WO2008035619A1 - Dispositif anti-vibrations - Google Patents

Dispositif anti-vibrations Download PDF

Info

Publication number
WO2008035619A1
WO2008035619A1 PCT/JP2007/067860 JP2007067860W WO2008035619A1 WO 2008035619 A1 WO2008035619 A1 WO 2008035619A1 JP 2007067860 W JP2007067860 W JP 2007067860W WO 2008035619 A1 WO2008035619 A1 WO 2008035619A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
yoke
coil
orifice
vibration isolator
Prior art date
Application number
PCT/JP2007/067860
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kojima
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US12/442,317 priority Critical patent/US7905470B2/en
Priority to EP07807267.5A priority patent/EP2065616B1/en
Publication of WO2008035619A1 publication Critical patent/WO2008035619A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/26Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
    • F16F13/30Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids
    • F16F13/305Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids magnetorheological

Definitions

  • the present invention relates to a vibration isolator that absorbs vibration from a vibration generating unit and prevents vibration transmission to a vibration receiving unit, and is used as, for example, a torque rod or an engine mount in an automobile or a general industrial machine. It can be applied to a liquid-sealed vibration isolator.
  • An elastic body, a pressure receiving liquid chamber, a sub liquid chamber, and the like are provided therein, and a liquid-sealed torsion in which the pressure receiving liquid chamber and the sub liquid chamber communicate with each other via an orifice serving as a restriction passage.
  • a cross and an engine mount are conventionally known. According to such a conventional torque port engine mount, when vibration occurs, the vibration damping function of the elastic body and the liquid flowing in the orifice communicating between the pressure receiving liquid chamber and the sub liquid chamber are provided. The vibration is absorbed by the viscous resistance of the material to suppress the transmission of vibration.
  • an engine mount disclosed in Japanese Utility Model Laid-Open No. 2-81939 having a structure in which a magnetically responsive fluid is sealed is known as a panel constant that can be increased instantaneously, as shown in FIG.
  • a shock absorber that employs an electromagnetic actuator in accordance with enclosing a magnetically responsive fluid.
  • the piston 114 movable in the cylinder 112 incorporates an electromagnet composed of a coil 116 and a yoke 118 disposed on the outer periphery thereof, and a wiring 116A connected to the coil 116 is connected to the piston 114 shaft. It was structured to be taken out from 122.
  • the engine mount described in Japanese Utility Model Publication No. Hei 2-81939 has not only a narrow communication path but also a sub liquid chamber.
  • the panel constant was not changed within the required range.
  • the wiring 116A for applying a voltage to the coil 116 is drawn from the shaft 122 of the piston 114, which is a movable part, so that the sealing performance is insufficient, and the wiring 116A
  • the magnetically responsive fluid may leak from the lead-out portion of the steel.
  • An object of the present invention is to provide a vibration isolator capable of increasing the panel constant rapidly by instantaneously changing the panel constant while improving the sealing performance in consideration of the above facts.
  • the vibration isolator according to claim 1 includes a first mounting member connected to one of the vibration generating portion and the vibration receiving portion, and a second mounting member connected to the other of the vibration generating portion and the vibration receiving portion. And an elastic body disposed between the first mounting member and the second mounting member to connect the first mounting member and the second mounting member so as to be elastically deformable, and at least a part of the inner wall is formed of the elastic body.
  • An orifice that allows passage of the magnetically responsive fluid through the secondary liquid chamber, a coil that is arranged around the orifice and magnetizes the magnetically responsive fluid in the orifice when energized, and energizes the coil And a control unit for controlling.
  • a pressure receiving liquid chamber in which at least a part of the inner wall is formed of an elastic body is connected to a sub liquid chamber in which a part of the partition wall can be deformed via an orifice, thereby generating vibration.
  • the internal volume of the pressure-receiving liquid chamber filled with the magnetically responsive fluid is expanded and contracted as the elastic body elastically deforms, and the contents are changed according to changes in internal pressure via the orifice.
  • Magnetically responsive fluid circulates between the secondary liquid chambers whose products can be expanded and contracted.
  • a resonance phenomenon occurs in the magnetically responsive fluid in the orifice in synchronization with the input vibration, and the input vibration is effectively reduced by the pressure change and viscous resistance associated with the resonance phenomenon of the magnetically responsive fluid. Can be absorbed.
  • the coil is disposed around the orifice and the energization timing of the coil is controlled by the control unit, when the coil is energized by the control unit, The magnetically responsive fluid in the orifice is magnetized.
  • the magnetically responsive fluid in the orifice loses its fluidity and becomes hard, so that it does not cause the resonance phenomenon of the magnetically responsive fluid as described above! Since the elastic body that forms at least a part of the plate becomes difficult to deform, the panel constant can be changed instantaneously and the panel constant can be increased rapidly.
  • the sealing performance of the magnetically responsive fluid can be improved.
  • the panel constant can be increased rapidly by changing the constant instantaneously.
  • the operation of the vibration isolator according to claim 2 will be described below.
  • the vibration isolator according to this claim is a contractor. Performs the same effect as Claim 1.
  • the present invention has a configuration in which the yoke is arranged in the orifice so as to be positioned on the magnetic path generated when the coil is energized.
  • the state of the magnetically responsive fluid can be changed with less electric power.
  • the vibration isolator according to claim 3 has the same effect as claim 2.
  • the present invention has a configuration in which a yoke forming member having a yoke in part is formed in a tubular shape, and an orifice is formed so as to penetrate the yoke forming member.
  • the orifice is formed so as to penetrate the tubular yoke forming member, so that the state of the magnetically responsive fluid can be changed with much less power, and the vibration isolator can be downsized.
  • the vibration isolator according to claim 4 has the same effect as claim 1.
  • a shaft-shaped yoke is provided at the center portion, and a yoke forming member force coil provided with a through hole around the yoke is disposed on the inner peripheral side of the coil, and is provided on the yoke forming member. It has a configuration in which the through hole is a part of the orifice.
  • a shaft-shaped yoke is provided at the central portion of the yoke forming member disposed on the inner peripheral side of the coil, and a through-hole is provided around the yoke.
  • the vibration isolator according to claim 5 has the same effect as claim 1.
  • the vibration generating unit is an engine and the vibration receiving unit is a vehicle body
  • the control unit has a sensor for detecting the state of the engine and the vehicle, and based on information from the sensor.
  • the control unit controls the energization of the coil, it has a configuration.
  • the control unit since the control unit has sensors for detecting the states of the engine and the vehicle, the control unit reliably grasps the state of the engine and the state of the vehicle and applies the coil to the coil at an appropriate timing. It becomes possible to energize. For example, during normal driving, the voltage to the coil By making the magnetically responsive fluid flowable in the orifice with F, the structure of a normal liquid-sealed vibration isolator is obtained. In addition, when sudden braking or steering stability of the vehicle is required, voltage is applied to the coil to harden the magnetically responsive fluid, thereby temporarily increasing the panel constant to prevent sudden braking of the vehicle. It will be possible and the handling stability will be improved.
  • FIG. 1 is a cross-sectional view showing a vibration isolator according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the vibration isolator according to the first embodiment of the present invention, and shows a state in which the coil is energized.
  • FIG. 3 is a cross-sectional perspective view showing the main body portion of the vibration isolator according to the first embodiment of the present invention (however, coils, magnetic responsive fluid, bolts, nuts, etc. are omitted). is there.
  • FIG. 4 is a cross-sectional perspective view showing a yoke forming member applied to the vibration isolator according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional perspective view showing a yoke forming member applied to the vibration isolator according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a vibration isolator according to a third embodiment of the present invention, and is a cross-sectional view taken along line 6-6 in FIG.
