WO2008020629A1 - Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation - Google Patents

Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation Download PDF

Info

Publication number
WO2008020629A1
WO2008020629A1 PCT/JP2007/066036 JP2007066036W WO2008020629A1 WO 2008020629 A1 WO2008020629 A1 WO 2008020629A1 JP 2007066036 W JP2007066036 W JP 2007066036W WO 2008020629 A1 WO2008020629 A1 WO 2008020629A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
main switch
switches
main
auxiliary
Prior art date
Application number
PCT/JP2007/066036
Other languages
English (en)
French (fr)
Inventor
An Xiang
Tadashi Sadohara
Michihiko Zenke
Toshio Miyano
Original Assignee
Shanghai Jiao Tong University
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiao Tong University, Kabushiki Kaisha Yaskawa Denki filed Critical Shanghai Jiao Tong University
Priority to JP2008529891A priority Critical patent/JPWO2008020629A1/ja
Publication of WO2008020629A1 publication Critical patent/WO2008020629A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current

Definitions

  • the present invention relates to an isolated boost DC / DC converter. Specifically, the present invention relates to an insulation boost type push-pull soft switching DC / DC converter used for conversion from direct current to direct current in low voltage, large current systems such as solar power generation systems and fuel cell power generation systems.
  • DC / DC converters are important for performing energy conversion, voltage-current transmission, and power control. It is a part. Considering the peculiarities of low-voltage, high-current applications such as fuel cells, converter design demands particularly low cost, low pollution (low noise), high efficiency, and high power density. For this reason, converters are required to be simple, practical and reliable in order to satisfy the above requirements.
  • FIG. 4 There are various conventional step-up DC / DC converter circuits, and typical circuits include a double forward topology circuit and a push-pull circuit.
  • the main topology often used in fuel cell power generation systems is a zero-voltage switching circuit with a phase shift control full bridge as shown in Fig. 4.
  • Q1 to Q4 are semiconductor main switches (MOSFETs or IGBTs)
  • D1 to D4 are internal parasitic diodes of switches Q1 to Q4
  • C1 to C4 are parasitic capacitors or external capacitors of main switches Q1 to Q4
  • Lr is the resonance inductance (including transformer leakage inductance).
  • the two power switches on each arm are 180 ° complementary to each other.
  • the difference in conduction angle between the two arms is one phase, ie one phase shift angle.
  • the output voltage is adjusted by adjusting the phase shift angle.
  • the main waveforms are shown in Fig. 5.
  • Q1 and Q3 are one bridge arm
  • Q2 and Q4 are the other bridge arms.
  • the output voltage is adjusted according to the phase shift angle between both bridge arms.
  • resonance between the resonant inductance (Lr) and the bridge arm capacitors (C1 to C4) Is used to conduct and cut off the switching of the zero voltage state.
  • Such a circuit has the advantage that the adjustment range of the duty ratio in which the stress of the switching voltage is low is wide.
  • this circuit has a problem in that the control circuit is complicated and two switches are connected in series with the low-voltage converter circuit, which increases the switching conduction loss and lowers the converter efficiency.
  • the present invention has been invented in view of such problems. By reducing the switching loss and switching noise of the semiconductor, higher circuit conversion efficiency can be obtained, and EMI (Electro Magnetic Interference) can be obtained. )
  • the purpose is to provide a high-efficiency isolated boost-pull type soft-switching DC / DC converter applicable to low-voltage, large-current circuits that reduce noise.
  • the present invention is realized by the following technical idea.
  • a soft switching topology structure for low voltage and large current is proposed, and by using a semiconductor power switch and its control logic, energy storage devices are connected as appropriate, so that boost conversion from DC to DC can be realized efficiently.
  • the isolated step-up push-pull soft switching DC / DC converter of the present invention includes an externally connected voltage source Vin, energy storage inductance Lin, main switches SI and S2, and main switches S1 and S2.
  • Capacitors Cl, C2 Auxiliary switches Sla, S 2a, Auxiliary switches Cla, C 2a, Resonance capacitor C, Center tap Ctl with primary connection Lpl, Lp2 and center
  • a circuit including a step-up transformer Tr with secondary winding Lsl and Ls2, rectifier diodes DR1 and DR2, output filter 'inductance Lf, output filter' capacitor Cf, and load resistance R .
  • One end of the energy storage inductance Lin is connected to the anode of the voltage source Vin, and the voltage source Vin and the energy storage inductance Lin are connected in series.
  • the other end of the energy storage inductance Lin is the center of the primary winding Lpl, Lp2 of the transformer Tr Tap Connected to Ctl.
  • the source So of the main switch S1 is connected to the cathode of the voltage source Vin and the main switch S 1 drain Dr is connected to one end of the primary winding Lpl of the transformer Tr.
  • the source So of the main switch S2 is connected to the cathode of the voltage source Vin, and the drain Dr of the main switch S2 is connected to the other end of the primary winding Lp2 of the transformer Tr.
  • the source So of the auxiliary switch Sla is connected to the drain Dr of the main switch S1, and the source So of the auxiliary switch S2a is connected to the drain Dr of the main switch S2.
  • the drains Dr of the two auxiliary switches Sla and S2a are connected and connected to one end of the resonant capacitor C. That is, the resonant capacitor
  • C One end of C is connected to auxiliary switches Sla and S2a, and the other end is connected to the cathode of voltage source Vin.
  • the anodes of the rectifier diodes DR1 and DR2 are connected to both ends of the secondary windings Lsl and Ls2 of the transformer Tr.
  • the cathodes of the rectifier diodes DR1 and DR2 are connected to each other to become the output voltage positive electrode, and the secondary side of the transformer Tr.
  • the center tap Ct2 of windings Lsl and Ls2 is the cathode of the output voltage, and one end of the parallel circuit of output capacitor Cf and load resistor R is the output inductance.
  • the other end of the parallel circuit is connected to the cathode of the output voltage.
  • control logic or switching sequence of the present invention comprises:
