WO2008020586A1 - Diagnosis and treatment of cancer using anti-desmoglein-3 antibody - Google Patents

Diagnosis and treatment of cancer using anti-desmoglein-3 antibody Download PDF

Info

Publication number
WO2008020586A1
WO2008020586A1 PCT/JP2007/065834 JP2007065834W WO2008020586A1 WO 2008020586 A1 WO2008020586 A1 WO 2008020586A1 JP 2007065834 W JP2007065834 W JP 2007065834W WO 2008020586 A1 WO2008020586 A1 WO 2008020586A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
chain
chain according
seq
amino acid
Prior art date
Application number
PCT/JP2007/065834
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Aburatani
Shunpei Ishikawa
Hirotaka Ito
Kiyotaka Nakano
Shigeto Kawai
Original Assignee
Forerunner Pharma Research Co., Ltd.
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forerunner Pharma Research Co., Ltd., The University Of Tokyo filed Critical Forerunner Pharma Research Co., Ltd.
Priority to EP16178652.0A priority Critical patent/EP3111955B1/en
Priority to BRPI0713086-4A priority patent/BRPI0713086A2/pt
Priority to EP07792477.7A priority patent/EP2050466B1/en
Priority to AU2007285217A priority patent/AU2007285217B2/en
Priority to CA002658050A priority patent/CA2658050A1/en
Priority to US12/308,695 priority patent/US20100092457A1/en
Priority to JP2008529863A priority patent/JP5317697B2/ja
Publication of WO2008020586A1 publication Critical patent/WO2008020586A1/ja
Priority to US15/430,031 priority patent/US10696743B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/035Fusion polypeptide containing a localisation/targetting motif containing a signal for targeting to the external surface of a cell, e.g. to the outer membrane of Gram negative bacteria, GPI- anchored eukaryote proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants

Definitions

  • the present invention relates to a method for diagnosing and treating cancer, and a cytostatic and anticancer agent.
  • Desmoglein3 (hereinafter referred to as DSG3) molecule is a pemphigus vulgaris (hereinafter referred to as PV), an autoimmune blistering disease of the skin and mucous membranes.
  • PV pemphigus vulgaris
  • PVA in this specification
  • Non-Patent Document 2 an expression library constructed using polyA RNA isolated from human keratinocytes was screened using the isolated antibody to isolate cDNA encoding PVA. Based on the analysis of the nucleotide sequence of the isolated cDNA, the PVA molecule is highly homologous to the sequence of molecules belonging to a group of cadherin 'superfamily genes encoding intercellular adhesion factors. (Non-Patent Document 2).
  • Non-patent Document 3 The monoclonal antibody has a cytolytic activity that inhibits cell adhesion of keratinocytes in a test tube! /, And has the ability S to be demonstrated.
  • Non-patent Document 4 the cytolytic activity observed in vitro by anti-DSG3 antibody is an activity that induces PV lesions in vivo!
  • the DSG3 protein has an important function in the adhesion of keratinocytes, and it was known that anti-DSG3 antibodies are involved in the development of PV lesions. On the other hand, the functions other than the involvement of DSG3 protein in other diseases or the cytolytic activity of anti-DSG3 antibody have not been clarified. In particular, the relevance of DSG3 molecules to the development of cancer, particularly lung cancer, lung cancer cell proliferation, invasion, metastasis, or transformation in mammals, particularly humans, has never been clarified!
  • lung cancer is the cancer with the highest mortality rate for both men and women.
  • the mortality rate of lung cancer in Japan has increased since 1950.
  • the number of lung cancer deaths in 1998 was 50,871.
  • Non-small cell lung cancer is characterized by an inadequate response to chemotherapy or radiation therapy, which progresses slower than small cell cancer. Therefore, surgical excision is the first choice when the tumor is localized, but the outcome is significantly inferior to other cancers such as gastric cancer that corresponds to the same stage in the TNM classification. Multidisciplinary treatment can help Although there are many attempts to improve it, effective treatments have been established to achieve complete remission! For non-small cell lung cancer, surgical treatment is considered until stagellla stage, but chemotherapy and radiation therapy, which are rarely indicated for surgery in subsequent clinical stages, are mainly treated.
  • SCC semous cell card noma related antigen; yfra cytokeratin 19 fragment), uEA carcinoembryonic ant igen), SLX (sialyl Lewisx-i antigen), etc. are selected as serodiagnostic markers, either alone or together
  • SCC semous cell card noma related antigen
  • yfra cytokeratin 19 fragment uEA carcinoembryonic ant igen
  • SLX sialyl Lewisx-i antigen
  • Small cell lung cancer is a tumor that accounts for about 15 to 20% of all lung cancers in Japan. Compared with other lung cancers, the growth rate of tumors is faster, but it is more sensitive to anticancer drugs and radiation therapy. It has clinical features that are significantly different from those of adenocarcinoma, squamous cell carcinoma, large cell carcinoma and the like. For small cell carcinoma, surgical treatment is considered only for stagela stage (tumor diameter is 20 mm or less, infiltration and metastasis to lymph nodes and surrounding organs are not observed). Basically, chemotherapy, radiation Therapy is the main treatment adopted.
  • NSE neuron-specenolase ⁇ roGP (pro gastrin— releasing peptide) power and relatively high specificity to small cells, and its positive rate is about 60% and 70% are reported.
  • the mechanism of action by which targeted therapy with a monoclonal antibody against a cancer-specific tumor antigen is different from conventional chemotherapeutic treatment This will increase the response rate of treatment.
  • the activity of the antibody to exert its effect includes antibody-dependent cytotoxicity (ADCC) activity via effector cells and complement-mediated complementation.
  • ADCC antibody-dependent cytotoxicity
  • Examples include body-dependent cytotoxicity (CDC) activity or cytotoxic activity exhibited by being constructed as a conjugated molecule with a chemotherapeutic agent, a toxic peptide or a radioactive chemical substance.
  • the activity of the antibody itself catalyzing the agonistic action on the antigen molecule, or cell activation Includes neutralizing activity to block signals for proliferation and the like.
  • molecular targeted therapy using antibodies that exhibit the above-mentioned activity to the treatment of lung cancer, which still has a low positive rate of diagnosis and cure rate of the disease and there is room for complete remission!
  • Patent Document 1 W099 / 57149
  • Patent Document 2 WO02 / 86443
  • Patent Document 3 WO03 / 20769
  • Non-patent literature l J.Clin.Invest. 70, 281-288, 1982
  • Non-Patent Document 2 Cell 67, 869-877, 1991
  • Non-Patent Document 3 J.Immunologyl70, 2170-2178, 2003
  • Non-Patent Document 4 J.Invest.Dermatol., 124, 939-946, 2005
  • An object of the present invention is to provide an anti-DSG3 antibody and its use. More specifically, it aims to provide a novel method for diagnosing and treating cancer using an anti-DSG3 antibody, a novel cytostatic and anticancer agent containing an anti-DSG3 antibody, and a novel anti-DSG3 antibody.
  • the present inventors have found that DSG3 is highly expressed in cancer cells such as lung cancer. Furthermore, when the complement-dependent cytotoxicity (CDC) activity of the anti-DSG3 antibody and the antibody-dependent cytotoxicity (ADCC) activity were measured, the anti-DSG3 antibody has CDC activity and ADCC activity against DSG3-expressing cells. I found out. Furthermore, based on the above findings, the present inventors have found that the anti-DSG3 antibody is effective for diagnosis, prevention and treatment of cancers in which DSG3 expression is enhanced, including lung cancer, and completed the present invention. .
  • CDC complement-dependent cytotoxicity
  • ADCC antibody-dependent cytotoxicity
  • the present invention provides a pharmaceutical composition comprising an antibody that binds to a DSG3 protein as an active ingredient.
  • the present invention also includes an antibody that binds to the DSG3 protein as an active ingredient.
  • a cell growth inhibitor Provided is a cell growth inhibitor.
  • the present invention also provides an anticancer agent containing an antibody that binds to DSG3 protein as an active ingredient.
  • the antibody that binds to the DSG3 protein is an antibody having cytotoxic activity.
  • the cancer is lung cancer. More preferably, the cancer is non-small cell lung cancer.
  • the present invention provides a method of causing cytotoxicity in a cell expressing a DSG3 protein by contacting the cell that expresses the DSG3 with an antibody that binds to the DSG3 protein.
  • the present invention also provides a method for inhibiting the growth of cells expressing a DSG3 protein by contacting cells expressing the DSG3 protein with an antibody that binds to the DSG3 protein.
  • the antibody that binds to the DSG3 protein is an antibody having cytopathic activity.
  • the cell expressing the DSG3 protein is a cancer cell.
  • the present invention provides an antibody that binds to a DSG3 protein and has cytotoxic activity against cells expressing the DSG3 protein.
  • the cytotoxic activity is ADCC activity.
  • the cytotoxic activity is CDC activity.
  • the present invention also provides a low-molecular chemotherapeutic agent or an antibody conjugated with a toxic peptide, or a low-molecular chemotherapeutic agent or an antibody having cytotoxic activity conjugated with a toxic peptide.
  • the present invention further provides an antibody that binds to the DSG3 protein, has cytotoxic activity against cells expressing the DSG3 protein, and does not have cytolytic activity.
  • the present invention provides the use of DSG3 protein as a cancer diagnostic marker.
  • the present invention provides a method for diagnosing cancer, comprising detecting DSG3 protein using an antibody that binds to DSG3 protein.
  • the extracellular region of the DSG3 protein is detected.
  • the method of the present invention is performed using an antibody that recognizes the DSG3 protein.
  • DSG3 protein in blood, serum, or plasma, or DSG3 protein separated from cells is detected.
  • the present invention provides the following steps: (a) collecting a sample from a subject;
  • a method for diagnosing cancer including the present invention is provided.
  • any sample can be used as long as it can be collected from the subject.
  • the subject's strength is collected, and in another embodiment, the subject is used. Samples taken by force and biopsy are also used.
  • the cancer according to the diagnostic method may be any cancer as long as the target cancer cell expresses DSG3 protein, but is preferably lung cancer, and more preferably non-small cell lung cancer.
  • the step of collecting a sample from a subject can also be expressed as a step of providing a sample collected from a subject.
  • the present invention relates to any one of S, 11C, 13N, 150, 18F, 45Ti, 55Co, 64Cu, 66Ga, 68Ga, 76Br, 89Zr, 1241
  • a method for diagnosing cancer which is an antibody labeled with a nuclide selected from the above.
  • the present invention provides a method for diagnosing cancer, comprising detecting the expression of a gene encoding DSG3 protein.
  • the present invention provides a diagnostic agent or kit for use in the diagnostic method of the present invention.
  • a pharmaceutical composition comprising as an active ingredient an antibody that binds to DSG3 protein.
  • a cell growth inhibitor containing an antibody that binds to DSG3 protein as an active ingredient.
  • An anticancer agent containing an antibody that binds to the DSG3 protein as an active ingredient.
  • An antibody comprising an amino acid sequence IJ described in SEQ ID NO: 12 as CDR1, an amino acid sequence described in SEQ ID NO: 14 as CDR2, and an L chain having the amino acid sequence described in SEQ ID NO: 16 as CDR3 ,
  • an antibody comprising an L chain having the amino acid sequence set forth in SEQ ID NO: 30 as CDR1, the amino acid sequence set forth in SEQ ID NO: 32 as CDR2, and the amino acid sequence set forth in SEQ ID NO: 34 as CDR3;
  • An antibody comprising the L chain according to (13), wherein the L chain has the amino acid sequence set forth in SEQ ID NO: 20 as CL, (16) an antibody comprising the H chain according to (10) and the L chain according to (13),
  • [6] The anticancer agent according to any one of [3] to [5], wherein the cancer is lung cancer, colon cancer, esophageal cancer, stomach cancer, vaginal cancer, skin cancer or uterine cancer.
  • [8] A method of causing cytotoxicity in a DSG3-expressing cell by bringing a cell expressing the DSG3 protein into contact with an antibody that binds to the DSG3 protein.
  • a method for inhibiting proliferation of a DSG3-expressing cell by contacting a cell expressing the DSG3 protein with an antibody that binds to the DSG3 protein.
  • H having the amino acid sequence of SEQ ID NO: 2 as CDR1, the amino acid sequence of SEQ ID NO: 4 as CDR2, and the amino acid sequence of SEQ ID NO: 6 as CDR3
  • An antibody comprising a chain
  • An antibody comprising an amino acid sequence IJ described in SEQ ID NO: 12 as CDR1, an amino acid sequence described in SEQ ID NO: 14 as CDR2, and an L chain having the amino acid sequence described in SEQ ID NO: 16 as CDR3 ,
  • an antibody comprising an L chain having the amino acid sequence set forth in SEQ ID NO: 30 as CDR1, the amino acid sequence set forth in SEQ ID NO: 32 as CDR2, and the amino acid sequence set forth in SEQ ID NO: 34 as CDR3;
  • An antibody comprising an amino acid sequence IJ described in SEQ ID NO: 12 as CDR1, an amino acid sequence described in SEQ ID NO: 14 as CDR2, and an L chain having the amino acid sequence described in SEQ ID NO: 16 as CDR3 ,
  • an antibody comprising an L chain having the amino acid sequence set forth in SEQ ID NO: 30 as CDR1, the amino acid sequence set forth in SEQ ID NO: 32 as CDR2, and the amino acid sequence set forth in SEQ ID NO: 34 as CDR3;
  • a method for diagnosing cancer comprising detecting a DSG3 protein using an antibody that binds to the DSG3 protein.
  • a method for diagnosing cancer comprising:
  • a method for diagnosing cancer comprising detecting the expression of a gene encoding DSG3 protein.
  • a method for inhibiting cell proliferation comprising a step of administering an antibody that binds to a DSG3 protein to a subject.
  • a method for preventing or treating cancer comprising a step of administering an antibody that binds to a DSG3 protein to a subject.
  • FIG. 1 shows the results of DSG3 gene expression analysis in normal tissues and cancer tissues using GeneChipU133.
  • FIG. 2 shows the results of DSG3 gene expression analysis in a cancer cell line using GeneChipU133.
  • FIG. 3 is a photograph showing the results of immunohistochemical staining in which the expression of DSG3 protein in lung squamous cell carcinoma was visualized by immunostaining. All 5 clinical samples show enhanced expression of DSG 3 protein.
  • FIG. 4 Flowcytometry analysis showing binding of anti-DSG3 monoclonal antibodies DF120, DF122, DF148, DF151, DF153, DF168, DF331, DF364, and DF366 to a CHO cell line that constantly expresses full-length DSG3.
  • FIG. 4 Flowcytometry analysis showing binding of anti-DSG3 monoclonal antibodies DF120, DF122, DF148, DF151, DF153, DF168, DF331, DF364, and DF366 to a CHO cell line that constantly expresses full-length DSG3.
  • FIG. 6 shows CDC activity of human skin epithelial cancer cell line A431 and DSG3-A549 cell line, a human lung epithelial cancer cell line that constantly expresses DSG3, by anti-DSG3 monoclonal antibody DF151. It is.
  • FIG. 7 shows ADCC activity against the DSG3-A549 cell line, which is a human lung epithelial cancer cell line that constantly expresses DSG3, using anti-DSG3 monoclonal antibodies DF151, DF364, and DF366.
  • FIG. 7A shows the results of analysis using effector cells derived from mouse bone marrow
  • FIG. 7B shows the results of analysis using effector cells derived from mouse spleen.
  • FIG. 8 shows CDC activity against the DSG3_Ba / F3 cell line, which is a Ba / F3 cell line that constantly expresses DSG3, by anti-DSG3 mouse-human chimeric antibodies DF151c, DF364c, and DF366c.
  • DSG3_Ba / F3 a Ba / F3 cell line that constantly expresses DSG3 by anti-DSG3 mouse one human chimeric antibodies DF364c and DF366c and low-fucose anti-DSG3 mouse one human chimeric antibodies YB-DF364c and YB-DF366C. It is a figure which shows ADCC activity with respect to a cell line.
  • Anti-DSG3 antibodies DF366m (mouse IgG2a chimeric antibody), low fucose DF366m (low fucose mouse IgG2a chimeric antibody), DF366c (mouse-human chimeric antibody) and YB-DF366c (low fucose mouse-human chimera) 2 is a graph showing ADCC activity against a DSG3_Ba / F3 cell line, which is a Ba / F3 cell line that constantly expresses DSG3. Mouse spleen cells supplemented with interleukin-2 were used as effector cells.
  • Anti-DSG3 antibodies DF366m (mouse IgG2a chimeric antibody), low fucose DF366m (low fucose mouse IgG2a chimeric antibody), DF366c (mouse-human chimeric antibody) and YB-DF366c (low fucose mouse one human chimera) 2 is a graph showing ADCC activity against a DSG3_Ba / F3 cell line, which is a Ba / F3 cell line that constantly expresses DSG3.
  • effector cells mouse spleen cells cultured for 4 days in the presence of interleukin-2 were used.
  • FIG. 12 shows the antitumor activity of anti-DSG3 antibodies DF366m (mouse IgG2a chimeric antibody) and low fucose DF366m (low fucose mouse IgG2a chimeric antibody).
  • DSG3 (Desmoglein3) is an axonal guidance receptor protein, its amino acid sequence and The gene sequences encoding this are disclosed in GenBank accession numbers NP_001935 (SEQ ID NO: 40) and NM_001944 (SEQ ID NO: 39), respectively.
  • DSG3 protein is meant to include both full-length protein and fragments thereof.
  • the fragment is a polypeptide containing an arbitrary region of the DSG3 protein and may not have the function of a natural DSG3 protein. Examples of fragments include, but are not limited to, fragments containing the extracellular region of the DSG3 protein.
  • the extracellular region of the DSG3 protein corresponds to positions 1 to 616 in the amino acid sequence of SEQ ID NO: 40.
  • the transmembrane region corresponds to positions 617 to 641 in the amino acid sequence of SEQ ID NO: 40.
  • DSG3 was increased at the gene level and protein level very frequently in lung cancer tissues.
  • analysis of clinical specimens and cancer cell lines of other cancer types showed that expression was increased not only in lung cancer but also in colorectal cancer, esophageal cancer, stomach cancer, vaginal cancer, skin cancer or uterine cancer.
  • immunohistological diagnosis is possible by using a monoclonal antibody specific for the DSG3 protein. That is, DSG3 protein is useful as a cancer diagnostic marker.
  • the method of the present invention is characterized by detecting DSG3 gene expression.
  • the expression of DSG3 protein is detected.
  • detection includes quantitative or qualitative detection.
  • qualitative detection it is simply measured whether DSG3 protein is present, whether DSG3 protein is present in a certain amount or more. And the measurement of comparing the amount of DSG3 protein with other samples (eg, control samples).
  • quantitative detection refers to measuring the concentration of DSG3 protein, measuring the amount of DSG3 protein, and so on.
  • the test sample is not particularly limited as long as it may contain DSG3 protein, but a sample collected from the body of an organism such as a mammal is preferred, and more preferably collected from a human.
  • Sample Specific examples of the test sample include blood, interstitial fluid, plasma, extravascular fluid, cerebrospinal fluid, synovial fluid, pleural fluid, serum, lymph fluid, saliva, urine, and the like. Preferred examples are blood, serum or plasma.
  • a sample obtained from a test sample such as a specimen in which tissues or cells collected from the body of an organism are fixed, or a cell culture solution, is also included in the test sample of the present invention.
  • the cancer to be diagnosed is not particularly limited and may be any cancer. Specific examples include lung cancer, colon cancer, esophageal cancer, stomach cancer, vaginal cancer, skin cancer, uterine cancer, and the like. Can do. Preferred is lung cancer, and particularly preferred is non-small cell lung cancer.
  • the subject when DSG3 protein is detected in a test sample, the subject is judged to have a greater amount of DSG3 protein detected in the test sample than a negative control or a healthy subject. Can be determined to be cancerous or likely to have cancer in the future.
  • the subject in the present invention may be any animal species genetically having the DSG3 protein, and examples of such animal species include many mammals other than humans such as monkeys, ushi, hidge, mice, inu, cats, and hamsters. Are known.
  • the subject that is particularly preferably used is a human force, but is not limited to this.
  • a preferred embodiment of the diagnostic method of the present invention includes a diagnostic method characterized by detecting DSG3 protein on a section on which tissue or cells obtained from a patient suffering from the above cancer is immobilized. be able to. Furthermore, in another embodiment of the present invention, there can be mentioned a diagnostic method characterized by detecting DSG3 protein released from cells and present in blood. Particularly preferably, the present invention is a diagnostic method for detecting a fragment containing an extracellular region of DSG3 protein present in blood.
  • the method for detecting the DSG3 protein contained in the test sample is not particularly limited, but it is preferably detected by an immunological method using an anti-DSG3 antibody.
  • Immunological methods include: Sey (FIA), Luminescent Immunoassay (LIA), Immunoprecipitation (IP), Immunoturbidimetry (TIA), Westamplot (WB), Immunohistochemical staining (IHC), Immunodiffusion (SRID) is a force S, preferably Enzyme immunoassay, and particularly preferably an enzyme-linked immunosorbent assay (ELISA).
  • ELISA enzyme-linked immunosorbent assay
  • the following method is mentioned.
  • the support is blocked with, for example, calf serum albumin (BSA), gelatin, albumin, etc. to prevent non-specific binding of the protein to the support.
