WO2008026687A1 - Dérivé de pyrazolopyridine carboxamide et inhibiteur de phosphodiestérase (pde) comprenant le dérivé - Google Patents

Dérivé de pyrazolopyridine carboxamide et inhibiteur de phosphodiestérase (pde) comprenant le dérivé Download PDF

Info

Publication number
WO2008026687A1
WO2008026687A1 PCT/JP2007/066890 JP2007066890W WO2008026687A1 WO 2008026687 A1 WO2008026687 A1 WO 2008026687A1 JP 2007066890 W JP2007066890 W JP 2007066890W WO 2008026687 A1 WO2008026687 A1 WO 2008026687A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pyridine
general formula
chemical
reaction
Prior art date
Application number
PCT/JP2007/066890
Other languages
English (en)
French (fr)
Inventor
Yasushi Kohno
Koji Ochiai
Akihiko Kojima
Original Assignee
Kyorin Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyorin Pharmaceutical Co., Ltd. filed Critical Kyorin Pharmaceutical Co., Ltd.
Priority to EP07806367A priority Critical patent/EP2058310A4/en
Priority to JP2008532113A priority patent/JPWO2008026687A1/ja
Priority to US12/310,562 priority patent/US20100056791A1/en
Priority to CA002661850A priority patent/CA2661850A1/en
Publication of WO2008026687A1 publication Critical patent/WO2008026687A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/02Nasal agents, e.g. decongestants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives

Definitions

  • the present invention relates to a pyrazomouth pyridinecarboxamide derivative useful as a phosphodiesterase (PDE) inhibitor, an addition salt and a hydrate thereof.
  • PDE phosphodiesterase
  • Phosphodiesterase is an enzyme that degrades cyclic AMP (cAMP) and cyclic GMP (cGMP), which are second messengers in vivo.
  • cAMP cyclic AMP
  • cGMP cyclic GMP
  • PDEs have a power of 1 to 11; the ability to specifically decompose cAMP, whether to specifically decompose cG MP, or both It has been decided.
  • There is a difference in the distribution of each type of PDE tissue and it is thought that the cell response is controlled by various types of PDE depending on the type of organ.
  • PDE3 inhibitors are used as therapeutic agents for angina pectoris, heart failure, hypertension, platelet aggregation inhibitors or anti-asthma drugs, and PDE4 inhibitors.
  • COPD chronic obstructive pulmonary disease
  • interstitial pneumonia As a treatment for bronchial asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonia, allergic rhinitis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, dementia, Parkinson's disease, etc.
  • COPD chronic obstructive pulmonary disease
  • PDE5 inhibitors are used clinically as drugs for male sexual dysfunction.
  • Patent Document 1 More recently, it was reported that minocycline was effective as a PDE10A modulator in patients with Huntington's disease (Patent Document 1), and PDE10 inhibitors were Huntington's disease, Alzheimer's disease, dementia, Parkinson's disease, schizophrenia.
  • An open patent gazette that has been shown to be effective as a remedy for various mental disorders has also been disclosed (Patent Document 2).
  • Patent Document 1 Pamphlet of WO01024781
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-363103
  • Patent Document 3 Republished W098 / 14448
  • Patent Document 4 Japanese Patent Laid-Open No. 10-109988
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2006-117647
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2006-109138
  • Patent Document 7 WO2006004040 pamphlet
  • Patent Document 8 WO2004089940 pamphlet
  • Patent Document 9 WO2004069831 pamphlet
  • Patent Document 10 WO2004048377 pamphlet
  • Patent document 11 WO2004037805 pamphlet
  • Patent Document 12 WO2003105902 pamphlet
  • Patent Document 13 WO2003078397 pamphlet
  • Patent Document 14 WO2003066044 pamphlet
  • Patent Document 15 WO2002034747 pamphlet
  • Patent Document 16 WO2002028353 pamphlet
  • Patent Document 17 WO2000048998 pamphlet
  • Patent Document 18 W09916768 pamphlet
  • Patent Document 19 WO9822460 pamphlet
  • Patent Document 20 WO9809961 pamphlet
  • Patent Document 21 Pamphlet of W09748697
  • Patent Document 22 WO9744036 pamphlet
  • Patent Document 23 WO9501338 pamphlet
  • Patent Document 24 US Patent Publication No. 2005027129
  • Patent Document 25 US Patent Publication No. 2004102472
  • Patent Document 26 US Patent Publication 2002128290 Specification
  • Patent Document 27 US Patent No. 6127363
  • Patent Document 28 JP-A-8-307982
  • Patent Document 29 Specification of British Patent No. 2327675
  • Patent Document 30 German Patent No. 19633051 Specification
  • Patent Document 31 German Patent No. 10253426
  • Non-patent literature l Bioorganic & Medicinal Chemistry Letters (2002), 12 (12), 1621-1623.
  • Non-patent literature 2 Bioorganic & Medicinal Chemistry Letters (2002), 12 (12), 1613-1615.
  • Non-patent literature 3 Bioorganic & Medicinal Chemistry Letters (2002), 12 (3), 509_512.
  • Non-patent literature 4 Bioorganic & Medicinal Chemistry Letters (2000), 10 (18), 2137-2140.
  • Non-patent literature 5 Bioorganic & Medicinal Chemistry Letters (1998), 8 (14), 1867-1872.
  • Non-patent document 6 Bioorganic & Medicinal Chemistry (1999), 7 (6), 1131_1139.
  • Non-patent document 7 European Journal of Medicinal Chemistry (2003), 38, 975 -982.
  • An object of the present invention is to provide a pyrazomouth pyridinecarboxamide derivative having an excellent phosphodiesterase inhibitory action and few side effects.
  • the present invention relates to
  • R 1 is a hydrogen atom, an optionally substituted carbon group;
  • the substituent is selected from the group consisting of a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, and a halogen atom) 1 or 2 or more selected groups
  • an alkoxy group having 1 to 6 carbon atoms an alkylsulfanyl group having 1 to 6 carbon atoms, an alkylsulfier group having 1 to 6 carbon atoms, an alkylsulfonyl group having 1 to 6 carbon atoms,
  • An amino group which may be substituted with an alkyl group having 1 to 6 carbon atoms or an alkanoyl group having 1 to 6 carbon atoms, wherein R 2 is a hydrogen atom, an optionally substituted carbon group;!
  • -6 alkyl groups (substituted) Group is a hydroxyl group, a 1 or 2 or more group selected from the group consisting of an alkoxy group having 1 to 6 carbon atoms and a halogen atom), a cycloalkyl group having 3 to 8 carbon atoms, an alkanol group having 1 to 6 carbon atoms, Cal Bokishiru group, a Okishimu group or Shiano group, R 3 is a hydrogen atom, c Indicates Gen atom or a hydroxyl group, R 4 represents an optionally substituted pyridyl group or a N- Okishido or halogen atoms which may be substituted phenylene Le group with a halogen atom]
  • R 1 is an alkoxy group having 1 to 6 carbon atoms or a hydroxyalkyl group having 1 to 6 carbon atoms.
  • R 2 is a cycloalkyl group having 3 to 6 carbon atoms, a cyano group or a carbon number of 1
  • the alkyl group may be substituted with one or two or more substituents selected from the group consisting of a hydroxyl group, an alkoxy group having 1 to 4 carbon atoms, and a no, rogen atom.
  • a phosphodiesterase (PDE) inhibitor comprising the pyrazomouth pyridine-4-ylcarboxamide derivative according to any one of 1) to 5), a pharmacologically acceptable salt thereof or a hydrate thereof.
  • the present invention relates to a pharmaceutical comprising as an active ingredient the pyrazomouth pyridine-4-ylcarboxamide derivative according to any one of 1) to 5), a pharmacologically acceptable salt thereof or a hydrate thereof. is there.
  • the pyrazomouth pyridinecarboxamide derivative according to the present invention is an excellent phosphodiesterase. (PDE) Inhibiting action, bronchial asthma, chronic obstructive pulmonary disease (COPD), interstitial pneumonia, allergic rhinitis, atopic dermatitis, rheumatoid arthritis, multiple sclerosis, Huntington's disease, Alzheimer's disease, It is useful as a prophylactic and therapeutic drug for dementia, Parkinson's disease, schizophrenia, etc.
  • PDE phosphodiesterase.
  • COPD chronic obstructive pulmonary disease
  • interstitial pneumonia allergic rhinitis
  • atopic dermatitis rheumatoid arthritis
  • multiple sclerosis Huntington's disease
  • Alzheimer's disease Alzheimer's disease
  • It is useful as a prophylactic and therapeutic drug for dementia, Parkinson's disease, schizophrenia, etc.
  • the “C 1-6 alkoxy group” of R 1 and R 2 is a straight chain or branched alkoxy group having carbon number;! -6, preferably 1 to 4 carbon atoms.
  • the alkoxy group examples thereof include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, and a t-butoxy group.
  • halogen atom in R 2 , R 3 and R 4 means a fluorine atom, a chlorine atom, a bromine atom or a silicon atom.
  • the “alkyl group having 1 to 6 carbon atoms” of R 1 and R 2 is a linear or branched alkyl group having carbon atoms;! To 6 and preferably an alkyl group having 1 to 4 carbon atoms. It is. Examples thereof include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a t-butyl group.
  • R 1 and R 2 "optionally substituted alkyl group having 1 to 6 carbon atoms (the substituent is selected from the group consisting of a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms and a norogen atom 1 or 2 Examples of the above groups) include hydroxymethyl group, methoxymethyl group, ethoxymethyl group, propoxymethyl group, isopropoxymethyl group, butoxymethyl group, isobutoxymethyl group, sec-butoxymethyl group, t-butoxymethyl group , Monofluoromethyl group, difluoromethyl group, trifluoromethyl group and the like. Preferred are a hydroxymethyl group and a trifluoromethyl group.
  • alkyl sulfanyl group having 1 to 6 carbon atoms is a linear or branched alkyl sulfanyl group having carbon numbers;! To 6 and preferably an alkyl sulfanyl group having 1 to 4 carbon atoms. It is.
  • the "alkyl sulfinyl group having 1 to 6 carbon atoms" of R 1 is a straight chain or branched alkyl sulfier group having carbon numbers;! To 6 and preferably an alkyl sulfenyl group having 1 to 4 carbon atoms. It is a Fiel group.
  • methylsulfinyl group ethylsulfinyl group, propylsulfininole group, isopropinoresnorefininore group, butinoresnorefininore group, isobutinoresnorefininore group, sec-butylsulfiel group, t
  • a butylsulfiel group a butylsulfiel group.
  • the "carbon number;! -6 alkylsulfonyl group" of R 1 is a linear or branched alkylsulfonyl group having carbon number;! -6, preferably an alkylsulfonyl group having 1 to 4 carbon atoms. It is a group.
  • Examples thereof include a methylsulfonyl group, an ethylsulfonyl group, a propylsulfonyl group, an isopropylsulfonyl group, a butylsulfonyl group, an isobutylsulfonyl group, a sec-butynolesulfonyl group, and a t-butylsulfonyl group.
  • the "amino group optionally substituted with an alkyl group having 6 to 6 carbon atoms" of R 1 may be substituted with a linear or branched alkyl group having 6 to 6 carbon atoms; An amino group, preferably an alkylamino group having 1 to 4 carbon atoms.
  • the "alkanoyl group having 1 to 6 carbon atoms" of R 1 and R 2 is a straight chain or branched alkanoyl group having carbon atoms;! To 6 and preferably an alkanoyl group having 1 to 4 carbon atoms. It is. For example, a formyl group, a acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and the like can be given.
  • Examples of the "cycloalkyl group having 3 to 8 carbon atoms" of R 2 include a cyclopropyl group, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • the "may be substituted with a halogen atom! /, Phenyl group" of R 4 may be substituted with one or more halogen atoms selected from a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. Yo! /, The Fueninore group.
  • Examples of the pharmacologically acceptable salt in the present invention include acid addition salts such as hydrochloride, hydrobromide, acetate, trifluoroacetate, methanesulfonate, kenate, and tartrate. Can be mentioned.
  • MSH 0-mesitylenesulfonylhydroxylamine
  • R 5 represents an alkyl group having 1 to 6 carbon atoms or a benzyl group, and R 1 and IT are as described above]
  • Step A-2 Can be produced by acting in the presence of a base (step A-2).
  • the reaction consists of methanol, ethanol, 1,4 dioxane, dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), tetrahydrofuran (THF), cyclopentyl methylol ether (CPME), toluene, benzene, cyclohexane.
  • Cyclopentane, methyl chloride, chloroform, and acetonitrile are used as the reaction solvent in the presence of an inorganic base such as sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, and potassium carbonate, or an organic base such as triethylamine.
  • the temperature can be 0 ° C to room temperature.
  • the compound represented by general formula (4) can be produced by subjecting the compound represented by general formula (4) to a hydrolysis reaction (step A-3).
  • the reaction is carried out in a solvent such as methanol, ethanol, THF, CPME, DMSO, DMF, 1,4 dioxane, aqueous potassium hydroxide, aqueous sodium hydroxide, or aqueous lithium hydroxide, preferably hydroxylated.
  • a solvent such as methanol, ethanol, THF, CPME, DMSO, DMF, 1,4 dioxane, aqueous potassium hydroxide, aqueous sodium hydroxide, or aqueous lithium hydroxide, preferably hydroxylated.
  • the compound represented by general formula (5) is produced by decarboxylation of the compound represented by general formula (5) (Step A-4) or by hydrolysis and decarboxylation of the compound represented by general formula (4).
  • the compound represented by the general formula (5) is obtained in an organic solvent such as benzene, black benzene, dichlorobenzene, bromobenzene, toluene, and xylene at a temperature of 100 ° C to It can be performed by heating to 160 ° C.
  • this reaction is carried out in ethanol or 1,4-dioxane, 2 to; 10% sulfuric acid aqueous solution is added and heated at 80 ° C to 120 ° C, or in 50% sulfuric acid to 80 ° C to 120 ° C. It can also be performed by heating to ° C.
  • the reaction in the case of using the compound represented by the general formula (4) can be carried out by using hydrobromic acid or acetic acid containing hydrogen bromide and acting under heating and reflux.
  • this reaction is conducted in ethanol or 1,4-dioxane, 2 ⁇ ; 10% sulfuric acid aqueous solution is added and heated at 80 ° C ⁇ ; 120 ° C or in 50% sulfuric acid 80 ⁇ C ⁇ 120 It can also be performed by heating to ° C.
  • the reaction can be carried out using a commonly used oxidative method of alcohols to aldehydes or ketones, such as pyridinium chromatochromate, pyridinium nichromate, etc.
  • DMSO activation such as metal oxides such as chromium oxide pyridine complex, chromium oxide, silver carbonate, manganese dioxide, sulfur trioxide pyridine complex, oxalyl chloride, trifluoroacetic anhydride, acetic anhydride or dicyclohexyl carpositimide (DCC) DMSO oxidation using an agent or Dess Martin oxidation reaction.
  • the reaction can be performed at -78 ° C to 100 ° C.
  • the compound represented by general formula (7) can be produced by oxidizing the compound represented by general formula (7) (step A-6) or by oxidizing the compound represented by general formula (5).
  • the oxidation reaction in step A-6 can be carried out using a commonly used oxidative method of aldehydes to carboxylic acids such as air oxidation, oxygen oxidation, pyridinium chromate, pyridinium dichromate.
  • It can be carried out by oxidation reaction with hydrogen, chlorine or N-promosuccinimide.
  • the reaction temperature can be 0 ° C to 100 ° C.
  • oxidative method of alkanols to carboxylic acids can be used, for example, oxygen oxidation, chromic acid, chromic acid.
  • Oxidation reaction with potassium oxide such as potassium, pyridinium chromate, pyridinium dichromate, potassium permanganate, ruthenium oxide, ruthenium, sodium periodate, silver oxide, white powder, hydrogen peroxide can be done.
  • the reaction temperature can be 0 ° C to 100 ° C.
  • reaction a synthesis reaction of amides by a condensation reaction of carboxylic acids and amines which are generally used can be used.
  • the compound represented by the general formula (8) is converted into an acid chloride with thionyl chloride, oxalyl chloride, or the like, and then reacted with the compound represented by the general formula (10) or represented by the general formula (8).
  • the compound represented by general formula (10) is converted to sodium chloride, diisopropylaluminum hydride (DIBAL), sodium bis (2-methoxyethoxy) aluminum hydride (Red-Al), n-butyl. It can be carried out by reacting with a compound treated with a base such as lithium.
  • DIBAL diisopropylaluminum hydride
  • Red-Al sodium bis (2-methoxyethoxy) aluminum hydride
  • n-butyl n-butyl. It can be carried out by reacting with a compound treated with a base such as
  • the compound represented by the general formula (10) is treated with a base such as sodium hydride, DIBAL, or Red-AU n butyllithium. It can also be carried out by reacting with a compound.
  • a base such as sodium hydride, DIBAL, or Red-AU n butyllithium. It can also be carried out by reacting with a compound.
  • the compound represented by the general formula (8) and the compound represented by the general formula (10) can be added to DCC, N— (3-dimethylaminopropyl) N ′ ethyl carpositimide hydrochloride (WSC).
  • WSC N— (3-dimethylaminopropyl) N ′ ethyl carpositimide hydrochloride
  • the reaction can also be carried out by the action of a dehydrating condensing agent.
  • the reaction temperature can be 0 ° C to 100 ° C.
  • R 2 is a difluoromethyl group
  • the compound represented by can also be synthesized by the following synthesis route B.
  • R 6 is a force indicating an alkyl group having 1 to 6 carbon atoms, or two R 6 are connected to form a carbon number.
  • reaction solvent methanol, ethanol, 1,4-dioxane, DMSO, DMF, THF, CPM E, toluene, benzene, cyclohexane, cyclopentane, methylene chloride, chloroform, formonitrile, etc.
  • an inorganic base such as sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, or an organic base such as triethylamine
  • the reaction temperature can be 0 ° C to room temperature.
  • the compound represented by general formula (4b) can be produced by subjecting the compound represented by general formula (4b) to various alcohol protecting group introduction reactions (step B-2).
  • the reaction is carried out in the presence of a base such as sodium hydride, triethylamine, diisopropylethylamine, methoxymethyl chloride or methoxymethyl bromide, THF, acetonitrile or
  • a base such as sodium hydride, triethylamine, diisopropylethylamine, methoxymethyl chloride or methoxymethyl bromide, THF, acetonitrile or
  • the reaction can be carried out in methylene chloride at 0 ° C to room temperature.
  • reaction is carried out in the presence of a base such as triethylamine or imidazole with the corresponding silyl chloride, silylpromide, silyltrifluoromethanesulfonate,
  • a base such as triethylamine or imidazole
  • the reaction can be carried out in a solvent such as THF, CPME, DMF, acetonitrile, or methylene chloride at 0 ° C to room temperature.
  • the reaction is preferably carried out by reacting dihydropyran in the presence of an acid catalyst such as paratoluenesulfonic acid in a solvent such as methylene chloride at 0 ° C. to room temperature.
  • an acid catalyst such as paratoluenesulfonic acid
  • a solvent such as methylene chloride
  • the reaction is carried out with acetyl chloride, acetyl bromide or acetic anhydride, THF, 1,4 dioxane, methylene chloride, etc. in the presence of an organic base such as triethylamine, diisopropylethylamine, pyridine and the like.
  • the solvent can be used at 0 ° C to room temperature.
  • the reaction can also be carried out using pyridine or the like as a solvent that also serves as a base.
  • reaction was carried out in acetone solvent, paratoluenesulfonic acid monohydrate, pyridinium paratoluene.
  • an acid catalyst such as sulfonate and let it act at room temperature to under reflux, or use methanol, ethanol, ethyl acetate, or ethyl ether containing hydrogen chloride.
  • the reaction can be carried out at V, o ° c to room temperature.
  • the compound represented by general formula (12b) can be produced by subjecting the compound represented by general formula (12b) to a fluorination reaction (step B-4).
  • the reaction is carried out using a fluorinating agent such as dimethylaminosulfur trifluoride or dimethylaminosulfur trifluoride in a solvent such as dichloromethane at 0 ° C to room temperature.
  • a fluorinating agent such as dimethylaminosulfur trifluoride or dimethylaminosulfur trifluoride in a solvent such as dichloromethane at 0 ° C to room temperature.
  • the compound represented by the general formula (13b) can be produced by subjecting the compound represented by the general formula (13b) to the deprotection reaction of the protecting group of alcohol and the hydrolysis reaction of the ester S ( Process B—5).
  • the deprotection reaction of the protecting group of the alcohol is carried out in the case where the protecting group is a methoxymethyl group or a tetrahydropyranyl group, methanol containing hydrogen chloride, ethanol, ethyl acetate, jetyl ether. Tellurium can be used as a solvent, and the reaction can be carried out at o ° c to room temperature.
  • Protective group power 3 ⁇ 4 In the case of silyl groups such as butyl dimethylsilyl group, t-butyldiphenyl silyl group, triisopropyl silyl group, etc., potassium fluoride, cesium fluoride, tetraptylammonium fluoride are used, and acetononitrile is used. Alternatively, it can be carried out in a solvent such as THF at 0 ° C. to room temperature. If the protecting group is a acetyl group, use sodium hydroxide aqueous solution, potassium hydroxide aqueous solution or lithium hydroxide aqueous solution, and use THF, CPME, methanol, ethanol, 1,4 dioxane, etc. as solvent at 0 ° C to room temperature Can be done.
  • the hydrolysis reaction of the esters is preferably carried out in a solvent such as methanol, ethanol, THF, CPME, DMSO, DMF, 1,4 dioxane, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or an aqueous lithium hydroxide solution.
  • a solvent such as methanol, ethanol, THF, CPME, DMSO, DMF, 1,4 dioxane, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or an aqueous lithium hydroxide solution.
  • a solvent such as methanol, ethanol, THF, CPME, DMSO, DMF, 1,4 dioxane, an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or an aqueous lithium hydroxide solution.
  • the compound represented by general formula (5b) can be produced by decarboxylation of the compound represented by general formula (5b) (step B-6).
  • the oxidation reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • the reaction can be carried out using THF, CPME, ether, 1,4 dioxane or the like as a reaction solvent at a reaction temperature of 78 ° C to room temperature.
  • oxidation reaction can be carried out using a generally used oxidative method of alcohols to aldehydes or ketones, and can be performed, for example, in the same manner as in Step A-5.
  • Step B-10 Can be produced by acting in the presence of a base (step B-10).
  • a compound represented by the general formula (18) is used in a solvent amount in the presence of a base such as sodium hydride, sodium alkoxide, potassium alkoxide, potassium hydride, preferably sodium hydride, 80 ° C. to; preferably carried out by heating to 120 ° C.
  • a base such as sodium hydride, sodium alkoxide, potassium alkoxide, potassium hydride, preferably sodium hydride, 80 ° C. to; preferably carried out by heating to 120 ° C.
  • the compound represented by general formula (16b) is subjected to hydrolysis reaction. Therefore, it can be manufactured (Step B-11).
  • the hydrolysis reaction can be carried out in the same manner as in Step A-3.
  • the compound represented by can also be synthesized by the following synthesis route C.
  • Pro ′ is a methoxymethyl group, t-butyldimethylsilyl group, t-butyldiphenyl Protecting group for alcohol such as silyl group, triisoprovir silyl group, tetrahydrobiranyl group, etc., R 1 and R 5 are as described above]
  • reaction solvents methanol, ethanol, 1,4-dioxane, DMSO, DMF, THF, CPME, toluene, benzene, cyclohexane, cyclopentane, methylene chloride, chloroform, formonitrile, etc. are used as reaction solvents.
  • an inorganic base such as sodium hydrogen carbonate, sodium carbonate, potassium hydrogen carbonate, potassium carbonate, or an organic base such as triethylamine
  • the reaction temperature can be 0 ° C to room temperature.
  • the compound represented by general formula (4c) can be produced by subjecting the compound represented by general formula (4c) to a hydrolysis reaction of generally used esters (step C2).
  • the hydrolysis reaction can be carried out in the same manner as in Step A-3.
  • the compound represented by general formula (5c) can be produced by decarboxylation (step C3).
  • the decarboxylation reaction can be carried out in the same manner as in Step A-4.
  • the oxidation reaction can be carried out using a generally used oxidative method of alcohols to aldehydes or ketones, and can be performed, for example, in the same manner as in Step A-5.
  • the compound represented by general formula (7c) is oxidized (step C 5) or Can be produced by oxidizing the compound represented by the general formula (c).
  • the oxidation reaction in Step C5 can be carried out using a generally used oxidative method of aldehydes to carboxylic acids, and can be carried out in the same manner as in Step A-6, for example.
  • a generally used oxidative method of alcohols to carboxylic acids can be used, for example, oxygen oxidation, chromic acid, chromium Chromium oxide such as potassium phosphate, pyridinium chromate, pyridinium dichromate, potassium permanganate, ruthenium oxide, ruthenium catalyzed sodium periodate, silver oxide, bleached powder, oxidation reaction with hydrogen peroxide, etc. Can be done.
  • the reaction temperature can be 0 ° C to 100 ° C.
  • the compound represented by general formula (8c ′) can be produced by subjecting the compound represented by general formula (8c ′) to a deprotection reaction of a commonly used protecting group of alcoholenols (step C6).
  • the deprotection reaction of the alcohol is carried out using hydrogen chloride-containing methanol, ethanol, ethyl acetate, or jetyl ether as the solvent.
  • the reaction can be carried out below.
  • Protective group power 3 ⁇ 4 In the case of silyl groups such as butyl dimethylsilyl group, t-butyl diphenyl silyl group, triisopropyl silyl group, etc., potassium fluoride, cesium fluoride, tetraptyl ammonium fluoride are used and acetononitrile is used. Alternatively, it can be carried out in a solvent such as THF at 0 ° C. to room temperature.
  • R 2 is a cyan group, that is, the general formula (6d)
  • the compound represented by can also be synthesized by the following synthesis route D.
  • the compound represented by general formula (6c) can be produced by subjecting the compound represented by general formula (6c) to a deprotection reaction of a commonly used alcohol protecting group (step Dl).
  • the deprotection reaction of the protecting group can be performed, for example, in the same manner as in Step C6.
  • the compound represented by general formula (20d) is subjected to a reaction for introducing various alcohol protecting groups (step D-2) or the compound represented by general formula (6c) is converted to various alcohol protecting groups. After the introduction reaction, it can be produced by subjecting a commonly used alcohol protecting group to a deprotection reaction.
  • Step D-2 The various alcohol protecting group introduction reaction in Step D-2 can be carried out in the same manner as in Step B-2.
  • the deprotection reaction of a protecting group of alcohols generally used is, for example, when the protecting group is a methoxymethyl group or a tetrahydrobiranyl group, using hydrogen chloride-containing methanol, ethanol, ethyl acetate, or ethyl ether as a solvent. It is preferably used and reacted at 0 ° C to room temperature.
  • Protective group power 3 ⁇ 4 In the case of silyl groups such as ptyldimethylsilyl group, t-ptyldiphenylsilyl group, and triisopropylpropylsilyl group, use potassium fluoride, cesium fluoride, tetrabutylammonium fluoride, acetonitrile, or THF. The reaction is preferably carried out in a solvent such as 0 ° C. to normal temperature. If the protecting group is a acetyl group, use sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, lithium hydroxide aqueous solution, and THF, CPME, methanol, ethanol, 1,4 dioxane, etc. Can be done below.
  • the oxidation reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • the compound represented by formula (22d) can be produced by reacting the compound represented by the general formula (22d) with hydroxylamine or hydroxylamine hydrochloride in the presence or absence of a base (step D). - Four).
  • the reaction is preferably carried out in a solvent such as water, methanol or ethanol, using sodium acetate, sodium carbonate or the like as a base at 0 ° C to 100 ° C.
  • a solvent such as water, methanol or ethanol, using sodium acetate, sodium carbonate or the like as a base at 0 ° C to 100 ° C.
  • the compound represented by general formula (23d) can be produced by subjecting the compound represented by general formula (23d) to a dehydration reaction (step D-5).
  • the dehydration reaction includes diphosphorus pentoxide, phosphorus pentachloride, thionyl chloride, acetic anhydride, trifluoroacetic anhydride.
  • acetic acid DCC, N, N, -carbonyldiimidazole, triphenylphosphine carbon tetrachloride as dehydrating agents, in the presence or absence of bases such as triethylamine, diisopropylethylamine, pyridine, Use toluene, ether, THF, CPME, 1,4 dixane, dichloromethane, chloroform, pyridine, etc. as the solvent.
  • the compound represented by the general formula (24d) is obtained by converting the compound represented by the general formula (22d) into the step D.
  • the compound represented by general formula (24d) can be produced by subjecting the compound represented by general formula (24d) to a deprotection reaction of a commonly used alcohol (Step D-6).
  • R 2 is a methyl group which may be substituted with an alkoxy group having 1 to 6 carbon atoms, that is, the general formula (8e)
  • step E-1 Can be produced by reacting in the presence of a base (step E-1).
  • the reaction is based on sodium hydride, potassium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, silver carbonate, silver oxide, etc., with toluene, THF, CPME, acetonitrinol, Use DMF, DMSO, etc. as the solvent, from 0 ° C to 100 ° C.
  • the compound represented by general formula (16e) can be produced by subjecting the compound represented by general formula (16e) to a hydrolysis reaction of generally used esters (step E-2).
  • the hydrolysis reaction can be carried out in the same manner as in Step A-3.
  • R 2 is a hydroxymethyl group, that is, the general formula ( ⁇ -1)
  • a compound represented by, or R 2 is a formyl group, namely the general formula (the If 2)
  • R 2 is a 1-hydroxyalkyl group having 2 to 6 carbon atoms, that is, the general formula (If 3)
  • R represents an alkyl group having 1 to 5 carbon atoms, and R 1 and R 4 are as described above]
  • an R 2 is an alkanoyl group having 2 to 6 carbon atoms, that is, a general formula (If 4)
  • the compound represented by can also be synthesized by the following synthesis route F
  • Step F-l Can be produced by subjecting a commonly used alcohol protecting group to a deprotection reaction (Step F-l).
  • Oxidation reaction involves oxidation of commonly used alcohols to aldehydes or ketones. For example, it can be performed in the same manner as in Step A-5.
  • the reaction can be carried out using THF, CPME, ether, 1,4 dioxane or the like as a reaction solvent at a reaction temperature of 78 ° C to room temperature.
  • the oxidation reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • R 2 is a carboxyl group, that is, the general formula (lg-l)
  • R 2 is an oxime group, that is, the general formula (lg-2)
  • R 2 is a cyano group, that is, the general formula (lg-3)
  • the compound represented by can also be synthesized by the following synthesis route G.
  • Synthesis route G is represented by general formula (lg-1)
  • the compound represented by general formula (If 2) has the ability to oxidize the compound represented by general formula (If 2), (Step G-1) or the compound represented by general formula (If 1) (Step G— 2) Manufacturing power by S
  • the oxidation reaction in the step G-1 can be carried out using a generally used oxidative method of aldehydes to carboxylic acids, and can be carried out, for example, in the same manner as in the step A-6.
  • the oxidation reaction in Step G-2 can be performed by using a generally used oxidative method for converting alcohols to carboxylic acids, such as oxygen oxidation, chromic acid, chromic acid rhodium, black chromic acid.
  • a generally used oxidative method for converting alcohols to carboxylic acids such as oxygen oxidation, chromic acid, chromic acid rhodium, black chromic acid.
  • the general formula (lg-2) the general formula (lg-2)
  • the compound represented by general formula (If 2) can be produced by reacting the compound represented by general formula (If 2) with hydroxylamine or hydroxylamine hydrochloride in the presence or absence of a base (step G). — 3).
  • the reaction can be carried out in a solvent such as water, methanol, ethanol and the like, using sodium acetate, sodium carbonate, etc. as a base at 0 ° C to 100 ° C.
  • a solvent such as water, methanol, ethanol and the like, using sodium acetate, sodium carbonate, etc. as a base at 0 ° C to 100 ° C.
  • the compound represented by general formula (lg-2) can be produced by subjecting the compound represented by general formula (lg-2) to a dehydration reaction (step G-4).
  • R 1 is an alkoxy group having 1 to 6 carbon atoms in the compound represented by the general formula (7) in the synthesis route A
  • Z represents an alkoxy group having 1 to 6 carbon atoms or an alkylsulfanyl group having 1 to 6 carbon atoms, and R 2 is as described above]
  • the compound represented by can also be synthesized by the following synthesis route H.
  • the compound represented by general formula (6h) is derived from various alcohol protecting groups. It can be produced by subjecting it to a reaction (Step H-1).
  • reaction was carried out by reacting a base such as butyllithium, lithium diisopropylamide, or lithium bistrimethylsilylamide in a solvent such as THF or CPME at 78 ° C to 0 ° C, followed by N-chlorosuccinimide, N It can be heated at 78 ° C to normal temperature by the action of bromosuccinimide, 1,2-dibromoethane, bromine, N-iodosuccinimide, iodine, 1,2 jodoethane, etc.
  • a base such as butyllithium, lithium diisopropylamide, or lithium bistrimethylsilylamide
  • a solvent such as THF or CPME
  • N-chlorosuccinimide N It can be heated at 78 ° C to normal temperature by the action of bromosuccinimide, 1,2-dibromoethane, bromine, N-iodosuccinimide, iod
  • the compound represented by the general formula (27h) can be produced by subjecting the compound represented by the general formula (27h) to deprotection reaction of a commonly used protecting group of alcoholenols (step H-3).
  • the compound represented by general formula (28h) can be produced by oxidizing the compound represented by general formula (28h) (step H-4).
  • the oxidation reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • the reaction is performed by adding sodium hydride or potassium hydride as a base to the corresponding alcohol or thiol (ZH) compound, and adding DMF, THF, CPME, DMSO, preferably DMF as a solvent.
  • ZH thiol
  • R 8 and R 9 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a protecting group for an amino group, and R 2 and R 4 are as described above]
  • the reaction may be performed at 0 ° C to 100 ° C using THF, CPME, DMSO, or DMF as a solvent in the presence or absence of butyllithium, sodium hydride, or potassium hydride. Touch with S.
  • R 8 and R 9 are protecting groups for an amino group
  • R 8 or R 9 is used. It can also be produced by producing a compound represented by the general formula (30i), one or both of which are hydrogen atoms, and then subjecting the compound to a general amino group protection reaction.
  • a general protecting group for an amino group is, for example, a protecting group for an amino group described in PROTECTIVE GROUPS IN ORGANIC SYNTHESIS T HIRD EDITION (Theodora W. Greene, Peter GM Wats, JOHN WILEY & SONS, INC.).
  • a force such as t-butoxycarbonyl group S is preferable.
  • the reaction uses di-t-butyl dicarbonate, and THF, CPME, DMSO, DMF, acetonitrile, etc. are used as a solvent and 4-dimethylamino.
  • the reaction can be performed at a reaction temperature of 0 ° C to 100 ° C in the presence or absence of pyridine or the like.
  • the compound represented by general formula (30i) can be produced by oxidizing the compound represented by general formula (30i) (step 12).
  • the oxidation reaction uses a commonly used oxidative method to convert aldehydes to carboxylic acids. For example, it can be performed in the same manner as in step A-6.
  • the compound represented by general formula (8i) can be produced by condensing the compound represented by general formula (10) and the compound represented by general formula (10) (step 1-3).
  • the condensation reaction may be a commonly used synthesis reaction of amides by a condensation reaction of a carboxylic acid and an amine, and can be performed, for example, in the same manner as in Step A-7.
  • R 8 and R 9 when one or both of R 8 and R 9 is a hydrogen atom, it is represented by the general formula (li) in which one or both of R 8 and R 9 is a protecting group for an amino group.
  • the general deprotection reaction of an amino group refers to, for example, the deprotection of an amino group described in PROTECTIVE GROUPS IN 0 RGANIC SYNTHESIS THIRD EDITION (Theodora W. Greene, Peter GM Wats, JOHN WILEY & SONS, INC.). There are protective reactions.
  • the deprotection reaction is water, methanol, ethanol, toluene, ethyl acetate, THF, CPME, 1,4-dioxane, methyl chloride, chloroform, formaldehyde
  • a solvent such as hydrochloric acid, sulfuric acid, trifluoroacetic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid and the like at a reaction temperature of 0 ° C to 80 ° C.
  • R 1 is a hydroxymethyl group, that is, the general formula (lj 1)
  • a compound represented by, or R 1 is a formyl group, i.e. formula (lj- 2)
  • R 1 is a 1-hydroxyalkyl group having 2 to 6 carbon atoms, that is, the general formula (lj 3)
  • R 1 is an alkanoyl group having 2 to 6 carbon atoms, that is, the general formula (lj 4)
  • the compound represented by can also be synthesized by the following synthesis route J.
  • the compound represented by the general formula (29h) is a compound represented by the general formula (36).
  • the reaction is carried out in the presence of a catalyst such as hydrogen chloride, sulfuric acid, p-toluenesulfonic acid, pyridinium paratoluenesulfonate, camphorsulfonic acid, trimethylsilylmethanesulfonate, montmorillonite K10, acidic ion exchange resin, benzene, toluene, xylene, It can be carried out in a solvent such as methylene chloride at 0 ° C to 150 ° C.
  • a catalyst such as hydrogen chloride, sulfuric acid, p-toluenesulfonic acid, pyridinium paratoluenesulfonate, camphorsulfonic acid, trimethylsilylmethanesulfonate, montmorillonite K10, acidic ion exchange resin, benzene, toluene,
  • the compound represented by general formula (31j) can be produced by formylating the compound represented by the general formula (31j) (see Example 1-2).
  • reaction is carried out using butyllithium, lithium diisopropylamide, lithium bistrimethylsilylamide, preferably lithium diisopropylamide as a base, in THF solvent, -78 After reacting at ° C, perform by applying ethyl formate or DMF from 78 ° C to room temperature.
  • the compound represented by general formula (33 ⁇ 4) can be produced by reducing the compound represented by the general formula (33 ⁇ 4).
  • the reaction can be carried out by allowing a reducing agent such as sodium borohydride, lithium borohydride, DIBAL, lithium hydride hydride to act at 0 ° C to room temperature.
  • a reaction solvent in the case of sodium borohydride, an ether solvent such as THF CPME 1,4-dioxane or an alcohol solvent such as ethanol and methanol, and in the case of lithium borohydride, THF or Reaction of THF with an alcohol solvent such as ethanol in the case of DIBAL using THF, toluene, methylene chloride, etc., and lithium aluminum hydride in an ether solvent such as THF or jetyl ether It is preferable to carry out.
  • the compound represented by general formula (33 ⁇ 4) is obtained by introducing various alcohol protecting groups. It can be produced by subjecting it to a reaction ( ⁇ 3 ⁇ 414).
  • the compound represented by general formula (34j) can be produced by deacetalizing the compound represented by formula (34j) (see Example 15).
  • the reaction is carried out using an acid catalyst such as p-toluenesulfonic acid monohydrate or pyridinium p-toluenesulfonate in an acetone solvent, and the reaction is carried out at normal temperature to heating under reflux, or methanol containing hydrogen chloride. , Ethanol, ethyl acetate, or jetyl ether
  • the reaction can be carried out at V, o ° c to room temperature.
  • the compound represented by the formula (7j) can be produced by oxidizing the compound represented by the general formula (7j) (Example 16).
  • the oxidation reaction can be performed using a generally used oxidative method of aldehydes to carboxylic acids, and can be performed, for example, in the same manner as in Step A-6.
  • the condensation reaction may be a commonly used synthesis reaction of amides by a condensation reaction of carboxylic acids and amines, and can be performed, for example, in the same manner as in Step A-7.
  • the compound represented by general formula (3) can be produced by subjecting the compound represented by general formula (3) to a deprotection reaction of a commonly used protecting group for alcohols (Example 8).
  • the compound represented by general formula (lj1) can be produced by oxidizing the compound represented by general formula (lj1) (Example 19).
  • the oxidation reaction can be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and can be performed, for example, in the same manner as in Step A-5.
  • the compound represented by general formula (lj2) can be produced by reacting the compound represented by general formula (17a) with the compound represented by general formula (lj2) (Example 110).
  • the reaction can be carried out using THF, CPME, ether, 1,4 dioxane or the like as a reaction solvent at a reaction temperature of 78 ° C to room temperature.
  • the compound represented by general formula (lj3) can be produced by oxidizing the compound represented by formula (lj3) (Example 111).
  • the oxidation reaction may be carried out using any method commonly used to oxidize alcohols to aldehydes or ketones, and may be performed, for example, in the same manner as in Step A-5.
  • R 1 is a compound having an alkoxymethyl group having 1 to 6 carbon atoms, that is, General Formula (6k)
  • the compound represented by can also be synthesized by the following synthesis route K.
  • reaction was carried out by reacting a base such as butyllithium, lithium diisopropylamide, or lithium bistrimethylsilylamide in a solvent such as THF or CPME at 78 ° C to 0 ° C, and then adding ethyl formate or DMF to 78 ° C.
  • a base such as butyllithium, lithium diisopropylamide, or lithium bistrimethylsilylamide
  • a solvent such as THF or CPME
  • step K-2 Can be produced by reducing the compound represented by the general formula (37k) (step K-2).
  • step K3 In the presence of a base (step K3).
  • the reaction is based on sodium hydride, potassium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, silver carbonate, silver oxide, etc. with toluene, THF, CPME, acetonitrinol, Use DMF, DMSO, etc. as the solvent, from 0 ° C to 100 ° C.
  • the compound represented by general formula (39k) can be produced by subjecting the compound represented by the general formula (39k) to a deprotection reaction of a generally used protecting group for alcohols (step K4).
  • the deprotection reaction of the protecting group can be carried out in the same manner as in Step B-5.
  • the reaction consists of sodium hypochlorite, sodium chlorite, bleached powder, chlorine, N
  • the compound represented by general formula (81) can be produced by condensing the compound represented by general formula (10) with the compound represented by general formula (10) (step L-2).
  • the condensation reaction may be a commonly used synthesis reaction of amides by a condensation reaction of a carboxylic acid and an amine, and can be performed, for example, in the same manner as in Step A-7.
  • the reaction was carried out using hydrogen peroxide, m-chloroperbenzoic acid, peracetic acid, permaleic acid, magnesium monoperoxyphthalate, sodium perborate, etc., water, acetic acid, methylene chloride, Kuroguchi Honolem,
  • the reaction can be carried out in a solvent such as 1,2-dichloroethane at a reaction temperature of 0 ° C to 150 ° C.
  • R iU and R "and each independently represent a hydrogen atom or a halogen atom, and R 1 and R 2 are as defined above]
  • the compound represented by can also be produced by, for example, the synthesis route O shown below.
  • the reaction consists of hydrogen peroxide, m-peroxybenzoic acid, peracetic acid, permaleic acid, magnesium monoperoxyphthalate, sodium perborate, etc., water, acetic acid, methylene chloride, Kuroguchi Honolem, 1 , 2
  • the reaction can be carried out in a solvent such as dichloroethane at a reaction temperature of 0 ° C to 150 ° C.
  • Example 2 The compound of Example 2 (66.2 g) was dissolved in DMF (300 mL), 2-ethyl pentylate (16.4 mL) and potassium carbonate (51.4 g) were added, and the mixture was stirred at room temperature for 23 hours. Insoluble material was removed by filtration through Celite, and the filtrate was diluted with water and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate.
  • Example 3 The compound of Example 3 (6.22 g) was dissolved in ethanol (150 mL), 10% aqueous potassium hydroxide solution (37 mL) was added, and the mixture was heated to reflux for 2 hr. After the solvent was distilled off under reduced pressure, the residue was dissolved in water and washed with ether. Concentrated hydrochloric acid was added to the aqueous layer to acidify the solution, and the mixture was extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the target compound (4.58 g) as a gray solid.
  • Example 4 The compound of Example 4 (4.10 g) was suspended in bromobenzene (150 mL) and heated under reflux for 5 hours. After the solvent was distilled off under reduced pressure,
  • Example 5 The compound of Example 5 (2.50 g) was dissolved in dichloromethane (60 mL), activated manganese dioxide (1 0.5 g) was added, and the mixture was stirred at room temperature for 24 hours. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was evaporated under reduced pressure to obtain the target compound (2.28 g) as a gray solid.
  • Example 6 The compound of Example 6 (1.02 g) was suspended in water (100 mL), potassium permanganate (3.16 g) was added, and the mixture was stirred at room temperature for 21 hours. 10% Aqueous sodium hydroxide solution was added to make the solution alkaline, and insolubles were removed by filtration through Celite, and the filtrate was washed with ether. The aqueous layer was acidified with 10% hydrochloric acid and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate.
  • Example 7 The compound of Example 7 (286 mg) was dissolved in methanol (3.0 mL), 10% aqueous potassium hydroxide solution (2.0 mL) was added, and the mixture was stirred at room temperature for 17 hr. The reaction solution was washed with ether, the aqueous layer was acidified with 10% hydrochloric acid, and extracted with ethyl acetate. The extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain the desired compound (121 mg) as a colorless powder.
  • Example 8 In an argon atmosphere, the compound of Example 8 (100 mg) was dissolved in dichloromethane (10 mL), and diisopropylethylamine (0.158 mL) and 0-benzotriazole-1-yl N, N, ⁇ ', ⁇ ' -tetramethyluronium tetrafluoroborate (TBTU) (161 mg) was added, and the mixture was stirred at room temperature for 1.5 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The extract layer was washed with water and then saturated Japanese brine, and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure (residue A).
  • dichloromethane 10 mL
  • TBTU 0-benzotriazole-1-yl N, N, ⁇ ', ⁇ ' -tetramethyluronium tetrafluoroborate
  • Example 8 Under an argon atmosphere, the compound of Example 8 (300 mg) was dissolved in dichloromethane (14 mL), and 4-nitrophenol (233 mg), N- (3-dimethylaminopropyl) -1-N, ethyl carbonate was dissolved. Diimide hydrochloride (396 mg) and a catalytic amount of dimethylaminopyridine were added, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was diluted with water and extracted with dichloromethane. The extract layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and then dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain the desired product (442 mg).
  • the target compound (yield 30%) was obtained as a yellow powder from the compound of Example 2 and 4, 4, 4 trifluoro-2-butyric acid ethyl ester in the same manner as in Example 3.
  • Example 14 The compound of Example 14 (1.23 g) was dissolved in t_butanol (36 mL) and water (12 mL), sodium dihydrogen phosphate dihydrate (787 mg), 2-methylolene 2- Butene (2.4
  • Example 15 Under an argon gas atmosphere, the compound of Example 15 (50.0 mg) was dissolved in dichloromethane (2.50 mL), and 4-nitrophenol (33.0 mg), N- (3-dimethylaminopropyl) N Ethyl carpositimide hydrochloride (55.0 mg) and a catalytic amount of 4-dimethylaminopyridine were added and stirred at room temperature for 2 hours. Water was added to the reaction mixture, and the mixture was extracted with dichloromethane. The organic layer was washed with water and saturated brine, and dried over anhydrous sodium sulfate. After evaporating the solvent under reduced pressure, 4-nitrophenyl ester (80.0 mg) was obtained as a yellow powder.
  • Example 15 In an argon atmosphere, the compound of Example 15 (100 mg) was dissolved in dichloromethane (10 mL), diisopropylethylamine (0.133 mU and TBTU (136 mg) was added, and the mixture was stirred at room temperature for 2.5 hours. The reaction mixture was diluted with water and extracted with ethyl acetate, and the extract layer was washed with water and then saturated brine and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure (residue A).
  • the target compound (5.07 g) was obtained as a white solid from the compound of Example 2 (21.3 g) and cyclopropylpropionic acid benzyl ester (8.01 g) in the same manner as in Example 3.
  • Example 19 The compound of Example 19 (4.63 g) was dissolved in ethanol (70 mL), and hydroxylated at room temperature. (2.82 g) and water (30 mL) were added, and the mixture was stirred for 2.5 hours with heating under reflux. The solvent of the reaction solution was evaporated under reduced pressure, diluted with water (100 mL), and concentrated hydrochloric acid (6.0 mL) was added. The precipitated solid was collected by filtration to obtain the target compound (3.32 g) as a white solid.
  • Example 23 Under an argon atmosphere, the compound of Example 23 (350 mg) was dissolved in dichloromethane (10 mL), diisopropylethylamine (0.517 mL) and TBTU (529 mg) were added, and the mixture was stirred at room temperature for 2 hr. The reaction mixture was diluted with water and extracted with ethyl acetate. The extract layer was washed with saturated brine, dried over anhydrous sodium sulfate and the solvent was evaporated (residue A).
  • Example 26 The compound of Example 26 (6.10 g) was dissolved in ethanol (91 mL), and at room temperature, hydroxylated lithium (3.37 g) and water (39 mL) were added, and heated under reflux for 4 hours. Stir. The solvent of the reaction solution was distilled off under reduced pressure, diluted with water (100 mL), and concentrated hydrochloric acid (5.0 mL) was added. The precipitated solid was collected by filtration to obtain the target compound (4.45 g) as a white solid.
  • Example 28 The compound of Example 28 (1.00 g) was dissolved in black mouth form (45 mL), and activated manganese dioxide (2.63 g) was added at room temperature, followed by stirring at 50 ° C for 3 hours. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was evaporated under reduced pressure to give the object product (938 mg) as a yellow solid.
  • Example 30 The compound of Example 30 (769 mg) was dissolved in dichloromethane (37 mL) under an argon atmosphere, and 4-nitrophenol (646 mg), N— (3 dimethylaminopropyl) N, 1-ethylcarbodiimide hydrochloride Salt (1.09 g) and a catalytic amount of dimethylaminopyridine were added, and the mixture was stirred at room temperature for 1.5 hours.
  • the reaction mixture was diluted with water and extracted with dichloromethane.
  • the extract layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order and then dried over anhydrous sodium sulfate.
  • the solvent was distilled off under reduced pressure to obtain the desired product (1.27 g) as a yellow solid.
  • Example 34 The compound of Example 34 (4.54 g) was dissolved in ethanol (96 mL), hydroxylated lithium (3.54 g) and water (41 mL) were added at room temperature, and heated under reflux for 1 hour. Stir. The solvent of the reaction solution was distilled off under reduced pressure, diluted with water (100 mL), and concentrated hydrochloric acid (8.3 mL) was added. The precipitated solid was collected by filtration to obtain the desired product (3.86 g) as a white solid.
  • Example 36 The compound of Example 36 (1.00 g) was dissolved in black mouth form (56 mL), and activated manganese dioxide (3.25 g) was added at room temperature, followed by stirring at 50 ° C for 3 hours. Insoluble material was removed by filtration through Celite, and the solvent of the filtrate was evaporated under reduced pressure to give the object product (966 mg) as a yellow solid.
  • Example 38 The compound of Example 38 (769 mg) was dissolved in dichloromethane (40 mL) under an argon atmosphere, and 4-nitrophenol (687 mg), N— (3 dimethylaminopropyl) N, 1-ethylcarbodiimide hydrochloride Salt (1.16
  • the target product (38.2 g) was obtained as a yellow oily substance in the same manner as in Example 2 using mesitylsulfonylacetohydroethyl ester (33.5 g) and 3 hydroxymethylpyridine (11.2 g). It was.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Pulmonology (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Rheumatology (AREA)
  • Psychiatry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Diabetes (AREA)
  • Pain & Pain Management (AREA)
  • Hematology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dermatology (AREA)
  • Otolaryngology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

