-ignition diffusion combustion Compared to the emission index value C3 (CI ⁇ C2 and CI ⁇ C3?), It is determined whether or not the compression self-ignition diffusion combustion mode operation has the best fuel consumption performance (step ST95). ).
  • the combustion mode setting means continues.
  • the evaporability index value Pv and the evaporative limit value PvO are compared to determine whether the fuel introduced into the combustion chamber CC is good or bad (step ST100), and if the fuel is highly evaporable, PM Therefore, the compression ignition diffusion combustion mode is set as the combustion mode (step ST105).
  • this combustion mode setting means is negatively determined in step ST95, and it is clear that the operation in the combustion mode other than the compression ignition diffusion combustion mode is the most excellent in fuel efficiency performance and emission performance. Or if the determination in step ST100 above is negative and the fuel introduced into the combustion chamber CC is found to be inferior in evaporation. Compared with the expected fuel consumption during premixed spark-ignited flame propagation combustion, the emission index value C2 and the expected fuel consumption during spark-assisted compression auto-ignition diffusion combustion C3 (C2 ⁇ C3?) It is determined whether or not the operation in the combustion mode of V is the most excellent in fuel efficiency and emission performance (step ST110).
  • this combustion mode setting means burns the premixed spark ignition flame propagation combustion mode if the expected fuel consumption during the premixed spark ignition flame propagation combustion is smaller than the emission index value C2.
  • the spark-assist compression auto-ignition diffusion combustion mode is set as the combustion mode (step ST120). ).
  • a negative determination is made when the expected fuel consumption emission index values C2 and C3 are the same during premixed spark ignition flame propagation combustion and spark assist compression autoignition diffusion combustion.
  • the combustion mode setting means may be configured to make an affirmative determination when power is applied.
  • step ST90 if a negative determination is made in step ST90 above and it is clear that the fuel introduced into the combustion chamber CC does not have both high ignitability and high knock resistance, this combustion
  • the mode setting means compares the ignitability index value Pc and the ignitability limit value PcO (Pc> PcO?), And determines whether the ignitability of the fuel guided into the combustion chamber CC is good or bad (step ST130).
  • this combustion mode setting means makes an affirmative determination in this step ST130, and when it becomes clear that the fuel has high ignitability, the evaporative index value ⁇ and the evaporative limit are continued.
  • the value ⁇ is compared to determine whether the evaporability of the fuel introduced into the combustion chamber CC is good or bad as in step ST100 (step ST135).
  • step ST135 if it is determined in step ST135 that the fuel is inferior in evaporability, the combustion mode setting means proceeds to step ST120 and performs spark assist compression autoignition diffusion combustion. If the mode is set as the combustion mode and the determination result in step ST135 indicates that the fuel is high and has evaporability, the expected fuel consumption during compression auto-ignition diffusion combustion is set to the emission index value C1. Compared to the expected fuel consumption and emission index value C3 (C1 ⁇ C3?) For spark-assisted compression auto-ignition diffusion combustion, It is determined whether or not the rolling is the best in terms of fuel efficiency and emission performance (step ST 140).
  • the process proceeds to step ST105, the compression auto-ignition diffusion combustion mode is set as the combustion mode, and the spark is set. If the expected fuel economy / emission index value C3 during assisted compression auto-ignition diffusion combustion is smaller, the process proceeds to step ST120 above and the spark-assisted compression auto-ignition diffusion combustion mode is set as the combustion mode.
  • the estimated fuel consumption during compression auto-ignition diffusion combustion and spark-assisted compression auto-ignition diffusion combustion is negative when the emission index values CI and C3 are the same.
  • the mode setting means may be configured to make an affirmative determination when covering.
  • this combustion mode setting means makes a negative determination in step ST130, and if it becomes clear that the fuel is inferior in ignitability, the evaporative index value Pv and the evaporative index are continuously displayed. By comparing the limit value PvO (Pk> PkO?), It is judged whether the knock resistance of the fuel led into the combustion chamber CC is good or bad (step ST145).
  • the combustion mode setting means has no problem even if it is operated in the premixed spark ignition flame propagation combustion mode. It is determined whether the operation in the mixed spark ignition flame propagation combustion mode or the spark-assisted compression auto-ignition diffusion combustion mode is the best in fuel efficiency and emission performance. Similarly, set any combustion mode. On the other hand, if the fuel is inferior in knock resistance, this combustion mode setting means causes a combustion failure when operated in the premixed spark ignition flame propagation combustion mode. Therefore, the process proceeds to step ST120 and spark assisted compression autoignition. Set the diffusion combustion mode as the combustion mode.
  • the combustion control execution means of the electronic control unit 1 executes the combustion control so that the stoichiometric air-fuel ratio operation is performed in the combustion mode thus set (step ST1 50). .
  • the multi-fuel internal combustion engine of the third embodiment has a fuel characteristic when the fuel introduced into the combustion chamber CC has a fuel characteristic capable of performing good operation in a plurality of types of combustion modes.
  • Theoretical air-fuel ratio can be operated in a combustion mode excellent in cost performance and / or emission performance.
  • optimal combustion control corresponding to the fuel characteristics should be performed to exhibit good engine performance (output performance, emission performance, fuel consumption performance, etc.). As much as possible, the fuel efficiency can be further improved.
  • the combustion mode to be changed is selected in consideration of both the fuel efficiency performance and the emission performance.
  • the combustion mode is changed to one that is superior in performance among them.
  • a combustion mode setting means may be constructed. For example, when changing to a combustion mode with excellent fuel efficiency, “C1”, “C 2J,” “C3” after step ST95 in FIG. 8 are “Cfl”, “Cf2”, “Cf3” respectively.
  • C1”, “C2”, and “C3” after step ST95 are set to “Cel”. , “Ce2”, “Ce3” should be replaced.
  • the fuel introduced into the combustion chamber CC has fuel characteristics that can be operated satisfactorily in a plurality of combustion modes.
  • the combustion mode with the better performance is selected.
  • the combustion state becomes unstable due to fluctuations in the air-fuel ratio at the time of change and fluctuations in the EGR (Exhaust Gas Recirculation) amount. It is not desirable to make changes.
  • the fuel consumption performance can be reduced by changing from the current combustion mode so that the combustion mode is not changed to a degree that the fuel consumption performance is slightly improved.
  • the combustion mode is changed only when the cost for improving the mission performance exceeds a predetermined level.
  • the expected fuel consumption for each combustion mode in the third embodiment 'emission index values CI, C2, and C3 are the fuel consumption performance and emission performance in each combustion mode. This represents the total cost of improving Noh. Therefore, whether or not it is necessary to change from the current combustion mode can be determined by comparing the expected fuel efficiency emission index values CI, C2, C3 for each combustion mode with a predetermined threshold value. This may be determined by correcting the expected fuel consumption emission index values CI, C2, C3 for each combustion mode according to the current combustion mode. In the present Example 4, the latter is illustrated.
  • Estimated fuel consumption for each combustion mode 'Emission index correction value” Cl, C2, C3 are obtained, and these are estimated fuel consumption for each combustion mode' Emission index value CI, C2, C3.
  • Combustion mode setting means is configured to select the combustion mode instead.
  • the "C1 '", “C2'”, and “C3 '” are the estimated fuel efficiency and the mission index correction value (hereinafter referred to as “compressed autoignition”) when operating in the compressed autoignition diffusion combustion mode, respectively.
  • Expected fuel consumption during diffusion combustion is referred to as “emission index correction value”), expected fuel consumption when operating in premixed spark ignition flame propagation combustion mode ( ⁇ ) Predicted fuel ignition flame propagation fuel (hereinafter referred to as “premixed spark ignition flame propagation fuel”) Expected fuel consumption during firing 'emission index correction value'), expected fuel consumption when operating in spark-assisted compression auto-ignition diffusion combustion mode (hereinafter referred to as “spark-assisted compression auto-ignition diffusion combustion”) "Estimated fuel economy / emission index correction value”)
  • combustion mode setting means is configured to select a combustion mode having a small value among these. For this reason, the expected fuel consumption of the same combustion mode as the current combustion mode 'Emission index value C 1 (C2, C3) is corrected to a smaller value, and the expected fuel consumption of the combustion mode different from the current combustion mode.
  • the emission index value CI (C2, C3) By correcting the emission index value CI (C2, C3) to a large value or maintaining the current state, the current combustion mode is easily selected.
  • Expression 10 is an arithmetic expression used when the calculated expected fuel consumption 'emission index value CI (C2, C3) is of the same combustion mode as the current combustion mode
  • Equation 11 is an arithmetic equation used when the calculated expected fuel consumption emission index value C1 (C2, C3) is of a combustion mode different from the current combustion mode.
  • the correction term ⁇ Ci represents the overall hysteresis of the fuel consumption performance and emission performance for each combustion mode. For example, by performing experiments and simulations, the combustion state changes with the change of the combustion mode. Even if becomes unstable, it is sufficient to prepare values in advance when it is determined that the benefits of improved fuel efficiency and emission performance are greater. As the values, the expected fuel consumption 'emission index value C1 (C2, C3) of the changed combustion mode at that time and the expected fuel consumption' emission index value CI (C2, C3) of the same combustion mode as the current combustion mode are included. The absolute value of the difference between C3) can be used.
  • the electronic control unit 1 of the fourth embodiment calculates the predicted fuel consumption. Emission index values CI, C2, C3 for each combustion mode in the same manner as in the third embodiment (steps ST55 to ST85). .
  • the combustion mode setting means of the electronic control unit 1 uses the estimated fuel consumption emission index correction values Cl, C2, ... for each combustion mode with respect to the current combustion mode.
  • this combustion mode setting means compares the ignitability index value Pc and the ignitability limit value PcO, the knock resistance index value Pk and the knock resistance limit value PkO, respectively (Pc> PcO and Pk > PkO?
  • step ST90 It is determined whether or not the fuel introduced into the combustion chamber CC is highly ignitable and highly evaporable (step ST90).
  • step ST90 when an affirmative determination is made in step ST90 and it is clear that the fuel introduced into the combustion chamber CC has high ignitability and high evaporability, this embodiment 4
  • the combustion mode setting means uses the expected fuel consumption during compression auto-ignition diffusion combustion, emission index correction value C1, and the expected fuel consumption during premixed spark ignition flame propagation combustion. 2) and expected fuel consumption during spark-assisted compression auto-ignition diffusion combustion ⁇ Comparison with emission index correction value C3 '(CI' ⁇ C2'andCI' ⁇ C3'?) It is judged whether the fuel efficiency is excellent in the emission performance and the power is good (step ST96).
  • step ST96 the process proceeds to step ST100 as in the third embodiment, and the combustion mode corresponding to the determination result is set.
  • step ST100 when a negative determination is made in step ST100, the process proceeds to the following step ST111.
  • the combustion mode setting means of the fourth embodiment uses the estimated fuel consumption / emission index correction value C2 'during premixed spark ignition flame propagation combustion and spark assist compression.
  • Expected fuel consumption during self-ignition diffusion combustion ⁇ Comparison with emission index correction value C3, (C2 ' ⁇ C3'?), The operation in which combustion mode is the most excellent in fuel consumption performance and emission performance (Step ST111), and depending on the determination result, either the premixed spark ignition flame propagation combustion mode or the spark assisted compression autoignition diffusion combustion mode is set as the combustion mode.
  • step ST90 when it is clarified through step ST90 ⁇ step ST130 ⁇ step ST135 that the fuel introduced into the combustion chamber CC is inferior in knock resistance but highly ignitable and highly evaporable ( If the determination in step ST135 is affirmative), the combustion mode setting means of this embodiment 4 uses the expected fuel consumption / emission index correction value C1 'during compression auto-ignition diffusion combustion and the prediction during spark-assisted compression auto-ignition diffusion combustion. Compare fuel efficiency and emission index correction value C3 (C1 ' ⁇ C3'?) To determine which driving mode has the best fuel efficiency and emission performance. (Step ST141), either the compression auto-ignition diffusion combustion mode or the spark-assisted compression auto-ignition diffusion combustion mode is set as the combustion mode according to the determination result.
  • the combustion control execution means of the electronic control unit 1 executes the combustion control so that the stoichiometric air-fuel ratio operation is performed in the combustion mode thus set (step ST1 50). .
  • the multifuel internal combustion engine of the fourth embodiment is the same as the multifuel internal combustion engine of the third embodiment.
  • the current combustion mode is maintained unless the fuel efficiency and emission performance are improved to some extent, so the combustion mode is not changed frequently. .
  • this multi-fuel internal combustion engine it is possible to reduce the frequency of occurrence of unstable combustion states caused by fluctuations in the air-fuel ratio and EGR amount when changing the combustion mode.
  • 'Emission index value CI (C2, C3) is maintained as it is is corrected to a small value or is maintained as it is, and the expected fuel consumption of a combustion mode different from the current combustion mode is also' emission index value C1 (C2 , C3) is also corrected to a large value, so that the current combustion mode is easily selected. Therefore, for example, the following formulas 12 and 13 can be used to calculate the expected fuel consumption emission index correction values Cl, C2, C3 for each combustion mode with respect to the current combustion mode.
  • Equation 12 is the calculation formula used when the calculated expected fuel consumption 'emission index value C1 (C2, C3) is the same combustion mode as the current combustion mode, and Equation 13 is calculated This is the calculation formula used when the estimated fuel efficiency emission index value C1 (C2, C3) is of a combustion mode different from the current combustion mode.
  • the estimated fuel efficiency 'emission index correction values Cl', C2 ', C3' for each power combustion mode using the correction term A Ci may be obtained by multiplying the correction coefficient. Good.
  • the combustion mode setting operation is performed in the multi-fuel internal combustion engine of Examples 1 to 4.
  • the fuel supply device 50 is replaced with the fuel supply device 150 shown in FIG. 11, and the mixed fuel of the first fuel Fl and the second fuel F2 is injected not only into the combustion chamber CC but also into the intake port l ib.
  • the present invention may be applied to a fuel internal combustion engine, and even if this is true, the same effects as those of the multifuel internal combustion engines of Examples 1 to 4 can be obtained.
  • the fuel supply device 150 shown in Fig. 11 refers to the fuel supplied by the fuel mixing means 53 in addition to the various components of the fuel supply device 50 in the first to fourth embodiments.
  • a fuel pump 155 that discharges to the passage 154, a delivery passage 156 that distributes the mixed fuel in the fuel passage 154 to the respective cylinders, and the mixed fuel supplied from the delivery passage 156 to the intake ports l ib of the respective cylinders And a fuel injection valve 157 for each cylinder to be injected.
  • the fuel injection valve 57 is driven to control the mixed fuel in the combustion chamber CC.
  • the fuel injection valve 157 is driven and controlled to inject the mixed fuel into the intake port l ib.
  • the combustion mode setting operation is performed without replacing the fuel supply device 50 with the fuel supply device 250 shown in Fig. 12 in the multifuel internal combustion engines of Examples 1 to 4, and without using the fuel mixing means 53.
  • the fuel F1 and the second fuel F2 may be applied to the multi-fuel internal combustion engine configured to be injected separately. Even in this case, the same effects as those of the multi-fuel internal combustion engines of the first to fourth embodiments can be obtained. it can.
  • the fuel supply device 250 shown in Fig. 12 is the first fuel supply means for directly injecting the first fuel F1 (highly ignitable fuel) into the combustion chamber CC, and the intake port l ib.
  • the first fuel supply means sucks the first fuel F1 from the first fuel tank 41A and sends it to the first fuel passage 251A, and the first fuel F1 in the first fuel passage 251A.
  • the second fuel supply means supplies the second fuel F2 to the second fuel tank 41B.
  • the second feed pump 252B that sucks up the force and sends it to the second fuel passage 251B, the second delivery passage 256B that distributes the second fuel F2 of the second fuel passage 251B to the respective cylinders, and the second delivery passage 256B And a fuel injection valve 257B for each cylinder that injects the second fuel F2 supplied from the engine into the intake port l ib.
  • a fuel injection valve 257B for each cylinder that injects the second fuel F2 supplied from the engine into the intake port l ib.
  • the fuel injection valve 257A or both fuel injection valves 257A and 257B are driven and controlled.
  • the fuel is led into the combustion chamber CC, and when operating in the premixed spark ignition flame propagation combustion mode, the fuel injection valve 257B alone or both of the fuel injection valves 257A and 257B are driven and controlled, and the fuel is supplied to the combustion chamber CC. Lead in.
  • the multi-fuel internal combustion engine operated with two types of fuels has been exemplified.
  • the combustion mode according to the multi-fuel internal combustion engine of each of these Examples 1 to 5 The setting operation may be applied to a multi-fuel internal combustion engine that is operated using more types of fuel.
  • each fuel is stored in a separate fuel tank for each type.
  • the combustion mode setting operation related to the multifuel internal combustion engine in each of the first to fifth embodiments. May be applied to a multi-fuel internal combustion engine operated by using all the fuels stored in one fuel tank at a predetermined fuel mixture ratio and operating with the mixed fuel.
  • the multi-fuel internal combustion engine according to the present invention is useful for a technique for setting an optimal combustion mode in accordance with fuel characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

