WO2008031964A2 - Chambre réverbérante - Google Patents

Chambre réverbérante Download PDF

Info

Publication number
WO2008031964A2
WO2008031964A2 PCT/FR2007/051871 FR2007051871W WO2008031964A2 WO 2008031964 A2 WO2008031964 A2 WO 2008031964A2 FR 2007051871 W FR2007051871 W FR 2007051871W WO 2008031964 A2 WO2008031964 A2 WO 2008031964A2
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
antenna
chamber according
brewer
stirrer
Prior art date
Application number
PCT/FR2007/051871
Other languages
English (en)
Other versions
WO2008031964A3 (fr
Inventor
Frédérik KOSDIKIAN
Olivier Maurice
Olivier Urrea
Original Assignee
European Aeronautic Defence And Space Company Eads France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence And Space Company Eads France filed Critical European Aeronautic Defence And Space Company Eads France
Priority to EP07823768A priority Critical patent/EP2062061A2/fr
Priority to CA002663391A priority patent/CA2663391A1/fr
Priority to US12/441,181 priority patent/US20090303141A1/en
Priority to JP2009527860A priority patent/JP2010503843A/ja
Publication of WO2008031964A2 publication Critical patent/WO2008031964A2/fr
Publication of WO2008031964A3 publication Critical patent/WO2008031964A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0807Measuring electromagnetic field characteristics characterised by the application
    • G01R29/0814Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
    • G01R29/0821Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning rooms and test sites therefor, e.g. anechoic chambers, open field sites or TEM cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • the subject of the present invention is an element of a reverberant chamber that can be used in the field of electromagnetic testing.
  • field of electromagnetic testing in particular that of electromagnetic compatibility and also that of resistance to electromagnetic attack, it is known to subject devices to electromagnetic excitations and to measure their behavior. In some cases, it is also planned to measure the diffracting properties of the electromagnetic waves they receive.
  • an electromagnetic test chamber is known, in particular from document EP-B1 -1 141 733.
  • a chamber has reflective walls, typically metal. Inside these walls is disposed an object to be tested.
  • the object to be tested may be a satellite, or even an aircraft, the dimensions of the chamber then being correspondingly of the order of several meters in height and width, for about ten meters at least. length.
  • the chamber may be smaller, of the order of one fifth of this dimension, or less, or larger.
  • An antenna enters the chamber and this antenna is connected, outside the chamber, to a high frequency signal generator. Thus fed, the antenna generates radio waves that propagate and settle relatively quickly in a stationary field in the chamber, according to cavity modes specific to the dimensions of the chamber.
  • the object that is placed in the chamber is thus subjected to this electromagnetic influence.
  • For each of the frequency values of the excitation signal it is possible to measure the behavior of the object under test. It is thus possible to draw a susceptibility, as a function of frequency, of the operation of this object. It was observed in the early days that objects appeared to have good immunity to attacks at certain frequency values, while they had weaknesses at other frequencies.
  • the antenna in the chamber has a main direction of emission.
  • the antenna is external to the brewer.
  • the antenna could be separated from the object by a screen or be oriented with its main lobe in a direction opposite to that of this screen so that the main direction of irradiation of the antenna can not preferably reach the object directly.
  • the idea is to obtain at least a certain number of reflections before the wave reaches the object. By doing so, we obtain the result of the greatest variety of excited modes, while using a relatively simple construction chamber (whose walls are preferably fixed).
  • the subject of the invention is therefore a reverberation chamber comprising, inside the chamber, a radio antenna, reflecting walls and a support of an object subjected to a radio-frequency test, characterized in that it comprises a stirrer radiation in the chamber and means for changing an orientation of a main direction of radiation of the antenna in the chamber.
  • FIG. 1 the schematic representation of a reverberation chamber according to the invention
  • Figure 1 shows a reverberant chamber 1 according to the invention.
  • This chamber 1 has walls such as 2 to 7 preferably reflecting, for example all covered with metallizations, including metal plates such as 8 to 10.
  • the chamber 1 is preferably closed on all sides.
  • the walls 2 to 7 being intended to reflect waves, it is possible rather than to perform a metallization to provide a gradient of refractive indices, to obtain an effect of the same order.
  • the chamber 1 further comprises a support 1 1 for supporting an object 12 subjected to a radiation test.
  • the object 12 may be any object, but it is preferably an object of the electronic type. he can for example being a satellite, an instrument panel of an airplane, a housing of a microcomputer or any other device.
  • the object 12 is further connected by a communication and power supply bus 13 to a test management device 14.
  • This device 14 will in principle comprise a microprocessor 15 connected by a bus 16 to a program memory 17, comprising a test program 18, to a data memory 19, for recording measurement results or for containing measurement parameters, and at a communication interface 20 with the object 12.
  • the chamber 1 further comprises a radio antenna 21, represented here by a horn.
  • the antenna 21 is for example powered by the test device 14, via a bus 22 of power and control, also connected to the interface 20.
  • a radio transmitter thus controlled can be physically placed in the bedroom 1 or outside.
  • the antenna 21, in one example, has a main direction of irradiation 23.
  • the chamber 1 has a means for modifying an orientation of this main direction of radiation 23 of the antenna 21 in the chamber 1.