明 細 書
ピラゾ口ピリジンカルボキサミド誘導体及びそれらを含有するホスホジエス テラーゼ(PDE)阻害剤
技術分野
[0001] 本発明は、ホスホジエステラーゼ (PDE)阻害剤として有用なピラゾ口ピリジンカルボ キサミド誘導体、その付加塩及び水和物に関する。
背景技術
[0002] ホスホジエステラーゼ(PDE)は生体内のセカンドメッセンジャーである cyclic AMP (cAMP)、及び cyclic GMP(cGMP)を分解する酵素である。現在までに、 PDEは 1 〜; 11までのタイプが見つ力、つており、タイプ毎に cAMPを特異的に分解する力、、 cG MPを特異的に分解するかあるいは両方を分解するかが決まって!/、る。各タイプの P DE組織分布には差がみられ、臓器の種類により、様々なタイプの PDEにより細胞反 応がコントロールされてレ、ると考えられてレ、る。
[0003] PDE阻害剤の開発はこれまでに数多く行われており、例えば PDE3阻害剤は狭心 症、心不全、高血圧症などの治療薬や血小板凝集抑制薬あるいは抗喘息薬として、 また PDE4阻害剤は気管支喘息、慢性閉塞性肺疾患 (COPD)、間質性肺炎、ァレ ルギー性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、アルツハイマー病 、認知症、パーキンソン病などの治療薬として期待されている。 PDE5阻害剤は男性 性機能障害治療薬として臨床において利用されている。さらに最近では PDE10A m odulatorとして、 minocyclineをハンチントン病患者に試用して有効であったという報告 があり(特許文献 1)、 PDE10阻害剤がハンチントン病、アルツハイマー病、認知症、 パーキンソン病、統合失調症などの各種精神障害治療薬として有効であることを示し た公開特許公報も開示されてきている(特許文献 2)。
[0004] 一方、 PDE阻害作用を有するピラゾ口ピリジン誘導体が(特許文献 3-6)に開示され ているが、本出願化合物であるピラゾ口ピリジンカルボキサミドは含まれておらず、ま たこのような化合物が PDE阻害作用を有することも今まで知られていな力、つた。さら に PDE阻害作用を有するカルボキサミド誘導体が(特許文献 7-31及び非特許文献 1 -7)に報告されて!/、るが本出願化合物とは構造を異にするものである。 特許文献 1: WO01024781号パンフレット
特許文献 2:特開 2002— 363103号公報
特許文献 3:再公表 W098/14448号公報
特許文献 4:特開平 10— 109988号公報
特許文献 5:特開 2006— 117647号公報
特許文献 6:特開 2006— 109138号公報
特許文献 7: WO2006004040号パンフレット
特許文献 8: WO2004089940号パンフレット
特許文献 9: WO2004069831号パンフレット
特許文献 10 : WO2004048377号パンフレット
特許文献 11 : WO2004037805号パンフレット
特許文献 12: WO2003105902号パンフレット
特許文献 13: WO2003078397号パンフレット
特許文献 14: WO2003066044号パンフレット
特許文献 15: WO2002034747号パンフレット
特許文献 16: WO2002028353号パンフレット
特許文献 17: WO2000048998号パンフレット
特許文献 18: W09916768号パンフレット
特許文献 19: WO9822460号パンフレット
特許文献 20 : WO9809961号パンフレット
特許文献 21: W09748697号パンフレット
特許文献 22: WO9744036号パンフレット
特許文献 23: WO9501338号パンフレット
特許文献 24:米国特許公開 2005027129号明細書
特許文献 25:米国特許公開 2004102472号明細書
特許文献 26:米国特許公開 2002128290号明細書
特許文献 27:米国特許第 6127363号明細書 特許文献 28:特開平 8-307982号公報
特許文献 29:英国特許第 2327675号明細書
特許文献 30:ドイツ特許第 19633051号明細書
特許文献 31:ドイツ特許第 10253426号明細書
非特許文献 l : Bioorganic & Medicinal Chemistry Letters (2002), 12(12), 1621-1623. 非特許文献 2: Bioorganic & Medicinal Chemistry Letters (2002), 12(12), 1613-1615. 非特許文献 3: Bioorganic & Medicinal Chemistry Letters (2002),12(3),509_512. 非特許文献 4: Bioorganic & Medicinal Chemistry Letters (2000), 10(18), 2137-2140. 非特許文献 5 : Bioorganic & Medicinal Chemistry Letters (1998),8(14), 1867-1872. 非特許文献 6: Bioorganic & Medicinal Chemistry (1999),7(6),1131_1139· 非特許文献 7: European Journal of Medicinal Chemistry (2003),38, 975-982.
発明の開示
発明が解決しょうとする課題
[0005] 本発明の目的は、優れたホスホジエステラーゼ阻害作用を有し、かつ副作用の少 ないピラゾ口ピリジンカルボキサミド誘導体を提供することにある。
課題を解決するための手段
[0006] 本発明者らは、ホスホジエステラーゼ阻害活性を有し、かつ安全性の高!/、化合物を 創製すべく鋭意研究を重ねた結果、これまでに知られている PDE阻害剤とは構造を 異にした新規なピラゾ口ピリジンカルボキサミド誘導体が強力な PDE阻害作用を有す ることを見出し、本発明を完成した。
[0007] 即ち本発明は、
1)一般式 (1 )
[0008] [化 1]
Figure imgf000005_0001
[0009] [式中、 R1は水素原子、置換されてもよい炭素数;!〜 6のアルキル基(置換基は水酸 基、炭素数 1〜6のアルコキシ基及びハロゲン原子からなる群より選ばれる 1若しくは 2以上の基)、炭素数 1〜6のアルコキシ基、炭素数 1〜6のアルキルスルファニル基、 炭素数 1〜6のアルキルスルフィエル基、炭素数 1〜6のアルキルスルホニル基、炭素 数 1〜6のアルキル基で置換されてもよいアミノ基又は炭素数 1〜6のアルカノィル基 を示し、 R2は水素原子、置換されてもよい炭素数;!〜 6のアルキル基(置換基は水酸 基、炭素数 1〜6のアルコキシ基及びハロゲン原子からなる群より選ばれる 1若しくは 2以上の基)、炭素数 3〜8のシクロアルキル基、炭素数 1〜6のアルカノィル基、カル ボキシル基、ォキシム基又はシァノ基を示し、 R3は水素原子、ハロゲン原子又は水酸 基を示し、 R4はハロゲン原子で置換されてもよいピリジル基若しくはその N—ォキシド 又はハロゲン原子により置換されてもよいフエ二ル基を示す]
で表されるピラゾ口ピリジン 4ーィルカルボキサミド誘導体、その薬理学的に許容し うる塩又はそれらの水和物、
[0010] 2)—般式(1)において R3が水素原子である 1)に記載のピラゾ口ピリジン一 4 ィルカ ルポキサミド誘導体、その薬理学的に許容しうる塩又はそれらの水和物、
[0011] 3)—般式(1)において R1が炭素数 1〜6のアルコキシ基又は炭素数 1〜6のヒドロキ シアルキル基である 1)又は 2)に記載のピラゾ口ピリジンー4ーィルカルボキサミド誘 導体、その薬理学的に許容しうる塩又はそれらの水和物、
[0012] 4)一般式(1)において R2が炭素数 3〜6のシクロアルキル基、シァノ基又は炭素数 1
〜4のアルキル基であって、アルキル基は、水酸基、炭素数 1〜4のアルコキシ基及 びノ、ロゲン原子からなる群より選ばれる 1若しくは 2以上の置換基で置換されてもよい
1)〜3)いずれかに記載のピラゾ口ピリジン 4ーィルカルボキサミド誘導体、その薬 理学的に許容しうる塩又はそれらの水和物。
[0013] 5)—般式(1)で示される化合物が、
2 ェチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3, 5 ジクロ 口ピリジン 4 ィル)アミド、
2 イソプロピル一 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5— ジクロロピリジン一 4—ィル)アミド、 2 イソプロピル一 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5— ジクロロ一 1—ォキシピリジン一 4—ィル)アミド、
2 シクロプロピル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 —ジクロ口ピリジン一 4—ィル)アミド、
2 シクロプロピル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ージクロロー 1 ォキシピリジン 4 ィノレ)アミド、
7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5—ジクロロピリジン一 4—ィル)アミド、
2 ジフルォロメチルー 7 メトキシーピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3 , 5—ジクロロピリジン一 4—ィル)アミド、
7 メトキシ一 2 メトキシメチルビラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5— ジクロロピリジン一 4—ィル)アミド、
2 シァノ 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ジクロロ ピリジン一 4—ィル)アミド、
7 ヒドロキシメチルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジンー4一力ルボン 酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド、又は
7 - (1—ヒドロキシェチル) 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4— カルボン酸 (3, 5—ジクロロピリジン一 4—ィル)アミドである 1)に記載のピラゾ口ピリ ジン 4 ィルカルボキサミド誘導体、その薬理学的に許容しうる塩又はそれらの水 和物、
[0014] 6) 1)〜5)のいずれかに記載のピラゾ口ピリジンー4ーィルカルボキサミド誘導体、 その薬理学的に許容しうる塩又はそれらの水和物を含有するホスホジエステラーゼ( PDE)阻害剤、
[0015] 7) 1)〜5)のいずれかに記載のピラゾ口ピリジンー4ーィルカルボキサミド誘導体、 その薬理学的に許容しうる塩又はそれらの水和物を有効成分とする医薬に関するも のである。
発明の効果
[0016] 本発明に係るピラゾ口ピリジンカルボキサミド誘導体は優れたホスホジエステラーゼ (PDE)阻害作用を有するため、気管支喘息、慢性閉塞性肺疾患 (COPD)、間質性 肺炎、アレルギー性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、ハンチ ントン病、アルツハイマー病、認知症、パーキンソン病、統合失調症などの予防'治療 薬として有用である。
発明を実施するための最良の形態
[0017] 本発明において R1及び R2の「炭素数 1〜6のアルコキシ基」とは、炭素数;!〜 6の直 鎖又は分岐鎖のアルコキシ基であり、好ましくは炭素数 1〜4のアルコキシ基である。 例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブ トキシ基、 sec-ブトキシ基、 t ブトキシ基などを挙げることができる。
[0018] R2、 R3及び R4の「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はョ ゥ素原子を意味する。
[0019] R1及び R2の「炭素数 1〜6のアルキル基」とは、炭素数;!〜 6の直鎖又は分岐鎖の アルキル基であり、好ましくは炭素数 1〜4のアルキル基である。例えば、メチル基、 ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 sec-ブチル基、 t ブチル基などを挙げることができる。
[0020] R1及び R2の「置換されてもよい炭素数 1〜6のアルキル基(置換基は水酸基、炭素 数 1〜6のアルコキシ基及びノヽロゲン原子からなる群より選ばれる 1若しくは 2以上の 基)」の例としては、ヒドロキシメチル基、メトキシメチル基、エトキシメチル基、プロポキ シメチル基、イソプロポキシメチル基、ブトキシメチル基、イソブトキシメチル基、 sec- ブトキシメチル基、 t ブトキシメチル基、モノフルォロメチル基、ジフルォロメチル基、 トリフルォロメチル基などを挙げることができる。好ましくはヒドロキシメチル基、トリフル ォロメチル基である。
[0021] R1の「炭素数 1〜6のアルキルスルファニル基」とは、炭素数;!〜 6の直鎖又は分岐 鎖のアルキルスルファニル基であり、好ましくは炭素数 1〜4のアルキルスルファニル 基である。例えば、メチルスルファニル基、ェチルスルファニル基、プロピルスルファ 二ノレ基、イソプロピノレスノレファニノレ基、ブチノレスノレファニノレ基、イソブチノレスノレファニ ノレ基、 sec-ブチルスルファニル基、 tーブチルスルファニル基などを挙げることができ [0022] R1の「炭素数 1〜6のアルキルスルフィニル基」とは、炭素数;!〜 6の直鎖又は分岐 鎖のアルキルスルフィエル基であり、好ましくは炭素数 1〜4のアルキルスルフィエル 基である。例えば、メチルスルフィニル基、ェチルスルフィニル基、プロピルスルフィニ ノレ基、イソプロピノレスノレフィニノレ基、ブチノレスノレフィニノレ基、イソブチノレスノレフィニノレ 基、 sec-ブチルスルフィエル基、 tーブチルスルフィエル基などを挙げることができる。
[0023] R1の「炭素数;!〜 6のアルキルスルホニル基」とは、炭素数;!〜 6の直鎖又は分岐鎖 のアルキルスルホニル基であり、好ましくは炭素数 1〜4のアルキルスルホニル基であ る。例えば、メチルスルホニル基、ェチルスルホニル基、プロピルスルホニル基、イソ プロピルスルホニル基、ブチルスルホニル基、イソブチルスルホニル基、 sec-ブチノレ スルホニル基、 tーブチルスルホニル基などを挙げることができる。
[0024] R1の「炭素数;!〜 6のアルキル基で置換されてもよいアミノ基」とは、炭素数;!〜 6の 直鎖又は分岐鎖のアルキル基により置換されていてもよいアミノ基であり、好ましくは 炭素数 1〜4のアルキルアミノ基である。例えば、メチルァミノ基、ェチルァミノ基、プロ ピルアミカレ基、イソプロピルアミノ基、ブチルァミノ基、イソブチルァミノ基、 sec-ブチ ルァミノ基、 t—ブチルァミノ基、ジメチルァミノ基、ジェチルァミノ基、ジプロピルアミノ ル基、ジイソプロピルアミノ基、ェチルメチルァミノ基などを挙げることができる。
[0025] R1及び R2の「炭素数 1〜6のアルカノィル基」とは、炭素数;!〜 6の直鎖又は分岐鎖 のアルカノィル基であり、好ましくは炭素数 1〜4のアルカノィル基である。例えば、ホ ルミル基、ァセチル基、プロピオニル基、ブチリル基、イソブチリル基などを挙げること ができる。
[0026] R2の「炭素数 3〜8のシクロアルキル基」とは、例えばシクロプロピル基、シクロプチ ル基、シクロペンチル基、シクロへキシル基などを挙げることができる。
[0027] R4の「ハロゲン原子により置換されてもよいピリジル基若しくはその N—ォキシド」と は、フッ素原子、塩素原子、臭素原子及びヨウ素原子からなる群より選ばれる 1若しく は 2以上のハロゲン原子で置換されてもよいピリジル基又はその N—ォキシドである。
[0028] R4の「ハロゲン原子により置換されてもよ!/、フエニル基」とは、フッ素原子、塩素原子 、臭素原子及びヨウ素原子から選ばれる 1若しくは 2以上のハロゲン原子で置換され てもよ!/、フエ二ノレ基である。 [0029] 本発明における薬理学的に許容される塩として、例えば塩酸塩、臭化水素酸塩、 酢酸塩、トリフルォロ酢酸塩、メタンスルホン酸塩、クェン酸塩又は酒石酸塩のような 酸付加塩を挙げることができる。
[0030] 本発明によれば、一般式(1)で表される化合物のうち、 R3が水素原子である化合物 、即ち一般式(la)
[0031] [化 2]
Figure imgf000010_0001
[0032] [式中、
Figure imgf000010_0002
R2及び R4は前述の通り]
で表される化合物は、例えば以下に示す合成経路 Aにより製造することができる。
[0033] <合成経路 A〉
[0034] [化 3]
Figure imgf000010_0003
[0035] 合成経路 Aで一般式(3) [0036] [化 4]
Figure imgf000011_0001
[0037] [式中、 R1は前述の通り]
で表される化合物は、一般式(2)
[0038] [化 5]
Figure imgf000011_0002
[0039] [式中、 R1は前述の通り]
で表される化合物を 0-メシチレンスルホニルヒドロキシルァミン(以下、 MSHとする) と作用させることによって製造することができる(工程 A-l)。
[0040] 反応は一般式(2)で表される化合物を塩化メチレンに溶解し、 0°C〜常温下にて M
SHの塩化メチレン溶液を作用させることが好ましい。
[0041] 合成経路 Aで一般式 (4)
[0042] [化 6]
Figure imgf000011_0003
[0043] [式中、 R5は炭素数 1〜6のアルキル基又はベンジル基を示し、 R1及び ITは前述の 通り]
で表される化合物は、一般式(3)で表される化合物と一般式(9)
[0044] [化 7]
Figure imgf000012_0001
[0045] [式中、 R2及び R5は前述の通り]
で表される化合物を塩基存在下に作用させることによって製造することができる(ェ 程 A- 2)。
[0046] 反応は、メタノール、エタノール、 1 , 4 ジォキサン、ジメチルスルホキシド(DMSO )、 N,N-ジメチルホルムアミド(DMF)、テトラヒドロフラン(THF)、シクロペンチルメチ ノレエーテル(CPME)、トルエン、ベンゼン、シクロへキサン、シクロペンタン、塩化メ チレン、クロ口ホルム、ァセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、 炭酸ナトリウム、炭酸水素カリウム、炭酸カリウムなどの無機塩基又は、トリェチルアミ ンなどの有機塩基の存在下、反応温度としては 0°C〜常温下にて行うことができる。
[0047] 合成経路 Aで一般式(5)
[0048] [化 8]
Figure imgf000012_0002
[0049] [式中、 R1及び R2は前述の通り]
で表される化合物は、一般式 (4)で表される化合物を加水分解反応に付すことによ つて製造することができる(工程 A— 3)。
[0050] 反応は、メタノール、エタノール、 THF、 CPME、 DMSO, DMF、 1 , 4 ジォキサ ンなどの溶媒中で水酸化カリウム水溶液、水酸化ナトリウム水溶液又は、水酸化リチ ゥム水溶液、好ましくは水酸化ナトリウム水溶液を常温〜加熱還流下に作用させて行 うこと力 Sでさる。
[0051] 合成経路 Aで一般式(6)
[0052] [化 9]
Figure imgf000013_0001
[0053] [式中、 R1及び R2は前述の通り]
で表される化合物は、一般式(5)で表される化合物を脱炭酸させるか(工程 A— 4) 又は、一般式 (4)で表される化合物を加水分解及び脱炭酸することによって製造す ること力 Sでさる。
[0054] 工程 A— 4における反応は、一般式(5)で表される化合物をベンゼン、クロ口べンゼ ン、ジクロロベンゼン、ブロモベンゼン、トルエン、キシレンなどの有機溶媒中で、 100 °C〜160°Cに加熱して行うことができる。また本反応は、エタノール又は 1, 4ージォ キサン中、 2〜; 10%硫酸水溶液を加えて 80°C〜; 120°Cで加熱するか又は、 50%硫 酸中で 80°C〜; 120°Cに加熱して行うこともできる。
[0055] 一般式 (4)で表される化合物を用いる場合の反応は、臭化水素酸又は臭化水素含 有酢酸を用い、加熱還流下に作用させて行うことができる。また本反応は、エタノー ル又は 1, 4—ジォキサン中、 2〜; 10%硫酸水溶液を加えて 80°C〜; 120°Cで加熱す るか又は、 50%硫酸中で 80°C〜120°Cに加熱して行うこともできる。
[0056] 合成経路 Aで一般式(7)
[0057] [化 10]
Figure imgf000013_0002
[0058] [式中、 R1及び R2は前述の通り]
で表される化合物は一般式 ½)で表される化合物を酸化することによって製造するこ とができる(工程 A— 5)。
[0059] 反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化的手 法を用いることができ、例えばクロ口クロム酸ピリジニゥム、ニクロム酸ピリジニゥムなど の酸化クロム ピリジン錯体、酸化クロム、炭酸銀、二酸化マンガンなどの金属酸化 剤、三酸化硫黄 ピリジン錯体、塩化ォキサリル、無水トリフルォロ酢酸、無水酢酸 又は、ジシクロへキシルカルポジイミド(DCC)などの DMSO活性化剤を用いた DM SO酸化又は、 Dess Martin酸化反応により行うことができる。反応温度としては、 -78 °C〜100°Cにて行うことができる。
[0060] 合成経路 Aで一般式(8)
[0061] [化 11]
Figure imgf000014_0001
[0062] [式中、 R1及び R2は前述の通り]
で表される化合物は、一般式(7)で表される化合物を酸化するか(工程 A— 6)又は、 一般式 ½)で表される化合物を酸化することによって製造することができる。
[0063] 工程 A— 6における酸化反応は、一般に用いられるアルデヒド類のカルボン酸類へ の酸化的手法を用いることができ、例えば空気酸化、酸素酸化、クロ口クロム酸ピリジ 二ゥム、ニクロム酸ピリジニゥムなどの酸化クロム—ピリジン錯体、酸化クロム、酸化銀 、硝酸銀、過マンガン酸カリウム、酸化ルテニウム、ルテニウムを触媒とした過ヨウ素 酸ナトリウム、ルテニウムを触媒としたョードソベンゼン、亜塩素酸ナトリウム、さらし粉 、過酸化水素、塩素、 N プロモコハク酸イミドによる酸化反応などにより行うことがで きる。反応温度としては、 0°C〜100°Cにて行うことができる。
[0064] また、一般式(6)で表される化合物を酸化する場合は、一般に用いられるアルコー ノレ類のカルボン酸類への酸化的手法を用いることができ、例えば酸素酸化、クロム酸 、クロム酸カリウム、クロ口クロム酸ピリジニゥム、ニクロム酸ピリジニゥムなどの酸化クロ ム—ピリジン錯体、過マンガン酸カリウム、酸化ルテニウム、ルテニウムを触媒とした過 ヨウ素酸ナトリウム、酸化銀、さらし粉、過酸化水素による酸化反応などにより行うこと ができる。反応温度としては、 0°C〜100°Cにて行うことができる。
[0065] 合成経路 Aで一般式(la) [0066] [化 12]
Figure imgf000015_0001
[0067] [式中、
Figure imgf000015_0002
R2及び R4は前述の通り]
で表される化合物は、一般式(8)で表される化合物と、一般式(10)
[0068] [化 13]
R4 NH2 (10)
[0069] [式中、 R4は前述の通り]
で表される化合物を縮合させることによって製造することができる(工程 A-7)。
[0070] 反応は、一般に用いられるカルボン酸類とァミン類の縮合反応によるアミド類の合 成反応を用いることができる。例えば、一般式(8)で表される化合物を塩化チォニル 、塩化ォキサリルなどにより酸クロリドとした後、一般式(10)で表される化合物と反応 させるか又は、一般式(8)で表される化合物を酸クロリドとした後、一般式(10)で表さ れる化合物を水素化ナトリウム、水素化ジイソプロピルアルミニウム(DIBAL)、ナトリウ ムビス(2—メトキシエトキシ)アルミナムヒドリド(Red-Al)、 n ブチルリチウムなどの塩 基により処理した化合物と反応させて行うことができる。また、一般式(8)で表される 化合物を 4一二トロフエニルエステルや 1ーヒドロキシベンゾトリアゾールエステルなど の、いわゆる活性エステルとした後、一般式(10)で表される化合物と反応させるか又 は、一般式(8)で表される化合物をいわゆる活性エステルとした後、一般式(10)で 表される化合物を水素化ナトリウム、 DIBAL、 Red-AU n ブチルリチウムなどの塩基 により処理した化合物と反応させて行うこともできる。更に、一般式(8)で表される化 合物と一般式(10)で表される化合物に、 DCC、 N—(3—ジメチルァミノプロピル) N' ェチルカルポジイミド塩酸塩 (WSC)などの脱水縮合剤を作用させて反応を行う こともできる。反応温度としては、 0°C〜100°Cにて行うことができる。
[0071] 合成経路 Aで一般式(8)で表される化合物のうち R2がジフルォロメチル基、即ち一 般式(8b)
[0072] [化 14]
Figure imgf000016_0001
[0073] [式中、 R1は前述の通り]
で表される化合物は、下記合成経路 Bによって合成することもできる。
[0074] <合成経路 B〉
[0075] [化 15]
Figure imgf000016_0002
[0076] 合成経路 Bで一般式 (4b)
[0077] [化 16]
Figure imgf000017_0001
[0078] [式中、 R6は炭素数 1〜6のアルキル基を示す力、、又は 2つの R6が連結して炭素数が
2〜4のメチレン鎖(メチレン鎖上に炭素数 1〜4のアルキル基を有して!/、てもよ!/、)を 形成する。 R1及び R5は前述の通り]
で表される化合物は、一般式(3)で表される化合物と一般式(9b)
[0079] [化 17]
Figure imgf000017_0002
[0080] [式中、 R5及び R6は前述の通り]
で表される化合物を塩基存在下に作用させることによって製造することができる(ェ 程 B- 1)。
[0081] 反応は、メタノール、エタノール、 1、 4—ジォキサン、 DMSO、 DMF、 THF、 CPM E、トルエン、ベンゼン、シクロへキサン、シクロペンタン、塩化メチレン、クロ口ホルム、 ァセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、炭酸ナトリウム、炭酸 水素カリウム、炭酸カリウムなどの無機塩基又は、トリェチルァミンなどの有機塩基の 存在下、反応温度としては 0°C〜常温下にて行うことができる。
[0082] 合成経路 Bで一般式(l ib)
[0083] [化 18]
Figure imgf000017_0003
ルの保護基を示し、
Figure imgf000018_0001
R5及び R6は前述の通り]
で表される化合物は、一般式 (4b)で表される化合物を各種アルコール保護基導入 反応に付すことによって製造することができる(工程 B— 2)。
[0085] 反応は例えば、メトキシメチル基を導入する場合、反応は水素化ナトリウム、トリェチ ルァミン、ジイソプロピルェチルァミンなどの塩基存在下、メトキシメチルクロリド又は、 メトキシメチルブロミドを、 THF、ァセトニトリル又は、塩化メチレン中で 0°C〜常温下 に作用させて行うことができる。また、 t プチルジメチルシリル基、 t プチルジフエ ニルシリル基、トリイソプロビルシリル基を導入する場合、反応はトリエチルァミン、イミ ダゾールなどの塩基存在下、対応するシリルクロリド、シリルプロミド、シリルトリフルォ ロメタンスルホナートを、 THF、 CPME、 DMF、ァセトニトリル、塩化メチレンなどの 溶媒中、 0°C〜常温で作用させて行うことができる。また、テトラヒドロビラ二ル基を導 入する場合、反応は、ジヒドロピランをパラトルエンスルホン酸などの酸触媒存在下、 塩化メチレンなどの溶媒中、 0°C〜常温で作用させることが好ましい。さらにァセチル 基を導入する場合、反応はァセチルクロリド、ァセチルブロミド又は、無水酢酸を、トリ ェチルァミン、ジイソプロピルェチルァミン、ピリジンなどの有機塩基の存在下、 THF 、 1 , 4 ジォキサン、塩化メチレンなどを溶媒として 0°C〜常温下に行うことができる。 またこの場合、塩基を兼ねた溶媒としてピリジンなどを用いて反応を行うこともできる。
[0086] 合成経路 Bで一般式(12b)
[0087] [化 19]
Figure imgf000018_0002
[0088] [式中、
Figure imgf000018_0003
R5及び Proは前述の通り]
で表される化合物は、一般式(l ib)で表される化合物を、一般に用いられるァセター ル基のホルミル基又はケトン基への変換反応に付すことによって製造することができ る(工程 B— 3)。
[0089] 反応はアセトン溶媒中、パラトルエンスルホン酸一水和物、ピリジニゥムパラトルエン スルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させるか又は、塩化水 素を含有したメタノール、エタノール、酢酸ェチル又は、ジェチルエーテルなどを用
V、o°c〜常温下にて反応させて行うことができる。
[0090] 合成経路 Bで一般式(13b)
[0091] [化 20]
Figure imgf000019_0001
[0092] [式中、
Figure imgf000019_0002
R5及び Proは前述の通り]
で表される化合物は、一般式(12b)で表される化合物をフッ素化反応に付すことによ つて製造することができる(工程 B— 4)。
[0093] 反応は、ジクロロメタンなどの溶媒中、ジメチルアミノサルファートリフルオリドゃジェ チルアミノサルファートリフルオリドなどのフッ素化剤を用いて、 0°C〜常温下にて行う こと力 Sでさる。
[0094] 合成経路 Bで一般式(5b)
[0095] [化 21]
Figure imgf000019_0003
[0096] [式中、 R1は前述の通り]
で表される化合物は、一般式(13b)で表される化合物を一般に用いられるアルコー ノレ類の保護基の脱保護反応及びエステル類の加水分解反応に付すことによって製 造すること力 Sできる(工程 B— 5)。
[0097] アルコール類の保護基の脱保護反応は、保護基がメトキシメチル基、テトラヒドロピ ラニル基の場合、塩化水素含有メタノール、エタノール、酢酸ェチル、ジェチルエー テルを溶媒として用い、 o°c〜常温下にて反応させることができる。保護基力 ¾ プチ ノレジメチルシリル基、 tーブチルジフエニルシリル基、トリイソプロビルシリル基などのシ リル基の場合、フッ化カリウム、フッ化セシウム、テトラプチルアンモニゥムフルオリドを 用い、ァセトニトリル又は、 THFなどの溶媒中 0°C〜常温下に行うことができる。また 保護基がァセチル基の場合、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸 化リチウム水溶液を用い、 THF、 CPME、メタノール、エタノール、 1 , 4 ジォキサン などを溶媒として用い 0°C〜常温下に行うことができる。
[0098] エステル類の加水分解反応は、メタノール、エタノール、 THF、 CPME、 DMSO、 DMF、 1 , 4 ジォキサンなどの溶媒中で水酸化カリウム水溶液、水酸化ナトリウム水 溶液又は、水酸化リチウム水溶液、好ましくは水酸化ナトリウム水溶液を常温〜加熱 還流下に作用させて行うことができる。
[0099] 合成経路 Bで一般式 (6b)
[0100] [化 22]
Figure imgf000020_0001
[0101] [式中、 R1は前述の通り]
で表される化合物は、一般式(5b)で表される化合物を脱炭酸することによって製造 することができる(工程 B— 6)。
[0102] 脱炭酸反応は、工程 A— 4と同様に行うことができる。
[0103] 合成経路 Bで一般式(7b)
[0104] [化 23]
Figure imgf000020_0002
[0105] [式中、 R1は前述の通り] で表される化合物は一般式 ½b)で表される化合物を酸化することによって製造する ことができる(工程 B— 7)。
[0106] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
[0107] 合成経路 Bで一般式(14b)
[0108] [化 24]
Figure imgf000021_0001
[0109] [式中、 R7は水素原子又は、炭素数 1〜4のアルキル基を示し、 R1は前述の通り] で表される化合物は、一般式(7b)で表される化合物と一般式(17)
[0110] [化 25]
M^R7 (17)
[0111] [式中、 Mは Li、 ClMg、 BrMg、 IMgを示し、 R7は前述の通り]
で表される化合物を反応させることによって製造することができる(工程 B— 8)。
[0112] 反応は THF、 CPME、エーテル、 1 , 4 ジォキサンなどを反応溶媒として用い、反 応温度としては 78°C〜常温下に行うことができる。
[0113] 合成経路 Bで一般式(15b)
[0114] [化 26]
Figure imgf000021_0002
[0115] [式中、 R1及び R7は前述の通り]
で表される化合物は一般式(14b)で表される化合物を酸化することによって製造す ることができる(工程 B— 9)。 [0116] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
[0117] 合成経路 Bで一般式(16b)
[0118] [化 27]
Figure imgf000022_0001
[0119] [式中、 R1及び R5は前述の通り]
で表される化合物は一般式(15b)で表される化合物と一般式(18)
[0120] [化 28]
R5〇v0
T 0 , 、
(18)
[0121] [式中、 R5は前述の通り]
で表される化合物を塩基の存在下に作用させることによって製造することができる(ェ 程 B - 10)。
[0122] 反応は、水素化ナトリウム、ナトリウムアルコキシド、カリウムアルコキシド、水素化カリ ゥムなどの塩基、好ましくは水素化ナトリウムの存在下、一般式(18)で表される化合 物を溶媒量用い、 80°C〜; 120°Cに加熱して行うことが好ましい。
[0123] 合成経路 Bで一般式(8b)
[0124] [化 29]
Figure imgf000022_0002
[0125] [式中、 R1は前述の通り]
で表される化合物は、一般式(16b)で表される化合物を加水分解反応に付すことに よって製造することができる(工程 B— 11)。
[0126] 加水分解反応は、工程 A— 3と同様に行うことができる。
[0127] 合成経路 Aで一般式(8)で表される化合物のうち R2がヒドロキシメチル基の化合物
、即ち一般式 (8c)
[0128] [化 30]
Figure imgf000023_0001
[0129] [式中、 R1は前述の通り]
で表される化合物は、下記合成経路 Cによって合成することもできる。
[0130] <合成経路 C〉
[0131] [化 31]
Figure imgf000023_0002
[0132] 合成経路 Cで一般式 (4c)
[0133] [化 32]
Figure imgf000023_0003
[0134] [式中、 Pro 'はメトキシメチル基、 tーブチルジメチルシリル基、 tーブチルジフエニル シリル基、トリイソプロビルシリル基、テトラヒドロビラニル基などのアルコールの保護基 を示し、 R1及び R5は前述の通り]
で表される化合物は、一般式(3)で表される化合物と一般式(19)
[0135] [化 33]
Figure imgf000024_0001
[0136] [式中、 R5及び Pro' は前述の通り]
で表される化合物を塩基存在下に作用させることによって製造することができる(ェ 程 C- 1)。
[0137] 反応は、メタノール、エタノール、 1 , 4—ジォキサン、 DMSO、 DMF、 THF、 CPM E、トルエン、ベンゼン、シクロへキサン、シクロペンタン、塩化メチレン、クロ口ホルム、 ァセトニトリルなどを反応溶媒として用い、炭酸水素ナトリウム、炭酸ナトリウム、炭酸 水素カリウム、炭酸カリウムなどの無機塩基又は、トリェチルァミンなどの有機塩基の 存在下、反応温度としては 0°C〜常温下にて行うことができる。
[0138] 合成経路 Cで一般式(5c)
[0139] [化 34]
Figure imgf000024_0002
[0140] [式中、 R1及び Pro'は前述の通り]
で表される化合物は、一般式 (4c)で表される化合物を一般に用いられるエステル類 の加水分解反応に付すことによって製造することができる(工程 C 2)。
[0141] 加水分解反応は、工程 A— 3と同様に行うことができる。
[0142] 合成経路 Cで一般式(6c)
[0143] [化 35]
Figure imgf000025_0001
[0144] [式中、 R1及び Pro 'は前述の通り]
で表される化合物は、一般式(5c)で表される化合物を脱炭酸することによって製造 することができる(工程 C 3)。
[0145] 脱炭酸反応は、工程 A— 4と同様に行うことができる。
[0146] 合成経路 Cで一般式(7c)
[0147] [化 36]
Figure imgf000025_0002
[0148] [式中、 R1及び Pro 'は前述の通り]
で表される化合物は、一般式(6c)で表される化合物を酸化することによって製造す ることができる(工程 C— 4)。
[0149] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
[0150] 合成経路 Cで一般式(8c ' )
[0151] [化 37]
Figure imgf000025_0003
[0152] [式中、 R1及び Pro 'は前述の通り]
で表される化合物は、一般式(7c)で表される化合物を酸化するか(工程 C 5)また は、一般式 ½c)で表される化合物を酸化することによって製造することができる。
[0153] 工程 C 5における酸化反応は、一般に用いられるアルデヒド類のカルボン酸類へ の酸化的手法を用いることができ、例えば、工程 A— 6と同様に行うことができる。
[0154] また、一般式(6c)で表される化合物を酸化する場合は、一般に用いられるアルコ ール類のカルボン酸類への酸化的手法を用いることができ、例えば酸素酸化、クロム 酸、クロム酸カリウム、クロ口クロム酸ピリジニゥム、ニクロム酸ピリジニゥムなどの酸化ク ロム ピリジン錯体、過マンガン酸カリウム、酸化ルテニウム、ルテニウムを触媒とした 過ヨウ素酸ナトリウム、酸化銀、さらし粉、過酸化水素による酸化反応などにより行うこ とができる。反応温度としては、 0°C〜100°Cにて行うことができる。
合成経路 Cで一般式(8c)
[0155] [化 38]
Figure imgf000026_0001
[0156] [式中、 R1は前述の通り]
で表される化合物は、一般式(8c' )で表される化合物を一般に用いられるアルコー ノレ類の保護基の脱保護反応に付すことによって製造することができる(工程 C 6)。
[0157] アルコール類の保護基の脱保護反応は、保護基がメトキシメチル基、テトラヒドロピ ラニル基の場合、塩化水素含有メタノール、エタノール、酢酸ェチル、ジェチルエー テルを溶媒として用い、 0°C〜常温下にて反応させることができる。保護基力 ¾ プチ ノレジメチルシリル基、 tーブチルジフエニルシリル基、トリイソプロビルシリル基などのシ リル基の場合、フッ化カリウム、フッ化セシウム、テトラプチルアンモニゥムフルオリドを 用い、ァセトニトリル又は、 THFなどの溶媒中 0°C〜常温下に行うことができる。
[0158] 合成経路 Aで一般式(6)で表される化合物のうち、 R2がシァノ基、即ち一般式(6d)
[0159] [化 39] (6d)
Figure imgf000027_0001
[0160] [式中、 R1は前述の通り]
で表される化合物は、下記合成経路 Dによって合成することもできる。
[0161] <合成経路 D〉
[0162] [化 40]
Figure imgf000027_0002
[0165] [式中、 R1は前述の通り]