  • the volume of components such as inductance, capacitor and transformer is reduced, and all power switching is zero voltage In this state, it can be turned on and off, and the leakage inductance of the transformer, the parasitic capacitor, and the parasitic capacitor of the switching transistor all contribute to resonance, so that the efficiency of the switching transistor and transformer is improved. Due to this effect, the input current to the transformer of the booster circuit drops and transformer loss can be reduced. Since the main circuit uses only one switch for each arm, the switching resistance and conduction loss are reduced, and the overall efficiency of the converter is increased. This circuit is suitable for low-voltage and large-current applications. Specifically, it is used for DC boosting of fuel cell power generation systems and solar power generation systems.
  • FIG. 1 is a circuit diagram illustrating the operating principle of the present invention.
  • FIG. 2 is a chart of voltage and current of each part during circuit operation of the present invention.
  • FIG. 3 is a block diagram illustrating the control principle of the circuit of the present invention.
  • FIG. 4 is a conventional example, and is a principle diagram of a full-bridge converter circuit with a phase shift control zero voltage.
  • FIG. 5 is a chart of voltage and current of each part during operation of the circuit of Fig. 4 which is a conventional example.
  • the isolated step-up push-pull soft switching DC / DC converter of the present invention is suitable for low voltage, large current circuit applications such as solar power generation systems and fuel cell power generation systems.
  • the circuit for realizing the present invention includes voltage capacitors Vin, energy storage inductances Lin, main switches S1 and S2, main switches Sl and S2, and external capacitors Cl and C2 connected in parallel, respectively.
  • Auxiliary switches Sla, S2a, external capacitors Cla, C2a, resonant capacitor C connected in parallel to auxiliary switches Sla, S2a, respectively
  • Dl, D2, Dla, and D2ai are internal parasitic diodes of main switches Sl and S2 and Neasuke switches Sla and S2a, respectively.
  • One end of the energy storage inductance Lin is connected to the anode of the voltage source Vin and the voltage source Vin and the energy storage inductance Lin are connected in series.
  • the other end of the energy storage inductance Lin is the primary winding Lpl of the transformer Tr, Connected to center tap Ctl of Lp2.
  • the source So of the main switch S1 is connected to the cathode of the voltage source Vin, and the drain Dr of the main switch S1 is connected to one end of the primary winding Lpl of the transformer Tr.
  • the source So of the main switch S2 is connected to the cathode of the voltage source Vin, and the drain Dr of the main switch S2 is connected to the other end of the primary winding Lp2 of the transformer Tr.
  • the source So of the auxiliary switch Sla is connected to the drain Dr of the main switch S1, and the source So of the auxiliary switch S2a is connected to the drain Dr of the main switch S2.
  • the drains Dr of the two auxiliary switches Sla and S2a are connected and connected to one end of the resonant capacitor C. That is, the resonant capacitor
  • C One end of C is connected to auxiliary switches Sla and S2a, and the other end is connected to the cathode of voltage source Vin.
  • the anodes of the rectifier diodes DR1 and DR2 are connected to both ends of the secondary windings Lsl and Ls2 of the transformer Tr.
  • the cathodes of the rectifier diodes DR1 and DR2 are connected to each other to become the output voltage positive electrode, and the secondary side of the transformer Tr.
  • the center tap Ct2 of windings Lsl and Ls2 is the cathode of the output voltage, and one end of the parallel circuit of output capacitor Cf and load resistor R is the output inductance.
  • the other end of the parallel circuit is connected to the cathode of the output voltage.
  • the control logic of the present invention includes the following (1) to (5) as shown in FIG.
  • the horizontal axis is time t
  • the vertical axis is the voltage V between the gates and sources of the main switch Sl and S2, and the auxiliary switches SI a and S2a, and the current flowing through the resonant capacitor C.
  • the main switches S1 and S2 and the auxiliary switches Sla and S2a used in FIG. 1 are all field'transistors (MOSFETs) or IGBTs, and the operation sequence of each part is shown in FIG.
  • the interval is dT / 2. During this time, the input inductance Lin stores energy.
  • This commutation time dt depends on the external capacitor C2 of the main switch S2 and the external capacitor C2a of the auxiliary switch S2a.
  • C2a is the capacity of the external capacitor of auxiliary switch S2
  • C2 is the external capacitor capacity of main switch S2.
  • i is the current of the energy storage inductance Lin.
  • auxiliary switch S2a Decreases with increasing charging. Also, the auxiliary switch S2a is turned on while the diode D2a is turned on, so that the auxiliary switch S2a is turned on in a zero voltage state.
  • the diode D2 begins to conduct and the current through the leakage inductance L2d decreases.
  • Main switch S2 is conducting while diode D2 is conducting.
  • FIG. 1 A principle block diagram of the control circuit is shown in FIG. 1
  • 301 is an integrated circuit chip
  • 302 is an isolated drive amplifier circuit
  • 303 is a transformer primary circuit
  • 304 is an output rectifier filter
  • 305 is a voltage sensor
  • 306 is a comparator
  • 307 is a voltage controller
  • 308 is a current sensor
  • 309 is a comparator
  • 310 is a current controller.
  • Integrated circuit chip UG3895 (301) Two square waves (output 1, output 2) with a phase difference of 180 ° are also output, each of which passes through its own phase shifter (a, b) The shifted signals (output 1 ', output 2') will eventually become the drive signals (output 1, 1, 2, 2, 2) of the four semiconductor switches. These drive signals (outputs 1, 1, 2, 2 ') are isolated drive amplifier circuits. Insulated by the path (302) and used to drive the main switches Sl and S2 and the auxiliary switches Sla and S2a in the transformer primary circuit (303), respectively, and high voltage AC is output from the transformer secondary circuit, This is rectified by the output rectifier filter (304) and finally becomes a high-voltage DC output voltage.
  • the voltage sensor (305) detects the DC output voltage and converts it into a direct current voltage of 0 to 5V.
  • the converted voltage is compared with the voltage set value by the comparator (306) before the voltage is detected.
  • the output of the voltage controller (307) is used as a set value for the current controller.
  • the current sensor (308) detects the input current given to the transformer primary side circuit (303) and converts it to a DC voltage of 0 to 5V.
  • the converted voltage is set by the comparator (309). Is sent to the current controller (310).
  • the output of the current controller (310) is fed into the integrated circuit chip UG3895 (301), and the width of the output can be controlled by the integrated circuit chip UG3895 (301) to the main switch Sl, S2 and the auxiliary switches Sla, S2a. As a result, the output voltage is adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