  • the means for modifying an orientation of the main direction 23 comprises a first motor 24 for modifying an azimuth of the orientation 23 in a plane XOY referenced with respect to the walls of the chamber 1.
  • these modifying means will also include a second motor 25 also controlled by the device 14 to modify a site orientation of the main direction of irradiation 23.
  • it can be provided translational movements along each of the three axes OX, OY and OZ of the position of the horn 21.
  • the chamber 1 further comprises a stirrer 26, here schematically represented by two reflection fins 27 and 28.
  • the position in orientation of the fins 27 and 28, therefore the stirrer 26, is controlled at by means of a motor 29 connected by a control bus 30 to the interface 20.
  • the motors 24, 25 and 29 are stepper motors and make it possible to hold the objects they move the positions fixed in the space inside the room.
  • the brewer 26 is placed above the object 12 and the support 1 1. A space exists between the brewer 26 and the object 12. The brewer 26 can however be offset laterally from the vertical of the center of the object 12.
  • the stirrer 26 is preferably suspended from the ceiling 2 of the chamber 1.
  • the antenna 21 prevents the antenna 21 from interacting with the walls of the chamber 6 and 4 and irradiates directly with its main orientation 23 the object 12.
  • the antenna 21 will be placed in an intermediate position between the object 12 and a reflecting wall, here for example the wall 6.
  • the main irradiation direction 23 will be oriented generally in the direction of the wall 6. It will be avoided with the motors 24 and 25 that the field produced by the antenna 21 does not reach the object 12 directly. If necessary, a metal screen 31 will be interposed between the antenna 21 and the object 12.
  • the stirrer 26 is placed in the chamber so that it receives a significant portion of the radiation reflected by the wall 6 to which it undergoes additional reflections, reflections whose directions are a function of the position in orientation of this brewer 26.
  • the brewer 26 is a large object.
  • its vertical extension may be of the order of half the height of the chamber 1, measured along the Z axis.
  • Its diameter since it is most often rotated, may be of the order 75% of the smallest dimension in width or length of the chamber 1.
  • the stirrer can have a diameter of 1, 50 m, for a meter high.
  • a significant dimension of the brewer for example, its height or diameter, will be greater than 20% of one of the dimensions of the chamber, the height, the width or the length thereof.
  • the antenna 21 will be replaced by an isotropic antenna 32 also located inside a containment cylinder 33 forming the stirrer.
  • the cylinder 33 is for example metal, it is preferably reflective for electromagnetic waves.
  • the antenna 32 will for example be carried by the floor 5 of the chamber 2 while the stirrer 33 surrounding it will be suspended from the ceiling 2. In this case, the support 1 1 is shifted. Or the antenna 32 and the stirrer 33 are suspended together.
  • Figure 2 does not show that the antenna is located in the cylinder but in practice it is placed there.
  • the cylinder 33 is pierced with holes such as 34. Each hole forms a direction of radiation of the antenna. When the stirrer 33 is turned on itself according to the arrow 35 around its shaft carried by the motor 29, the radiation direction of each hole is changed.
  • the holes may be round, 34, or oblong, 36, or branch, 37. When they are branches, they may have the form of cross with four branches, or more or less branches.
  • the holes are distributed around the circumference of the cylinder 33 in regular series such as the holes 34, 38, 39, 40, etc. They may, however, be distributed around the periphery of the cylinder in random series, the sizes, the gaps and / or the shapes of the holes being random.
  • the sizes and or the gaps of the holes may also be identical or progressive, so as to form by their progressivity a main lobe 41 of irradiation which will rotate with the brewer 33. This is in practice in the form of a cylinder one meter in diameter and one meter fifty high.
  • the antenna 32 isotropic or not, is excited by single-frequency signals whose frequency varies, preferably in steps, from 150 megahertz to 10 Gigahertz. These frequency values, this range, correspond to the range for which we want to characterize the object 12 to be tested.
  • the stirrer 33 is placed vertically above the object 12.
  • the axis of rotation of the stirrer 33 inclined otherwise than the vertical, passes through the object 12.
  • the rotation shaft 42 ( Figure 1) of the brewer 26 or 33 is preferably placed to the third of each of the width dimensions, OX , or of length OY of the chamber 1.
  • the center of the brewer 33, and therefore the antenna 32 will it also be placed one-third of the height OZ, starting from the top or starting from the bottom. In thus avoiding to be in a median position, symmetries are avoided and the creation of a larger number of cavity modes is avoided.
  • the stirrer 33 is bulky and may contain the antenna 32.
  • This antenna may be in the form of an isotropic antenna or the horn shape with main radiation lobe 23 as shown in FIG. 1. And in this case, the antenna can also rotate independently of the stirrer 33.
  • the stirrer may be formed by a cone 43 pierced with holes of the same type as the stirrer 33.
  • the stirrer 43, or 33 may also have deflectors 44 located opposite certain particular holes 45 of its surface, frustoconical or cylindrical. These deflectors also make it possible to create particular modes of cavities.
  • the ultimate goal is therefore not so much to provide an electromagnetic excitation distributed everywhere in all directions with the same power, but rather to provide the object object 12 with aggression of this object 12 in accordance with more varied possible (preferably comprehensive incidences and with significant power, and good statistics less dependent on the characteristics of the chamber.
  • the invention achieves by rotating the source and the stirrer around it simultaneously a mechanical stirring and position .