で表される化合物は、一般式(6c)で表される化合物を一般に用いられるアルコール 類の保護基の脱保護反応に付すことによって製造することができる(工程 D l)。
[0166] 保護基の脱保護反応は、例えば、工程 C 6と同様に行うことができる。
[0167] 合成経路 Dで一般式(21d)
[0168] [化 42]
Figure imgf000028_0001
[0169] [式中、 R1及び Proは前述の通り]
で表される化合物は、一般式(20d)で表される化合物を各種アルコール保護基導入 反応に付すか(工程 D— 2)又は、一般式(6c)で表される化合物を各種アルコール 保護基導入反応に付した後に、一般に用いられるアルコール類の保護基の脱保護 反応に付すことによって製造することができる。
[0170] 工程 D— 2の各種アルコール保護基導入反応としては、工程 B— 2と同様に行うこと ができる。
[0171] 一般に用いられるアルコール類の保護基の脱保護反応は、例えば、保護基がメトキ シメチル基、テトラヒドロビラニル基の場合、塩化水素含有メタノール、エタノール、酢 酸ェチル、ジェチルエーテルを溶媒として用い、 0°C〜常温下にて反応させることが 好ましい。保護基力 ¾ プチルジメチルシリル基、 t プチルジフエニルシリル基、トリ イソプロビルシリル基などのシリル基の場合、フッ化カリウム、フッ化セシウム、テトラブ チルアンモニゥムフルオリドを用い、ァセトニトリル又は、 THFなどの溶媒中 0°C〜常 温下に行うことが好ましい。また保護基がァセチル基の場合、水酸化ナトリウム水溶 液、水酸化カリウム水溶液、水酸化リチウム水溶液を用い、 THF、 CPME、メタノー ル、エタノール、 1 , 4 ジォキサンなどを溶媒として用い 0°C〜常温下に行うことがで きる。
[0172] 合成経路 Dで一般式(22d)
[0173] [化 43]
Figure imgf000028_0002
[0174] [式中、 R1及び Proは前述の通り]
で表される化合物は、一般式(21d)で表される化合物を酸化することによって製造 することができる(工程 D— 3)。
[0175] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
[0176] 合成経路 Dで一般式(23d)
[0177] [化 44]
Figure imgf000029_0001
[0178] [式中、 R1及び Proは前述の通り]
で表される化合物は、一般式(22d)で表される化合物に、ヒドロキシルァミン又はヒド ロキシルァミン塩酸塩を、塩基存在下又は非存在下に反応させることによって製造す ることができる(工程 D— 4)。
[0179] 反応は、水、メタノール、エタノールなどの溶媒中、塩基としては酢酸ナトリウム、炭 酸ナトリウムなどを用いて、 0°C〜; 100°Cで行うことが好ましい。
[0180] 合成経路 Dで一般式(24d)
[0181] [化 45]
Figure imgf000029_0002
[0182] [式中、 R1及び Proは前述の通り]
で表される化合物は、一般式(23d)で表される化合物を脱水反応に付すことによつ て製造することができる(工程 D— 5)。
[0183] 脱水反応は、五酸化二リン、五塩化リン、塩化チォニル、無水酢酸、無水トリフルォ 口酢酸、 DCC、 N,N,-カルボニルジイミダゾール、トリフエニルホスフィン一四塩化炭 素などを脱水剤として、トリェチルァミン、ジイソプロピルェチルァミン、ピリジンなどの 塩基の存在下又は、非存在下に、溶媒としてトルエン、エーテル、 THF、 CPME、 1 , 4 ジ才キサン、ジクロロメタン、クロ口ホルム、ピリジンなどを用いて 0°C〜; 100°Cで fiうこと力 Sでさる。
[0184] また、一般式(24d)で表される化合物は、一般式(22d)で表される化合物を工程 D
4の方法により一般式(23d)で表される化合物に変換し、これを単離精製すること なく工程 D— 5の方法により脱水反応に付すことによつても製造することができる。
[0185] 合成経路 Dで一般式(6d)
[0186] [化 46]
Figure imgf000030_0001
[式中、 R1は前述の通り]
で表される化合物は、一般式(24d)で表される化合物を、一般に用いられるアルコ ール類の保護基の脱保護反応に付すことによって製造することができる(工程 D— 6)
[0188] 保護基の脱保護反応は、工程 B— 5と同様に行うことができる。
[0189] 合成経路 Aで一般式(8)で表される化合物のうち、 R2が炭素数 1〜6のアルコキシ 基で置換されてもよいメチル基、即ち一般式(8e)
[0190] [化 47]
Figure imgf000030_0002
[0191] [式中、 R1及び R5は前述の通り] で表される化合物は、下記合成経路 Eによって合成することもできる。
[0192] <合成経路 E >
[0193] [化 48]
工程 E - 2
Figure imgf000031_0001
[0194] 合成経路 Eで 般式(16e)
[0195] [化 49]
Figure imgf000031_0002
[0196] [式中、 R1及び R5は前述の通り]
で表される化合物は、一般式(8c)で表される化合物と一般式(25)
[0197] [化 50]
R5 - Y (25)
[0198] [式中、 Yは塩素、臭素、ヨウ素、ベンゼンスルホニルォキシ基、 p—トルエンスルホニ ルォキシ基、メタンスルホニルォキシ基又は、トリフルォロメタンスルホ二ルォキシ基を 示し、 R5は前述の通り]
で表される化合物を、塩基存在下作用させることによって製造することができる(工程 E— 1)。
[0199] 反応は、水素化ナトリウム、水素化カリウム、水酸化リチウム、水酸化ナトリウム、水 酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸銀、酸化銀などを塩基とし、トルエン 、 THF、 CPME、ァセトニトリノレ、 DMF、 DMSOなどを溶媒として 0°C〜; 100°Cで行 うこと力 Sでさる。
[0200] 合成経路 Eで一般式(8e) [0201] [化 51]
Figure imgf000032_0001
[0202] [式中、 R1及び R5は前述の通り]
で表される化合物は、一般式(16e)で表される化合物を、一般に用いられるエステ ノレ類の加水分解反応に付すことによって製造することができる(工程 E— 2)。
[0203] 加水分解反応は、工程 A— 3と同様に行うことができる。
[0204] 合成経路 Aで一般式(la)で表される化合物のうち、 R2がヒドロキシメチル基、即ち 一般式(Π— 1)
[0205] [化 52]
Figure imgf000032_0002
[0206] [式中、 R1及び R4は前述の通り]
で表される化合物、若しくは R2がホルミル基、即ち一般式(If 2)
[0207] [化 53]
Figure imgf000032_0003
[0208] [式中、 R1及び R4は前述の通り]
で表される化合物、若しくは R2が炭素数 2〜6の 1ーヒドロキシアルキル基、即ち一般 式(If 3)
[0209] [化 54] (1 f一 3)
Figure imgf000033_0001
[0210] [式中、 R は炭素数 1〜5のアルキル基を示し、 R1及び R4は前述の通り]
で表される化合物、若しくは R2が炭素数 2〜6のアルカノィル基、即ち一般式(If 4 )
[0211] [化 55]
Figure imgf000033_0002
[0212] [式中、
Figure imgf000033_0003
R4及び R'aは前述の通り]
で表される化合物は、下記合成経路 Fによって合成することもできる
[0213] <合成経路 F〉
[0214] [化 56]
Figure imgf000033_0004
[0215] 合成経路 Fで一般式(If 1)
[0216] [化 57]
Figure imgf000034_0001
[0217] [式中、 R1及び R4は前述の通り]
で表される化合物は、一般式(If)
[0218] [化 58]
Figure imgf000034_0002
[0219] [式中、
Figure imgf000034_0003
R4及び Pro'は前述の通り]
で表される化合物を、一般に用いられるアルコール類の保護基の脱保護反応に付す ことによって製造することができる(工程 F—l)。
[0220] 保護基の脱保護反応は、工程 C— 6と同様に行うことができる。
[0221] 合成経路 Fで一般式(If 2)
[0222] [化 59]
Figure imgf000034_0004
[0223] [式中、 R1及び R4は前述の通り]
で表される化合物は、一般式(If 1)で表される化合物を酸化することによって製造 することができる(工程 F— 2)。
[0224] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
合成経路 Fで一般式(If 3)
[0225] [化 60]
Figure imgf000035_0001
[0226] [式中、
Figure imgf000035_0002
R4及び R7aは前述の通り]
で表される化合物は、一般式(If 2)で表される化合物に、一般式(17a)
[0227] [化 61]
M-R7a (17a)
[0228] [式中、 Mは Li、 ClMg、 BrMg、 IMgを示し、 R7aは前述の通り]
で表される化合物を反応させることによって製造することができる(工程 F— 3)。
[0229] 反応は THF、 CPME、エーテル、 1 , 4 ジォキサンなどを反応溶媒として用い、反 応温度としては 78°C〜常温下に行うことができる。
[0230] 合成経路 Fで一般式(If 4)
[0231] [化 62]
Figure imgf000035_0003
[0232] [式中、
Figure imgf000035_0004
R4及び R7aは前述の通り]
で表される化合物は、一般式(If 3)で表される化合物を酸化することによって製造 することができる(工程 F— 4)。
[0233] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。 [0234] 合成経路 Aで一般式(la)で表される化合物のうち R2がカルボキシル基、即ち一般 式(lg—l)
[0235] [化 63]
Figure imgf000036_0001
[0236] [式中、 R1及び R4は前述の通り]
で表される化合物、若しくは R2がォキシム基、即ち一般式(lg— 2)
[0237] [化 64]
Figure imgf000036_0002
[0238] [式中、 R1及び R4は前述の通り]
で表される化合物、若しくは R2がシァノ基、即ち一般式(lg— 3)
[0239] [化 65]
Figure imgf000036_0003
[0240] [式中、 R1及び R4は前述の通り]
で表される化合物は、下記合成経路 Gによって合成することもできる。
[0241] <合成経路 G >
[0242] [化 66]
Figure imgf000037_0001
[0243] 合成経路 Gで一般式(lg— 1)
[0244] [化 67]
Figure imgf000037_0002
[0245] [式中、 R1及び R4は前述の通り]
で表される化合物は、一般式(If 2)で表される化合物を、酸化する力、(工程 G— 1) 又は、一般式(If 1)で表される化合物を酸化する(工程 G— 2)ことによって製造す ること力 Sでさる。
[0246] 工程 G— 1における酸化反応は、一般に用いられるアルデヒド類のカルボン酸類へ の酸化的手法を用いることができ、例えば工程 A— 6と同様に行うことができる。
[0247] また、工程 G— 2における酸化反応は、一般に用いられるアルコール類のカルボン 酸類への酸化的手法を用いることができ、例えば酸素酸化、クロム酸、クロム酸力リウ ム、クロ口クロム酸ピリジニゥム、ニクロム酸ピリジニゥムなどの酸化クロム一ピリジン錯 体、過マンガン酸カリウム、酸化ルテニウム、ルテニウムを触媒とした過ヨウ素酸ナトリ ゥム、酸化銀、さらし粉、過酸化水素による酸化反応などにより行うことができる。 [0248] 合成経路 Gで 般式(lg— 2)
[0249] [化 68]
Figure imgf000038_0001
[0250] [式中、 R1及び R4は前述の通り]
で表される化合物は、一般式(If 2)で表される化合物に、ヒドロキシルァミン又はヒ ドロキシルァミン塩酸塩を、塩基存在下又は非存在下に反応させることによって製造 することができる(工程 G— 3)。
[0251] 反応は、水、メタノール、エタノールなどの溶媒中、塩基としては酢酸ナトリウム、炭 酸ナトリウムなどを用いて、 0°C〜; 100°Cで行うことができる。
[0252] 合成経路 Gで一般式(lg— 3)
[0253] [化 69]
Figure imgf000038_0002
[0254] [式中、 R1及び R4は前述の通り]
で表される化合物は、一般式(lg— 2)で表される化合物を脱水反応に付すことによ つて製造することができる(工程 G— 4)。
[0255] 脱水反応は、工程 D— 5と同様に行うことができる。
また、一般式(lg— 3)で表される化合物は、一般式(If 2)で表される化合物をェ 程 G— 3の方法により一般式(lg— 2)で表される化合物に変換し、これを単離精製 することなく工程 G— 4の方法により脱水反応に付すことによつても製造することがで きる。 [0256] 合成経路 Aで一般式(7)で表される化合物のうち R1が炭素数 1〜6のアルコキシ基
、又は炭素数 1〜6のアルキルスルファュル基である化合物、即ち一般式(7h) [0257] [化 70]
Figure imgf000039_0001
[0258] [式中、 Zは炭素数 1〜6のアルコキシ基又は炭素数 1〜6のアルキルスルファニル基 を示し、 R2は前述の通り]
で表される化合物は、下記合成経路 Hによって合成することもできる。
[0259] <合成経路 H〉
[0260] [化 71]
Figure imgf000039_0002
[0263] [式中、 R2及ぴ Proは前述の通り]
で表される化合物は、一般式(6h)で表される化合物を、各種アルコール保護基導 入反応に付すことによって製造することができる(工程 H— 1)。
[0264] 各種アルコール保護基導入反応は、工程 B— 2と同様に行うことができる。
[0265] 合成経路 Hで一般式(27h)
[0266] [化 73]
Figure imgf000040_0001
[0267] [式中、 Wは塩素原子、臭素原子又はヨウ素原子を示し、 R2及び Proは前述の通り] で表される化合物は、一般式(26h)表される化合物を塩素化、臭素化又はヨウ素化 することによって製造することができる(工程 H— 2)。
[0268] 反応は、ブチルリチウム、リチウムジイソプロピルアミド、リチウムビストリメチルシリル アミドなどの塩基を、 THFや CPMEなどの溶媒中、 78°C〜0°Cで反応させた後、 N—クロロコハク酸イミド、 N ブロモコハク酸イミド、 1 , 2—ジブロモェタン、臭素、 N ーョードコハク酸イミド、ヨウ素、 1 , 2 ジョードエタンなどを作用させて、 78°C〜常 温で fiうこと力 Sできる。
[0269] 合成経路 Hで一般式(28h)
[0270] [化 74]
Figure imgf000040_0002
[0271] [式中、 R2及び Wは前述の通り]
で表される化合物は、一般式(27h)表される化合物を、一般に用いられるアルコー ノレ類の保護基の脱保護反応に付すことによって製造することができる(工程 H— 3)。
[0272] 保護基の脱保護反応は、工程 B— 5と同様に行うことができる。
[0273] 合成経路 Hで一般式(29h)
[0274] [化 75]
Figure imgf000041_0001
[0275] [式中、 R2及び Wは前述の通り]
で表される化合物は、一般式(28h)表される化合物を、酸化することによって製造す ることができる(工程 H— 4)。
[0276] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
[0277] 合成経路 Hで一般式(7h)
[0278] [化 76]
Figure imgf000041_0002
[0279] [式中、 R2及び Zは前述の通り]
で表される化合物は、一般式(29h)で表される化合物を用いて製造することができる (工程 H - 5)。
[0280] 反応は、対応するアルコール又はチオール (ZH)で表される化合物に水素化ナトリ ゥム又は水素化カリウムなどを塩基として加え、 DMF、 THF、 CPME、 DMSO、好 ましくは DMFを溶媒として常温〜 60°Cにて行うことができる。
[0281] 合成経路 Aで一般式(la)で表される化合物のうち R1がァミノ基又は、炭素数;!〜 6 のアルキルアミノ基である化合物、即ち一般式(li)
[0282] [化 77]
Figure imgf000042_0001
[0283] [式中、 R8及び R9はそれぞれ独立して、水素原子、炭素数 1〜6のアルキル基又は、 ァミノ基の保護基を示し、 R2及び R4は前述の通り]
で表される化合物は、下記合成経路 Iによって合成することもできる。
[0284] <合成経路 1 >
[0285] [化 78]
工程ト 2
Figure imgf000042_0002
[0286] 合成経路 Iで一般式(30i)
[0287] [化 79]
Figure imgf000042_0003
[0288] [式中、 R2、 R8及び R9は前述の通り]
で表される化合物は、一般式(29h)で表される化合物と一般式(31) [0289] [化 80]
R8 NR9 (31 )
[0290] [式中、 R8及び R9は前述の通り]
で表される化合物を用いて製造することができる(工程 I 1 )。
[0291] 反応は、ブチルリチウム、水素化ナトリウム又は水素化カリウムなどの存在下又は非 存在下、 THF、 CPME、 DMSO又は、 DMFなどを溶媒として 0°C〜; 100°Cにて行う こと力 Sでさる。また、一般式(30i)で表される化合物のうち、 R8と R9のどちらか一方又 は両方がァミノ基の保護基である化合物を製造する場合は、 R8と R9のどちらか一方 又は両方が水素原子である一般式 (30i)で表される化合物を製造した後、その化合 物に、一般的なァミノ基の保護反応を行って製造することもできる。ここで、一般的な ァミノ基の保護基とは、例えば PROTECTIVE GROUPS IN ORGANIC SYNTHESIS T HIRD EDITION (Theodora W. Greene, Peter G.M. Wats著、 JOHN WILEY & SONS , INC. )に記載のァミノ基の保護基などがある力 好ましくは t—ブトキシカルボニル基 力 S挙げられる。ァミノ基の保護基として t ブトキシカルボ二ル基を導入する場合、反 応はジ—t ブチルジカーボネートを用い、 THF、 CPME、 DMSO , DMF、ァセト 二トリルなどを溶媒として、 4ージメチルァミノピリジンなどの存在下又は非存在下に、 0°C〜100°Cの反応温度にて行うことができる。
[0292] 合成経路 Iで一般式(8i)
[0293] [化 81]
Figure imgf000043_0001
[0294] [式中、 R2、R8及び R9は前述の通り]
で表される化合物は、一般式(30i)で表される化合物を酸化することによって製造す ることができる(工程 1 2)。
[0295] 酸化反応は、一般に用いられるアルデヒド類のカルボン酸類への酸化的手法を用 いること力 Sでき、例えば、工程 A— 6と同様に行うことができる。
[0296] 合成経路 Iで一般式(li)
[0297] [化 82]
Figure imgf000044_0001
[0298] [式中、 R2、 R4、 R8及び R9は前述の通り]
で表される化合物は、一般式(8i)で表される化合物と、一般式(10)で表される化合 物を縮合させることによって製造することができる(工程 1-3)。縮合反応は、一般に用 いられるカルボン酸類とァミン類の縮合反応によるアミド類の合成反応を用いることが でき、例えば、工程 A— 7と同様に行うことができる。
[0299] また、 R8と R9のどちらか一方又は両方が水素原子である場合は、 R8と R9のどちらか 一方又は両方がァミノ基の保護基である一般式(li)で表される化合物を前述の方法 により製造した後に、一般的なァミノ基の脱保護反応に付して製造することもできる。 ここで、一般的なァミノ基の脱保護反応とは、たとえば PROTECTIVE GROUPS IN 0 RGANIC SYNTHESIS THIRD EDITION (Theodora W. Greene, Peter G.M. Wats著 、 JOHN WILEY & SONS, INC.)に記載のァミノ基の脱保護反応などがある。例えば ァミノ基の保護基力 ¾ ブトキシカルボニル基である場合、脱保護反応は水、メタノー ノレ、エタノール、トルエン、酢酸ェチル、 THF、 CPME、 1 , 4—ジォキサン、塩化メチ レン、クロ口ホルム、ァセトニトリルなどの溶媒中、塩酸、硫酸、トリフルォロ酢酸、トル フルォロメタンスルホン酸、 p—トルエンスルホン酸、メタンスルホン酸などを 0°C〜80 °Cの反応温度にて作用させて行うことができる。
[0300] 合成経路 Aで一般式(la)で表される化合物のうち、 R1がヒドロキシメチル基、即ち 一般式(lj 1)
[0301] [化 83]
Figure imgf000045_0001
[0302] [式中、 R2及び R4は前述の通り]
で表される化合物、若しくは R1がホルミル基、即ち一般式(lj— 2)
[0303] [化 84]
Figure imgf000045_0002
[0304] [式中、 R2、及び R4は前述の通り]
で表される化合物、若しくは R1が炭素数 2〜6の 1 -ヒドロキシアルキル基、即ち一般 式(lj 3)
[0305] [化 85]
Figure imgf000045_0003
[0306] [式中、 R2、 R4及び R7aは前述の通り]
で表される化合物、若しくは R1が炭素数 2〜6のアルカノィル基、即ち一般式(lj 4 )
[0307] [化 86]
Figure imgf000046_0001
[0308] [式中、 R、R及び R は前述の通り]
で表される化合物は、下記合成経路 Jによって合成することもできる。
[0309] <合成経路 J〉
[0310] [化 87]
Figure imgf000046_0002
. Q、 (1J-4) dj-2) (1J-3) [0311] 合成経路 Jで一般式(31j)
[0312] [化 88]
Figure imgf000047_0001
[0313] [式中、 R2、 R6及び Wは前述の通り]
で表される化合物は、一般式(29h)で表される化合物を一般式(36)
[0314] [化 89]
R6-0一 V (36)
[0315] [式中、 Vは水素原子又は、トリアルキルシリル基を示し、 R6は前述の通り]
で表される化合物を用いたァセタール化反応によって製造することができる(ェ禾¾1- 1)。反応は、塩化水素、硫酸、 p トルエンスルホン酸、ピリジニゥムパラトルエンスル ホネート、カンファースルホン酸、トリメチルシリルメタンスルホネート、モンモリロナイト K 10、酸性イオン交換樹脂等の触媒存在下、ベンゼン、トルエン、キシレン、塩化 メチレンなどの溶媒中、 0°C〜; 150°Cで行うことができる。
[0316] 合成経路 Jで一般式(3¾)
[0317] [化 90]
Figure imgf000047_0002
[0318] [式中、 R2及び R6は前述の通り]
で表される化合物は、一般式(31j)で表される化合物をホルミル化することによって 製造すること力 Sできる(ェ禾¾1- 2)。
[0319] 反応は、ブチルリチウム、リチウムジイソプロピルアミド、リチウムビストリメチルシリル アミド、好ましくはリチウムジイソプロピルアミドを塩基として用い、 THF溶媒中、 - 78 °Cにて反応させた後、ギ酸ェチルまたは DMFを 78°C〜常温にて作用させて行う こと力 Sでさる。
[0320] 合成経路 Jで一般式(3¾)
[0321] [化 91]
Figure imgf000048_0001
[0322] [式中、 R2及び R6は前述の通り]
で表される化合物は、一般式(3¾)で表される化合物を還元することによって製造す ることができる(ェ禾¾1-3)。
[0323] 反応は、水素化ホウ素ナトリウム、水素化ホウ素リチウム、 DIBAL、水素化リチウムァ ノレミニゥムなどの還元剤を、 0°C〜常温下に作用させて行うことができる。反応溶媒と しては、水素化ホウ素ナトリウムの場合、 THF CPME 1 , 4—ジォキサンなどのェ テル系溶媒又は、エタノール、メタノールなどのアルコール系溶媒を、水素化ホウ 素リチウムの場合、 THF又は、 THFにエタノールなどのアルコール系溶媒を添加し た溶媒を、 DIBALの場合、 THF、トルエン、塩化メチレンなどを、水素化リチウムアル ミニゥムの場合、 THF、ジェチルエーテルなどのエーテル系溶媒を用いて反応を行 うことが好ましい。
[0324] 合成経路 Jで一般式(34j)
[0325] [化 92]
Figure imgf000048_0002
[式中、 R2 R6及び Proは前述の通り]
で表される化合物は、一般式(3¾)で表される化合物を各種アルコール保護基導入 反応に付すことによって製造することができる(ェ禾¾1 4)。
[0327] 各種アルコール保護基導入反応は、例えば、工程 B— 2と同様に行うことができる。
[0328] 合成経路 Jで一般式(7j)
[0329] [化 93]
Figure imgf000049_0001
[0330] [式中、 IT及び Proは前述の通り]
で表される化合物は、一般式(34j)で表される化合物を脱ァセタール化することによ つて製造することができる(ェ禾¾1 5)。
[0331] 反応はアセトン溶媒中、パラトルエンスルホン酸一水和物、ピリジニゥムパラトルエン スルホネートなどの酸触媒を用い、常温〜加熱還流下に作用させるか又は、塩化水 素を含有したメタノール、エタノール、酢酸ェチル又は、ジェチルエーテルなどを用
V、o°c〜常温下にて反応させて行うことができる。
[0332] 合成経路 Jで一般式( )
[0333] [化 94]
Figure imgf000049_0002
[0334] [式中、 IT及び Proは前述の通り]
で表される化合物は、一般式(7j)で表される化合物を酸化することによって製造する ことができる(ェ禾¾1 6)。
[0335] 酸化反応は、一般に用いられるアルデヒド類のカルボン酸類への酸化的手法を用 いること力 Sでき、例えば、工程 A— 6と同様に行うことができる。
[0336] 合成経路 Jで一般式(3¾) [0337] [化 95]
Figure imgf000050_0001
[0338] [式中、 IT、 R4及び Proは前述の通り]
で表される化合物は、一般式( )で表される化合物と、一般式(10)
で表される化合物を縮合させることによって製造することができる(ェ禾¾1-7)。
[0339] 縮合反応は、一般に用いられるカルボン酸類とァミン類の縮合反応によるアミド類 の合成反応を用いることができ、例えば、工程 A— 7と同様に行うことができる。
[0340] 合成経路 Jで一般式(lj 1)
[0341] [化 96]
Figure imgf000050_0002
[0342] [式中、 R2及び R4は前述の通り]
で表される化合物は、一般式(3 )で表される化合物を一般に用いられるアルコー ノレ類の保護基の脱保護反応に付すことによって製造することができる(ェ禾¾ 8)。
[0343] 保護基の脱保護反応は、工程 B— 5と同様に行うことができる。
[0344] 合成経路 Jで一般式(lj 2)
[0345] [化 97]
Figure imgf000051_0001
[0346] [式中、 R及び Rは前述の通り]
2 4
で表される化合物は、一般式(lj 1)で表される化合物を酸化することによって製造 することができる(ェ禾¾1 9)。
[0347] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
合成経路 Jで一般式(lj 3)
[0348] [化 98]
Figure imgf000051_0002
[0349] [式中、 R、R及び R は前述の通り]
で表される化合物は、一般式(lj 2)で表される化合物に、一般式(17a)で表され る化合物を反応させることによって製造することができる(ェ禾¾1 10)。
[0350] 反応は THF、 CPME、エーテル、 1 , 4 ジォキサンなどを反応溶媒として用い、反 応温度としては 78°C〜常温下に行うことができる。
合成経路 Jで一般式(lj 4)
[0351] [化 99]
Figure imgf000052_0001
[0352] [式中、 R2、R4及び R7aは前述の通り]
で表される化合物は、一般式(lj 3)で表される化合物を酸化することによって製造 することができる(ェ禾¾1 11)。
[0353] 酸化反応は、一般に用いられるアルコール類のアルデヒド類又はケトン類への酸化 的手法を用いることができ、例えば、工程 A— 5と同様に行うことができる。
[0354] 合成経路 Aで一般式(6)で表される化合物のうち R1が炭素数 1〜6のアルコキシメ チル基の化合物、即ち一般式(6k)
[0355] [化 100]
Figure imgf000052_0002
[0356] [式中、 R2及び R5は前述の通り]
で表される化合物は、下記合成経路 Kによって合成することもできる。
[0357] <合成経路 K〉
[0358] [化 101]
Figure imgf000053_0001
[0359] 合成経路 Kで一般式(37k)
[0360] [化 102]
Figure imgf000053_0002
[0361] [式中、 IT及び Proは前述の通り]
で表される化合物は、一般式(26h)で表される化合物をホルミル化することによって 製造することができる(工程 K-1)。
[0362] 反応は、ブチルリチウム、リチウムジイソプロピルアミド、リチウムビストリメチルシリル アミドなどの塩基を、 THFや CPMEなどの溶媒中、 78°C〜0°Cで反応させた後、 ギ酸ェチル又は DMFを 78°C〜常温で作用させて行うことができる。
[0363] 合成経路 Kで一般式(38k)
[0364] [化 103]
Figure imgf000053_0003
[0365] [式中、 R2及び Proは前述の通り]
で表される化合物は、一般式(37k)で表される化合物を還元することによって製造 することができる(工程 K-2)。
[0366] 還元反応は、ェ禾¾1 3と同様に行うことができる。
[0367] 合成経路 Κで一般式(39k)
[0368] [化 104]
Figure imgf000054_0001
[0369] [式中、 IT、 R5及び Proは前述の通り]
で表される化合物は、一般式(38k)で表される化合物と一般式(25)
で表される化合物を塩基存在下作用させることによって製造することができる(工程 K 3)。
[0370] 反応は、水素化ナトリウム、水素化カリウム、水酸化リチウム、水酸化ナトリウム、水 酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸銀、酸化銀などを塩基とし、トルエン 、 THF、 CPME、ァセトニトリノレ、 DMF、 DMSOなどを溶媒として 0°C〜; 100°Cで行 うこと力 Sでさる。
[0371] 合成経路 Kで一般式(6k)
[0372] [化 105]
Figure imgf000054_0002
[0373] [式中、 R2及び R5は前述の通り]
で表される化合物は、一般式(39k)で表される化合物を一般に用いられるアルコー ノレ類の保護基の脱保護反応に付すことによって製造することができる(工程 K 4)。 保護基の脱保護反応は、工程 B— 5と同様に行うことができる。
[0374] 一般式(1)で表される化合物のうち、 R3がハロゲン原子である化合物、即ち一般式
(11)
[0375] [化 106]
Figure imgf000055_0001
[0376] [式中、 Uはハロゲン原子を示し、
Figure imgf000055_0002
R2及び R4は前述の通り]
で表される化合物は、例えば以下に示す合成経路 Lにより製造することができる。
[0377] <合成経路 L >
[0378] [化 107]
Figure imgf000055_0003
[0379] 合成経路 Lで一般式(81)
[0380] [化 108]
Figure imgf000055_0004
[0381] [式中、
Figure imgf000055_0005
R2及び Uは前述の通り]
で表される化合物は、一般式(7)で表される化合物を酸化、並びにハロ' とによって製造すること力 Sできる(工程 L— 1)
[0382] 反応は、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、さらし粉、塩素、 N
ク酸イミド、臭素、 N—ブロモコハク酸イミド、ヨウ素又は、 N—ョードコハク酸イミドなど を用いて 0°C〜; 100°Cにて行うことができる。 [0383] 合成経路しで 般式(11)
[0384] [化 109]
Figure imgf000056_0001
[0385] [式中、
Figure imgf000056_0002
R2、 R4及び Uは前述の通り]
で表される化合物は、一般式(81)で表される化合物と、一般式(10)で表される化合 物を縮合させることによって製造することができる(工程 L-2)。
[0386] 縮合反応は、一般に用いられるカルボン酸類とァミン類の縮合反応によるアミド類 の合成反応を用いることができ、例えば、工程 A— 7と同様に行うことができる。
[0387] 一般式(1)で表される化合物のうち、 R3が水酸基である化合物、即ち一般式(lm)
[0388] [化 110]
Figure imgf000056_0003
[0389] [式中、
Figure imgf000056_0004
R2及び R4は前述の通り]
で表される化合物は、例えば以下に示す合成経路 Mにより製造することができる。
[0390] <合成経路 M〉
[0391] [化 111]
Figure imgf000056_0005
[0392] 合成経路 Mで 般式(lm) [0393] [化 112]
Figure imgf000057_0001
[0394] [式中、
Figure imgf000057_0002
R2及び R4は前述の通り]
で表される化合物は、一般式(la)で表される化合物から製造することができる(工程 M— 1)。
[0395] 反応は、過酸化水素、 m—クロ口過安息香酸、過酢酸、過マレイン酸、マグネシウム モノパーォキシフタレート、過ホウ酸ナトリウムなどを、水、酢酸、塩化メチレン、クロ口 ホノレム、 1 , 2—ジクロロェタンなどの溶媒中で、反応温度 0°C〜150°Cで行うことがで きる。
[0396] 一般式(la)で表される化合物のうち、 R4がハロゲン原子により置換されてもよいピ リジル基の N—ォキシドである化合物、即ち一般式(lo)
[0397] [化 113]
Figure imgf000057_0003
[0398] [式中、 RiU、 R"及び はそれぞれ独立して水素原子又は、ハロゲン原子を示し、 R 1及び R2は前述の通り]
で表される化合物は、例えば以下に示す合成経路 Oにより製造することもできる。
[0399] <合成経路 0〉
[0400] [化 114]
Figure imgf000058_0001
[0401] 合成経路 Oで一般式(lo)
[0402] [化 115]
Figure imgf000058_0002
[0403] [式中、
Figure imgf000058_0003
R2、 R10, R11及び R12は前述の通り]
で表される化合物は、一般式(1 o)
[0404] [化 116]
Figure imgf000058_0004
[0405] で表される化合物から製造することができる(工程 O 1)。
[0406] 反応は、過酸化水素、 m クロ口過安息香酸、過酢酸、過マレイン酸、マグネシウム モノパーォキシフタレート、過ホウ酸ナトリウムなどを、水、酢酸、塩化メチレン、クロ口 ホノレム、 1 , 2 ジクロロェタンなどの溶媒中で、反応温度 0°C〜150°Cで行うことがで きる。
実施例 次に本発明を具体例によって説明するが、これらの例によって本発明が限定される ものではない。
[0407] <実施例 1〉
5 ヒドロキシメチノレ 2 メトキシピリジン
[0408] [化 117]
Figure imgf000059_0001
[0409] 水素化リチウムアルミニウム(11.4 g)の THF (600 mL)懸濁液に、 0°Cにて 6—メトキ シニコチン酸メチルエステル(50.0 g)の THF (300 mL)溶液を加えて、 0°Cで 1時間攪 拌した。反応液に 10%水酸化ナトリウム水溶液(25.0 mL)を加えた後、無水硫酸ナトリ ゥムを加えて乾燥し、セライトを用いて不溶物を濾去した。濾液の溶媒を減圧留去し 、 目的化合物 (41.1 g)を無色油状物として得た。
'H-NMR (400 MHz, CDCl ) : δ 1.75 (1H, brs), 3.94 (3Η, s), 4.62 (2Η, s), 6.75 (1Η, d, J = 8.0 Hz), 7.62 (1H, dd, J = 2.4, 8.0 Hz), 8.12 (1H, d, J = 2.4 Hz).
[0410] <実施例 2〉
1—ァミノ一 5 ヒドロキシメチル一 2 メトキシピリジニゥム 2, 4, 6 トリメチルベン ゼンスノレホネート
[0411] [化 118]
Figure imgf000059_0002
O メシチルスルホニルァセトヒドロキサム酸ェチル(87.8 g)を 1,4-ジォキサン (70 mL)に溶解し、氷冷下にて 70%過塩素酸水溶液(31.0 mL)を加え攪拌した。氷水を 加え析出した固体を濾取してジクロロメタンに溶解し、そのジクロロメタン層を無水硫 酸マグネシウムで乾燥後、実施例 1の化合物 (35.7 g)のジクロロメタン溶液(20 mL) に滴下し、常温で 1時間攪拌した。反応液の溶媒を減圧下に留去し、析出した固体を 濾取し、ジェチルエーテルで洗浄して、 目的化合物 (58.7 g)を白色固体として得た。
:H-NMR (400 MHz, DMSO-d ): δ 2.17 (3H, s), 2.49 (6Η, s), 4.24 (3Η, s), 4.57 (2Η
, s), 6.74 (2H, s), 7.70 (1H, d, J = 9.2 Hz), 7.71 (2H, brs), 8.16 (1H, dd, J = 1.4, 9. 2 Hz), 8.46 (1H, d, J = 1.4 Hz).
[0413] <実施例 3〉
2—ェチルー 4ーヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー3—カル ボン酸 ェチルエステル
[0414] [化 119]
Figure imgf000060_0001
[0415] 実施例 2の化合物 (66.2 g)を DMF(300 mL)に溶解し、 2—ペンチン酸ェチル (16.4 mL)及び炭酸カリウム (51.4 g)を加え、常温で 23時間攪拌した。セライトを用いて不溶 物を濾去後、濾液を水で希釈し、酢酸ェチルにて抽出後、抽出層を水、飽和食塩水 の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲ ルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1: 1→酢酸ェチル)にて精製する ことで目的化合物 (6.70 g)を白色固体として得た。
MS (EI+): 278 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.34 (3H, t, J = 8.0 Hz), 1.44 (3H, t, J = 6.7 Hz), 3.
12 (2H, q, J = 8.0 Hz), 4.16 (3H, s), 4.41 (2H, q, J = 6.7 Hz), 4.81 (2H, d, J = 7.3
Hz), 4.94 (1H, t, J = 7.3 Hz), 6.22 (1H, d, J = 7.3 Hz), 7.30 (1H, d, J = 7.3 Hz).
[0416] <実施例 4〉