  • BSA calf serum albumin
  • the anti-DSG3 antibody already bound to the support and the DSG3 protein are bound by incubation with the test sample added to the support.
  • DSG3 non-specifically bound to the support other than the DSG3 protein bound to the anti-DSG3 antibody on the support. Protein is removed.
  • the method of detecting the DSG3 protein in the test sample by qualitatively or quantitatively detecting the DSG3 protein bound to the anti-DSG3 antibody on the support can be cited as a detection method using the anti-DSG3 antibody.
  • some specific examples are described below.
  • Examples of the support used for immobilizing the anti-DSG3 antibody in the present invention include insoluble polysaccharides such as agarose and cellulose, silicone resin, polystyrene resin, polyacrylamide resin, nylon resin, polycarbonate resin and the like. And an insoluble support such as glass. These supports are used in the form of beads or plates. In the case of beads, a column packed with these can be used. In the case of plates, multiwell plates (96-well multiwell plates, etc.), biosensor chips, etc. can be used. In the binding between the anti-DSG3 antibody and the support, the anti-DSG3 antibody can be bound to the support by a commonly used method such as chemical bonding or physical adsorption. All of these supports can be used commercially.
  • the binding between the anti-DSG3 antibody and the DSG3 protein is usually performed in a buffer.
  • a buffer solution for example, phosphate buffer solution, Tris buffer solution, citrate buffer solution, borate buffer solution, carbonate buffer solution and the like are used.
  • incubation conditions incubation can be suitably performed under conditions that are already frequently used, for example, at a temperature between 4 ° C. and room temperature for a period of 1 to 24 hours. Washing after the incubation can be anything that does not interfere with the binding of the DSG3 protein to the anti-DSG3 antibody.
  • Such buffer containing a surfactant such as T wee n20 can be suitably used.
  • a control sample can be appropriately prepared in addition to a test sample for detecting the DSG3 protein content.
  • the control sample include a negative control sample not containing DSG 3 protein and a positive control sample containing DSG 3 protein.
  • the presence or absence of DSG3 protein in the test sample can be determined by comparing the results obtained with the negative control sample without DSG3 protein with the results obtained with the positive control sample with DSG3 protein. I can confirm.
  • a series of control samples with varying concentrations is prepared, and the detection results for each control sample are obtained as numerical values, and then a standard created based on the DSG3 protein concentration value and the corresponding measurement value. Based on the curve, the DSG3 protein contained in the test sample can be quantitatively detected.
  • Preferable detection of the DSG3 protein bound to the support via the anti-DSG3 antibody! there is a method using an anti-DSG3 antibody labeled with a labeling substance.
  • the test sample is brought into contact with the anti-DSG3 antibody immobilized on the support, and after washing, the DSG3 protein is detected by using a labeled antibody that specifically recognizes the DSG3 protein bound to the anti-DSG3 antibody. it can.
  • Labeling of the anti-DSG3 antibody can be performed by a generally known method.
  • labeling substances known to those skilled in the art such as fluorescent dyes, enzymes, coenzymes, chemiluminescent substances, radioactive substances, etc. can be used. Specific examples include radioisotopes (32P, 14C).
  • a solution containing an anti-DSG3 antibody to a support such as a plate.
  • the anti-DSG3 antibody is immobilized on the support.
  • the plate is blocked with, for example, calf serum albumin (BSA), gelatin, albumin, etc. to prevent nonspecific binding of proteins.
  • BSA calf serum albumin
  • incubation is performed by adding the test sample to the plate. After incubation, the plate is washed and labeled anti-DSG3 antibody is added. After moderate incubation, the plate is washed and the labeled anti-DSG3 antibody remaining on the plate can be detected. Detection can be performed by methods known to those skilled in the art.
  • the labeled anti-DSG3 antibody when detecting an anti-DSG3 antibody labeled with a radioactive substance, can be detected by liquid scintillation or RIA.
  • an enzymatic change of the substrate after adding a substrate to the labeled anti-DSG3 antibody, an enzymatic change of the substrate, such as color development, can be detected with an absorptiometer.
  • substrates include 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,2-phenylenediamine (ortho-phenylenediamine), 3 , 3 ', 5, 5'-tetramethylbenzidine (TMB). If the substrate is a fluorescent material, enzymatic changes in the substrate can be detected using a fluorometer.
  • ABTS 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
  • TMB 1,2-phenylenediamine
  • TMB 5'-tetramethylbenzidine
  • a particularly preferred embodiment of the method for detecting a DSG3 protein of the present invention includes a method using an anti-DSG3 antibody labeled with biotin and avidin.
  • the anti-DSG3 antibody can be immobilized on the plate by adding a solution containing the anti-DSG3 antibody to a support such as a plate. After the plate is washed, the plate is blocked with, for example, BSA to prevent nonspecific binding of proteins. The plate is washed again and the test sample is added to the plate. After incubation, the plate is washed and biotin-labeled anti-DSG3 antibody is added to the plate.
  • the plate After moderate incubation, the plate is washed and avidin coupled with an enzyme such as alkaline phosphatase, peroxidase, etc. is added to the plate. After the incubation, the plate is washed, a substrate on which an enzyme bound to avidin acts is added, and DSG3 protein can be detected using an enzymatic change of the substrate as an index.
  • an enzyme such as alkaline phosphatase, peroxidase, etc.
  • one or more types of primary antibodies that specifically recognize the DSG3 protein and the primary antibody are specifically recognized.
  • a method using one or more secondary antibodies can be mentioned.
  • the plate is blocked with, for example, calf serum albumin (BSA), gelatin, albumin, etc. in order to prevent non-specific binding of the protein to the support.
  • BSA calf serum albumin
  • the plate is washed with a washing solution to remove DSG3 protein non-specifically bound to the support without specific binding to the anti-DSG3 antibody from the plate.
  • the secondary antibody After binding an anti-DSG3 antibody different from the antibody bound to the support to the DSG3 protein, it can bind only to the anti-DSG3 antibody bound to the DSG3 protein, not to the support.
  • a secondary antibody is reacted with the complex of the DSG3 protein and the anti-DSG3 antibody.
  • the secondary antibody can be suitably labeled with a labeling substance.
  • DSG3 protein can be detected using a carrier on which an anti-DSG3 antibody is adsorbed.
  • a carrier on which an anti-DSG3 antibody is adsorbed any carrier may be used as long as it is insoluble, does not cause a nonspecific reaction, and is stable.
  • latex particles that are capable of using latex particles, bentonite, collodion, kaolin, fixed sheep erythrocytes and the like. As latex particles
  • polystyrene latex particles which can use polystyrene latex particles, styrene-butadiene copolymer latex particles, polybutyl toluene latex particles, and the like.
  • DSG3 protein can also be detected by measuring the increase in turbidity due to aggregation with a spectrophotometer or the like.
  • DSG3 protein detection method of the present invention include, for example, surface plasmo And a method using a biosensor utilizing the resonance phenomenon.
  • a biosensor utilizing the surface plasmon resonance phenomenon By using a biosensor utilizing the surface plasmon resonance phenomenon, the interaction between the protein and the protein can be observed as a surface plasmon resonance signal without labeling the protein in real time.
  • the binding of DSG3 protein and anti-DSG3 antibody can be detected by using a biosensor such as BIAcore (manufactured by Biacore). Specifically, a test sample is brought into contact with a sensor chip on which an anti-DSG3 antibody is immobilized, and a DSG3 protein that binds to the anti-DSG3 antibody can be detected as a change in resonance signal.
  • Anti-DSG3 antibodies can be radiolabeled by short-lived RI using positron emitting nuclides such as 11C, 13N, 150, 18F, and 45Ti in addition to the above nuclides.
  • 25-4000 keV gamma particles or positron emission activity values can be used appropriately.
  • a suitable nuclide is selected and administered in a larger amount, a therapeutic effect can be expected.
  • a gamma particle or positron emission value of 70-700 keV can be used appropriately.
  • the expression of DSG3 mRNA is detected.
  • detection includes quantitative or qualitative detection.
  • qualitative detection includes simply measuring whether or not DSG3 mRNA is present, whether DSG3 mRNA is present in a certain amount or more. Measurement of whether or not the amount of DSG3 mRNA is compared with other samples (eg, control samples).
  • quantitative detection includes measurement of the DSG3 mRNA concentration, measurement of the DSG3 mRNA amount, and the like.
  • the test sample is not particularly limited as long as it may contain DSG3 mRNA, but a sample collected from the body of an organism such as a mammal is preferred, and more preferably collected from a human. Sample. Specific examples of the test sample include, for example, blood, interstitial fluid, plasma, extravascular fluid, cerebrospinal fluid, synovial fluid, pleural fluid, serum, lymph fluid, saliva, urine, etc. Is blood, serum, or plasma.
  • a sample obtained from a test sample such as a specimen in which tissues or cells collected from the body of an organism are fixed, or a cell culture solution, is also included in the test sample of the present invention.
  • the cancer to be diagnosed is not particularly limited and may be any cancer. Specific examples include lung cancer, colon cancer, esophageal cancer, stomach cancer, sputum cancer, skin cancer, uterine cancer, and the like. Can do. Preferred is lung cancer, and particularly preferred is non-small cell lung cancer.
  • the subject in the present invention may be any animal species genetically having the DSG3 protein, and as such animal species, many mammals other than humans such as monkeys, ushi, hidge, mice, inu, cats and hamsters are known. Yes.
  • the subject that is particularly preferably used is a human force, but is not limited to this.
  • a sample is prepared from a subject.
  • the mRNA of DSG3 contained in the sample is detected.
  • cDNA synthesized from mRNA may be detected.
  • the DSG3 mRNA or cDNA encoding DSG3 is detected in a test sample
  • the DSG3 mRNA or DSG3 detected in the test sample compared to a negative control or a healthy subject is detected.
  • Examples of such methods include methods well known to those skilled in the art, such as Northern blotting, RT-PCR, and DNA array.
  • the detection method of the present invention described above can be automated using various automatic inspection apparatuses, and a large number of samples can be inspected at a time.
  • the present invention is also aimed at providing a diagnostic agent or kit for detecting DSG3 protein in a test sample for diagnosis of cancer, and the diagnostic agent or kit is at least an anti-DSG3 antibody.
  • the diagnostic agent or kit is based on an EIA method such as an ELISA method, it may contain a carrier on which the antibody is immobilized, or the antibody may be bound to the carrier beforehand! /.
  • the diagnostic agent or kit is based on an agglutination method using a carrier such as latex, it may contain a carrier on which an antibody is adsorbed.
  • the present invention also aims to provide a diagnostic agent or kit for detecting DSG3 mRNA in a test sample for cancer diagnosis or cDNA encoding DSG3.
  • the drug or kit contains at least an oligonucleotide containing at least 15 nucleotides complementary to the DNA encoding DSG3 (DNA consisting of the base sequence described in SEQ ID NO: 39) or its complementary strand.
  • the “complementary strand” refers to the other strand with respect to one strand of a double-stranded nucleic acid consisting of A: T (U in the case of RNA) and G: C base pairs.
  • “complementary” is not limited to the case where the sequence is completely complementary in at least 15 contiguous nucleotide regions, and is at least 70%, preferably at least 80%, more preferably 90%, and further preferably 95. It is only necessary to have homology on the base sequence of at least%. The algorithm described in this specification may be used as an algorithm for determining homology.
  • the oligonucleotide of the present invention can be used as a probe or primer for detecting or amplifying DNA encoding DSG3, or as a probe or primer for detecting the expression of the DNA. Further, the oligonucleotide of the present invention can be used in the form of a DNA array substrate.
  • the oligonucleotide When the oligonucleotide is used as a primer, its length is usually 15 bp to 100 bp, preferably 17 bp to 30 bp.
  • the primer is not particularly limited as long as it can amplify at least a part of DNA encoding DSG3 or its complementary strand.
  • the 3 ′ region can be complementary, and a restriction enzyme recognition sequence or tag can be added to the 5 ′ side.
  • the probe is not particularly limited as long as it specifically hybridizes to at least a part of DNA encoding DSG 3 or its complementary strand.
  • the probe may be a synthetic oligonucleotide and usually has a chain length of at least 15 bp.
  • the oligonucleotide of the present invention is used as a probe, it is preferably used after appropriately labeling.
  • a labeling method a method of labeling by phosphorylating the 5 ′ end of an oligonucleotide with 32 P using T4 polynucleotide kinase, a random hexamer oligonucleotide or the like using a DNA polymerase such as Talenow enzyme, etc. It is possible to exemplify a method (such as random prime method) in which a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin is incorporated as a primer.
  • the oligonucleotide of the present invention can be produced, for example, with a commercially available oligonucleotide synthesizer. Probes can be prepared as double-stranded DNA fragments obtained by restriction enzyme treatment.
  • oligonucleotides and antibodies that are active ingredients for example, sterile water, physiological saline, vegetable oil, surfactants, lipids, solubilizers, buffers, and protein stabilizers. (BSA, gelatin, etc.), a preservative, a blocking solution, a reaction solution, a reaction stop solution, a reagent for treating the sample, and the like may be mixed as necessary.
  • BSA basic saquer for example, sterile water, physiological saline, vegetable oil, surfactants, lipids, solubilizers, buffers, and protein stabilizers.
  • a preservative a blocking solution, a reaction solution, a reaction stop solution, a reagent for treating the sample, and the like may be mixed as necessary.
  • the ability of the diagnostic method of the present invention to be performed either in vitro or in vivo is preferably performed in vitro! /.
  • a preferred embodiment of the method for diagnosing cancer of the present invention includes a method comprising the following steps.
  • anti-DSG3 antibody used in the present invention only needs to specifically bind to the DSG3 protein, and its origin, type (monoclonal, polyclonal) and shape are not limited. Specifically, known antibodies such as animal antibodies (eg, mouse antibodies, rat antibodies, camel antibodies), human antibodies, chimeric antibodies, and humanized antibodies can be used.
  • the antibody may be a polyclonal antibody, preferably a monoclonal antibody.
  • the anti-DSG3 antibody used in the present invention can be obtained as a polyclonal or monoclonal antibody using known means.
  • the anti-DSG3 antibody used in the present invention is particularly preferably a monoclonal antibody derived from a mammal.
  • Mammal-derived monoclonal antibodies include those produced by Hypridoma and those produced by a host transformed with an expression vector containing the antibody gene by genetic engineering techniques.
  • Monoclonal Antibody-Producing Hybridoma Force Basically, a known technique can be used to produce a hybridoma. That is, DSG3 protein is used as a sensitizing antigen, and this is immunized according to a normal immunization method, and the resulting immune cells are fused with a known parent cell by a normal cell fusion method, and then by a normal screening method. By screening monoclonal antibody-producing cells, hybridomas that produce anti-DSG3 antibodies can be selected.
  • the production of the monoclonal antibody is carried out as follows, for example.
  • DSG3 gene whose nucleotide sequence is disclosed in GenBank accession number NM_001944 (SEQ ID NO: 39)
  • DS can be used as a sensitizing antigen for obtaining antibodies.
  • G3 protein can be obtained. That is, after inserting a gene sequence encoding DSG3 into a known expression vector to transform an appropriate host cell, the desired human DSG3 protein is obtained from the host cell or culture supernatant by a known method. It can be purified. Purified natural DSG3 protein can also be used as well.
  • the purified DSG3 protein can be used as a sensitizing antigen used for immunization against mammals.
  • a partial peptide of DSG3 can also be used as a sensitizing antigen.
  • the partial peptide can also be obtained by chemical synthesis from the amino acid sequence of human DSG3, or can be obtained by incorporating a part of the DSG3 gene into an expression vector for expression, and further, DSG3 protein can be proteolytically degraded. It can also be obtained by degrading with an enzyme.
  • the region and size of DSG3 used as a peptide is not limited.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but it is generally preferable to select it in consideration of compatibility with the parent cell used for cell fusion. Similar animals, such as mice, rats, Musters, or rabbits, monkeys, etc. are used.
  • the above animals can be immunized with a sensitizing antigen according to a known method.
  • immunization can be performed by injecting a sensitizing antigen intraperitoneally or subcutaneously into a mammal.
  • a sensitized antigen diluted with PBS (Phosphate-Buffered Saline) or physiological saline at an appropriate dilution ratio is mixed with a normal adjuvant, for example, Freund's complete adjuvant, and emulsified, if desired.
  • a normal adjuvant for example, Freund's complete adjuvant
  • emulsified if desired.
  • An appropriate carrier can be used for immunization with the sensitizing antigen.
  • a partial peptide having a low molecular weight when used as a sensitizing antigen, it is desirable to immunize the sensitizing antigen peptide by binding it to albumin or keyhole limpet with a carrier protein such as mosocyanin! / ⁇ .
  • immune cells are collected from the mammal and subjected to cell fusion.
  • spleen cells can be used as preferred immune cells.
  • Mammalian myeloma cells are used as cells to be fused with the immune cells.
  • Examples of the myeloma cells include various known cell lines such as P3 (P3x63Ag8.653) (J. Im munol. (1979) 123, 1548-1550), P3x63Ag8U. Current Topics in Microbiology and Immunology (1978) 81, 1-7 NS-1 (ohler. G. and Milstein, C. Eur. J. Immunol. (1 976) 6, 511-519), MPC-11 (Margulies. DH et al., Cell (1976) 8, 405-415), SP2 / 0 (Shulman, M. et al., Nature (1978) 276, 269-270), FO (de St. Groth, SF etal., J. I mmunol.
  • P3 P3x63Ag8.653
  • P3x63Ag8U Current Topics in Microbiology and Immunology (1978) 81, 1-7
  • the immunization is carried out according to a known method, for example, the method of Kohler and G. Mildine, C., Methods Enzymol. (1981) 73, 3-46). Cells and mye Cell fusion with Roman cells is performed.
  • the cell fusion can be carried out in a normal nutrient culture medium in the presence of a cell fusion promoter.
  • a cell fusion promoter for example, polyethylene glycol (PEG), Sendai virus (HVJ) or the like is used, and an auxiliary agent such as dimethyl sulfoxide is optionally added to increase the fusion efficiency.
  • the use ratio of immune cells and myeloma cells can be arbitrarily set.
  • the number of immune cells is preferably 1 to 10 times that of myeloma cells.
  • the culture medium used for the cell fusion for example, RPMI1640 culture medium suitable for the growth of the myeloma cell line, MEM culture medium, and other normal culture liquids used for this type of cell culture can be used. Serum supplements such as fetal calf serum (FCS) are preferably added and used together.
  • FCS fetal calf serum
  • a predetermined amount of the immune cells and myeloma cells are mixed well in the culture medium, and a PEG solution (for example, an average molecular weight of about 1000 to 6000) that has been pre-warmed to about 37 ° C is usually used
  • a PEG solution for example, an average molecular weight of about 1000 to 6000
  • the target fusion cell (nobridoma) is formed.
  • cell fusion agents and the like unfavorable for the growth of hypridoma can be removed by repeating the operation of adding the appropriate culture solution mentioned above successively, centrifuging and removing the supernatant.
  • the hypridoma thus obtained can be selected by culturing in a normal selective culture solution, for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Cultivation using the above HAT culture solution can be continued for a time sufficient for cells other than the target hyperpridoma (non-fused cells) to die (usually sufficient time is several days to several weeks). Then, by carrying out the usual limiting dilution method, screening and single cloning of hybridomas producing the target antibody can be performed.
  • a normal selective culture solution for example, a HAT culture solution (a culture solution containing hypoxanthine, aminopterin and thymidine). Cultivation using the above HAT culture solution can be continued for a time sufficient for cells other than the target hyperpridoma (non-fused cells) to die (usually sufficient time is several days to several weeks). Then, by carrying out the usual limiting dilution method, screening and single clon
  • an antibody recognizing DSG3 may be prepared using the method described in International Publication WO03 / 104453.
  • the antigen is bound to a carrier such as beads made of polystyrene or a commercially available 96-well microtiter plate.
  • the target antibody that reacts with the sensitizing antigen is contained in the culture supernatant by reacting with the culture supernatant of,, and hybridoma, washing the carrier, and then reacting with a secondary antibody labeled with an enzyme.
  • human lymphocytes were sensitized with DSG3 protein in vitro, and the sensitized lymphocytes were of human origin.
  • a desired human antibody having a binding activity to the DSG3 protein can also be obtained by fusing with myeloma cells having permanent division ability (see Japanese Patent Publication No. 1-59878).
  • the DSG3 protein is obtained from the immortalized cell.
  • a desired human antibody can also be obtained by isolating a human antibody against (see International Publication WO 94/25585, W093 / 12227, WO 92/03918, WO 94/02602).
  • the hybridoma producing the monoclonal antibody thus produced can be subcultured in a normal culture solution, and the hybridoma can be stored in liquid nitrogen for a long period of time. it can.
  • the hyperidoma is cultured according to an ordinary method and obtained as a culture supernatant, or the hyperidoma is administered to a mammal compatible therewith.
  • the method of proliferating it and obtaining it as ascites can be suitably implemented.
  • the former method is suitable for obtaining high-purity antibodies, while the latter method is suitable for mass production of antibodies.
  • a recombinant type produced by a recombinant cell produced using a gene recombination technique in which the gene is incorporated into an appropriate vector and introduced into a host.
  • the antibody can be used as a monoclonal antibody (see, for example, Vandamme, AM et al., Eur. J. Biochem. (1990) 192, 767-775).