Abstract

Chambre réverbérante Pour réaliser une chambre réverbérante, on prévoit dans une chambre (1) munie de parois réfléchissantes (27) de placer une antenne (21) et un brasseur de champs (26) en regard d'n objet (12) à tester. On montre qu'n u e modifiant une orientation d'ne direction (23) principale d'radiation de u ir l'ntenne, on peut créer un nombre très important de modes de cavités à a l' térieur de la chambre et donc atteindre la variété requise des agressions in possibles de l'bjet à tester de manière à ce que le test exécuté soit le plus o probant possible et le moins dépendant possible des dimensions et des caractéristiques de la chambre.

Description

CHAMBRE REVERBERANTE
La présente invention a pour objet un élément d'une chambre réverbérante utilisable dans le domaine du test électromagnétique. Dans le domaine du test électromagnétique, notamment celui de la compatibilité électromagnétique et aussi celui de la résistance aux agressions électromagnétiques, il est connu de soumettre des dispositifs à des excitations électromagnétiques et de mesurer leurs comportements. Dans certains cas, il est aussi prévu de mesurer les propriétés diffractantes des ondes électromagnétiques qu'ils reçoivent.
A cet égard, on connaît, notamment par le document EP-B1 -1 141 733, une chambre de tests électromagnétiques. Une telle chambre comporte des parois réfléchissantes, typiquement métalliques. A l'intérieur de ces parois est disposé un objet à tester. Dans l'invention, l'objet à tester pourra être un satellite, voire un aéronef, les dimensions de la chambre étant alors en conséquence, de l'ordre de plusieurs mètres de hauteur et de largeur, pour une dizaine de mètres au moins de longueur. Eventuellement, la chambre peut être plus petite, de l'ordre du cinquième de cette dimension, voire moins, ou plus grande. Une antenne pénètre dans la chambre et cette antenne est reliée, à l'extérieur de la chambre, à un générateur de signaux haute fréquence. Ainsi alimentée, l'antenne génère des ondes radioélectriques qui se propagent et s'établissent assez rapidement en un champ stationnaire dans la chambre, selon des modes de cavité propres aux dimensions de la chambre. L'objet qui est placé dans la chambre est ainsi soumis à cette influence électromagnétique. Pour chacune des valeurs de fréquence du signal d'excitation, on peut mesurer le comportement de l'objet testé. On peut ainsi dessiner une susceptibilité, en fonction de la fréquence, du fonctionnement de cet objet. On a observé dans les premiers temps que des objets semblaient présenter une bonne immunité aux agressions, à certaines valeurs de fréquence, alors qu'ils présentaient des faiblesses à d'autres fréquences.
Dans la pratique, les robustesses observées étaient parfois illusoires. Elles étaient beaucoup plus le résultat des mesures que la représentation de ce qu'il se passait en réalité. En effet, pour certaines valeurs de fréquence, des modes de cavité de résonance qui s'installent dans la chambre conduisent à des nœuds d'excitation à l'endroit où est placé l'objet. Ce qui donne l'illusion que ce dernier n'est pas sensible à ces excitations. Pour résoudre le problème, deux solutions ont été envisagées : Dans une première solution, on a envisagé de faire des chambres très grandes. En effet, plus une chambre est grande, plus, à basse fréquence, des modes stationnaires de cavité nombreux sont susceptibles de s'y développer, conduisant à l'endroit de l'objet à une excitation électromagnétique significative. En élevant la fréquence, les modes de cavité peuvent s'installer plus facilement (du fait du raccourcissement de la longueur d'onde). Une telle solution présente cependant l'inconvénient que la puissance excitante à laquelle est soumis l'objet à tester est fonction du volume de la chambre. Plus la chambre est volumineuse, moins l'énergie disponible à l'endroit de l'objet à tester sera importante. Il y a donc un compromis à trouver entre la taille de la chambre et la puissance d'excitation. La puissance d'excitation peut devenir prohibitive.
L'autre solution, notamment décrite dans le document cité ci-dessus, prévoit de modifier virtuellement les dimensions de la chambre, soit en rendant les parois de la chambre mobiles en orientation et en position, par l'usage de parois souples, soit par l'usage d'un brasseur métallique.
Dans l'invention, on s'est rendu compte, notamment par les mesures statistiques, que les résistances observées à certaines agressions électromagnétiques pouvaient présenter de fortes dispersions de valeurs d'une chambre à l'autre suivant les dimensions de la chambre et les antennes utilisées. Dans l'invention, on a pu mesurer qu'en définitive les modifications géométriques des parois, par l'emploi d'un brasseur, telles que préconisées par le document cité ci-dessus ne conduisaient pas nécessairement à augmenter suffisamment significativement la richesse de variété de situations d'excitation, sauf à utiliser des brasseurs de très grandes dimensions, ce qui réduirait considérablement le volume utile de la chambre.