2—ェチルー 4ーヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー3—カル ボン酸
[0417] [化 120]
Figure imgf000061_0001
[0418] 実施例 3の化合物 (6.22 g)をエタノール (150 mL)に溶解し、 10%水酸化カリウム水 溶液 (37 mL)を加え、 2時間加熱還流した。溶媒を減圧下に留去した後、残渣を水に 溶解し、エーテルで洗浄した。水層に濃塩酸を加えて、液性を酸性にした後、酢酸ェ チルで抽出し、抽出層を、水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥 した。溶媒を減圧下に留去し、 目的化合物 (4.58 g)を灰色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.37 (3H, t, J = 7.4 Hz), 3.19 (2H, q, J = 7.4 Hz), 4
.18 (3H, s), 4.88 (2H, s), 6.29 (1H, d, J = 7.9 Hz), 7.38 (1H, d, J = 7.9 Hz).
[0419] <実施例 5〉
2—ェチル - 4—ヒドロキシメチル 7 メトキシピラゾ口 [1 , 5 - a]ピリジン
[0420] [化 121]
Figure imgf000061_0002
実施例 4の化合物 (4.10 g)をブロモベンゼン (150 mL)に懸濁し、 5時間加熱還流した 溶媒を減圧下に留去した後、
Figure imgf000061_0003
酢酸ェチル= 1 : 2→1 : 4)にて精製することで目的化合物 (2.49 g)を白色固体として 得た。
MS (EI+): 206 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.36 (3H, t, J = 8.0 Hz), 1.65 (1H, brs), 2.92 (2H, q
, J = 8.0 Hz), 4.13 (3H, s), 4.81 (2H, s), 5.99 (1H, d, J = 7.3 Hz), 6.43 (1H, s), 7.08 (1H, d, J = 7.3 Hz).
[0422] <実施例 6〉
2—ェチル - 7 メトキシピラゾロ [1 , 5 - a]ピリジン一 4 カルボアルデヒド [0423] [化 122]
Figure imgf000062_0001
[0424] 実施例 5の化合物 (2.50 g)をジクロロメタン (60 mL)に溶解し、活性二酸化マンガン (1 0.5 g)を加え、常温で 24時間攪拌した。セライトを用いて不溶物を濾去後、濾液の溶 媒を減圧留去し、 目的化合物 (2.28 g)を灰色固体として得た。
MS (EI+): 204 [M+]
:H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 8.0 Hz), 2.95 (2H, q, J = 8.0 Hz), 4
.26 (3H, s), 6.20 (1H, d, J = 7.3 Hz), 7.18 (1H, s), 7.71 (1H, d, J = 7.3 Hz), 9.93 (1 H, s).
[0425] <実施例 7〉
2—ェチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸 ェチルエステ ノレ
[0426] [化 123]
Figure imgf000062_0002
[0427] 実施例 6の化合物 (1.02 g)を水 (100 mL)に懸濁し、過マンガン酸カリウム (3.16 g)を 加え、常温で 21時間攪拌した。 10%水酸化ナトリウム水溶液を加えて液性をアルカリ 性にした後、セライトを用いて不溶物を濾去し、濾液をエーテルで洗浄した。水層を 1 0%塩酸で酸性にした後、酢酸ェチルにて抽出し、抽出層を、水、飽和食塩水の順 で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣 (154 mg)を DM F(7.0 mUに溶解し、ヨウ化工チル (0.0844 mU及び炭酸カリウム (145 mg)を加え、常 温で 1.5時間攪拌した。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を、水、 飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、残 渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1 : 1)にて精製し、 目 的化合物 (55.6 mg)を白色固体として得た。
MS (EI+): 248 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 8.6 Hz), 1.45 (3H, t, J = 6.7 Hz), 2
.93 (2H, q, J = 8.6 Hz), 4.21 (3H, s), 4.42 (2H, q, J = 6.7 Hz), 6.10 (1H, d, J = 8.0 Hz), 6.94 (1H, s), 8.01 (1H, d, J = 8.0 Hz).
[0428] <実施例 8〉
2ーェチノレ 7ーメトキシピラゾロ [1 , 5 a]ピリジン 4一力ノレボン酸
[0429] [化 124]
Figure imgf000063_0001
[0430] 実施例 7の化合物 (286 mg)をメタノール (3.0 mL)に溶解し、 10%水酸化カリウム水溶 液 (2.0 mL)を加え、常温で 17時間攪拌した。反応液をエーテルで洗浄し、水層を 10 %塩酸で反応液を酸性にした後に、酢酸ェチルにて抽出した。抽出層を、水、飽和 食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して目的化合 物 (121 mg)を無色粉末として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.39 (3H, t, J = 7.3 Hz), 2.85 (2H, q, J = 7.3 Hz), 4.
24 (3H, s), 6.15 (1H, d, J = 7.9 Hz), 7.01 (1H, s), 8.12 (1H, d, J = 7.9 Hz).
[0431] <実施例 9〉
2 ェチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3, 5 ジクロ 口ピリジン 4 ィル)アミド
[0432] [化 125]
Figure imgf000064_0001
[0433] アルゴン雰囲気下、実施例 8の化合物 (100 mg)をジクロロメタン (10 mL)に溶解し、 ジイソプロピルェチルァミン (0.158 mL)及び 0—べンゾトリァゾールー 1ーィルー N,N, Ν ' ,Ν 'ーテトラメチルゥロニゥムテトラフルォロボレート(TBTU) (161 mg)を加え、常温 で 1.5時間攪拌した。反応液を水で希釈後、酢酸ェチルで抽出した。抽出層を水、飽 和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した (残渣 A )。
アルゴン雰囲気下、 4 アミノー 3, 5 ジクロロピリジン (740 mg)をトルエン (30 mUに 溶解し、 0。Cにてナトリウムビス(2 メトキシエトキシ)アルミナムヒドリド (65%トルエン 溶液、 0.630 mL)を滴下し、 100°Cで 1.5時間攪拌した。反応液を 0°Cに冷却後、先に 得られた残渣 Aのジクロロメタン (5.0 mL)溶液を滴下後、再び 100°Cにて 3時間加熱攪 拌した。セライトを用いて不溶物を濾去後、濾液を水で希釈し、酢酸ェチルにて抽出 後、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を 減圧留去後、残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1 : 2 →1 : 4)にて精製することで目的化合物 (28.4 mg)を白色固体として得た。
MS (EI+): 364 [M+]
HRMS (EI+): 364.0480 (-1.4 mmu)
'H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 8.0 Hz), 2.95 (2H, q, J = 8.0 Hz), 4
.25 (3H, s), 6.18 (1H, d, J = 8.0 Hz), 6.88 (1H, s), 7.70 (1H, brs), 7.87 (1H, d, J = 8 .0 Hz), 8.59 (2H, s).
[0434] <実施例 10〉
2 ェチル 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 4 ニトロフエ ニノレエステノレ [0435] [化 126]
Figure imgf000065_0001
[0436] アルゴン雰囲気下、実施例 8の化合物 (300 mg)をジクロロメタン (14 mL)に溶解し、 4 -ニトロフエノール (233 mg)、 N- (3—ジメチルァミノプロピル)一 N, 一ェチルカルボ ジイミド塩酸塩 (396 mg)および触媒量のジメチルァミノピリジンを加え、常温で 2時間 攪拌した。反応液を水で希釈後、ジクロロメタンで抽出した。抽出層を飽和炭酸水素 ナトリウム水溶液、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒 を減圧留去し、 目的物 (442 mg)を得た。
'H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 7.4 Hz), 2.95 (2H, q, J = 7.4 Hz), 4
.27 (3H, s), 6.20 (1H, d, J = 8.6 Hz), 6.99 (1H, s), 7.44-7.47 (2H, m), 8.23 (1H, d,
J = 8.6 Hz), 8.33-8.37 (2H, m).
[0437] <実施例 11〉
2—ェチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸 (3, 5—ジクロ 口一 1—ォキシピリジン一 4—ィル)アミド
[0438] [化 127]
Figure imgf000065_0002
[0439] アルゴン雰囲気下、 4-ァミノ- 3,5-ジクロロピリジン- N-ォキシド(346 mg)を DMF(19 mL)に溶解し、氷冷下にて 60%水素化ナトリウム (97.0 mg)を加え、常温で 30分間攪拌 した。この反応液に氷冷下、実施例 10の化合物 (440 mg)の DMF溶液 (15 mL)を加え 、常温で 45分攪拌した。反応液に飽和塩化アンモニゥム水溶液を加え、クロ口ホルム :メタノール = 9 : 1で抽出し、抽出層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾 燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー (酢酸ェチル:メタノ ール = 6 : 1)にて精製し、 目的物 (286 mg)を白色固体として得た。
元素分析 (%): C H C1 N 0 - 1/2
H Oとして
C H N
計算直 49.25 3.87 14.36
実測値 49.17 3.67 14.26
MS (FAB+): 381 [M+H+]
'H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 8.0 Hz), 2.95 (2H, q, J = 8.0 Hz), 4
.25 (3H, s), 6.18 (1H, d, J = 8.0 Hz), 6.84 (1H, s), 7.57 (1H, brs), 7.85 (1H, d, J = 8
.0 Hz), 8.28 (2H, s).
[0440] <実施例 12〉
4 ヒドロキシメチル一 7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン 3—力ルボン酸 ェチルエステル
[0441] [化 128]
Figure imgf000066_0001
[0442] 実施例 2の化合物と 4, 4, 4 トリフルオロー 2 ブチン酸ェチルエステルから、実 施例 3と同様にして、 目的化合物(収率 30%)を黄色粉末として得た。
'H-NMR (400 MHz, CDC1 ) : δ 1.42 (3Η, t, J = 7.0 Hz), 4.20 (3H, s), 4.43 (2H, q
J = 7.0 Hz), 4.62 (1H, t, J = 7.6 Hz), 4.83 (2H, d, J = 7.6 Hz), 6.36(1H, d, J = 7.6 Hz), 7.44 (1H, d, J = 7.6 Hz).
[0443] <実施例 13〉 4—ヒドロキシメチル一 7—メトキシ一 2—ト 口 [1 , 5— a]ピリジン
[0444] [化 129]
Figure imgf000067_0001
[0445] 実施例 12の化合物を用いて、実施例 4および実施例 5と同様の方法により、 目的化 合物(収率 73%)を白色固体として得た。
:H-NMR (400 MHz, CDC1 ) : δ 1.56 (1Η, brs), 4.18 (3Η, s),
4.87 (2Η, d, J = 0.9 Hz), 6.22 (1H, d, J = 7.6 Hz), 6.92 (1H, s), 7.24-7.27
(1H, m).
[0446] <実施例 14〉
7—メトキシ一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボアルデヒド [0447]
Figure imgf000067_0002
[0448] 実施例 13の化合物を用いて、実施例 6と同様の方法により、 目的化合物(収率 99 %)を白色固体として得た。
LRMS (ΕΓ): 244 [Μ+]
'H-NMR (400 MHz, CDC1 ): δ 4.31 (3H, s), 6.43 (1H, d, J =
7.9 Hz), 7.64 (1H, s), 7.87 (1H, d, J = 7.9Hz), 9.98 (1H, s).
[0449] <実施例 15〉
7—メトキシ一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸
[0450] [化 131]
Figure imgf000068_0001
[0451] 実施例 14の化合物 (1.23 g )を t_ブタノール (36 mL)、水 (12 mL)に溶解し、リン酸二 水素ナトリウム二水和物 (787 mg)、 2—メチノレ一 2—ブテン (2.4
mL)、および亜塩素酸ナトリウム (2.00 g)を加え、常温にて 5時間攪拌した。反応液に 1 0%水酸化ナトリウム水溶液を加え、液性をアルカリ性にした後、エーテルで洗浄した。 水層に 10%塩酸を加え、析出晶をろ取し、水で洗浄することで目的化合物 (885 mg)を白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 4.29 (3H, s), 6.37 (1Η, d, J =
3
8.0 Hz), 7.49 (1H, s),8.25 (1H, d, J = 8.0 Hz).
[0452] <実施例 16〉
7—メトキシ一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (3,
5—ジクロロピリジン一 4—ィル)アミド
[0453] [化 132]
Figure imgf000068_0002
[0454] 実施例 15の化合物 (500 mg)を用いて実施例 9と同様にして目的化合物 (547 mg)を 白色固体として得た。
元素分析 (%): C H N 0として
15 18 4
C H N
計算ィ直 44.47 2.24 13.83
実測ィ直 44.46 2.45 13.47 MS (EI+): 404 [M+]
HRMS (EI+): 404.0050 (-0.5 mmu)
:H-NMR (400 MHz, CDC1 ): δ 4.30 (3H, s), 6.39 (1H, d, J = 8.0 Hz), 7.41 (1H, s)
7.65 (1H, brs), 7.97 (1H, d, J = 8.0 Hz), 8.61 (2H, s).
[0455] <実施例 17〉
7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3
5—ジクロロー 1 ォキシピリジン 4 ィノレ)アミド
[0456] [化 133]
Figure imgf000069_0001
[0457] アルゴンガス雰囲気下にて、実施例 15の化合物(50.0 mg)をジクロロメタン(2.50 m L)に溶解し、 4-ニトロフエノール(33.0 mg)、 N— (3—ジメチルァミノプロピル) N, ェチルカルポジイミド塩酸塩(55.0 mg)、および触媒量の 4ージメチルァミノピリジン を加え、常温にて 2時間攪拌した。反応液に水を加え、ジクロロメタンで抽出後、有機 層を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、 4-ニトロフエニルエステル(80.0 mg)を黄色粉末として得た。
[0458] 4-ァミノ- 3,5-ジクロロピリジン- N-ォキシド(51.6 mg)を DMF (2.00 mUに溶解し、 氷冷下にて 60%水素化ナトリウム(23.1 mg)を加え、常温にて 30分間攪拌した。反応 液に、先に得られた 4-ニトロフエニルエステルの DMF
(3.00 mL)溶液を氷冷下にて滴下し、常温にて 3時間攪拌した。反応液に飽和塩化ナ トリウム水溶液を加え、酢酸ェチルで 2回抽出した。有機層を水、飽和食塩水で洗浄 し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルカラムクロ マトグラフィー(酢酸ェチル:メタノール = 10: 1)にて精製し、 目的物(51.5 mg)を無色 粉末として得た。 HRMS (EI+): 420.0025 (+2. 1 mmu)
'H-NMR (400 MHz, CDC1 ): δ 4.30 (3H, s), 6.38 (1H, d, J = 8.0 Hz), 7.39 (1H, s)
3
7.66 (1H, brs), 7.96 (1H, d, J = 8.0 Hz), 8.28 (2H, s).
[0459] <実施例 18〉
7—メトキシ一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (2 ,
4 , 6—トリクロ口フエ二ノレ)アミド
[0460] [化 134]
Figure imgf000070_0001
[0461] アルゴン雰囲気下、実施例 15の化合物 (100 mg)をジクロロメタン (10 mL)に溶解し、 ジイソプロピルェチルァミン (0.133 mU及び TBTU(136 mg)を加え、常温で 2.5時間攪 拌した。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順 で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した (残渣 A)。
[0462] アルゴン雰囲気下、 2,4,6-トリクロロア二リン (754 mg)をトルエン (20 mL)に溶解し、 0 °Cにて Red_Al(530 mL)を滴下し、 100°Cで 1時間攪拌した。その後、 0°Cにて先に得ら れた残渣 Aのジクロロメタン (5.0 mL)溶液を滴下後、再び 100°Cにて 30分加熱攪拌し た。セライトを用いて不溶物を濾去後、濾液に水を加えて酢酸ェチルで抽出し、抽出 層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去した残渣を、シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 2 : 1)で精 製し、 目的物 (110 mg)を白色固体として得た。
元素分析 (%): C H C1 F N 0として
16 10 2 3 3
C H N
計算値 43.81 2.07 9.58
実測値 43.55 2.16 9.06 MS (EI+): 437 [M+]
HRMS (EI+): 436.9689 (-2.3 mmu)
:H-NMR (400 MHz, CDCl ): δ 4.29 (3H, s), 6.37 (1H, d, J = 8.0 Hz), 7.40 (1H, s).
7.44 (1H, brs), 7.48 (2H, s), 7.93 (1H, d, J = 8.0 Hz).
[0463] <実施例 19〉
2 -シクロプロピル 4—ヒドロキシメチル 7 メトキシピラゾロ [1 , 5 - a]ピリジン 3 一力ルボン酸 ベンジルエステル
[0464] [化 135]
Figure imgf000071_0001
[0465] 実施例 2の化合物(21.3 g)とシクロプロピルプロピン酸べンジルエステル(8.01 g)か ら、実施例 3と同様にして、 目的化合物(5.07 g)を白色固体として得た。
MS (EI+): 352 [Μ+]
'H-NMR (400 MHz, CDCl ) : δ 0.82 (2H, m), 1.06—1.10 (2H, m), 2.49—2.56 (1H, m
), 4.11 (3H, s), 4.81 (2H, s), 5.42 (2H, s), 6.19 (1H, d, J = 7.9 Hz), 7.29 (1H, d, J = 7.9 Hz), 7.33-7.41 (3H, m), 7.45-7.49 (2H, m).
[0466] <実施例 20〉
2 -シクロプロピル 4—ヒドロキシメチル 7 メトキシピラゾロ [1 , 5 - a]ピリジン 3 一力ノレボン酸
[0467] [化 136]
Figure imgf000071_0002
[0468] 実施例 19の化合物(4.63 g)をエタノール (70 mL)に溶解し、常温にて水酸化力リウ ム (2.82 g)と水 (30 mL)を加え、加熱還流下にて 2.5時間攪拌した。反応液の溶媒を 減圧留去し、水 (100 mL)で希釈し、濃塩酸 (6.0 mL)を加えた。析出した固体を濾取し 、 目的化合物 (3.32 g)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 1.05—1.11 (2H, m), 1.14-1.18 (2Η, m), 2.70—2.76 (1
Η, m), 4.13 (3Η, s), 4.86 (2Η, s), 6.25 (1Η, d, J = 8.0 Hz), 7.35 (1H, d, J = 8.0 Hz).
[0469] <実施例 21〉
2 -シクロプロピル 4—ヒドロキシメチル 7 メトキシピラゾロ [1 , 5 - a]ピリジン
[0470] [化 137]
Figure imgf000072_0001
[0471] 実施例 20の化合物(3.32 g)を o_ジクロロベンゼン(130 mL)に懸濁し、 150°Cで 22 時間攪拌した。反応液の溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー (へ キサン:酢酸ェチル= 1 : 3→1 : 4)にて精製し、 目的化合物 (2.05 g)を白色固体として 得た。
'H-NMR (400 MHz, CDCl ): δ 0.85-0.90 (2H, m), 1.01—1.06 (2Η, m), 2.17-2.25 (1
H,m), 4.12 (3H, s), 4.77 (2H, s), 5.96 (1H, d, J = 7.3 Hz), 6.19 (1H, s), 7.05 (1H, d, J = 7.3 Hz).
[0472] <実施例 22〉
2 -シクロプロピル 7 メトキシピラゾロ [1 , 5 - a]ピリジン一 4 カルボアルデヒド [0473] [化 138]
Figure imgf000072_0002
実施例 21の化合物(2.04 g)をクロ口ホルム(94 mL)に溶解し、常温にて活性二酸 化マンガン (5.42 g)を加え、 50°Cで 5時間攪拌した。セライトを用いて不溶物を濾去 後、濾液の溶媒を減圧留去した残渣を、シリカゲルクロマトグラフィー (へキサン:酢酸 ェチル = 1: 3)にて精製し、 目的化合物 (1.94 g)を黄色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 0.91-0.95 (2H, m), 1.06—1.11 (2Η, m), 2.21-2.27 (1
Η, m), 4.25 (3Η, s), 6.18 (1Η, d, J = 8.0 Hz), 6.92 (1H, s), 7.69 (1H, d, J = 8.0 Hz )
, 9.89 (1H, s).
[0475] <実施例 23〉
2 -シクロプロピル 7 メトキシピラゾロ [1 , 5 - a]ピリジン一 4 カルボン酸
[0476] [化 139]
Figure imgf000073_0001
[0477] 実施例 22の化合物 (1.83 g)に硝酸銀 (3.60 g)と水酸化ナトリウム (1.75 g)の懸濁水 (8
5 mL)を加え、常温にて 73時間攪拌した。セライトを用いて不溶物を濾去後、濾液を ジェチルエーテルにて洗净した。水層に希塩酸を加えて液性を酸性とし、酢酸ェチ ルで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し た。溶媒を減圧留去して目的化合物 (1.06 g)を白色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 0.92—0.96 (2H, m), 1.06—1.11 (2Η, m), 2.22-2.29 (1
Η, m), 4.23 (3Η, s), 6.13 (1Η, d, J = 8.0 Hz), 7.27 (1H, s), 8.10 (1H, d, J = 8.0 Hz )
[0478] <実施例 24〉
2 シクロプロピル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ージクロ口ピリジンー4 ィル)アミド
[0479] [化 140]
Figure imgf000074_0001
アルゴン雰囲気下、実施例 23の化合物 (350 mg)をジクロロメタン (10 mL)に溶解し、 ジイソプロピルェチルァミン (0.517 mL)と TBTU(529 mg)を加え、常温で 2時間攪拌し た。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を飽和食塩水で洗浄し、無 水硫酸ナトリウムで乾燥し溶媒を留去した (残渣 A)。アルゴン雰囲気下、 4-ァミノ- 3,5 -ジクロ口ピリジン (2.51 g)をトルエン (50 mL)に溶解し、氷冷下にてナトリウムビス(2— メトキシエトキシ)アルミナムヒドリド (65%トルエン溶液、 2.1 ml)を滴下し、 100°Cで 1.5 時間攪拌した。この反応液に氷冷下、先に得られた残渣 Aのジクロロメタン (5 mL)溶 液を滴下後、 100°Cにて 1時間攪拌した。氷冷下、 10%水酸化ナトリウム水溶液を加 えて液性を塩基性にし、セライトを用いて不溶物を濾去後、濾液を酢酸ェチル、およ びジクロロメタンで抽出した。有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナト リウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー (酢酸ェチ ノレ→酢酸ェチル:メタノール = 20 : 1)、及び NHシリカゲルクロマトグラフィー (へキサン: 酢酸ェチル= 1 : 1→1 : 5)にて精製し、 目的化合物 (247 mg)を白色固体として得た。 元素分析 (%): C H C1 N 0 - 1/2
17 14 2 4 2
H 0として C H N
計算値 52.87 3.91 14.51
実測値 52.86 3.59 14.37
MS (EI+): 376 [M+]
'H-NMR (400 MHz, CDCl ): δ 0.90-0.94 (2H, m), 1.05—1.10 (2H, m), 2.20—2.27 (1
3
H, m), 4.24 (3H, s), 6.15 (1H, d, J = 8.0 Hz), 6.65 (1H, s), 7.69 ( 1H, brs), 7.84 (1 H, d, J = 8.0 Hz ), 8.58 (2H, s).
[0481] <実施例 25〉
2 シクロプロピル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ージクロロー 1 ォキシピリジン 4 ィノレ)アミド
[0482] [化 141]
Figure imgf000075_0001
[0483] 実施例 23の化合物(200 mg)を用い、実施例 17と同様にして、 目的物(174 mg)を 無色粉末として得た。
HRMS (EI+): 392.0426 (-1.7 mmu)
'H-NMR (400 MHz, CDCl ): δ 0.92—0.94 (2Η, m), 1.08—1.10 (2Η, m), 2.22-2.26 (1
Η, m), 4.24 (3Η, s), 6.15 (1Η, d, J = 8.0 Hz), 6.63 (1H, s), 7.71 (1H, brs), 7.84 (1H
, d, J = 8.0 Hz), 8.28 (2H, s).
[0484] <実施例 26〉
4ーヒドロキシメチノレ 2 イソプロピノレー 7 メトキシピラゾ口 [ 1 , 5 a]ピリジン 3— カルボン酸 ベンジルエステル
[0485] [化 142]
Figure imgf000075_0002
実施例 2の化合物(16.3 g)を DMF(224 mL)に溶解し、 4ーメチルー 2 ペンチン酸 ベンジルエステル (6.21 g)及び炭酸カリウム (12.7 g)を加え、常温で 8時間攪拌した。 反応液に水を加え、酢酸ェチルにて抽出後、抽出層を飽和食塩水で洗浄し、無水 硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー( へキサン:酢酸ェチル = 1 : 1→1: 2)にて精製し、 目的物 (6.10 g)を白色固体として得 た。
:H-NMR (400 MHz, CDC1 ): δ 1.34 (6H, d, J = 6.7 Hz), 3.65—3.73 (1H, m), 4.14 (
3
3H, s), 4.72 (1H, brs), 4.80 (2H, s), 5.40 (2H, s), 6.20 (1H, d, J = 7.3 Hz ), 7.30 (1
H, d, J = 7.3 Hz ), 7.34-7.42 (3H, m), 7.46-7.49 (2H, m).
[0487] <実施例 27〉
4ーヒドロキシメチノレ 2 イソプロピノレー 7 メトキシピラゾ口 [ 1 , 5 a]ピリジン 3— 力ノレボン酸
[0488] [化 143]
Figure imgf000076_0001
[0489] 実施例 26の化合物(6.10 g)をエタノール (91 mL)に溶解し、常温にて水酸化力リウ ム(3.37 g)と水 (39 mL)を加え、加熱還流下にて 4時間攪拌した。反応液の溶媒を減 圧留去し、水 (100 mL)で希釈し、濃塩酸 (5.0 mL)を加えた。析出した固体を濾取し、 目的化合物(4.45 g)を白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.44 (6H, d, J = 6.7 Hz), 3.84—3.95 (1H, m), 4.16 (
3
3H, s), 4.90 (2H, s), 6.27 (1H, d, J = 8.0 Hz ), 7.38 (1H, d, J = 8.0 Hz).
[0490] <実施例 28〉
4ーヒドロキシメチノレ 2 イソプロピノレー 7 メトキシピラゾ口 [ 1 , 5 a]ピリジン
[0491] [化 144]
Figure imgf000076_0002
実施例 27の化合物(4.45 g)を 0-ジクロロベンゼンに懸濁し、 150°Cで 15時間攪拌し た。減圧下溶媒を留去し、残渣をシリカゲルクロマトグラフィー (へキサン:酢酸ェチ ノレ = 1 : 4→酢酸ェチル)にて精製し、 目的化合物 (3.21 g)を淡赤色固体として得た。 :H-NMR (400 MHz, CDC1 ): δ 1.38 (6H, d, J = 7.3 Hz), 3.23—3.32 (1H, m), 4.12 (
3H, s), 4.81 (2H, s), 5.98 (1H, d, J = 8.0 Hz ), 6.43 (1H, s), 7.07 (1H, d, J = 8.0 Hz )·
[0493] <実施例 29〉
2 イソプロピル一 7 -メトキシ一ピラゾ口 [1 , 5 - a]ピリジン 4 カルボアルデヒド [0494] [化 145]
Figure imgf000077_0001
[0495] 実施例 28の化合物(1.00 g)をクロ口ホルム (45 mL)に溶解し、常温にて活性二酸化 マンガン (2.63 g)を加え、 50°Cで 3時間攪拌した。セライトを用いて不溶物を濾去後、 濾液の溶媒を減圧留去し、 目的物 (938 mg)を黄色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.40 (6H, d, J = 7.3 Hz), 3.21—3.36 (1H, m), 4.26 (
3H, s), 6.20 (1H, d, J = 8.0 Hz), 7.18 (1H, s ), 7.71 (1H, d, J = 8.0 Hz), 9.92 (1H, s )·
[0496] <実施例 30〉
2 -イソプロピル 7 メトキシピラゾロ [1, 5 - a]ピリジン 4—カルボン酸
[0497] [化 146]
Figure imgf000077_0002
実施例 29の化合物(938 mg)に硝酸銀 (1.82 g)と水酸化ナトリウム (859 mg)の懸濁水 (43 mL)を加え、常温にて 2時間攪拌した。セライトを用いて不溶物を濾去後、濾液を ジェチルエーテルにて洗净した。水層に希塩酸を加えて液性を酸性とし、酢酸ェチ ルおよびクロ口ホルム:メタノール = 9 : 1で抽出した。抽出層を飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して目的物 (887 mg)を白色固体とし て得た。
:H-NMR (400 MHz, CDC1 ): δ 1.41 (6H, d, J = 7.3 Hz), 3.30—3.37 (1H, m), 4.25 (
3H, s), 6.17 (1H, d, J = 8.0 Hz), 7.02 (1H, s ), 8.13 (1H, d, J = 8.0 Hz).
[0499] <実施例 31〉
2 イソプロピル一 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 4 ニトロ フエニノレエステノレ
[0500] [化 147]
Figure imgf000078_0001
[0501] アルゴン雰囲気下、実施例 30の化合物 (769 mg)をジクロロメタン (37 mL)に溶解し、 4-ニトロフエノール (646 mg)、 N— (3 ジメチルァミノプロピル) N,一ェチルカルボ ジイミド塩酸塩 (1.09 g)および触媒量のジメチルァミノピリジンを加え、常温で 1.5時間 攪拌した。反応液を水で希釈後、ジクロロメタンで抽出し、抽出層を飽和炭酸水素ナ トリウム水溶液、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を 減圧留去し、 目的物 (1.27 g)を黄色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.40 (6H, d, J = 6.7 Hz), 3.27—3.34 (1H, m), 4.27 (
3H, s), 6.20 (1H, d, J = 8.0 Hz), 6.99 (1H, s ), 7.43-7.47 (2H, m), 8.22 (1H, d, J =
8.0 Hz), 8.33-8.37 (2H, m).
[0502] <実施例 32〉
2 イソプロピル一 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5— ジクロロピリジン一 4—ィル)アミド
[0503] [化 148]
Figure imgf000079_0001
[0504] アルゴン雰囲気下、 4-ァミノ- 3,5-ジクロロピリジン(460 mg)を DMF(19 mL)に溶解 し、氷冷下にて 60%水素化ナトリウム (150 mg)を加え、常温で 30分間攪拌した。この反 応液に氷冷下、実施例 31の化合物 (635 mg)の DMF溶液 (19 mL)を加え、常温で 15 時間攪拌した。反応液に氷冷下、飽和塩化アンモユウム水溶液を加え、酢酸ェチル 及びクロ口ホルム:メタノール = 9 : 1で抽出し、抽出層を飽和食塩水で洗浄し、無水 硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー( 酢酸ェチル→酢酸ェチル:メタノール = 20 : 1)にて精製し、 目的物 (345 mg)を白色固 体として得た。
元素分析 (%): C H C1 N 0として
17 16 2 4 2
C H N
計算値 53.84 4.25 14.77
実測値 53.92 4.26 14.69
MS (EI+): 378 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.39 (6H, d, J = 6.7 Hz), 3.25—3.35 (1H, m), 4.24 (
3
3H, s), 6.16 (1H, d, J = 8.0 Hz), 6.90 (1H, s ), 7.76 (1H, s), 7.86 (1H, d, J = 8.0 Hz
), 8.58 (2H, s).
[0505] <実施例 33〉
2—イソプロピル一 7—メトキシピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (3, 5— ジクロロ一 1—ォキシピリジン一 4—ィル)アミド
[0506] [化 149]
Figure imgf000080_0001
[0507] アルゴン雰囲気下、 4-ァミノ- 3,5-ジクロロピリジン- N-ォキシド(504 mg)を DMF(19 mL)に溶解し、氷冷下にて水素化ナトリウム (150 mg)を加え、常温で 30分間攪拌した。 この反応液に氷冷下、実施例 28の化合物 (635 mg)の DMF溶液 (15 mL)を加え、常 温で 15時間攪拌した。氷冷下、飽和塩化アンモニゥム水溶液を加え、酢酸ェチルお よびクロ口ホルム:メタノール = 9 : 1で抽出し、抽出層を飽和食塩水で洗浄し、無水硫 酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー (酢 酸ェチル→酢酸ェチル:メタノール = 10 : 1)にて精製し、 目的物 (285 mg)を白色固体 として得た。
MS (EI+): 394 [M+]
HRMS (EI+): 394.0602 (+0.3 mmu)
'H-NMR (400 MHz, CDC1 ): δ 1.40 (6H, d, J = 6.7 Hz), 3.31 (1H, m), 4.25 (3H, s)
, 6.12 (1H, d, J = 8.0 Hz), 6.86 (1H, s), 7.59 (1H, s), 7.85 (1H, d, J = 8.0 Hz), 8.29 (2H, s).
[0508] <実施例 34〉
4ーヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー3—力ルボン酸 ェチ ノレエステノレ
[0509] [化 150]
Figure imgf000080_0002
[0510] 実施例 2の化合物 (16.3 g)を DMF(224 mL)に溶解し、プロピオール酸ェチル(3.13 mL)及び炭酸カリウム (12.7 g)を加え、常温で 8時間攪拌した。反応液に水を加え、酢 酸ェチルにて抽出後、抽出層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し た。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー (へキサン:酢酸ェチル = 1: 1→1: 5)にて精製し、 目的物 (4.54 g)を白色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.42 (3H, t, J = 7.3 Hz), 4.18 (3H, s), 4.39 (2H, q,