  • FIG. 7 is a side view showing a vibration isolator according to a third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a vibration isolator according to a fourth embodiment of the present invention.
  • FIG. 9 is a sectional view taken along line 8-8.
  • FIG. 9 is a side view showing a vibration isolator according to a fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing an electromagnetic actuator according to the prior art.
  • Rubber elastic body (elastic body)
  • FIGS. 1 to 4 A vibration isolator according to a first embodiment of the present invention is shown in FIGS. 1 to 4, and the present embodiment will be described based on these drawings.
  • a vibration isolator 10 according to the present embodiment as shown in FIGS. 1 to 3 is used, for example, as a torque rod or an engine mount in an automobile, and generates vibrations from a vehicle body as a vibration receiving portion. It is arranged between the engine that becomes the part and supports the engine.
  • the arrow X direction shown in the figure is the axial direction of the vibration isolator 10 of the present embodiment, and the following description will be made with the direction orthogonal to the axial direction as the radial direction of the vibration isolator 10.
  • the vibration isolator 10 includes a thin-walled cylindrical body 12 made of, for example, aluminum, with both ends in the axial direction opened, and the shaft of the outer cylinder bracket 12 is provided. At both end portions in the direction, flange portions 12A and 12B extending to the outer peripheral side in the radial direction are provided. In addition, a plurality of fastening holes 14 are provided in the vicinity of the outer peripheral side of the pair of flange portions 12A and 12B.
  • a mounting bracket 22 which is a first metal mounting member such as a minium is disposed, and a connecting hole 22A for engine connection is provided at the tip of the mounting bracket 22.
  • an intermediate cylinder 16 formed in a cylindrical shape with a metal material such as aluminum is fitted on the inner peripheral surface of the outer cylinder fitting 12, and an outer end of the intermediate cylinder 16 is connected to one end in the axial direction.
  • a flange portion 16A having the same outer diameter as that of the flange portion 12A of the cylindrical metal fitting 12 is formed.
  • a support ring 18 formed of a metal material in the form of a ring having the same outer peripheral surface and the same outer diameter as the flange portion 12A and the flange portion 16A is provided on the flange portion 16A of the intermediate cylinder 16. They are placed next to each other. That is, the flange portion 12A and the support ring 18 are positioned so as to be in contact with each other across the flange portion 16A of the intermediate cylinder 16, and the flange portion 16A and the support ring at the same position as the fastening hole 14 of the flange portion 12A.
  • Through holes 20 are respectively formed in the 18 portions!
  • a rubber elastic body 24 made of rubber and formed into a thick disk as a whole is disposed.
  • a recess 24A that is recessed in a circular shape in cross section along the direction perpendicular to the axial direction.
  • the outer peripheral portion of the rubber elastic body 24 is vulcanized and bonded to a portion raised in the axial direction on the inner peripheral side of the support ring 18, and the central portion of the rubber elastic body 24 is
  • the mounting bracket 22 is vulcanized and bonded to the outer peripheral surface. Thereby, the mounting fixture 22 and the support ring 18 are elastically connected by the rubber elastic body 24.
  • a bracket disk 26 made of a metal material in the shape of a disk having the same diameter as the flange portion 12B of the outer cylinder fitting 12 is provided. Arranged so as to be combined with the flange 12B.
  • a circular bracket 28 for connecting and fixing the vibration isolator 10 to the vehicle body side is connected to the center of the bracket disk 26 via a rubber ring material 27 and the like.
  • a through hole 20 is also provided in the bracket disk 26 at the same position as the fastening hole 14 of the flange portion 12B.
  • bolts 32 are passed through these fastening holes 14 and through holes 20, respectively, with nuts 34.
  • the outer cylinder fitting 12 and the bracket disk 26 are connected to each other and integrated.
  • the outer cylinder fitting 12, the intermediate cylinder 16, the bracket disc 26, and the like are integrally formed, and the component member S, the ring member 27, and the bracket 28 are provided.
  • the second mounting member is connected to the vehicle body side through the second mounting member.
  • the portion near the other end in the axial direction of the intermediate tube 16 is a small-diameter portion 16B formed to be one step narrow! /
  • a circular tube portion of the yoke forming member 36 formed in a tubular shape by a ferrous metal material 36 A force is applied to the end of the small diameter portion 16B of the intermediate tube 16 at its tip side.
  • a disk-shaped partition wall 36B is provided on one end side in the axial direction of the yoke forming member 36 so as to be perpendicular to the circular tube portion 36A.
  • the cutting wall 36B is fitted on the inner peripheral side, and the partition wall 36B of the yoke forming member 36 is arranged on the same surface with respect to the flange portion 16A of the intermediate cylinder 16.
  • the flange portion 16A and the partition wall 36B are configured to close the concave portion 24A of the rubber elastic body 24 to form a space partitioned from the outside in the concave portion 24A, and are filled with a magnetically responsive fluid.
  • This space is formed in the received pressure chamber 40.
  • the structure is formed by at least a partial force S of the inner wall of the pressure receiving liquid chamber 40 to be disposed on the inner peripheral side of the intermediate cylinder 16 and the rubber elastic body 24.
  • the rubber diaphragm 38 formed in a thin film shape and vulcanized and bonded to the ring-shaped member 39 closes the other axial end portion of the intermediate cylinder 16 in the axial direction of the intermediate cylinder 16.
  • the diaphragm 38 is disposed in the intermediate cylinder 16 by fitting the ring-shaped member 39 to the inner peripheral surface near the other end. Accordingly, a space partitioned from the outside by the diaphragm 38 and the intermediate cylinder 16 is formed on the other axial end side in the intermediate cylinder 16, and this space is a sub liquid chamber 42 filled with a magnetically responsive fluid. It is said that.
  • a part of the partition wall of the secondary liquid chamber 42 is made so as to expand and contract the internal volume of the secondary liquid chamber 42 according to the pressure change of the magnetically responsive fluid filled in the secondary liquid chamber 42.
  • the diaphragm 38 is elastically deformable along the axial direction.
  • a ring-shaped space is formed between the intermediate cylinder 16 and the yoke forming member 36, and the coil 46 is disposed in this space.
  • the wiring 46 A extending from both ends of the coil 46 is drawn through the intermediate cylinder 16 and the outer cylinder fitting 12 and connected to the controller 48.
  • the controller 48 is connected to a speed sensor 50 that detects the speed of the vehicle and a rotation speed sensor 52 that detects the rotation speed of the engine, and signals from these sensors 50 and 52 are used as signals. Based on this, it is possible to determine the state of the engine and the state of the vehicle! That is, the controller 48 and the control unit force S constituted by the sensors 50 and 52 and the energization of the coin 46 are controlled!
  • a yoke portion 36C which is a shaft formed in the shape of a shaft, is formed at the central portion on the inner peripheral side of the circular tube portion 36A formed in the tubular shape of the yoke forming member 36. Is provided. A plurality of through holes 36D are provided in the partition wall 36B between the yoke part 36C and the circular pipe part 36A so as to be arranged in an annular shape.
  • the through hole 36D, the circular pipe portion 36A, and the small diameter portion 16B of the intermediate cylinder 16 in the yoke forming member 36 are orifices 44 that are restriction passages that allow the pressure receiving liquid chamber 40 and the sub liquid chamber 42 to communicate with each other.
  • the pressure receiving liquid chamber 40 and the sub liquid chamber 42 are communicated with each other through the orifice 44, and the magnetically responsive fluid flows between the pressure receiving liquid chamber 40 and the sub liquid chamber 42.
  • the yoke forming member 36 located on the inner peripheral side of the coil 46 has the tubular circular tube portion 36A, and the magnetic force lines generated when the coil portion 46C is energized pass through the yoke portion 36C.
  • the coil 46 and the yoke portion 36C form an electromagnet, which is disposed on the inner peripheral side of the circular pipe portion 36A so as to be located in the magnetic path M shown in FIG.
  • an orifice 44 is provided so as to penetrate the circular pipe portion 36A, and a through hole 36D provided in the yoke forming member 36 is a part of the orifice 44.
  • the coil 46 force S arranged around the orifice 44 and the controller 48 controls the energization timing of the coin 46 and magnetizes the magnetically responsive fluid in the orifice 44 when energized. ing.