Dans l'invention, on a considéré que l'antenne dans la chambre avait une direction principale d'émission. Pour augmenter encore la variété des modes de cavité disponibles, on prévoit alors de modifier la direction principale de rayonnement de l'antenne dans la chambre, c'est à dire par rapport à un système de référence dans lequel elle est montée. Dans une solution, l'antenne est extérieure au brasseur. Eventuellement dans ce cas, l'antenne pourrait être séparée de l'objet par un écran ou bien être orientée avec son lobe principal dans une direction opposée à celle de cet écran de manière à ce que la direction principale d'irradiation de l'antenne ne puisse de préférence pas atteindre l'objet directement. L'idée est d'obtenir au moins un certain nombre de réflexions avant que l'onde n'atteigne l'objet. En agissant ainsi, on obtient le résultat de la plus grande variété des modes excités, tout en ayant recours à une chambre de construction relativement simple (dont les parois sont de préférence fixes).
L'invention a donc pour objet une chambre réverbérante comportant, à l'intérieur de la chambre, une antenne radioélectrique, des parois réfléchissantes et un support d'un objet soumis en test au rayonnement radioélectrique, caractérisée en ce qu'elle comporte un brasseur de rayonnement situé dans la chambre et des moyens pour modifier une orientation d'une direction principale de rayonnement de l'antenne dans la chambre.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent, celles-ci ne sont présentées qu'à titre indicatif et nullement limitatif de l'invention. Les figures montrent :
- Figure 1 : la représentation schématique d'une chambre réverbérante selon l'invention ;
- Figure 2 : un exemple préféré de réalisation d'une antenne et d'un brasseur de rayonnement selon l'invention ; - Figure 3 : une variante de réalisation du brasseur.
La Figure 1 montre une chambre réverbérante 1 selon l'invention. Cette chambre 1 comporte des parois telles que 2 à 7 de préférence réfléchissantes, par exemple toutes recouvertes de métallisations, notamment de plaques de métal telles que 8 à 10. La chambre 1 est de préférence close sur toutes ses faces. Les parois 2 à 7 étant destinées à réfléchir des ondes, il est possible plutôt que de réaliser une métallisation d'y prévoir un gradient d'indices de réfraction, pour obtenir un effet du même ordre. La chambre 1 comporte par ailleurs un support 1 1 pour supporter un objet 12 soumis à un test de rayonnement. L'objet 12 peut être un objet quelconque, mais il est de préférence un objet de type électronique. Il peut par exemple être un satellite, un tableau de bord d'un avion, un boîtier d'un micro-ordinateur ou tout autre appareil. L'objet 12 est par ailleurs relié par un bus 13 de communication et d'alimentation à un dispositif 14 de gestion du test. Ce dispositif 14 comportera dans son principe un microprocesseur 15 relié par un bus 16 à une mémoire programme 17, comportant un programme de test 18, à une mémoire de données 19, pour enregistrer des résultats de mesure ou pour contenir des paramètres de mesure, et à une interface 20 de communication avec l'objet 12.
La chambre 1 comporte par ailleurs une antenne radioélectrique 21 , représentée ici par un cornet. L'antenne 21 est par exemple alimentée par le dispositif de test 14, par l'intermédiaire d'un bus 22 de puissance et de commande, relié lui aussi à l'interface 20. Un émetteur radioélectrique ainsi commandé peut être physiquement placé dans la chambre 1 ou à l'extérieur.
Selon l'invention, l'antenne 21 , dans un exemple, possède une direction principale d'irradiation 23. Dans ce cas, la chambre 1 possède un moyen pour modifier une orientation de cette direction 23 principale de rayonnement de l'antenne 21 dans la chambre 1. Par exemple, le moyen de modifier une orientation de la direction principale 23 comporte un premier moteur 24 pour modifier un azimut de l'orientation 23 dans un plan XOY référencé par rapport aux parois de la chambre 1. De préférence, ces moyens de modifier comporteront également un deuxième moteur 25 lui aussi commandé par le dispositif 14 pour modifier une orientation en site de la direction principale d'irradiation 23. Eventuellement, il peut être prévu des déplacements en translation selon chacun des trois axes OX, OY et OZ de la position du cornet 21.
Pour parfaire la variété de distribution des champs électromagnétiques, la chambre 1 comporte par ailleurs un brasseur 26, ici schématiquement représenté par deux ailettes de réflexion 27 et 28. La position en orientation des ailettes 27 et 28, donc du brasseur 26, est maîtrisée au moyen d'un moteur 29 relié par un bus de commande 30 à l'interface 20. De préférence, les moteurs 24, 25 et 29 sont des moteurs de type pas à pas et permettent de faire tenir aux objets qu'ils meuvent les positions fixes dans l'espace à l'intérieur de la chambre. En pratique, le brasseur 26 est placé au dessus de l'objet 12 donc du support 1 1. Un espace existe entre le brasseur 26 et l'objet 12. Le brasseur 26 peut toutefois être décalé latéralement de la verticale du centre de l'objet 12. Le brasseur 26 est de préférence suspendu au plafond 2 de la chambre 1.
De préférence, on évite que l'antenne 21 n'interagisse avec les parois de la chambre 6 et 4 et irradie directement avec son orientation principale 23 l'objet 12. Plusieurs solutions sont possibles. De préférence, l'antenne 21 sera placée en position intermédiaire entre l'objet 12 et une paroi réfléchissante, ici par exemple la paroi 6. Dans ce cas, la direction principale d'irradiation 23 sera orientée globalement en direction de la paroi 6. On évitera avec les moteurs 24 et 25 que le champ produit par l'antenne 21 n'atteigne directement l'objet 12. Au besoin, on interposera un écran 31 métallique entre l'antenne 21 et l'objet 12.