明 細 書
絶縁昇圧型プッシュプル式ソフトスイッチング DCZDCコンバータ 技術分野
[0001] 本発明は絶縁昇圧用 DC/DCコンバータに関する。具体的には、太陽光発電シス テム、燃料電池発電システムなど、低電圧、大電流システムにおける直流から直流へ の変換に用いられる絶縁昇圧型プッシュプル式ソフトスイッチング DC/DCコンパ一 タに関する。
背景技術
[0002] 太陽光発電システム、燃料電池発電システムなど、低電圧、大電流の電気供給シ ステムにおいて、 DC/DCコンバータはエネルギーの変換、電圧電流の伝達及びパ ヮー制御を実行するのに重要な部品である。燃料電池など低電圧、大電流アプリケ ーシヨンの特殊性を考慮し、コンバータの設計には、特に低コスト、低汚染性 (低ノィ ズ)、高効率、ハイパワー密度が求められている。そのため、コンバータは上記の要求 を満足するために、簡単化、実用性、信頼性を求められている。
[0003] 従来の昇圧型 DC/DCコンバータ回路にはさまざまなものがあり、典型的な回路と しては、ダブル式フォワード 'トポロジー回路及びプッシュプル回路などある。現在、 燃料電池発電システムによく採用されている主なトポロジーは、図 4に示すような移相 制御フル'ブリッジのゼロ電圧スイッチング回路である。図 4に示すように、 Q1〜Q4 は半導体メインスィッチ(MOSFETまたは IGBT)、 D1〜D4はスィッチ Q1〜Q4の 内部寄生ダイオード、 C1〜C4はメインスィッチ Q1〜Q4の寄生コンデンサーまたは 外付けコンデンサー、 Lrは共振インダクタンス(トランスの漏洩インダクタンスを含む) である。各アームにある二つのパワースィッチは互いに 180° の相補導通になってい る。二つのアーム間の導通角の差は一つの位相、即ち、一つの移相角である。移相 角の大きさを調節することにより、出力電圧が調節される。主な波形は図 5に示すとお りである。図 5中、 Q1及び Q3は一方のブリッジアーム、 Q2及び Q4は他方のブリッジ アームである。両ブリッジアーム間の移相角により出力電圧の大きさを調節する。同 時に、共振インダクタンス(Lr)とブリッジアームのコンデンサー(C1〜C4)間の共振 を利用して、ゼロ電圧状態のスイッチングの導通と遮断を行う。このような回路は、スィ ツチング電圧のストレスが低ぐデューティ'レシオの調節範囲が広いという良さがある 。一方、この回路には、制御回路が複雑で、低圧変換回路に 2個のスィッチが直列さ れているため、スイッチングの導通損失が増大し、コンバータの効率を低下させるとい う問題があった。
発明の開示
[0004] 本発明は、このような課題を考慮して発明されたものであり、半導体のスイッチング 損失とスィッチング騒音を低減させることにより、更に高い回路変換効率が得られ、 E MI (Electro Magnetic Interference)騒音が低減される低電圧、大電流回路に 適用する高効率の絶縁昇圧型プッシュプル式ソフトスイッチング DC/DCコンバータ を提供することを目的とする。
[0005] 本発明は以下の技術思想により実現される。即ち、低電圧、大電流用のソフトスイツ チングトポロジー構造を提案し、半導体パワースィッチ及びその制御ロジックにより、 さらにエネルギー貯蔵デバイスを適宜連接することで、直流から直流への昇圧変換 を効率よく実現する。
[0006] 本発明の絶縁昇圧型プッシュプル式ソフトスイッチング DC/DCコンバータは、電 圧源 Vin、エネルギー貯蔵インダクタンス Lin、メインスィッチ S I、 S2、メインスィッチ S 1、 S2にそれぞれ並列接続される外付けコンデンサー Cl、 C2、補助スィッチ Sla、 S 2a、補助スィッチ Sla、 S2aにそれぞれ並列接続される外付けコンデンサー Cla、 C 2a、共振コンデンサー C 、センタータップ Ctl付き 1次側巻線 Lpl、 Lp2とセンタータ
G
ップ Ct2付き 2次側巻線 Lsl、 Ls2を有する昇圧用トランス Tr、整流ダイオード DR1、 DR2、出力フィルター 'インダクタンス Lf、出力フィルター 'コンデンサー Cf、及び負 荷抵抗 R が含まれる回路により実現される。
Ld
[0007] この回路の接続関係を以下に詳しく説明する。