  • anti-DSG3 antibody produces anti-DSG3 antibody from a hybridoma cell. It can be obtained by isolating mRNA encoding the variable region (V region) of the DSG3 antibody.
  • total RNA is obtained by a known method such as guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299), AGPC method (Chomczynski, P. et al., Anal. Biochem. (1987) 162, 156-159) and the like, and then the target mRNA is prepared using an mRNA purification kit (manufactured by GE Healthcare Bioscience). Alternatively, mRNA can be directly prepared from the hybridoma by using QuickPrep mRNA Purification Kit (manufactured by GE Healthcare Bioscience).
  • cDNA of the antibody V region can be synthesized from the obtained mRNA using reverse transcriptase.
  • the cDNA can be synthesized using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (manufactured by Seikagaku Kogyo Co., Ltd.).
  • AMV Reverse Transcriptase First-strand cDNA Synthesis Kit manufactured by Seikagaku Kogyo Co., Ltd.
  • 5'-A mpli FINDER RACE Kit manufactured by Clontech
  • PCR using 5, -RACE method Frohman, MA et al., Proc. Natl. Acad. Sci. USA) (1988) 85, 8998-9002, Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) etc.
  • Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932) etc. can also be suitably used
  • the target cDNA fragment is purified from the obtained PCR product, and then ligated with vector DNA at! /.
  • a recombinant vector is prepared, introduced into E. coli and the like and a colony is selected, a desired recombinant vector can be prepared from E. coli that has formed the colony.
  • the recombinant vector has the nucleotide sequence of the target cDNA can be confirmed by a known method such as the dideoxynucleotide chain termination method.
  • the cDNA is digested with an enzyme that recognizes restriction enzyme sites inserted at both ends of the cDNA.
  • CDN A encoding the V region of the anti-DSG3 antibody digested as described above can be fused in-frame with DNA encoding the desired antibody constant region (C region) by digesting with the same combination of enzymes. Incorporated by ligation to an expression vector comprising the C region as possible.
  • an expression vector is expressed so that the antibody gene is expressed under the control of an expression control region such as an enhancer or promoter.
  • the method of incorporating in can be suitably used.
  • recombinant cells expressing DNA encoding the anti-DSG3 antibody can be obtained by suitably transforming host cells using this expression vector.
  • the expression of the antibody gene may be carried out by co-transforming the host cell by separately incorporating DNAs encoding the antibody heavy chain (H chain) or light chain (L chain) into an expression vector.
  • DNA encoding the L chain may be incorporated into a single expression vector to transform the host cell! /, (See International Publication WO 94/11523).
  • an antibody gene is isolated and introduced into an appropriate host to produce an antibody
  • a combination of an appropriate host and an expression vector can be preferably used.
  • animal cells include: (1) mammalian cells such as CHO, COS, myeloma, BH (baby hamster kidney), Hela, Vero, (2) amphibian cells such as Xenopus oocytes, or (3) Insect cells such as si9, si21, and Tn5 are known.
  • plant cells cells derived from the genus Nicotiana na, such as Nicotiana tabacum, are known, and these may be cultured in callus.
  • Fungal cells include yeast, for example, Saccharomyces, f row; ⁇ is Saccharomyces serevisiae, for example, Aspergillus, for example Aspergillus niger When prokaryotic cells are used, production systems using bacterial cells can be suitably used, and bacterial cells such as E. coli and Bacillus subtilis are known.
  • a desired antibody can be obtained from the transformed cell culture by introducing an expression vector containing the target antibody gene into the cell by transformation and culturing the transformed cell in vitro. .
  • Transgenic animals other than the above-mentioned host cells can be suitably used for the production of recombinant antibodies.
  • an antibody gene can be constructed as a fusion gene by inserting in frame into a gene encoding a protein (eg, goat ⁇ -casein) that is uniquely produced in milk.
  • the DN fragment containing the fusion gene into which the antibody gene has been inserted is injected into a goat embryo, which can be introduced into a female goat. Desired antibodies from milk produced by transgene goats born from goats that received embryos or their progeny Can be obtained.
  • hormones can be used as appropriate in Transgene goats (Ebert,. M. et al., Bio / Technology (1994) in order to increase the amount of milk containing the desired antibody produced from Transgene goats. ) 12, 699-702).
  • the C region of the recombinant antibody of the present invention a C region derived from an animal antibody can be used.
  • the H chain C region of a mouse antibody includes: 1, (: 0/2 &, (: 0/213, (: 0/3, (:, 0, 0 ⁇ 1, 1 ⁇ 2, C ⁇ force L C ⁇ and C ⁇ can be used as the chain C region, and animal antibodies such as rat, rabbit, goat, hidge, latada, monkey, etc. can be used as animal antibodies other than mouse antibodies.
  • the C region can be modified to improve the stability of the antibody or its production.
  • an artificially modified recombinant antibody such as a chimeric antibody or a humanized antibody
  • a chimeric antibody or a humanized antibody is used for the purpose of reducing xenoantigenicity against humans.
  • modified antibodies can be produced using known methods.
  • Chimeric antibodies are non-human animals, for example, antibodies consisting of the variable regions of the heavy and light chains of mouse antibodies and the constant regions of the heavy and light chains of human antibodies, and DNA encoding the variable regions of mouse antibodies.
  • the chimeric antibody produced during the culture can be obtained by culturing recombinant cells transformed with the vector and expressing the incorporated DNA.
  • C region of the chimeric antibody and humanized antibody those of a human antibody are used.
  • H chain 1, 2, 3, Cy 4, C, C ⁇ , C a 1, C a 2.
  • C ⁇ force C ⁇ and C ⁇ can be used as the L chain. These sequences are known.
  • the human antibody C region can be modified to improve the stability of the antibody or its production.
  • the chimeric antibody is composed of a V region of an antibody derived from a non-human animal and a C region derived from a human antibody.
  • humanized antibodies include complementarity determining regions (CDRs) of non-human animal-derived antibodies, framework regions (FRs) from human antibodies, and C regions derived from human antibodies. Consists of Since humanized antibodies have reduced antigenicity in the human body, they are useful as active ingredients of the therapeutic agent of the present invention.
  • Humanized antibodies also called reshaped human antibodies, are non-human animals such as mice.
  • the CDR of a human antibody is transplanted in place of the CDR of a human antibody, and its general gene recombination technique is also known.
  • several oligonucleotides designed so that the DNA sequence designed to fuse the CDR of the mouse antibody and the FR of the human antibody in frame has an overlapping portion at the end. It is synthesized by the PCR method used.
  • An integration vector can be prepared by inserting the DNA obtained as described above and the DNA encoding the human antibody C region into an expression vector so that they are fused in-frame.
  • the CDR is a favorable antigen when linked via CDR.
  • FRs of human antibodies that form a binding site can be suitably selected.
  • FR amino acids may be substituted so that the CDRs of the reshaped human antibody form an appropriate antigen-binding site.
  • the above amino acid substitution can be introduced by appropriately using the PCR method used in the fusion of mouse CDR and human FR, and the binding activity to the antigen of the mutant antibody substituted with the amino acid is measured by the above method.
  • mutant FR sequences with the desired properties can be selected (Sato,. Et al., Cancer Res, 1993, 53, 851-856).
  • human lymphocytes are sensitized in vitro with a desired antigen or a cell that expresses the desired antigen, and the sensitized lymphocytes are fused with human myeloma cells, such as U266, to obtain the desired antigen-binding activity.
  • Human antibodies can be obtained (see Japanese Patent Publication No. 1-59878).
  • a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (International Publication WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, W 0 96/34096, WO 96/33735).
  • a technique for obtaining a human antibody by panning using a human antibody library is also known.
  • the V region of a human antibody can be expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected.
  • the DNA sequence encoding the V region of the human antibody that binds to the antigen can be determined. After determining the DNA sequence of scFv that binds to the antigen, the V region sequence is fused in-frame with the sequence of the desired human antibody C region, and then inserted into an appropriate expression vector to prepare an expression vector.
  • the human antibody can be obtained by introducing the expression vector into a suitable expression cell as described above and expressing the gene encoding the human antibody. These methods are already known and refer to International Publications WO 92/01047, WO 92/20791, W 0 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, and WO 95/15388. I ’ll do that.
  • the antibody used in the present invention includes a monovalent antibody represented by only a bivalent antibody represented by IgG, or a multivalent antibody represented by IgM, as long as it binds to the DSG3 protein.
  • the multivalent antibodies of the present invention include multivalent antibodies that all have the same antigen-binding site, or multivalent antibodies that have some or all different antigen-binding sites.
  • the antibody used in the present invention is not limited to the full-length antibody molecule, and may be a low molecular weight antibody or a modified product thereof as long as it binds to the DSG3 protein.
  • the low molecular weight antibody is not particularly limited as long as it includes an antibody fragment in which a part of a full-length antibody (whole antibody such as whole IgG) is deleted and has an ability to bind to an antigen.
  • the antibody fragment of the present invention is not particularly limited as long as it is a part of a full-length antibody, but includes a heavy chain variable region (VH) and / or a light chain variable region (VL)! ,.
  • VH heavy chain variable region
  • VL light chain variable region
  • the amino acid sequence of VH or VL may be substituted, deleted, added and / or inserted.
  • a part of VH or / and VL may be deleted.
  • the variable region may be humanized if it is chimerized.
  • antibody fragments include, for example, Fab, Fab ′, F (ab ′) 2, and Fv.
  • Specific examples of low molecular weight antibodies include Pab, Fab, r (ab ') 2, rv, scFv (single chain rv), D body, sc (Fv) 2 (single chain (Fv) 2). Multimers of these antibodies (eg, dimer, trimer, tetramer, polymer) are also included in the low molecular weight antibody of the present invention.
  • An antibody fragment is prepared by treating an antibody with an enzyme such as papain or pepsin to produce an antibody fragment, or constructing a gene encoding these antibody fragments and introducing them into an expression vector, followed by appropriate treatment.
  • an enzyme such as papain or pepsin
  • Can be expressed in any host cell eg, Co, MS et al., J. Immunol. (19 94) 152, 2968-2976, Better, M. & Horwitz, AH Methods in Enzymology (1989) 17 8, 476-496, Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476-4 96 Lamoyi, ⁇ ⁇ , Methods in Enzymology (1989) 121, 652-663, Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-669, Bird, RE et al., TIBTECH (1991) 9 , 132-137).
  • Diabody refers to a bivalent antibody fragment constructed by gene fusion (Holliger
  • a diabody is a dimer composed of two polypeptide chains, and each polypeptide chain is usually short enough to have no VL and VH force S in the same chain, for example, about 5 residues. They are linked by a linker. Since VL and VH encoded on the same polypeptide chain cannot form a single-chain variable region fragment because the linker between them is short, Diabody forms two antigen-binding sites. Will have
  • scFv is obtained by linking an H chain V region and an L chain V region of an antibody.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. USA, 1988, 85, 5879-5883).
  • the H chain V region and L chain V region in scFv may be derived from any antibody described as an antibody in the present specification.
  • the peptide linker that links the V regions is not particularly limited. For example, any single-chain peptide consisting of about 3 to 25 residues, the peptide linker described below, and the like can be used.
  • the PCR method as described above can be used as a method for linking the V regions.
  • the scFv-encoding DNA can be amplified by PCR using a pair of primers having sequences corresponding to the sequences at both ends.
  • DNA can be obtained.
  • an expression vector containing them, and the expression Recombinant cells transformed with a vector can be obtained according to a conventional method, and the resulting scFv can be obtained by culturing the resulting recombinant cells and expressing the DNA encoding the scFv.
  • sc (Fv) 2 is a low molecular weight antibody in which two VHs and two VLs are combined with a linker to form a single chain (Hudson et al, J Immunol. Methods 1999; 231: 177 -189).
  • sc (Fv) 2 can be prepared by linking scFv with a linker.
  • VL, VH, VL ([VH] Linker 1 [VL] Linker 1 [VH] Linker 1 [VL]) are arranged in this order!
  • the order of the two VHs and the two VLs is not particularly limited to the above arrangement, and may be arranged in any order. For example, the following arrangements can also be mentioned.
  • the linker that binds the variable region of the antibody may be any peptide linker that can be introduced by genetic engineering, or a synthetic compound linker (for example, Protein Engineering, 9 (3), 299).
  • a force capable of using a linker or the like disclosed in the present invention Peptide linkers are preferred in the present invention.
  • the length of the peptide linker is not particularly limited, and is a force that can be appropriately selected by those skilled in the art according to the purpose. Usually, 1 to 100 amino acids, preferably 3 forces, 50 to 50 amino acids, more preferably 5 to 30 Amino acids, particularly preferably 12 to 18 amino acids (eg 15 amino acids).
  • n is an integer of 1 or more.
  • the length and sequence of the peptide linker can be appropriately selected by those skilled in the art according to the purpose.
  • sc (Fv) 2 in the present invention include, for example, the following sc (Fv)
  • Raising 2 is the power S.
  • Synthetic chemical linkers are commonly used for cross-linking peptides such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), bis (sulfosulfide).
  • Succinimidyl) suberate (BS 3 ), dithiobis (succinimidyl propionate) (DSP), dithiobis (sulfosuccinimidyl propionate) (DTSSP), ethylene glycol bis ( Succinimidyl succinate) (EGS), ethylene glycol bis (sulfo succinimidyl succinate) (sulfo-EGS), disuccinimidyl tartrate (DST), disulfosuccinimidyl tartrate (Sulfo DST), bis [2- (succinimidoxycarbonyloxy) ethyleno] sulfone (BSOCOES), bis [2- (sulfosuccinimidoxycarbonyloxy) ethyl] Sulfone (sulfo-BSOCOES) and the like, these crosslinking agents are commercially available.
  • a preferred low molecular weight antibody is Diabody or sc (Fv) 2.
  • an antibody is treated with an enzyme such as papain or pepsin to generate antibody fragments, or DNA encoding these antibody fragments is constructed and used as an expression vector.
  • expression in an appropriate host cell may be performed (for example, Co, MS et al., J. Immunol. (199 4) 152, 2968-2976; Better, M. and Horwitz, A. ⁇ ., Methods Enzymol.
  • the antibodies of the present invention are not limited to the powers exemplified by the antibodies described in the following (1) to 1 ⁇ 22).
  • Examples of the antibodies described in (1) to 1 ⁇ 22) below include full length antibodies, low molecular weight antibodies, animal antibodies, chimeric antibodies, humanized antibodies, human antibodies and the like.
  • H chain according to (1) which includes the H chain having the amino acid sequence described in SEQ ID NO: 8 (CH coordination IJ of DF151 antibody) as CH (H chain constant region) Antibodies,
  • an antibody comprising the H chain according to (10), wherein the H chain has the amino acid sequence represented by SEQ ID NO: 10 as CH (CH I-J of DF364 mouse-human chimeric antibody),
  • An antibody comprising the H chain according to (1), wherein the H chain has the amino acid sequence represented by SEQ ID NO: 108 (CH binding IJ of the mouse IgG2a antibody) as CH,
  • the amino acid sequence described in SEQ ID NO: 2 as CDR1 (the IJ of H chain CDR1 of DF151 antibody) and the amino acid sequence described in SEQ ID NO: 4 as CDR2 (of DF151 antibody HH chain CDR2 sequence), and VH in “H chain having amino acid sequence shown in SEQ ID NO: 6 as CDR3 (H chain of DF151 antibody H chain CDR3)” is the amino acid shown in SEQ ID NO: 46 Examples thereof include VH having a sequence (DFH antibody VH sequence).
  • amino acid sequence described in SEQ ID NO: 12 as CDR1 (DF151 antibody L chain CDR1 self-sequence) as CDR2
  • amino acid sequence described in SEQ ID NO: 14 as CDR2 described in (4) above (DF15) 1) L chain of antibody L2 CDR2)
  • Examples include VL having the amino acid sequence described (DF 151 antibody VL distribution IJ).
  • amino acid sequence described in SEQ ID NO: 22 as the CDR1 (the sequence of the H chain CDR1 of the DF364 antibody) as described in (10) above
  • amino acid sequence described in SEQ ID NO: 24 as the CDR2 (DF3 64 Antibody H chain CDR2 arrangement 1]
  • VH in the “H chain having the amino acid sequence of SEQ ID NO: 26 (sequence of DF364 antibody H chain CDR3) as CDR3” is shown in SEQ ID NO: 50.
  • Examples include VH having the amino acid sequence described (sequence of VH of DF364 antibody).
  • amino acid sequence described in SEQ ID NO: 81 as CDR1 sequence of H chain CDR1 of DF366 antibody
  • amino acid sequence described in SEQ ID NO: 83 as CDR2 H of DF366 antibody described in (25) above
  • VH in the “H chain having the amino acid sequence shown in SEQ ID NO: 85 as the CDR3 (sequence of chain CDR2)” the H chain having the H chain CDR3 of DF366 antibody
  • amino acid sequence shown in SEQ ID NO: 93 An example is a VH having a DF366 antibody VH column.
  • amino acid sequence (DF36 described in SEQ ID NO: 87 as CDR1 described in (28) above. 6 antibody L chain CDR1 sequence), CDR2 as amino acid sequence described in SEQ ID NO: 89 (DF3 66 antibody L chain CDR2 sequence), and CDR3 as amino acid sequence described in SEQ ID NO: 91 (DF 366 antibody L).
  • VL in the “L chain having chain CDR3 IJ) include the VL having the amino acid sequence described in SEQ ID NO: 95 (the DF366 antibody VL IJ).
  • a preferred embodiment of the antibody described in (61) above is an antibody in which no modification has occurred in CDR.
  • the antibody described in (1) wherein one or a plurality of amino acids are substituted, deleted, added and / or inserted
  • a preferred embodiment of the “antibody having an activity equivalent to that of the antibody described in 1)” has “an activity equivalent to that of the antibody described in (1), wherein one or more amino acids are substituted in the antibody described in (1)”
  • a deleted, added and / or inserted antibody the amino acid sequence IJ described in SEQ ID NO: 2 as CDR1 and the amino acid sequence IJ described in SEQ ID NO: 4 as CDR2 and the sequence as CDR3 No .:
  • preferred embodiments of other antibodies can also be expressed in the same manner.
  • Amino acid mutations can also occur in nature.
  • an antibody having an amino acid sequence in which one or more amino acids are mutated in the amino acid sequence of the antibody of the present invention and functionally equivalent to the antibody is also included in the antibody of the present invention.
  • the number of amino acids to be mutated is usually within 50 amino acids, preferably within 30 amino acids, and more preferably within 10 amino acids (for example, within 5 amino acids).
  • amino acid residue to be mutated another amino acid whose amino acid side chain property is conserved It is desirable to be mutated to an acid.
  • the properties of amino acid side chains include hydrophobic amino acids (A, I, M, F, P, W, Y, V), hydrophilic degenerate amino acids (R, D, N, C, E, Q, G , H, K, S, T), amino acids having lunar aliphatic side chains (G, A, V, L, I, P), amino acids having hydroxyl-containing side chains (S, T, ⁇ ), sulfur atoms Amino acids with side chains (C, M), amino acids with side chains containing carboxylic acids and amides (D, N, E, Q), amino acids with side chains (R, K, ⁇ ), aromatics Amino acids having side chains (H, F, Y, W) can be mentioned (the parentheses indicate single letter amino acids).
  • a polypeptide having an amino acid sequence modified by deletion, addition and / or substitution by another amino acid residue of a certain amino acid sequence has already maintained its biological activity.
  • an antibody that binds to the same epitope as that to which the anti-DSG3 antibody disclosed in the present invention binds is also provided.
  • Such an antibody can be obtained, for example, by the following method.
  • a cross-blocking assay such as a competitive ELISA assay is performed.
  • a cross-blocking assay such as a competitive ELISA assay.
  • ELIS A pre-incubate DSG3 protein coated on microtiter plate wells in the presence or absence of candidate competitive antibodies.
  • the anti-DSG3 antibody of the present invention is added.
  • Cover mechanism DSG3 antibody bound to the DSG3 protein in the well can be determined by using an avidin peroxidase conjugate and an appropriate substrate.
  • the antibody can be labeled with other labels that can be detected and measured, such as radiolabels or fluorescent labels.
  • the amount of labeled anti-DSG3 antibody bound to the DSG3 protein is indirectly correlated with the binding ability of a candidate competitive antibody (test antibody) that competes for binding to the same epitope.
  • test antibody a candidate competitive antibody that competes for binding to the same epitope.
  • the greater the affinity of the test antibody for the same epitope the more the DSG3 protein of the labeled anti-DSG3 antibody The binding activity to the coated well is reduced.
  • the candidate antibody is at least 20%, preferably at least 20-50%, more preferably at least 50% of the anti-DSG3 antibody If the binding can be blocked, the candidate competing antibody is considered to be an antibody that binds to substantially the same epitope as the anti-DSG3 antibody of the invention or competes for binding to the same epitope.
  • Examples of the antibody that binds to the same epitope as that to which the anti-DSG3 antibody binds include, but are not limited to, the force S described in the above-mentioned 1 ⁇ 2 2).
  • the antibodies described in (1) to (62) include bivalent or more polyvalent antibodies that are composed of only monovalent antibodies.
  • the multivalent antibody of the present invention includes multivalent antibodies that all have the same antigen-binding site, or multivalent antibodies that have some or all different antigen-binding sites.