Dans l'invention, le brasseur 26 est placé dans la chambre de telle façon qu'il reçoive une portion notable du rayonnement réfléchi par la paroi 6 auquel il fait subir des réflexions supplémentaires, réflexions dont les directions sont fonction de la position en orientation de ce brasseur 26.
En agissant ainsi, on a pu constater que, statistiquement, les dispersions, de valeurs moyennes du champ vu par le récepteur étaient réduites.
Sur le plan pratique, le brasseur 26 est un objet de grande taille. Par exemple, son extension verticale peut être de l'ordre de la moitié de la hauteur de la chambre 1 , mesurée selon l'axe Z. Son diamètre, puisque la plupart du temps il est amené à tourner, peut être de l'ordre de 75 % de la plus petite des dimensions en largeur ou en longueur de la chambre 1. Par exemple, dans une chambre où les dimensions sont de 2 m par 3 m pour 2 mètres de hauteur, le brasseur peut avoir un diamètre de 1 ,50 m, pour un mètre de haut. Dans tous les cas, une dimension significative du brasseur, par exemple, sa hauteur ou son diamètre, sera supérieure à 20 % d'une des dimensions de la chambre, la hauteur, la largeur ou la longueur de celle-ci.
En agissant ainsi, pour provoquer la variété des modes de cavité créés dans la chambre 1 , on n'a pas besoin de déplacer l'objet 12, ce qui pourrait être relativement impossible si celui-ci était de grande taille, notamment s'il était un satellite. Par contre, on peut se contenter de déplacer en orientation un cornet 21 (c'est simple) tout en continuant à faire tourner le brasseur 26. On réalise ainsi un brassage de position. Dans une variante préférée, Figure 2, l'antenne 21 sera remplacée par une antenne 32 isotrope située par ailleurs à l'intérieur d'un cylindre de confinement 33 formant le brasseur. Le cylindre 33 est par exemple en métal, il est de préférence réfléchissant pour les ondes électromagnétiques. L'antenne 32 sera par exemple portée par le plancher 5 de la chambre 2 alors que le brasseur 33 qui l'entoure sera suspendu au plafond 2. Dans ce cas, le support 1 1 est décalé. Ou bien l'antenne 32 et le brasseur 33 sont suspendus ensemble. La figure 2 ne montre pas que l'antenne est située dans le cylindre mais dans la pratique, elle y est placée.
Le cylindre 33 est percé de trous tels que 34. Chaque trou forme une direction de rayonnement de l'antenne. Lorsque le brasseur 33 est tourné sur lui-même selon la flèche 35 autour de son arbre porté par le moteur 29, la direction de rayonnement de chaque trou est modifiée. Les trous peuvent être ronds, 34, ou oblongs, 36, ou à branches, 37. Quand ils sont à branches, ils peuvent avoir la forme de croix à quatre branches, voire à plus ou moins de branches. Les trous sont répartis sur le pourtour du cylindre 33 en série régulière tels que les trous 34, 38, 39, 40, etc. Ils peuvent cependant être répartis sur le pourtour du cylindre en série aléatoire, les tailles, les écarts et/ou les formes des trous étant aléatoires. Les tailles et ou les écarts des trous peuvent par ailleurs être identiques ou progressives, de manière à former par leur progressivité un lobe principal 41 d'irradiation qui va tourner avec le brasseur 33. Celui-ci se présente dans la pratique sous la forme d'un cylindre d'un mètre de diamètre et d'un mètre cinquante de haut.
L'antenne 32, isotrope ou non, est excitée par des signaux mono fréquence dont la fréquence varie, de préférence par pas, de 150 Mégahertz à 10 Gigahertz. Ces valeurs de fréquence, cette gamme, correspondent à la gamme pour laquelle on veut caractériser l'objet 12 à tester. Avec cette solution de préférence, le brasseur 33 est placé verticalement au dessus de l'objet 12. En variante, l'axe de rotation du brasseur 33, inclinée autrement qu'à la verticale, passe par l'objet 12. Afin d'éviter les symétries qui sont au cœur des absences ou déficits d'excitation rencontrés et des dispersions entre chambres, on place de préférence l'arbre de rotation 42 (Figure 1 ) du brasseur 26 ou 33 au tiers de chacune des dimensions de largeur, OX, ou de longueur OY de la chambre 1. De même, le centre du brasseur 33, et donc l'antenne 32, sera-t-elle aussi placée au tiers de la hauteur OZ, en partant du haut ou en partant du bas. En évitant ainsi de se placer dans une position médiane, on évite les symétries et on provoque la création d'un nombre plus important de modes de cavité.
Dans la représentation de la Figure 2, le brasseur 33 est volumineux et peut contenir l'antenne 32. Celle-ci peut avoir la forme d'une antenne isotrope ou la forme à cornet avec lobe principal d'irradiation 23 comme montré sur la Figure 1. Et dans ce cas, l'antenne peut aussi tourner indépendamment du brasseur 33.
En variante, Figure 3, le brasseur peut être formé par un cône 43 percé de trous du même type que le brasseur 33. Le brasseur 43, ou 33, peut posséder par ailleurs des déflecteurs 44 situés en regard de certains trous particuliers 45 de sa surface, tronconique ou cylindrique. Ces déflecteurs permettent également de créer des modes particuliers de cavités.
Le but ultime n'est donc pas tant de prévoir une excitation électromagnétique répartie partout dans toutes les directions avec la même puissance, mais plutôt au contraire de prévoir à l'endroit de l'objet 12 des agressions de cet objet 12 selon des incidences les plus variées possible (de préférence des incidences exhaustives et avec une puissance significative, et une bonne statistique moins dépendante des caractéristiques de la chambre . L'invention réalise en faisant tourner la source et le brasseur autour d'elle simultanément un brassage mécanique et de position.