エネルギー貯蔵インダクタンス Linの一端は電圧源 Vinの陽極に接続されて電圧源 Vinとエネルギー貯蔵インダクタンス Linが直列接続され、エネルギー貯蔵インダクタ ンス Linの他端はトランス Trの一次側巻線 Lpl、 Lp2のセンタータップ Ctlに接続さ れる。メインスィッチ S1のソース Soは電圧源 Vinの陰極に接続され、メインスィッチ S 1のドレイン Drはトランス Trの一次側巻線 Lplの一端に接続される。同様に、メインス イッチ S2のソース Soは電圧源 Vinの陰極に接続され、メインスィッチ S2のドレイン Dr はトランス Trの一次側巻線 Lp2の他端に接続される。補助スィッチ Slaのソース Soは メインスィッチ S1のドレイン Drに接続され、補助スィッチ S2aのソース Soはメインスィ ツチ S2のドレイン Drに接続される。 2個の補助スィッチ Sla、 S2aのドレイン Drは接 続され且つ共振コンデンサー C の一端に接続される。すなわち、共振コンデンサー
G
C の一端は補助スィッチ S la、 S2aに接続され、他端は電圧源 Vinの陰極に接続さ
G
れる。整流ダイオード DR1、 DR2の陽極はトランス Trの 2次側巻線 Lsl、 Ls2の両端 に接続され、整流ダイオード DR1、 DR2の陰極は互いに接続されて出力電圧の陽 極となり、トランス Trの 2次側巻線 Lsl、 Ls2のセンタータップ Ct2は出力電圧の陰極 となり、出力コンデンサー Cfと負荷抵抗 R との並列回路の一端は出力インダクタン
Ld
ス Lfを介して出力電圧の陽極に接続され、並列回路の他端は出力電圧の陰極に接 ¾ る。
[0008] 本発明の制御ロジック即ちスイッチングのシーケンスは、
(1) 2個のメインスィッチ Sl、 S2が同時に dT/2の期間の間導通した後、メインスィ ツチ S2が遮断となり、
(2) 極めて短いデッドタイム(tl→t2の期間)の後、補助スィッチ S 2a及びメインスィ ツチ S 1が同時に(1— d)T/2の期間の間導通した後に、補助スィッチ S2aが遮断と なり、
(3) また、極めて短いデッドタイム(t4→t5の期間)の後、メインスィッチ Sl、 S2が同 時に dT/2の期間の間導通した後に、メインスィッチ S1が遮断となり、
(4) さらに、極めて短いデッドタイム(t7→t8の期間)の後、補助スィッチ Sla及びメ インスイッチ S2が同時に(1— d)T/2の期間の間導通した後に、補助スィッチ Slaが 遮断となり、
(5) 最後に、極めて短いデッドタイム(t9→tl0の期間)の後、メインスィッチ Sl、 S2 が同時に導通して、最初の段階に戻るように繰り返される。
[0009] 本発明によれば、スイッチングの頻度が高いことにより、インダクタンス、コンデンサ 一及びトランスなどの部品体積が減少し、また、全てのパワースイッチングはゼロ電圧 状態で導通と遮断ができ、トランスの漏洩インダクタンス及び寄生コンデンサー、スィ ツチングトランジスタの寄生コンデンサーがすべて共振に寄与するため、スイッチング トランジスタ及びトランスの効率が向上される。この効果により、昇圧回路のトランスへ の入力電流が降下し、トランスの損失も削減できる。メイン回路にはスィッチが各ァー ム 1個ずつしか使用しないため、スイッチング抵抗及び導通損失が削減されて、コン バータ全体の効率が高められる。この回路は、低電圧、大電流の場合に適しており、 具体的には、燃料電池発電システムと太陽光発電システムの直流昇圧に用いられる
図面の簡単な説明
[0010] [図 1]本発明の作動原理を説明する回路図である。
[図 2]本発明の回路作動中における各部分の電圧、電流のチャート図である。
[図 3]本発明の回路の制御原理を説明するブロック図である。
[図 4]従来例であり、移相制御ゼロ電圧のフル 'ブリッジコンバータ回路の原理図であ [図 5]従来例である図 4の回路作動中における各部分の電圧、電流のチャート図であ 符号の説明
[0011] Vin 電圧源
Lin エネルギー貯蔵インダクタンス
S l、 S2 メインスィッチ
C1、 C2 外付けコンデンサー
S la、 S2a 補助スィッチ
Cla、 C2a 外付けコンデンサー
C 共振コンデンサー
G
Ctl センタータップ
Lpl、 Lp2 1次側巻線
Ct2 センタータップ
Lsl、 Ls2 2次側巻線 Lld、L2d 漏洩インダクタンス
Tr 昇圧用トランス
DR1、DR2 整流ダイオード
Lf 出力フィルター ·インダクタンス
Cf 出力フィルター 'コンデンサー
R 負荷抵抗
Ld
So ソース
Dr ドレイン
301 集積回路チ: /プ UG3895
302 絶縁駆動アンプ回路
303 トランス一次側回路
304 出力整流フィフレタ
305 電圧センサ-
306 比較器
307 電圧 3ン卜口ーラ
308 電流センサ-
309 比較器
310 電流コントローラ
発明を実施するための最良の形態