  • HL pairs H and L chains
  • An antibody comprising at least two HL pairs selected from the HL pairs according to (52) to (60).
  • a modified antibody an antibody bound to various molecules such as polyethylene glycol (PEG) can also be used. It is also possible to bind a chemotherapeutic agent, a toxic peptide or a radioactive chemical substance to the antibody.
  • a modified antibody hereinafter referred to as antibody conjugate
  • antibody conjugate can be obtained by chemically modifying the obtained antibody.
  • antibody modification methods have already been established in this field.
  • bispecific antibodies bispecific antibodies (bispecifi) designed using genetic recombination technology to recognize not only DSG3 protein but also chemotherapeutic agents, toxic peptides or radioactive chemicals. c)).
  • the “antibody” in the present invention includes these antibodies.
  • chemotherapeutic agent that binds to an anti-DSG3 antibody to function its cytotoxic activity (including a prodrug that is enzymatically or non-enzymatically converted to the chemotherapeutic agent in vivo), azaribine , Anastrozoie ⁇ azacytidine ⁇ oleomycin, bortezom, bryostatin- 1, D usulfan ⁇ camptothecin ⁇ 10-hydroxycamptothecin s carmustine ⁇ celebrex ⁇ chlorambuci 1, cisplatin ⁇ irinotecan ⁇ carboplatin ⁇ cladribine ⁇ cyclophosphamide s dacydemine ⁇ daunorubicin ⁇ dexametha sone, diethylstilbestroU doxorubicin s doxorubicin glucuronide ⁇ epirubicin ⁇ ethinyl es tradioU est
  • ricin abrin, ribonuclease ⁇ onconase , DNase I, Staphyloc occal enterotoxin-A s pokeweed antiviral protein s gelonin, diphtheria toxin s Pseudom onas exotoxin s Pseudomonas endotoxin ⁇ L-asparaginase s toxic peptides such as PEG L_Asparaginase be suitably Can be used.
  • one or two or more low-molecular chemotherapeutic agents and toxic peptides can be used in appropriate combinations.
  • a covalent bond or a non-covalent bond can be suitably selected for the binding between the anti-DSG3 antibody and the above-described low molecular chemotherapeutic agent, and a method for producing an antibody bound with the chemotherapeutic agent is known.
  • a combination of the above-mentioned toxic peptide-encoding DNA and anti-DSG3 antibody-encoding DNA fused in frame and incorporated into an expression vector by gene recombination.
  • a replacement vector can be constructed. Culturing and integrating transformed cells obtained by introduction into appropriate host cells with the vector The recombinant protein can be prepared by expressing the DNA.
  • the antibody used in the present invention may be a bispecific antibody! /.
  • a bispecific antibody may be a bispecific antibody having an antigen binding site that recognizes different epitopes on the DSG3 molecule, and one antigen binding site recognizes DSG3 and the other antigen binding site. May recognize cytotoxic substances such as chemotherapeutic agents, toxic peptides or radioactive chemicals. In this case, it is possible to act on the cells expressing DSG3 directly with a cytotoxic substance to specifically damage the tumor cells and suppress the growth of the tumor cells.
  • bispecific antibody in which the other antigen-binding site is an antigen that is specifically expressed on the cell surface of the target cancer cell in the same manner as DSG3 and recognizes an antigen different from DSG3. You can do it.
  • Bispecific antibodies can be made by combining HL pairs of two types of antibodies, or hybridomas that produce different monoclonal antibodies can be fused to produce bispecific antibody-producing fusion cells. it can.
  • bispecific antibodies can be produced by genetic engineering techniques.
  • the antibody gene constructed as described above can be expressed and obtained by a known method. In the case of mammalian cells, it can be expressed by functionally binding a useful promoter commonly used, an antibody gene to be expressed, and a poly A signal downstream of the 3 ′ side thereof.
  • a useful promoter commonly used for example, as a promoter / enhancer, a human cytomegalovirus immediate early promoter / enhancer is used.
  • the gene can be expressed by functionally combining a useful promoter commonly used, a signal sequence for antibody secretion, and an antibody gene to be expressed.
  • promoters include lacZ promoter and araB promoter.
  • the pelB signal sequence (Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379) may be used in the case of production in the periplasm of E. coli. Then, after separating the antibody produced in the periplasm, the structure of the antibody is refolded to have the desired binding activity by using a protein denaturant such as guanidine hydrochloride of urea.
  • the origin of replication inserted into the expression vector can be derived from SV40, poliovirus, adenovirus, ushipapilloma virus (BPV), etc.
  • Aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthating guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase (dhfr) gene as selectable markers in the expression vector for copy number amplification Etc. can be purchased.
  • Any expression system such as a eukaryotic cell or a prokaryotic cell system, can be used for the production of the antibody used in the present invention.
  • eukaryotic cells include established mammalian cell lines, insect cell lines, filamentous fungal cells, and animal cells such as yeast cells.
  • prokaryotic cells include bacterial cells such as E. coli cells.
  • the antibodies used in the present invention are expressed using mammalian cells such as CHO, COS, myeloma, BHK, Vero, Hela cells.
  • the transformed host cell is cultured in vitro or in vivo to produce the desired antibody.
  • Host cells are cultured according to a known method.
  • DMEM, MEM, RPMI1640, IMDM can be used as the culture medium, and serum nights such as fetal calf serum (FCS) can be used in combination.
  • FCS fetal calf serum
  • the antibody expressed and produced as described above is used in normal protein purification. Purification can be performed by using known methods alone or in combination. For example, antibodies can be separated and purified by appropriately selecting and combining affinity columns such as protein A columns, chromatography columns, filters, ultrafiltration, salting out, dialysis, etc. (Antibodies A Laboratory Manual Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988).
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • fluorescent immunoassay can be used.
  • the antibody used in the present invention may be an antibody having a modified sugar chain. It is known that the cytotoxic activity of an antibody can be enhanced by modifying the sugar chain of the antibody. Examples of antibodies with modified sugar chains include antibodies with modified glycosylation (such as W099 / 54342), antibodies lacking fucose added to the sugar chain (such as WO00 / 61739 and WO02 / 31140)), and An antibody having a sugar chain having an isecting GlcNAc (WO02 / 79255, etc.) is known.
  • the antibody used in the present invention is preferably an antibody having cytotoxic activity.
  • the cytotoxic activity in the present invention includes, for example, antibody-dependent cell-mediated cytotoxicity (ADCC) activity, complement-dependent cytotoxicity (CDC) ) Activity can be mentioned.
  • ADCC activity means cytotoxic activity by the complement system
  • ADCC activity means that when a specific antibody is attached to the cell surface antigen of the target cell, Fc ⁇ receptor-bearing cells (immune) Cell or the like) binds via Fc ⁇ receptor and impairs the target cell.
  • Whether an anti-DSG3 antibody has ADCC activity or CDC activity can be measured by a known method (for example, Current protocols in Immunology, Chapter 7, Immunologic studies in humans, Editor, John E, oligan et al., John Wiley & Sons, Inc., (1993)).
  • effector cells Specifically, first, effector cells, complement solution, and target cells are prepared.
  • effector cells Specifically, first, effector cells, complement solution, and target cells are prepared.
  • Spleens are removed from CBA / N mice, etc., and spleen cells are isolated in RPMI1640 medium (Invitrogen). Effector cells can be prepared by adjusting the cell concentration to 5 ⁇ 10 6 / ml after washing with the same medium containing 10% urine fetal serum (FBS, HyClone).
  • FBS urine fetal serum
  • Baby Rabbit Complement (CEDARLANE) can be diluted 10-fold with 10% FBS-containing medium (Invitrogen) to prepare a complement solution.
  • DSG3 protein cells transformed with a gene encoding DSG3 protein, lung cancer cell, colon cancer cell, esophageal cancer cell, gastric cancer cell, vaginal cancer cell, skin cancer cell or uterine cancer cell, etc.
  • the target cells can be radiolabeled by culturing at 37 ° C for 1 hour in DMEM medium containing 10% FBS together with mCi 51Cr-sodium chromate (GE Healthcare Biosciences). After radiolabeling, the target cells can be prepared by washing the cells three times with RPMI 1640 medium containing 10% FBS and adjusting the cell concentration to 2 ⁇ 10 5 / ml.
  • ADCC activity or CDC activity can be measured by the method described below.
  • To measure ADCC activity add 501 each of target cells and anti-DSG3 antibody to a 96-well U-bottom plate (Becton Dickinson) and incubate for 15 minutes on ice. Then add effector cells 100 1 and incubate in a carbon dioxide incubator for 4 hours. The final antibody concentration is 0 or lO g / ml. After incubation, 1001 supernatant is collected and radioactivity is measured with a gamma counter (COBRAII AUTO-GAMMA, MODEL D5005, Packard Instrument Company).
  • Cytotoxic activity (%) can be calculated based on the formula (A-C) I (B-C) X 100 using the values obtained.
  • A is the radioactivity in each sample (cpm)
  • B is the radioactivity in the sample with 1% NP-40 (manufactured by nacalai tesque) (cpm)
  • C is the radioactivity of the sample containing only the target cells (cpm ).
  • the antibody having cytotoxic activity of the present invention is more preferably an antibody having no cytolytic activity.
  • the antibody can be suitably selected and obtained as an antibody having no cytolytic activity by measuring the cytolytic activity that inhibits cell adhesion of keratinocytes even in a test tube.
  • the cytolytic activity can be measured in vitro by the method described in, for example, J. Invest. Dermatol., 124, 939-946, 2005.
  • the activity can be evaluated as an inducing activity of PV lesions, which is a phenotype of the cytolytic activity in vivo.
  • the induced activity of PV lesions can be evaluated by the method described in J. Immunology 170, 2170-2178, 2003.
  • the cell in which the anti-DSG3 antibody suppresses proliferation is not particularly limited as long as it is a cell expressing the DSG3 protein, but is preferably a cancer cell, more preferably a lung cancer cell, a colon cancer cell, or an esophageal cancer cell. Gastric cancer cells, vaginal cancer cells, skin cancer cells or uterine cancer cells. More preferred is non-small cell lung cancer. Accordingly, the anti-DSG3 antibody can be used for the treatment or prevention of diseases caused by cell proliferation, such as lung cancer, colon cancer, esophageal cancer, gastric cancer, vaginal cancer, skin cancer or uterine cancer. More preferred are non-small cell lung cancer, and more preferred are lung squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, and large cell carcinoma.
  • the present invention also relates to a polynucleotide encoding the antibody of the present invention, or a polynucleotide encoding an antibody that hybridizes with the polynucleotide under stringent conditions and has an activity equivalent to that of the antibody of the present invention.
  • the present invention also provides a vector containing these polynucleotides and a transformant (including transformed cells) containing the vector.
  • the polynucleotide of the present invention is not particularly limited as long as it encodes the antibody of the present invention, and is a polymer comprising a plurality of bases or base pairs such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA).
  • Non-natural bases may be included.
  • the polynucleotide of the present invention can be used when an antibody is expressed by genetic engineering techniques. It can also be used as a probe when screening an antibody having a function equivalent to that of the antibody of the present invention. That is, a polynucleotide encoding the antibody of the present invention, or a part thereof, is used as a probe, and hybridized with the polynucleotide under stringent conditions by a technique such as hybridization or gene amplification technique (for example, PCR). DNA encoding an antibody having the same activity as the antibody of the present invention can be obtained. Such DNA is also included in the polynucleotide of the present invention.
  • Hybridization technology (Sambrok, J et al., Molecular 2nd ed., 9.47-9.58, old spring Haroor Lab. Press, 1989) is a technology well known to those skilled in the art.
  • Examples of the hybridization conditions include low stringency conditions. Low stringency conditions are, for example, 42 ° C, 0.1 X SSC, 0.1% SDS in washing after hybridization, preferably 50 ° C, 0.1 X SSC, 0.1% SDS. is there. More preferable hybridization conditions include highly stringent conditions. Highly stringent conditions are, for example, conditions of 65 ° C, 5 X SSC and 0.1% SDS.
  • Antibodies functionally equivalent to the antibodies of the present invention encoded by polynucleotides obtained by these hybridization techniques and gene amplification techniques usually have high homology in amino acid sequences with these antibodies.
  • the antibody of the present invention includes an antibody that is functionally equivalent to the antibody of the present invention and has high homology with the amino acid sequence of the antibody.
  • High homology usually means at least 50% identity, preferably 75% identity, more preferably 85% identity, more preferably 95% identity at the amino acid level. Point to. To determine polypeptide homology, the literature (Wilbur, WJ and Lipman, DJ Proc. Natl. Acad. Sci. USA (1983) 80, 726-730).
  • the invention features a pharmaceutical composition containing as an active ingredient an antibody that binds to DSG3 protein.
  • the present invention is also characterized by a cell growth inhibitor, particularly an anticancer agent, which contains an antibody that binds to the DSG3 protein as an active ingredient.
  • the cytostatic agent and anticancer agent of the present invention are preferably administered to a subject who suffers from or is likely to suffer from cancer.
  • the subject in the present invention is an animal species genetically having a DSG3 protein, and any animal species affected or possibly affected by cancer. Powers including, but not limited to, mammals such as monkeys, mice, hidges, mice, dogs, cats and hamsters.
  • the cell growth inhibitor containing an antibody that binds to the DSG3 protein as an active ingredient suppresses cell proliferation including a step of administering an antibody that binds to the DSG3 protein to the subject. It can also be expressed as a method or the use of an antibody that binds to the DSG3 protein in the production of a cytostatic agent.
  • the anticancer agent containing an antibody that binds to the DSG3 protein as an active ingredient is used for preventing or treating cancer including a step of administering an antibody that binds to the DSG3 protein to a subject. Or the use of an antibody that binds to the DSG3 protein in the production of an anticancer agent.
  • containing an antibody that binds to DSG3 as an active ingredient means that an anti-DSG3 antibody is contained as a main active ingredient, and restricts the content of anti-DSG3 antibody. is not.
  • the antibody contained in the pharmaceutical composition of the present invention is not particularly limited as long as it binds to the DSG3 protein. .
  • the pharmaceutical composition of the present invention can be administered either orally or parenterally. Particularly preferred is an administration method by parenteral administration. Specific examples of such administration methods include injection administration, nasal administration, pulmonary administration, and transdermal administration. Injection administration
  • the pharmaceutical composition of the present invention can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, or subcutaneous injection.
  • the administration method can be appropriately selected depending on the age and symptoms of the patient.
  • the dose for example, the dose can be selected in the range of 0.0001 mg to 1000 mg per kg body weight per administration. Or, for example, the dose can be selected in the range of 0.001 mg to 100000 mg / body per patient.
  • the pharmaceutical composition of the present invention is not limited to these doses.
  • the pharmaceutical composition of the present invention can be formulated according to a conventional method (for example, Remington's Pharmaceutical science, latest edition, Mark Pubiisning and ompany, J ⁇ aston, U.3 ⁇ 4.A). It may contain both an acceptable carrier and an additive.
  • an acceptable carrier for example, surfactants, excipients, coloring agents, flavoring agents, preservatives, stabilizers, buffering agents, suspending agents, tonicity agents, binders, disintegrating agents, lubricants, fluidity promoters, Examples include a corrigent, but are not limited thereto, and other conventional carriers can be used as appropriate.
  • the present invention also provides a method for causing damage to a DSG3-expressing cell or a method for suppressing cell proliferation by contacting a DSG3-expressing cell with an antibody that binds to a DSG3 protein.
  • the antibody that binds to the DSG3 protein is as described above as the antibody that binds to the DSG3 protein contained in the cell growth inhibitor of the present invention.
  • the cells to which the anti-DSG3 antibody binds are not particularly limited as long as they express DSG3! /, But are preferably cancer cells, more preferably lung cancer cells, colon cancer cells, and esophagus. Cancer cells, gastric cancer cells, vaginal cancer cells, skin cancer cells or uterine cancer cells, more preferably non-small cell lung cancer
  • “contact” is performed, for example, by adding an antibody to a culture solution for DSG3-expressing cells cultured in a test tube.
  • a solid or the like obtained by solution or lyophilization can be used as appropriate.
  • an aqueous solution it may be an aqueous solution containing pure antibody alone, for example, the surfactants, excipients, coloring agents, flavoring agents, preservatives, stabilizers, buffers described above. It may be a solution containing an agent, a suspending agent, an isotonic agent, a binder, a disintegrant, a lubricant, a fluidity promoter, a corrigent and the like.
  • the concentration to be added is not particularly limited, but the final concentration in the culture medium is preferably in the range of 1 pg / ml to 1 g / ml, more preferably 1 ng / ml to 1 mg / ml, and further Preferably 1 g / ml to 1 mg / ml can be suitably used.
  • contact is further performed in another embodiment by administering to a non-human animal in which a DSG3-expressing cell is transplanted into the body or an animal having a cancer cell that expresses DSG3 endogenously.
  • the administration method can be carried out either orally or parenterally. Particularly preferred are parenteral administration methods, and specific examples of such administration methods include injection administration, nasal administration, pulmonary administration, and transdermal administration.
  • the pharmaceutical composition cell growth inhibitor and anticancer agent of the present invention can be administered systemically or locally by, for example, intravenous injection, intramuscular injection, intraperitoneal injection, subcutaneous injection, and the like.
  • the administration method can be appropriately selected depending on the age and symptoms of the test animal.
  • the aqueous solution When administered as an aqueous solution, it may be an aqueous solution containing only the antibody purely.
  • the dose for example, the dose can be selected in the range of 0.000 1 mg to 1000 mg per kg body weight per administration. Alternatively, for example, the dose can be selected in the range of 0.001 mg to 100000 mg / body per patient.
  • the dose of the antibody of the present invention is not limited to these doses.
  • the following method is preferably used as a method for evaluating or measuring a cytotoxicity caused to a DSG3-expressing cell by contact with an anti-DSG3 antibody.
  • Methods for evaluating or measuring the cytotoxic activity in vitro include antibody-dependent cell-mediated cytotoxicity (ADCC) activity, complement-dependent cytotoxicity described above (complement-dependent cytotoxicity).
  • complement-d mark endent cytotoxicity (CDC) The ability to list measurement methods such as activity. Whether an anti-DSG3 antibody has ADCC activity or CDC activity can be measured by a known method (for example, Current protocols in Im munology, Chapter 7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc., (1993)).
  • a binding antibody that has the same isotype as the anti-DS G3 antibody and has no cytotoxic activity is used as a control antibody in the same manner as the anti-DSG3 antibody.
  • the activity can be determined by showing a strong cytotoxic activity.
  • the isotype of an antibody is determined as a result of a class switch resulting from genetic recombination on the chromosome that occurs during maturation of antibody-producing B cells.
  • the It is known that the difference in isotype is reflected in the difference in physiological and pathological functions of the antibody.
  • the intensity of cytotoxic activity is influenced by the isotype of the antibody as well as the expression level of the antigen. Therefore, in the measurement of the cytotoxic activity described above, it is preferable to use the same isotype as the test antibody as the antibody used as a control.
  • cytotoxic activity in vivo, for example, after transplanting DSG3-expressing cancer cells intradermally or subcutaneously in a non-human test animal, daily or every few days from that day or the next day
  • the test antibody is administered intravenously or intraperitoneally.
  • Cytotoxic activity can be defined by measuring tumor size over time. Cytotoxic activity due to administration of a control antibody having the same isotype as in the in vitro evaluation, and the tumor size in the anti-DSG3 antibody administration group is significantly smaller than the tumor size in the control antibody administration group Can be determined.
  • nude nu / nu
  • the thymus is genetically deleted and the function of the T lymphocyte is deleted.
  • the involvement of T lymphocytes in the test animal can be excluded in the evaluation and measurement of the cytotoxic activity by the administered antibody.
  • a method for evaluating or measuring the inhibitory effect on the proliferation of DSG3-expressing cells due to contact with an anti-DSG3 antibody the following method is preferably used.
  • a method for evaluating or measuring the cell growth inhibitory activity in a test tube a method is used in which the uptake of [ 3 H] -labeled thymidine added to the medium by living cells is measured as an indicator of DNA replication ability.
  • a dye exclusion method in which the ability to remove a dye such as trypan blue outside the cell is measured under a microscope, or an MTT method is used. In the latter case, the live cell is tetrazolium.
  • MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide), which is salted, into a blue formazan product.
  • the test antibody is added to the culture medium of the test cells, and after a certain period of time has elapsed, the MTT solution is added to the culture medium and left to stand for a certain period of time, thereby allowing MTT to be taken into the cells.
  • the yellow compound MTT is converted to a blue compound by succinate dehydrogenase in the mitochondria in the cell.
  • the blue product is dissolved and colored, and the absorbance is measured to provide an indicator of the number of viable cells.
  • reagents such as MTS, XTT, WST-1 and WST-8 are also commercially available (such as nacalai tesque) and can be used conveniently.
  • an antibody having the same isotype as the anti-DSG3 antibody has no cytostatic activity as a control antibody! /, And the bound antibody is used in the same manner as the anti-DSG3 antibody.
  • the activity can be determined by showing stronger cell growth inhibitory activity than the control antibody.
  • the same method as the method for evaluating or measuring the cytotoxic activity in the above-mentioned organism can be suitably used.
  • Gene chip was used to perform DSG3 gene expression analysis.