Claims

REVENDICATIONS
1 - Chambre réverbérante (1 ) comportant, à l'intérieur de la chambre, une antenne (21 ) radioélectrique, des parois (2 - 7) réfléchissantes et un support (1 1 ) d'un objet (12) soumis en test (14) au rayonnement radioélectrique, caractérisée en ce qu'elle comporte un brasseur (26) de rayonnement situé dans la chambre et des moyens (24, 25) pour modifier une orientation d'une direction principale de rayonnement de l'antenne dans la chambre.
2 - Chambre selon la revendication 1 , caractérisé en ce que les moyens pour modifier comportent des moyens pour modifier la direction principale en rotation, en azimut et ou en site, par rapport à un plan de la chambre.
3 - Chambre selon l'une des revendications 1 à 2, caractérisée en ce que le brasseur comporte un cylindre (33) réfléchissant.
4 - Chambre selon la revendication 3, caractérisée en ce que le cylindre est percé de trous (34 - 40).
5 - Chambre selon la revendication 1 , caractérisée en ce que les trous sont ronds, et ou oblongs et ou à branches, et sont répartis sur le pourtour du cylindre en séries régulières, ou progressives, ou aléatoires, et en tailles identiques ou progressives, en fonction de gamme de fréquence de signaux radioélectriques à caractériser.
6 - Chambre selon l'une des revendications 1 à 5, caractérisée en ce que les moyens pour modifier comportent des moyens pour modifier pas à pas la direction principale et ou des moyens pour mouvoir le brasseur pas à pas, et pour explorer toutes les directions pour une fréquence testée.
7 - Chambre selon l'une des revendications 1 à 6, caractérisée en ce que le brasseur possède une dimension supérieure à 20% de l'une des dimensions de la chambre.
8 - Chambre selon l'une des revendications 1 à 7, caractérisé en ce que le brasseur est supporté par un arbre vertical (42).
9 - Chambre selon l'une des revendications 1 à 8, caractérisée en ce que le centre du brasseur est placé au tiers de chacune des dimensions de la chambre.
10 - Chambre selon l'une des revendications 1 à 9, caractérisée en ce que le brasseur forme une structure volumineuse, et que l'antenne est située dans le brasseur (32, 33). ou un système comportant des circuits électroniques.
1 1 - Chambre selon l'une des revendications 1 à 10, caractérisée en ce que le brasseur comporte des déflecteurs (44) fixés à une surface réfléchissante.
12 - Chambre selon l'une des revendications 1 à 1 1 , caractérisée en ce que l'objet soumis au test est un équipement électronique.
13 - Chambre selon l'une des revendications 1 à 12, caractérisée en ce qu'elle comporte un écran métallique interposé entre l'antenne et l'objet.
PCT/FR2007/051871 2006-09-14 2007-09-05 Chambre réverbérante WO2008031964A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07823768A EP2062061A2 (fr) 2006-09-14 2007-09-05 Chambre réverbérante
CA002663391A CA2663391A1 (fr) 2006-09-14 2007-09-05 Chambre reverberante
US12/441,181 US20090303141A1 (en) 2006-09-14 2007-09-05 Reverberation chamber
JP2009527860A JP2010503843A (ja) 2006-09-14 2007-09-05 電磁波残響の試験室

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653749A FR2906040B1 (fr) 2006-09-14 2006-09-14 Chambre reverberante
FR0653749 2006-09-14

Publications (2)

Publication Number Publication Date
WO2008031964A2 true WO2008031964A2 (fr) 2008-03-20
WO2008031964A3 WO2008031964A3 (fr) 2008-05-15

Family

ID=37873181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051871 WO2008031964A2 (fr) 2006-09-14 2007-09-05 Chambre réverbérante

Country Status (9)