  • the vibration isolator 10 when the engine connected to the mounting bracket 22 constituting one end portion of the vibration isolator 10 is activated, vibration from the engine is passed through the mounting bracket 22 to the outer cylinder bracket 12 such as Bonoleto 32. This vibration is transmitted to the rubber elastic body 24 disposed between the support ring 18 and the mounting bracket 22 that are fastened together. At this time, the rubber elastic body 24 acts as a main vibration absorber, the rubber elastic body 24 is elastically deformed, and the vibration is absorbed by the damping action based on the internal friction of the rubber elastic body 24 and transmitted to the vehicle body side. Vibration is reduced.
  • the secondary liquid chamber 42 communicates with the secondary liquid chamber 42 through an orifice 44.
  • the circular tube portion 36 A of the yoke forming member 36 formed in a circular tube shape is disposed on the inner peripheral side of the coil 46.
  • the yoke portion 36C is not limited to the inner portion of the yoke forming member 36 that is located on the magnetic path M shown in FIG.
  • the orifice 44 is formed so as to penetrate through the yoke forming member 36 while being arranged.
  • a through hole 36D provided in a partition wall 36B portion of the yoke forming member 36 around the yoke portion 36C is a part of the orifice 44.
  • the coil 46 is arranged around the orifice 44, and the controller 48 that determines the state of the engine and the state of the vehicle based on the signals from the sensors 50 and 52 is provided.
  • the controller 48 that determines the state of the engine and the state of the vehicle based on the signals from the sensors 50 and 52 is provided.
  • the energization timing for the coil 46 is controlled. Therefore, when the coil 46 is energized by the controller 48, the magnetically responsive fluid in the orifice 44 is magnetized.
  • the magnetically responsive fluid in the orifice 44 loses fluidity and becomes hard, so that the resonance phenomenon of the magnetically responsive fluid as described above does not occur! /
  • the rubber elastic body 24 that forms at least a part of the inner wall of the pressure-receiving liquid chamber 40 is also difficult to deform, the panel constant can be changed instantaneously and the panel constant can be increased rapidly.
  • the coil 46 is arranged around the orifice 44 as in the present embodiment, not only the electromagnetic force is efficiently applied to the magnetically responsive fluid in the orifice 44, but also the coil Wiring from 46 46A bow I Easy to cut out and wiring 46A bow
  • the vibration isolator 10 of the present embodiment since the coil 46 is disposed around the orifice 44, the sealing of the magnetically responsive fluid is achieved while reducing the manufacturing cost and increasing the reliability. Can improve sex. Furthermore, since the yoke portion 36C is disposed in the orifice 44 so as to be positioned on the magnetic path M generated when the coil 46 is energized, the efficiency of the magnetically responsive fluid increases as the coil 46 is energized. It is now possible to rapidly increase the panel constant by changing the panel constant instantaneously (for example, for several milliseconds) by changing the state of the magnetically responsive fluid with a small amount of power by applying electromagnetic force.
  • the vibration isolator 10 when employed as, for example, a torque rod or an engine mount, the engine can be instantaneously fixedly supported when necessary. Corresponding to sudden braking and handling stability will be improved.
  • a shaft-shaped yoke portion 36C is provided in the center portion, and a circular tube portion 36A of a circular tubular yoke forming member 36 in which a through hole 36D is provided around the yoke portion 36C.
  • an orifice 44 which is disposed on the inner peripheral side of the coil 46 and includes a through hole 36D provided in the yoke forming member 36 as a part, is formed so as to penetrate the yoke forming member 36.
  • a shaft-shaped yoke portion 36C is provided at the central portion of a circular tube portion 36A disposed on the inner peripheral side of the coil 46, and a through hole 36D is provided around the yoke portion 36C.
  • the formation of the orifice 44 with the through hole 36D as a part makes it possible to change the state of the magnetically responsive fluid with a smaller amount of power and to reduce the size of the vibration isolator 10. Become capable.
  • the vibration generating unit is an engine
  • the vibration receiving unit is a vehicle body
  • the control unit includes sensors 50 and 52 that detect the states of the engine and the vehicle. Based on the information from these sensors 50 and 52, the controller 48 of the control unit controls the energization of the coil 46, so this controller 48 reliably grasps the state of the engine and the state of the vehicle. Thus, the coil 46 can be energized at an appropriate timing.
  • the voltage to the coil 46 is turned off to allow the magnetically responsive fluid to flow in the orifice 44, thereby providing the same structure as a normal liquid-filled vibration isolator.
  • the panel constant is temporarily increased by applying a voltage to the coil 46 to harden the magnetically responsive fluid, thus supporting sudden braking of the vehicle. And improving the handling stability.
  • FIG. 5 a vibration isolator according to a second embodiment of the present invention is shown in FIG. 5, and the present embodiment will be described based on this figure. Note that members described in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the force is such that the shaft-shaped yoke portion 36C is arranged at the central portion of the circular tube portion 36A of the yoke forming member 36.
  • this portion is defined as a cylindrical solid portion 36E, and a plurality of through-holes 36D force provided in the partition wall 36B are individually provided. Further, a yoke forming member 36 is formed so as to penetrate the solid portion 36E.
  • the solid portion 36E itself of the yoke forming member 36 is a yoke, and a plurality of through holes 36D form the solid portion 36E so that the solid portion 36E has a lotus shape. It is supposed to penetrate. Therefore, according to the present embodiment, the magnetically responsive fluid in the orifice 44 is more strongly electromagnetically compared with the first embodiment, which has only the same effect as the first embodiment. Since the force can be applied, the state of the magnetically responsive fluid can be changed with much less electric power.
  • FIG. 6 and FIG. 7 a vibration isolator according to a third embodiment of the present invention is shown in FIG. 6 and FIG. 7, and the present embodiment will be described based on these drawings.
  • members described in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • both end portions in the axial direction of the outer tube fitting 12 are opened, and the portion closer to the other end side in the axial direction of the intermediate tube 16 has a small-diameter portion 16B formed to be thinner by one step.
  • the anti-vibration device 10 instead of the force S that is structured, as shown in FIG. 6 and FIG.
  • the other end in the axial direction of the outer tube fitting 12 is closed and the intermediate tube 16 has a structure with no small diameter part 16B. Therefore, compared with the first embodiment, in the present embodiment, the overall length of the vibration isolator 10 and the orifice 44 are shorter.
  • the partition wall 36B force S of the yoke forming member 36 is formed to have a larger diameter than the first embodiment, and the flange portion 16A of the intermediate cylinder 16 and the support ring This partition wall 36B is sandwiched between 18 and 18 together with the flange portion 12A of the outer cylinder fitting 12 so as to be screwed to the vehicle body side.
  • the present embodiment also has substantially the same structure as that of the first embodiment. Accordingly, the same effects as those of the first embodiment can be obtained.
  • the vibration isolator 10 can be further reduced in size.
  • FIG. 8 and FIG. 9 a vibration isolator according to a fourth embodiment of the present invention is shown in FIG. 8 and FIG. 9, and the present embodiment will be described based on these drawings. Note that members described in the first and third embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the force is almost the same as that of the third embodiment.
  • both end portions in the axial direction of the outer tube fitting 12 are the same as those in the first embodiment.
  • Each of the openings is opened in the same manner as in the configuration, and the outer peripheral portion of the flange portion 12A of the outer cylinder fitting 12 is caulked to connect the intermediate cylinder 16, the support ring 18 and the yoke forming member 36 to the outer cylinder fitting 12.
  • the bush 60 is connected to the outer tube fitting 12 by crimping the outer peripheral portion of the flange portion 12B.
  • the bush 60 is formed of a connecting fitting 62 for connecting to the flange portion 12B, an inner cylindrical fitting 64 formed in a cylindrical shape and disposed in the connecting fitting 62, and a rubber ring.
  • a rubber ring 66 or the like disposed between the connection fitting 62 and the inner cylinder fitting 64 is provided, and the inner cylinder fitting 64 is connected to the vehicle body side.
  • the force S that connects the outer cylinder fitting 12 and the like to the vehicle body side and the attachment fitting 22 to the engine side is the opposite.
  • the outer cylinder fitting 12 or the like may be connected to the engine side
  • the mounting bracket 22 may be connected to the vehicle body side.
  • the purpose is to isolate the vehicle body of the vehicle, but it goes without saying that the vibration isolator of the present invention is also used for other purposes than the vehicle.
  • the shape, dimensions, etc. of the outer cylinder fitting 12, the mounting fitting 22, the rubber elastic body 24, etc. are not limited to those of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Description