本発明の絶縁昇圧型プッシュプル式ソフトスイッチング DC/DCコンバータは、太 陽光発電システム、燃料電池発電システムなど低電圧、大電流回路の応用に適する 。図 1に示すように、本発明を実現する回路には、電圧源 Vin、エネルギー貯蔵イン ダクタンス Lin、メインスィッチ S l、 S2、メインスィッチ Sl、 S2にそれぞれ並列接続さ れる外付けコンデンサー Cl、 C2、補助スィッチ Sla、 S2a、補助スィッチ Sla、 S2a にそれぞれ並列接続される外付けコンデンサー Cla、 C2a、共振コンデンサー C 、
G
センタータップ Ctl付き 1次側巻線 Lpl、 Lp2とセンタータップ Ct2付き 2次側巻線 Ls 1、 Ls2を有する昇圧用トランス Tr、整流ダイオード DR1、 DR2、出力フィルタ一'イン ダクタンス Lf、出力フィルター 'コンデンサー Cf、及び負荷抵抗 R が含まれている。 Dl、 D2、 Dla、 D2aiまそれぞれメインスィッチ Sl、 S2、ネ甫助スィッチ Sla、 S2aの内 部寄生ダイオードである。
[0013] エネルギー貯蔵インダクタンス Linの一端は電圧源 Vinの陽極に接続されて電圧源 Vinとエネルギー貯蔵インダクタンス Linが直列接続され、エネルギー貯蔵インダクタ ンス Linの他端はトランス Trの一次側巻線 Lpl、 Lp2のセンタータップ Ctlに接続さ れる。メインスィッチ S1のソース Soは電圧源 Vinの陰極に接続され、メインスィッチ S 1のドレイン Drはトランス Trの一次側巻線 Lplの一端に接続される。同様に、メインス イッチ S2のソース Soは電圧源 Vinの陰極に接続され、メインスィッチ S2のドレイン Dr はトランス Trの一次側巻線 Lp2の他端に接続される。補助スィッチ Slaのソース Soは メインスィッチ S1のドレイン Drに接続され、補助スィッチ S2aのソース Soはメインスィ ツチ S2のドレイン Drに接続される。 2個の補助スィッチ Sla、 S2aのドレイン Drは接 続され且つ共振コンデンサー C の一端に接続される。すなわち、共振コンデンサー
G
C の一端は補助スィッチ S la、 S2aに接続され、他端は電圧源 Vinの陰極に接続さ
G
れる。整流ダイオード DR1、 DR2の陽極はトランス Trの 2次側巻線 Lsl、 Ls2の両端 に接続され、整流ダイオード DR1、 DR2の陰極は互いに接続されて出力電圧の陽 極となり、トランス Trの 2次側巻線 Lsl、 Ls2のセンタータップ Ct2は出力電圧の陰極 となり、出力コンデンサー Cfと負荷抵抗 R との並列回路の一端は出力インダクタン
Ld
ス Lfを介して出力電圧の陽極に接続され、並列回路の他端は出力電圧の陰極に接 ¾ る。
[0014] 本発明の制御ロジックは図 2に示す通り、以下の(1)〜(5)としている。
図 2において、横軸は時間 t、縦軸は、メインスィッチ Sl、 S2および補助スィッチ SI a、 S2aのそれぞれのゲート'ソース間の電圧 V 、共振コンデンサー C に流れる電流
gs ^
I 、メインスィッチ S1の両端に加わる電圧 V 、メインスィッチ S 1に流れる電流 I 、
CG SI S1 補助スィッチ S laの両端に加わる電圧 V 、補助スィッチ S laに流れる電流 I であ
Sla S la
(1) 2個のメインスィッチ Sl、 S2が同時に dT/2の期間の間導通した後、メインスィ ツチ S2が遮断となり、
(2) 極めて短いデッドタイム(tl→t2の期間)の後、補助スィッチ S 2a及びメインスィ ツチ S Iが同時に(1— d)T/2の期間の間導通した後に、補助スィッチ S2aが遮断と なり、
(3) また、極めて短いデッドタイム(t4→t5の期間)の後、メインスィッチ Sl、 S2が同 時に dT/2の期間の間導通した後に、メインスィッチ S1が遮断となり、
(4) さらに、極めて短いデッドタイム(t7→t8の期間)の後、補助スィッチ Sla及びメ インスイッチ S2が同時に(1— d)T/2の期間の間導通した後に、補助スィッチ Slaが 遮断となり、
(5) 最後に、極めて短いデッドタイム(t9→tl0の期間)の後、メインスィッチ Sl、 S2 が同時に導通して、最初の段階に戻るように繰り返される。
[0015] 図 1に用いられるメインスィッチ S l、 S2および補助スィッチ S la、 S2aはいずれもフ ィールド'トランジスタ(MOSFET)または IGBTであり、その各部分の作動シーケンス は図 2に示している。
[0016] (ィ) tO〜tlの間に、メインスィッチ S 1及び S2が同時に導通され、トランス Trの一次 側を流れる電流量は同じで、流れる方向が反対になるため、整流ダイオード DR1、 D R2はカットオフになる。 2個のメインスィッチ Sl、 S2を流れる電流は l/2i で、時間