Country Link
US (1) US20090303141A1 (fr)
EP (1) EP2062061A2 (fr)
JP (1) JP2010503843A (fr)
KR (1) KR20090075678A (fr)
CN (1) CN101523228A (fr)
CA (1) CA2663391A1 (fr)
FR (1) FR2906040B1 (fr)
RU (1) RU2419801C2 (fr)
WO (1) WO2008031964A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026274A1 (fr) 2008-09-03 2010-03-11 EMITE INGENIERíA, SLNE Système d'analyse d'entrées multiples et de sorties multiples
ES2710122A1 (es) * 2017-10-18 2019-04-23 Emite Ingenieria S L Camara multimodo resonante con multiples entradas y salidas para la realizacion de medidas inalambricas y pruebas de drive tests en laboratorio con paredes, suelo y techo convertibles
CN116879666A (zh) * 2023-09-07 2023-10-13 合肥航太电物理技术有限公司 一种机载设备高强辐射场测试装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8514921B2 (en) * 2008-07-16 2013-08-20 The Boeing Company Assessing aircraft interference path loss employing discrete frequency stirring
CN101948748B (zh) * 2010-09-07 2013-04-24 工业和信息化部通信计量中心 生物电磁照射实验设备
WO2012097732A1 (fr) * 2011-01-18 2012-07-26 The University Of Hongkong Chambre de réverbération électronique compacte
FR3004261B1 (fr) * 2013-04-03 2015-12-11 Centre Nat Rech Scient Chambre reverberante a uniformite de champ electromagnetique amelioree
JP6186881B2 (ja) * 2013-05-21 2017-08-30 株式会社村田製作所 電波反射箱の等方性評価方法
KR101442557B1 (ko) * 2013-05-30 2014-09-22 주식회사 한국차폐시스템 전파환경의 재구성이 가능한 잔향챔버를 이용한 무선 스마트기기 감도 시험 시스템
CN103439407A (zh) * 2013-08-09 2013-12-11 无锡吉兴汽车声学部件科技有限公司 汽车声学部件材料隔声测试的工装
JP6164057B2 (ja) * 2013-11-13 2017-07-19 株式会社村田製作所 電波反射箱および電波反射箱の遅延スプレッド制御方法
CN103743959B (zh) * 2014-01-24 2015-12-30 中国人民解放军军械工程学院 一种基于频率搅拌技术的测试混响室中不规则结构腔体屏蔽效能的方法
KR101417919B1 (ko) * 2014-03-05 2014-07-10 국방과학연구소 전자파 잔향실용 스터러 장치
RU2614454C1 (ru) * 2015-11-12 2017-03-28 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" Реверберационная камера
KR101935259B1 (ko) * 2017-02-10 2019-01-07 한국전자통신연구원 전자파 잔향실
CA2974054C (fr) 2017-07-21 2018-10-02 Mpb Technologies Inc. Sources melangees et methode de test de radiofrequence
US11536760B2 (en) * 2017-11-28 2022-12-27 Ase Test, Inc. Testing device, testing system, and testing method
CN108061836A (zh) * 2017-12-26 2018-05-22 北京中科国技信息系统有限公司 源搅拌电磁混响装置及其搅拌方法
SE541521C2 (en) * 2018-01-17 2019-10-29 Bluetest Ab Apparatus and method for production testing of devices with wireless capability
CN108318758A (zh) * 2018-01-23 2018-07-24 南京航空航天大学 超表面混响室
KR102656384B1 (ko) * 2018-05-02 2024-04-15 한국전자통신연구원 잔향 챔버
US10809290B2 (en) * 2018-07-31 2020-10-20 Rohde & Schwarz Gmbh & Co. Kg Resonant cavity for wireless communication measurement and corresponding method
JP7354705B2 (ja) * 2019-09-09 2023-10-03 Tdk株式会社 電磁攪拌器、及び反射箱
SE544144C2 (en) * 2020-03-03 2022-01-11 Bluetest Ab A hybrid antenna measurement chamber
SE2030254A1 (en) * 2020-08-14 2021-09-14 Bluetest Ab A high-frequency mode stirrer for reverberation chambers
KR20230036740A (ko) 2021-09-08 2023-03-15 한국산업기술시험원 극한전파환경 조성용 스터러 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215971A (ja) * 1987-03-04 1988-09-08 Toshiba Corp アンテナ効率測定方法
FR2824669A1 (fr) * 2001-05-10 2002-11-15 Renault Dispositif de brassage electromagnetique pour chambre reverberante
US20030184417A1 (en) * 2002-03-28 2003-10-02 Institute Of High Performance Computing Hybrid mode stirred and mode tuned chamber
FR2887337A1 (fr) * 2005-06-17 2006-12-22 Peugeot Citroen Automobiles Sa Dispositif et procede de brassage electromagnetique dans une chambre reverberante a brassage de modes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3257170B2 (ja) * 1993-07-22 2002-02-18 ティーディーケイ株式会社 小型無線機器の性能評価用測定室
JPH0755862A (ja) * 1993-08-18 1995-03-03 Hitachi Ltd 端末受信状態測定装置
US5530412A (en) * 1993-09-03 1996-06-25 Emc Science Center, Inc. Enhanced mode stirred test chamber
JP3280861B2 (ja) * 1996-07-11 2002-05-13 宏之 新井 電磁波環境試験用の電波反射箱及びそれを用いる電磁波環境試験方法
JPH11355222A (ja) * 1998-06-08 1999-12-24 Ntt Mobil Commun Network Inc フェージングジェネレータ
NL1010745C2 (nl) * 1998-12-07 2000-06-08 Hollandse Signaalapparaten Bv Testruimte.
JP2000180489A (ja) * 1998-12-15 2000-06-30 Ten Kk 簡易形電磁波測定用ボックス
US6686818B1 (en) * 1999-03-09 2004-02-03 The Curran Company Reverberation chamber tuner and shaft with electromagnetic radiation leakage device
US6133800A (en) * 1999-08-02 2000-10-17 Datum Inc. Subminiature microwave cavity
SE0002980D0 (sv) * 2000-03-31 2000-08-23 Kildal Antenn Consulting Ab A method and an apparatus for measuring the performance of antennas
US7105787B2 (en) * 2002-10-29 2006-09-12 Fiore Industries, Inc. Reverberating adaptive microwave-stirred exposure system
US6667466B1 (en) * 2002-11-20 2003-12-23 Maytag Corporation Microwave delivery system for a cooking appliance
JP4526945B2 (ja) * 2004-12-28 2010-08-18 マスプロ電工株式会社 Emc試験用アンテナ装置及びemc試験装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63215971A (ja) * 1987-03-04 1988-09-08 Toshiba Corp アンテナ効率測定方法
FR2824669A1 (fr) * 2001-05-10 2002-11-15 Renault Dispositif de brassage electromagnetique pour chambre reverberante
US20030184417A1 (en) * 2002-03-28 2003-10-02 Institute Of High Performance Computing Hybrid mode stirred and mode tuned chamber
FR2887337A1 (fr) * 2005-06-17 2006-12-22 Peugeot Citroen Automobiles Sa Dispositif et procede de brassage electromagnetique dans une chambre reverberante a brassage de modes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026274A1 (fr) 2008-09-03 2010-03-11 EMITE INGENIERíA, SLNE Système d'analyse d'entrées multiples et de sorties multiples
JP2012502535A (ja) * 2008-09-03 2012-01-26 エミテ、インヘニエリア、ソシエダッド、リミターダ、ヌエバ、エンプレサ 多重入出力アナライザー
US8872080B2 (en) 2008-09-03 2014-10-28 Emite Ingenieria, Slne Multiple input, multiple output analyser
ES2605233R1 (es) * 2008-09-03 2017-05-09 EMITE Ingeniería S.L. Analizador ultrarrápido de múltiples entradas y múltiples salidas
ES2710122A1 (es) * 2017-10-18 2019-04-23 Emite Ingenieria S L Camara multimodo resonante con multiples entradas y salidas para la realizacion de medidas inalambricas y pruebas de drive tests en laboratorio con paredes, suelo y techo convertibles
CN116879666A (zh) * 2023-09-07 2023-10-13 合肥航太电物理技术有限公司 一种机载设备高强辐射场测试装置
CN116879666B (zh) * 2023-09-07 2023-11-28 合肥航太电物理技术有限公司 一种机载设备高强辐射场测试装置