明 細 書
防振装置
技術分野
[0001] 本発明は、振動発生部からの振動を吸収して振動受部への振動伝達を防止する 防振装置に関し、例えば自動車におけるトルクロッドやエンジンマウント等或いは、一 般産業機械として用いられる液体封入式の防振装置に適用可能なものである。 背景技術
[0002] 弾性体、受圧液室及び副液室等が内部に設けられると共に、これら受圧液室と副 液室との間が制限通路とされるオリフィスを介して互いに連通した液体封入式のトル クロッドやエンジンマウントが、例えば従来より知られている。このような従来のトルク口 ッドゃエンジンマウントによれば、振動が発生した場合に、弾性体の制振機能及び、 受圧液室と副液室との間を連通するオリフィス内で流通する液体の粘性抵抗等によ つて振動を吸収することにより、振動の伝達を抑制するようにしている。
[0003] 上記のようにトルクロッドやエンジンマウントを内蔵した車両において、車両の急制 動に対応したり操縦安定性を改善したりする為に、パネ定数を瞬時に高くしてこれら のトルクロッド等を瞬時に固くすることが考えられた。しかし従来、通常の液体を用い てパネ定数を瞬時に高くするように変化できる構造のものは、存在しなかった。
[0004] 但し、パネ定数を瞬時に高くできるものとして、磁気応答性流体が封入された構造 の実開平 2— 81939号公報に開示されたエンジンマウントが知られている他、図 10 に示すような磁気応答性流体が封入されるのに合わせて電磁ァクチユエータを採用 したショックアブソーバーが知られていた。そして、このショックアブソーバーでは、シリ ンダ 112内で可動するピストン 114がコイル 116とその外周側に配置されたヨーク 11 8から成る電磁石を内蔵し、このコイル 116に繋がる配線 116Aをピストン 114のシャ フト 122から取り出す構造になっていた。
[0005] 従って、このショックアブソーバーにおいては、この配線 116Aを介してコイル 116 に電圧をカロ免ることで、 ィノレ 116とヨーク 118との間の通路とされる才リフィス 120内 に流れる磁気応答性流体の流動性を奪って、パネ定数を瞬時に高くして!/、た。 発明の開示
発明が解決しょうとする課題
[0006] 上記のように車両の急制動に対応したり操縦安定性を改善したりする為に、バネ定 数を瞬時に高くする形でパネ定数を可変にすることが考えられた力 通常の液体を 用いたトルクロッドやエンジンマウントの従来の構造では、パネ定数が瞬時に高くなる ように変化させる構造のものはなかった。
[0007] また、磁気応答性流体を利用してパネ定数を瞬時に高くすることが考えられるが、 実開平 2— 81939号公報に記載のエンジンマウントでは連通路が狭いだけでなく副 液室が無ぐパネ定数を必要な範囲で変化させられなかった。さらに、上記のショック ァブソーバーでは、コイル 116に電圧を加える為の配線 116Aが可動部分とされるピ ストン 114のシャフト 122から引き出される構造になっていることから、シール性が不 十分で、配線 116Aの引出部分等から磁気応答性流体が漏れ出す虞を有する欠点 があった。
[0008] 本発明は上記事実を考慮し、シール性を改善しつつ、パネ定数を瞬時に変化して パネ定数を急激に高くし得る防振装置を提供することが目的である。
課題を解決するための手段
[0009] 請求項 1に係る防振装置は、振動発生部及び振動受部の一方に連結された第 1取 付部材と、振動発生部及び振動受部の他方に連結された第 2取付部材と、第 1取付 部材と第 2取付部材との間に配置されて第 1取付部材と第 2取付部材とを弾性変形 可能に連結する弾性体と、内壁の少なくとも一部が弾性体により形成されて磁気応 答性流体が充填される受圧液室と、隔壁の一部が変形可能に形成されて内圧の変 化に応じて内容積を拡縮可能とされる副液室と、受圧液室と副液室との間を連通し て磁気応答性流体の通過を可能とするオリフィスと、オリフィスの周囲に配置されて通 電時にオリフィス内の磁気応答性流体を磁化するコイルと、コイルに対する通電を制 御する制御部と、を有することを特徴とする。
[0010] 請求項 1に係る防振装置の作用を以下に説明する。本請求項によれば、本請求項 の防振装置を構成する第 1取付部材及び第 2取付部材の何れか一方に振動発生部 側から振動が入力された場合、この入力振動により第 1取付部材と第 2取付部材との 間に配置された弾性体が弾性変形し、この弾性体の内部摩擦等に基づく減衰作用 によって振動が吸収され、振動受け部側へ伝達される振動が低減される。
[0011] また、内壁の少なくとも一部が弾性体により形成される受圧液室が隔壁の一部を変 形可能に形成した副液室に、オリフィスを介して連通されていることにより、振動発生 部側から振動が入力された場合、弾性体が弾性変形するのに合わせて、磁気応答 性流体が充填される受圧液室の内容積が拡縮され、オリフィスを介し、内圧の変化に 応じて内容積が拡縮可能になっている副液室との間で、磁気応答性流体が相互に 流通するようになる。これに伴い、入力された振動に同期してオリフィス内で磁気応答 性流体に共振現象が生じるので、この磁気応答性流体の共振現象に伴う圧力変化 及び粘性抵抗によって、入力された振動を効果的に吸収できる。
[0012] 但し、本請求項では、オリフィスの周囲にコイルが配置されていて、制御部によりこ のコイルに対する通電時期が制御されることから、コイルに対しての制御部による通 電時において、オリフィス内の磁気応答性流体が磁化される。つまり、コイルの通電 時には、オリフィス内の磁気応答性流体が流動性を失って固くなる結果、上記のよう な磁気応答性流体の共振現象を生じさせな!/、だけでなぐ受圧液室の内壁の少なく とも一部を形成する弾性体も変形し難くなる為、パネ定数を瞬時に変化してパネ定数 を急激に高くできるようになる。
[0013] 他方、本請求項のように、オリフィスの周囲にコイルが配置されているのに伴い、ォ リフィス内の磁気応答性流体に効率よく電磁力が加えられるだけでなぐコイルからの 配線の弓 Iき出しが容易になって配線の弓 I出部分等から磁気応答性流体が漏れ出す 虞が無くなる結果として、磁気応答性流体のシール性を改善できるようにもなつた。
[0014] 以上より、本請求項の防振装置によれば、オリフィスの周囲にコイルを配置したこと で、磁気応答性流体のシール性を改善でき、さらにこのコイルに通電することで、 , ネ定数を瞬時に変化してパネ定数を急激に高くできるようになった。この結果として、 本請求項の防振装置を例えばトルクロッドやエンジンマウントとして採用した場合、必 要時において瞬時にエンジンを固定的に支持できるようになるのに伴い、車両の急 制動に対応したり操縦安定性が改善されるようになる。
[0015] 請求項 2に係る防振装置の作用を以下に説明する。本請求項に係る防振装置は請 求項 1と同一の作用を奏する。但し、本請求項では、コイルへの通電時に生じる磁路 上に位置する形でヨークがオリフィス内に配置されるという構成を有している。
[0016] つまり、オリフィス内に配置された鉄芯とされるヨーク力 コイルの通電時に生じる磁 力線が通過する磁路上に位置するのに伴い、磁気応答性流体に効率よく電磁力が 加わる結果として、磁気応答性流体の状態を一層少ない電力で変化可能になる。
[0017] 請求項 3に係る防振装置の作用を以下に説明する。本請求項に係る防振装置は請 求項 2と同一の作用を奏する。但し、本請求項では、ヨークを一部に有するヨーク形 成部材が管状に形成され、このヨーク形成部材内を貫通する形にオリフィスが形成さ れるという構成を有している。つまり、管状とされるヨーク形成部材内を貫通する形で 、オリフィスが形成されることによって、より一層少ない電力で磁気応答性流体の状態 を変化可能としつつ、防振装置の小型化が可能になる。
[0018] 請求項 4に係る防振装置の作用を以下に説明する。本請求項に係る防振装置は請 求項 1と同一の作用を奏する。但し、本請求項では、軸状のヨークが中心部分に設け られると共にこのヨークの周囲に貫通孔が設けられたヨーク形成部材力 コイルの内 周側に配置され、このヨーク形成部材に設けられた貫通孔をオリフィスの一部とすると いう構成を有している。
[0019] つまり、コイルの内周側に配置されたヨーク形成部材の中心部分に、軸状のヨーク が設けられると共に、このヨークの周囲に貫通孔が設けられていて、この貫通孔をオリ フィスの一部としたことで、請求項 3と同様に、より一層少ない電力で磁気応答性流体 の状態を変化可能としつつ、防振装置の小型化が可能になる。
[0020] 請求項 5に係る防振装置の作用を以下に説明する。本請求項に係る防振装置は請 求項 1と同一の作用を奏する。但し、本請求項では、振動発生部がエンジンとされる と共に振動受部が車両の車体とされ、制御部がエンジン及び車両の状態を検出する センサを有し、このセンサからの情報を基にして制御部がコイルに対する通電の制御 をするとレ、う構成を有してレ、る。
[0021] つまり、制御部が、エンジン及び車両の状態を検出するセンサを有していることから 、エンジンの状態や車両の状態をこの制御部が確実に把握して、適切なタイミングで コイルに通電できるようになる。例えば、一般走行時には、コイルに対する電圧を OF Fにして磁気応答性流体をオリフィス内で流動可能とすることにより、通常の液体封入 式の防振装置の構造になる。また、車両の急制動や操縦安定性が必要な時には、コ ィルに電圧を印加して磁気応答性流体を固くすることにより、一時的にパネ定数を上 昇して、車両の急制動を可能としたり操縦安定性を改善したりすることになる。
発明の効果
[0022] 以上説明したように本発明の上記構成によれば、シール性を改善しつつ、バネ定 数を瞬時に変化してパネ定数を急激に高くし得る防振装置を提供できるという優れた 効果を有する。
図面の簡単な説明
[0023] [図 1]図 1は、本発明の第 1の実施の形態に係る防振装置を示す断面図である。
[図 2]図 2は、本発明の第 1の実施の形態に係る防振装置を示す断面図であって、コ ィルに通電した状態を示す図である。
[図 3]図 3は、本発明の第 1の実施の形態に係る防振装置の本体部分を示す断面斜 視図(但し、コイル、磁気応答性流体、ボルト及びナット等は省略する)である。
[図 4]図 4は、本発明の第 1の実施の形態に係る防振装置に適用されるヨーク形成部 材を示す断面斜視図である。