in
間隔は dT/2である。この間、入力インダクタンス Linがエネルギーを貯蔵する。
[0017] (口) tlの時刻にメインスィッチ S2の外付けコンデンサー C2が存在するために、メイ ンスィッチ S2はゼロ電圧状態で遮断される。充電電流と放電電流の合計は l/2i の
m 一定電流となって!/、る。この転流時間 dtはメインスィッチ S2の外付けコンデンサー C 2と補助スィッチ S2aの外付けコンデンサー C2aによって左右され、
Figure imgf000009_0001
となる。
[0018] ここで、 C2aは補助スィッチ S2の外付けコンデンサー容量
C2はメインスィッチ S2の外付けコンデンサー容量
U は共振コンデンサー Cgの電圧
G
i はエネルギー貯蔵インダクタンス Linの電流、である。
in
[0019] (ハ) t2〜t3の間、外付けコンデンサー C2aに掛かる電圧はゼロに低下し、ダイォ ード D2aが導通され、漏洩インダクタンス L2dに貯められているエネルギーが共振コ ンデンサー c に充電される。
G
[0020] この段階の時間間隔は、(1 d)T/4である。 充電電流は共振コンデンサー C
G
への充電の増加とともに減少する。また、補助スィッチ S2aは、ダイオード D2aが導通 する間に導通されることにより、補助スィッチ S 2aはゼロ電圧状態での導通を実現す
[0021] (二) t3〜t4の間、共振コンデンサー C の充電電流の減少にともない、充電電流が
G
ゼロまで減少すると反対方向に変わり、この段階の時間間隔は、(1 d)T/4である
[0022] (ホ) t4の時刻に、補助スィッチ S2aが遮断する際、外付けコンデンサー C2aにより その遮断がゼロ電圧状態で遮断される。補助スィッチ S2aが遮断されると、漏洩イン ダクタンス L2dが共振して外付けコンデンサー C2が放電し、及び外付けコンデンサ 一 C2aが充電される。充放電の電流は一定である。この段階の時間間隔は短ぐメイ ンスィッチ S2に掛かる電圧低下がゼロになると終了する。
[0023] (へ) t5〜t6の間、コンデンサー C2aが共振コンデンサー C の電圧 V になると、ダ
G G
ィオード D2は導通し始め、漏洩インダクタンス L2dを流れる電流は減少する。メイン スィッチ S2はダイオード D2が導通している間に導通する。
[0024] (ト) t6〜t7 (t0)の間、メインスィッチ S2を流れる電流は反対方向に変わり、トランス
Trの一次側巻線 Lpl、 Lp2を流れる電流が等しくなると、ダイオード D2はカットオフ になるため、最初の段階に戻る。このように繰り返される。
[0025] 制御回路の原理ブロック図は図 3に示す。
図において、 301は集積回路のチップ、 302は絶縁駆動アンプ回路、 303はトラン ス一次側回路、 304は出力整流フィルタ、 305は電圧センサー、 306は比較器、 307 は電圧コントローラ、 308は電流センサー、 309は比較器、 310は電流コントローラで ある。
[0026] 集積回路チップ UG3895 (301)力も位相差が 180° の 2つの方形波(出力 1、出 力 2)が出力され、それぞれその一部が各自の位相シフター(a、 b)を通ってシフトさ れた信号(出力 1 '、出力 2' )となり、最終的に 4ケ所の半導体スィッチの駆動信号(出 力 1、 1,、 2、 2,)となる。これらの駆動信号(出力 1、 1,、 2、 2' )は絶縁駆動アンプ回 路(302)により絶縁されて、トランス一次側回路(303)にあるメインスィッチ Sl、 S2と 補助スィッチ S la、 S2aの駆動にそれぞれ用いられ、トランス二次側回路から高圧交 流が出力され、これが出力整流フィルタ(304)で整流されて最終的に高圧直流の出 力電圧となる。電圧センサー(305)は、この直流の出力電圧を検出して 0〜5Vの直 流電圧に変換し、この変換された電圧を比較器(306)にて電圧設定値と比較してか ら電圧コントローラ(307)に送り込む。そして、電圧コントローラ(307)の出力は電流 コントローラの設定値として使われる。電流センサー(308)はトランス一次側回路(30 3)に与えられる入力電流を検出して 0〜5Vの直流電圧に変換し、この変換された電 圧を比較器(309)にてさきの設定 と比較してから電流コントローラ(310)に送り込 む。電流コントローラ(310)の出力が集積回路チップ UG3895 (301)に送り込まれ、 集積回路チップ UG3895 (301)がメインスィッチ Sl、 S2と補助スィッチ S la、 S2aに 与える出カノ ルスの幅を制御することにより、出力電圧が調節されることになる。