  • total RNAs prepared by a conventional method using various types of RNA and various excised tissues shown in Tables 1 and 2 using ISOGEN (manufactured by Nihon Bongene) were used. More specifically, total RNA was used for 10 ag each and subjected to GeneChip U-133A (manufactured by Affymetritas) to perform gene analysis according to the Expression Analysis Technical Manual (manufactured by Affymetritas).
  • DSG3 mRNA probe ID: 205595_at HG-U133A
  • lung cancer lung squamous cell carcinoma
  • colon cancer colon cancer
  • cancer cell lines cancer tissues.
  • TE2 esophageal cancer
  • 2M gastric cancer
  • PK-1 ⁇ cancer
  • the expression of the DSG3 gene (probe ID: 205595_at HG-U133A) is very low in normal tissues other than skin, whereas it is found in a wide range of cancer types including lung cancer, colon cancer, esophageal cancer, gastric cancer, and vaginal cancer. It became clear that its expression was enhanced. From the above results, it was suggested that the occurrence of the above cancer could be diagnosed by using the expression of DSG3 as an index.
  • each specimen was prepared as a fixed paraffin-embedded specimen, and the section sliced into 4 ⁇ was attached to a slide glass, and then allowed to stand at 37 ° C for about 16 hours and sufficiently dried.
  • the section was deparaffinized by immersing it in 100% xylene for 5 minutes three times and then hydrophobized by immersing it in 100% ethanol for 5 minutes three times and then immersing in 70% ethanol for 5 minutes. .
  • TBS buffer 10 mM, pH 7.0
  • the section on which the antigen has been activated contains the anti-DSG3 antibody (5G11) (Zymed) diluted to a final concentration of 50 11 g / ml after being washed 3 times with TBS buffer for 3 minutes.
  • the section was treated with the secondary antibody ENVISION + kit / HRP (DAKO) for 1 hour at room temperature.
  • the sections were stained by adding DAB (3,3'-daminobenzamide tetrahydride chloride) as a chromogenic substrate. Hematoxylin was used as a stain for counterstaining nuclei.
  • a full-length cDNA encoding human DSG3 was obtained by PCR amplification using human small intestine Marathon-Ready cDNA (CLONTECH) as a cage.
  • the amplification product obtained by the above PCR reaction was inserted into pGEM-T easy using pGEM-T Easy Vector System I (Promega). Sequencing using the ABI3 730 DNA sequencer confirmed the successful cloning of the cDNA sequence encoding human DSG3.
  • the sequence represented by SEQ ID NO: 39 represents the nucleotide sequence of human DSG3 gene, and the sequence represented by SEQ ID NO: 40 represents the amino acid sequence of human DSG3 protein.
  • pMCN mammalian cell expression vector
  • pMCN is a vector that can be inducibly expressed under the control of the mouse CMV promoter (ACCESSION No. U68299) and incorporates a neomycin resistance gene.
  • A549 cells which are human lung epithelial cancer cell lines that do not express DSG3, and full-length human DSG3 is constitutively expressed by selection with 1000 g / ml Geneticin. A cell line was established.
  • shDSG3_mIgG2aFc A soluble human DSG3 / mouse IgG2a Fc fusion protein (hereinafter referred to as shDSG3_mIgG2aFc) was prepared as an immunizing antigen for producing an anti-DSG3 antibody.
  • Expression vector pMCN to DH ShDSG3_mIgG2aFc in which human DSG3 extracellular region (Metl_Leu616) and mouse IgG2a constant region were linked by Cpol recognition sequence of hinge site was cloned into pMCDN vector incorporating FR gene (pMCDN / shDSG3_mIgG2aFc).
  • the sequence represented by SEQ ID NO: 41 represents the nucleotide sequence of the shDSG3_mIgG2aFc gene
  • the sequence represented by SEQ ID NO: 42 represents the amino acid sequence of shDSG3-mIgG2aFc.
  • the culture supernatant was applied to a Hi Trap ProteinG HP (GE Healthcare Bioscience) column, washed with binding buffer (20 mM sodium phosphate (pH 7.0)), and then eluted buffer (0.1 M glycine-HC1 ( It was eluted at pH 2.7)).
  • the eluate was immediately neutralized by eluting into a tube to which neutralization buffer (1M Tris-HC1 (pH 9.0)) was added.
  • the eluate was subjected to gel filtration using Superdex 200 HR 10/30 (GE Healthcare Bioscience), whereby the solvent of the solution containing the desired antibody was replaced with PBS buffer.
  • the purified protein was quantified by using a DC protein assay kit (BIO-RAD) converted to a concentration using the rabbit IgG attached to the kit as a standard sample.
  • MRL / lpr mice (hereinafter referred to as MRL / lpr mice, purchased from Nippon Charles Liver) were used as immunized animals. Immunization was started at 7 or 8 weeks of age.In the initial immunization, shDSG3_mIgG2aFc was prepared using PBS buffer to contain 100 g per head, and emulsified using Freund's complete adjuvant (Betaton Dickinson). Antigen was administered subcutaneously. Two weeks later, an antigen prepared with Freund's incomplete adjuvant (Bettaton Dickinson) prepared subcutaneously with PBS buffer containing 50 Hg per head was administered subcutaneously.
  • MRL / lpr mice purchased from Nippon Charles Liver
  • PEG1500 (Roche Diagnostics) was added. By gradually adding Cell fusion was performed. Subsequently, PEG1500 was diluted by carefully adding RPMI1640 medium (Invitrogen), and then PEG1500 was removed by removing the supernatant by centrifugation.
  • the fused cell group suspended in RPMI1640 containing 10% FBS was seeded in a 96-well culture plate so that the concentration was 100 ⁇ l / well.
  • RPMI1640 with 10% FBS, 1 x HAT media supplement (SIGMA), 0.5 x BM-and ondimed HI Hybndoma cloning supplem ent (Roche. Diagnostics) to 100 ⁇ 1 / well Hereinafter referred to as HAT medium.
  • Half of the culture broth was replaced with HAT medium after 2 or 3 days, and 7 days later culture supernatant was used for screening with the binding activity to DSG3 molecule as an index.
  • the screening was performed by flow cytometry analysis to detect binding to CHO cells that steadily express full-length human DSG3.
  • the positive clone obtained by the analysis was monocloned by the limiting dilution method. That is, DF120, DF122, DF148, DF151, DF153, DF168, DF331, DF364, and DF366 were established as antibodies that specifically bind to DSG3.
  • the monoclonal antibody was purified from the culture supernatant of hybridomas cultured in HAT medium using FBS (Ultra low IgG) (Invitrogen) as serum, using a Hi Trap ProteinG HP column. It was. The elution fraction was stored at 4 ° C. after the solvent of the solution was replaced with PBS using a PD-10 column (GE Healthcare Bioscience). The purified antibody was quantified by using a DC protein assay kit (BIO-RAD) and converting it to a concentration using urine IgG attached to the kit as a standard sample.
  • FBS Ultra low IgG
  • IgG HP column Hi Trap ProteinG HP column
  • the supernatant was removed from the cell suspension suspended in Multiscreen-HV Filter Plates (Millipore) by centrifuging in FBS / PBS). FACS for cells from which supernatant was removed
  • the cells were reacted with the monoclonal antibody by adding FACS Buffer containing anti-DSG3 monoclonal antibody diluted to an appropriate concentration (3 Hg / ml) with Buffer and allowing to stand on ice for 30 minutes. After removing the supernatant from the reaction solution by centrifugation, the cells were washed once with FACS Buffer. The cells are then suspended by FACS Buffer containing FITC-labeled anti-mouse IgG antibody as a secondary antibody. The secondary antibody was reacted on ice for 30 minutes. After completion of the reaction, the cells from which the supernatant was removed by centrifugation were suspended in FACS Buffer 1001 and subjected to flow cytometry analysis.
  • a FACS Calibur (Betaton Dickinson) was used as the flow cytometer.
  • a gate was set on the live cell population in the histograms of forward scatter and side scatter.
  • 3 g / ml anti-DSG3 monoclonal antibody (DF120, DF122, DF148, DF151, DF153, DF168, DF331, DF364, DF366) strongly bound to CHO cells expressing DSG3, Since it did not bind to a certain CHO cell, it was found that the anti-DSG3 monoclonal antibody specifically binds to DSG3 displayed on the cell membrane.
  • the cells were washed 3 times with the medium. Then, after the cell density was adjusted to 1 ⁇ 10 5 cells / ml in the medium, it was dispensed into a 96-well flat-bottom plate at a rate of 100. Next, the anti-DSG3 antibody diluted in the medium and the control mouse IgG2a antibody (BD Biosciences Pharmingen) was added to each well at 50. The final concentration of antibody was 10 g / ml. Subsequently, after the addition of 50 1 each of the young rabbits complement (Cederlane) diluted 5 times in the culture medium to each well, the plates were placed in a 5% carbon dioxide incubator.
  • A is the radioactivity (cpm) in each well
  • B is the mean value of the radioactivity (cpm) in the well with 100 ⁇ 1 cells and 100 ⁇ 1 of 2% Nonidet P-40 solution (Nacalai Testa)
  • C is Average values of radioactivity (cpm) in wells with 100 1 cells and 100 1 medium added are shown. The measurement is performed in duplicate, and the average value and standard deviation of specific chromium release rate are increased.
  • human skin epithelial cancer cell line A43 purchased from UATCC
  • human lung epithelial cancer cell line A549 purchased from AT CC
  • A549 cell line with constant expression of full-length human DSG3 (DSG3_A549, Example 3-2) )
  • DSG3_A549 A549 cell line with constant expression of full-length human DSG3
  • A431 and DSG3-A549 express DSG3 on the cell membrane.
  • 10% fetal bovine serum (Invitrogen) Dulbeco's Modified Eagle Medium medium (Invitrogen) (hereinafter referred to as DMEM medium) containing penicillin / streptomycin was used.
  • DMEM medium containing 1 mg / ml Geneticin was used to culture the DSG3-A549 cell line.
  • A431 A549 DSG3-A549 cells are added to each well of a 96-well flat-bottom plate at 2 x 10 3 cells (A549 DSG3-A549) or 4 x 10 3 cells (A431) at 37 ° C in a 5% carbon dioxide incubator. For 3 days. After cultivation, Chromium-51 was added at a final concentration of 1.85 M Bq / ml, and the cultivation was continued for another hour. After each well was was washed with 300 1 DMEM medium, 100 1 DMEM medium was added. Next, the specific chromium release rate was determined by adding the anti-DSG3 antibody and the young rabbit complement in the same manner as in the test using the DSG3-CHO cell line.
  • the anti-DSG3 antibody DF151 is a force that induces CDC in a concentration-dependent manner against the A431 and DSG3-A549 cell lines that express DSG3 S A force that does not show CDC activity against the A549 cell line that does not express DSG3 (Fig. 6). From the above results, it was shown that the anti-DSG3 antibody exhibits CDC activity in an antigen-specific manner.
  • ADCC antibody-dependent cellular cytotoxicity
  • spleen cells of Balb mice were cultured for 5 days in RPMI medium containing 50 ng / ml recombinant Hnterleukin-2 (P-mark rotech), or the same.
  • Mouse bone marrow cells were cultured for 6 days in RPMI medium containing 50 ng / ml recombinant human interleukin-2 and 10 ng / ml recombinant mouse GM-CSF (P-mark rotech).
  • Anti-DSG3 antibodies DF151, DF364, and DF366 induced ADCC against the DSG3-A549 and A431 cell lines (FIG. 7). From the above results, it was shown that anti-DSG3 antibody exerts cytotoxicity on cells expressing DSG3 protein through ADCC activity. [Example 5] Determination of anti-DSG3 antibody variable region gene sequence
  • Antibody variable region genes were cloned from hybridomas producing monoclonal antibodies DF151, DF364 and DF366 that showed ADCC activity and CDC activity against DSG3-expressing cells, and their sequences were determined.
  • Antibody genes encoding monoclonal antibodies DF151, DF364 and DF366 were amplified by RT-PCR using total RNA extracted from anti-DSG3 antibody-producing hyperpridoma. Total RNA was extracted from 1 ⁇ 10 7 cells of hyperidoma using RNeasy Plant Mini Kits (QIAGE N).
  • reaction cycle consisting of 10 seconds at 70 ° C and 3 minutes at 72 ° C is repeated 5 times, and further 5 seconds at 94 ° C, 10 seconds at 68 ° C, 72 ° C
  • a PCR reaction was performed in which a reaction cycle of 3 minutes was repeated 25 times. Finally, the reaction product was heated at 72 ° C for 7 minutes.
  • Each PCR product was purified from agarose gel using QIAquick Gel Extraction Kit (QIAGEN), then cloned into pGEM-T Easy vector (Promega), and the base sequence of the clone was determined.
  • the base sequence of CDR1 of the H chain of DF151 is SEQ ID NO: 1, the amino acid sequence is SEQ ID NO: 2, the base sequence of CDR2 is SEQ ID NO: 3, the amino acid sequence is SEQ ID NO: 4, and the base sequence of CDR3 is SEQ ID NO: 5.
  • the amino acid sequence is shown in SEQ ID NO: 6.
  • the base sequence of CDR1 of DF151 L chain is SEQ ID NO: 11, the amino acid sequence is SEQ ID NO: 12, the base sequence of CDR2 is SEQ ID NO: 13, the amino acid sequence is SEQ ID NO: 14, and the base sequence of CDR3 is SEQ ID NO: 15, the amino acid sequence is shown in SEQ ID NO: 16.
  • the base sequence of CDR1 of DF364 L chain is SEQ ID NO: 29
  • the amino acid sequence is SEQ ID NO: 30
  • the base sequence of CDR2 is SEQ ID NO: 31
  • the amino acid sequence is SEQ ID NO: 32
  • the base sequence of CDR3 is SEQ ID NO: 33
  • the amino acid sequence is shown in SEQ ID NO: 34.
  • the base sequence of CDR1 of DF366 L chain is SEQ ID NO: 86
  • the amino acid sequence is SEQ ID NO: 87
  • the base sequence of CDR2 is SEQ ID NO: 88
  • the amino acid sequence is SEQ ID NO: 89
  • the base sequence of CDR3 is SEQ ID NO: 90
  • the amino acid sequence is shown in SEQ ID NO: 91.
  • the base sequence of the heavy chain variable region of DF151 is shown in SEQ ID NO: 45, the amino acid sequence is shown in SEQ ID NO: 46, the base sequence of the L chain variable region is shown in SEQ ID NO: 47, and the amino acid sequence is shown in SEQ ID NO: 48.
  • the base sequence of the H chain variable region of DF364 is shown in SEQ ID NO: 49, the amino acid sequence is shown in SEQ ID NO: 50, the base sequence of the L chain variable region is shown in SEQ ID NO: 51, and the amino acid sequence is shown in SEQ ID NO: 52.
  • the base sequence of the H chain variable region of DF366 is shown in SEQ ID NO: 92, the amino acid sequence is shown in SEQ ID NO: 93, the base sequence of the L chain variable region is shown in SEQ ID NO: 94, and the amino acid sequence is shown in SEQ ID NO: 95.
  • variable region gene sequences of DF151, DF364 and DF366 were determined, the gene sequences of the constant regions adjacent to the variable region were also determined. Genetics with the same sequence as this sequence- ⁇ -3 ⁇ 4r Search using the Basic Local Alignment Search Tool (BLAST) of National Center for Biotechnology Information (http: //www.ncb1.nlm.mh.g0v/BLAST/) Thus, the base sequence of the entire constant region can be obtained. The full-length base sequence can be determined by binding the variable region base sequence to the obtained base region sequence.
  • BLAST Basic Local Alignment Search Tool
  • base coordination IJ (SEQ ID NO: 53) of the heavy chain constant region of DF151
  • base coordination IJ (SEQ ID NO: 54) of the L chain constant region of DF151
  • DF364 and DF366, H of the DF364 and DF366 From the base sequence of the constant chain region (SEQ ID NO: 55), mouse IgG2b base sequence (DDBJ Accession #: BC025447), mouse kappa light chain base sequence (DDBJ Accession #: AY704179), mouse IgG l base sequence (DDBJ Accessions: BC057688).
  • the isotypes of DF151 (mouse IgG2b ⁇ ), DF364 (mouse IgGl ⁇ ) and DF366 (mouse IgGl ⁇ ) were determined in advance using IsoStrip Mouse Monoclonal Antibody Isotyping Kit (ROCHE).
  • the predicted base sequence of the full length of DF151 is shown in SEQ ID NO: 56, the amino acid sequence is shown in SEQ ID NO: 57, the base sequence of the full length of L chain is shown in SEQ ID NO: 58, and the amino acid sequence is shown in SEQ ID NO: 59.
  • the predicted nucleotide sequence of the full length of the DF364 heavy chain is shown in SEQ ID NO: 6
  • the amino acid sequence is shown in SEQ ID NO: 61
  • the full-length base sequence is shown in SEQ ID NO: 62
  • the amino acid sequence is shown in SEQ ID NO: 63.
  • the predicted base sequence of the full length of DF366 is shown in SEQ ID NO: 101
  • the amino acid sequence is shown in SEQ ID NO: 102
  • the base sequence of the full length of L chain is shown in SEQ ID NO: 103
  • the amino acid sequence is shown in SEQ ID NO: 104.
  • the base sequence of the H chain constant region of DF151 is shown in SEQ ID NO: 7, the amino acid sequence is shown in SEQ ID NO: 8, the base sequence of the L chain constant region is shown in SEQ ID NO: 17, and the amino acid sequence is shown in SEQ ID NO: 18.
  • the base sequence of the heavy chain constant region of DF364 and DF366 is shown in SEQ ID NO: 27, the amino acid sequence is shown in SEQ ID NO: 28, the base sequence of the L chain constant region is shown in SEQ ID NO: 35, and the amino acid sequence is shown in SEQ ID NO: 36. .
  • the H chain and L chain variable region sequences of each antibody were linked in frame to the human H chain and human L chain constant region sequences.
  • a synthetic oligonucleotide having a Kozak sequence complementary sequence and EcoRI site at the 5 'end of the base sequence encoding the H chain variable region, and a Nhel site inserted in the sequence that is complementary to the 3' end base sequence PCR was performed using the synthesized oligonucleotides.
  • Synthetic oligonucleotide with a complementary sequence of Kozak sequence and a BamHI site at the 5 'end of the base sequence encoding the light chain variable region, and a synthesis complementary to the 3' end base sequence and having a BsiWI site in the sequence PCR was performed using oligonucleotides.
  • the obtained PCR product was cloned into an antibody expression plasmid pMCDN_Glk.
  • pMCDN_Glk has a human IgGl constant region (base sequence shown in SEQ ID NO: 9 and amino acid sequence shown in SEQ ID NO: 10) cloned in a pMCDN vector.
  • the mouse H chain variable region and human H chain has a structure in which constant regions are linked.
  • an expression unit containing another mouse CMV promoter and a human ⁇ constant region (the nucleotide sequence is shown in SEQ ID NO: 19 and the amino acid sequence is shown in SEQ ID NO: 20) are inserted. It has a structure in which the variable region and human L chain ( ⁇ chain) constant region are linked.
  • This plasmid expresses neomycin resistance gene, DHFR gene, and anti-DS G3 mouse-human chimeric antibody gene in animal cells.
  • PMCDN_Glk_DF151, pMCDN_Glk_DF364, and pMCDN_Glk_DF366 prepared as described above were introduced into DG44 cells by electoporation.
  • DF151 mouse / human chimeric antibody hereinafter referred to as DF151c
  • DF364 by selection with 500 ⁇ g / mL gene ticin CHO cells that constantly express mouse-human chimeric antibody
  • DF366 mouse-human chimeric antibody hereinafter referred to as DF366c
  • the anti-DSG3 mouse-one human chimeric antibody was purified from the culture supernatant of the CHO cell using a Hi Trapr Protein A column (GE Healthcare Bioscience).
  • the purified antibody was exchanged with PBS buffer using a PD-10 column (GE Healthcare Bioscience), quantified by DC Protein Assay, and stored at 4 ° C.
  • the purified anti-DSG3 mouse single human chimeric antibody was confirmed to specifically bind to DSG3 in the same manner as the mouse antibody by flowcytometry analysis.
  • the base sequence of the full length of the H chain of DF151c is shown in SEQ ID NO: 64, the amino acid sequence is shown in SEQ ID NO: 65, the base sequence of the full length of L chain is shown in SEQ ID NO: 66, and the amino acid sequence is shown in SEQ ID NO: 67.
  • the base sequence of the full length of DF364c is shown in SEQ ID NO: 68, the amino acid sequence is shown in SEQ ID NO: 69, the base sequence of the full length of L chain is shown in SEQ ID NO: 70, and the amino acid sequence is shown in SEQ ID NO: 71.
  • the base sequence of the full length H chain of DF366c is shown in SEQ ID NO: 96
  • the amino acid sequence is shown in SEQ ID NO: 97
  • the base sequence of the full length of L chain is shown in SEQ ID NO: 98
  • the amino acid sequence is shown in SEQ ID NO: 99.
  • WO 99/54342 describes improving ADC C activity by modifying glycosylation of antibodies.
  • WO 00/61739 describes that ADCC activity is regulated by the presence or absence of fucose in the sugar chain of an antibody.
  • WO 02/311 40 describes that an antibody is produced that does not contain ⁇ -1,6 core fucose by producing an antibody in the YB2 / 0 cell line! /, And that an antibody having a sugar chain is prepared! / . It was investigated whether anti-DSG3 antibodies could be enhanced by the ADCC improvement techniques listed above.