[図 5]図 5は、本発明の第 2の実施の形態に係る防振装置に適用されるヨーク形成部 材を示す断面斜視図である。
[図 6]図 6は、本発明の第 3の実施の形態に係る防振装置を示す断面図であって、図 7の 6— 6矢視線断面図である。
[図 7]図 7は、本発明の第 3の実施の形態に係る防振装置を示す側面図である。
[図 8]図 8は、本発明の第 4の実施の形態に係る防振装置を示す断面図であって、図
9の 8— 8矢視線断面図である。
[図 9]図 9は、本発明の第 4の実施の形態に係る防振装置を示す側面図である。
[図 10]図 10は、従来技術に係る電磁ァクチユエータを示す断面図である。
符号の説明
[0024] 10 防振装置
12 外筒金具 (第 2取付部材) 16 中間筒 (第 2取付部材)
22 取付金具 (第 1取付部材)
24 ゴム弾性体(弾性体)
26 ブラケット用円板(第 2取付部材)
40 受圧液室
42 副液室
44 オリフィス
36 ヨーク形成部材
36C ヨーク部(ヨーク)
36D 貫通孔
48 コントローラ(制御部)
50 速度センサ (制御部)
52 回転数センサ(制御部)
M 磁路
発明を実施するための最良の形態
[0025] 本発明の第 1の実施の形態に係る防振装置を図 1から図 4に示し、これら図に基づ き本実施の形態を説明する。
[0026] 図 1から図 3に示すような本実施の形態に係る防振装置 10は、例えば自動車にお けるトルクロッドやエンジンマウントとして用いられるものであり、振動受部である車体 と振動発生部となるエンジンとの間に配置されてエンジンを支持する形になる。また、 図に示す矢印 X方向が本実施の形態の防振装置 10の軸方向であり、この軸方向と 直交する方向を防振装置 10の径方向として以下の説明を行う。
[0027] 図 1から図 3に示すように防振装置 10は、軸方向両端部をそれぞれ開口した薄肉 円筒状で例えばアルミニウム製の外筒金具 12を備えており、この外筒金具 12の軸方 向両端部には、径方向外周側に延出するフランジ部 12A、 12Bがそれぞれ設けられ ている。そして、これら一対のフランジ部 12A、 12Bの外周側寄りの部分には、締結 孔 14がそれぞれ複数ずつ設けられて!/、る。
[0028] 外筒金具 12の軸方向一端側であってこの外筒金具 12と同軸状の位置には、アル ミニゥム等の金属製の第 1取付部材である取付金具 22が配置されており、この取付 金具 22の先端部には、エンジン連結用の連結穴 22Aが設けられている。また、外筒 金具 12の内周面には、例えばアルミニウム等の金属材により円筒状に形成された中 間筒 16が嵌合されており、この中間筒 16の軸方向一端側には、外筒金具 12のフラ ンジ部 12Aと同様の外径を有した鍔部 16Aが形成されている。
[0029] さらに、これらフランジ部 12A及び鍔部 16Aと外周面が同一の円形で同一外径を 有したリング状に金属材によって形成されたサポートリング 18が、中間筒 16の鍔部 1 6Aに隣り合って配置されている。つまり、中間筒 16の鍔部 16Aを挟んで、フランジ 部 12A及びサポートリング 18が相互に当接されつつ位置していて、フランジ部 12A の締結孔 14と同一位置のこれら鍔部 16A及びサポートリング 18の部分には、貫通 孔 20がそれぞれ形成されて!/、る。
[0030] そして、これらの締結孔 14及び貫通孔 20にそれぞれボルト 32を通してナット 34で 締結することで、これら外筒金具 12、中間筒 16及びサポートリング 18が相互に連結 されて一体化された構造になって!/、る。
[0031] このサポートリング 18と前述の取付金具 22との間には、ゴム製で全体として厚肉の 円板状に形成されるゴム弾性体 24が配置されており、このゴム弾性体 24の軸方向他 端側中央部には、軸直角方向に沿った断面を円形とする形に窪んだ凹部 24Aが設 けられている。また、このゴム弾性体 24の外周部分は、サポートリング 18の内周側の 軸方向に向かって立ち上げられた形の部分に加硫接着されており、このゴム弾性体 24の中心部分は、取付金具 22の外周面に加硫接着されている。これにより、取付金 具 22とサポートリング 18との間がゴム弾性体 24により弾性的に連結されている。
[0032] 一方、外筒金具 12の軸方向他端側には、この外筒金具 12のフランジ部 12Bと同 一径の円板状に金属材で形成されたブラケット用円板 26が、このフランジ部 12Bと 合わされる形で、配置されている。そして、ブラケット用円板 26の中央部には、この防 振装置 10を車体側へ連結固定する為の円管状のブラケット 28が、ゴム製のリング材 27等を介して連結されており、またフランジ部 12Bの締結孔 14と同一位置のこのブ ラケット用円板 26の箇所にも、貫通孔 20が設けられている。
[0033] さらに、これらの締結孔 14及び貫通孔 20にそれぞれボルト 32を通してナット 34で 締結することにより、これら外筒金具 12とブラケット用円板 26とが相互に連結されて 一体化された構造になっている。以上より、本実施の形態では、これら外筒金具 12、 中間筒 16及びブラケット用円板 26等が一体的に形成される構造になり、これらの部 材カ S、リング材 27及びブラケット 28を介して車体側に連結される第 2取付部材とされ ている。
[0034] 他方、図 1から図 3に示すように、中間筒 16の軸方向他端側寄りの部分は一段細く 形成された小径部 16Bとされて!/、て、この中間筒 16の内周側の中間筒 16と同軸の 位置には、鉄系の金属材により円管状に形成されたヨーク形成部材 36の円管部 36 A力 その先端側を中間筒 16の小径部 16Bの端部に当接した形で、配置されている
[0035] このヨーク形成部材 36の軸方向一端側には、円板状の仕切壁 36Bが円管部 36A に対して垂直になる形で、設けられていて、中間筒 16の鍔部 16Aの内周側にこの仕 切壁 36Bが填り込んで、中間筒 16の鍔部 16Aに対して、ヨーク形成部材 36の仕切 壁 36Bが同一面になるように、配置されている。
[0036] これにより、これら鍔部 16A及び仕切壁 36Bは、ゴム弾性体 24の凹部 24Aを閉止 して凹部 24A内に外部から区画された空間を形成する形とされ、磁気応答性流体が 充填された受圧液室 40にこの空間はなっている。つまり、中間筒 16の内周側に配設 されることになるこの受圧液室 40の内壁の少なくとも一部力 S、ゴム弾性体 24により形 成された構造になって!/、る。
[0037] また、薄膜状に形成されてリング状部材 39に加硫接着されたゴム製のダイヤフラム 38が、この中間筒 16の軸方向他端部を閉止するように、中間筒 16の軸方向他端部 寄り部分の内周面にこのリング状部材 39が嵌合されることで、ダイヤフラム 38が中間 筒 16内に配置されている。これに伴い、中間筒 16内の軸方向他端部側にはダイヤ フラム 38及び中間筒 16により外部から区画された空間が形成され、この空間は磁気 応答性流体が充填された副液室 42とされている。
[0038] 以上より、副液室 42内に充填された磁気応答性流体の圧力変化に応じて副液室 4 2の内容積を拡縮するように、副液室 42の隔壁の一部とされるダイヤフラム 38が軸方 向に沿って弾性変形可能になっている。 [0039] さらに、中間筒 16とヨーク形成部材 36との間にはリング状の空間が形成され、この 空間内にコイル 46が配置されている。このコイル 46の両端部から延びる配線 46Aは 、中間筒 16及び外筒金具 12を貫通して引き出されて、コントローラ 48に接続されて いる。
[0040] このコントローラ 48は、車両の速度を検出する速度センサ 50及び、エンジンの回転 数を検出する回転数センサ 52に接続されていて、これらのセンサ 50、 52からの情報 とされる信号を基にして、エンジンの状態及び車両の状態を判断可能とされて!/、る。 つまり、コントローラ 48及びこれらセンサ 50、 52により構成される制御部力 S、コィノレ 46 に対する通電の制御をして!/、る。
[0041] また、図 4に示すように、ヨーク形成部材 36の円管状に形成された円管部 36Aの内 周側の中心部分には、軸状に形成されるヨークであるヨーク部 36Cが設けられている 。このヨーク部 36Cと円管部 36Aとの間の仕切壁 36Bの部分には、貫通孔 36Dが円 環状に並ぶように複数設けられている。
[0042] ここで、ヨーク形成部材 36における貫通孔 36D、円管部 36A及び、中間筒 16の小 径部 16Bは、受圧液室 40と副液室 42とを連通させる制限通路であるオリフィス 44を 形成しており、このオリフィス 44を介して、受圧液室 40と副液室 42とは互いに連通さ れ、受圧液室 40と副液室 42との間を磁気応答性流体が相互に流通可能となってい
[0043] 以上より、本実施の形態では、コイル 46の内周側に位置するヨーク形成部材 36が 管状の円管部 36Aを有し、ヨーク部 36Cがコイル 46の通電時に生じる磁力線が通過 する図 2に示す磁路 Mに位置するように、この円管部 36Aの内周側に配置されてい て、これらコイル 46及びヨーク部 36Cで電磁石が形成されている。さらに、この円管 部 36A内を貫通する形でオリフィス 44が設けられていて、ヨーク形成部材 36に設け られた貫通孔 36Dがこのオリフィス 44の一部とされている。
[0044] そして、オリフィス 44の周囲に配置されたコイル 46力 S、コントローラ 48によりコィノレ 4 6に対する通電のタイミングを制御されて、通電時にオリフィス 44内の磁気応答性流 体を磁化するようになっている。
[0045] 次に、上記のように構成された本実施の形態に係る防振装置 10の作用を説明する 。本実施の形態では、防振装置 10の一端部を構成する取付金具 22に連結されたェ ンジンが作動すると、エンジンからの振動が取付金具 22を介して、外筒金具 12にボ ノレト 32等により締結されているサポートリング 18とこの取付金具 22との間に配置され たゴム弾性体 24に、この振動が伝達される。この際、ゴム弾性体 24は吸振主体とし て作用し、ゴム弾性体 24が弾性変形し、このゴム弾性体 24の内部摩擦等に基づく減 衰作用によって振動が吸収され、車体側へ伝達される振動が低減される。