Claims

請求の範囲 [1] エネルギー貯蔵インダクタンスの一端が電圧源の陽極に接続されて前記電圧源と 前記エネルギー貯蔵インダクタンスが直列接続され、前記エネルギー貯蔵インダクタ ンスの他端がトランスの一次側巻線のセンタータップに接続され、第 1メインスィッチ のソースが前記電圧源の陰極に接続され、前記第 1メインスィッチのドレインが前記ト ランスの前記一次側巻線の一端に接続され、同様に、第 2メインスィッチのソースが 前記電圧源の陰極に接続され、前記第 2メインスィッチのドレインが前記トランスの一 次側巻線の他端に接続され、第 1補助スィッチのソースが前記第 1メインスィッチのド レインに接続され、第 2補助スィッチのソースが前記第 2メインスィッチのドレインに接 続され、 2個の前記補助スィッチのドレイン同士が接続されかつ共振コンデンサーの 一端に接続され、前記共振コンデンサーの他端が前記電圧源の陰極に接続されるこ とを特徴とする絶縁昇圧型プッシュプル式ソフトスイッチング DC/DCコンバータ。 [2] 前記トランスの 2次側巻線の両端に整流ダイオードの陽極をそれぞれ接続し、前記 整流ダイオードの陰極を互いに接続して出力電圧の陽極とし、前記トランスの前記 2 次側巻線のセンタータップを出力電圧の陰極とし、出力コンデンサーと負荷抵抗との 並列回路の一端を出力電圧の陽極に接続し、前記並列回路の他端を出力電圧の陰 極に接続することを特徴とする請求項 1記載の絶縁昇圧型プッシュプル式ソフトスイツ [3] 前記絶縁昇圧型プッシュプル式ソフトスイッチング DC/DCコンバータの制御ロジ ック力
(1) 前記第 1および第 2のメインスィッチが同時に所定期間導通した後、前記第 2メ インスイッチが遮断となり、
(2) 極めて短いデッドタイムの後、第 2補助スィッチ及び前記第 1メインスィッチが同 時に所定期間導通した後に、前記第 2補助スィッチ S2aが遮断となり、
(3) また、極めて短いデッドタイムの後、前記第 1および第 2メインスィッチが同時に 所定期間導通した後に、前記第 1メインスィッチが遮断となり、
(4) さらに、極めて短いデッドタイムの後、前記第 1補助スィッチ及び前記第 2メイン スィッチが同時に所定期間導通した後に、前記第 1補助スィッチが遮断となり、 (5) 最後に、極めて短いデッドタイムの後、前記第 1および第 2メインスィッチが同時 に導通して、最初の段階(1)に戻るように繰り返されることを特徴とする請求項 1記載 の絶縁昇圧型プッシュプル式ソフトスイッチング DC/DCコンバータ。
前記第 1および第 2メインスィッチ、前記第 1および第 2補助スィッチとして、フィール ド 'トランジスタ MOSFETまたは IGBTを用いることを特徴とする請求項 1記載の絶縁
PCT/JP2007/066036 2006-08-17 2007-08-17 Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation WO2008020629A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008529891A JPWO2008020629A1 (ja) 2006-08-17 2007-08-17 絶縁昇圧型プッシュプル式ソフトスイッチングdc/dcコンバータ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006100301324A CN100416994C (zh) 2006-08-17 2006-08-17 隔离升压推挽式软开关dc/dc变换器
CN200610030132.4 2006-08-17

Publications (1)

Publication Number Publication Date
WO2008020629A1 true WO2008020629A1 (fr) 2008-02-21

Family

ID=37722130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066036 WO2008020629A1 (fr) 2006-08-17 2007-08-17 Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation

Country Status (3)