3
J = 7.3 Hz), 4.86 (2H, d, J = 6.7 Hz), 5.05 (1H, t , J = 6.7 Hz), 6.28 (1H, d, J = 7.3
Hz), 7.35 (1H, d, J = 7.3 Hz), 8.51 (1H, s).
[0511] <実施例 35〉
4ーヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー3—力ルボン酸
[0512] [化 151]
Figure imgf000081_0001
[0513] 実施例 34の化合物(4.54 g)をエタノール (96 mL)に溶解し、常温にて水酸化力リウ ム(3.54 g)と水 (41 mL)を加え、加熱還流下にて 1時間攪拌した。反応液の溶媒を減 圧留去し、水 (100 mL)で希釈し、濃塩酸 (8.3 mL)を加えた。析出した固体を濾取し、 目的物(3.86 g)を白色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 4.20 (3H, s), 4.89 (2Η, s), 6.34 (1Η, d, J = 8.0 Hz)
3
7.42 (1H, d, J = 8.0 Hz), 8.59 (1H, s).
[0514] <実施例 36〉
4ーヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジン
[0515] [化 152]
Figure imgf000081_0002
実施例 35の化合物 (3.86 g)を 0-ジクロロベンゼンに懸濁し、 150°Cで 17時間攪拌し た。反応液の溶媒を減圧留去し、残渣をシリカゲルクロマトグラフィー (酢酸ェチル→ 酢酸ェチル:メタノール = 50 : 1→30: 1)にて精製し、 目的物 (2.77 g)を白色固体として 得た。
:H-NMR (400 MHz, CDC1 ): δ 4.14 (3H, s), 4.84 (2Η, s), 6.05 (1Η, d, J = 8.0 Hz)
6.61 (1H, d, J = 2.4 Hz), 7.12 (1H, d, J = 8.0 Hz), 8.01 (1H, d, J = 2.4 Hz).
[0517] <実施例 37〉
7 -メトキシピラゾ口 [ 1 , 5— a]ピリジン一 4—カルボアルデヒド
[0518] [化 153]
Figure imgf000082_0001
[0519] 実施例 36の化合物(1.00 g)をクロ口ホルム (56 mL)に溶解し、常温にて活性二酸化 マンガン (3.25 g)を加え、 50°Cで 3時間攪拌した。セライトを用いて不溶物を濾去後、 濾液の溶媒を減圧留去し、 目的物 (966 mg)を黄色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 4.28 (3H, s), 6.80 (1Η, d, J = 8.0 Hz), 7.35 (1H, d,
J = 2.4 Hz), 7.67 (1H, d, J = 8.0 Hz), 8.16 (1H, d, J = 2.4 Hz), 9.96 (1H, s).
[0520] <実施例 38〉
7—メトキシピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸
[0521] [化 154]
Figure imgf000082_0002
実施例 37の化合物(965 mg)に硝酸銀 (2.33 g)と水酸化ナトリウム (1.10 g)の懸濁水 ( 55 mL)を加え、常温にて 1.5時間攪拌した。セライトを用いて不溶物を濾去後、濾液を ジェチルエーテルにて洗净した。水層に希塩酸を加えて液性を酸性とし、酢酸ェチ ルおよびクロ口ホルム:メタノール = 9 : 1で抽出した。抽出層を飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して、 目的物 (769 mg)を白色固体と して得た。
:H-NMR (400 MHz, CDC1 ): δ 4.26 (3H, s), 6.22 (1Η, d, J = 8.0 Hz), 7.19 (1H, s)
8.13 (1H, d, J = 1.8 Hz), 8.16 (1H, d, J = 8.0 Hz).
[0523] <実施例 39〉
7 メトキシピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 4—ニトロフエニルエステル [0524] [化 155]
Figure imgf000083_0001
[0525] アルゴン雰囲気下、実施例 38の化合物 (769 mg)をジクロロメタン (40 mL)に溶解し、 4-ニトロフエノール (687 mg)、 N— (3 ジメチルァミノプロピル) N,一ェチルカルボ ジイミド塩酸塩 (1.16
g)および触媒量のジメチルァミノピリジンを加え、常温で 1.5時間攪拌した。反応液を 水で希釈後、ジクロロメタンで抽出し、抽出層を飽和炭酸水素ナトリウム水溶液、飽和 食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、 目的化 合物 (1.08
g)を黄色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 4.30 (3H, s), 6.28 (1Η, d, J = 8.0 Hz), 7.18 (1H, d,
J = 1.8 Hz), 7.46 (2H, dd, J = 3.6, 8.6 Hz), 8.16 (1H, d. 1.8 Hz), 8.28 (1H, d, J = 8. 0 Hz), 8.35(2H, dd, J = 3.6, 8.6 Hz).
[0526] <実施例 40〉
7—メトキシピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (3, 5—ジクロロピリジン一 4 ィル)アミド
[0527] [化 156]
Figure imgf000084_0001
[0528] アルゴン雰囲気下、 4-ァミノ- 3,5-ジクロロピリジン(489 mg)を DMF(10 mL)に溶解 し、氷冷下にて 60%水素化ナトリウム (160 mg)を加え、常温で 30分間攪拌した。この反 応液に氷冷下、実施例 39の化合物 (541 mg)の DMF溶液 (15 mL)を加え、常温で 15 時間攪拌した。反応液に氷冷下、飽和塩化アンモユウム水溶液を加え、酢酸ェチル 及びクロ口ホルム:メタノール = 9 : 1で抽出し、抽出層を飽和食塩水で洗浄し、無水 硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー( 酢酸ェチル→酢酸ェチル:メタノール = 10 : 1)にて精製し、 目的物 (322 mg)を白色固 体として得た。
元素分析 (%): C H C1 N 0として
C H N
計算ィ直 49.87 2.99 16.62
実測ィ直 49.70 2.94 16.98
MS (EI+): 336 [M+]
'H-NMR (400 MHz, CDC1 ): δ 4.26 (3H, s), 6.24 (1H, d, J = 8.0 Hz), 7.08 (1H, d,
J = 2.5 Hz), 7.80 (1H, s), 7.91 (1H, d, J = 8.0 Hz), 8.14 (1H, d, J = 2.5 Hz), 8.59 (2 H, s).
[0529] <実施例 41〉
7—メトキシピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (3, 5—ジクロロ一 1—ォキ シピリジン 4 ィル)アミド
[0530] [化 157]
Figure imgf000085_0001
[0531] アルゴン雰囲気下、 4-ァミノ- 3,5-ジクロロピリジン- N-ォキシド(537 mg, 3.00 mmol) を DMF(15 mL)に溶解し、氷冷下にて 60%水素化ナトリウム (160 mg)を加え、常温で 3 0分間攪拌した。この反応液に氷冷下、実施例 39の化合物(541 mg)の DMF溶液 (1 5 mL)を加え、常温で 15時間攪拌した。反応液に氷冷下、飽和塩化アンモニゥム水 溶液を加え、酢酸ェチルおよびクロ口ホルム:メタノール = 9 : 1で抽出し、抽出層を飽 和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリ 力ゲルクロマトグラフィー (酢酸ェチル:メタノール = 10 : 1→5: 1)にて精製し、 目的物( 53.0 mg)を白色固体として得た。
元素分析 (%): C H C1 N 0 - 1/2
14 10 2 4 3
H 0として C H N
計算ィ直 46.43 3.06 15.47
実測値 46.33 2.72 15.82
MS (EI+): 352 [M+]
'H-NMR (400 MHz, CDC1 ): δ 4·27(3Η, s), 6.26 (1Η, d, J = 8.0 Hz), 7.05 (1H, d, J
3
= 2.5 Hz), 7.61 (1H, s), 7.90 (1H, d, J = 8.0 Hz), 8.16 (1H, d, J = 2.5 Hz), 8.31 (2 H, s).
[0532] <実施例 42〉
1 アミノー 3—ヒドロキシメチルピリジニゥム 2, 4, 6—トリメチルベンゼンスルホネー 卜
[0533] [化 158]
Figure imgf000086_0001
[0534] O メシチルスルホニルァセトヒドロキサム酸ェチル(33.5 g)および 3 ヒドロキシメ チルピリジン(11.2 g)を用いて、実施例 2と同様な方法により、 目的物(38.2g)を黄色 油状物質として得た。
'H-NMR (400 MHz, DMSO-d ): δ 2.33 (3H, s), 2.50 (6Η, s), 4.69 (2Η, s), 5.86 (1
Η, brs), 6.74 (2Η, s), 7.96 (1Η, dd, J = 8.0, 6.1 Hz), 8.15 (1H, d, J = 8.0 Hz), 8.50 (2H, s), 8.66 (1H, d, J = 6.1Hz), 8.71 (1H, s).
[0535] <実施例 43〉
2 ェチルー 4ーヒドロキシメチルピラゾロ [1 , 5 a]ピリジンー3 力ルボン酸 ェチ ノレエステノレ
[0536] [化 159]
Figure imgf000086_0002
[0537] 実施例 42の化合物 (38.2 g)および 2 ペンチン酸ェチル (6.97 g)用いて実施例 3と 同様な方法により、 目的化合物 (7.33 g)を黄色固体として得た。
MS (EI+): 248 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.35 (3H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 3
.08 (2H, q, J = 7.3 Hz), 4.41 (2H, q, J = 7.3 Hz), 4.86 (2H, d, J = 7.3 Hz), 5.02 (1H , t, J = 7.3 Hz), 6.87 (1H, t, J = 6.7 Hz), 7.30 (1H, d, J = 6.7 Hz), 8.40 (1H, d, J = 6.7 Hz).
[0538] <実施例 44〉
2 ェチル 4ーヒドロキシメチルピラゾロ [1 , 5 a]ピリジン
[0539] [化 160]
Figure imgf000087_0001
実施例 43の化合物 (7.33 g)に 40 %硫酸水溶液( 130 mL)を加えて 100°Cで 1時間 加熱した。反応液に 10%水酸化ナトリウム水溶液を加えて析出した固体を濾取し、こ
Figure imgf000087_0002
酢酸ェチル = 1 : 1)で精製し、 目的 化合物 (4.52 g)を白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.36 (3H, t, J = 7.9 Hz), 2.11—2.13 (1H, brm), 2.86
(2H, q, J = 7.3 Hz), 4.85 (2H, d, J = 5.5 Hz), 6.37 (1H, s), 6.66 (1H, dd, J = 6.7, 7. 4 Hz), 7.09 (1H, d, J = 6.7 Hz), 8.30 (1H, d, J = 7.4 Hz).
[0541] <実施例 45〉
2—ェチルピラゾ口 [1 , 5— a]ピリジンー4 カルボアルデヒド
[0542] [化 161]
Figure imgf000087_0003
[0543] 実施例 44の化合物 (500 mg)を用いて、実施例 6と同様の方法により目的化合物 (47 5 mg)を黄色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.39 (3H, t, J = 7.3 Hz), 2.92 (2H, q, J = 7.3 Hz), 6.
85 (1H, dd, J = 6.7, 6.9 Hz), 7.13 (1H, s), 7.67 (1H, d, J = 6.9 Hz), 8.59 (1H, d, J =
6.7 Hz), 9.93 (1H, s).
[0544] <実施例 46〉
2—ェチルピラゾ口 [1 , 5— a]ピリジンー4一力ルボン酸
[0545] [化 162]
Figure imgf000087_0004
[0546] 実施例 45の化合物 (470 mg)を用いて、実施例 15と同様の方法により、 目的化合物 (419 mg)を白色個体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.40 (3H, t, J = 7.3 Hz), 2.92 (2H, q, J = 7.3 Hz), 6
.78 (1H, dd, J = 6.7, 7.3 Hz), 6.98 (1H, s), 8.03 (1H, dd, J = 1.2, 7.3 Hz), 8.63 (1H, dd, J = 1.2, 6.7 Hz).
[0547] <実施例 47〉
2 ェチルピラゾ口 [1 , 5 a]ピリジンー4一力ルボン酸 4一二トロフエニルエステル [0548] [化 163]
Figure imgf000088_0001
[0549] 実施例 46の化合物 (418 mg)を用いて、実施例 31と同様の方法により、 目的化合物 (647 mg)を白色個体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.39 (3H, t, J = 8.0 Hz), 2.92 (2H, q, J = 8.0 Hz), 6
.84 (1H, dd, J = 6.7, 7.3 Hz), 6.97 (1H, s), 7.46 (2H, d, J = 12.2 Hz), 8.15 (1H, dd,
J = 1.2, 7.3 Hz), 8.36 (2H, d, J = 12.2 Hz), 8.65 (1H, dd, J = 1.2, 6.7 Hz).
[0550] <実施例 48〉
2 ェチルピラゾ口 [1 , 5 a]ピリジンー4一力ルボン酸 (3, 5 ジクロ口ピリジンー4 ィル)アミド
[0551] [化 164]
Figure imgf000088_0002
実施例 47の化合物(323 mg)および 4 アミノー 3, 5 ジクロ口ピリジン(254 mg)を 用いて実施例 32と同様な方法により目的化合物(184 mg)を白色固体として得た。 元素分析 (%): C H C1 N 0として
15 12 2 4
C H N
計算値 53.75 3.61 16.71
実測値 53.54 3.54 16.73
MS (EI+): 334 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.38 (3H, t, J = 7.3 Hz), 2.91 (2H, q, J = 7.3 Hz), 6
.81-6.84 (2H, m), 7.76-7.78 (2H, m), 8.60 (2H, s).
[0553] <実施例 49〉
2 ジェトキシメチルー 4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン
3—力ルボン酸 ェチルエステル
[0554] [化 165]
Figure imgf000089_0001
[0555] 実施例 2の化合物 (56.6 g)を DMF (320 mL)に溶解し、 4, 4ージエトキシー2—ブチ ン酸 (21.2 g)、炭酸カリウム (43.9 g)を順次加え、室温で 30時間攪拌した。セライトを用 いて不溶物を濾去後、濾液を水で希釈し酢酸ェチルで抽出し、抽出層を水、飽和食 塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して、 目的物 (2 .01 g)を黄色油状物として得た。
MS (FAB+): 353 [M+H+]
'H-NMR (400 MHz, CDC1 ): δ 1.25 (6H, t, J = 7.3 Hz), 1.44 (3H, t, J = 7.3 Hz), 3
.66-3.74 (4H, m), 4.12 (3H, s), 4.42 (2H, q, J = 7.3 Hz), 4.77-4.81 (2H, m), 6.19 (1 H, s), 6.22 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz).
[0556] <実施例 50〉
4 ァセトキシメチルー 2 ジェトキシメチルー 7 メトキシピラゾロ [1, 5 a]ピリジン 3—力ルボン酸 ェチルエステル
[0557] [化 166]
Figure imgf000090_0001
[0558] 実施例 49の化合物 (2.10 g)をピリジン (20 mL)に溶解し、無水酢酸 (1.12 mL)を加え 、常温で 6時間攪拌した。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を水、 飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去して、 目 的物 (2.01 g)を無色油状物として得た。
MS (EI+): 394 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.25 (6H, t, J = 7.3 Hz), 1.41 (3H, t, J = 7.3 Hz), 2
.04 (3H, s), 3.67-3.75 (4H, m), 4.13 (3H, s), 4.37 (2H, q, J = 7.3 Hz), 5.47 (2H, s), 6.17 (1H, s), 6.19 (1H, d, J = 8.0 Hz), 7.35 (1H, d, J = 8.0 Hz).
[0559] <実施例 51〉
4 -ァセトキシメチル 2 ホルミル 7 メトキシピラゾロ [1, 5 a]ピリジン一 3 力 ノレボン酸 ェチルエステル
[0560] [化 167]
Figure imgf000090_0002
実施例 50の化合物 (2.01 g)をアセトン-水 (2: 1)の混合溶媒(20 mL)に溶解し、 p-ト ルエンスルホン酸一水和物 (97.3 mg)を加え、 70°Cで 2時間攪拌した。反応液を放冷 後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリ ゥムで乾燥した。溶媒を減圧留去した残渣をシリカゲルカラムクロマトグラフィー (へキ サン:酢酸ェチル = 1 : 2)にて精製し、 目的物 (1.47 g)を白色固体として得た。
MS (EI+): 320 [Μ+] Ή-NMR (400 MHz, CDC1 ): δ 1.43 (3H, t, J = 7.3 Hz), 2.05 (3H, s), 4.21 (3H, s),
4.45 (2H, q, J = 7.3 Hz), 5.50 (2H, s), 6.36 (1H, d, J = 8.0 Hz), 7.46 (1H, d, J = 8.0
Hz), 10.49 (1H, s).
[0562] <実施例 52〉
4 ァセトキシメチルー 2 ジフルォロメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン 3—力ルボン酸 ェチルエステル
[0563] [化 168]
Figure imgf000091_0001
[0564] アルゴン雰囲気下、実施例 51の化合物 (1.47 g)をジクロロメタン (23 mL)に溶解し、 氷冷下にてジェチルアミノサルファートリフルオリド (1.52 mL)を滴下し、常温にて 1.5 時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液を加えて、酢酸ェチルで抽 出後、抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒
Figure imgf000091_0002
酢酸ェチノレ = 2:
3)にて精製することで目的物 (1.21 g)を白色固体として得た。
MS (EI+): 342 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.42 (3H, t, J = 7.3 Hz), 2.06 (3H, s), 4.20 (3H, s),
4.40 (2H, q, J = 7.3 Hz), 5.60 (2H, s), 6.35 (1H, d, J = 7.9 Hz), 7.26 (1H, t,J = 53.8 Hz), 7.49 (1H, d, J = 7.9 Hz).
[0565] <実施例 53〉
2 ジフルォロメチルー 4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン [0566] [化 169]
Figure imgf000092_0001
[0567] 実施例 52の化合物 (1.21 g)をエタノール (10 mL)に溶解し、 10%水酸化カリウム水溶 液 (6.0 mL)を加え、 3.5時間加熱還流した。放冷後、反応液をジェチルエーテルで洗 浄後、 10%塩酸を用いて、液性を酸性とし、酢酸ェチルで抽出した。抽出層を水、飽 和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し溶媒を減圧留去した。得られ た残渣 (871 mg)をブロモベンゼン (50 mL)に懸濁し、 3.5時間加熱還流した。溶媒を減 圧留去後、残渣をシリカゲルカラムクロマトグラフィー(へキサン:酢酸ェチル = 1 : 1) にて精製することで目的物 (583 mg)を白色固体として得た。
MS (EI+): 228 [M+]
:H-NMR (400 MHz, CDC1 ): δ 1.77 (1H, t, J = 5.5 Hz), 4.18 (3H, s), 4.87 (2H, d,
J = 5.5 Hz), 6.17 (1H, d, J = 7.3 Hz), 6.86 (1H, s), 6.94 (1H, t, J = 55.4 Hz), 7.22 ( 1H, d, J = 7.3 Hz).
[0568] <実施例 54〉
2 ジフルォロメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー4 カルボアルデヒド [0569] [化 170]
Figure imgf000092_0002
[0570] 実施例 53の化合物 (582 mg)をジクロロメタン (20 mL)に溶解し、活性二酸化マンガ ン (2.22 加え、常温にて 11時間攪拌した。セライトを用いて不溶物を濾去し、濾液の 溶媒を減圧留去して、 目的物 (580 mg)を白色固体として得た。
MS (EI+): 226 [Μ+]
'H-NMR (400 MHz, CDC1 ): δ 4.30 (3H, s), 6.37 (1H, d, J = 8.0 Hz), 6.95 (1H, t,
J = 55.4 Hz), 7.59 (1H, s), 7.83 (1H, d, J = 8.0 Hz), 9.98 (1H, s). [0571] <実施例 55〉
2—ジフルォロメチルー 4一(1ーヒドロキシプロピル)ー7—メトキシピラゾロ [1 , 5-a] ピリジン
[0572] [化 171]
Figure imgf000093_0001
[0573] アルゴン雰囲気下、実施例 54の化合物 (580 mg)を THF (13 mL)に溶解し、 -78。C にてェチルマグネシウムブロミド(1.0 mol/LTHF溶液、 3.1 mL)を滴下し、その後常 温にて 2時間攪拌した。反応液に飽和塩化アンモユウム水溶液を加えた後、酢酸ェ チルにて抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾 燥した。溶媒を減圧留去した残渣をシリカゲルカラムクロマトグラフィー (へキサン:酢 酸ェチル = 3 : 2)にて精製し、 目的物 (602 mg)を黄色固体として得た。
MS (EI+): 256 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 0.96 (3H, t, J = 7.3 Hz), 1.86—1.99 (3H, m), 4.17 (3
H, s), 4.88 (1H, t, J = 6.7 Hz), 6.18 (1H, d, J = 7.9 Hz), 6.87 (1H, s), 6.94 (1H, t, J = 55.0 Hz), 7.22 (1H, d, J = 7.9 Hz).
[0574] <実施例 56〉
2 -ジフルォロメチル一 7—メトキシ一 4 -プロピオ二ルビラゾロ [1 , 5 - a]ピリジン
[0575] [化 172]
Figure imgf000093_0002
実施例 55の化合物 (550 mg)をクロ口ホルム (10 mL)に溶解し、活性二酸化マンガン ( 5.61 g (1.87 gを 24時間おきに追加))を加え、 2日間加熱還流した。セライトを用いて 不溶物を濾去し、濾液の溶媒を減圧留去して、 目的物 (41 5mg)を得た。 MS (EI+): 254 [M+]
:H-NMR (400 MHz, CDC1 ): δ 1.27 (3H, t, J = 7.3 Hz), 3.03 (2H, q, J = 7.3 Hz), 4.
27 (3H, s), 6.26 (1H, d, J = 8.0 Hz), 6.94 (1H, t, J = 55.0 Hz), 7.62 (1H, s), 7.98 (1 H, d, J = 8.0 Hz).
[0577] <実施例 57〉
2—ジフルォロメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸 メチ ノレエステノレ
[0578] [化 173]
Figure imgf000094_0001
[0579] 実施例 56の化合物(185 mg)に、炭酸ジメチル(10 mL)、 60%水素化ナトリウム(87.
0 mg)およびメタノール 1滴を加えて 1時間 40分加熱還流した。反応液に飽和塩化ァ ンモユウム水溶液を加えて酢酸ェチルで抽出し、抽出層を無水硫酸ナトリウムで乾燥 後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(へキサン:酢酸ェチル =3: 2)で精製し、 目的物 (33.2 mg)を黄色固体として得た。
MS (EI+): 256 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 3.99 (3H, s), 4.26 (3H, s), 6.28 (1H, d, J = 8.0 Hz),
6.95 (1H, t, J = 55.2 Hz), 7.36 (1H, s), 8.13 (1H, d, J = 8.0 Hz).
[0580] <実施例 58〉
2—ジフルォロメチルー 7—メトキシーピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸 (3
, 5—ジクロロピリジン一 4—ィル)アミド
[0581] [化 174]
Figure imgf000095_0001
[0582] 実施例 57の化合物 (33.0 mg)をエタノール (3.0 mL)に溶解し、 10%水酸化カリウム 水溶液 (0.22 mL)を加え、常温で 8時間攪拌した。反応液に水を加えてエーテルで洗 浄し、水層を 10%塩酸で酸性にした後、酢酸ェチルで抽出した。抽出層を水、飽和 食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた 残渣 (21.0 mg)をジクロロメタン (3.0 mL)に溶解し、ジイソプロピルェチルァミン (0.030 mL)及び TBTU (30.6mg)を加え、常温で 2.5時間攪拌した。反応液を水で希釈後、酢 酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで 乾燥し、溶媒を減圧留去した (残渣 A)。アルゴン雰囲気下、 4 アミノー 3, 5—ジクロ 口ピリジン (141 mg)をトルエン (10 mL)に溶解し、 0°Cにてナトリウムビス(2—メトキシェ トキシ)ァノレミナムヒドリド (65%トノレェン溶液、 (0.120 mL)を滴下し、 100。Cで 2時間攪 拌した。この反応液に、先に得られた残渣 Aのジクロロメタン (5.0 mL)溶液を 0°Cにて 滴下後、再び 100°Cにて 3時間攪拌した。セライトを用いて不溶物を濾去後、濾液を 水で希釈し、酢酸ェチルにて抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水 硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトダラ フィー
(へキサン:酢酸ェチル = 1 : 1)にて精製することで目的化合物 (2.50 mg)を白色固体 として得た。
MS (EI+): 386 [M+]
HRMS (EI+): 386.0128 (-2.1 mmu)
'H-NMR (400 MHz, CDC1 ): δ 4.29 (3H, s), 6.34 (1H, d, J = 8.0 Hz), 6.96 (1H, t,
J = 54.4 Hz), 7.32 (1H, s), 7.72 (1H, brs), 7.96 (1H, d, J = 8.0 Hz), 8.60 (2H, s)
[0583] <実施例 59〉 2 ジフルォロメチルー 7 エトキシピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3 5—ジクロロピリジン一 4—ィル)アミド
[0584] [化 175]
Figure imgf000096_0001
[0585] 実施例 58の操作により目的物 (2.00 mg)を白色固体として得た。
MS (EI+): 400 [M+]
HRMS (EI+): 400.0341 (+3.6
mmu)
:H-NMR (400 MHz, CDC1 ): δ 1.69 (3H, t, J = 7.3 Hz), 4.56 (2H, q, J = 7.3 Hz), 6
.31 (1H, d, J = 7.9 Hz), 6.97 (1H, t, J = 55.0 Hz), 7.32 (1H, s), 7.71 (1H, brs), 7.94
(1H, d, J = 8.0 Hz), 8.60 (2H, s).
[0586] <実施例 60〉
4ーヒドロキシメチルー 7 メトキシ 2—(テトラヒドロピラン 2 ィルォキシメチル)ピ ラゾロ [1 , 5— a]ピリジンー3—力ルボン酸 ェチルエステル
[0587] [化 176]
Figure imgf000096_0002
実施例 2の化合物 (44.9 g)を DMF(500 mL)に溶解し、 4 (テトラヒドロピラン 2— ィルォキシ) 2 ブチン酸ェチルエステル(17.8 g)及び炭酸カリウム (34.8 g)を加え 、常温で 17時間攪拌した。反応液に水を加え、酢酸ェチルにて抽出後、抽出層を飽 和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シ リカゲルクロマトグラフィー (へキサン:酢酸ェチル = 1 : 1→酢酸ェチル)にて精製し、 目的物(17.4 g)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 1.44 (3H, t, J = 7.3 Hz), 1.51-1.73 (6H, m), 3.54-3
.58 (1H, m), 3.93-3.99 (1H, m), 4.16 (3H, s), 4.42 (2H, q, J = 7.3 Hz), 4.78-4.85(3 H, m), 4.92 (1H, d, J = 12.2 Hz), 5.19 (1H, d, J = 12.2 Hz), 6.24 (1H, d, J = 8.0 Hz) , 7.33 (1H, d, J = 8.0 Hz).
[0589] <実施例 61〉
4ーヒドロキシメチルー 7 メトキシ 2—(テトラヒドロピラン 2 ィルォキシメチル)ピ ラゾロ [1 , 5— a]ピリジン一 3—カルボン酸
[0590] [化 177]
Figure imgf000097_0001
[0591] 実施例 60の化合物(4.64 g)をエタノール (60 mL)に溶解し、常温にて水酸化力リウ ム(2.51 g)と水 (19.2 mL)を加え、加熱還流下にて 1.5時間攪拌した。反応液の溶媒を 減圧留去し、水 (70 mL)で希釈し、希塩酸 (35 mL)を加えた。析出した固体を濾取し、 目的物 (3.60 g)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 1.57-1.81 (6H, m), 3.61—3.64 (1Η, m), 3.88—3.93 (1
Η, m), 4.18 (3Η, s), 4.81-4.86 (2Η, m), 4.81-4.86 (2Η, m), 4.92-4.94 (1Η, m), 4.99 (1Η, d, J = 12.2 Hz), 5.24 (1H, d, J = 12.2 Hz), 6.32 (1H, d, J = 7.3 Hz), 7.41 (1H, d, J = 7.3 Hz).
[0592] <実施例 62〉
4ーヒドロキシメチルー 7 メトキシ 2—(テトラヒドロピラン 2 ィルォキシメチル)ピ ラゾロ [1 , 5— a]ピリジン
[0593] [化 178]
Figure imgf000098_0001
[0594] 実施例 61の化合物 (15.9 g)を o_ジクロロベンゼン(480 mL)に懸濁し、 150°Cで 13時 間攪拌した。反応終了後、減圧下に溶媒を留去し、残渣をシリカゲルクロマトグラフィ 一 (酢酸ェチル:メタノール = 10 : 1)にて精製し、 4ーヒドロキシメチルー 7 メトキシー 2— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5— a]ピリジン (3.83 g)を白 色固体として、また 2, 4 ジヒドロキシメチル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン( 4.10 g)を得た。
[0595] 4ーヒドロキシメチルー 7 メトキシー 2 (テトラヒドロピランー2 ィルォキシメチル)ピ ラゾロ [1 , 5— a]ピリジン
'H-NMR (400 MHz, CDCl ): δ 1.53-1.80 (6H, m), 3.56-3.58 (1Η, m), 3.93-3.99 (1
Η, m), 4.13 (3Η, s), 4.81 (1Η, d, J = 12.8 Hz), 4.77-4.82 (3H, m), 5.02 (1H, d, J = 12.8 Hz), 6.04 (1H, d, J = 7.4 Hz), 6.61 (1H, s), 7.12 (1H, d, J = 7.4 Hz).
[0596] 2, 4 ジヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジン
:H-NMR (400 MHz, CDCl ): δ 4.15 (3H, s), 4.83 (2Η, s), 4.94 (2Η, s), 6.07 (1Η, d
, J = 7.4 Hz), 6.63 (1H, s), 7.14 (1H, d, J = 7.4 Hz).
[0597] <実施例 63〉
7 メトキシ一 2— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリジ ン 4 カルボアルデヒド
[0598] [化 179]
Figure imgf000098_0002
[0599] 実施例 62で得られた 4ーヒドロキシメチルー 7 メトキシー 2 (テトラヒドロピラン 2—ィルォキシメチル)ピラゾ口 [1 , 5— a]ピリジン(1.02 g)をクロ口ホルム(35 mL)に溶 解し、常温にて活性二酸化マンガン(1.51 g)を加え、 50°Cで 4.5時間攪拌した。セライ トを用いて不溶物を濾去後、濾液の溶媒を減圧留去し、 目的化合物 (876 mg)を黄色 固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.53-1.80 (6Η, m), 3.56-3.58 (1Η, m), 3.93-3.99 (1
Η, m), 4.13 (3Η, s), 4.81 (1Η, d, J = 12.8 Hz), 4.77-4.82 (3H, m), 5.02 (1H, d, J =
12.8 Hz), 6.04 (1H, d, J = 7.4 Hz), 6.61 (1H, s), 7.12 (1H, d, J = 7.4 Hz).
[0600] <実施例 64〉
7 メトキシ一 2— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリジ ンー4一力ノレボン酸
[0601] [化 180]
Figure imgf000099_0001
[0602] 実施例 63の化合物 (876 mg)に硝酸銀 (1.36 g)と水酸化ナトリウム(623 mg)の懸濁 水 (30 mL)を加え、常温にて 4時間攪拌した。セライトを用いて不溶物を濾去後、濾液 をジェチルエーテルで洗浄し、水層を希塩酸で酸性とした後、酢酸ェチルで抽出し た。抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減 圧留去して、 目的化合物 (789 mg)を白色固体として得た。
:H-NMR (400 MHz, CDC1 ): δ 1.51—1.91 (6H, m), 3.56-3.60 (1Η, m), 3.94-4.00 (1
Η, m), 4.82 (1Η, d, J = 12.8 Hz), 5.04 (1H, d, J = 12.8 Hz), 6.20 (1H, d, J = 8.0 Hz)
, 7.24 (1H, s), 8.15 (1H, d, J = 8.0 Hz).
[0603] <実施例 65〉
7 メトキシ一 2— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリジ ンー4一力ルボン酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド
[0604] [化 181] cr 丫 ci
Figure imgf000100_0001
[0605] アルゴン雰囲気下、実施例 64の化合物(789 mg)をジクロロメタン(17 mL)に溶解 し、ジイソプロピルェチルァミン (0.888 mL, 5.15)と TBTU (908 mg)を加え、常温で 1. 5時間攪拌した。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を飽和食塩水 で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した (残渣 A)。アルゴン雰 囲気下、 4-ァミノ- 3,5-ジクロロピリジン (4.30 g)をトルエン(85 mL)に溶解し、氷冷下 にてナトリウムビス(2 メトキシエトキシ)アルミナムヒドリド (65%トルエン溶液、 3.6 ml) を滴下し、 100°Cで 1.5時間攪拌した。氷冷下、この反応液に先に得られた残渣 Aの ジクロロメタン (10 mL)溶液を滴下後、 100°Cにて 1.5時間攪拌した。反応液に氷冷下、 10%水酸化ナトリウム水溶液を加え、セライトを用いて不溶物を濾去後、濾液を酢酸 ェチルおよびクロ口ホルム:メタノール = 9 : 1で抽出した。抽出層を水、飽和食塩水の 順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した残渣を、シリカゲルク 口マトグラフィー (酢酸ェチル:へキサン = 1: 1→酢酸ェチル→酢酸ェチル:メタノーノレ = 50: 1→20: 1)にて精製し、 目的化合物 (1.04 g)を白色固体としてセた。