明 細 書
多種燃料内燃機関
技術分野
[0001] 本発明は、性状の異なる少なくとも 2種類の燃料の内の少なくとも 1種類を燃焼室に 導いて又は当該少なくとも 2種類の燃料カゝらなる混合燃料を燃焼室に導いて、主とし て理論空燃比で運転される多種燃料内燃機関に関する。
背景技術
[0002] 従来、性状の異なる複数種類の燃料を用いて運転される所謂多種燃料内燃機関 が知られている。例えば、下記の特許文献 1にはガソリンと軽油の混合燃料を用いて 運転される多種燃料内燃機関について開示されている。この多種燃料内燃機関は、 機関始動時に着火性の高い軽油の混合割合を高くして拡散燃焼運転させ、また、ス モーク排出量が多 、場合やノッキングが発生して 、る場合にスモーク抑制効果ゃ耐 ノック性の高いガソリンの混合割合高くして予混合燃焼させている。また、下記の特許 文献 2には、ガソリンや軽油、エタノールの様に多種類の燃料の中から運転者が選択 したものを用いて運転可能な多種燃料内燃機関が開示されている。更に、この特許 文献 2には、機関負荷が所定の負荷よりも軽負荷であれば火花点火モードで運転さ れ、高負荷であれば圧縮自着火拡散燃焼モードで運転される多種燃料内燃機関に っ ヽても記載されており、使用する燃料の着火性が高 、ほど圧縮自着火拡散燃焼モ ードでの運転領域を拡大して ヽる。
[0003] 特許文献 1 :特開平 9 68061号公報
特許文献 2:特開 2004 - 245126号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、例えば、特定の燃料固有の性状に依存する運転モードでの運転が 継続された場合には、その特定の燃料が消費し尽くされてしまうことによって、その後 はその運転モードでの運転を行えなくなってしまう虞がある。そして、そのような状況 に陥ったときには、あらゆる運転条件において残りの他の燃料の性状に依存した別 の運転モードでの運転に制限されてしまうので、時としてェミッション性能や出力性能 等に代表される機関性能を悪化させることがある。また、車輛の仕向地によっては同 種の燃料であっても品質に差が出てしまうことがあるので、例えば、その燃料は、本 来であれば燃料特性が高着火性と認識され、また、期待されているにも拘わらず、望 むだけの高い着火性を備えていない場合がある。これが為、力かる場合には、着火 性だけでなくスモーク抑制効果ゃ耐ノック性にっ 、ても低 、混合燃料しか作り出すこ とができずに、機関性能を悪化させてしまう可能性がある。
[0005] そこで、本発明は、力かる従来例の有する不都合を改善し、燃焼室内に導かれる 燃料の燃料特性に応じた最適な燃焼制御を行うことのできる多種燃料内燃機関を提 供することを、その目的とする。
課題を解決するための手段
[0006] 上記目的を達成する為、請求項 1記載の発明では、性状の異なる少なくとも 2種類 の燃料の内の少なくとも 1種類が燃焼室に導かれ又は当該少なくとも 2種類の燃料か らなる混合燃料が燃焼室に導かれて主に理論空燃比運転される多種燃料内燃機関 において、その燃焼室内に導かれる燃料の着火性及び耐ノック性について判定する 燃料特性判定手段と、その燃焼室内に導かれる燃料の着火性が良ければ圧縮自着 火拡散燃焼モードを設定し、その燃焼室内に導かれる燃料の着火性が悪く耐ノック 性が良ければ予混合火花点火火炎伝播燃焼モードを設定し、その燃焼室内に導か れる燃料の着火性と耐ノック性の双方が悪ければスパークアシスト圧縮自着火拡散 燃焼モードを設定する燃焼モード設定手段と、この燃焼モード設定手段により設定さ れた燃焼モードで運転させる燃焼制御実行手段と、を備えて 、る。
[0007] この請求項 1記載の多種燃料内燃機関においては、高着火性燃料であれば、良好 な機関性能(出力性能、ェミッション性能や燃費性能等)を発揮させる圧縮自着火拡 散燃焼が行われる。また、この多種燃料内燃機関は、着火性が悪くとも高耐ノック性 燃料であれば、良好な機関性能(出力性能、ェミッション性能や燃費性能等)を発揮 させる予混合火花点火火炎伝播燃焼が行われる。更に、この多種燃料内燃機関は、 着火性と耐ノック性の双方共に悪 、燃料であれば、スパークアシスト圧縮自着火拡散 燃焼モードで着火を補助することによって、良好な機関性能(出力性能、ェミッション 性能や燃費性能等)を発揮させる圧縮自着火拡散燃焼が行われる。
[0008] また、上記目的を達成する為、請求項 2記載の発明では、上記請求項 1記載の多 種燃料内燃機関において、燃焼室内に導かれる燃料の蒸発性又は PMZスモーク 発生特性を更に判定するよう燃料特性判定手段を構成し、燃焼室内に導かれる燃 料が蒸発性の悪 、ものである又は粒子状物質 (PM)やスモークを発生させ易 、もの であるときに、圧縮自着火拡散燃焼モードを選択しな 、ように燃焼モード設定手段を 構成している。
[0009] 一般に、着火性が高くとも低蒸発性の燃料の場合には不完全燃焼が起こって PM やスモークを発生させてしまうが、この請求項 2記載の多種燃料内燃機関においては 、そのような燃料特性の燃料のときに圧縮自着火拡散燃焼モード以外の燃焼モード ( 予混合火花点火火炎伝播燃焼モード又はスパークアシスト圧縮自着火拡散燃焼モ ード)を選択させることによって、 PMやスモークの発生を抑えることができる。
[0010] また、上記目的を達成する為、請求項 3記載の発明では、上記請求項 1又は 2に記 載の多種燃料内燃機関において、燃焼室内に導かれる燃料が複数種類の燃焼モー ドを設定対象とすることのできる燃料特性を備えて ヽる場合、燃費性能及びエミッショ ン性能又はその何れかに優れた燃焼モードの選択を行うように燃焼モード設定手段 を構成している。
[0011] この請求項 3記載の多種燃料内燃機関においては、燃費性能ゃェミッション性能を 更に向上させることのできる更に最適な燃焼モードを設定することができるようになる 発明の効果
[0012] 本発明に係る多種燃料内燃機関は、燃焼室内に導かれる燃料の燃料特性に応じ た最適な燃焼モードが設定されるので、その燃料特性に応じた最適な燃焼制御を行 うことができるようになり、これに伴って良好な機関性能(出力性能、ェミッション性能 や燃費性能等)を発揮させることができるようになる。
図面の簡単な説明
[0013] [図 1]図 1は、本発明に係る多種燃料内燃機関の実施例 1〜4の構成について示す 図である。 [図 2]図 2は、着火性限界値マップデータの一例について示す図である。
[図 3]図 3は、耐ノック性限界値マップデータの一例について示す図である。
[図 4]図 4は、実施例 1の多種燃料内燃機関の動作について説明するフローチャート である。
[図 5]図 5は、耐蒸発性限界値マップデータの一例について示す図である。
[図 6]図 6は、実施例 2の多種燃料内燃機関の動作について説明するフローチャート である。
[図 7]図 7は、実施例 3の多種燃料内燃機関の動作について説明するフローチャート である。
[図 8]図 8は、実施例 3の多種燃料内燃機関の動作について説明するフローチャート であって、図 7のフローチャートの続きを示す図である。
[図 9]図 9は、実施例 4の多種燃料内燃機関の動作について説明するフローチャート である。
[図 10]図 10は、実施例 4の多種燃料内燃機関の動作について説明するフローチヤ ートであって、図 9のフローチャートの続きを示す図である。
[図 11]図 11は、本発明に係る多種燃料内燃機関の実施例 5の構成について示す図 である。
[図 12]図 12は、本発明に係る多種燃料内燃機関の実施例 5の変形例の構成につい て示す図である。
符号の説明
1 電子制御装置
41A 第 1燃料タンク
41B 第 2燃料タンク
91 筒内圧センサ
92 着火時期センサ
93 ノックセンサ
94 スモークセンサ
CC 燃焼室 Fl 第 1燃料
F2 第 2燃料
K1 機関負荷
Ne 機関回転数
Pc 着火性指数値
PcO 着火性限界値
Pk 耐ノック性指数値
PkO 耐ノック性限界値
Pv 蒸発性指数値
PvO 蒸発性限界値
発明を実施するための最良の形態
[0015] 以下に、本発明に係る多種燃料内燃機関の実施例を図面に基づいて詳細に説明 する。尚、この実施例によりこの発明が限定されるものではない。
実施例 1
[0016] 本発明に係る多種燃料内燃機関の実施例 1を図 1から図 4に基づいて説明する。こ の多種燃料内燃機関とは、性状の異なる少なくとも 2種類の燃料の内の少なくとも 1 種類を燃焼室に導いて又は当該少なくとも 2種類の燃料カゝらなる混合燃料を燃焼室 に導いて運転される内燃機関である。本実施例 1にあっては、後者の多種燃料内燃 機関を例に挙げて説明する。
[0017] この多種燃料内燃機関は、図 1に示す電子制御装置 (ECU) 1によって燃焼制御 等の各種制御動作が実行される。その電子制御装置 1は、図示しない CPU (中央演 算処理装置),所定の制御プログラム等を予め記憶している ROM (Read Only M emory) ,その CPUの演算結果を一時記憶する RAM (Random Access Memor y) ,予め用意された情報等を記憶するノ ックアップ RAM等で構成されている。
[0018] 最初に、ここで例示する多種燃料内燃機関の構成について図 1に基づき説明を行 う。尚、その図 1においては 1気筒のみを図示しているが、本発明は、これに限らず、 多気筒の多種燃料内燃機関にも適用可能である。本実施例 1においては、複数の気 筒を具備しているものとして説明する。 [0019] この多種燃料内燃機関には、燃焼室 CCを形成するシリンダヘッド 11,シリンダブ口 ック 12及びピストン 13が備えられている。ここで、そのシリンダヘッド 11とシリンダブ口 ック 12は図 1に示すヘッドガスケット 14を介してボルト等で締結されており、これにより 形成されるシリンダヘッド 11の下面の凹部 1 laとシリンダブロック 12のシリンダボア 12 aとの空間内にピストン 13が往復移動可能に配置される。そして、上述した燃焼室 C Cは、そのシリンダヘッド 11の凹部 11aの壁面とシリンダボア 12aの壁面とピストン 13 の頂面 13aとで囲まれた空間によって構成される。
[0020] 本実施例 1の多種燃料内燃機関は、機関回転数や機関負荷等の運転条件及び燃 焼モードに従って空気と燃料を燃焼室 CCに送り込み、その運転条件等に応じた燃 焼制御を実行する。その空気については、図 1に示す吸気通路 21とシリンダヘッド 1 1の吸気ポート l ibを介して外部から吸入される。一方、その燃料については、図 1に 示す燃料供給装置 50を用いて供給される。
[0021] 先ず、空気の供給経路について説明する。本実施例 1の吸気通路 21上には、外部 力も導入した空気に含まれる塵埃等の異物を除去するエアクリーナ 22と、外部から の吸入空気量を検出するェアフロメータ 23と、が設けられている。この多種燃料内燃 機関においては、そのェアフロメータ 23の検出信号が電子制御装置 1へと送られ、 その検出信号に基づいて電子制御装置 1が吸入空気量や機関負荷等を算出する。
[0022] また、その吸気通路 21上におけるェアフロメータ 23よりも下流側には、燃焼室 CC 内への吸入空気量を調節するスロットルバルブ 24と、このスロットルバルブ 24を開閉 駆動するスロットルバルブァクチユエータ 25と、が設けられている。本実施例 1の電子 制御装置 1は、そのスロットルバルブァクチユエータ 25を運転条件及び燃焼モードに 従って駆動制御し、その運転条件等に応じた弁開度 (換言すれば、吸入空気量)とな るようにスロットルバルブ 24の開弁角度を調節させる。例えば、そのスロットルバルブ 24は、運転条件や燃焼モードに応じた空燃比を成す為に必要な吸入空気量の空気 が燃焼室 CCに吸入されるよう調節される。この多種燃料内燃機関においては、その スロットルバルブ 24の弁開度を検出し、その検出信号を電子制御装置 1に送信する スロットル開度センサ 26が設けられて!/、る。
[0023] 更に、吸気ポート l ibはその一端が燃焼室 CCに開口しており、その開口部分に当 該開口を開閉させる吸気ノ レブ 31が配設されている。その開口の数量は 1つでも複 数でもよぐその開口毎に吸気バルブ 31が配備される。従って、この多種燃料内燃 機関においては、その吸気バルブ 31を開弁させることによって吸気ポート l ibから燃 焼室 CC内に空気が吸入される一方、その吸気バルブ 31を閉弁させることによって 燃焼室 CC内への空気の流入が遮断される。