  • ⁇ 2 / 0 cell line (purchased from ATCC) was cultured as a host cell in RPMI1640 medium containing 10% FBS.
  • the anti-DSG3 mouse single human chimeric antibody expression vector prepared in Example 7 was introduced into the YB2 / 0 cell line under the conditions of 1.4 kV and 25 ⁇ F by the electopore method.
  • Low-fucose DF151 mouse-human chimeric antibody (hereinafter referred to as YB-D F151c) and low-fucose DF364 mouse-human chimeric antibody (hereinafter referred to as YB-DF364c) by selection with 500 ⁇ g / m 1 Geneticin ) And a low fucose DF366 mouse-human chimeric antibody (hereinafter referred to as YB-DF366C) was steadily expressed.
  • YB-DF366C low fucose type anti-DSG3 mouse —Human chimeric antibody was purified from culture supernatant using Hi Trap rProtein A column.
  • the purified antibody was exchanged with PBS buffer using a PD-10 column, quantified by DC Protein Assay, and stored at 4 ° C.
  • the purified low-fucose-type anti-DSG3 mouse single human chimeric antibody was confirmed to specifically bind to DSG3 by flowcytometry analysis in the same manner as the anti-DSG3 mouse-human chimeric antibody.
  • the full-length human DSG3 cDNA was cloned into a mammalian cell expression vector (pMCDN) (pMCDN / hDSG3).
  • pMCDN is a vector that can be inducibly expressed under the mouse CMV promoter (ACCESSION No. U68299) and incorporates a neomycin resistance gene and a DHFR gene.
  • pMCDN / hDSG3 was introduced into Ba / F3 cells (purchased from the RIKEN BioResource Center) by electoral positioning, and the full-length human DSG3 was constantly expressed by selection with 500 ⁇ g / ml Geneticin (Invitrogen) The Ba / F3 cell line (DSG3_Ba / F 3) was established.
  • DSG3_Ba / F3 cells were cultured in RPMI 1640 medium containing 500 g / ml Geneticin, penicillin / streptomycin (Invitrogen), recombinant mouse interleukin- «5 (R & D Systems), 10% f etal bovine serum (Invitrogen) Invitrogen) was used.
  • NK-92 cells purchased from ATCC
  • NK-92 cell line CD 16-NK92
  • the cells were washed 3 times with medium, adjusted to 2 ⁇ 10 5 cells / ml, and added 50 1 to each well of a 96-well round bottom plate.
  • DF151c, DF364c and DF366c and control human IgG antibody were added at 50 ⁇ l per well.
  • the antibody was prepared to a final concentration of 10 g / ml.
  • young rabbit herb complement (Cederlane) was diluted five-fold with the medium and then added 1001 at a time.
  • the plate was allowed to stand for 4 hours at 37 ° C in a 5% carbon dioxide gas incubator.
  • the plate was centrifuged (1000 rpm, 5 minutes, 4 ° C), and the radioactivity of the supernatant 100 1 was measured with a gamma counter (148 0 WIZARD 3 ", Wallac). Based on this, the specific chromium release rate was determined.
  • A is the radioactivity (cpm) of each well
  • B is the average value of the radioactivity (cpm) of the well with 50 ⁇ 1 cells and 150 ⁇ 1 of 2% Nonidet P-40 solution (Nacalai Testa)
  • C Indicates the average radioactivity (cpm) of the wells with 50 1 cells and 150 1 medium added. The test was conducted in duplicate, and the average value and standard deviation of specific chromium release rate were calculated. DF151C, DF364c and DF366c were shown to have CDC activity (FIG. 8).
  • DSG3_Ba / F3 cells were labeled with Chromium-51, 50 a 1 was added to each well of a 96-well round bottom plate.
  • DF364c, DF366c, YB_DF364c, YB_DF366c and 50% control HgG antibody were added per each well.
  • the final concentration of the antibody was prepared by serial dilution in 4 steps at a common ratio of 10 from 1 g / ml.
  • 2 X 10 5 cells / ml of CD16-NK92 cells were added at 100 1 for each well.
  • the plate was allowed to stand at 37 ° C for 4 hours in a 5% carbon dioxide incubator, and the specific chromium release rate was determined by the same method as in 8-3).
  • the miscellaneous antibody also showed ADCC activity depending on the antibody concentration (Fig. 9).
  • low fucose antibodies YB-DF364c and YB-DF366c showed strong ADCC activity.
  • DSG3 was upregulated at the protein level in lung squamous cell carcinoma (see Example 2). Therefore, immunohistochemical staining analysis was newly conducted to confirm the expression of DSG3 protein in lung adenocarcinoma, which is the most commonly affected among skin cancer, uterine cancer, and lung cancer.
  • PFA or lysine—pararormaidehyde (PL P) -fixed AMeX-embedded paraffin block and 10% neutral buffer formaldehyde (NBF) -fixed paraffin-embedded block were prepared from the valley sample, and 3 m slices were prepared.
  • DAB map solution diaminobenzidine
  • DAB Map solution and Ventana Medical Systems were mixed and added, and the reaction was allowed to proceed for 8 minutes at 37 ° C for color development of the substrate, followed by sensitization of color development with Copper sulfate solution (Ventana Medical Systems).
  • nuclear staining was performed with matoxylin, followed by dehydration, penetration, and encapsulation.
  • BCC basal cell carcinoma
  • M metastatic cancer
  • SCC squamous cell carcinoma
  • the base sequence of the heavy chain variable region gene of DF366 antibody was linked in frame to the base sequence of the heavy chain constant region gene of mouse IgG2a.
  • a primer SEQ ID NO: 105 having a 5′-end base sequence, a Kozak sequence, and a restriction enzyme EcoR self-sequence of the H chain variable region gene, and a c-residue in the complementary sequence IJ of the 3′-end base sequence PCR was performed using an antisense primer (SEQ ID NO: 106) to which was added.
  • the amplification product obtained was treated with restriction enzymes EcoRI, constructing a mouse IgG 2 a chimeric H chain expression plasmid (pMCD / G2a) mouse IgG2a chimeric DF366 Ri by the incorporating into EcoRI-NruI site of the antibody H chain expression vector (PMCD / G2a_DF366).
  • p MCD / G2a is a mouse IgG2a heavy chain constant region gene (base sequence: SEQ ID NO: 107, amino acid sequence: SEQ ID NO: 108) cloned in a mammalian cell expression plasmid pMCD, and is present in the heavy chain variable region.
  • the restriction enzyme NrtJ sequence of the heavy chain constant region is ligated.
  • the pMCD vector is an inducible expression under the control of the mouse CMV promoter (ACCESSION No. U68299). It is a vector that has the DHFR gene integrated.
  • the base sequence of the L chain variable region gene of the DF366 antibody was linked in frame to the base sequence of the mouse IgG2a L chain ( ⁇ chain) constant region gene.
  • a primer SEQ ID NO: 109 having a 5′-end nucleotide sequence, a Kozak sequence, and a restriction enzyme EcoR sequence of the L-chain variable region gene, and an anti-DNA sequence with a gcccg residue added to the complementary sequence of the 3′-end nucleotide sequence PCR was performed using the sense primer (SEQ ID NO: 110).
  • the resulting amplified product is treated with the restriction enzyme EcoRI, and then incorporated into the EcoR and Nrul sites of the mouse IgG2a chimera chain ( ⁇ chain) expression plasmid (pMCN / k) to express the mouse IgG2a chimera DF366 antibody L chain expression vector (PMCN / k -DF366 pMCN / k is a plasmid pMCN with mouse IgG2a chain ( ⁇ chain) constant region gene (base sequence: SEQ ID NO: 1 1 1, amino acid sequence: SEQ ID NO: 1 12)
  • the restriction enzyme sequence of the L chain ( ⁇ chain) constant region is linked to the L chain variable region.
  • Plasmid pMCD / G2a_DF366 and plasmid pMCN / k-DF366 were introduced into DG44 cells by electroporation.
  • a CHO cell (DF366m-DG44) that constantly expresses the mouse IgG2a chimeric DF366 antibody (DF366m) was established by selection in a medium not containing 500 ⁇ g / ml Geneticin and nucleic acid (HT supplement).
  • the DF366m antibody was purified from the culture supernatant of DF366m_DG44 using a Hi Trap ProteinG HP column. The solvent was replaced with PBS using a PD-10 column.
  • the concentration of the purified DF366m antibody was quantified using a DC Protein Assay kit.
  • the DF366m antibody was confirmed to specifically bind to DSG3 in the same manner as the DF366 antibody (described in Examples 3-5) by flow cytometric analysis.
  • the full-length base sequence of the DF366m antibody is shown in SEQ ID NO: 1 13, the amino acid sequence is shown in SEQ ID NO: 114, the full-length sequence of the L chain gene is shown in SEQ ID NO: 115, and the amino acid sequence is shown in SEQ ID NO: 116. .
  • RPMI1640 medium (Invitrogen) (hereinafter referred to as RPMI medium) containing penicillin / streptomycin and 10% fetal bovine serum was used.
  • RPMI medium containing penicillin / streptomycin and 10% fetal bovine serum was used.
  • RPMI medium containing penicillin / streptomycin and 10% fetal bovine serum.
  • the cell density was adjusted to 2 ⁇ 10 5 cells / ml, and 50 ⁇ l was dispensed into 96-well U-bottom plates.
  • 50 1 antibody solution was added to each well. After standing at room temperature for 15 minutes, 100 cells of Fekkuta cells (described later) were added.
  • the plate was allowed to stand at 37 ° C for 6 hours in a 5% carbon dioxide incubator. Thereafter, 1001 supernatants were collected from each well, and the radioactivity was measured with a gamma counter (1480 WIZARD 3 ", Wallac). The specific chromium release rate was calculated based on the following formula.
  • A is the radioactivity (cpm) in each tool
  • B is the radioactivity (cpm) in the wells with 50 ⁇ 1 cells and 150 ⁇ 1 of 2% Nonidet P-40 solution (Nacalai Testa).
  • Average value, C indicates the mean value of radioactivity (cpm) in wells supplemented with 50 H 1 cells and 150 H 1 RPMI medium. The measurement is performed in duplicate, and the average value and standard deviation of specific chromium release rate are calculated / calculated.
  • an effector cell a cell obtained by adding 50 ng / ml recombinant human interleukin-2 (P-marked rotech) to a spleen cell prepared from a C3H mouse (Nippon Chyrus Riva Co., Ltd.) (hereinafter referred to as SPL), Alternatively, spleen cells cultured for 4 days in the presence of 50 ng / ml recombinant human interleukin-2 (hereinafter referred to as SPL-LAK) were used. The number of effector cells per well was 5 x 10 5 (SPL) or 2 x 10 5 (SPL-LAK). Mouse IgG2a (Cat. No. 553453, Becton Dickinson) and human IgGl (Cat. No. PHP010, Serotec) were used as negative controls.
  • ADCC activity was measured with DF366m and low-fucose DF366m, but almost no ADCC activity was measured with DF366c and YB-DF366c (FIGS. 10 and 11). So with a mouse DF366m and low-fucose DF366m were considered to show stronger efficacy than DF366c and YB-DF366c.
  • DSG3-SK SK-HEP-1 cell line
  • DSG3-SK cells prepared in a solution containing 1: 1 D-MEM medium and MATRIGEL (Cat. No. 354234, BD Bioscience) at a ratio of 1 ⁇ 10 8 cells / ml. 1 (Wako Pure Chemical Industries, 1 vial was dissolved in 1 ml of distilled water for injection, and then 4 ml of physiological saline was added). 100 1 transplanted subcutaneously into the abdomen. From the 19th day after transplantation, DF366m and low-fucose DF366m were administered once a week for 4 weeks from the tail vein.
  • MATRIGEL Cat. No. 354234, BD Bioscience
  • the antibody was prepared at 1 mg / ml (10 mg / kg administration group) or 0.2 mg / ml (2 mg / kg administration group) in PBS and administered at 10 ml / kg.
  • PBS vehicle
  • the test was conducted with 5 animals per group.
  • Antitumor activity was evaluated by tumor volume. The tumor volume was measured based on the following formula and the mean value and standard deviation were calculated.
  • Tumor volume major axis X minor axis X minor axis / 2
  • Non-parametric Dunnett multiple comparison was used for the significance test, and a P value of less than 0.05 was considered significant.
  • an antibody specific for the DSG3 protein according to the present invention can be used as a diagnostic agent for not only lung cancer but also colorectal cancer, esophageal cancer, gastric cancer, vaginal cancer, skin cancer, uterine cancer and the like. it can. Furthermore, the presence of lung cancer, colon cancer, esophageal cancer, stomach cancer, vaginal cancer, skin cancer or uterine cancer can be detected in vivo by labeling and using the anti-DSG3 antibody with a chemical substance or radioisotope. .
  • the anti-DSG3 antibody having cytotoxic activity according to the present invention is a cytotoxic agent for various cancer cells such as lung cancer, colon cancer, esophageal cancer, gastric cancer, vaginal cancer, skin cancer or uterine cancer that expresses DSG3 protein or It can be used as a cytostatic agent.
  • the anti-DSG3 antibody having cytotoxic activity according to the present invention can be used as a therapeutic agent for various cancers such as lung cancer, colon cancer, esophageal cancer, gastric cancer, vaginal cancer, skin cancer or uterine cancer. it can.
  • the anti-DSG3 antibody according to the present invention can be used as a cancer-therapeutic agent without inducing a pemphigus disease state.