Also Published As

Publication number Publication date
US20090303141A1 (en) 2009-12-10
KR20090075678A (ko) 2009-07-08
EP2062061A2 (fr) 2009-05-27
RU2419801C2 (ru) 2011-05-27
CN101523228A (zh) 2009-09-02
FR2906040B1 (fr) 2009-03-20
CA2663391A1 (fr) 2008-03-20
RU2009113809A (ru) 2010-10-20
JP2010503843A (ja) 2010-02-04
FR2906040A1 (fr) 2008-03-21
WO2008031964A3 (fr) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2008031964A2 (fr) Chambre réverbérante
EP1712900B1 (fr) Dispositif d`analyse de la composition du contenu d`un recipient
FR2564208A1 (fr) Procede et dispositif de diagraphie acoustique
WO2001009626A1 (fr) Procede et dispositif de mesure en champ proche de rayonnements radioelectriques non controles
WO2004079379A2 (fr) Antenne pour detecter des decharges partielles dans une cuve d'appareillage electrique
EP2981836A1 (fr) Chambre reverberante a uniformite de champ electromagnetique amelioree
EP1063528B1 (fr) Dispositif de mesure de caractéristiques d'un champ électromagnétique, notamment du diagramme de rayonnement d'une antenne
EP2534499A1 (fr) Resonateur lineaire d'une antenne haute frequence pour appareil d'imagerie par resonance magnetique nucleaire
WO2012076545A1 (fr) Procédé de caractérisation d'échantillon solide par spectrométrie rmn et appareil pour la mise en oeuvre du procédé
WO2007048752A1 (fr) Procede de mesure de permeabilite magnetique et echantillon de reference utilise dans celui-ci
EP1980844B1 (fr) Analyse de la composition du contenu d'un récipient par mesure des caractéristiques diélectriques complexes à plusieurs fréquences échantillonnées sur la plage d'excitation de quelques Hz à plusieurs GHz et par mesure de la masse du récipient avec son contenu
WO2015007982A1 (fr) Chambre électromagnétique à retournement temporel
EP2310815A2 (fr) Capteur d'impédance acoustique prévu pour mesurer l'impédance acoustique d'entrée d'un guide d'onde
Pinhède et al. Design and measurement of a reference source at lower frequencies
EP1660895B1 (fr) Chambre anechoique a observation directe du comportement electromagnetique d'un outil a etudier
Armstrong et al. An experimental investigation of the use of Q-factor to determine the shielding effectiveness of electrically large equipment enclosures with apertures
EP1597601A2 (fr) Procede et systeme pour mesurer un debit d'absorption specifique (das)
Gifuni et al. Estimate of the shielding effectiveness of an electrically large enclosure made with pierced metallic plate in a well-stirred reverberation chamber
FR3027684A1 (fr) Methode d'obtention d'une cible-etalon a faible ser monostatique dans une direction determinee
FR2944878A1 (fr) Methode de caracterisation electromagnetique d'une cible
FR3011337A1 (fr) Systeme d'antenne radiofrequence fonde sur l'hybridation de mode pour dispositif de resonance magnetique nucleaire
FR2824669A1 (fr) Dispositif de brassage electromagnetique pour chambre reverberante
FR3027113B1 (fr) Procede et dispositif de mesure de diagramme de rayonnement de source radiative en milieu echogene
FR2884612A1 (fr) Dispositif d'analyse de la composition du contenu d'un recipient
Böser Acoustic sensor and transmitter development for a large volume neutrino detection array in ice

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034336.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07823768

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007823768

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009527860

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2663391

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1662/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097006783

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2009113809

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12441181

Country of ref document: US