[0024] ここで、その吸気バルブ 31としては、例えば、図示しない吸気側カムシャフトの回転 と弾性部材 (弦卷パネ)の弹発カに伴って開閉駆動されるものがある。この種の吸気 バルブ 31においては、その吸気側カムシャフトとクランクシャフト 15の間にチェーン ゃスプロケット等力 なる動力伝達機構を介在させることによってその吸気側カムシャ フトをクランクシャフト 15の回転に連動させ、予め設定された開閉時期に開閉駆動さ せる。本実施例 1の多種燃料内燃機関においては、このようなクランクシャフト 15の回 転に同期して開閉駆動される吸気バルブ 31を適用する。
[0025] 但し、この多種燃料内燃機関は、その吸気バルブ 31の開閉時期やリフト量を変更 可能な所謂可変バルブタイミング &リフト機構等の可変バルブ機構を具備してもよく 、これにより、その吸気バルブ 31の開閉時期やリフト量を運転条件及び燃焼モードに 応じた好適なものへと可変させることができるようになる。更にまた、この多種燃料内 燃機関においては、力かる可変バルブ機構と同様の作用効果を得るベぐ電磁力を 利用して吸気バルブ 31を開閉駆動させる所謂電磁駆動弁を利用してもよい。
[0026] 続いて、燃料供給装置 50について説明する。この燃料供給装置 50は、性状の異 なる複数種類の燃料を燃焼室 CCに導くものである。本実施例 1にあっては、性状の 異なる 2種類の燃料 (第 1燃料タンク 41Aに貯留された第 1燃料 F1と第 2燃料タンク 4 1Bに貯留された第 2燃料 F2)を予め所定の燃料混合比率で混合して、その混合燃 料を燃焼室 CC内に直接噴射させるベく構成したものについて例示する。
[0027] 具体的に、この燃料供給装置 50は、第 1燃料 F1を第 1燃料タンク 41Aカゝら吸い上 げて第 1燃料通路 51Aに送出する第 1フィードポンプ 52Aと、第 2燃料 F2を第 2燃料 タンク 41Bから吸い上げて第 2燃料通路 51Bに送出する第 2フィードポンプ 52Bと、 その第 1及び第 2の燃料通路 51A, 51Bから各々送られてきた第 1及び第 2の燃料 F 1, F2を混ぜ合わせる燃料混合手段 53と、この燃料混合手段 53にて生成された混 合燃料を加圧して高圧燃料通路 54に圧送する高圧燃料ポンプ 55と、その高圧燃料 通路 54の混合燃料を夫々の気筒に分配するデリバリ通路 56と、このデリバリ通路 56 から供給された混合燃料を燃焼室 CC内に噴射する各気筒の燃料噴射弁 57と、を備 える。
[0028] この燃料供給装置 50においては、その第 1フィードポンプ 52A,第 2フィードポンプ 52B及び燃料混合手段 53を電子制御装置 1の燃料混合制御手段に駆動制御させ 、これにより、所定の燃料混合比率の混合燃料が燃料混合手段 53で生成されるよう に構成する。例えば、この燃料供給装置 50は、その第 1フィードポンプ 52Aと第 2フィ ードポンプ 52Bの夫々の吐出量を電子制御装置 1の燃料混合制御手段に加減させ ることによって混合燃料の燃料混合比率を調節してもよぐその燃料混合制御手段の 指示に従って燃料混合手段 53に第 1及び第 2の燃料 Fl, F2の夫々の混合割合を 増減させて混合燃料の燃料混合比率を調節してもよい。ここで、その燃料混合比率 は、予め設定されて 、る一定の値であってもよく変動値であってもよ 、。
[0029] また、この燃料供給装置 50は、その高圧燃料ポンプ 55及び燃料噴射弁 57を電子 制御装置 1の燃料噴射制御手段に駆動制御させ、これにより、所望の燃料噴射量, 燃料噴射時期及び燃料噴射期間等の燃料噴射条件で上記の生成された混合燃料 が噴射されるように構成する。例えば、その電子制御装置 1の燃料噴射制御手段に は、その混合燃料を高圧燃料ポンプ 55から圧送させ、運転条件や燃焼モード等に 応じた燃料噴射条件で燃料噴射弁 57に噴射を実行させる。
[0030] そのようにして燃焼室 CCに供給された混合燃料は、上述した空気と相俟って燃焼 モードに対応する着火モードの着火動作によって燃焼させられる。そして、その燃焼 された後の筒内ガス (燃焼ガス)は、燃焼室 CC力 図 1に示す排気ポート 11cへと排 出される。ここで、この排気ポート 11cには、燃焼室 CCとの間の開口を開閉させる排 気バルブ 61が配設されている。その開口の数量は 1つでも複数でもよぐその開口毎 に上述した排気バルブ 61が配備される。従って、この多種燃料内燃機関においては 、その排気バルブ 61を開弁させることによって燃焼室 CC内から排気ポート 11cに燃 焼ガスが排出され、その排気バルブ 61を閉弁させることによって燃焼ガスの排気ポ ート 11cへの排出が遮断される。 [0031] ここで、その排気バルブ 61としては、上述した吸気バルブ 31と同様に、動力伝達機 構を介在させたもの、所謂可変バルブタイミング &リフト機構等の可変バルブ機構を 具備したものや所謂電磁駆動弁を適用することができる。
[0032] また、本実施例 1の多種燃料内燃機関においては、その排気ポート 11cに排出され た燃焼ガス (以下、「排気ガス」という。)が図 1に示す排気通路 71を介して大気に放 出される。ここで、その排気通路 71上には、排気ガス中の有害成分の浄化を行う排 気触媒装置 72が配設されて ヽる。
[0033] 一般に、その排気触媒装置 72としては、理論空燃比運転や過濃空燃比運転で発 生した排気ガス中の炭化水素 (HC) ,一酸化炭素 (CO)及び窒素酸化物 (NOx)に 対して有効な浄化作用を発揮する三元触媒と、希薄空燃比運転で大量に発生した 排気ガス中の NOxに対して有効な浄ィ匕作用を発揮するリーン NOx触媒 (NOx吸蔵 還元型触媒)と、が知られている。しかしながら、そのリーン NOx触媒は、現状におい て三元触媒よりも高価である。また、リーン NOx触媒は、その NOxの吸蔵量に限界 があるので、容量が小さいとその吸蔵された NOxを頻繁に理論空燃比運転や過濃 空燃比運転を行って還元しなければならず、この還元の際に発生した HC, CO及び NOxの一部を大気へと放出してしまう虞がある。
[0034] そこで、本実施例 1の多種燃料内燃機関においては、燃焼室 CC内の空燃比を主 として理論空燃比に制御して運転させ、その際に発生した排気ガス中の HC, CO及 び NOxを効果的に浄化させるベく三元触媒を排気触媒装置 72として適用する。
[0035] ところで、内燃機関においては、一般に、拡散燃焼モードと火炎伝播燃焼モードと に燃焼モードが大別され、その夫々に対応する着火モードとして圧縮自着火モードと 予混合火花点火モードとが用意される。以下においては、それらを一括して燃焼モ ードと総称し、各々圧縮自着火拡散燃焼モード、予混合火花点火火炎伝播燃焼モ ードと称する。
[0036] 先ず、圧縮自着火拡散燃焼モードとは、圧縮行程の燃焼室 CC内で形成された高 温の圧縮空気の中に高圧の燃料を噴射することによって燃料の一部を自己着火させ 、その燃料と空気を拡散混合させながら燃焼を進行させる燃焼形態のことである。こ こで、燃焼室 CC内の圧縮空気と燃料は瞬時に混合され難いので、燃料の噴射開始 直後においては、所々で空燃比に濃淡が生じてしまう。一方、拡散燃焼させる際に は一般的に下記の如き着火性に優れた燃料を使用することが好ましぐそのような着 火性の良好な燃料は、全噴射量が噴射し終わるのを待つことなぐ燃焼に適した空 燃比の部分において自ら発火してしまう。これが為、この圧縮自着火拡散燃焼モード においては、燃焼に適した空燃比の部分の燃料が先に自己着火し、これにより形成 された火炎が残りの燃料と空気を巻き込みながら徐々に燃焼を進行させる。
[0037] この圧縮自着火拡散燃焼モードで運転させる為には、通常、発火点が圧縮空気の 圧縮熱よりも低い着火性の良好な燃料が必要とされる。例えば、その着火性の高い 燃料としては、軽油ゃジメチルエーテルなどが考えられる。更に、近年、軽油の代替 燃料として GTL (Gas To Liquids)燃料が注目されており、この GTL燃料は、所望 の性状のものとして生成し易い。これが為、着火性の高い燃料には、着火性を高める ベく生成された GTL燃料を使用することもできる。このような着火性の高い燃料は、 圧縮自着火拡散燃焼を可能にするだけでなぐ圧縮自着火拡散燃焼モードで運転 する際に NOxの発生量を減少させ、更に、燃焼時の騒音や振動を抑えることができ る。
[0038] 一方、予混合火花点火火炎伝播燃焼モードとは、燃料と空気を予め混ぜ合わせた 燃焼室 CC内の予混合気に火花点火にて火種を与え、その火種を中心にして火炎を 伝播させながら燃焼を進行させる燃焼形態のことである。この予混合火花点火火炎 伝播燃焼モードには、均質に混ぜ合わされた予混合気に対して点火を行う均質燃焼 や、点火手段の周囲に濃度の高い予混合気を形成すると共に更にその周囲に希薄 予混合気を形成し、その濃 、予混合気に対して点火を行う成層燃焼などの燃焼形態 も含む。
[0039] 一般に、この予混合火花点火火炎伝播燃焼モード運転は、圧縮自着火拡散燃焼 モード運転とは異なり、異常燃焼に伴うノッキングが発生し易い。これが為、この予混 合火花点火火炎伝播燃焼モードに適している燃料としては、一般に、ガソリンに代表 される耐ノック性の高 、燃料が考えられる。このような耐ノック性の高 、燃料としては、 ガソリン以外に、耐ノック性の高 、性状のものとして生成された GTL燃料やアルコー ル燃料などが知られて ヽる。 [0040] 本実施例 1の多種燃料内燃機関は、その双方の燃焼モードでの運転を可能にす ベく構成する。従って、本実施例 1の多種燃料内燃機関には、予混合火花点火火炎 伝播燃焼モードでの運転を可能にする為、予混合気に対して火花点火させる図 1に 示す点火プラグ 81を配設する。この点火プラグ 81は、電子制御装置 1の指示に従い 、予混合火花点火火炎伝播燃焼モード時の運転条件に応じた点火時期になると火 花点火を実行する。
[0041] また、本実施例 1においては、第 1燃料タンク 41A内の第 1燃料 F1として着火性が 高く耐ノック性の低い燃料を貯留させ、第 2燃料タンク 41B内の第 2燃料 F2として耐ノ ック性が高く着火性の低い燃料を貯留させておく。例えば、第 1燃料 F1としては軽油 が貯留され、第 2燃料 F2としてはガソリンが貯留されている。従って、本実施例 1の燃 焼室 CC内に導かれる燃料については、夫々の燃料 Fl, F2の様々な燃料特性を総 合して勘案しなければならな 、が、第 1燃料 F1の燃料混合割合が高ければ着火性 が良好で耐ノック性に劣る燃料特性となり、第 2燃料 F2の燃料混合割合が高ければ 着火性に劣り耐ノック性が良好な燃料特性となる。
[0042] ここで示す「燃焼室 CC内に導かれる燃料」とは、本実施例 1の多種燃料内燃機関 のように燃料混合手段 53で混合された各燃料 Fl, F2の混合燃料が燃焼室 CCへと 送られる形態を採っているときにはその混合燃料のことをいう。尚、後述する図 12に 示す多種燃料内燃機関のように各燃料 Fl, F2が個別に燃焼室 CCへと供給される 形態を採っている場合には、その供給された各燃料 Fl, F2の全体のことを「燃焼室 CC内に導かれる燃料」という。力かる場合には、第 1燃料 F1の供給割合が多ければ 着火性が良好で耐ノック性に劣る燃料特性となり、第 2燃料 F2の供給割合が多けれ ば着火性に劣り耐ノック性が良好な燃料特性となる。
[0043] ここで、燃料は、同種のものであっても、その販売地域毎に大なり小なり品質の差が あり、例えば、ある地域において着火性の良好なものが入手できたからといって、他 の地域において同等の着火性のものを入手できるとは限らない。従って、通常の内 燃機関においては、所定の範囲内から外れた燃料特性の燃料を用いた場合に、燃 焼不良や出力低下、ェミッション性能の悪ィ匕等を引き起こす可能性がある。しかしな がら、通常、入手した燃料の性状を所望のものへと変えたり、入手不可能な地域に入 つた後で所望の性状の燃料を探し求めたりすることは現実的でない。これが為、その 機関性能の低下については、その燃料の性状の変化に対して機関側で対応させて 、特に燃焼モードや燃料混合比率等の燃焼制御形態を変えることのみによって防ぐ ことができれば好ましい。
[0044] そこで、本実施例 1の電子制御装置 1には、燃焼室 CC内に導かれる燃料の燃料特 性 (ここでは、少なくとも着火性と耐ノック性)を判定させる燃料特性判定手段と、その 判定結果に応じて燃焼モードを設定させる燃焼モード設定手段と、が用意されてい る。
[0045] 先ず、燃料特性判定手段につ!ヽて説明する。