  • a gene encoding the antibody according to the present invention and a recombinant cell transformed with the gene can be used to produce a recombinant antibody that exhibits the effects described above and more preferable effects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hospice & Palliative Care (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 書
抗 Desmoglein3抗体を用いる癌の診断および治療
技術分野
[0001] 本発明は、癌の診断および治療方法、ならびに細胞増殖抑制剤および抗癌剤に 関する。
背景技術
[0002] Desmoglein3 (以下、本明細書中では DSG3と称される。 )分子は、皮膚及び粘膜の 自己免疫水泡形成疾患である尋常性天疱瘡(pemphigus vulgaris,以下本明細書中 では PVと称される。)を羅患した患者の血清から得られた自己抗体を用いたケラチノ サイト(角化細胞)抽出物に対する免疫沈降によって、分子量 130kDaの糖タンパク 質として初めて同定され、 PV Antigen (以下、本明細書中では PVAと称される。)と名 付けられた(非特許文献 1及び J.Clin.Invest. 74, 313-320, 1984)。その後、 PV患者 の血清から上記 130kDaのタンパク質と反応する抗体分子がァフィ二ティ精製によつ て単離された。次にヒトケラチノサイトから単離された polyA RNAを用いて構築された 発現ライブラリーが該単離抗体を使用してスクリーニングされ、 PVAをコードする cD NAが単離された。単離された cDNAについての塩基配列の解析に基づき、 PVA分 子は細胞間接着因子をコードする一群のカドヘリン'スーパーファミリー遺伝子に属 する分子群の配列に対して高!/、相同性を有することが明らかとなつた(非特許文献 2 )。
[0003] 広範な組織で発現して生体内における細胞接着に係る分子であるカドヘリン分子 群の内、細胞膜にある細胞同士の接着部位である desmosome (細胞斑)において発 現している該分子群の集団がデスモゾーマルカドヘリン又は desmoglein (デスモグレ イン)と命名された。 Desmogleinファミリーの一つである DSG3分子の単離及びクロー ユングに使用されたケラチノサイトは表皮の大部分を占める細胞である。隣接する細 胞とは desmosomeにより密接に接着されており、係る接着に DSG3分子が関与してい ると考えられている。 PV患者血清に存在する抗 DSG3自己抗体は DSG3分子に結 合することにより、 DSG3分子を通じた細胞間の接着を阻害し PV病変を引き起こすと 考えられている。
[0004] 上記に記載したように PV患者血清中にポリクローナルに存在する抗 DSG3自己抗 体により PV病変が誘起される力 S、ハイプリドーマをマウスに移植したときに PV様病変 を誘起する能力を有する抗 DSG3モノクローナル抗体も既に単離されている(非特許 文献 3)。該モノクローナル抗体は試験管内にお!/、てもケラチノサイトの細胞接着を阻 害する細胞崩壊活性を有して!/、ること力 S示されて!/、る(非特許文献 4)。上記に記載し たように、抗 DSG3抗体により試験管内で観察される細胞崩壊活性が、生体内にお Vヽては PV病変を誘起する活性であることが示唆されて!/、る。
[0005] 上記に示したように、 DSG3タンパク質がケラチノサイトの接着において重要な機能 を有しており、 PV病変の発生に抗 DSG3抗体が関与していることは知られていた。 一方で、 DSG3タンパク質の他の疾患への関与、又は、抗 DSG3抗体の細胞崩壊活 性以外の機能は明らかにされていなかった。特に、 DSG3分子の哺乳動物、特にヒト における癌、特に肺癌の発生、肺癌細胞の増殖、浸潤、転移、又は形質転換との関 連性はこれまで明らかにされて!/、なかった。
[0006] 各種の癌の中で、肺癌は男女ともに最も死亡率の高い癌であり、我が国における肺 癌の死亡率は、 1950年以降増加した結果、 1998年では肺癌死亡数が 50,871人で全 悪性腫瘍死の約 18%、 1993年以降は男性では胃癌を抜いて死亡数では悪性腫瘍 中の第 1位となっている(厚生統計協会.国民衛生の動向'厚生の指標, 47, 52-53,2 000)。また、世界的にみても年間 300万人ほどが肺癌で死亡している。肺癌の基本的 7 糸且織型 (ま、 Ifefe ^adenocarcinoma;、雁平上皮 (squamous cell carcinoma)、 IfeH 平上皮 ¾S adenosquamous carcinoma)、大細胞 ¾S (large cell carcinoma)、小細胞 ¾S small cell carcinoma)力 なる。前者 4つは、予後や治療方針に大きな差異はみられ ないため、非小細胞肺癌(non-small cell lung cancer)と一括されている。
[0007] 非小細胞肺癌の症例数は、全肺癌の症例数のうち 80から 85%を占める。非小細胞 肺癌の特徴として、小細胞癌と比べると進行が遅ぐ化学療法や放射線療法に対す る反応が不十分であることが挙げられる。したがって、腫瘍が限局している時期では、 外科的切除が第一選択肢となるが、治療成績は TNM分類で同じ病期に相当する胃 癌など他の癌腫に比べると大きく劣っており、最近では集学的治療によってこれを向 上させようという試みが盛んに行われているものの、完全寛解に至る効果的な治療方 法は確立されて!/、な!/、。非小細胞肺癌では、 stagellla期までは手術療法が検討され る一方で、それ以降の臨床病期では手術の適応となることは乏しぐ化学療法、放射 線療法が治療の主体となる。血清診断のマーカーとしては SCC (squamous cell card noma related antigen;、し yfra cytokeratin 19 fragment)、 uEA carcinoembryonic ant igen)、 SLX (sialyl Lewisx-i antigen)などが選択されて、単独で又は糸且み合わせて使 用されているが、ステージ初期の癌に対する陽性率が依然として低ぐステージ初期 における非小細胞肺癌の血清診断の診断を確実ならしめる診断用マーカーの開発 が望まれている(腫瘍マーカーの読み方の実際;肺癌.臨牀と研究 78, 35-40, 2001 )。
[0008] 小細胞肺癌は、我が国では肺癌全体の約 15から 20%を占める腫瘍であり、他の肺 癌と比較して、腫瘍の増殖速度が速い反面、抗癌剤、放射線治療に対する感受性が 高ぐ腺癌、扁平上皮癌、大細胞癌などとは著しく異なる臨床上の特徴を有している 。小細胞癌では、 stagela期(腫瘍径が 20mm以下で、リンパ節、周囲臓器への浸潤及 び転移が認められない)に限っては手術療法が検討される力 基本的には化学療法 、放射線療法が主に採用される治療法である。診断マーカーとして、 NSE (neuron-sp ecinc enolase ^ roG P (pro gastrin— releasing peptide)力、小細胞 にメ寸すな特異 性が比較的高い腫瘍マーカーとして用いられており、その陽性率はそれぞれ約 60% 、 70%と報告されている。
[0009] 肺癌における臨床現場での応用例はまだないが、乳癌あるいはリンフォーマなどに 対しては癌特異的な腫瘍抗原に対するモノクローナル抗体による標的療法が従来の 化学療法剤治療とは異なる作用機作を発揮することから、治療奏効率が上昇してレ、 る。上記の抗体医薬品を使用する標的療法を行う場合に、該抗体が機能して効果を 発揮する活性としては、エフェクター細胞を介した抗体依存性細胞障害 (ADCC)活 性、補体を介した補体依存性細胞障害 (CDC)活性又は化学療法剤、毒性ペプチド 或いは放射性化学物質とのコンジュゲート分子として構築されることにより発揮される 細胞障害活性などが挙げられる。該活性として上記の他に抗体自身が抗原分子に 対してァゴニスティック作用を触媒するァゴニスティック活性、又は細胞活性化若しく は増殖等に対するシグナルを遮断する中和活性等が挙げられる。依然として診断の 陽性率及び疾患の治癒率が低く、完全寛解に余地が残されて!/、る肺癌治療に対し て、上記のような活性を発揮する抗体を用いた分子標的療法を応用するために、肺 癌細胞における腫瘍特異的発現分子を同定し、該分子を標的として望ましい活性を 発揮する抗体を作出することが強く望まれてレ、る。
[0010] 本発明に関連する先行技術文献情報としては以下のものがある。
特許文献 1 :W099/57149
特許文献 2 :WO02/86443
特許文献 3 :WO03/20769
非特許文献 l :J.Clin.Invest. 70, 281-288, 1982
非特許文献 2 : Cell 67, 869-877, 1991
非特許文献 3 :J.Immunologyl70, 2170-2178, 2003
非特許文献 4 :J.Invest.Dermatol., 124, 939-946, 2005
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、抗 DSG3抗体とその用途を提供することを課題とする。より詳細には、抗 DSG3抗体を用いた癌を診断および治療する新規方法、抗 DSG3抗体を含む新規 な細胞増殖抑制剤および抗癌剤、ならびに新規な抗 DSG3抗体を提供することを目 的とする。
課題を解決するための手段
[0012] 本発明者らは DSG3が肺癌などの癌細胞で高発現していることを見出した。さらに 、抗 DSG3抗体の補体依存性細胞障害(CDC)活性、更に抗体依存性細胞障害 (A DCC)活性を測定したところ、抗 DSG3抗体は DSG3発現細胞に対して CDC活性 及び ADCC活性を有することを見出した。更には以上の知見により、本発明者らは、 抗 DSG3抗体が肺癌をはじめとした DSG3が発現亢進する癌の診断、予防および治 療に有効であることを見出して、本発明を完成させた。
[0013] 本発明は、 DSG3タンパク質に結合する抗体を有効成分として含有する医薬組成 物を提供する。本発明はまた、 DSG3タンパク質に結合する抗体を有効成分として含 有する細胞増殖抑制剤を提供する。本発明はまた、 DSG3タンパク質に結合する抗 体を有効成分として含有する抗癌剤を提供する。好ましくは、 DSG3タンパク質に結 合する抗体は細胞障害活性を有する抗体である。また好ましくは、癌は肺癌である。 更に好ましくは、癌は非小細胞肺癌である。
[0014] 別の態様においては、本発明は、 DSG3発現細胞と DSG3タンパク質に結合する 抗体とを接触させることにより DSG3タンパク質を発現する細胞に細胞障害を引き起 こす方法を提供する。本発明はまた、 DSG3タンパク質を発現する細胞と DSG3タン ノ ク質に結合する抗体とを接触させることにより DSG3タンパク質を発現する細胞の 増殖を抑制する方法を提供する。好ましくは、 DSG3タンパク質に結合する抗体は細 胞障害活性を有する抗体である。また好ましくは、 DSG3タンパク質を発現する細胞 は癌細胞である。
[0015] 更に別の態様においては、本発明は、 DSG3タンパク質に結合し、かつ、 DSG3タ ンパク質を発現する細胞に対して細胞障害活性を有する抗体を提供する。好ましく は、該細胞障害活性は ADCC活性である。好ましくは、該細胞障害活性は CDC活 性である。本発明はまた、低分子の化学療法剤、または、毒性ペプチドを結合した抗 体、または、低分子の化学療法剤、または、毒性ペプチドを結合した細胞障害活性 を有する抗体を提供する。
本発明は更に、 DSG3タンパク質に結合し、かつ、 DSG3タンパク質を発現する細 胞に対して細胞障害活性を有し、かつ細胞崩壊活性を有しない抗体を提供する。 別の態様においては、本発明は、癌診断マーカーとしての DSG3タンパク質の使 用を提供する。
[0016] さらに別の態様においては、本発明は、 DSG3タンパク質に結合する抗体を用いて DSG3タンパク質を検出することを特徴とする癌の診断方法を提供する。本発明の方 法においては、好ましくは、 DSG3タンパク質の細胞外領域が検出される。また好ま しくは、本発明の方法は DSG3タンパク質を認識する抗体を用いて行われる。好まし くは、本発明の方法においては、血液中、血清中、または血漿中の DSG3タンパク質 、あるいは細胞から分離した DSG3タンパク質が検出される。
[0017] 別の態様においては、本発明は、以下の工程: (a) 被験者から試料を採取する工程;
(b) 採取された試料に含まれる DSG3タンパク質を、 DSG3タンパク質に結合する 抗体を用いて検出する工程
を含む癌の診断方法を提供する。本発明にお!/、て上記該試料は被験者から採取で きるものであればいかなるものでも使用でき、一の態様においては被験者力、ら採取し た血清が使用され、また別の態様では被験者力も生検 (バイオプシー)により採取さ れた試料も使用される。該診断方法に係る癌は、対象とする癌細胞が DSG3タンパク 質を発現する癌であればいずれの癌でもよいが、好ましくは肺癌であり、さらに好まし くは非小細胞肺癌である。本発明においては、被験者から試料を採取する工程は被 験者から採取された試料を提供する工程と表現することもできる。
[0018] さらに別の態様においては、本発明は、 DSG3タンパク質に結合する抗体力 S、 11C 、 13N、 150、 18F、 45Ti、 55Co、 64Cu、 66Ga、 68Ga、 76Br、 89Zr、 1241のいずれかか ら選択される核種により標識された抗体である癌の診断方法を提供する。
また別の態様においては、本発明は、 DSG3タンパク質をコードする遺伝子の発現 を検出することを特徴とする癌の診断方法を提供する。
さらに別の態様においては、本発明は、本発明の診断方法に用いるための診断薬 やキットを提供する。
[0019] すなわち、本願は、以下の〔1〕〜〔32〕を提供するものである。
〔1〕DSG3タンパク質に結合する抗体を有効成分として含有する医薬組成物。
〔2〕DSG3タンパク質に結合する抗体を有効成分として含有する細胞増殖抑制剤。 〔3〕DSG3タンパク質に結合する抗体を有効成分として含有する抗癌剤。
〔4〕 DSG3タンパク質に結合する抗体が細胞障害活性を有する抗体である、〔3〕に 記載の抗癌剤。
〔5〕 DSG3タンパク質に結合する抗体力 以下(1)から(47)の!/、ずれかに記載の抗 体である、〔3〕または〔4〕に記載の抗癌剤;
( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、 (2) (1)に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
(3) (1)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、
(7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
(11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、 (16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) (1)に記載の H鎖、および(13)に記載の L鎖を有する抗体、
(20) (2)に記載の H鎖、および(14)に記載の L鎖を有する抗体、
(21) (3)に記載の H鎖、および(15)に記載の L鎖を有する抗体、
(22) (10)に記載の H鎖、および (4)に記載の L鎖を有する抗体、
(23) (11)に記載の H鎖、および(5)に記載の L鎖を有する抗体、
(24) (12)に記載の H鎖、および(6)に記載の L鎖を有する抗体、
(25) CDR1として配列番号: 81に記載のアミノ酸配列、 CDR2として配列番号: 83 に記載のアミノ酸配列、 CDR3として配列番号: 85に記載のアミノ酸配列を有する H 鎖を含む抗体、
(26) (25)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(27) (25)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(28) CDR1として配列番号: 87に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 89 に記載のアミノ酸配列、 CDR3として配列番号: 91に記載のアミノ酸配列を有する L 鎖を含む抗体、
(29) (28)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(30) (28)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(31) (25)に記載の H鎖、および(28)に記載の L鎖を含む抗体、
(32) (26)に記載の H鎖、および(29)に記載の L鎖を含む抗体、
(33) (27)に記載の H鎖、および(30)に記載の L鎖を含む抗体、
(34) (1)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(35) (2)に記載の H鎖、および(29)に記載の L鎖を有する抗体、 (36) (3)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(37) (10)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(38) (11)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(39) (12)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(40) (25)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(41) (26)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(42) (27)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(43) (25)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(44) (26)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(45) (27)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(46) (1)から(45)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(45)のいずれか に記載の抗体と同等の活性を有する抗体、
(47) (1)から(45)のいずれかに記載の抗体が結合する DSG3タンパク質のェピトー プと同じェピトープに結合する抗体。
〔6〕癌が肺癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌である、〔3〕から〔5 〕の!/、ずれかに記載の抗癌剤。
〔7〕肺癌が非小細胞肺癌である〔6〕に記載の抗癌剤。
〔8〕DSG3タンパク質を発現する細胞と DSG3タンパク質に結合する抗体とを接触さ せることにより該 DSG3発現細胞に細胞障害を引き起こす方法。
〔9〕DSG3タンパク質を発現する細胞と DSG3タンパク質に結合する抗体とを接触さ せることにより該 DSG3発現細胞の増殖を抑制する方法。
〔10〕 DSG3タンパク質に結合する抗体が細胞障害活性を有する抗体である、〔8〕ま たは〔9〕に記載の方法。
〔11〕 DSG3タンパク質に結合する抗体力 S、以下(1)から(47)の!/、ずれかに記載の 抗体である、〔8〕から〔10〕の!/、ずれかに記載の方法;
( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、
(2) (1)に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
(3) (1)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、
(7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
(11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) (1)に記載の H鎖、および(13)に記載の L鎖を有する抗体、
(20) (2)に記載の H鎖、および(14)に記載の L鎖を有する抗体、
(21) (3)に記載の H鎖、および(15)に記載の L鎖を有する抗体、
(22) (10)に記載の H鎖、および (4)に記載の L鎖を有する抗体、
(23) (11)に記載の H鎖、および(5)に記載の L鎖を有する抗体、
(24) (12)に記載の H鎖、および(6)に記載の L鎖を有する抗体、
(25) CDR1として配列番号: 81に記載のアミノ酸配列、 CDR2として配列番号: 83 に記載のアミノ酸配列、 CDR3として配列番号: 85に記載のアミノ酸配列を有する H 鎖を含む抗体、
(26) (25)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(27) (25)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(28) CDR1として配列番号: 87に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 89 に記載のアミノ酸配列、 CDR3として配列番号: 91に記載のアミノ酸配列を有する L 鎖を含む抗体、
(29) (28)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(30) (28)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(31) (25)に記載の H鎖、および(28)に記載の L鎖を含む抗体、
(32) (26)に記載の H鎖、および(29)に記載の L鎖を含む抗体、
(33) (27)に記載の H鎖、および(30)に記載の L鎖を含む抗体、
(34) (1)に記載の H鎖、および(28)に記載の L鎖を有する抗体、 (35) (2)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(36) (3)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(37) (10)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(38) (11)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(39) (12)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(40) (25)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(41) (26)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(42) (27)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(43) (25)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(44) (26)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(45) (27)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(46) (1)から(45)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(45)のいずれか に記載の抗体と同等の活性を有する抗体、
(47) (1)から(45)のいずれかに記載の抗体が結合する DSG3タンパク質のェピトー プと同じェピトープに結合する抗体。
〔12〕 DSG3タンパク質を発現する細胞が癌細胞である、〔8〕から〔11〕の!/、ずれかに 記載の方法。
〔13〕 DSG3タンパク質に結合し、かつ DSG3タンパク質を発現する細胞に対して細 胞障害活性を有する抗体。
[14]細胞障害活性が ADCC活性である〔13〕に記載の抗体。
〔15〕細胞障害活性が CDC活性である〔13〕に記載の抗体。
〔16〕低分子の化学療法剤、または、毒性ペプチドを結合した〔13〕から〔15〕のいず れかに記載の抗体。
〔17〕 DSG3タンパク質に結合する抗体であって、低分子の化学療法剤、または、毒 性ペプチドが結合された抗体。
〔18〕以下(1)から(47)の!/、ずれかに記載の抗体である、〔13〕から〔17〕の!/、ずれか に記載の抗体; ( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、
(2) (1)に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
(3) (1)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、
(7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
(11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) (1)に記載の H鎖、および(13)に記載の L鎖を有する抗体、
(20) (2)に記載の H鎖、および(14)に記載の L鎖を有する抗体、
(21) (3)に記載の H鎖、および(15)に記載の L鎖を有する抗体、
(22) (10)に記載の H鎖、および (4)に記載の L鎖を有する抗体、
(23) (11)に記載の H鎖、および(5)に記載の L鎖を有する抗体、
(24) (12)に記載の H鎖、および(6)に記載の L鎖を有する抗体、
(25) CDR1として配列番号: 81に記載のアミノ酸配列、 CDR2として配列番号: 83 に記載のアミノ酸配列、 CDR3として配列番号: 85に記載のアミノ酸配列を有する H 鎖を含む抗体、
(26) (25)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(27) (25)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(28) CDR1として配列番号: 87に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 89 に記載のアミノ酸配列、 CDR3として配列番号: 91に記載のアミノ酸配列を有する L 鎖を含む抗体、
(29) (28)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(30) (28)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(31) (25)に記載の H鎖、および(28)に記載の L鎖を含む抗体、
(32) (26)に記載の H鎖、および(29)に記載の L鎖を含む抗体、 (33) (27)に記載の H鎖、および(30)に記載の L鎖を含む抗体、
(34) (1)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(35) (2)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(36) (3)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(37) (10)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(38) (11)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(39) (12)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(40) (25)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(41) (26)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(42) (27)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(43) (25)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(44) (26)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(45) (27)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(46) (1)から(45)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(45)のいずれか に記載の抗体と同等の活性を有する抗体、