:H-NMR (400 MHz, CDC1 ): δ 1.51-1.87 (6H, m), 3.54-3.58 (1Η, m), 3.91-3.97 (1
3
Η, m), 4.25 (3Η, s), 4.79-4.82 (1Η, m), 4.80 (1Η, d, J = 12.8 Hz), 5.05 (1H, d, J =
12.8 Hz), 6.21 (1H, d, J = 8.0 Hz), 7.12 (1H, s), 7.82 (1H, s) 7.91 (1H, d, J = 8.0 H z), 8.59 (2H, s).
[0606] <実施例 66〉
2 ヒドロキシメチル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ージクロ口ピリジンー4 ィル)アミド
[0607] [化 182]
Figure imgf000101_0001
ノ o
[0608] 実施例 65の化合物(1.04 g)をメタノール (20 mL)に溶解し、常温にて p—トルエンス ルホン酸一水和物(43.9 mg)を加え、常温にて 20分攪拌した後、 50°Cにて 1時間攪 拌した。氷冷下、飽和炭酸水素ナトリウム水溶液を加えて酢酸ェチルで抽出し、抽出 層の溶媒を減圧留去した後、残渣に酢酸ェチルを加え、析出物を濾取して、 目的物 ( 707 mg)を白色固体として得た。
'H-NMR (400 MHz, DMSO-d ): δ 4.18 (3H, s), 4.64 (2Η, d, J = 6.1 Hz), 5.31 (1H,
6
t, J = 6.1 Hz), 6.53 (1H, d, J = 8.0 Hz), 6.99 (1H, s), 8.06 (1H, d, J = 8.0 Hz), 8.74 (2H, s), 10.53 (1H, s).
0
[0609] <実施例 67〉
7 メトキシ一 4— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリジ ン 2—カルボアルデヒド
[0610] [化 183]
Figure imgf000101_0002
[0611] 実施例 62で得られた 2, 4 ジヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリ ジン(1.75 g)の DMF (30 mL)溶液に 3, 4 ジヒドロ一 2H ピラン(707 mg)および p トルエンスルホン酸一水和物(79.9 mg)を加えて常温で 4日間攪拌した。反応液に 飽和炭酸水素ナトリウム水溶液を加えて、酢酸ェチルで抽出し、抽出層を無水硫酸 ナトリウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー( 酢酸ェチル)に付し、淡黄色油状の [7ーメトキシー 4 (テトラヒドロピラン 2ーィル ォキシメチル)ピラゾ口 [1 , 5 a]ピリジンー2 ィル]メタノール(0.59 g)及び、淡黄色 油状の 4ーヒドロキシメチルー 7 メトキシー 2—(テトラヒドロピランー2 ィルォキシメ チル)ピラゾ口 [1 , 5— a]ピリジン(0.65 g)を得た。
[0612] [7 メトキシ一 4— (テトラヒドロピラン一 2 ィルォキシメチル)ピラゾ口 [1 , 5 a]ピリ ジン 2 ィル]メタノール(922 mg)にクロ口ホルム(40 mL)及び、活性二酸化マンガ ン(1.38 g)を加えて 15時間加熱還流した。セライトを用いて不溶物を濾去し、温クロ口 ホルムで洗浄した。濾液と洗浄液を合わせて溶媒を減圧留去した残渣を、シリカゲル カラムクロマトグラフィー(酢酸ェチル)で精製し、 目的物 (738 mg)を淡黄色液体として 得た。
LRMS (CI+): 291 [M+H+]
[0613] <実施例 68〉
4ーヒドロキシメチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー2 カルボ二トリル
[0614] [化 184]
Figure imgf000102_0001
[0615] 実施例 67の化合物(627 mg)のメタノール(22 mL)溶液に、常温にて酢酸ナトリウム
(1.00 g)及び塩酸ヒドロキシルァミン (450 mg)を加えて常温で 30分撹拌した。溶媒を 減圧下に留去した残渣を、シリカゲルカラムクロマトグラフィー(酢酸ェチル)で精製し 、白色固体 (671 mg)を得た。
[0616] 得られた個体の塩化メチレン(22 mL)溶液にトリェチルァミン (1.51 mL)、および無 水トリフルォロ酢酸 (0.60 mL)を加え、常温で 1時間撹拌した。反応液に水を加えて 塩化メチレンで抽出し、抽出層を無水硫酸マグネシウムで乾燥後、溶媒を減圧留去 した。得られた残渣のメタノール(22 mL)溶液に、 P-トルエンスルホン酸一水和物(41 1 mg)を加えて常温で 1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液をカロ えた後、酢酸ェチルで抽出し、抽出層を無水硫酸マグネシウムで乾燥後、溶媒を減 圧留去した。残渣をイソプロピルエーテルで洗浄し、 目的物 (389 mg)を淡黄色固体と して得た。
MS (EI+): 203 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.84 (1H, t, J = 6.1 Hz), 4.19 (3H, s), 4.86 (2H, d,
J = 6.1 Hz), 6.28 (1H, d, J = 7.9 Hz), 7.06 (1H, s), 7.29 (1H, d, J = 7.9 Hz).
[0617] <実施例 69〉
4ーホノレミノレー 7 メトキシピラゾロ [1 , 5 a]ピリジン一 2 -カルボ二トリル
[0618] [化 185]
Figure imgf000103_0001
[0619] 実施例 68の化合物(380 mg)にクロ口ホルム(45 mL)及び、活性二酸化マンガン(1 .63 g)を加えて 3時間加熱還流した。セライトを用いて不溶物を濾去し、温クロロホノレ ムで洗浄した。濾液と洗浄液を合わせて溶媒を減圧留去し、 目的物 (360 mg)を淡黄 色固体として得た。
MS (EI+): 201 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 4.32 (3H, s), 6.48 (1H, d, J = 7.9 Hz), 7.67 (1H, s),
7.90 (1H, d, J = 7.9 Hz), 9.98 (1H, s).
[0620] <実施例 70〉
2 シァノー 7 メトキシピラゾロ [ 1 , 5 a]ピリジン 4一力ノレボン酸
[0621] [化 186]
Figure imgf000103_0002
実施例 69の化合物(183 mg)の DMSO (9 mL)溶液に、 2 メチルー 2 ブテン(3 mL)、亜塩素酸ナトリウム(740 mg)及びリン酸二水素ナトリウム(753 mg)の水(5 mL) 溶溶液液をを加加ええてて常常温温でで 1122時時間間攪攪拌拌ししたた。。反反応応液液にに、、 11 mmooll//LL水水酸酸化化ナナトトリリウウムム((55 mmLL)) をを加加ええたた後後、、水水((1155 mmLL))おおよよびび酢酢酸酸ェェチチルル((1100 mmLL))をを加加ええてて攪攪拌拌ししたた。。有有機機層層をを分分 離離ししたた後後、、水水層層をを濃濃塩塩酸酸でで ppHH33ととししてて、、ククロロ口口ホホルルムム::メメタタノノーールル == 77 :: 11でで抽抽出出しし、、抽抽 出出層層をを無無水水硫硫酸酸ママググネネシシウウムムでで乾乾燥燥後後、、溶溶媒媒をを減減圧圧留留去去ししたた。。残残渣渣をを水水でで洗洗浄浄ししてて 、、 目目的的物物 ((114499 mmgg))をを白白色色固固体体ととししてて得得たた。。
LLRRMMSS ((ΕΕΓΓ)):: 221177 [[ΜΜ++]]
' 'HH--NNMMRR ((440000 MMHHzz,, DDMMSSOO--dd )):: δδ 44..2222 ((33HH,, ss)),, 66..7788 ((11HH,, dd,, JJ == 88..66 HHzz)),, 77..6611 ((11HH,,
66
ss)),, 88..1155 ((11HH,, dd,, JJ == 88..66 HHzz))..
[[00662233]] <<実実施施例例 7711〉〉
22 シシァァノノ 77 メメトトキキシシピピララゾゾロロ [[11 ,, 55 aa]]ピピリリジジンン一一 44 カカルルボボンン酸酸 ((33,, 55 ジジククロロロロ
Figure imgf000104_0001
[[00662244]] [[化化 118877]]
Figure imgf000104_0002
[0625] 実施例 70の化合物(141 mg)に塩化メチレン(6.5 mL)、 4一二トロフエノール(112 m g)、 N- (3 ジメチルァミノプロピル)一 N, 一ェチルカルポジイミド塩酸塩(189 mg) 、 4ージメチルァミノピリジン(5 mg)を加え常温で 30分間攪拌した後、 DMF (2 mL)を 加えて 30分間攪拌した。反応液にクロ口ホルムを加えて水で洗浄し、有機層を無水 硫酸ナトリウムで乾燥後、溶媒を留去した残渣を DMF (3.5 mL)に溶解した (溶液 A) 。 4-ァミノ- 3,5-ジクロロピリジン _N -ォキシド(174 mg)の DMF (3.0 mL)溶液に、 60% 水素化ナトリウム(51.9 mg)を加えて常温で 30分間攪拌した。反応液に上記の溶液 Aを加えて常温で 2時間攪拌した後、溶媒を減圧留去した。残渣に飽和塩化アンモ ニゥム水溶液を加えてクロ口ホルム:メタノール = 7 : 1で抽出し、抽出層を無水硫酸マ グネシゥムで乾燥後、溶媒を減圧留去した。残渣をシリカゲルクロマトグラフィー(クロ 口ホルム:メタノール =9: 1)で精製し、 目的物 (141 mg)を淡黄色固体として得た。 LRMS (FAB+): 378 [Μ+1+コ
:H-NMR (400 MHz, DMSO— d ): δ 4.25 (3Η, s), 6.90 (1Η, d, J = 8.6 Hz), 7.62 (1H
6
s), 8.28 (1H, d, J = 8.6 Hz), 8.74 (2H, s), 10.63 (1H, s).
[0626] <実施例 72〉
2—ヒドロキシメチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸
[0627] [化 188]
Figure imgf000105_0001
[0628] 実施例 64の化合物(437 mg)をメタノール (14 mL)に溶解し、常温にて p—トルエン スルホン酸一水和物(27.0 mg)を加え、 50°Cにて 30分間攪拌した。反応液を氷冷し、 析出物を濾取して目的物 (254 mg)を白色固体として得た。
:H-NMR (400 MHz, DMSO-d ): δ 4.15 (3H, s), 4.64 (2Η, d,, J = 4.9 Hz), 5.31 (1
6
H, t, J = 4.9 Hz), 6.44 (1H, d, J = 8.0 Hz), 6.98 (1H, d, J = 8.0 Hz), 7.95 (1H, s), 1
2.90 (1H, brs).
[0629] <実施例 73〉
7—メトキシー2—メトキシメチルビラゾロ [1 , 5— a]ピリジンー4一力ルボン酸メチルェ ステル
[0630] [化 189]
Figure imgf000105_0002
実施例 72の化合物(253 mg)を DMF(11 mL)に溶解し、酸化銀(2.64 g)とョードメタ ン (1.42 mL)を加え、常温にて 15時間攪拌した。セライトを用いて不溶物を濾去し、濾 液の溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー (酢酸ェチル)にて精製し 、 目的物 (224 mg)を黄白色固体として得た。
'H-NMR (400 MHz, CDCl ): δ 3.47 (3H, s), 3.97 (3Η, s), 4.23 (3Η, s), 4.76 (2Η, s
), 6.16 (1Η, d, J = 8.0 Hz), 7.14 (1H, s), 8.05 (1H, d, J = 8.0 Hz).
[0632] <実施例 74〉
7 メトキシ一 2 メトキシメチルビラゾロ [ 1 , 5 a]ピリジン一 4—カルボン酸
[0633] [化 190]
Figure imgf000106_0001
[0634] 実施例 73の化合物(222 mg, 0.889 mmol)をメタノール (4.20 mL)に溶解し、常温に て水酸化カリウム(174 mg)と水 (1.35 mL)を加え、常温にて 4時間攪拌した。反応液の 溶媒を減圧留去し、残渣に水を加えてジェチルエーテルで洗浄した。水層を希塩酸 で酸性にし、酢酸ェチルで抽出し、抽出層を無水硫酸ナトリウムで乾燥した。溶媒を 減圧留去して目的物 (207 mg)を白色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 3.48 (3H, s), 4.25 (3Η, s), 4.77 (2Η, s), 6.20 (1Η, d
, J = 8.0 Hz), 7.22 (1H, s), 8.15 (1H, d, J = 8.0 Hz).
[0635] <実施例 75〉
7 メトキシ一 2 メトキシメチルビラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 4 ニト 口フエニノレエステノレ
[0636] [化 191]
Figure imgf000106_0002
[0637] アルゴン雰囲気下、実施例 74の化合物(207 mg)をジクロロメタン (9 mL)に溶解し、 p-ニトロフエノール (150 mg)と N— (3 ジメチルァミノプロピル) N,一ェチルカルボ ジイミド塩酸塩 (254 mg)とジメチルァミノピリジン (触媒量)を加え、常温で 1.5時間攪拌 した。反応液を水で希釈後、ジクロロメタンで抽出し、抽出層を飽和炭酸水素ナトリウ ム水溶液、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧 留去し、 目的物 (305 mg)を黄色固体として得た。
:H-NMR (400 MHz, CDCl ): δ 3.47 (3H, s), 4.29 (3Η, s), 4.76 (2Η, s), 6.26 (1Η, d
3
, J = 8.6 Hz), 7.19 (1H, s), 7.44-7.47 (2H, m), 8.25 (1H, d, J = 8.6 Hz), 8.33-8.38 ( 2H, m).
[0638] <実施例 76〉
7—メトキシ一 2—メトキシメチルビラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (3, 5— ジクロロピリジン一 4—ィル)アミド
[0639] [化 192]
Figure imgf000107_0001
[0640] アルゴン雰囲気下、 4-ァミノ- 3,5-ジクロロピリジン(104 mg)を DMF (2.0 mL)に溶解 し、氷冷下にて 60%水素化ナトリウム (34.0 mg)を加え、常温で 30分間攪拌した。この反 応液に氷冷下、実施例 75の化合物(152 mg)の DMF溶液 (2.0 mL)を加え、常温で 2 時間攪拌した。氷冷下、反応液に飽和塩化アンモユウム水溶液を加え、酢酸ェチル 及びクロ口ホルム:メタノール = 9 : 1で抽出し、抽出層を飽和食塩水で洗浄し、無水 硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロマトグラフィー( 酢酸ェチル)にて精製し、 目的物 (100 mg)を白色固体として得た。
元素分析 (%): C H C1 N 0 - 1/5
16 14 2 4 3
H 0として
C H N
計算値 50.07 3.75 14.60 実測値 49.78 3.80 14.37
MS (EI+): 380 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 3.47 (3Η, s), 4.26 (3Η, s), 4.76 (2Η, s), 6.24 (1Η, d
, J = 8.0 Hz), 7.06 (1Η, s), 7.72 (1Η, brs), 7.92 (1Η, d, J = 8.0 Hz), 8.59 (2H, s).
[0641] <実施例 77〉
7—メトキシ一 2—メトキシメチルビラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (3, 5— ジクロロ一 1—ォキシピリジン一 4—ィル)アミド
[0642] [化 193]
Figure imgf000108_0001
[0643] アルゴン雰囲気下、 4-ァミノ- 3,5-ジクロロピリジン- N-ォキシド(114 mg)を DMF (2.
0 mL)に溶解し、氷冷下にて 60%水素化ナトリウム (34.0 mg)を加え、常温で 30分間攪 拌した。この反応液に氷冷下、実施例 75の化合物(152 mg)の DMF溶液 (2.0 mL)を 加え、常温で 2.5時間攪拌した。反応液に氷冷下、飽和塩化アンモユウム水溶液を加 え、酢酸ェチル及びクロ口ホルム:メタノール = 9 : 1で抽出し、抽出層を飽和食塩水 で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣をシリカゲルクロ マトグラフィー (酢酸ェチル:メタノール = 10 : 1)にて精製し、 目的物 (51.7 mg)を白色固 体として得た。
MS (EI+): 397 [M+]
HRMS (EI+): 397.0435 (-3.5 mmu)
'H-NMR (400 MHz, CDC1 ): δ 3.48 (3H, s), 4.26 (3H, s), 4.76 (2H, s), 6.24 (1H, d
, J = 8.0 Hz), 7.03 (1H, s), 7.65 (1H, brs), 7.91 (1H, d, J = 8.0 Hz), 8.27 (2H, s).
[0644] <実施例 78〉
2—ホルミル一 7—メトキシピラゾ口 [1 , 5— a]ピリジン一 4—カルボン酸 (3, 5—ジク ィル)アミド、
[0645] [化 194]
Figure imgf000109_0001
[0646] 実施例 66の化合物(500 mg)をクロ口ホルム (13 mL)に懸濁し、常温にて活性二酸 化マンガン(1.58 g)を加え、 50°Cで 5時間攪拌した。セライトを用いて不溶物を濾去 後、濾液の溶媒を減圧留去した。残渣を DMF(13 mL)に溶解し、常温にて活性二酸 化マンガン (2.21 g)を加え、 60°Cで 12時間攪拌した。セライトを用いて不溶物を濾去 後、濾液の溶媒を減圧留去し、 目的化合物 (386 mg)を黄色固体として得た。
'H-NMR (400 MHz, DMSO-d ): δ 4.25 (H, s), 6.81 (1Η, d, J = 8.0 Hz), 7.47 (1H, s), 8.20 (1H, d, J = 8.0 Hz), 8.72 (2H, s), 10.18 (1H, s), 10.71 (1H, brs).
[0647] <実施例 79〉
2 - (1—ヒドロキシェチル) 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド
[0648] [化 195]
Figure imgf000109_0002
[0649] アルゴン雰囲気下、実施例 78の化合物 (349 mg)を THF(30 mL)に懸濁し、—78。C でメチルマグネシウムブロミド (0.84 mol/L溶液, 3.41 mL)を滴下し、常温で 7時間攪拌 した。氷冷下、反応液に飽和塩化アンモニゥム水溶液を加え、酢酸ェチル及びクロ口 ホルムで抽出し、抽出層を無水硫酸ナトリウムで乾燥した。溶媒を減圧留去後、残渣 をシリカゲルクロマトグラフィー (酢酸ェチル→酢酸ェチル:メタノール = 20: 1)にて精 製し、 目的物 (214 mg)を黄色固体として得た。
元素分析 (%): C H C1 N 0 - 1/2
16 14 2 4 3
H 0として
C H N
計算ィ直 49.25 3.87 14.36
実測値 49.41 3.67 14.18
MS (EI+): 380 [M+]
'H-NMR (400 MHz, DMSO-d ): δ 1.43 (3H, d, J = 6.7 Hz), 4.18 (3H, s), 4.87-4.93
6
(1H, m), 5.32 (1H, d, J = 4.9 Hz), 6.52 (1H, d, J = 8.0 Hz), 6.98 (1H, s), 8.06 (1H, d, J = 8.0 Hz), 8.75 (2H, s), 10.52 (1H, brs).
[0650] <実施例 80〉
2—ァセチルー 7—メトキシピラゾロ [1 , 5— a]ピリジンー4一力ルボン酸 (3, 5—ジク ロロピリジン一 4—ィル)アミド
[0651] [化 196]
Figure imgf000110_0001
[0652] 実施例 79の化合物 (106 mg)をジクロロメタン (25 mL)に懸濁し、氷冷下、 Dess-Marti n-ペルョージナン(236 mg)を加え、氷冷下にて 20分攪拌し、さらに常温にて 17時間 攪拌した。氷冷下、反応液に飽和炭酸水素ナトリウム水溶液を加え、クロ口ホルム:メ タノール = 9 : 1で抽出し、抽出層を無水硫酸マグネシウムで乾燥した。溶媒を減圧留 去後、残渣をシリカゲルクロマトグラフィー (酢酸ェチル)にて精製し、 目的物 (70.0 mg) を白色固体として得た。
MS (EI+): 378 [M+] HRMS (EI+): 378.0268 (- 1.8 mmu)
'H-NMR (400 MHz, CDC1 ): δ 2.79 (3H, s), 4.30 (3H, s), 6.37 (1H, d, J = 8.0 Hz),
7.52 (1H, s), 7.71 ( 1H, brs), 7.97 (1H, d, J = 8.0 Hz), 8.60 (2H, s).
[0653] <実施例 81〉
4— (3, 5—ジクロ口ピリジンー4ーィルカルバモイル)ー7 メトキシピラゾロ [1 , 5 -a] ピリジン 2—力ノレボン酸
[0654] [化 197]
Figure imgf000111_0001
[0655] 硝酸銀(42.5 mg)の水(2 mL)溶液に水酸化ナトリウム(20.7 mg)の水(1 mL)溶液を 加えた反応液に、実施例 78の化合物 (36.5 mg)を加え、常温で 2時間撹拌した。反 応液を 5%塩酸で pH3とした後、不溶物を濾去し、クロ口ホルム:メタノール = 9 : 1の 溶液で洗浄した。濾液と洗液を合わせ、塩化ナトリウムを加えた後、クロ口ホルム:メタ ノール = 9 : 1の溶液で抽出し、抽出層を無水硫酸マグネシウムで乾燥後、溶媒を減 圧留去して、 目的物 (24.3 mg)を白色固体として得た。
HRMS (FAB+): 381.0193 (+3.5 mmu)
:H-NMR (400MHz, CDC1—CD OD): δ 4.26 (3H, s), 6.38 (1H, d, J = 7.9 Hz), 7.60
(1H, s), 7.98 (1H, d, J = 7.9 Hz), 8.59 (2H, s).
[0656] <実施例 82〉
2 (ヒドロキシィミノメチル) 7 メトキシピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド
[0657] [化 198]
Figure imgf000112_0001
[0658] 実施例 78の化合物 (100 mg)をメタノール(2.7 mL)に懸濁し、常温にて酢酸ナトリウ ム(135 mg)及び塩酸ヒドロキシルァミン(57.1 mg)を加えて常温で 30分撹拌した。溶 媒を減圧下に留去した残渣を水で洗浄し、 目的物 (99.1 mg)(E体、 Z体の混合物(E : Z= 1 : 5) )を白色固体として得た。
HRMS (EI+): 379.0215 (-2.3 mmu)
[0659] E体
'H-NMR (400 MHz, DMSO-d ): δ 4.13 (3H, s), 6.67 (1Η, d, J = 8.6 Hz), 7.72 (1H,
6
s), 7.75 (1H, s), 8.13 (1H, d, J = 8.6 Hz), 8.75 (2H, s), 10.61 (1H, s), 11.92 (1H, s) [0660] Z体
'H-NMR (400 MHz, DMSO-d ): δ 4.21 (3H, s), 6.63 (1H, d, J = 8.6 Hz), 7.22 (1H,
6
s), 8.13 (1H, d, J = 8.6 Hz), 8.24 (1H, s), 8.75 (2H, s), 10.61 (1H, s), 11.62 (1H, s)
[0661] <実施例 83〉
2 シァノ 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ジクロロ ピリジンー4 ィル)アミド
[0662] [化 199]
Figure imgf000112_0002
実施例 82の化合物 (63.0 mg)のジクロロメタン (6 mL)懸濁液に、トリェチルァミン (0.0 924 mL)、及び無水トリフルォロ酢酸(0.0345 mL)を加え、常温で 30分間撹拌した。 反応液に飽和炭酸水素ナトリウム水溶液を加えて常温で 30分攪拌した後、クロロホノレ ム:メタノール(9: 1)の混合液で抽出した。抽出層を無水硫酸マグネシウムで乾燥後 、溶媒を減圧留去した残渣を分取用薄層クロマトグラフィー(クロ口ホルム:メタノール = 9: 1)で精製し、 目的物 (38.1 mg)を白色固体として得た。
HRMS (EI+): 361.0141 (+0.8 mmu)
'H-NMR (400 MHz, DMSO-d ): δ 1.08 (3Η, d, J = 7.3 Hz), 2.28 (1H, d, J = 16.5
Hz), 2.75 (1H, dd, J = 7.3, 16.5 Hz), 3.48 - 3.35 (1H, m), 4.19 (3H, s), 6.74 (1H, d, J = 8.6 Hz), 7.70 (1H, s), 7.86 (1H, d, J = 8.6 Hz), 11.90 (1H, s).
[0664] <実施例 84〉
4ーヒドロキシメチルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン 3 カルボン 酸ェチルエステノレ
[0665] [化 200]
Figure imgf000113_0001
実施例 42の化合物 (64.9 g)のエタノール (750 mU溶液にェチル 4,4,4 トリフルォ ロー 2 ブチノエート (22.1 g)と粉砕した炭酸カリウム (55.3 g)を加え、常温で 12時間攪 拌した。セライトを用いて不溶物を濾去後、濾液を減圧下に濃縮し、残渣を酢酸ェチ ルで抽出した。抽出層を水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し
Figure imgf000113_0002
酢酸ェチ ル =2: 1)により精製し、 目的物(18.9 g)を黄色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.43 (3H, t, J = 7.3 Hz), 4.43 (2H, q, J = 7.3 Hz),
4.65 (1H, t, J = 7.3 Hz), 4.89 (2H, d, J = 7.3 Hz), 7.06 (1H, t, J = 7.3 Hz), 7.45 (1H , d, J = 7.3 Hz), 8.50 (1H, d, J = 7.3 Hz).
[0667] <実施例 85〉 4ーヒドロキシメチルー 2 5— a]ピリジン
[0668] [化 201]
Figure imgf000114_0001
実施例 84の化合物(14.9 g)をエタノール (250 mL)に溶解し、 10%水酸化カリウム水 溶液 (80 mL)を加え、 3時間加熱還流した。溶媒を減圧下に濃縮し、残渣の水層をジ ェチルエーテルで洗浄後、水層に濃塩酸を加え、析出した固体を濾取し、水で洗浄 後、乾燥した。この固体を 0-ジクロロベンゼン (300 mL)に懸濁し、 150°Cで 17時間加 熱した。放冷後、減圧下に溶媒を留去し、
Figure imgf000114_0002
へキサン:酢酸ェチル = 2: 1)にて精製して目的化合物 (3.05 g)を白色固体として 得た。
MS (EI+): 216 [M+]
:H-NMR (400 MHz, CDC1 ): δ 1.89 (1H, t, J = 6.1 Hz), 4.93 (2H, d, J = 6.1 Hz),
6.88 (1H, s), 6.94 (1H, t, J = 7.3 Hz), 7.27-7.29 (1H, m), 8.45 (1H, d, J = 7.3 Hz).
[0670] <実施例 86〉 a]ピリジン
[0671] [化 202]
Figure imgf000114_0003
実施例 85の化合物 (3.05 g)を DMF(30 mL)に溶解し、イミダゾール (1.92 g)と tert- プチルジメチルシリルクロリド (3.19 g)を加え、常温で 2.5時間攪拌した。反応液を水で 希釈し、酢酸ェチルで抽出後、抽出層を水、飽和食塩水の順で洗浄し、無水硫酸ナ トリウムで乾燥した。溶媒を減圧留去した残渣をシリカゲルカラムクロマトグラフィー (へ キサン:酢酸ェチル = 3 : 1)で精製し、 目的物(4.84 g)を無色油状物として得た。 MS (EI+): 330 [M+]
'H-NMR (400 MHz, CDC1 ): δ 0.14 (6H, s), 0.96 (9H, s), 4.90 (2H, s), 6.77 (1H, s
), 6.93 (1H, t, J = 7.3 Hz), 7.27-7.29 (1H, m), 8.41 (1H, d, J = 7.3 Hz).
[0673] <実施例 87〉
4一(tーブチルジメチルシリルォキシメチル)ー7—ョードー 2—トリフルォロメチルビラ ゾロ [1 , 5— a]ピリジン
[0674] [化 203]
Figure imgf000115_0001
[0675] アルゴン雰囲気下、実施例 86の化合物 (4.84 g)を THF(20 ml)に溶解し、 _78°Cで n -ブチルリチウム (1.59 mol/L THF溶液, 11.7 mL)を滴下し、 _78°Cで 2時間攪拌した。 ジョードエタン (4.77 g)の THF(10 mL)溶液を、反応液に滴下し、 _78°Cで 30分攪拌し た。反応液に飽和塩化アンモユウム水溶液を加え、酢酸ェチルで抽出し、抽出層を 水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した 残渣を、シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 4 : 1)で精製し、 目的物(6.44 g)をオレンジ色固体として得た。
MS (EI+): 456 [M+]
'H-NMR (400 MHz, CDC1 ): δ 0.14 (6H, s), 0.95 (9H, s), 4.89 (2H, s), 7.01 (1H, s
), 7.02-7.05 (1H, m), 7.48 (1H, d, J = 7.3 Hz).
[0676] <実施例 88〉
4—ヒドロキシメチル一 7—ョード一 2—トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン [0677] [化 204]
Figure imgf000115_0002
[0678] 実施例 87の化合物 (6.44 g)を THF(50 mUに溶解し、 0°Cにて、テトラプチルアンモ ニゥムフルオリド (1.0 mol/L THF溶液, 17.0 mL)を加え、 0°Cで 2時間攪拌した。反応 液を水で希釈し、酢酸ェチルで抽出後、抽出層を水、飽和食塩水の順で洗浄し、無 水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグ ラフィー (へキサン:酢酸ェチル = 2 : 1)で精製し目的物(4.47 g)を白色固体として得 た。
MS (EI+): 342 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.75 (1H, brs), 4.92 (2H, d, J = 1.2 Hz), 7.04 (1H, d, J = 7.3 Hz), 7.11 (1H, s), 7.49 (1H, d, J = 7.3 Hz).
[0679] <実施例 89〉
7 ョード 2 トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン一 4 -カルボアルデヒド [0680] [化 205]
Figure imgf000116_0001
[0681] 実施例 88の化合物(4.47 g)をクロ口ホルム (60 mUに溶解し、活性二酸化マンガン ( 8.54 g)を加え、 50°Cで 8時間攪拌した。セライトを用いて不溶物を濾去し、濾液の溶 媒を減圧留去して目的物 (4.26 g)を黄色固体として得た。
MS (EI+): 340 [Μ+]
'H-NMR (400 MHz, CDC1 ): δ 7.52 (1H, d, J = 7.3 Hz), 7.73 (1H, d, J = 7.3 Hz),
7.85 (1H, s), 10.10 (1H, s).
[0682] <実施例 90〉
7 メチルスルファ二ルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジンー4 カル ボアルデヒド
[0683] [化 206]
Figure imgf000117_0001
[0684] 実施例 89の化合物 (1.02 g)を DMF(10 mL)に溶解し、ナトリウムチオメトキシド (252 mg)を加え、 60°Cで 2時間攪拌した。反応液を水で希釈し、酢酸ェチルで抽出後、有 機層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去した残渣を、シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 2 : 1)で精 製し目的物 (570 mg)を黄色固体として得た。
MS (EI+): 260 [M+]
'H-NMR (400 MHz, CDC1 ): δ 2.72 (3H, s), 6.86 (1H, d, J = 8.0 Hz), 7.65 (1H, s)
, 7.80 (1H, d, J = 8.0 Hz), 10.05 (1H, s).
[0685] <実施例 91〉
7 メチルスルファ二ルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジンー4 カル ボン酸
[0686] [化 207]
Figure imgf000117_0002
[0687] 実施例 90の化合物 (516 mg)を tert-ブタノール (6.0 mL)、水 (2.0 mL)に懸濁し、リン 酸二水素ナトリウム二水和物 (309 mg)、 2 メチルー 2 ブテン (0.94 mL)、および亜 塩素酸ナトリウム (448 mg)を加え、常温で 1.5時間攪拌した。 10%水酸化ナトリウム水 溶液を加え、液性をアルカリ性にし、水層をジェチルエーテルにて洗浄後、濃塩酸を 加えて液性を酸性にし、析出した固体を濾取し、水で洗浄後乾燥して目的物 (210 mg )を薄い黄色固体として得た。
'H-NMR (400 MHz, DMSO-d ): δ 3.09 (3H, s), 7.54 (1Η, s), 7.64 (1Η, d, J = 7.3
Hz), 8.32 (1H, d, J = 7.3 Hz). [0688] <実施例 92〉
7ーメチルスルファニル 2
Figure imgf000118_0001
5— a]ピリジン一 4—カル ボン酸 (3, 5—ジクロロピリジン一 4—ィル)アミド
[0689] [化 208]
Figure imgf000118_0002
[0690] アルゴン雰囲気下、実施例 91の化合物 (210 mg)をジクロロメタン (10 mL)に溶解し、 ジイソプロピルェチルァミン (0.264 mL)及び TBTU(268 mg)を加え、常温で 1.5時間攪 拌した。反応液を水で希釈後、酢酸ェチルで抽出した。抽出層を水、飽和食塩水の 順で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した (残渣 A)。
[0691] アルゴン雰囲気下、 4 アミノー 3, 5 ジクロ口ピリジン (1.24 g)をトルエン (10 mUに 懸濁し、 0°Cにて Red_Al(70%トルエン溶液, 1. 1 mL)を滴下し、 100°Cで 1.5時間攪拌 した。その後、 0°Cにて先に得られた残渣 Aのジクロロメタン (5.0 mL)懸濁液を滴下後 、再び 100°Cにて 30分加熱攪拌した。セライトを用いて不溶物を濾去後、濾液を水で 希釈し、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナ トリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィー( へキサン:酢酸ェチル =3 : 2)で精製し、ジイソプロピルエーテルで洗浄することで目 的物 (10.0 mg)を黄色固体として得た。
MS (EI+): 420 [M+]
HRMS (EI+): 419.9791 (-3.5 mmu)
'H-NMR (400 MHz, CDC1 ): δ 2.72 (3H, s), 6.82 (1H, d, J = 7.9 Hz), 7.42 (1H, s)
, 7.68 (1H, brs), 7.89 (1H, d, J = 7.9 Hz), 8.61 (2H, s).
[0692] <実施例 93〉
7 メチルァミノ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボアル デヒド
[0693] [化 209]
Figure imgf000119_0001
[0694] 実施例 89の化合物 (680 mg)をメチルァミン (2.0 mol/L THF溶液, 20 mL)に加え、 封管中、 60°Cで 16時間攪拌した。溶媒を留去した残渣を、シリカゲルカラムクロマトグ ラフィー (へキサン:酢酸ェチル = 3 : 1)で精製し、 目的物 (460 mg)を黄色固体として 得た。
MS (EI+): 243 [M+]
'H-NMR (400 MHz, CDC1 ): δ 3.22 (3H, s), 6.12 (1H, d, J = 8.0 Hz),6.75 (1H, br s), 7.55 (1H, s), 7.80 (1H, d, J = 8.0 Hz), 9.84 (1H, s).
[0695] <実施例 94〉
7—(t—ブトキシカルボ二ルーメチルーァミノ) 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン 4 カルボアルデヒド
[0696] [化 210]
Figure imgf000119_0002
実施例 93の化合物 (410 mg)をァセトニトリル (10 mL)に溶解し、ジ -tertブチル -ジカ ーボネート (736 mg)とジメチルァミノピリジン (8.4 mg)を加え、常温で 3日間攪拌した。 反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄 後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムク 口マトグラフィー (へキサン:酢酸ェチル = 3 : 1)で精製し目的物(561 mg)をオレンジ 色油状物として得た。 MS (EI+): 343 [M+]
:H-NMR (400 MHz, CDC1 ): δ 1.34 (9H, s), 3.40 (3H, s), 7.02 (1H, d, J = 8.0 Hz)
, 7.67 (1H, s), 7.84 (1H, d, J = 8.0 Hz), 10.08 (1H, s).