[0046] 燃料の着火性と耐ノック性にっ 、てはその良否を指数ィ匕した指数値を用いて表す ことができるので、本実施例 1の燃料特性判定手段には、燃焼室 CC内に導かれる燃 料の着火性の指数値 (以下、「着火性指数値」という。)Pcと耐ノック性の指数値 (以 下、「耐ノック性指数値」という。)Pkを検出させ、これらと燃焼モードの切替条件たる 所定の閾値とを比較させることによって、燃焼室 CC内に導かれる燃料の着火性と耐 ノック性の善し悪しを判定させる。
[0047] 具体的に、その着火性指数値 Pcとしては、燃焼室 CC内に導かれる燃料のセタン 価や圧縮自着火拡散燃焼時の着火遅れ期間を利用することができる。例えば、燃焼 室 CC内に導かれる燃料のセタン価は、給油時に燃料特性判定手段が認識した夫々 の燃料 Fl, F2の性状力 把握可能である。し力しながら、本実施例 1にあっては、そ の夫々の燃料 Fl, F2が燃料混合手段 53において所定の燃料混合比率で混合され た後に燃焼室 CCへと送られるので、その燃料混合比率も考慮しなければ燃焼室 CC 内に導かれる燃料 (混合燃料)の正確なセタン価を把握することができな ヽ。これが 為、本実施例 1の燃料特性判定手段には、夫々の燃料 Fl, F2のセタン価とこれらの 燃料混合比率に基づ!/、て燃焼室 CC内に導かれる燃料 (混合燃料)のセタン価を算 出させる。尚、給油時に燃料特性判定手段が取得する夫々の燃料 Fl, F2のセタン 価については、例えば、各燃料 Fl, F2の性状を給油作業者に入力させる入力装置 を車輛に設けて認識させてもよぐ給油燃料の種別や性状、給油量等の給油情報を 給油設備から車輛に夫々の通信装置を介して送受信させることで認識させてもょ ヽ。 一方、圧縮自着火拡散燃焼時の着火遅れ期間については、圧縮自着火拡散燃焼 時に図 1に示す筒内圧センサ 91,着火時期センサ 92又はクランク角センサ 16の検 出信号を用いて検出することができる。
[0048] ここで、その着火性を判断する際の閾値としては、例えば、機関性能(出力性能、ェ ミッション性能や燃費性能等)を悪化させることなく圧縮自着火拡散燃焼させることが 可能な最低限の (即ち、最も低い)着火性に係る着火性指数値 (以下、「着火性限界 値」という。)PcOを設定する。この着火性限界値 PcOは、機関回転数 Neが高回転に なるほど、また、機関負荷 K1が低負荷になるほど大きくなる。これが為、本実施例 1に おいては、運転条件 (機関回転数 Ne及び機関負荷 K1)に応じた着火性限界値 PcO を予め実験やシミュレーションで求めておき、これらの対応関係を図 2に示す着火性 限界値マップデータとして用意しておく。
[0049] また、耐ノック性指数値 Pkとしては、燃焼室 CC内に導かれる燃料のオクタン価ゃノ ック制御時のトレースノック点火時期の情報を利用することができる。そのオクタン価 は、上述したセタン価と同様にして求めればよい。一方、トレースノック点火時期を適 用する場合には、図 1に示すノックセンサ 93の検出信号に基づき行われるノック制御 時のトレースノック点火時期と基準点火時期との関係を耐ノック性指数値 Pkとして利 用すればよい。
[0050] ここで、その耐ノック性を判断する際の閾値としては、例えば、少なくとも異常燃焼に 伴うノッキングを発生させることなく(より好ましくは機関性能を悪化させることなく)予 混合火花点火火炎伝播燃焼させることが可能な最低限の (即ち、最も低 、)耐ノック 性に係る耐ノック性指数値 (以下、「耐ノック性限界値」という。)PkOを設定する。この 耐ノック性限界値 PkOは、機関回転数 Neが低高回転になるほど、また、機関負荷 K1 が高負荷になるほど大きくなる。これが為、本実施例 1においては、運転条件 (機関 回転数 Ne及び機関負荷 K1)に応じた耐ノック性限界値 PkOを予め実験ゃシミュレ一 シヨンで求めておき、これらの対応関係を図 3に示す耐ノック性限界値マップデータと して用意しておく。
[0051] 次に、燃焼モード設定手段について説明する。
[0052] 一般に、内燃機関は、予混合火花点火火炎伝播燃焼モード運転よりも圧縮自着火 拡散燃焼モード運転の方が高出力を得ることができる。従って、本実施例 1にあって は、燃焼室 CC内に導かれる燃料が良好な着火性を備えていれば、燃焼モード設定 手段に圧縮自着火拡散燃焼モードを設定させる。
[0053] 一方、その燃焼室 CC内に導かれる燃料の着火性が劣っていても耐ノック性に優れ ている場合には、圧縮空気中で自己着火できなくなる又は自己着火後に失火してし まう可能性は高いが、良好な予混合火花点火火炎伝播燃焼を行うことができる。従つ て、カゝかる燃料の場合には、燃焼モード設定手段に予混合火花点火火炎伝播燃焼 モードを設定させる。
[0054] その反面、燃焼室 CC内に導かれる燃料が着火性と耐ノック性の双方で劣っている 場合には、圧縮自着火拡散燃焼モード運転も予混合火花点火火炎伝播燃焼モード 運転も行うことができない。し力しながら、力かる燃料の場合には、強制的にでも火種 を与えることによって、その後良好な圧縮自着火拡散燃焼を行うことができるようにな る。従って、本実施例 1の多種燃料内燃機関には点火プラグ 81で着火補助を行って 圧縮自着火拡散燃焼 (スパークアシスト圧縮自着火拡散燃焼)させるスパークアシス ト圧縮自着火拡散燃焼モードも用意しておき、力かる燃料の場合には、そのスパーク アシスト圧縮自着火拡散燃焼モードを燃焼モード設定手段に設定させる。
[0055] ここで、本実施例 1の電子制御装置 1には燃焼制御実行手段を用意しており、この 燃焼制御実行手段が燃焼モード設定手段により設定された燃焼モードで多種燃料 内燃機関を運転させる。その際、この燃焼制御実行手段には、例えば、機関冷間時 等のように急速な燃焼温度の上昇が必要とされる運転時を除 、た通常運転時であれ ば、何れの燃焼モードであっても主として理論空燃比で運転させる。
[0056] 以下に、本実施例 1における電子制御装置 1の制御動作の一例を図 4のフローチヤ ートに基づき説明する。
[0057] 先ず、本実施例 1の電子制御装置 1には、燃料特性判定手段によって上記の如く 検出された燃焼室 CC内に導かれる燃料の燃料特性 (着火性指数値 Pc及び耐ノック 性指数値 Pk)と、クランク角センサ 16ゃェアフロメータ 23の検出信号力も各々把握さ れた運転条件 (機関回転数 Ne及び機関負荷 K1)と、が入力される (ステップ ST5, S T10)。 [0058] そして、この電子制御装置 1の燃焼モード設定手段は、そのステップ ST10の運転 条件 (機関回転数 Ne及び機関負荷 K1)を図 2の着火性限界値マップデータと図 3の 耐ノック性限界値マップデータに夫々当てはめて、各々に該当する燃焼モード切替 条件 (着火性限界値 PcO及び耐ノック性限界値 PkO)を求める (ステップ ST15)。
[0059] 続 、て、この燃焼モード設定手段は、その着火性指数値 Pcと着火性限界値 PcOを 比較して (Pcく PcO? )、燃焼室 CC内に導かれる燃料の着火性の善し悪しを判断す る(ステップ ST20)。
[0060] ここで、そのステップ ST20にて否定判定され、燃焼室 CC内に導かれる燃料が高 い着火性を備えていることが明らかになった場合、燃焼モード設定手段は、圧縮自 着火拡散燃焼モードを燃焼モードとして設定する (ステップ ST25)。
[0061] 一方、そのステップ ST20にて肯定判定され、燃焼室 CC内に導かれる燃料が着火 性に劣るものであることが明らかになった場合、燃焼モード設定手段は、耐ノック性指 数値 Pkと耐ノック性限界値 PkOを比較して(Pkく PkO? )、燃焼室 CC内に導かれる 燃料の耐ノック性の善し悪しを判断する (ステップ ST30)。
[0062] そして、そのステップ ST30にて肯定判定され、燃焼室 CC内に導かれる燃料が着 火性と耐ノック性の双方に劣るものであることが明らかになった場合、燃焼モード設定 手段は、スパークアシスト圧縮自着火拡散燃焼モードを燃焼モードとして設定する( ステップ ST35)。
[0063] また、この燃焼モード設定手段は、そのステップ ST30にて否定判定され、燃焼室 CC内に導かれる燃料が高い耐ノック性を備えていることが明らかになった場合、予 混合火花点火火炎伝播燃焼モードを燃焼モードとして設定する (ステップ ST40)。
[0064] 本実施例 1の電子制御装置 1は、そのようにして設定した燃焼モードで理論空燃比 運転させるように燃焼制御実行手段が燃焼制御を実行する (ステップ ST45)。
[0065] これにより、本実施例 1の多種燃料内燃機関は、燃焼室 CC内に導かれる燃料が高 着火性燃料であれば良好な理論空燃比下での圧縮自着火拡散燃焼を行うことがで き、また、その燃料が高耐ノック性燃料であれば良好な理論空燃比下での予混合火 花点火火炎伝播燃焼を行うことができるようになる。また、燃焼室 CC内に導かれる燃 料が着火性と耐ノック性の双方に劣るものであっても、スパークアシスト圧縮自着火 拡散燃焼モード運転で着火補助させることによって、この多種燃料内燃機関は、理 論空燃比下で良好な圧縮自着火拡散燃焼を行うことができるようになる。
[0066] このように、本実施例 1の多種燃料内燃機関によれば、燃焼室 CC内に導かれる燃 料の燃料特性に適応させた燃焼モードで主に理論空燃比運転させるので、夫々の 燃焼モードに適した出力性能や燃費性能を確保しつつ、発生した排気ガス中の有害 成分を排気触媒装置 72 (三元触媒)にて浄ィ匕することができ、その燃料特性に応じ た最適な燃焼制御を行って良好な機関性能(出力性能、ェミッション性能や燃費性 能等)を発揮させることができる。
実施例 2
[0067] 次に、本発明に係る多種燃料内燃機関の実施例 2を図 5及び図 6に基づいて説明 する。
[0068] 前述した実施例 1の多種燃料内燃機関においては、燃焼室 CC内に導かれる燃料 が高 、着火性を備えて 、れば、これのみを根拠にして圧縮自着火拡散燃焼モードが 選択されるように構成している。し力しながら、圧縮自着火拡散燃焼モード運転時に は、高着火性燃料であっても蒸発性が低い場合、燃料と空気との混合状態が不均一 になって不完全燃焼が引き起こされるので、粒子状物質 (PM)やスモークを発生さ せてしまう。
[0069] そこで、本実施例 2においては、燃焼室 CC内に導かれる燃料の蒸発性についても 燃料特性判定手段に判定させ、その燃料が所定の蒸発性を備えて!/ヽなければ圧縮 自着火拡散燃焼モード以外の燃焼モードが選択されるように構成する。
[0070] ここでは、着火性ゃ耐ノック性のときと同様に、燃焼室 CC内に導かれる燃料の蒸発 性の良否を指数化した指数値 (以下、「蒸発性指数値」という。)Pvを検出させ、これ と燃焼モード切替条件としての閾値 (以下、「蒸発性限界値」という。)PvOを比較させ ることによって、その燃料の蒸発性の善し悪しを判定させる。
[0071] 具体的に、その蒸発性指数値 Pvとしては、圧縮自着火拡散燃焼時の排気ガス中 のスモーク量を利用することができる。そのスモーク量については、例えば、排気通 路 71上に配置された図 1に示すスモークセンサ 94から検出させる。従って、本実施 例 2の燃料特性判定手段には、そのような蒸発性に替えて、同様のスモーク量等から PMやスモークについての発生し易さの特性(PMZスモーク発生特性)を判定させ るように構成してちょい。
[0072] また、蒸発性限界値 PvOとしては、圧縮自着火拡散燃焼モード運転させた際に PM やスモークの発生を抑えることが可能な最低限の(即ち、最も低い)蒸発性に係る蒸 発性指数値を設定する。この蒸発性限界値 PvOは、機関回転数 Neが高回転になる ほど、また、機関負荷 K1が高負荷になるほど大きくなるものであり、本実施例 2におい ては、運転条件 (機関回転数 Ne及び機関負荷 K1)に応じた値を予め実験ゃシミュレ ーシヨンで求めておき、これらの対応関係を図 5に示す蒸発性限界値マップデータと して用意しておく。
[0073] 以下に、本実施例 2における電子制御装置 1の制御動作の一例を図 6のフローチヤ ートに基づき説明する。尚、実施例 1の制御動作と重複する内容については、必要に 応じて省略又は簡略ィ匕する。
[0074] 先ず、本実施例 2の電子制御装置 1には、燃料特性判定手段によって上記の如く 検出された燃焼室 CC内に導かれる燃料の燃料特性 (着火性指数値 Pc,耐ノック性 指数値 Pk及び蒸発性指数値 Pv)と、運転条件 (機関回転数 Ne及び機関負荷 K1)と 、が入力される(ステップ ST6, ST10)。