Country Link
JP (1) JPWO2008020629A1 (ja)
CN (1) CN100416994C (ja)
WO (1) WO2008020629A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455746C2 (ru) * 2010-05-12 2012-07-10 Закрытое акционерное общество "Связь инжиниринг" Двухтактный мостовой преобразователь
WO2013118678A1 (ja) * 2012-02-10 2013-08-15 日産自動車株式会社 電力変換装置及びその駆動方法
US9391532B2 (en) 2013-03-14 2016-07-12 Infineon Technologies Ag System and method for a switched-mode power converter
JP2016149864A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 絶縁型dcdcコンバータ
DE102016122865A1 (de) 2015-11-30 2017-06-01 Denso Corporation Gegentakt-Gleichspannungswandler
RU174024U1 (ru) * 2016-12-21 2017-09-26 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Двухтактный трансформаторный импульсный преобразователь
CN113131750A (zh) * 2021-04-13 2021-07-16 上海交通大学 一种副边钳位型移相全桥变换器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595630B (zh) * 2007-11-20 2012-05-16 株式会社村田制作所 绝缘型dc-dc变换器
EP2073366B1 (de) * 2007-12-18 2016-04-27 ABB Research Ltd. Gleichstromsteller mit Resonanzwandler
CN102281047A (zh) * 2010-06-13 2011-12-14 深圳市英可瑞科技开发有限公司 Llc串联谐振联合控制器
CN102624234B (zh) * 2012-04-20 2015-08-26 南京航空航天大学 一种全桥三端口直流变换器及其控制方法
CN103401415B (zh) * 2013-08-09 2015-10-28 常州钜特工业科技有限公司 单相半导体电力变换器的软开关拓扑结构
CN103441680B (zh) * 2013-08-13 2015-12-23 陈仲 一种减小环流损耗的软开关全桥直流变换器
CN103501113A (zh) * 2013-09-26 2014-01-08 国家电网公司 一种基于相移谐振控制的光伏系统变换器及控制方法
CN106300993B (zh) * 2016-10-14 2017-10-31 湖南大学 一种前后桥臂复用高效率全桥移相变换器
DE102017202130A1 (de) * 2017-02-10 2018-08-16 Siemens Aktiengesellschaft DC/DC-Wandler mit Vollbrückenansteuerung
CN108964475B (zh) * 2018-08-16 2019-10-15 汕头大学 一种新型零电压开关全桥直流变换器
CN110336320B (zh) * 2019-07-10 2021-05-28 上海交通大学 一种基于电能路由器的新能源并网或就地消纳系统
CN111371296A (zh) * 2020-04-28 2020-07-03 天津智模科技有限公司 用于隔离电源的驱动电路、隔离电源电路及隔离电源
CN114884355A (zh) 2021-02-05 2022-08-09 台达电子工业股份有限公司 功率变换模块
CN114157137B (zh) * 2021-10-07 2023-07-18 山西大学 一种内外环协作辅助换流的等效电容分压软开关逆变器
CN114301292B (zh) * 2021-12-17 2023-11-03 深圳英飞源技术有限公司 一种软开关型双向buck-boost变换器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134817A (ja) * 2001-10-26 2003-05-09 Matsushita Electric Works Ltd 電源装置
JP2005110384A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd Dc−dcコンバータ
JP2006115680A (ja) * 2004-09-17 2006-04-27 Mitsui & Co Ltd Dc−dcコンバータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245520A (en) * 1991-10-10 1993-09-14 Paul Imbertson Asymmetrical duty cycle power converter
JPH09252576A (ja) * 1996-03-18 1997-09-22 Fuji Electric Co Ltd 直流−直流変換装置のスナバ回路
JPH1198836A (ja) * 1997-09-10 1999-04-09 Korea Electrotechnol Inst 出力電流のリプル(ripple)低減の可能なフル・ブリッジDC/DCコンバータの0電圧/0電流スイッチングのための回路
US5949658A (en) * 1997-12-01 1999-09-07 Lucent Technologies, Inc. Efficiency multiple output DC/DC converter
US6353547B1 (en) * 2000-08-31 2002-03-05 Delta Electronics, Inc. Three-level soft-switched converters
US6466458B2 (en) * 2001-02-12 2002-10-15 Delta Electronics, Inc. Asymmetrical full bridge DC-to-DC converter
CN1286257C (zh) * 2001-11-09 2006-11-22 台达电子工业股份有限公司 电源供应装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003134817A (ja) * 2001-10-26 2003-05-09 Matsushita Electric Works Ltd 電源装置
JP2005110384A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd Dc−dcコンバータ
JP2006115680A (ja) * 2004-09-17 2006-04-27 Mitsui & Co Ltd Dc−dcコンバータ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455746C2 (ru) * 2010-05-12 2012-07-10 Закрытое акционерное общество "Связь инжиниринг" Двухтактный мостовой преобразователь
WO2013118678A1 (ja) * 2012-02-10 2013-08-15 日産自動車株式会社 電力変換装置及びその駆動方法
JP2013165572A (ja) * 2012-02-10 2013-08-22 Nissan Motor Co Ltd 電力変換装置及びその駆動方法
US9391532B2 (en) 2013-03-14 2016-07-12 Infineon Technologies Ag System and method for a switched-mode power converter
JP2016149864A (ja) * 2015-02-12 2016-08-18 株式会社デンソー 絶縁型dcdcコンバータ
DE102016122865A1 (de) 2015-11-30 2017-06-01 Denso Corporation Gegentakt-Gleichspannungswandler
US10069429B2 (en) 2015-11-30 2018-09-04 Denso Corporation Push-pull type isolated DC/DC converter including zero voltage switching
RU174024U1 (ru) * 2016-12-21 2017-09-26 Федеральное государственное унитарное предприятие "Московское опытно-конструкторское бюро "Марс" (ФГУП МОКБ "Марс") Двухтактный трансформаторный импульсный преобразователь
CN113131750A (zh) * 2021-04-13 2021-07-16 上海交通大学 一种副边钳位型移相全桥变换器
CN113131750B (zh) * 2021-04-13 2022-06-28 上海交通大学 一种副边钳位型移相全桥变换器

Also Published As

Publication number Publication date
CN100416994C (zh) 2008-09-03
JPWO2008020629A1 (ja) 2010-01-07
CN1913309A (zh) 2007-02-14

Similar Documents

Publication Publication Date Title
WO2008020629A1 (fr) Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation
CN109217681B (zh) 一种双向谐振变换器
US20220094274A1 (en) Single phase single stage bi-directional level 1 electric vehicle battery charger
Lin et al. Analysis and implementation of a soft switching converter with high-voltage conversion ratio
CN110890842B (zh) 宽电压增益低电流纹波双向谐振变换器及控制方法
CN105305829B (zh) 电流型单向dc‑dc变换器及对称双pwm加移相控制方法
CN102332813A (zh) 功率因数校正效能改进电路、使用该电路的变换器以及制造变换器的方法
Karshenas et al. Basic families of medium-power soft-switched isolated bidirectional dc-dc converters
US10243455B2 (en) Bidirectional DC-DC converter
CN110190752B (zh) 一种双向clllc-dcx谐振变换器及其控制方法
CN114301301A (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
US7944188B1 (en) Power converter circuits having bipolar outputs and bipolar inputs
WO2011052364A1 (ja) 電力変換装置
CN101604916A (zh) 基于π型辅助网络零电压开关全桥直流变换器
CN217087777U (zh) 一种宽范围谐振式软开关双向直流变换器
WO2022059294A1 (ja) 電力変換装置
JP6452226B2 (ja) Dc−dcコンバータの補助回路及びその補助回路を用いた双方向昇降圧dc−dcコンバータ
CN113541486A (zh) 交错二极管电容网络高增益zvt直流变换器及辅助电路
CN110445387B (zh) 一种化成分容用电源的拓扑结构和控制方法
CN113541503A (zh) 一种零电流开关有源钳位电流型推挽直流变换器
WO2023131101A1 (zh) 双向直流变换器及系统
TWI794329B (zh) Dc轉ac功率轉換器及適合被使用在dc轉ac功率轉換器之隔絕dc轉dc轉換器
CN107171563A (zh) 紧调整输出的组合变流器
Bolte et al. Bidirectional resonant converter with integrated magnetics for on-board chargers
CN115864815A (zh) 基于开关电感电容的无桥Sepic PFC变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008529891

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07792652

Country of ref document: EP

Kind code of ref document: A1