[0698] <実施例 95〉
7—(t—ブトキシカルボ二ルーメチルーァミノ) 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジンー4一力ノレボン酸
[0699] [化 211]
Figure imgf000120_0001
[0700] 実施例 94の化合物 (562 mg)を tert-ブタノール (9.0 mL)、水 (3.0 mL)に懸濁し、リン 酸二水素ナトリウム二水和物 (264 mg)、 2-メチル -2—ブテン (0.81 mL)及び亜塩素酸 ナトリウム (535 mg)を加え、常温で 6時間攪拌した。 10%水酸化ナトリウム水溶液を加 え、液性をアルカリ性にし、水層をジェチルエーテルにて洗浄後、濃塩酸で液性を酸 性にし、析出した固体を濾取し、水で洗浄後乾燥して、 目的物 (84.7 mg)を白色固体 として得た。
MS (EI+): 359 [M+]
'H-NMR (400 MHz, DMSO-d ): δ 1.20 (9H, s), 3.28 (3H, s), 7.32 (1H, d, J = 8.0
Hz), 7.46 (1H, s), 8.12 (1H, d, J = 8.0 Hz).
[0701] <実施例 96〉
[4— (3, 5 ジクロロピリジン一 4 ィルカルボニル) 2
Figure imgf000120_0002
5— a]ピリジン 7 酸 t ブチルエステル
[0702] [化 212]
Figure imgf000121_0001
[0703] アルゴン雰囲気下、実施例 95の化合物 (84.7 mg)をジクロロメタン (10 mL)に溶解し 、ジイソプロピルェチルァミン (0.82 mL)及び TBTU(83.2 mg)を加え、常温で 1.5時間 攪拌した。反応液を水で希釈後、酢酸ェチルで抽出した。有機層を水、飽和食塩水 の順で洗浄後、無水硫酸ナトリウムで乾燥し溶媒を減圧留去した (残渣 A)。
[0704] アルゴン雰囲気下、 4 アミノー 3, 5 ジクロ口ピリジン (385 mg)をトルエン (10 mUに 懸濁し、 0°Cにて Red_Al(70%トルエン溶液, 0.33 mL)を滴下し、 100°Cで 1.5時間攪拌 した。その後、 0°Cで先に得られた残渣 Aのジクロロメタン (5.0 mL)懸濁液を滴下し、 再び 100°Cにて 30分加熱攪拌した。セライトを用いて不溶物を濾去後、濾液を水で希 釈し、酢酸ェチルにて抽出し、有機層を水、飽和食塩水の順で洗浄後、無水硫酸ナ トリウムで乾燥した。溶媒を留去した残渣を、シリカゲルカラムクロマトグラフィー (へキ サン:酢酸ェチル = 4 : 1)で精製し目的物 (99.9 mg)を黄色固体として得た。
MS (EI+): 504 [M+]
'H-NMR (400 MHz, CDC1 ): δ 1.37 (9H, s), 3.39 (3H, s), 6.99 (1H, d, J = 7.2 Hz),
7.44 (1H, s), 7.84 (1H, brs), 7.89 (1H, d, J = 7.2 Hz), 8.62 (2H, s).
[0705] <実施例 97〉
7 メチルァミノ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸
(3, 5—ジクロ口ピリジンー4ーィノレ)アミド
[0706] [化 213]
Figure imgf000122_0001
[0707] 実施例 96の化合物 (99.0 mg)をジクロロメタン (2.0 mL)に溶解し、 0°Cに冷却後、トリ フノレオ口酢酸 (2.0 mL)を加え、常温で 7.5時間攪拌した。飽和炭酸水素ナトリウム水溶 液を加え、酢酸ェチルで抽出後、有機層を水、飽和食塩水の順で洗浄し、無水硫酸 ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィ 一 (へキサン:酢酸ェチル = 1: 1→1: 2)にて精製し、ジイソプロピルエーテルで洗浄 して目的物 (16.1 mg)を白色固体として得た。
MS (EI+): 403 [M+]
HRMS (EI+): 403.0196 (-1.9 mmu)
'H-NMR (400 MHz, CDC1 ): δ 3.22 (3H, d, J = 4.9 Hz), 6.09 (1H, d, J = 8.6 Hz),
6.60-6.65 (1H, m), 7.35 (1H, s), 7.57 (1H, brs), 7.96 (1H, d, J = 8.6 Hz), 8.58 (2H, s).
[0708] <実施例 98〉
4- [l , 3]ジォキサン一 2 ィル一 7 ョード 2 トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン
[0709] [化 214]
Figure imgf000122_0002
実施例 89の化合物 (2.55 g)をトルエン (70 mUに溶解し、 p_トルエンスルホン酸一水 和物 (142 mg)とエチレングリコール (2.51 mL)を加え、 Dean-Stark装置を用いて 18時 間加熱還流した。放冷後、反応液を水で希釈し、酢酸ェチルで抽出後、抽出層を水 、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残 渣を、
Figure imgf000123_0001
(へキサン:酢酸ェチル =3 : 1)で精製し、 目 的物 (2.75 g)を黄色固体として得た。
MS (EI+): 384 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 4.11-4.15 (4H, m), 6.07 (1H, s), 7.11 (1H, d, J = 7
.3 Hz), 7.20 (1H, s), 7.49 (1H, d, J = 7.3 Hz).
[0711] <実施例 99〉
4- [l , 3]ジォキサン一 2—ィル一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一
7—カルボアルデヒド
[0712] [化 215]
Figure imgf000123_0002
[0713] アルゴンガス雰囲気下、実施例 98の化合物 (2.75 g)を THF(30 mL)に溶解し、 -78 °Cにて n-ブチルリチウム (1.54 mol/Lへキサン溶液, 5.6 mL)を滴下し、 _78°Cで 30分 攪拌した。反応液にギ酸ェチル (0.75 mL)を加え、常温で 30分攪拌した。反応液に飽 和塩化アンモユウム水溶液を加え、酢酸ェチルで抽出後、有機層を水、飽和食塩水 の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲ ルカラムクロマトグラフィー (へキサン:酢酸ェチル = 2 : 1)で精製し、 目的物 (1.87 g)を 黄色固体として得た。
MS (EI+): 286 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 4.14 (4H, s), 6.12 (1H, s), 7.15 (1H, s), 7.49 (1H, d, J = 7.3 Hz), 7.63 (1H, d, J = 7.3 Hz), 10.94 (1H, s).
[0714] <実施例 100〉
4- [l , 3]ジォキサンー2—ィルー 7—ヒドロキメチルー 2—トリフルォロメチルピラゾロ [ 5— a]ピリジン
[0715] [化 216]
Figure imgf000124_0001
[0716] 実施例 99の化合物 (1.87 g)をメタノール (30 mL)に溶解し、 0°Cで水素化ホウ素ナトリ ゥム (247 mg)を加え、 0°Cで 1時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液 を加え、酢酸ェチルで抽出後、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナ トリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィー( へキサン:酢酸ェチル = 1 : 1)で精製し、 目的物 (1.82 g)を白色固体として得た。
MS (EI+): 288 [M+]
'H-NMR (400 MHz, CDC1 ): δ 3.74 (1H, t, J = 6.7 Ηζ),4· 11- 4.16 (4H, m), 5.08 (2
H, d, J = 6.7 Hz), 6.08 (1H, s), 6.95 (1H, d, J = 6.7 Hz), 7.02 (1H, s), 7.40 (1H, d,
J = 6.7 Hz).
[0717] <実施例 101〉
7—ァセトキシメチルー 4— [1 , 3]ジォキサンー2—ィルー 2—トリフルォロメチルビラ ゾロ [1 , 5— a]ピリジン
[0718] [化 217]
Figure imgf000124_0002
実施例 100の化合物 (1.82 g)をピリジン (20 mL)に溶解し、無水酢酸 (1.2 mL)を加え 、常温で 30分攪拌した。反応液を水で希釈後、酢酸ェチルで抽出し、有機層を水、 飽和食塩水の順で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残 渣を、シ I (へキサン:酢酸ェチル =3 : 2)で精製し、 目 的化合物 (1.96 g)を白色固体として得た。
MS (EI+): 330 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 2.20 (3H, s), 4.12-4.16 (4H, m), 5.63 (2H, s), 6.08
(1H, s), 6.99 (1H, d, J = 7.3 Hz), 7.02 (1H, s), 7.39 (1H, d, J = 7.3 Hz).
[0720] <実施例 102〉
7 -ァセトキシメチル一 2 -トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン一 4—カルボ アルデヒド
[0721] [化 218]
Figure imgf000125_0001
[0722] 実施例 101の化合物 (1.93 g)をアセトン/水混合溶媒 (2: 1, 20 mL)に溶解し、 p-ト ルエンスルホン酸一水和物 (111 mg)を加え、 70°Cで 2時間攪拌した。反応液を水で希 釈後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナト リウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィー (へ キサン:酢酸ェチル = 3 : 2)で精製し、 目的物 (1.43 g)を黄色固体として得た。
MS (EI+): 286 [M+]
'H-NMR (400 MHz, CDC1 ): δ 2.26 (3H, s), 5.72 (2H, s), 7.18 (1H, d, J = 7.3 Hz),
7.67 (1H, s), 7.85 (1H, d, J = 7.3 Hz), 10.11 (1H, s).
[0723] <実施例 103〉
7 -ァセトキシメチル一 2 -トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン一 4—カルボ ン酸
[0724] [化 219]
Figure imgf000126_0001
[0725] 実施例 102の化合物 (1.22 g)を DMF(22 mL)に溶解し、ニクロム酸ピリジニゥム (12.
9 g)とセライト (200 mg)を加え、常温で 2日間攪拌した。セライトを用いて不溶物を濾去 後、濾液を水で希釈し、酢酸ェチルで抽出した。抽出層を水、飽和食塩水の順で洗 浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して、 目的物 (1.08 g)を茶色固 体として得た。
MS (EI+): 302 [Μ+]
:H-NMR (400 MHz, DMSO-d ): δ 2.18 (3H, s), 5.60 (2H, s), 7.34 (1H, d, J = 7.3
6
Hz), 7.47 (1H, s), 8.13 (1H, d, J = 7.3 Hz), 13.78 (1H, brs).
[0726] <実施例 104〉
7 -ァセトキシメチル一 2 -トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン一 4—カルボ ン酸 (3, 5—ジクロロピリジン一 4—ィル)アミド
[0727] [化 220]
Figure imgf000126_0002
[0728] アルゴン雰囲気下、実施例 103の化合物 (1.08 g)をジクロロメタン (30 mL)に溶解し、 ジイソプロピルェチルァミン (1.24 mL)及び TBTU(1.26 g)を加え、常温で 1.5時間攪拌 した。反応液を水で希釈後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で 洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去した (残渣 A)。
[0729] アルゴン雰囲気下、 4 アミノー 3,5 ジクロ口ピリジン (5.82 g)をトルエン (100 mUに 懸濁し、 0°Cにて Red_Al(70%トルエン溶液, 5.0 mL)を滴下し、 100°Cで 1.5時間攪拌 した。その後、 0°Cで先に得られた残渣 Aのジクロロメタン (10 mL)懸濁液を滴下し、再 び 100°Cにて 30分加熱攪拌した。セライトを用いて不溶物を濾去後、濾液を水で希釈 し、酢酸ェチルで抽出後、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリ ゥムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィー (へ キサン:酢酸ェチル = 3 : 1→酢酸ェチル)で精製し、ジイソプロピルエーテルで洗浄 して目的物 (885 mg)を白色固体として得た。
MS (EI+): 446 [M+]
'H-NMR (400 MHz, CDC1 ): δ 2.25 (3H, s), 5.72 (2H, s), 7.14 (1H, d, J = 7.3 Hz)
3
, 7.44 (1H, s), 7.68 (1H, brs), 7.89 (1H, d, J = 7.3 Hz), 8.64 (2H, brs).
[0730] <実施例 105〉
7—ヒドロキシメチルー 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジンー4一力ルボン 酸 (3, 5—ジクロロピリジン一 4—ィル)アミド
[0731] [化 221]
Figure imgf000127_0001
[0732] 実施例 104の化合物 (885 mg)をメタノール (10 mL)に溶解し、 10%水酸化カリウム水 溶液 (3.0 mL)を加え、常温で 5時間攪拌した。溶媒を減圧留去した後、水を加えて酢 酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナトリウムで 乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィー (へキサン: 酢酸ェチル = 1 : 1)にて精製することで、 目的物(1.43 g)を黄色固体として得た。 元素分析 (%): C H CI F N 0として
15 9 2 3 4 2
C H N
計算ィ直 44.47 2.24 13.87 実測値 44.24 2.29 13.57
MS (EI+): 404 [Μ+]
HRMS (ΕΙ+): 404.0052 (-0.3 mmu)
:H-NMR (400 MHz, DMSO- d ): δ 5.02 (2H, d, J
z), 7.39-7.41 (2H, m), 7.44 (1H, s), 8.24 (1H, d, J = 7.3 Hz), 8.76 (2H, s), 10.98 (1
H, brs).
[0733] <実施例 106〉
7 ホルミルー2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3
, 5—ジクロロピリジン一 4—ィル)アミド
[0734] [化 222]
Figure imgf000128_0001
[0735] 実施例 105の化合物 (623 mg)を DMSO(15 ml)に溶解し、トリェチルァミン (2.1 mL) 、三酸化ィォゥピリジン錯体 (1.22 g)を加え、常温で 10分攪拌した。反応液を水で希 釈後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸ナト リウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィー (へ キサン:酢酸ェチル = 2 : 1)で精製し、 目的物 (432 mg)を黄色固体として得た。
MS (EI+): 402 [Μ+]
'H-NMR (400 MHz, CDC1 ): δ 7.53 (1H, s), 7.73—7.74 (2H, m), 7.92 (1H, d, J = 7
.3 Hz), 8.64 (2H, brs), 11.02 (1H, s).
[0736] <実施例 107〉
7- (1—ヒドロキシェチル) 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4— カルボン酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド
[0737] [化 223]
Figure imgf000129_0001
[0738] アルゴン雰囲気下、実施例 106の化合物 (300 mg)を THF(10 mL)に溶解し、 -78。C でメチルマグネシウムブロミド (0.9 mol/L THF溶液, 1.0 mL)を滴下し、常温で 7時間 攪拌した。反応液に飽和塩化アンモユウム水溶液を加え、酢酸ェチルで抽出後、抽 出層を水、飽和食塩水の順で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去した残渣を、シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル = 1 : 1)で精 製し、 目的物(207 mg)を黄色固体として得た。
MS (EI+): 418 [M+]
HRMS (EI+): 418.0167 (-4.4 mmu)
'H-NMR (400 MHz, CDC1 ): δ 1.79 (3H, d, J = 6.7 Hz), 3.99 (1H, d, J = 5.5 Hz),
3
5.54 (1H, m), 7.15 (1H, d, J = 7.3 Hz), 7.45 (1H, s), 7.71 (1H, brs), 7.91 (1H, d, J = 7.3 Hz), 8.62 (2H, brs).
[0739] <実施例 108〉
7—ァセチルー 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボン酸 (3
, 5—ジクロロピリジン一 4—ィル)アミド
[0740] [化 224]
Figure imgf000129_0002
[0741] 実施例 107の化合物 (148 mg)を DMSO(5.0 mL)に溶解し、トリェチルァミン (0.50 m し)、三酸化ィォゥピリジン錯体 (280 mg)を加え、常温で 3.5時間攪拌した。反応液を水 で希釈後、酢酸ェチルで抽出し、抽出層を水、飽和食塩水の順で洗浄後、無水硫酸 ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィ 一(へキサン:酢酸ェチル = 3 : 2)で精製し、 目的物 (61.0 mg)を黄色固体として得た。
MS (EI+): 416 [Μ+]
HRMS (EI+): 416.0058 (+0.3 mmu)
'H-NMR (400 MHz, CDC1 ): δ 3.03 (3H, s), 7.52 (1H, s), 7.58 (1H, d, J = 7.3 Hz)
, 7.72 (1H, brs), 7.89 (1H, d, J = 7.3 Hz), 8.64 (2H, brs).
[0742] <実施例 109〉 a]ピリジン 7—カルボアルデヒド
[0743] [化 225]
Figure imgf000130_0001
[0744] アルゴン雰囲気下、実施例 86の化合物 (12.4 g)の THF(200 mL)溶液に、 78°Cで n ブチルリチウム(2.67 mol/Lへキサン溶液、 14.0 mL)を滴下し、—78°Cで 30分間 攪拌した。この溶液をギ酸ェチル (9.06 mL, 113 mmol)の THF(100 mL)溶液に 78 °Cで滴下した。常温で 30分攪拌後、飽和塩化アンモニゥム水溶液を加えて、酢酸ェ チル (400 mL)で抽出した。抽出層を水、及び飽和食塩水で洗浄後、無水硫酸ナトリ ゥムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィー (へ キサン:酢酸ェチル = 15: 1 )により精製し、粗製の目的化合物(12.3 g)を黄色固体 として得た。
[0745] <実施例 1 10〉
4一(tーブチルジメチルシリルォキシメチル) 7 ヒドロキシメチルー 2 トリフルォロ メチノレピラゾ口 [1 , 5— a]ピリジン [0746] [化 226]
Figure imgf000131_0001
[0747] 実施例 109の化合物 (12.3 g)のメタノール (200 mL)溶液に 0°Cで水素化ホウ素ナトリ ゥム (1.56 g)を加え、 0°Cで 1時間攪拌した。反応液に飽和塩化アンモニゥム水溶液を 加えて、減圧下に濃縮後、酢酸ェチル (700 mL)で抽出した。抽出層を水、及び飽和 食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリ 力ゲルカラムクロマトグラフィー (へキサン:酢酸ェチル =9: 1 )により精製し、 目的物( 9.86 g)を白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 0.14 (6H, s), 0.96 (9Η, s), 4.91 (2Η, d, J = 1.2 Hz)
, 5.06 (2H, s), 6.85 (1H, s), 6.94 (1H, d, J = 7.3 Hz), 7.30 (1H, dt, J = 7.3, 1.2 Hz).
[0748] <実施例 11 1〉
4一(tーブチルジメチルシリルォキシメチル) 7 メトキシメチルー 2 トリフルォロメ チノレビラゾロ [1 , 5— a]ピリジン
[0749] [化 227]
Figure imgf000131_0002
実施例 110の化合物(9.53 g)のァセトニトリル (300 mL)溶液に酸化銀 (30.0 g)とョー ドメタン (16.1 mL)を加え、室温で 85時間攪拌した。セライトを用いて不溶物を濾去し、 濾液を減圧下に濃縮した残渣を、シリカゲルカラムクロマトグラフィー (へキサン:酢酸 ェチル = 15 : 1)により精製し、 目的物(8.76 g)を蛍光淡黄色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 0.13 (6H, s), 0.95 (9Η, s), 3.60 (3Η, s), 4.91 (2Η, s), 4.97 (2Η, s), 6.83 (1Η, s), 7.07 (1Η, d, J = 7.3 Hz), 7.32 (1H, d, J = 7.3 Hz). [0751] <実施例 112〉
4ーヒドロキシメチルー 7—メトキシメチルー 2—トリフルォロメチルピラゾロ [1 , 5— a]ピ
Figure imgf000132_0001
[0753] 実施例 111の化合物 (8.76 g)の THF(120 mU溶液に 0°Cでテトラブチルアンモニゥ ムフルオライド(1 mol/L—THF溶液、 35.1 mL)を滴下し、 0°Cで 30分間攪拌した。反 応液に水を加えて酢酸ェチル (300 mL)で抽出し、抽出層を水、及び飽和食塩水で 洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラ ムクロマトグラフィー (へキサン:酢酸ェチル =3: 1 )により精製し、 目的化合物(6.00 g )を白色固体として得た。
'H-NMR (400 MHz, CDC1 ): δ 1.79 (1H, br s), 3.61 (3H, s), 4.93 (2H, s), 4.98 (2
H, s), 6.93 (1H, s), 7.07 (1H, d, J = 7.3 Hz), 7.31 (1H, d, J = 7.3 Hz).
[0754] <実施例 113〉
7—メトキシメチル一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボア ルデヒド
[0755] [化 229]
Figure imgf000132_0002
実施例 112の化合物 (6.00 g)のクロ口ホルム (120 mL)溶液に活性二酸化マンガン (2 0.0 g)を加え、 50°Cで 5時間攪拌した。セライトを用いて不溶物を濾去し、濾液を減圧 下に濃縮して、 目的物(5.74 g)を淡黄色個体として得た。
'H-NMR (400 MHz, CDC1 ): δ 3.65 (3H, s), 5.06 (2Η, s), 7.32 (1Η, d, J = 7.3 Hz) , 7.65 (1H, s), 7.89 (1H, d, J = 7.3 Hz), 10.10 (1H, s).
[0757] <実施例 114〉
7—メトキシメチル一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボン 酸
[0758] [化 230]
Figure imgf000133_0001
[0759] 硝酸銀 (658 mg)の水溶液 (5 mUに水酸化ナトリウム (310 mg)の水溶液 (5 mUを加え 、攪拌しながら実施例 113の化合物 (500 mg)を 0°Cで加え、常温で 1時間攪拌した。 セライトを用いて不溶物を濾去し、熱水で洗浄後、合わせた濾液と洗液を lmol/L塩 酸水溶液で酸性にした。これに酢酸ェチル (100 mL)を加え、セライトを用いて不溶物 を濾去し、濾液の有機層を分取し、水、及び飽和食塩水で洗浄後、無水硫酸ナトリウ ムで乾燥し、溶媒を減圧留去して、 目的物(470 mg)を淡黄色個体として得た。
'H-NMR (400 MHz, DMSO-d ): δ 3.53 (3H, s), 4.99 (2Η, s), 7.30 (1Η, d, J = 7.3
6
Hz), 7.46 (1H, s), 8.17 (1H, d, J = 7.3 Hz), 13.72 (1H, br s).
[0760] <実施例 115〉
7—メトキシメチル一 2—トリフルォロメチルピラゾロ [1 , 5— a]ピリジン一 4—カルボン 酸 (3, 5—ジクロロピリジン一 4—ィル)アミド
[0761] [化 231]
Figure imgf000133_0002
[0762] 実施例 114の化合物 (470 mg)のジクロロメタン (15 mL)溶液にォキサリルクロライド (0. 224 mL)と DMF(2滴)を加え、常温で 2時間攪拌した。反応液を減圧下に濃縮後、ト ルェンで 2回共沸し、残渣を DMF(5 mL)に溶解した(溶液 A)。 4 アミノー 3,5 ジク ロロピリジン (362 mg)の DMF(10 mU溶液に、 60%水素化ナトリウム (195 mg)を加え、 常温で 30分間攪拌し、 0°Cで先に得られた溶液 Aを加え、常温で 3時間攪拌した。反 応液に飽和塩化アンモユウム水溶液を加えて、酢酸ェチル (100 mL)で抽出し、抽出 層を水、及び飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。溶媒を減圧留 去した残渣を、シリカゲルカラムクロマトグラフィー (へキサン:酢酸ェチル =5: 1 )によ り精製し、 目的物(533 mg)を白色固体として得た。
MS (EI+): 418 [M+]
HRMS (EI+): 418.0210 (-0.1 mmu)
'H-NMR (400 MHz, CDC1 ): δ 3.66 (3H, s), 5.06 (2H, d, J = 1.2 Hz), 7.26 (1H, dt
, J = 7.3, 1.2 Hz), 7.43 (1H, s), 7.73 (1H, br s), 7.93 (1H, d, J = 7.3 Hz), 8.62 (2H, s).
[0763] <実施例 116〉
3 クロ口一 7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カル ボン酸 ェチルエステル
[0764] [化 232]
Figure imgf000134_0001
[0765] 実施例 14の化合物 (2.44 g )を t_ブタノール (30 mL)、水 (10 mL)に溶解し、リン酸二 水素ナトリウム二水和物 (1.56 g)、 2 メチル—2 ブテン (4.7 mL)、及び亜塩素酸ナ トリウム (3.96 g)を加え、常温にて 4時間攪拌した。反応液に 20%水酸化ナトリウム水溶 液を加え、液性をアルカリ性にした後、エーテルで洗浄した。水層に濃塩酸を加え、 析出した固体を濾取し、水で洗浄した。得られた固体(1.26 g)を DMF (30 mL)に溶 解し、炭酸カリウム(1.00 g)およびヨウ化工チル(0.722 mL)を加えて 14.5時間攪拌し た。反応液に水を加えて酢酸ェチルで抽出し、抽出層を水、飽和食塩水で洗浄し、 無水硫酸ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマ トグラフィー(へキサン:酢酸ェチル 3 : 1)で精製し、 目的化合物 (179 mg)を白色固体 として得た。
MS (EI+): 322 [Μ+]
:H-NMR (400 MHz, CDC1 ): δ 1.43 (3H, t, J = 7.6 Hz), 4.24 (3H, s), 4.46 (2H, q,
J = 7.6 Hz), 6.30 (1H, d, J = 8.0 Hz), 7.89 (1H, d, J = 8.0 Hz).
[0766] <実施例 117〉
3 クロ口一 7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カル ボン酸
[0767] [化 233]
Figure imgf000135_0001
[0768] 実施例 116の化合物(179 mg)のメタノール(11.0 mL)溶液に、 10%水酸化カリウム 水溶液(1.0 mL)を加えて常温で 20時間攪拌した。溶媒を減圧留去した残渣をエー テルで洗浄後、濃塩酸を加えて酸性とし、析出した固体を濾取し、水洗して目的物(1 16 mg)を白色固体として得た。
MS (EI+): 294 [Μ+]
:H-NMR (400 MHz, DMSO— d ): δ 4.20 (3H, s), 6.75 (1H, d, J = 8.0 Hz), 7.99 (1H, d, J = 8.0 Hz).
[0769] <実施例 118〉
3 クロ口一 7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カル ボン酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド
[0770] [化 234]
Figure imgf000136_0001
[0771] 実施例 1 17の化合物(116 mg)を用い、実施例 9と同様な方法により、 目的物(110 mg)を白色固体として得た。
元素分析 (%) : C H CI F N 0として
15 8 3 3 4 2
C H N
計算ィ直 40.98 1.83 12.74
実測値 40.71 1.64 12.36
HRMS (EI+): 437.9682 (+1.7 mmu)
'H-NMR (400 MHz, CDC1 ): δ 4.27 (3Η, s), 6.34 (1Η, d, J = 7.9 Hz), 7.53 (1H, br
3
s), 7.81 (1H, d, J = 7.9 Hz), 8.61 (2H, s).
[0772] <実施例 119〉
3—ヒドロキシ一 7 メトキシ一 2 -トリフルォロメチルピラゾロ [1 , 5 - a]ピリジン 4— カルボン酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド
[0773] [化 235]
Figure imgf000136_0002
実施例 16の化合物(250 mg)に、ジクロロメタン(10 mL)、 m クロ口過安息香酸(47 5 mg)および酢酸(2.0 mL)を加えて 50°Cで 4日攪拌した。反応液に飽和炭酸力リウ ム水溶液を加えて酢酸ェチルで抽出し、抽出層を飽和食塩水で洗浄後、無水硫酸 ナトリウムで乾燥した。溶媒を減圧留去した残渣を、シリカゲルカラムクロマトグラフィ 一(酢酸ェチル:メタノール 10: 1)で精製し、 目的物(7.9 mg)を白色固体として得た。 :H-NMR (400 MHz, CDC1 ): δ 4.27 (3H, s), 6.15 (1Η, d, J = 8.0 Hz), 7.66 (1H, d,
J = 8.0 Hz), 7.85 (1H, brs), 8.64 (2H, brs), 9.49 (1H, s).
[0775] <実験例 1〉 ホスホジエステラーゼ阻害活性
PDE4B触媒領域(以下 Catと略す)の cDNAはヒト由来の RNAより RT-PCRを行い単 離した。単離した cDNA断片を Gateway system(Invitrogen社製)及び Bac-to-Bac (登 録商標) Baculovirus Expression system (Invitrogen社製)で昆虫細胞 Sf に 入し、 目的の各 PDEタンパクを発現させた。この組み換え PDE4Bcatはこの PDEタンパクを高 発現した Si9細胞の培養上清もしくは細胞抽出液からイオン交換クロマトグラフィーで 精製し、以下に示す実験に用いた。
[0776] 被験化合物は 4 mmol/L溶液を段階的に 15%DMSO溶液で 4倍希釈し、 15 nmol/L 力、ら 4 mmol/Lまでの濃度の溶液を用意した(実験での最終濃度は 1.5 nmol/L力 40 0 μ mol/L)。これら被験化合物溶液 10 μ L、緩衝液 [40 mmol/L Tris-HCl (pH 7.4), 10 mmol/L MgCl ]で希釈した [3H] cAMP及び 2 X 10— 6皿 量(1 unitは pH 7.5、 30 °C の条件下で 1 μ mol/Lの cAMPを 1分間に分解する PDE量を示す)のヒト由来組み換 え PDEタンパク 40 しを 96穴プレートに添加し、 30 °Cで 20分間反応した。その後 65 C C¾力、 [¾コ反 、させに後、 1 mg/mL5 nucleotidase (Crotalus atrox venom, Sigma社製 ) 25 μ Lを添加し、 30 °Cで 10分間反応した。反応終了後、 Dowex溶液 [300 mg/mL D owex 1x8-400 (Sigma Aldrich社製), 33 % Ethanol] 200 μ Lを添カロし、 4 °Cで 20分間 振動混合した後 MicroScint 20 (Packard社製) 200 Lを添加し、シンチレーシヨン力 ゥンター(Topcount、 Packard社製)を用いて測定した。 IC 値の算出は Graph Pad Pri sm v3.03 (GraphPad Software社製)を用いて行った。なお、 10 mol/L 〉IC50値≥0· 1 ^ mol/Lを( + )、 0.1〃 0101/し〉1じ ィ直を(+ + )として表記した。
[0777] 結果を表 1に示す。
[0778] [表 1] 表 1
50(μΠΊθΙ/Ι_) に 50(μΓΠθΙ/Ι_)
実施例番号 実施例番号 実施例番号 D
PDE4 PDE4
9 ++ 48 + 82 ++
1 1 ++ 58 ++ 83 ++
16 ++ 59 ++ 92 ++
17 ++ 71 ++ 97 ++
18 + 76 ++ 105 ++
24 ++ 77 ++ 107 ++
25 ++ 78 ++ 108 ++
32 + 79 ++ 1 15 ++
33 ++ 80 ++ 1 18 ++
40 ++ 81 + 1 19 +
41
[0779] <実験例 2 >モルモットにおけるヒスタミン誘発気道収縮反応
モルモットをペントバルビタール (30 mg/kg, i.p.)で麻酔し、 左外頸静脈に静脈投与 用力ニューレ、右内頸動脈に採血及び血圧測定用力ニューレ、 気管に気管力ニュー レを揷入した。 60 times/min, 10 mL/kg/strokeの条件で人工呼吸し、気管力ニュー レの側枝からオーバフローする空気(エアフロー)を bronchospasm transducer(Ugo_B asile)にて測定し、 Power Lab (ADInstruments Japan)を介してコンピューターに記録し た。ガラミン (10 mg/kg, ί·ν·)にて不動化した後、 10分おきにヒスタミン (12.5 μ g/kg, i. ν·)を投与した。ヒスタミンによる気道収縮が安定した後、 DMSOに溶解した被検化合 物 (0.1 mg/kg, i.v. 又は 0.3 mg/kg, ί.ν.)を投与し、投与 30秒後のヒスタミンによる気 道収縮反応を測定し、 被検化合物の気道収縮抑制作用を調べた。気道収縮をエア フロー値で記録し、結果は投与 30秒後のヒスタミンによるエアフローの最大値を投与 前の最大値に対する割合で表した。なお、抑制率≥90%を(+ + + )、 90%〉抑制 率≥70%を(+ + )、 70%〉抑制率≥30%を (+ )として表記した。また、 []内表示は 0. 3 mg/kg投与、それ以外は 0. 1 mg/kg投与の結果を表記した。
[0780] 結果を表 2に示す。
[0781] [表 2] 表 2 実施例番号 抑制率 実施例番号 抑制率 実施例番号 抑制率
9 ++ 33 +++ 79 +
11 [++] 40 [++] 80 +
16 +++ 41 [+】 82 ++
17 + 58 +++ 83 +++
24 +++ 76 ++ 92 +
25 【+++] 77 [+】 105 +++
32 ++ 78 [++】 107 ++
[0782] <実験例 3〉ラットにおける LPS急性炎症モデル
Lipopolysaccharide from E.coli serotype 055:B5 (LPS)吸入の 1時間冃 ijに化合物 1 m g/kgをラットに経口投与し、 50 mlの LPS溶液をネブライザ一で霧化して 30分間吸入さ せた。 LPS吸入 3時間後,ラットを 20% urethane (5 ml/rat, i.p.)で安楽死させた。気道 より 5 mlの気管支 ·肺胞洗浄用生理食塩液を気管支 ·肺胞内腔に注入し、 5 ml注射 筒で 3回洗浄し、この操作を 2回繰り返し気管支 ·肺胞洗浄液 (BALF)として回収した 。回収した BALFを 1200 rpm, 10 min, 4。C (Hirtachi; himac CR 5 DL)で遠心し、沈查 を 10 mlの 0.1% Bovine serum albumin/生理食塩液で再懸濁した後、等量のチュルク 液を加え白血球を染色し、顕微鏡下にて総白血球数を数え抑制率を算出した。なお 、抑制率≥ 60% ( + + )、 60% >抑制率≥ 50% ( + )として表記した。
[0783] 結果を表 3に示す。
[0784] [表 3] 我 3
実施例番号 抑制率
9 +
16 ++
107 + 以上のように、一般式(1)で表される本発明化合物は PDE阻害活性を有し、各種 動物実験モデルにおいてその有効性が確認された。 産業上の利用可能性
上述のように、本発明は、新規なピラゾ口ピリジンカルボキサミド誘導体とその付加 塩が優れた PDE阻害作用を有することを見出したものである。このような PDE阻害剤 作用を有する化合物は、狭心症、心不全、高血圧症などの治療薬や血小板凝集抑 制薬あるいは気管支喘息、慢性閉塞性肺疾患 (COPD)、間質性肺炎、アレルギー 性鼻炎、アトピー性皮膚炎、関節リウマチ、多発性硬化症、クローン病、炎症性大腸 炎、ハンチントン病、アルツハイマー病、認知症、パーキンソン病、うつ病、統合失調 症などの各種精神障害、肥満、メタボリックシンドローム等の予防又は治療薬、ならび に男性性機能障害治療薬として有用である。