[0075] そして、この電子制御装置 1の燃焼モード設定手段は、そのステップ ST10の運転 条件 (機関回転数 Ne及び機関負荷 K1)を図 2の着火性限界値マップデータ,図 3の 耐ノック性限界値マップデータ及び図 5の蒸発性限界値マップデータに夫々当ては めて、各々に該当する燃焼モード切替条件 (着火性限界値 PcO,耐ノック性限界値 P kO及び蒸発性限界値 PvO)を求める (ステップ ST16)。
[0076] 本実施例 2の燃焼モード設定手段は、実施例 1と同様に着火性指数値 Pcと着火性 限界値 PcOを比較して燃焼室 CC内に導かれる燃料の着火性の善し悪しを判断し( ステップ ST20)、このステップ ST20にて否定判定され、燃焼室 CC内に導かれる燃 料が高い着火性を備えていることが明らかになった場合、続けて蒸発性指数値 Pvと 蒸発性限界値 PvOを比較して (Pv≥PvO? )、燃焼室 CC内に導かれる燃料の蒸発 性の善し悪しを判断する(ステップ ST22)。
[0077] ここで、そのステップ ST22にて肯定判定され、燃焼室 CC内に導かれる燃料が高 い着火性と高い蒸発性を備えているものであることが明らかになった場合、燃焼モー ド設定手段は、圧縮自着火拡散燃焼モードを燃焼モードとして設定する (ステップ S T25)。
[0078] 一方、そのステップ ST22にて否定判定され、燃焼室 CC内に導かれる燃料が高い 着火性を備える反面、蒸発性に劣るものであることが明らかになった場合、燃焼モー ド設定手段は、耐ノック性指数値 Pkと耐ノック性限界値 PkOを比較して燃焼室 CC内 に導かれる燃料の耐ノック性の善し悪しを判断し (ステップ ST30)、この耐ノック性の 善し悪しに応じて実施例 1と同様の燃焼モード (スパークアシスト圧縮自着火拡散燃 焼モード又は予混合火花点火火炎伝播燃焼モード)を選択する (ステップ ST35, S T40)。
[0079] 本実施例 2にあっても、電子制御装置 1の燃焼制御実行手段は、そのようにして設 定した燃焼モードで理論空燃比運転させるように燃焼制御を実行する (ステップ ST4 5)。
[0080] これにより、本実施例 2の多種燃料内燃機関は、燃焼室 CC内に導かれる燃料が高 着火性燃料であり、更に高い蒸発性も備えていれば、 ΡΜやスモークを発生させるこ となく良好な理論空燃比下での圧縮自着火拡散燃焼を行うことができるようになる。
[0081] ここで、本実施例 2においては、燃焼室 CC内に導かれる燃料が蒸発性の劣るもの である場合、燃焼室 CC内に導かれる燃料が高耐ノック性燃料であれば良好な理論 空燃比下での予混合火花点火火炎伝播燃焼を実行させ、その燃料が耐ノック性に 劣るものであればスパークアシスト圧縮自着火拡散燃焼を実行させて 、る。しかしな がら、力かる場合の多種燃料内燃機関は、その何れの燃焼モードであっても点火プ ラグ 81で着火が行われるので、その燃料の蒸発性が低くとも不完全燃焼が引き起こ される可能性が少ない。これが為、本実施例 2の多種燃料内燃機関は、燃焼室 CC 内に導かれる燃料が蒸発性に劣るものであっても、 ΡΜやスモークを発生させること なく夫々の燃焼モードに応じた良好な理論空燃比運転を行うことができる。
[0082] このように、本実施例 2の多種燃料内燃機関によれば、燃焼室 CC内に導かれる燃 料の燃料特性に実施例 1よりも更に適応させた燃焼モードで主に理論空燃比運転さ せるので、夫々の燃焼モードに適した出力性能や燃費性能を確保しつつ、発生した 排気ガス中の有害成分を排気触媒装置 72 (三元触媒)にて浄化することができ、そ の燃料特性に応じた最適な燃焼制御を行って良好な機関性能(出力性能、エミッショ ン性能や燃費性能等)を発揮させることができる。
実施例 3
[0083] 次に、本発明に係る多種燃料内燃機関の実施例 3を図 7及び図 8に基づいて説明 する。
[0084] 前述した実施例 1, 2の多種燃料内燃機関においては、燃焼室 CC内に導かれる燃 料の燃料特性に基づき選択可能な燃焼モードが複数存在して 、るときでも、その燃 料特性に応じて予め定めた所定の燃焼モードのみが選択されるように構成している。 例えば、実施例 1にてその燃料の着火性が高い場合には、また、実施例 2にてその 燃料の着火性と蒸発性の双方が高 、場合には、その燃料が耐ノック性にっ 、ても高 くて予混合火花点火火炎伝播燃焼モード運転が可能であるにも拘わらず、圧縮自着 火拡散燃焼モードを選択するように構成されている。尚、その実施例 1, 2においては 、高出力化を図るベぐかかる燃料の場合に圧縮自着火拡散燃焼モードを選択させ ている。
[0085] しかしながら、同じ燃焼モードが選択される同種の燃料特性であっても実施例 1, 2 においては燃料特性に幅を持たせており、厳密な燃料の燃料特性によっては、必ず しも実施例 1, 2で選択される燃焼モードが最良であるとは限らない。例えば、上記の 例を用いれば、圧縮自着火拡散燃焼モード運転よりも予混合火花点火火炎伝播燃 焼モード運転の方が燃費性能ゃェミッション性能の観点力 望ましい場合もあり得る
[0086] そこで、本実施例 3においては、燃焼室 CC内に導かれる燃料の燃料特性と運転条 件 (機関回転数 Ne及び機関負荷 K1)とに応じた燃焼モード毎の予想燃費及び予想 ェミッション排出量を考慮に入れて、燃費性能及びェミッション性能又はその何れか に優れた燃焼モードを選択させるように構成する。以下においては、実施例 2を基に した構成を例示するが、実施例 1を基にしたものについても同様の考えを用 ヽて構成 することができる。
[0087] 具体的に、本実施例 3においては、燃焼モード毎の予想燃費の高低と予想エミッシ ヨン排出量の多少を総合的に判断させることのできる指数値 (以下、「予想燃費'エミ ッシヨン指数値」という。 ) C1, C2, C3が燃焼モード毎に求められるよう燃焼モード設 定手段の構成を行う。例えば、この燃焼モード毎の予想燃費'ェミッション指数値 C1 , C2, C3は、各々に、燃焼モード毎の予想燃費の高低を指数ィ匕した指数値 (以下、 「予想燃費指数値」という。 ) Cfl, Cf2, Cf3と、燃焼モード毎の予想ェミッション排出 量の多少を指数化した指数値 (以下、「予想ェミッション指数値」という。) Cel, Ce2, Ce3と、その燃焼モード毎の予想燃費と予想ェミッション排出量との間における重み 付け(以下、「燃費 'ェミッション性能重み付け」という。 ) kl, k2, k3と、に基づき下記 の式 1から式 3を用いて求めさせる。
[0088] Cl = Cfl + Cel -kl … (1)
C2 = Cf2 + Ce2 -k2 … (2)
C3 = Cf3 + Ce3 -k3 … (3)
[0089] その「C1」, 「C2」, 「C3」は、夫々に、圧縮自着火拡散燃焼モードで運転させた際 の予想燃費 ·ヱミッション指数値 (以下、「圧縮自着火拡散燃焼時の予想燃費 ·ェミツ シヨン指数値」という。),予混合火花点火火炎伝播燃焼モードで運転させた際の予 想燃費 ·ヱミッション指数値 (以下、「予混合火花点火火炎伝播燃焼時の予想燃費 · ェミッション指数値」という。),スパークアシスト圧縮自着火拡散燃焼モードで運転さ せた際の予想燃費 ·ェミッション指数値 (以下、「スパークアシスト圧縮自着火拡散燃 焼時の予想燃費'ェミッション指数値」という。)を表しており、ここでは数値が小さいほ どに燃費性能ゃェミッション性能に優れているものとする。従って、本実施例 3におい ては、複数の燃焼モードが選択できるときに、その「C1」, 「C2」, 「C3」の内で数値の 小さ 、ものの燃焼モードを選択させるように燃焼モード設定手段を構成しておく。
[0090] また、その「Cf 1」 , 「Cf 2」 , 「Cf 3」は、夫々に、圧縮自着火拡散燃焼モードで運転 させた際の予想燃費指数値 (以下、「圧縮自着火拡散燃焼時の予想燃費指数値」と いう。),予混合火花点火火炎伝播燃焼モードで運転させた際の予想燃費指数値( 以下、「予混合火花点火火炎伝播燃焼時の予想燃費指数値」という。),スパークァ シスト圧縮自着火拡散燃焼モードで運転させた際の予想燃費指数値 (以下、「スパ ークアシスト圧縮自着火拡散燃焼時の予想燃費指数値」という。)を表しており、ここ では数値が小さいほどに燃費性能に優れているものとする。
[0091] これら燃焼モード毎の予想燃費指数値 Cfl, Cf2, Cf3は、下記の式 4力も式 6に示 して 、るように、運転条件 (機関回転数 Ne及び機関負荷 K1)と燃焼室 CC内に導か れる燃料の燃料特性 (着火性指数値 Pc,耐ノック性指数値 Pk及び蒸発性指数値 Pv )とに基づいて算出させる。これら各式 4〜6における各々のパラメータの対応関係に ついては、予め実験やシミュレーションを行い、その結果に基づいて設定しておく。
[0092] Cfl =Fcl (Ne, Kl, Pc, Pk, Pv) … (4)
Cf2 = Fc2 (Ne, Kl, Pc, Pk, Pv) … (5)
Cf2 = Fc3 (Ne, Kl, Pc, Pk, Pv) … (6)
[0093] また、上記「Cel」, 「Ce2」, 「Ce3」は、夫々に、圧縮自着火拡散燃焼モードで運 転させた際の予想ヱミッション指数値 (以下、「圧縮自着火拡散燃焼時の予想エミッ シヨン指数値」という。),予混合火花点火火炎伝播燃焼モードで運転させた際の予 想ェミッション指数値 (以下、「予混合火花点火火炎伝播燃焼時の予想ヱミッション指 数値」という。),スパークアシスト圧縮自着火拡散燃焼モードで運転させた際の予想 ェミッション指数値 (以下、「スパークアシスト圧縮自着火拡散燃焼時の予想エミッショ ン指数値」という。)を表しており、ここでは数値が小さいほどにェミッション性能に優 れているものとする。
[0094] これら燃焼モード毎の予想ェミッション指数値 Cel, Ce2, Ce3についても、下記の 式 7から式 9に示しているように、運転条件 (機関回転数 Ne及び機関負荷 K1)と燃焼 室 CC内に導かれる燃料の燃料特性 (着火性指数値 Pc,耐ノック性指数値 Pk及び蒸 発性指数値 Pv)と基づいて算出させる。これら各式 7〜9における各々のパラメータ の対応関係についても、予め実験やシミュレーションを行い、その結果に基づいて設 定しておく。
[0095] Cel = Gcl (Ne, Kl, Pc, Pk, Pv) … (7)
Ce2 = Gc2 (Ne, Kl, Pc, Pk, Pv) … (8)
Ce3 = Gc3 (Ne, Kl, Pc, Pk, Pv) … (9)
[0096] 尚、その燃焼モード毎の予想燃費指数値 Cfl, Cf2, Cf3と予想ェミッション指数値 Cel, Ce2, Ce3については、上記の各式 4〜9に相当するマップデータを用意して 求めさせてもよい。
[0097] また、上記「kl」 , 「k2」 , 「k3」は、夫々に、圧縮自着火拡散燃焼モードで運転させ た際の燃費 ·ェミッション性能重み付け (以下、「圧縮自着火拡散燃焼時の燃費 ·エミ ッシヨン性能重み付け」という。),予混合火花点火火炎伝播燃焼モードで運転させた 際の燃費 ·ェミッション性能重み付け (以下、「予混合火花点火火炎伝播燃焼時の燃 費 .ェミッション性能重み付け」という。),スパークアシスト圧縮自着火拡散燃焼モー ドで運転させた際の燃費 'ェミッション性能重み付け (以下、「スパークアシスト圧縮自 着火拡散燃焼時の燃費 ·ェミッション性能重み付け」という。)を表して!/、る。
[0098] これら燃焼モード毎の燃費'ェミッション性能重み付け kl, k2, k3とは、燃費性能を 向上させたいのかェミッション性能を向上させたいのかによって変動する値であり、こ こでは、その数値が小さくなるにつれてェミッション性能が向上されるものとして例示 している。例えば、これら燃焼モード毎の燃費'ェミッション性能重み付け kl, k2, k3 については、燃料残存量や実際のェミッション排出量等に応じて燃焼モード設定手 段に求めさせればよい。この場合には、これらの対応関係を予め行った実験やシミュ レーシヨンの結果に基づいてマップデータ等の形で用意しておけばよい。また、これ ら燃焼モード毎の燃費'ェミッション性能重み付け kl, k2, k3については、運転者か ら指定させる形を採ってもよい。この場合には、燃料残存量や実際のェミッション排出 量等の情報をインスツルメンタルパネル等に表示させ、この情報に基づき運転者が 判断した燃費 'ェミッション性能重み付け kl, k2, k3を入力装置力 入力させればよ い。