[0046] また、本実施の形態では、図 1に示すように内壁の少なくとも一部がゴム弾性体 24 により形成された受圧液室 40が、隔壁の一部をダイヤフラム 38として変形可能に形 成した副液室 42に、オリフィス 44を介して連通されている。このことにより、エンジン 側から振動が入力された場合、ゴム弾性体 24が弾性変形するのに合わせて、磁気 応答性流体が充填される受圧液室 40の内容積が拡縮され、オリフィス 44を介し、内 圧の変化に応じて内容積が拡縮可能になっている副液室 42との間で、磁気応答性 流体が相互に流通するようになる。
[0047] これに伴い、入力された振動に同期してオリフィス 44内で磁気応答性流体に共振 現象が生じるので、この磁気応答性流体の共振現象に伴う圧力変化及び粘性抵抗 によって、入力された振動を効果的に吸収できる。
[0048] 但し、本実施の形態では、円管状に形成されたヨーク形成部材 36の円管部 36Aが コイル 46の内周側に配置されている。また、コイル 46の通電時に生じる図 2に示す磁 路 M上に位置することになるヨーク形成部材 36の中心部分に、軸状のヨーク部 36C が設けられるだけでなぐこのヨーク部 36Cが内部に配置されつつオリフィス 44がこ のヨーク形成部材 36内を貫通する形に形成されている。さらに、このヨーク部 36Cの 周囲となるヨーク形成部材 36の仕切壁 36Bの部分に設けられた貫通孔 36Dをオリフ イス 44の一部としている。
[0049] そして、本実施の形態によれば、オリフィス 44の周囲にコイル 46が配置されていて 、センサ 50、 52からの信号を基にしてエンジンの状態及び車両の状態を判断するコ ントローラ 48により、このコイル 46に対する通電時期が制御されるようになっている。 このことから、コイル 46に対してのコントローラ 48による通電時において、オリフィス 4 4内の磁気応答性流体が磁化される。 [0050] つまり、コイル 46の通電時には、オリフィス 44内の磁気応答性流体が流動性を失つ て固くなる結果、上記のような磁気応答性流体の共振現象を生じさせな!/、だけでなく 、受圧液室 40の内壁の少なくとも一部を形成するゴム弾性体 24も変形し難くなる為 、パネ定数を瞬時に変化してパネ定数を急激に高くできるようになる。
[0051] 他方、本実施の形態のように、オリフィス 44の周囲にコイル 46が配置されているの に伴い、オリフィス 44内の磁気応答性流体に効率よく電磁力が加えられるだけでなく 、コイル 46からの配線 46Aの弓 Iき出しが容易になって配線 46Aの弓 |出部分等から磁 気応答性流体が漏れ出す虞が無くなる結果として、磁気応答性流体のシール性を改 善できるようにもなつた。
[0052] 以上より、本実施の形態の防振装置 10によれば、オリフィス 44の周囲にコイル 46を 配置したことで、製造コストを低減すると共に信頼性を高めつつ、磁気応答性流体の シール性を改善できる。さらに、このコイル 46の通電時に生じる磁路 M上に位置する ようにヨーク部 36Cをオリフィス 44内に配置していることから、このコイル 46に通電す るのに伴い、磁気応答性流体に効率よく電磁力が加わって磁気応答性流体の状態 を少ない電力で変化させ、瞬時 (例えば数ミリ秒の間)にパネ定数を変化させてパネ 定数を急激に高くできるようになった。
[0053] この結果として、本実施の形態の防振装置 10を例えばトルクロッドやエンジンマウ ントとして採用した場合、必要時において瞬時にエンジンを固定的に支持できるよう になるのに伴い、車両の急制動に対応したり操縦安定性が改善されるようになる。
[0054] 他方、本実施の形態では、軸状のヨーク部 36Cが中心部分に設けられると共にこの ヨーク部 36Cの周囲に貫通孔 36Dが設けられた円管状のヨーク形成部材 36の円管 部 36Aが、コイル 46の内周側に配置され、このヨーク形成部材 36に設けられた貫通 孔 36Dを一部としたオリフィス 44が、このヨーク形成部材 36内を貫通する形に形成さ れている。
[0055] つまり、コイル 46の内周側に配置された円管状の円管部 36Aの中心部分に、軸状 のヨーク部 36Cが設けられると共にこのヨーク部 36Cの周囲に貫通孔 36Dが設けら れていて、この貫通孔 36Dを一部としたオリフィス 44が形成されることで、より一層少 ない電力で磁気応答性流体の状態を変化可能としつつ、防振装置 10の小型化が可 能になる。
[0056] また、本実施の形態では、振動発生部がエンジンとされると共に振動受部が車両の 車体とされ、制御部が、エンジン及び車両の状態を検出するセンサ 50、 52を有して 、これらのセンサ 50、 52からの情報を基にして制御部のコントローラ 48がコイル 46に 対する通電の制御をしていることから、エンジンの状態や車両の状態をこのコントロー ラ 48が確実に把握して、適切なタイミングでコイル 46に通電できるようになる。
[0057] 例えば、一般走行時には、コイル 46に対する電圧を OFFにして磁気応答性流体を オリフィス 44内で流動可能とすることにより、通常の液体封入式の防振装置と同じ構 造になる。また、車両の急制動や操縦安定性が必要な時には、コイル 46に電圧を印 加して磁気応答性流体を固くすることにより、一時的にパネ定数を上昇して、車両の 急制動に対応したり操縦安定性を改善したりすることが可能になる。
[0058] 次に、本発明の第 2の実施の形態に係る防振装置を図 5に示し、この図に基づき本 実施の形態を説明する。尚、第 1の実施の形態において説明した部材には同一の符 号を付して、重複した説明を省略する。
[0059] 第 1の実施の形態では、ヨーク形成部材 36の円管部 36Aの中心部分に軸状のョ ーク部 36Cが配置される構造とされていた力 本実施の形態に係る防振装置 10では 、図 5に示すように円管部 36Aが無い替わりにこの部分が円柱状の中実部 36Eとさ れていて、仕切壁 36Bの部分に設けられた複数の貫通孔 36D力 個々にこの中実 部 36Eを貫通する構造にヨーク形成部材 36がされている。
[0060] つまり、本実施の形態では、ヨーク形成部材 36の中実部 36E自体がヨークとされ、 この中実部 36Eがレンコン状になるように複数の貫通孔 36Dがこの中実部 36Eを貫 通する形とされている。従って、本実施の形態によれば、第 1の実施の形態と同様の 作用効果を奏するだけでなぐ第 1の実施の形態と比較して、より強力にオリフィス 44 内の磁気応答性流体に電磁力を加わえることができるようになるので、より一層少な い電力で磁気応答性流体の状態を変化可能になる。
[0061] 次に、本発明の第 3の実施の形態に係る防振装置を図 6及び図 7に示し、これらの 図に基づき本実施の形態を説明する。尚、第 1の実施の形態において説明した部材 には同一の符号を付して、重複した説明を省略する。 [0062] 第 1の実施の形態では、外筒金具 12の軸方向両端部がそれぞれ開口されると共に 、中間筒 16の軸方向他端側寄りの部分が一段細く形成された小径部 16Bを有する 構造とされていた力 S、この替わりに本実施の形態に係る防振装置 10では、図 6及び 図 7に示すように外筒金具 12の軸方向他端部が塞がれると共に、中間筒 16に小径 部 16Bが無い構造になっている。従って、第 1の実施の形態と比較して、本実施の形 態では、防振装置 10の全長及びオリフィス 44が短くなつている。
[0063] また、本実施の形態では、ヨーク形成部材 36の仕切壁 36B力 S、第 1の実施の形態 と比較して大径に形成されていて、中間筒 16の鍔部 16Aとサポートリング 18との間 にこの仕切壁 36Bを挟み込んで、外筒金具 12のフランジ部 12Aと共に、これらを車 体側にねじ止めるような構造にもなつている。
[0064] 以上より、本実施の形態も第 1の実施の形態とほぼ同様の構造となり、これに伴って 、第 1の実施の形態と同様の作用効果を奏するが、本実施の形態によれば、更に防 振装置 10の一層の小型化も可能になる。
[0065] 次に、本発明の第 4の実施の形態に係る防振装置を図 8及び図 9に示し、これらの 図に基づき本実施の形態を説明する。尚、第 1、第 3の実施の形態において説明した 部材には同一の符号を付して、重複した説明を省略する。
[0066] 本実施の形態は、第 3の実施の形態とほぼ同様の構造とされている力 図 8及び図 9に示すように、外筒金具 12の軸方向両端部が第 1の実施の形態と同様にそれぞれ 開口されており、外筒金具 12のフランジ部 12Aの外周部分をかしめて、中間筒 16、 サポートリング 18及びヨーク形成部材 36が外筒金具 12に連結されているだけでなく 、フランジ部 12Bの外周部分をかしめてブッシュ 60が外筒金具 12に連結された構造 にされている。
[0067] つまり、このブッシュ 60は、フランジ部 12Bに連結するための連結金具 62、円筒状 に形成されて連結金具 62内に配置される内筒金具 64及び、ゴム製でリング状に形 成されて連結金具 62と内筒金具 64との間に配置されるゴムリング 66等を備えていて 、この内筒金具 64が車体側に連結されるようになっている。
[0068] 以上より、本実施の形態の防振装置 10によれば、第 1、第 3の実施の形態と同様の 作用効果を奏するが、磁気応答性流体の状態を変化させてパネ定数を高くした場合 でも、ブッシュ 60の存在によって、必要最低限の変形を確保できるようにもなつた。
[0069] 尚、上記各実施の形態に係る防振装置 10では、外筒金具 12等を車体側へ連結す ると共に、取付金具 22をエンジン側に連結していた力 S、これとは逆に、外筒金具 12 等をエンジン側へ連結すると共に、取付金具 22を車体側に連結するようにしても良 い。
[0070] さらに、上記各実施の形態において、車両の車体の防振を目的としたが、本発明の 防振装置は、車両以外の他の用途にも用いられることはいうまでもない。一方、外筒 金具 12、取付金具 22及びゴム弾性体 24等の形状、寸法なども実施の形態のものに 限定されるものではない。