Claims

Figure imgf000141_0001
[式中、 R1は水素原子、置換されてもよい炭素数;!〜 6のアルキル基(置換基は水酸 基、炭素数 1〜6のアルコキシ基及びハロゲン原子からなる群より選ばれる 1若しくは 2以上の基)、炭素数 1〜6のアルコキシ基、炭素数 1〜6のアルキルスルファニル基、 炭素数 1〜6のアルキルスルフィエル基、炭素数 1〜6のアルキルスルホニル基、炭素 数 1〜6のアルキル基で置換されてもよいアミノ基又は炭素数 1〜6のアルカノィル基 を示し、 R2は水素原子、置換されてもよい炭素数;!〜 6のアルキル基(置換基は水酸 基、炭素数 1〜6のアルコキシ基及びハロゲン原子からなる群より選ばれる 1若しくは 2以上の基)、炭素数 3〜8のシクロアルキル基、炭素数 1〜6のアルカノィル基、カル ボキシル基、ォキシム基又はシァノ基を示し、 R3は水素原子、ハロゲン原子又は水酸 基を示し、 R4はハロゲン原子で置換されてもよいピリジル基若しくはその N—ォキシド 又はハロゲン原子により置換されてもよいフエ二ル基を示す]
で表されるピラゾ口ピリジン 4ーィルカルボキサミド誘導体、その薬理学的に許容し うる塩又はそれらの水和物。
[2] 一般式(1)において が水素原子である請求項 1に記載のピラゾ口ピリジン— 4— ィルカルボキサミド誘導体、その薬理学的に許容しうる塩又はそれらの水和物。
[3] 一般式(1)において R1が炭素数 1〜6のアルコキシ基又は炭素数 1〜6のヒドロキシ アルキル基である請求項 1又は 2に記載のピラゾ口ピリジンー4ーィルカルボキサミド 誘導体、その薬理学的に許容しうる塩又はそれらの水和物。
[4] 一般式(1)において R2が炭素数 3〜6のシクロアルキル基、シァノ基又は置換され てもよい炭素数 1〜4のアルキル基(置換基は水酸基、炭素数 1〜4のアルコキシ基 及びハロゲン原子からなる群より選ばれる 1若しくは 2以上の基)である請求項 1〜3の いずれか 1項に記載のピラゾ口ピリジン 4ーィルカルボキサミド誘導体、その薬理学 的に許容しうる塩又はそれらの水和物。
一般式( 1 )で示される化合物が、
2 ェチルー 7 メトキシピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3, 5 ジクロ 口ピリジン 4 ィル)アミド、
2 イソプロピル一 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5— ジクロロピリジン一 4—ィル)アミド、
2 イソプロピル一 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5— ジクロロ一 1—ォキシピリジン一 4—ィル)アミド、
2 シクロプロピル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 —ジクロ口ピリジン一 4—ィル)アミド、
2 シクロプロピル一 7 メトキシピラゾ口 [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ージクロロー 1 ォキシピリジン 4 ィノレ)アミド、
7 メトキシ一 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5—ジクロロピリジン一 4—ィル)アミド、
2 ジフルォロメチルー 7 メトキシーピラゾロ [1 , 5 a]ピリジンー4一力ルボン酸 (3 , 5—ジクロロピリジン一 4—ィル)アミド、
7 メトキシ一 2 メトキシメチルビラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5— ジクロロピリジン一 4—ィル)アミド、
2 シァノ 7 メトキシピラゾロ [1 , 5 a]ピリジン一 4 カルボン酸 (3, 5 ジクロロ ピリジン一 4—ィル)アミド、
7 ヒドロキシメチルー 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジンー4一力ルボン 酸 (3, 5—ジクロ口ピリジンー4 ィル)アミド、又は
7 - (1—ヒドロキシェチル) 2 トリフルォロメチルピラゾロ [1 , 5 a]ピリジン一 4— カルボン酸 (3,
5—ジクロ口ピリジンー4 ィル)アミドである請求項 1に記載のピラゾ 口ピリジンー4ーィルカルボキサミド誘導体、その薬理学的に許容しうる塩又はそれら の水和物。
[6] 請求項 1〜5のいずれ力、 1項に記載のピラゾ口ピリジン一 4—ィルカルボキサミド誘 導体、その薬理学的に許容しうる塩又はそれらの水和物を含有するホスホジエステラ ーゼ(PDE)阻害剤。
[7] 請求項 1〜5のいずれ力、 1項に記載のピラゾ口ピリジン一 4—ィルカルボキサミド誘 導体、その薬理学的に許容しうる塩又はそれらの水和物を有効成分とする医薬。
PCT/JP2007/066890 2006-09-01 2007-08-30 Dérivé de pyrazolopyridine carboxamide et inhibiteur de phosphodiestérase (pde) comprenant le dérivé WO2008026687A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07806367A EP2058310A4 (en) 2006-09-01 2007-08-30 PYRAZOLOPYRIDINCARBOXYL ACID AMID DERIVATIVE AND THE DERIVATIVELY PHOSPHODIESTERASE (PDE) INHIBITOR
JP2008532113A JPWO2008026687A1 (ja) 2006-09-01 2007-08-30 ピラゾロピリジンカルボキサミド誘導体及びそれらを含有するホスホジエステラーゼ(pde)阻害剤
US12/310,562 US20100056791A1 (en) 2006-09-01 2007-08-30 Pyrazolopyridine carboxamide derivative and phosphodiesterase (pde) inhibitor containing the same
CA002661850A CA2661850A1 (en) 2006-09-01 2007-08-30 Pyrazolopyridine carboxamide derivative and phosphodiesterase (pde) inhibitor containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-237168 2006-09-01
JP2006237168 2006-09-01

Publications (1)

Publication Number Publication Date
WO2008026687A1 true WO2008026687A1 (fr) 2008-03-06

Family

ID=39135969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066890 WO2008026687A1 (fr) 2006-09-01 2007-08-30 Dérivé de pyrazolopyridine carboxamide et inhibiteur de phosphodiestérase (pde) comprenant le dérivé

Country Status (5)

Country Link
US (1) US20100056791A1 (ja)
EP (1) EP2058310A4 (ja)
JP (1) JPWO2008026687A1 (ja)
CA (1) CA2661850A1 (ja)
WO (1) WO2008026687A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008124153A1 (en) * 2007-04-10 2008-10-16 H. Lundbeck A/S Heteroaryl amide analogues as p2x7 antagonists
WO2010035745A1 (ja) 2008-09-25 2010-04-01 杏林製薬株式会社 ヘテロ環ビアリール誘導体及びそれらを有効成分とするpde阻害剤
WO2010041711A1 (ja) 2008-10-09 2010-04-15 杏林製薬株式会社 イソキノリン誘導体及びそれらを有効成分とするpde阻害剤
WO2013018372A1 (ja) * 2011-08-03 2013-02-07 杏林製薬株式会社 アミド誘導体、及びそれを含む医薬
US8431593B2 (en) 2006-11-27 2013-04-30 H. Lundbeck A/S Heteroaryl amide derivatives

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106725988A (zh) * 2016-12-01 2017-05-31 甘肃中医药大学 一种大鼠气管插管方法及其应用

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001338A1 (de) 1993-07-02 1995-01-12 Byk Gulden Lomberg Chemische Fabrik Gmbh Fluoralkoxy substituierte benzamide und ihre verwendung als zyklisch-nukleotid phosphodiesterase-inhibitoren
JPH08307982A (ja) 1995-05-08 1996-11-22 Matsushita Electric Ind Co Ltd 音声信号再生装置
WO1997044036A1 (en) 1996-05-20 1997-11-27 Darwin Discovery Limited Quinoline carboxamides as tnf inhibitors and as pde-iv inhibitors
WO1997048697A1 (en) 1996-06-19 1997-12-24 Rhone-Poulenc Rorer Limited Substituted azabicylic compounds and their use as inhibitors of the production of tnf and cyclic amp phosphodiesterase
DE19633051A1 (de) 1996-08-19 1998-02-26 Byk Gulden Lomberg Chem Fab Neue 1[2H]Chromen-5-carboxamide
WO1998009961A1 (en) 1996-09-04 1998-03-12 Pfizer Inc. Indazole derivatives and their use as inhibitors of phosphodiesterase (pde) type iv and the production of tumor necrosis factor (tnf)
WO1998014448A1 (fr) 1996-10-04 1998-04-09 Kyorin Pharmaceutical Co., Ltd. Derives de pyrazolopyridylpyridazinone et procede de preparation des ces derniers
JPH10109988A (ja) 1996-10-04 1998-04-28 Kyorin Pharmaceut Co Ltd テトラヒドロピラゾロピリジンピリダジノン誘導体及びその製造法
JPH10114766A (ja) * 1996-09-27 1998-05-06 Adir 新規フラボン化合物、その製造法、およびそれを含有する医薬組成物
WO1998022460A1 (en) 1996-11-15 1998-05-28 Darwin Discovery Limited Bicyclic aryl carboxamides and their therapeutic use
GB2327675A (en) 1997-07-23 1999-02-03 Eisai Co Ltd Nicotinic acid amide derivatives
WO1999016768A1 (en) 1997-10-01 1999-04-08 Kyowa Hakko Kogyo Co., Ltd. Benzofuran derivatives
WO1999038867A1 (fr) * 1998-01-29 1999-08-05 Suntory Limited Derives de 1-cycloalkyle-1,8-naphthyridine-4-one presentant une activite inhibitrice de la phosphodiesterase iv
WO2000048998A1 (en) 1999-02-19 2000-08-24 Darwin Discovery Limited Amino(thio)phenols and their therapeutic use
US6127363A (en) 1997-10-28 2000-10-03 Vivus, Inc. Local administration of Type IV phosphodiesterase inhibitors for the treatment of erectile dysfunction
WO2002028353A2 (en) 2000-10-05 2002-04-11 Smithkline Beecham Corporation Phosphate transport inhibitors
WO2002034747A1 (de) 2000-10-27 2002-05-02 Elbion Ag Neue 7-azaindole, deren verwendung als inhibitoren der phosphodiesterase 4 und verfahren zu deren herstellung
US20020128290A1 (en) 1995-05-19 2002-09-12 Etsuo Ohshima Derivatives of benzofuran or benzodioxole
JP2002363103A (ja) 2001-04-20 2002-12-18 Pfizer Prod Inc 選択的pde10阻害剤の治療的使用
WO2003066044A1 (de) 2002-02-08 2003-08-14 Kyowa Hakko Kogyo Co., Ltd. Neue arzneimittelkompositionen enthaltend neben anticholinergika heterocyclische verbindungen
WO2003078397A1 (en) 2002-03-18 2003-09-25 Merck Frosst Canada & Co. Hetero-bridge substituted 8-arylquinoline pde4 inhibitors
WO2003105902A1 (en) 2002-06-17 2003-12-24 Pfizer Products Inc. Treatment for depression and anxiety by the combination of a pde iv inhibitor and an antidepressant or an anxiolytic agent
WO2004037805A1 (en) 2002-10-23 2004-05-06 Glenmark Pharmaceuticals Ltd. Novel tricyclic compounds useful for the treatment of inflammatory and allergic disorders: process for their preparation and pharmaceutical compositions containing them
US20040102472A1 (en) 2002-11-22 2004-05-27 Jennifer Albaneze-Walker Method of preparing inhibitors of phosphodiesterase-4
DE10253426A1 (de) 2002-11-15 2004-06-03 Elbion Ag Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung
WO2004048377A2 (en) 2002-11-22 2004-06-10 Merck & Co., Inc. Method of preparing inhibitors of phosphodiesterase-4
WO2004069831A1 (en) 2003-02-10 2004-08-19 Glenmark Pharmaceuticals Ltd. Tricyclic compounds useful for the treatment of inflammatory and allergic disorders: process for their preparation
WO2004089940A1 (en) 2003-04-11 2004-10-21 Glenmark Pharmaceuticals S.A. Novel heterocyclic compounds useful for the treatment of inflammatory and allergic disorders: process for their preparation and pharmaceutical compositions containing them
JP2005526090A (ja) * 2002-03-13 2005-09-02 ファルマシア・アンド・アップジョン・カンパニー・エルエルシー 神経伝達物質調節因子としてのピラゾロ(1,5−a)ピリジン誘導体
WO2006004040A1 (ja) 2004-07-01 2006-01-12 Daiichi Asubio Pharma Co., Ltd. Pde7阻害作用を有するチエノピラゾール誘導体
JP2006117647A (ja) 2004-09-22 2006-05-11 Kyorin Pharmaceut Co Ltd ハロゲノピラゾロピリジンピリダジノン誘導体とその付加塩及びそれを有効成分とするpde阻害剤
JP2006169138A (ja) 2004-12-14 2006-06-29 Kyorin Pharmaceut Co Ltd ピラゾロピリジンピラゾロン誘導体とその付加塩及びpde阻害剤

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU705690B2 (en) * 1995-05-19 1999-05-27 Kyowa Hakko Kogyo Co. Ltd. Oxygen-containing heterocyclic compounds
US20030018047A1 (en) * 2001-04-20 2003-01-23 Pfizer Inc. Therapeutic use of selective PDE10 inhibitors
US20030032579A1 (en) * 2001-04-20 2003-02-13 Pfizer Inc. Therapeutic use of selective PDE10 inhibitors
JP4890439B2 (ja) * 2005-03-07 2012-03-07 杏林製薬株式会社 ピラゾロピリジン−4−イルピリダジノン誘導体とその付加塩及びそれらを有効成分とするpde阻害剤

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001338A1 (de) 1993-07-02 1995-01-12 Byk Gulden Lomberg Chemische Fabrik Gmbh Fluoralkoxy substituierte benzamide und ihre verwendung als zyklisch-nukleotid phosphodiesterase-inhibitoren
JPH08307982A (ja) 1995-05-08 1996-11-22 Matsushita Electric Ind Co Ltd 音声信号再生装置
US20020128290A1 (en) 1995-05-19 2002-09-12 Etsuo Ohshima Derivatives of benzofuran or benzodioxole
WO1997044036A1 (en) 1996-05-20 1997-11-27 Darwin Discovery Limited Quinoline carboxamides as tnf inhibitors and as pde-iv inhibitors
WO1997048697A1 (en) 1996-06-19 1997-12-24 Rhone-Poulenc Rorer Limited Substituted azabicylic compounds and their use as inhibitors of the production of tnf and cyclic amp phosphodiesterase
DE19633051A1 (de) 1996-08-19 1998-02-26 Byk Gulden Lomberg Chem Fab Neue 1[2H]Chromen-5-carboxamide
WO1998009961A1 (en) 1996-09-04 1998-03-12 Pfizer Inc. Indazole derivatives and their use as inhibitors of phosphodiesterase (pde) type iv and the production of tumor necrosis factor (tnf)
JPH10114766A (ja) * 1996-09-27 1998-05-06 Adir 新規フラボン化合物、その製造法、およびそれを含有する医薬組成物
JPH10109988A (ja) 1996-10-04 1998-04-28 Kyorin Pharmaceut Co Ltd テトラヒドロピラゾロピリジンピリダジノン誘導体及びその製造法
WO1998014448A1 (fr) 1996-10-04 1998-04-09 Kyorin Pharmaceutical Co., Ltd. Derives de pyrazolopyridylpyridazinone et procede de preparation des ces derniers
WO1998022460A1 (en) 1996-11-15 1998-05-28 Darwin Discovery Limited Bicyclic aryl carboxamides and their therapeutic use
GB2327675A (en) 1997-07-23 1999-02-03 Eisai Co Ltd Nicotinic acid amide derivatives
WO1999016768A1 (en) 1997-10-01 1999-04-08 Kyowa Hakko Kogyo Co., Ltd. Benzofuran derivatives
US6127363A (en) 1997-10-28 2000-10-03 Vivus, Inc. Local administration of Type IV phosphodiesterase inhibitors for the treatment of erectile dysfunction
WO1999038867A1 (fr) * 1998-01-29 1999-08-05 Suntory Limited Derives de 1-cycloalkyle-1,8-naphthyridine-4-one presentant une activite inhibitrice de la phosphodiesterase iv
WO2000048998A1 (en) 1999-02-19 2000-08-24 Darwin Discovery Limited Amino(thio)phenols and their therapeutic use
WO2002028353A2 (en) 2000-10-05 2002-04-11 Smithkline Beecham Corporation Phosphate transport inhibitors
WO2002034747A1 (de) 2000-10-27 2002-05-02 Elbion Ag Neue 7-azaindole, deren verwendung als inhibitoren der phosphodiesterase 4 und verfahren zu deren herstellung
JP2002363103A (ja) 2001-04-20 2002-12-18 Pfizer Prod Inc 選択的pde10阻害剤の治療的使用
WO2003066044A1 (de) 2002-02-08 2003-08-14 Kyowa Hakko Kogyo Co., Ltd. Neue arzneimittelkompositionen enthaltend neben anticholinergika heterocyclische verbindungen
JP2005526090A (ja) * 2002-03-13 2005-09-02 ファルマシア・アンド・アップジョン・カンパニー・エルエルシー 神経伝達物質調節因子としてのピラゾロ(1,5−a)ピリジン誘導体
WO2003078397A1 (en) 2002-03-18 2003-09-25 Merck Frosst Canada & Co. Hetero-bridge substituted 8-arylquinoline pde4 inhibitors
WO2003105902A1 (en) 2002-06-17 2003-12-24 Pfizer Products Inc. Treatment for depression and anxiety by the combination of a pde iv inhibitor and an antidepressant or an anxiolytic agent
WO2004037805A1 (en) 2002-10-23 2004-05-06 Glenmark Pharmaceuticals Ltd. Novel tricyclic compounds useful for the treatment of inflammatory and allergic disorders: process for their preparation and pharmaceutical compositions containing them
DE10253426A1 (de) 2002-11-15 2004-06-03 Elbion Ag Neue Hydroxyindole, deren Verwendung als Inhibitoren der Phosphodiesterase 4 und Verfahren zu deren Herstellung
WO2004048377A2 (en) 2002-11-22 2004-06-10 Merck & Co., Inc. Method of preparing inhibitors of phosphodiesterase-4
US20040102472A1 (en) 2002-11-22 2004-05-27 Jennifer Albaneze-Walker Method of preparing inhibitors of phosphodiesterase-4
WO2004069831A1 (en) 2003-02-10 2004-08-19 Glenmark Pharmaceuticals Ltd. Tricyclic compounds useful for the treatment of inflammatory and allergic disorders: process for their preparation
WO2004089940A1 (en) 2003-04-11 2004-10-21 Glenmark Pharmaceuticals S.A. Novel heterocyclic compounds useful for the treatment of inflammatory and allergic disorders: process for their preparation and pharmaceutical compositions containing them
US20050027129A1 (en) 2003-04-11 2005-02-03 Glenmark Pharmaceuticals, Inc. Usa Novel heterocyclic compounds useful for the treatment of inflammatory and allergic disorders: process for their preparation and pharmaceutical compositions containing them
WO2006004040A1 (ja) 2004-07-01 2006-01-12 Daiichi Asubio Pharma Co., Ltd. Pde7阻害作用を有するチエノピラゾール誘導体
JP2006117647A (ja) 2004-09-22 2006-05-11 Kyorin Pharmaceut Co Ltd ハロゲノピラゾロピリジンピリダジノン誘導体とその付加塩及びそれを有効成分とするpde阻害剤
JP2006169138A (ja) 2004-12-14 2006-06-29 Kyorin Pharmaceut Co Ltd ピラゾロピリジンピラゾロン誘導体とその付加塩及びpde阻害剤

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BETTINETTI L. ET AL.: "Interactive SAR studies: rational discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists", JOURNAL OF MEDICINAL CHEMISTRY, vol. 45, no. 21, 2002, pages 4594 - 4597, XP002256409 *
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 10, no. 18, 2000, pages 2137 - 2140
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 12, no. 12, 2002, pages 1613 - 1615
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 12, no. 12, 2002, pages 1621 - 1623
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 12, no. 3, 2002, pages 509 - 512
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 8, no. 14, 1998, pages 1867 - 1872
BIOORGANIC & MEDICINAL CHEMISTRY, vol. 7, no. 6, 1999, pages 1131 - 1139
BUCKLEY G. ET AL.: "7-Methoxyfuro[2,3-c]pyridine-4-carboxamides as PDE4 inhibitors: a potential treatment for asthma", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 12, 2002, pages 509 - 512, XP003021255 *
EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 38, 2003, pages 975 - 982
MCGARRY D.G. ET AL.: "Benzofuran based PDE4 inhibitors", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 7, no. 6, 1999, pages 1131 - 1139, XP000978427 *
THEODORA W. GREENE; G. M. WATS: "PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDITION", JOHN WILEY & SONS, INC.
THEODORA W. GREENE; PETER G.M. WATS: "PROTECTIVE GROUPS IN ORGANIC SYNTHESIS THIRD EDITION", JOHN WILEY & SONS, INC.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431593B2 (en) 2006-11-27 2013-04-30 H. Lundbeck A/S Heteroaryl amide derivatives
WO2008124153A1 (en) * 2007-04-10 2008-10-16 H. Lundbeck A/S Heteroaryl amide analogues as p2x7 antagonists
US8580812B2 (en) 2007-04-10 2013-11-12 H. Lundbeck A/S Heteroaryl amide analogues as P2X7 antagonists
WO2010035745A1 (ja) 2008-09-25 2010-04-01 杏林製薬株式会社 ヘテロ環ビアリール誘導体及びそれらを有効成分とするpde阻害剤
WO2010041711A1 (ja) 2008-10-09 2010-04-15 杏林製薬株式会社 イソキノリン誘導体及びそれらを有効成分とするpde阻害剤
WO2013018372A1 (ja) * 2011-08-03 2013-02-07 杏林製薬株式会社 アミド誘導体、及びそれを含む医薬

Also Published As

Publication number Publication date
EP2058310A4 (en) 2010-11-17
EP2058310A1 (en) 2009-05-13
US20100056791A1 (en) 2010-03-04
JPWO2008026687A1 (ja) 2010-01-21
CA2661850A1 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
KR102398323B1 (ko) Dna 알킬화제
ES2269301T3 (es) Derivados de piperazina para tratamiento de infecciones bacterianas.
EP1491540B1 (en) Intermediates useful for the synthesis of pyridazinone aldose reductase inhibitors
EP2235014B1 (fr) Dérivés bicycliques de carboxamides azabicycliques, leur préparation et leur application en thérapeutique.
JP4890439B2 (ja) ピラゾロピリジン−4−イルピリダジノン誘導体とその付加塩及びそれらを有効成分とするpde阻害剤
WO2008026687A1 (fr) Dérivé de pyrazolopyridine carboxamide et inhibiteur de phosphodiestérase (pde) comprenant le dérivé
KR20080085232A (ko) Tlr7 조절제로서 3-데아자퓨린 유도체
CA2729220A1 (en) Di-substituted phenyl compounds
BRPI0808378A2 (pt) Composto de 6-benzil-2,3,4,7-treta-hidro-indolo[2,3-c] quinolina úteis como inibidores de pde5
FR2917412A1 (fr) Derives de 7-alkynyl, 1,8-naphthyridones, leur preparation et leur application en therapeutique
JP2010511635A (ja) Hiv複製の阻害剤
CN110204486A (zh) 一种喹啉衍生物的合成方法
JP2006117647A (ja) ハロゲノピラゾロピリジンピリダジノン誘導体とその付加塩及びそれを有効成分とするpde阻害剤
WO2013018371A1 (ja) ビアリールエステル誘導体、及びそれを含む医薬
WO2008029882A1 (fr) Dérivé de 2-alkyl-6-(pyrazolopyridin-4-yl)pyridazinone, sel d&#39;addition de celui-ci et inhibiteur de la pde comprenant le dérivé ou le sel en tant que matière active
JP2007091597A (ja) ピラゾロピリジン−4−イルピラゾロン誘導体とその付加塩及びそれを有効成分とするホスホジエステラーゼ阻害剤
JPWO2008156102A1 (ja) ピラゾロン誘導体及びそれらを有効成分とするpde阻害剤
CN110256411B (zh) 一种2,3-二取代苯并-γ-吡喃酮衍生物的制备方法
WO2008029829A1 (fr) Dérivé de pyrazolopyridine et inhibiteur de la phosphodiestérase (pde) qui le contient en tant que matière active
JP2008024599A (ja) ピリダジノン誘導体、それらを有効成分とするpde阻害剤及び医薬
EP2106401B1 (fr) Derives de pyrrolopyridine-2-carboxamides, leur preparation et leur application en therapeutique
JP2008063265A (ja) ピリダジノン誘導体及びそれらを有効成分とするpde阻害剤
JP2008069144A (ja) ピラゾロン誘導体及びそれらを有効成分とするpde阻害剤
CN103664943B (zh) 嘌呤衍生物的制备方法及其中间体和应用
JP7193557B2 (ja) 新規な気管支拡張性ヘテロ結合アミド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008532113

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2661850

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007806367

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12310562

Country of ref document: US