[0099] 以下に、本実施例 3における電子制御装置 1の制御動作の一例を図 7及び図 8の フローチャートに基づき説明する。尚、実施例 2の制御動作と重複する内容について は、必要に応じて省略又は簡略ィ匕する。
[0100] 先ず、本実施例 3の電子制御装置 1には、燃料特性判定手段によって実施例 2と同 様にして検出された燃焼室 CC内に導かれる燃料の燃料特性 (着火性指数値 Pc,耐 ノック性指数値 Pk及び蒸発性指数値 Pv)と、運転条件 (機関回転数 Ne及び機関負 荷 K1)と、が入力される (ステップ ST55, ST60)。また、この電子制御装置 1の燃焼 モード設定手段は、そのステップ ST60の運転条件 (機関回転数 Ne及び機関負荷 K 1)に応じた燃焼モード切替条件 (着火性限界値 PcO,耐ノック性限界値 PkO及び蒸 発性限界値 PvO)を実施例 2と同様にして求める (ステップ ST65)。
[0101] 続 、て、本実施例 3の燃焼モード設定手段は、燃焼モード毎の予想燃費指数値 Cf 1, Cf2, Cf3と、燃焼モード毎の予想ェミッション指数値 Cel, Ce2, Ce3と、燃焼モ ード毎の燃費'ェミッション性能重み付け kl, k2, k3と、を夫々に上述したが如くして 求め(ステップ ST70, ST75, ST80)、これらを上記式 1〜3に各々代入して燃焼モ ード毎の予想燃費'ェミッション指数値 CI, C2, C3を算出する (ステップ ST85)。
[0102] そして、この燃焼モード設定手段は、着火性指数値 Pcと着火性限界値 PcO、耐ノッ ク性指数値 Pkと耐ノック性限界値 PkOを夫々に比較して(Pc >PcOかつ Pk>PkO? )、燃焼室 CC内に導かれる燃料が高着火性かつ高耐ノック性であるのか否かを判断 する(ステップ ST90)。
[0103] ここで、このステップ ST90にて肯定判定され、燃焼室 CC内に導かれる燃料が高い 着火性と高い耐ノック性を備えているものであることが明らかになった場合、この燃焼 モード設定手段は、圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数値 C1を予 混合火花点火火炎伝播燃焼時の予想燃費 ·ェミッション指数値 C2及びスパークァシ スト圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数値 C3と比較して (CI < C2 かつ CI < C3? )、圧縮自着火拡散燃焼モード運転が最も燃費性能ゃェミッション性 能に優れて 、るのか否かを判断する(ステップ ST95)。
[0104] その際、このステップ ST95にて肯定判定され、圧縮自着火拡散燃焼モード運転が 最も燃費性能ゃェミッション性能に優れていることが明らかになった場合、この燃焼 モード設定手段は、続けて蒸発性指数値 Pvと蒸発性限界値 PvOを比較して燃焼室 CC内に導かれる燃料の蒸発性の善し悪しを判断し (ステップ ST100)、その燃料が 蒸発性の高 、ものであれば PMやスモークの発生を抑えることができるので、圧縮自 着火拡散燃焼モードを燃焼モードとして設定する (ステップ ST105)。
[0105] 一方、この燃焼モード設定手段は、上記ステップ ST95にて否定判定され、圧縮自 着火拡散燃焼モード以外の燃焼モードでの運転が最も燃費性能ゃェミッション性能 に優れていることが明らかになった場合、又は、上記ステップ ST100にて否定判定さ れ、燃焼室 CC内に導かれる燃料が蒸発性に劣るものであることが明らかになった場 合、予混合火花点火火炎伝播燃焼時の予想燃費 ·ェミッション指数値 C2とスパーク アシスト圧縮自着火拡散燃焼時の予想燃費'ェミッション指数値 C3とを比較して (C2 < C3? )、どちらの燃焼モードでの運転が最も燃費性能ゃェミッション性能に優れて V、るのか否かを判断する(ステップ ST110)。
[0106] その際、この燃焼モード設定手段は、その予混合火花点火火炎伝播燃焼時の予 想燃費'ェミッション指数値 C2の方が小さければ、予混合火花点火火炎伝播燃焼モ ードを燃焼モードとして設定し (ステップ ST115)、そのスパークアシスト圧縮自着火 拡散燃焼時の予想燃費'ェミッション指数値 C3の方が小さければ、スパークアシスト 圧縮自着火拡散燃焼モードを燃焼モードとして設定する (ステップ ST120)。尚、こ のフローチャートにおいては予混合火花点火火炎伝播燃焼時とスパークアシスト圧 縮自着火拡散燃焼時の夫々の予想燃費'ェミッション指数値 C2, C3が同じ値の場 合に否定判定させているが、燃焼モード設定手段は、力かる場合に肯定判定させる ように構成してもよい。
[0107] 更に、上記ステップ ST90にて否定判定され、燃焼室 CC内に導かれる燃料が高い 着火性と高い耐ノック性の双方を備えていないものであることが明らかになった場合、 この燃焼モード設定手段は、着火性指数値 Pcと着火性限界値 PcOを比較して (Pc >PcO? )、燃焼室 CC内に導かれる燃料の着火性の善し悪しを判断する (ステップ S T130)。
[0108] そして、この燃焼モード設定手段は、このステップ ST130にて肯定判定され、その 燃料が高い着火性を備えていることが明らかになった場合、続けて蒸発性指数値 Ρν と蒸発性限界値 ΡνΟを比較して上記ステップ ST100と同様に燃焼室 CC内に導かれ る燃料の蒸発性の善し悪しを判断する (ステップ ST135)。
[0109] ここで、この燃焼モード設定手段は、このステップ ST135にてその燃料が蒸発性に 劣るものであるとの判断結果であれば、上記ステップ ST120に進んでスパークアシス ト圧縮自着火拡散燃焼モードを燃焼モードとして設定し、そのステップ ST135にてそ の燃料が高 、蒸発性を備えて 、るとの判断結果であれば、圧縮自着火拡散燃焼時 の予想燃費'ェミッション指数値 C1とスパークアシスト圧縮自着火拡散燃焼時の予想 燃費.ェミッション指数値 C3とを比較して (C1 < C3? )、どちらの燃焼モードでの運 転が最も燃費性能ゃェミッション性能に優れて ヽるのカゝ否かを判断する (ステップ ST 140)。
[0110] ここでは、その圧縮自着火拡散燃焼時の予想燃費 'ェミッション指数値 C1の方が 小さければ、上記ステップ ST105に進んで圧縮自着火拡散燃焼モードを燃焼モー ドとして設定し、そのスパークアシスト圧縮自着火拡散燃焼時の予想燃費 ·エミッショ ン指数値 C3の方が小さければ、上記ステップ ST120に進んでスパークアシスト圧縮 自着火拡散燃焼モードを燃焼モードとして設定する。尚、このフローチャートにおい ては圧縮自着火拡散燃焼時とスパークアシスト圧縮自着火拡散燃焼時の夫々の予 想燃費.ェミッション指数値 CI, C3が同じ値の場合に否定判定させているが、燃焼 モード設定手段は、カゝかる場合に肯定判定させるように構成してもよ ヽ。
[0111] また、この燃焼モード設定手段は、上記ステップ ST130にて否定判定され、その燃 料が着火性に劣るものであることが明らかになった場合、続けて蒸発性指数値 Pvと 蒸発性限界値 PvOを比較して (Pk>PkO? )、燃焼室 CC内に導かれる燃料の耐ノッ ク性の善し悪しを判断する (ステップ ST145)。
[0112] そして、この燃焼モード設定手段は、その燃料が高い耐ノック性を備えている場合、 予混合火花点火火炎伝播燃焼モード運転させても問題無いので、一旦上記ステツ プ ST110に進んで予混合火花点火火炎伝播燃焼モードとスパークアシスト圧縮自 着火拡散燃焼モードの内のどちらでの運転が最も燃費性能ゃェミッション性能に優 れているの力否かを判断し、その結果応じて上記と同様に何れかの燃焼モードに設 定する。一方、この燃焼モード設定手段は、その燃料が耐ノック性に劣るものである 場合、予混合火花点火火炎伝播燃焼モード運転させると燃焼不良を引き起こすので 、上記ステップ ST120に進んでスパークアシスト圧縮自着火拡散燃焼モードを燃焼 モードとして設定する。
[0113] 本実施例 3にあっても、電子制御装置 1の燃焼制御実行手段は、そのようにして設 定した燃焼モードで理論空燃比運転させるように燃焼制御を実行する (ステップ ST1 50)。
[0114] これにより、本実施例 3の多種燃料内燃機関は、燃焼室 CC内に導かれる燃料が複 数種類の燃焼モードで良好な運転を行うことのできる燃料特性を備えて ヽる場合、燃 費性能及びェミッション性能又はその何れかに優れた燃焼モードにて理論空燃比運 転することができるようになる。これが為、この本実施例 3の多種燃料内燃機関におい ては、その燃料特性に応じた最適な燃焼制御を行って良好な機関性能(出力性能、 ェミッション性能や燃費性能等)を発揮させることができるだけでなぐ燃費性能ゃェ ミッション性能の更なる向上を図ることができる。
[0115] ところで、本実施例 3においては燃費性能とェミッション性能の双方を考慮して変更 対象の燃焼モードを選定させたが、その内の何れか一方の性能に優れた燃焼モード へと変更させるベく燃焼モード設定手段を構築してもよい。例えば、燃費性能に優れ た燃焼モードへの変更を行わせる場合には、図 8のステップ ST95以降の「C1」, 「C 2J , 「C3」を各々「Cfl」, 「Cf2」, 「Cf3」に置き換えて判断すればよぐまた、エミッシ ヨン性能に優れた燃焼モードへの変更を行わせる場合には、そのステップ ST95以 降の「C1」, 「C2」, 「C3」を各々「Cel」, 「Ce2」, 「Ce3」に置き換えて判断すればよ い。
実施例 4
[0116] 次に、本発明に係る多種燃料内燃機関の実施例 4を図 9及び図 10に基づいて説 明する。
[0117] 前述した実施例 3の多種燃料内燃機関においては、燃焼室 CC内に導かれる燃料 が複数の燃焼モードで良好な運転のできる燃料特性を備えて 、る場合に、燃費性能 ゃェミッション性能に優れた方の燃焼モードを選択させている。し力しながら、燃焼モ ードの変更直後には変更時の空燃比の変動や EGR (Exhaust Gas Recirculati on)量の変動に起因して燃焼状態が不安定になるので、頻繁に燃焼モードの変更を 行うことは好ましくない。
[0118] そこで、本実施例 4においては、例えば、燃費性能ゃェミッション性能が僅かに向 上する程度では燃焼モードを変更させないように、現在の燃焼モードから変更するこ とによる燃費性能ゃェミッション性能の向上代が所定の大きさを超えて初めて燃焼モ ードの変更を実行させるように構成する。
[0119] 具体的に、本実施例 4においては、実施例 3における燃焼モード毎の予想燃費 'ェ ミッション指数値 CI, C2, C3が夫々の燃焼モードにおける燃費性能とェミッション性 能の総合的な向上代を表している。これが為、現行の燃焼モードからの変更要否に ついては、その燃焼モード毎の予想燃費'ェミッション指数値 CI, C2, C3と所定の 閾値とを比較させることによって判断してもよぐまた、その燃焼モード毎の予想燃費' ェミッション指数値 CI, C2, C3を現行の燃焼モードに応じて補正しておくことによつ て判断してもよい。本実施例 4においては、その内の後者について例示する。
[0120] ここでは、その燃焼モード毎の予想燃費'ェミッション指数値 CI, C2, C3の補正値
(以下、「燃焼モード毎の予想燃費 'ェミッション指数補正値」という。) Cl,, C2,, C3 ,を求め、これらを燃焼モード毎の予想燃費'ェミッション指数値 CI, C2, C3と置き 換えて燃焼モードの選択を行うように燃焼モード設定手段を構成する。
[0121] その「C1 '」, 「C2'」, 「C3'」は、夫々に、圧縮自着火拡散燃焼モードで運転させ た際の予想燃費 ·ヱミッション指数補正値 (以下、「圧縮自着火拡散燃焼時の予想燃 費'エミッシヨン指数補正値」という。),予混合火花点火火炎伝播燃焼モードで運転 させた際の予想燃費 ·ヱミッション指数補正値 (以下、「予混合火花点火火炎伝播燃 焼時の予想燃費'ェミッション指数補正値」という。),スパークアシスト圧縮自着火拡 散燃焼モードで運転させた際の予想燃費'ェミッション指数補正値 (以下、「スパーク アシスト圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数補正値」 、う。 )を表し ている。