Claims

請求の範囲
[1] 振動発生部及び振動受部の一方に連結された第 1取付部材と、振動発生部及び 振動受部の他方に連結された第 2取付部材と、第 1取付部材と第 2取付部材との間 に配置されて第 1取付部材と第 2取付部材とを弾性変形可能に連結する弾性体と、 内壁の少なくとも一部が弾性体により形成されて磁気応答性流体が充填される受圧 液室と、隔壁の一部が変形可能に形成されて内圧の変化に応じて内容積を拡縮可 能とされる副液室と、受圧液室と副液室との間を連通して磁気応答性流体の通過を 可能とするオリフィスと、オリフィスの周囲に配置されて通電時にオリフィス内の磁気応 答性流体を磁化するコイルと、コイルに対する通電を制御する制御部と、を有するこ とを特徴とする防振装置。
[2] コイルへの通電時に生じる磁路上に位置する形でヨークがオリフィス内に配置され ることを特徴とする請求項 1記載の防振装置。
[3] ヨークを一部に有するヨーク形成部材が管状に形成され、このヨーク形成部材内を 貫通する形にオリフィスが形成されることを特徴とする請求項 2記載の防振装置。
[4] 軸状のヨークが中心部分に設けられると共にこのヨークの周囲に貫通孔が設けられ たヨーク形成部材カ S、コイルの内周側に配置され、このヨーク形成部材に設けられた 貫通孔をオリフィスの一部とすることを特徴とする請求項 1記載の防振装置。
[5] 振動発生部がエンジンとされると共に振動受部が車両の車体とされ、制御部がェン ジン及び車両の状態を検出するセンサを有し、このセンサからの情報を基にして制 御部がコイルに対する通電の制御をすることを特徴とする請求項 1記載の防振装置。
PCT/JP2007/067860 2006-09-22 2007-09-13 Dispositif anti-vibrations WO2008035619A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/442,317 US7905470B2 (en) 2006-09-22 2007-09-13 Vibration damper
EP07807267.5A EP2065616B1 (en) 2006-09-22 2007-09-13 Vibration-isolating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006257164A JP5121197B2 (ja) 2006-09-22 2006-09-22 防振装置
JP2006-257164 2006-09-22