[0122] ここで、その「C1,」, 「C2,」, 「C3,」は、数値が小さいほどに燃費性能やエミッショ ン性能に優れているものとし、複数の燃焼モードが選択できるときに、これらの内で数 値の小さ 、ものの燃焼モードを選択させるように燃焼モード設定手段を構成しておく 。これが為、現行の燃焼モードと同一の燃焼モードの予想燃費'ェミッション指数値 C 1 (C2, C3)を小さな値へと補正し、更に、現行の燃焼モードと異なる燃焼モードの予 想燃費.ェミッション指数値 CI (C2, C3)を大きな値へと補正する又は現状のまま維 持することによって、現行の燃焼モードが選択され易くなる。
[0123] 従って、本実施例 4においては、例えば、下記の式 10, 11を用いて現行の燃焼モ ードに対する燃焼モード毎の予想燃費'ェミッション指数補正値 Cl,, C2,, C3,の 算出を行わせる。
[0124] Ci' =Ci- A Ci (i= l, 2, 3) … (10) Ci,=Ci (i= l, 2, 3) … (11)
[0125] ここで、式 10は、算出された予想燃費 'ェミッション指数値 CI (C2, C3)が現行の 燃焼モードと同一の燃焼モードのものである場合に使用される演算式であり、式 11 は、算出された予想燃費'ェミッション指数値 C1 (C2, C3)が現行の燃焼モードと異 なる燃焼モードのものである場合に使用される演算式である。
[0126] その補正項 Δ Ciは、燃焼モード毎の燃費性能とェミッション性能の総合的なヒステ リシスを表したものであり、例えば、実験やシミュレーションを行って、燃焼モードの変 更に伴い燃焼状態が不安定になったとしても燃費性能ゃェミッション性能の向上によ る利点の方が大きいと判断された際の値を予め用意しておけばよい。その値としては 、その際における変更後の燃焼モードの予想燃費'ェミッション指数値 C1 (C2, C3) と、現行の燃焼モードと同一の燃焼モードの予想燃費'ェミッション指数値 CI (C2, C3)と、の差の絶対値を使用することができる。
[0127] 以下に、本実施例 4における電子制御装置 1の制御動作の一例を図 9及び図 10の フローチャートに基づき説明する。尚、実施例 3の制御動作と重複する内容について は、必要に応じて省略又は簡略ィ匕する。
[0128] 先ず、本実施例 4の電子制御装置 1は、実施例 3と同様にして、燃焼モード毎の予 想燃費.ェミッション指数値 CI, C2, C3を算出する(ステップ ST55〜ST85)。
[0129] そして、本実施例 4においては、電子制御装置 1の燃焼モード設定手段が現行の 燃焼モードに対する燃焼モード毎の予想燃費'ェミッション指数補正値 Cl,, C2,,
C3,の算出を上記の式 10, 11に基づき行う(ステップ ST87)。
[0130] そして、この燃焼モード設定手段は、着火性指数値 Pcと着火性限界値 PcO、耐ノッ ク性指数値 Pkと耐ノック性限界値 PkOを夫々に比較して(Pc >PcOかつ Pk>PkO?
)、燃焼室 CC内に導かれる燃料が高着火性かつ高蒸発性であるのか否かを判断す る(ステップ ST90)。
[0131] ここで、このステップ ST90にて肯定判定され、燃焼室 CC内に導かれる燃料が高い 着火性と高い蒸発性を備えているものであることが明らかになった場合、本実施例 4 の燃焼モード設定手段は、圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数補 正値 C 1,を予混合火花点火火炎伝播燃焼時の予想燃費 ·ェミッション指数補正値 C 2 '及びスパークアシスト圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数補正値 C3 'と比較して (CI ' < C2 'かつ CI ' < C3 '? )、圧縮自着火拡散燃焼モード運転 が最も燃費性能ゃェミッション性能に優れて 、るの力否かを判断する (ステップ ST9 6)。
[0132] その際、このステップ ST96にて肯定判定された場合には、実施例 3と同様に、ステ ップ ST100に進み、その判断結果に応じた燃焼モードに設定する。尚、本実施例 4 においては、そのステップ ST100にて否定判定された際に下記のステップ ST111 に進む。
[0133] 一方、そのステップ ST96にて否定判定された場合、本実施例 4の燃焼モード設定 手段は、予混合火花点火火炎伝播燃焼時の予想燃費 ·ェミッション指数補正値 C2 ' とスパークアシスト圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数補正値 C3, とを比較して (C2' < C3'?)、どちらの燃焼モードでの運転が最も燃費性能ゃェミツ シヨン性能に優れて 、るの力否かを判断し (ステップ ST111)、その判断結果に応じ て予混合火花点火火炎伝播燃焼モード又はスパークアシスト圧縮自着火拡散燃焼 モードの何れかを燃焼モードとして設定する。
[0134] また、ステップ ST90→ステップ ST130→ステップ ST135を経て、燃焼室 CC内に 導かれる燃料が耐ノック性には劣るが高着火性で且つ高蒸発性であることが明らか になった場合 (ステップ ST135で肯定判定された場合)、本実施例 4の燃焼モード設 定手段は、圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数補正値 C1 'とスパ ークアシスト圧縮自着火拡散燃焼時の予想燃費 ·ェミッション指数補正値 C3,とを比 較して (C1 ' < C3'?)、どちらの燃焼モードでの運転が最も燃費性能ゃェミッション 性能に優れているの力否かを判断し (ステップ ST141)、その判断結果に応じて圧縮 自着火拡散燃焼モード又はスパークアシスト圧縮自着火拡散燃焼モードの何れかを 燃焼モードとして設定する。
[0135] 本実施例 4にあっても、電子制御装置 1の燃焼制御実行手段は、そのようにして設 定した燃焼モードで理論空燃比運転させるように燃焼制御を実行する (ステップ ST1 50)。
[0136] このように、本実施例 4の多種燃料内燃機関は、実施例 3の多種燃料内燃機関と同 様の効果を得ることができる一方で、この実施例 3とは異なり、ある程度大きく燃費性 能ゃェミッション性能が向上しない限り現行の燃焼モードを維持し続けるので、頻繁 に燃焼モードが変更されなくなる。これが為、この多種燃料内燃機関においては、燃 焼モード変更時における空燃比の変動や EGR量の変動に起因する不安定な燃焼 状態の発生頻度を減少させることができるようになる。
[0137] ここで、上述した例示とは逆に、現行の燃焼モードと同一の燃焼モードの予想燃費
'ェミッション指数値 CI (C2, C3)を現状のまま維持小さな値へと補正する又は現状 のまま維持し、更に、現行の燃焼モードと異なる燃焼モードの予想燃費'ェミッション 指数値 C1 (C2, C3)を大きな値へと補正することによつても、現行の燃焼モードが選 択され易くなる。従って、例えば、下記の式 12, 13を用いて現行の燃焼モードに対 する燃焼モード毎の予想燃費'ェミッション指数補正値 Cl,, C2,, C3,の算出を行 わせてもよぐこの場合、式 12は、算出された予想燃費 'ェミッション指数値 C1 (C2, C3)が現行の燃焼モードと同一の燃焼モードのものである場合に使用される演算式 となり、式 13は、算出された予想燃費'ェミッション指数値 C1 (C2, C3)が現行の燃 焼モードと異なる燃焼モードのものである場合に使用される演算式となる。
[0138] Ci' =Ci (i= l, 2, 3) … (12)
Ci' =Ci+ A Ci (i= l, 2, 3) … (13)
[0139] また、ここでは補正項 A Ciを用いている力 燃焼モード毎の予想燃費 'ェミッション 指数補正値 Cl ', C2' , C3'は、補正係数を乗算等させることによって求めさせても よい。
実施例 5
[0140] 次に、本発明に係る多種燃料内燃機関の実施例 5を図 11及び図 12に基づいて説 明する。
[0141] 前述した各実施例 1〜4では第 1燃料 F1と第 2燃料 F2の混合燃料を燃焼室 CCに 直接噴射させる所謂筒内直接噴射式の多種燃料内燃機関について例示したが、こ れら各実施例 1〜4における燃焼モードの設定動作については、別構成の多種燃料 内燃機関に対しても適用することができる。
[0142] 例えば、その燃焼モード設定動作は、実施例 1〜4の多種燃料内燃機関において 燃料供給装置 50を図 11に示す燃料供給装置 150へと置き換え、第 1燃料 Flと第 2 燃料 F2の混合燃料を燃焼室 CC内だけでなく吸気ポート l ibへも噴射させるよう構 成した多種燃料内燃機関に適用してもよく、これにお!/ヽても各実施例 1〜4の多種燃 料内燃機関と同様の効果を奏することができる。
[0143] ここで、その図 11に示す燃料供給装置 150とは、実施例 1〜4における燃料供給装 置 50の各種構成部品に加えて、燃料混合手段 53で生成された混合燃料を燃料通 路 154に吐出する燃料ポンプ 155と、その燃料通路 154の混合燃料を夫々の気筒 に分配するデリバリ通路 156と、このデリバリ通路 156から供給された混合燃料を夫 々の気筒の吸気ポート l ibに噴射する各気筒の燃料噴射弁 157と、を設けたもので ある。この場合の多種燃料内燃機関においては、例えば、圧縮自着火拡散燃焼モー ドゃスパークアシスト圧縮自着火拡散燃焼モードで運転する際に燃料噴射弁 57を駆 動制御して混合燃料を燃焼室 CC内へと噴射させ、予混合火花点火火炎伝播燃焼 モードで運転する際に燃料噴射弁 157を駆動制御して混合燃料を吸気ポート l ibへ と噴射させる。
[0144] また、その燃焼モード設定動作は、実施例 1〜4の多種燃料内燃機関において燃 料供給装置 50を図 12に示す燃料供給装置 250へと置き換え、燃料混合手段 53を 用いることなく第 1燃料 F1と第 2燃料 F2を個別に噴射させるよう構成した多種燃料内 燃機関に適用してもよぐこれにおいても各実施例 1〜4の多種燃料内燃機関と同様 の効果を奏することができる。
[0145] ここで、その図 12に示す燃料供給装置 250とは、燃焼室 CC内に第 1燃料 F1 (高着 火性燃料)を直接噴射する第 1燃料供給手段と、吸気ポート l ibに第 2燃料 F2 (高蒸 発性燃料、高耐ノック性)を噴射する第 2燃料供給手段と、を備えている。その第 1燃 料供給手段は、第 1燃料 F1を第 1燃料タンク 41Aから吸い上げて第 1燃料通路 251 Aに送出する第 1フィードポンプ 252Aと、その第 1燃料通路 251Aの第 1燃料 F1を 高圧燃料通路 254Aに圧送する高圧燃料ポンプ 255Aと、その高圧燃料通路 254A の第 1燃料 F1を夫々の気筒に分配する第 1デリバリ通路 256Aと、この第 1デリバリ通 路 256Aから供給された第 1燃料 F1を燃焼室 CC内に噴射する各気筒の燃料噴射 弁 257Aと、を備える。一方、第 2燃料供給手段は、第 2燃料 F2を第 2燃料タンク 41B 力も吸い上げて第 2燃料通路 251Bに送出する第 2フィードポンプ 252Bと、その第 2 燃料通路 251Bの第 2燃料 F2を夫々の気筒に分配する第 2デリバリ通路 256Bと、こ の第 2デリバリ通路 256Bから供給された第 2燃料 F2を吸気ポート l ibに噴射する各 気筒の燃料噴射弁 257Bと、を備える。この場合の多種燃料内燃機関においては、 例えば、圧縮自着火拡散燃焼モードやスパークアシスト圧縮自着火拡散燃焼モード で運転する際に燃料噴射弁 257Aのみ又は双方の燃料噴射弁 257A, 257Bを駆 動制御して燃料を燃焼室 CC内へと導き、予混合火花点火火炎伝播燃焼モードで運 転する際に燃料噴射弁 257Bのみ又は双方の燃料噴射弁 257A, 257Bを駆動制御 して燃料を燃焼室 CC内へと導く。
[0146] 尚、上述した各実施例 1〜5においては 2種類の燃料で運転される多種燃料内燃 機関について例示したが、これら各実施例 1〜5の多種燃料内燃機関に係る燃焼モ ード設定動作については、これよりも多くの種類の燃料を用いて運転される多種燃料 内燃機関に対して適用してもよい。また、その各実施例 1〜5においては夫々の燃料 を種別毎に個別の燃料タンクへと貯留させているが、これら各実施例 1〜5の多種燃 料内燃機関に係る燃焼モード設定動作については、全ての燃料を 1つの燃料タンク に所定の燃料混合比率で貯留させ、その混合燃料を用いて運転される多種燃料内 燃機関に対して適用してもよい。
産業上の利用可能性
[0147] 以上のように、本発明に係る多種燃料内燃機関は、燃料特性に応じた最適な燃焼 モードを設定させる技術に有用である。