Publications (1)

Publication Number Publication Date
WO2008035619A1 true WO2008035619A1 (fr) 2008-03-27

Family

ID=39200446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067860 WO2008035619A1 (fr) 2006-09-22 2007-09-13 Dispositif anti-vibrations

Country Status (4)

Country Link
US (1) US7905470B2 (ja)
EP (1) EP2065616B1 (ja)
JP (1) JP5121197B2 (ja)
WO (1) WO2008035619A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109501574A (zh) * 2018-12-06 2019-03-22 浙江零跑科技有限公司 一种汽车发动机后悬置拉杆
CN113795393A (zh) * 2019-05-15 2021-12-14 株式会社普利司通 液封衬套

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8403537A (nl) * 1984-11-21 1986-06-16 Philips Nv Kathodestraalbuis met ionenval.
US9689457B2 (en) * 2010-08-23 2017-06-27 Bridgestone Corporation Torque rod and engine mounting system for using same
KR101184282B1 (ko) * 2010-11-29 2012-09-21 현대자동차주식회사 Mr유체가 봉입된 엔진마운트용 오리피스플레이트의 구조
US9939080B2 (en) * 2013-04-08 2018-04-10 University Of Houston Magnetorheological fluid device
US9453386B2 (en) 2013-12-31 2016-09-27 Cameron International Corporation Magnetorheological fluid locking system
US9587702B2 (en) 2014-02-18 2017-03-07 Honeywell International Inc. Vibration isolator using externally pressurized sealing bellows and an external shaft
US10994606B2 (en) * 2018-07-20 2021-05-04 GM Global Technology Operations LLC Mount assembly with switchable displacement elements
JP2020133698A (ja) * 2019-02-15 2020-08-31 本田技研工業株式会社 トルクロッド
JP2020139547A (ja) * 2019-02-27 2020-09-03 本田技研工業株式会社 可変剛性防振装置
JP2020139548A (ja) * 2019-02-27 2020-09-03 本田技研工業株式会社 可変剛性防振装置
JP2020139546A (ja) * 2019-02-27 2020-09-03 本田技研工業株式会社 可変剛性防振装置
CN114270071B (zh) * 2020-05-27 2023-06-20 住友理工株式会社 防振装置
WO2021240908A1 (ja) * 2020-05-27 2021-12-02 住友理工株式会社 防振装置
CN115479101B (zh) * 2022-10-27 2024-06-18 重庆大学 一种刚度能够调节的变刚度蜂窝结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281939A (ja) 1988-09-16 1990-03-22 Mazda Motor Corp 自動変速機付車両におけるエンジンの吸入空気量制御装置
JPH0281939U (ja) * 1988-12-14 1990-06-25
JPH02203001A (ja) * 1989-01-30 1990-08-13 Tokai Rubber Ind Ltd 車両用流体封入式マウント装置
JPH0835536A (ja) * 1994-07-26 1996-02-06 Natl Res Inst For Metals 減衰力可変型緩衝器およびこれに適する磁性流体流動制御機構

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631833A (ja) * 1986-06-20 1988-01-06 Tokai Rubber Ind Ltd 流体封入式防振支持装置
US4720087A (en) * 1986-09-05 1988-01-19 Lord Corporation Inertia type fluid mount using electrorheological and other fluid
FR2634530A1 (en) * 1988-07-19 1990-01-26 Hutchinson Improvements to hydraulic anti-vibration devices
JPH0752436Y2 (ja) * 1988-09-26 1995-11-29 日産自動車株式会社 制御型エンジンマウント
US5176368A (en) * 1992-01-13 1993-01-05 Trw Inc. Vehicle engine mount
US5284330A (en) * 1992-06-18 1994-02-08 Lord Corporation Magnetorheological fluid devices
JPH0932878A (ja) * 1995-07-19 1997-02-04 Bridgestone Corp 防振装置
US6095486A (en) * 1997-03-05 2000-08-01 Lord Corporation Two-way magnetorheological fluid valve assembly and devices utilizing same
US6622995B2 (en) * 2001-05-16 2003-09-23 Delphi Technologies, Inc. Hydraulic mount with magnetorheological fluid
KR100494805B1 (ko) * 2003-07-30 2005-06-13 현대자동차주식회사 비대칭 가변강성을 갖는 차량용 마운트 장치
US7063191B2 (en) * 2004-02-10 2006-06-20 Delphi Technologies, Inc. Reversed decoupler assembly for MR mount

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0281939A (ja) 1988-09-16 1990-03-22 Mazda Motor Corp 自動変速機付車両におけるエンジンの吸入空気量制御装置
JPH0281939U (ja) * 1988-12-14 1990-06-25
JPH02203001A (ja) * 1989-01-30 1990-08-13 Tokai Rubber Ind Ltd 車両用流体封入式マウント装置
JPH0835536A (ja) * 1994-07-26 1996-02-06 Natl Res Inst For Metals 減衰力可変型緩衝器およびこれに適する磁性流体流動制御機構

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109501574A (zh) * 2018-12-06 2019-03-22 浙江零跑科技有限公司 一种汽车发动机后悬置拉杆
CN113795393A (zh) * 2019-05-15 2021-12-14 株式会社普利司通 液封衬套
CN113795393B (zh) * 2019-05-15 2024-01-30 株式会社普洛斯派 液封衬套

Also Published As

Publication number Publication date
US7905470B2 (en) 2011-03-15
EP2065616A1 (en) 2009-06-03
EP2065616B1 (en) 2018-04-11
EP2065616A4 (en) 2012-09-26
US20100038195A1 (en) 2010-02-18
JP5121197B2 (ja) 2013-01-16
JP2008075801A (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
WO2008035619A1 (fr) Dispositif anti-vibrations
US4648576A (en) Mounting structure for power unit
WO2010070850A1 (ja) 流体封入式防振装置
JP3637710B2 (ja) 流体封入式防振装置
JP4075054B2 (ja) 車両用流体封入式エンジンマウント
JP3551673B2 (ja) 流体封入式防振装置
US20030001322A1 (en) Fluid-filled vibration damping device
JP5027008B2 (ja) 流体封入式防振装置
JP3551671B2 (ja) 流体封入式防振装置
JP2000240716A (ja) 防振装置
US6659436B2 (en) Pneumatically operated active vibration damping device and vibration damping apparatus using the same
JPH10169705A (ja) 制振器
JP2001221287A (ja) 防振装置
JP2004069005A (ja) 流体封入式防振装置
JP2005113954A (ja) 防振装置
WO2004067992A1 (ja) 液体封入式防振装置
JP2006266425A (ja) 能動型流体封入式防振装置
JP2002276724A (ja) 防振装置用のエア切換バルブとそれを用いた防振装置
JP2001208126A (ja) 防振装置
WO2004067994A1 (ja) 液体封入式防振装置
JP5097150B2 (ja) 能動型防振装置
JP2009108880A (ja) 流体封入式防振装置
JPH10238586A (ja) 流体封入式防振装置
JP4341933B2 (ja) 液封防振装置
JP2001020994A (ja) 防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807267

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12442317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007807267

Country of ref document: EP