Claims

請求の範囲
[1] 性状の異なる少なくとも 2種類の燃料の内の少なくとも 1種類が燃焼室に導かれ又 は当該少なくとも 2種類の燃料カゝらなる混合燃料が燃焼室に導かれて主に理論空燃 比運転される多種燃料内燃機関であって、
前記燃焼室内に導かれる燃料の着火性及び耐ノック性について判定する燃料特 性判定手段と、
前記燃焼室内に導かれる燃料の着火性が良ければ圧縮自着火拡散燃焼モードを 設定し、前記燃焼室内に導かれる燃料の着火性が悪く耐ノック性が良ければ予混合 火花点火火炎伝播燃焼モードを設定し、前記燃焼室内に導かれる燃料の着火性と 耐ノック性の双方が悪ければスパークアシスト圧縮自着火拡散燃焼モードを設定す る燃焼モード設定手段と、
該燃焼モード設定手段により設定された燃焼モードで運転させる燃焼制御実行手 段と、
を備えたことを特徴とする多種燃料内燃機関。
[2] 前記燃料特性判定手段は、前記燃焼室内に導かれる燃料の蒸発性又は PMZス モーク発生特性を更に判定するよう構成し、前記燃焼モード設定手段は、前記燃焼 室内に導かれる燃料が蒸発性の悪いものである又は PMやスモークを発生させ易い ものであるときに、圧縮自着火拡散燃焼モードを選択しな ヽように構成したことを特徴 とする請求項 1記載の多種燃料内燃機関。
[3] 前記燃焼モード設定手段は、前記燃焼室内に導かれる燃料が複数種類の燃焼モ ードを設定対象とすることのできる燃料特性を備えて ヽる場合、燃費性能及びエミッ シヨン性能又はその何れかに優れた燃焼モードの選択を行うように構成したことを特 徴とする請求項 1又は 2に記載の多種燃料内燃機関。
PCT/JP2007/061818 2006-09-28 2007-06-12 Moteur à combustion interne utilisant une large diversité de types de carburant WO2008038440A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0719441A BRPI0719441B1 (pt) 2006-09-28 2007-06-12 motor de combustão interna multicombustível
CN2007800360113A CN101517214B (zh) 2006-09-28 2007-06-12 多种燃料内燃机及其燃烧控制方法
US12/442,668 US7853396B2 (en) 2006-09-28 2007-06-12 Multifuel internal combustion engine and combustion controlling method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-265731 2006-09-28
JP2006265731A JP4535051B2 (ja) 2006-09-28 2006-09-28 多種燃料内燃機関

Publications (1)

Publication Number Publication Date
WO2008038440A1 true WO2008038440A1 (fr) 2008-04-03

Family

ID=39229881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061818 WO2008038440A1 (fr) 2006-09-28 2007-06-12 Moteur à combustion interne utilisant une large diversité de types de carburant

Country Status (5)

Country Link
US (1) US7853396B2 (ja)
JP (1) JP4535051B2 (ja)
CN (1) CN101517214B (ja)
BR (1) BRPI0719441B1 (ja)
WO (1) WO2008038440A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277200A (zh) * 2013-06-28 2013-09-04 贵阳学院 一种乙醇-柴油双直喷发动机的燃烧方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050192A2 (en) * 2006-03-08 2008-05-02 Ethanol Boosting Systems, Llc Single nozzle injection of gasoline and anti-knock fuel
JP4535051B2 (ja) * 2006-09-28 2010-09-01 トヨタ自動車株式会社 多種燃料内燃機関
JP5283115B2 (ja) * 2008-12-08 2013-09-04 独立行政法人海上技術安全研究所 多種燃料に対応可能な燃料噴射装置
JP5262927B2 (ja) * 2009-03-31 2013-08-14 日産自動車株式会社 内燃機関の排気浄化装置
WO2011132569A1 (ja) * 2010-04-20 2011-10-27 スズキ株式会社 内燃機関の燃料供給制御装置
US8534263B2 (en) * 2011-01-12 2013-09-17 GM Global Technology Operations LLC Bi-fuel engine including system and method for reducing component temperature
JP5447423B2 (ja) * 2011-03-31 2014-03-19 マツダ株式会社 ガソリンエンジン
US20140032081A1 (en) * 2012-07-27 2014-01-30 Caterpillar Inc. Dual Mode Engine Using Two or More Fuels and Method for Operating Such Engine
US20140366840A1 (en) * 2013-06-17 2014-12-18 Caterpillar Motoren GmbH & Co. KG. Fuel Apportionment for Multi Fuel Engine System
JP5652798B2 (ja) * 2013-11-21 2015-01-14 独立行政法人海上技術安全研究所 多種燃料に対応可能な燃料噴射装置
DE102013019738B3 (de) * 2013-11-27 2015-04-02 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Betrieb einer Brennkraftmaschine
JP6477432B2 (ja) * 2015-11-12 2019-03-06 株式会社デンソー 燃焼システムの推定装置
JP6648734B2 (ja) * 2017-05-31 2020-02-14 マツダ株式会社 圧縮着火式エンジン
JP6493488B1 (ja) * 2017-11-10 2019-04-03 マツダ株式会社 圧縮着火式エンジンの制御装置
DE102018200410A1 (de) * 2018-01-11 2019-07-11 Ford Global Technologies, Llc Vorrichtung zur Schmierstoffdosierung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968061A (ja) * 1995-08-30 1997-03-11 Nippon Soken Inc 燃料供給方法及び燃料供給装置
JP2001254660A (ja) * 2000-03-08 2001-09-21 Toyota Motor Corp 火花点火式成層燃焼内燃機関
JP2002038981A (ja) * 2000-07-28 2002-02-06 Nissan Motor Co Ltd 内燃機関
JP2004245126A (ja) * 2003-02-13 2004-09-02 Toyota Motor Corp 高圧縮比過給式リーンバーンエンジンの運転モード制御装置
JP2006233839A (ja) * 2005-02-24 2006-09-07 Toyota Motor Corp 内燃機関

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272970A (ja) * 1987-04-28 1988-11-10 Mazda Motor Corp 直噴式エンジン
JPS63297771A (ja) * 1987-05-29 1988-12-05 Hino Motors Ltd 多気筒機関の失火検出装置
US5271357A (en) * 1992-01-24 1993-12-21 General Electric Company Method of combustion for dual fuel engine
CN1233313B (zh) * 1996-08-23 2013-01-02 卡明斯发动机公司 带最佳燃烧控制的预混合可燃混合气压燃发动机
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
DE69936081T2 (de) * 1998-02-23 2008-01-17 Cummins, Inc., Columbus Regelung einer verbrennungskraftmaschine mit kompressionszündung und kraftstoff-luftvormischung
US6463907B1 (en) * 1999-09-15 2002-10-15 Caterpillar Inc Homogeneous charge compression ignition dual fuel engine and method for operation
CA2398149A1 (en) * 2000-02-11 2001-08-16 Patric Ouellette Method and apparatus for dual fuel injection into an internal combustion engine
WO2001086125A2 (en) * 2000-05-08 2001-11-15 Cummins, Inc. Premixed charge compression ignition engine with variable speed soc control and method of operation
US6378489B1 (en) * 2001-05-24 2002-04-30 Rudolf H. Stanglmaier Method for controlling compression ignition combustion
JP2004028048A (ja) * 2002-06-28 2004-01-29 Honda Motor Co Ltd 予混合圧縮着火内燃機関の制御方法
US6981472B2 (en) * 2002-11-18 2006-01-03 Massachusetts Institute Of Technology Homogeneous charge compression ignition control utilizing plasmatron fuel converter technology
JP5021168B2 (ja) * 2002-12-03 2012-09-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 予混合圧縮着火(hcci)エンジンの性能を制御する方法及び装置
JP4007310B2 (ja) * 2003-11-05 2007-11-14 トヨタ自動車株式会社 2種類の燃料を用いる予混合圧縮自着火運転可能な内燃機関
JP4173852B2 (ja) * 2004-11-04 2008-10-29 本田技研工業株式会社 圧縮着火内燃機関の制御方法
JP2006226172A (ja) * 2005-02-17 2006-08-31 Honda Motor Co Ltd 圧縮着火内燃機関の制御方法
JP2006233864A (ja) * 2005-02-24 2006-09-07 Honda Motor Co Ltd 圧縮着火内燃機関の制御方法
US7406947B2 (en) * 2005-11-30 2008-08-05 Ford Global Technologies, Llc System and method for tip-in knock compensation
US7412966B2 (en) * 2005-11-30 2008-08-19 Ford Global Technologies, Llc Engine output control system and method
US7357101B2 (en) * 2005-11-30 2008-04-15 Ford Global Technologies, Llc Engine system for multi-fluid operation
US7647916B2 (en) * 2005-11-30 2010-01-19 Ford Global Technologies, Llc Engine with two port fuel injectors
US7302933B2 (en) * 2005-11-30 2007-12-04 Ford Global Technologies Llc System and method for engine with fuel vapor purging
US7395786B2 (en) * 2005-11-30 2008-07-08 Ford Global Technologies, Llc Warm up strategy for ethanol direct injection plus gasoline port fuel injection
US7594498B2 (en) * 2005-11-30 2009-09-29 Ford Global Technologies, Llc System and method for compensation of fuel injector limits
JP4412290B2 (ja) * 2006-01-27 2010-02-10 トヨタ自動車株式会社 ガス燃料内燃機関
JP4832929B2 (ja) * 2006-03-15 2011-12-07 本田技研工業株式会社 内燃機関
US7581528B2 (en) * 2006-03-17 2009-09-01 Ford Global Technologies, Llc Control strategy for engine employng multiple injection types
US7647899B2 (en) * 2006-03-17 2010-01-19 Ford Global Technologies, Llc Apparatus with mixed fuel separator and method of separating a mixed fuel
US7665452B2 (en) * 2006-03-17 2010-02-23 Ford Global Technologies, Llc First and second spark plugs for improved combustion control
US7578281B2 (en) * 2006-03-17 2009-08-25 Ford Global Technologies, Llc First and second spark plugs for improved combustion control
JP2007255329A (ja) * 2006-03-23 2007-10-04 Honda Motor Co Ltd 内燃機関システム
US7487663B2 (en) * 2006-04-20 2009-02-10 Exxonmobil Research & Engineering Co. Method for selecting fuel to both optimize the operating range and minimize the exhaust emissions of HCCI engines
JP4466616B2 (ja) * 2006-06-19 2010-05-26 トヨタ自動車株式会社 多種燃料内燃機関
DE102006031052A1 (de) * 2006-07-05 2008-01-10 Ford Global Technologies, LLC, Dearborn Verfahren zum Betreiben einer Brennkraftmaschine, die für den Gebrauch von mindestens zwei unterschiedlichen Kraftstoffsorten vorgesehen ist, und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
JP4535051B2 (ja) * 2006-09-28 2010-09-01 トヨタ自動車株式会社 多種燃料内燃機関
US20090165759A1 (en) * 2007-12-27 2009-07-02 Bhaskar Sengupta Fuel management for vehicles equipped with multiple tanks for different grades of fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968061A (ja) * 1995-08-30 1997-03-11 Nippon Soken Inc 燃料供給方法及び燃料供給装置
JP2001254660A (ja) * 2000-03-08 2001-09-21 Toyota Motor Corp 火花点火式成層燃焼内燃機関
JP2002038981A (ja) * 2000-07-28 2002-02-06 Nissan Motor Co Ltd 内燃機関
JP2004245126A (ja) * 2003-02-13 2004-09-02 Toyota Motor Corp 高圧縮比過給式リーンバーンエンジンの運転モード制御装置
JP2006233839A (ja) * 2005-02-24 2006-09-07 Toyota Motor Corp 内燃機関

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277200A (zh) * 2013-06-28 2013-09-04 贵阳学院 一种乙醇-柴油双直喷发动机的燃烧方法
CN103277200B (zh) * 2013-06-28 2015-07-22 贵阳学院 一种乙醇-柴油双直喷发动机的燃烧方法

Also Published As

Publication number Publication date
US7853396B2 (en) 2010-12-14
CN101517214B (zh) 2011-11-23
BRPI0719441B1 (pt) 2019-09-03
BRPI0719441A2 (pt) 2013-02-19
US20100010725A1 (en) 2010-01-14
CN101517214A (zh) 2009-08-26
JP2008082299A (ja) 2008-04-10
JP4535051B2 (ja) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4535051B2 (ja) 多種燃料内燃機関
US8516991B2 (en) Multi-fuel internal combustion engine
US7769527B2 (en) Internal combustion engine
EP2604830B1 (en) Variable ignition type diesel-gasoline dual fuel powered combustion engine, system, and method
JP4466616B2 (ja) 多種燃料内燃機関
EP1857654B1 (en) Inernal combustion engine
EP2604833A2 (en) System and method for controlling a variable ignition diesel-gasoline dual fuel powered combustion engine
JP4715753B2 (ja) 内燃機関
EP1983169A1 (en) Internal Combustion Engine and Combustion Method of the Same
EP1445461A2 (en) Combustion control device and method for engine
RU2541346C2 (ru) Способ эксплуатации двигателя внутреннего сгорания
JP4737045B2 (ja) 多種燃料内燃機関
JP2008274905A (ja) 多種燃料内燃機関の燃焼制御装置
US9175612B2 (en) Method and apparatus for controlling combustion of engine having mixed combustion mode
JP4835279B2 (ja) 多種燃料内燃機関
JP4180995B2 (ja) 圧縮着火内燃機関の制御装置
JP2008184970A (ja) ガソリンエンジンの制御装置
JP4844316B2 (ja) 多種燃料内燃機関
JP2007315357A (ja) 多種燃料内燃機関
WO2012114482A1 (ja) 内燃機関の制御システム
KR100783925B1 (ko) 차량 엔진의 cai 전환 제어 방법
JP2007315358A (ja) 多種燃料内燃機関
JP4464901B2 (ja) 圧縮着火内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036011.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745105

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12442668

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0719441

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090327