(47) (1)から(45)のいずれかに記載の抗体が結合する DSG3タンパク質のェピトー プと同じェピトープに結合する抗体。
〔19〕癌診断マーカーとしての DSG3タンパク質の使用。
〔20〕 DSG3タンパク質に結合する抗体を用いて DSG3タンパク質を検出することを 特徴とする癌の診断方法。
〔21〕以下の工程:
(a) 被験者から試料を採取する工程;
(b) 採取された試料に含まれる DSG3タンパク質を、 DSG3タンパク質に結合する 抗体を用いて検出する工程
を含む癌の診断方法。
〔22〕DSG3タンパク質に結合する抗体力 S、陽電子放出核種により標識された抗体で ある〔20〕または〔21〕に記載の診断方法。 〔23〕陽電子放出核種が 11C、 13N、 150、 18F、 45Ti、 55Co、 64Cu、 66Ga、 68Ga、 76 Br、 89Zr、 1241のいずれかから選択される核種である〔22〕に記載の診断方法。
〔24〕DSG3タンパク質をコードする遺伝子の発現を検出することを特徴とする癌の 診断方法。
〔25〕癌が肺癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌である〔20〕から〔 24]の!/、ずれかに記載の診断方法。
〔26〕肺癌が非小細胞肺癌である〔25〕に記載の診断方法。
〔27〕〔20〕から〔26〕の!/、ずれかに記載の診断方法に用いるための診断薬。
〔28〕〔20〕から〔26〕の!/、ずれかに記載の診断方法に用いるためのキット。
〔29〕細胞増殖抑制剤の製造における DSG3タンパク質に結合する抗体の使用。
〔30〕抗癌剤の製造における DSG3タンパク質に結合する抗体の使用。
〔31〕DSG3タンパク質に結合する抗体を対象に投与する工程を含む細胞増殖を抑 制する方法。
〔32〕DSG3タンパク質に結合する抗体を対象に投与する工程を含む癌を予防また は治療する方法。
図面の簡単な説明
[図 l]GeneChipU133を用いた、正常組織及び癌組織における DSG3遺伝子の発現 解析の結果を示す図である。
[図 2]GeneChipU133を用いた、癌細胞株における DSG3遺伝子の発現解析の結果 を示す図である。
[図 3]DSG3タンパク質の肺扁平上皮癌における発現が免疫染色によって可視化さ れた免疫組織染色の結果を示す写真である。 5例中全ての臨床検体において DSG 3タンパク質の発現亢進が示される。
[図 4]抗 DSG3モノクローナル抗体 DF120、 DF122、 DF148、 DF151、 DF153、 DF168、 DF331、 DF364、 DF366が全て全長 DSG3を定常的に発現する CHO細胞株への結 合を示す Flowcytometry解析の結果を示す図である。
[図 5]抗 DSG3モノクローナル抗体 DF120、 DF122、 DF148、 DF151、 DF153、 DF168、 DF331による、全長 DSG3を定常的に発現する CHO細胞株に対する CDC活性を示 す図である。
[図 6]抗 DSG3モノクローナル抗体 DF151による、ヒト皮膚上皮癌細胞株である A431、 及び DSG3を定常的に発現するヒト肺上皮癌細胞株である DSG3-A549細胞株に対 する CDC活性を示す図である。
[図 7]抗 DSG3モノクローナル抗体 DF151, DF364及び DF366による、 DSG3を定常 的に発現するヒト肺上皮癌細胞株である DSG3-A549細胞株に対する ADCC活性を 示す図である。図 7Aはマウス骨髄由来のエフェクター細胞を用いた解析結果を示し 、図 7Bはマウス脾臓由来のエフェクター細胞を用いた解析結果を示す。
[図 8]抗 DSG3マウスーヒトキメラ抗体 DF151c, DF364c及び DF366cによる、 DSG3を 定常的に発現する Ba/F3細胞株である DSG3_Ba/F3細胞株に対する CDC活性を示 す図である。
[図 9]抗 DSG3マウス一ヒトキメラ抗体 DF364c及び DF366c、低フコース型抗 DSG3マ ウス一ヒトキメラ抗体 YB-DF364c及び YB-DF366Cによる、 DSG3を定常的に発現する Ba/F3細胞株である DSG3_Ba/F3細胞株に対する ADCC活性を示す図である。
[図 10]抗 DSG3抗体である DF366m (マウス IgG2aキメラ抗体)、低フコース DF366m (低フ コース型マウス IgG2aキメラ抗体)、 DF366c (マウスーヒトキメラ抗体)及び YB-DF366c( 低フコース型マウス一ヒトキメラ抗体)による、 DSG3を定常的に発現する Ba/F3細胞株 である DSG3_Ba/F3細胞株に対する ADCC活性を示す図である。エフェクター細胞に は interleukin-2を添加したマウス脾臓細胞を用いた。
[図 11]抗 DSG3抗体である DF366m (マウス IgG2aキメラ抗体)、低フコース DF366m (低フ コース型マウス IgG2aキメラ抗体)、 DF366c (マウスーヒトキメラ抗体)及び YB-DF366c( 低フコース型マウス一ヒトキメラ抗体)による、 DSG3を定常的に発現する Ba/F3細胞株 である DSG3_Ba/F3細胞株に対する ADCC活性を示す図である。エフェクター細胞に はマウス脾臓細胞を interleukin-2存在下で 4日間培養した細胞を用いた。
[図 12]抗 DSG3抗体である DF366m (マウス IgG2aキメラ抗体)及び低フコース DF366m( 低フコース型マウス IgG2aキメラ抗体)の抗腫瘍活性を示す図である。
〔発明の実施の形態〕
DSG3 (Desmoglein3)は、軸索誘導受容体蛋白質であり、そのアミノ酸配列および これをコードする遺伝子配列は、それぞれ GenBank登録番号 NP_001935 (配列番号: 40)及び NM_001944 (配列番号: 39)に開示されている。本発明において、 DSG3タ ンパク質とは、全長タンパク質およびその断片の両方を含むことを意味する。断片と は、 DSG3タンパク質の任意の領域を含むポリペプチドであり、天然の DSG3タンパ ク質の機能を有していなくてもよい。断片の例としては、限定されないが、 DSG3タン パク質の細胞外領域を含む断片が挙げられる。 DSG3タンパク質の細胞外領域は配 列番号: 40のアミノ酸配列において 1— 616番目が相当する。又、膜貫通領域は配 列番号: 40のアミノ酸配列において 617— 641番目が相当する。
[0022] 本発明においては、肺癌組織において、非常に高頻度で DSG3が遺伝子レベル およびタンパク質レベルで発現亢進していることが見いだされた。また他癌種の臨床 検体および癌細胞株の解析から、肺癌のみならず、大腸癌、食道癌、胃癌、瞵癌、 皮膚癌又は子宮癌などにおいても発現亢進していることが示された。また、 DSG3タ ンパク質に特異的なモノクローナル抗体を用いることにより、免疫組織診断が可能と なることが示された。すなわち、 DSG3タンパク質は癌の診断マーカーとして有用で ある。
[0023] DSG3遺伝子発現の掄出
本発明の方法は、 DSG3遺伝子発現を検出することを特徴とする。本発明の方法 の 1つの態様においては、 DSG3タンパク質の発現を検出する。
本発明において検出とは、定量的または定性的な検出を含み、例えば、定性的な 検出としては、単に DSG3タンパク質が存在するか否かの測定、 DSG3タンパク質が 一定の量以上存在するか否かの測定、 DSG3タンパク質の量を他の試料(例えば、 コントロール試料など)と比較する測定などを挙げることができる。一方、定量的な検 出とは、 DSG3タンパク質の濃度の測定、 DSG3タンパク質の量の測定などを挙げる こと力 Sでさる。
[0024] 被検試料としては、 DSG3タンパク質が含まれる可能性のある試料であれば特に制 限されないが、哺乳類などの生物の体から採取された試料が好ましぐさらに好ましく はヒトから採取された試料である。被検試料の具体的な例としては、例えば、血液、間 質液、血漿、血管外液、脳脊髄液、滑液、胸膜液、血清、リンパ液、唾液、尿などが 例示できるが、好ましいのは血液、血清、または血漿である。又、生物の体から採取 された組織若しくは細胞が固定化された標本又は細胞の培養液などの、被検試料か ら得られる試料も本発明の被検試料に含まれる。
[0025] 診断される癌は、特に制限されることはなく如何なる癌でもよいが、具体的には、肺 癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌などを挙げることができる。好 ましいものは肺癌であり、特に好ましいものは非小細胞肺癌である。
本発明においては、被検試料中に DSG3タンパク質が検出された場合、陰性コント ロールまたは健常者と比較して被検試料中に検出される DSG3タンパク質の量が多 いと判断される場合に、被験者が癌である、または将来癌を羅患する可能性が高い と判定できる。
[0026] 本発明における被験者としては DSG3タンパク質を遺伝的に有する動物種であれ ばよく、係る動物種としてサル、ゥシ、ヒッジ、マウス、ィヌ、ネコ、ハムスター等ヒト以外 の多くの哺乳類が知られている。特に好適に用いられる被験者はヒトである力 これ に制限されるものではない。
[0027] 本発明の診断方法の好ましい態様としては、上記の癌に羅患した患者から取得し た組織若しくは細胞を固定化した切片上で DSG3タンパク質を検出することを特徴と する診断方法を挙げることができる。更に本発明の別の態様では細胞から遊離し、血 中に存在する DSG3タンパク質を検出することを特徴とする診断方法を挙げることが できる。特に好ましくは、本発明は血中に存在する DSG3タンパク質の細胞外領域を 含む断片を検出する診断方法である。
[0028] 被検試料に含まれる DSG3タンパク質の検出方法は特に限定されないが、抗 DSG 3抗体を用いた免疫学的方法により検出することが好ましい。免疫学的方法としては ッセィ (FIA)、発光ィムノアッセィ (LIA)、免疫沈降法 (IP)、免疫比濁法 (TIA)、ゥ エスタンプロット (WB)、免疫組織染色(IHC)、免疫拡散法(SRID)などを挙げること ができる力 S、好ましくはェンザィムィムノアッセィであり、特に好ましくは酵素結合免疫 吸着疋直法 (enzyme— linked immunosorbent assay : ELISA)であり、その一 械とし ては、例えば、 sandwich ELISA (サンドウイツチ ELISA)が挙げられる。 ELISAなどの 上述した免疫学的方法は当業者に公知の方法により行うことが可能である。
[0029] 抗 DSG3抗体を用いた一般的な検出方法としては、例えば、以下の方法を挙げる こと力 Sでさる。抗 DSG3抗体を支持体に固定した後に、タンパク質の支持体に対する 非特異的な結合を防ぐため、例えば仔牛血清アルブミン (BSA)、ゼラチン、アルブミ ンなどで支持体がブロッキングされる。次に、支持体に被検試料を加えたインキュべ ーシヨンによって、既に支持体に結合した抗 DSG3抗体と DSG3タンパク質を結合さ せる。その後支持体に結合した抗 DSG3抗体と DSG3タンパク質との複合体に対す る洗浄液による洗浄により、支持体上の抗 DSG3抗体に結合した DSG3タンパク質 以外で、非特異的に該支持体に結合した DSG3タンパク質が除去される。支持体上 の抗 DSG3抗体に結合した DSG3タンパク質を定性的に又は定量的に検出すること により被検試料中の DSG3タンパク質の検出を行う方法を、抗 DSG3抗体を用いる 検出方法として挙げること力できる力 更に以下において幾つかの具体例が説明さ れる。
[0030] 本発明において抗 DSG3抗体を固定するために用いられる支持体としては、例え ば、ァガロース、セルロースなどの不溶性の多糖類、シリコン樹脂、ポリスチレン樹脂 、ポリアクリルアミド樹脂、ナイロン樹脂、ポリカーボネイト樹脂などの合成樹脂や、ガ ラスなどの不溶性の支持体を挙げることができる。これらの支持体は、ビーズゃプレ ートなどの形状で用いられる。ビーズの場合、これらが充填されたカラムなどが使用 できる。プレートの場合、マルチウエルプレート(96穴マルチウエルプレート等)、ゃバ ィォセンサーチップなどが使用できる。抗 DSG3抗体と支持体との結合においては、 化学結合や物理的な吸着などの通常用いられる方法により抗 DSG3抗体が支持体 に結合できる。これらの支持体はすべて市販のものが好適に使用できる。
[0031] 抗 DSG3抗体と DSG3タンパク質との結合は、通常、緩衝液中で行われる。緩衝液 としては、例えば、リン酸緩衝液、 Tris緩衝液、クェン酸緩衝液、ホウ酸塩緩衝液、炭 酸塩緩衝液、などが使用される。また、インキュベーションの条件としては、すでによく 用いられている条件、例えば、 4°Cから室温の間の温度にて 1時間から 24時間までの 時間でインキュベーションが好適に実施できる。インキュベーションの後の洗浄は、 D SG3タンパク質と抗 DSG3抗体の結合を妨げないものであれば何でもよぐ例えば、 Tween20等の界面活性剤を含む緩衝液などが好適に使用できる。
[0032] 本発明の DSG3タンパク質検出方法においては、その DSG3タンパク質含有量を 検出する被検試料の他に、対照試料が適切に調製できる。対照試料としては、 DSG 3タンパク質を含まない陰性対照試料や DSG3タンパク質を含む陽性対照試料など が挙げられる。この場合、 DSG3タンパク質を含まない陰性対照試料で得られた結果 と、 DSG3タンパク質を含む陽性対照試料で得られた結果とを比較することにより、被 検試料中の DSG3タンパク質の存在又は非存在の確認ができる。また、濃度を段階 的に変化させた一連の対照試料を調製し、各対照試料に対する検出結果を数値とし て得た後に、 DSG3タンパク質の濃度値と対応する測定値に基づいて作成される標 準曲線に基づいて、被検試料に含まれる DSG3タンパク質が定量的に検出できる。
[0033] 抗 DSG3抗体を介して支持体に結合した DSG3タンパク質の検出の好まし!/、態様 として、標識物質で標識された抗 DSG3抗体を用いる方法が挙げられる。例えば、支 持体に固定された抗 DSG3抗体に被検試料を接触させ、洗浄後に、該抗 DSG3抗 体に結合した DSG3タンパク質を特異的に認識する標識抗体を用いることによって 該 DSG3タンパク質が検出できる。
[0034] 抗 DSG3抗体の標識は通常知られている方法により行うことが可能である。標識物 質としては、蛍光色素、酵素、補酵素、化学発光物質、放射性物質などの当業者に 公知の標識物質を用いることが可能であり、具体的な例としては、ラジオアイソトープ (32P、 14C、 1251、 3H、 1311など)、フルォレセイン、ローダミン、ダンシルク口リド、ゥン ベリフエロン、ルシフェラーゼ、ペルォキシダーゼ、アルカリホスファターゼ、 β -ガラタ トシダーゼ、 β -ダルコシダーゼ、ホースラディッシュパーォキシダーゼ、グルコアミラ ーゼ、リゾチーム、サッカリドォキシダーゼ、マイクロぺノレオキシダーゼ、ビォチンなど を挙げること力 Sできる。標識物質としてビォチンを用いる場合には、ビォチン標識抗 体を添加後に、アルカリホスファターゼなどの酵素を結合させたアビジンをさらに添カロ することが好ましい。標識物質と抗 DSG3抗体との結合のためには、ダルタルアルデ ヒド法、マレイミド法、ピリジルジスルフイド法、過ヨウ素酸法、などの公知の方法が使 用できる。
[0035] 具体的には、抗 DSG3抗体を含む溶液をプレートなどの支持体に加えることにより 、抗 DSG3抗体が支持体に固定される。プレートの洗浄後、タンパク質の非特異的な 結合を防ぐため、例えば仔牛血清アルブミン (BSA)、ゼラチン、アルブミンなどで該プ レートがブロッキングされる。再びプレートが洗浄された後に、被検試料をプレートに 加えることによりインキュベーションが行われる。インキュベーションの後に、該プレー トが洗浄され、標識抗 DSG3抗体が加えられる。適度なインキュベーションの後、該 プレートが洗浄され、該プレート上に残存する標識された抗 DSG3抗体が検出できる 。検出は当業者に公知の方法により行うことができ、例えば、放射性物質により標識 された抗 DSG3抗体を検出する場合には、該標識抗 DSG3抗体が液体シンチレ一 シヨンや RIA法により検出できる。酵素により標識された抗 DSG3抗体を検出する場 合には、該標識抗 DSG3抗体に基質を加えた後に、基質の酵素的変化、例えば発 色を吸光度計により検出することができる。基質の具体的な例としては、 2,2-アジノビ ス(3-ェチルベンゾチアゾリン- 6-スルホン酸)ジアンモニゥム塩(ABTS)、 1,2-フエ二 レンジァミン(オルソ-フエ二レンジァミン)、 3,3',5,5'-テトラメチルベンジジン(TMB)な どを挙げること力 Sできる。基質が蛍光発光物質の場合には基質の酵素的変化が蛍光 光度計を用いて検出できる。
[0036] 本発明の DSG3タンパク質の検出方法の特に好ましい態様として、ビォチンで標識 された抗 DSG3抗体およびアビジンを用いる方法を挙げることができる。具体的には 、抗 DSG3抗体を含む溶液をプレートなどの支持体に加えることにより、抗 DSG3抗 体が該プレートに固定できる。該プレートが洗浄された後に、タンパク質の非特異的 な結合を防ぐため、該プレートが例えば BSAなどでブロッキングされる。再び該プレ ートが洗浄され、被検試料が該プレートに加えられる。インキュベーションの後、該プ レートは洗浄され、ビォチン標識抗 DSG3抗体が該プレートに加えられる。適度なィ ンキュベーシヨンの後、該プレートが洗浄され、アルカリホスファターゼ、ペルォキシダ ーゼなどの酵素と結合したアビジンが該プレートに加えられる。インキュベーション後 、該プレートは洗浄され、アビジンに結合している酵素が作用する基質を加え、基質 の酵素的変化などを指標に DSG3タンパク質が検出できる。
[0037] 本発明の DSG3タンパク質を検出する方法の他の態様として、 DSG3タンパク質を 特異的に認識する一次抗体を一種類以上、および該一次抗体を特異的に認識する 二次抗体を一種類以上用いる方法を挙げることができる。
[0038] 例えばプレート等の支持体に抗 DSG3抗体を固定した後に、タンパク質の支持体 に対する非特異的な結合を防ぐため、例えば仔牛血清アルブミン (BSA)、ゼラチン、 アルブミンなどで該プレートがブロッキングされる。次に、該プレートに被検試料をカロ えた後にインキュベーションを行い、既に該プレートに結合した抗 DSG3抗体と DSG 3タンパク質を結合させる。その後該プレートを洗浄液によって洗浄することにより、抗 DSG3抗体に対する特異的な結合でなぐ非特異的に該支持体に結合した DSG3 タンパク質が該プレートから除去される。支持体に結合した抗体とは別種の抗 DSG3 抗体を該 DSG3タンパク質に結合させた後に、支持体に対してではなく DSG3タン ノ ク質に対して結合した抗 DSG3抗体のみに結合することの出来る二次抗体を該 D SG3タンパク質と抗 DSG3抗体の複合体に対して反応させる。上記操作の結果、結 合した二次抗体を定性的に又は定量的に検出することにより、被検試料中の DSG3 タンパク質の検出を行う方法を挙げることができる。この場合、二次抗体が標識物質 により好適に標識できる。
[0039] 本発明の DSG3タンパク質の検出方法の他の態様としては、凝集反応を利用した 検出方法を挙げることができる。該方法においては、抗 DSG3抗体を吸着した担体 を用いて DSG3タンパク質が検出できる。抗体を吸着する担体としては、不溶性で、 非特異的な反応を起こさず、かつ安定である限り、いかなる担体を使用してもよい。 例えば、ラテックス粒子、ベントナイト、コロジオン、カオリン、固定羊赤血球等を使用 すること力 Sできる力 ラテックス粒子を使用するのが好ましい。ラテックス粒子としては
、例えば、ポリスチレンラテックス粒子、スチレン-ブタジエン共重合体ラテックス粒子、 ポリビュルトルエンラテックス粒子等を使用することができる力 ポリスチレンラテックス 粒子を使用するのが好ましい。感作した粒子を試料と混合させ、一定時間攪拌させ る。試料中に DSG3タンパク質が高濃度で含まれるほど粒子の凝集度が大きくなるの で、該凝集度を肉眼で見積もることにより DSG3タンパク質が検出できる。また、凝集 による濁度の増加を分光光度計等により測定することによつても DSG3タンパク質が 検出できる。
[0040] 本発明の DSG3タンパク質の検出方法の他の態様としては、例えば、表面プラズモ ン共鳴現象を利用したバイオセンサーを用いた方法を挙げることができる。表面ブラ ズモン共鳴現象を利用したバイオセンサーを使用することによって、タンパク質とタン ノ ク質間の相互作用が表面プラズモン共鳴シグナルとしてリアルタイムに該タンパク 質を標識することなく観察できる。例えば、 BIAcore (ビアコア社製)等のバイオセンサ 一を用いることにより DSG3タンパク質と抗 DSG3抗体の結合が検出できる。具体的 には、抗 DSG3抗体を固定化したセンサーチップに、被検試料を接触させ、抗 DSG 3抗体に結合する DSG3タンパク質が共鳴シグナルの変化として検出できる。
[0041] 上に挙げた標識の他に、 18F、 55Co、 64Cu、 66Ga、 68Ga、 76Br、 89Zr及び 1241のよ うな陽電子放出核種を用いて通常の方法(Acta Oncol. 32, 825-830, 1993)によって 抗 DSG3抗体が標識できる。上記陽電子放出核種で標識された抗 DSG3抗体がヒト や動物に投与された後に、薬物の体内挙動に関するデータを非侵襲的に得るため の装置である PET (ポジトロン断層撮影装置)を使用することにより、その放射性核種 が放射する放射線が体外から計測され、コンピュータートモグラフィーの手法で定量 画像に変換される。上記のように PETを使用することによって、患者から試料を採取 することなく特定の癌で高発現する抗原分子が検出できる。抗 DSG3抗体は、上記 の核種の他に 11C、 13N、 150、 18F、 45Ti等の陽電子放出核種を用いた短寿命 RIに よっても放射標識できる。
[0042] 現在、医療用サイクロトロンによる上記核種を用いた短寿命核種の生産、短寿命 RI 標識化合物の製造技術等に関する研究開発が進められており、該技術により抗 DS G3抗体が標識できる。抗 DSG3抗体を上記陽電子放出核種で標識した後に患者に 投与することによって、生体内に所在する DSG3タンパク質を認識する該標識抗 DS G3抗体力 S、各部位の病理組織に対する抗 DSG3抗体の特異性に従って原発巣及 び転移巣に集約するため、その放射活性を検出することにより該原発巣及び転移巣 の存在が診断できる。該診断用途に用いる場合には 25-4000 keVのガンマ粒子又は 陽電子放射量の活性値が適切に使用できる。また、適切な核種を選択して、さらに 大量に投与すれば治療効果も期待できるが、その場合は 70-700 keVのガンマ粒子 又は陽電子放射量値が適切に使用できる。
[0043] 本発明の方法の別の態様においては、 DSG3の mRNAの発現を検出する。本発明 において検出とは、定量的または定性的な検出を含み、例えば、定性的な検出とし ては、単に DSG3の mRNAが存在するか否かの測定、 DSG3の mRNAが一定の量以 上存在するか否かの測定、 DSG3の mRNAの量を他の試料(例えば、コントロール試 料など)と比較する測定などを挙げることができる。一方、定量的な検出とは、 DSG3 の mRNAの濃度の測定、 DSG3の mRNAの量の測定などを挙げることができる。
[0044] 被検試料としては、 DSG3の mRNAが含まれる可能性のある試料であれば特に制 限されないが、哺乳類などの生物の体から採取された試料が好ましぐさらに好ましく はヒトから採取された試料である。被検試料の具体的な例としては、例えば、血液、間 質液、血漿、血管外液、脳脊髄液、滑液、胸膜液、血清、リンパ液、唾液、尿などが 例示できるが、好ましいのは血液、血清、または血漿である。又、生物の体から採取 された組織若しくは細胞が固定化された標本又は細胞の培養液などの、被検試料か ら得られる試料も本発明の被検試料に含まれる。
[0045] 診断される癌は、特に制限されることはなく如何なる癌でもよいが、具体的には、肺 癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌などを挙げることができる。好 ましいものは肺癌であり、特に好ましいものは非小細胞肺癌である。
本発明における被験者としては DSG3タンパク質を遺伝的に有する動物種であれ ばよく、係る動物種としてサル、ゥシ、ヒッジ、マウス、ィヌ、ネコ、ハムスター等ヒト以外 の多くの哺乳類が知られている。特に好適に用いられる被験者はヒトである力 これ に制限されるものではない。
[0046] 以下に検出方法の具体的な態様を記載するが、本発明の方法は、それらの方法に 限定されるものではない。まず、被験者から試料を調製する。次いで、該試料に含ま れる DSG3の mRNAを検出する。本発明においては、 mRNAから合成した cDNAの検 出を行ってもよい。本発明においては、被検試料中に DSG3の mRNAや DSG3をコ ードする cDNAが検出された場合、陰性コントロールまたは健常者と比較して被検試 料中に検出される DSG3の mRNAや DSG3をコードする cDNAの量が多いと判断され る場合に、被験者が癌である、または将来癌を羅患する可能性が高いと判定できる。 これらのような方法としては、当業者らに周知の方法、例えばノーザンブロッテイング 法、 RT-PCR法、 DNAアレイ法等を挙げること力 Sできる。 上記した本発明の検出方法は、種々の自動検査装置を用いて自動化することもで き、一度に大量の試料について検査を行うことも可能である。
[0047] 本発明は、癌の診断のための被検試料中の DSG3タンパク質を検出するための診 断薬またはキットの提供をも目的とするが、該診断薬またはキットは少なくとも抗 DSG 3抗体を含む。該診断薬またはキットが ELISA法等の EIA法に基づく場合は、抗体 を固相化する担体を含んで!/、てもよく、抗体があらかじめ担体に結合して!/、てもよレヽ 。該診断薬またはキットがラテックス等の担体を用いた凝集法に基づく場合は抗体が 吸着した担体を含んでレ、てもよレ、。
[0048] また、本発明は、癌の診断のための被検試料中の DSG3の mRNA、または DSG3 をコードする cDNAを検出するための診断薬またはキットの提供をも目的とするが、該 診断薬またはキットは少なくとも DSG3をコードする DNA (配列番号: 39に記載の塩 基配列からなる DNA)またはその相補鎖に相補的な少なくとも 15ヌクレオチドを含む オリゴヌクレオチドを含む。
[0049] ここで「相補鎖」とは、 A:T (ただし RNAの場合は U)、 G:Cの塩基対からなる 2本鎖核 酸の一方の鎖に対する他方の鎖を指す。また、「相補的」とは、少なくとも 15個の連続 したヌクレオチド領域で完全に相補配列である場合に限られず、少なくとも 70%、好ま しくは少なくとも 80%、より好ましくは 90%、さらに好ましくは 95%以上の塩基配列上の 相同性を有すればよい。相同性を決定するためのアルゴリズムは本明細書に記載し たものを使用すればよい。
[0050] 本発明のオリゴヌクレオチドは、 DSG3をコードする DNAの検出や増幅に用いるプ ローブやプライマー、該 DNAの発現を検出するためのプローブやプライマーとして使 用すること力 Sできる。また、本発明のオリゴヌクレオチドは、 DNAアレイの基板の形態 で使用すること力できる。
[0051] 該オリゴヌクレオチドをプライマーとして用いる場合、その長さは、通常 15bp〜100bp であり、好ましくは 17bp〜30bpである。プライマーは、 DSG3をコードする DNAまたは その相補鎖の少なくとも一部を増幅しうるものであれば、特に制限されない。また、プ ライマーとして用いる場合、 3'側の領域は相補的とし、 5'側には制限酵素認識配列や タグなどを付加することができる。 [0052] また、上記オリゴヌクレオチドをプローブとして使用する場合、該プローブは、 DSG 3をコードする DNAまたはその相補鎖の少なくとも一部に特異的にハイブリダィズする ものであれば、特に制限されない。該プローブは、合成オリゴヌクレオチドであっても よぐ通常少なくとも 15bp以上の鎖長を有する。
[0053] 本発明のオリゴヌクレオチドをプローブとして用いる場合は、適宜標識して用いるこ とが好ましい。標識する方法としては、 T4ポリヌクレオチドキナーゼを用いて、オリゴヌ クレオチドの 5'端を32 Pでリン酸化することにより標識する方法、およびタレノウ酵素等 の DNAポリメラーゼを用い、ランダムへキサマーオリゴヌクレオチド等をプライマーとし て32 P等のアイソトープ、蛍光色素、またはビォチン等によって標識された基質塩基を 取り込ませる方法 (ランダムプライム法等)を例示すること力 Sできる。
本発明のオリゴヌクレオチドは、例えば市販のオリゴヌクレオチド合成機により作製 すること力 Sできる。プローブは、制限酵素処理等によって取得される二本鎖 DNA断片 として作製することあでさる。
[0054] 上記の診断薬やキットにおいては、有効成分であるオリゴヌクレオチドや抗体以外 に、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝 剤、タンパク質安定剤 (BSAやゼラチンなど)、保存剤、ブロッキング溶液、反応溶液、 反応停止液、試料を処理するための試薬等が必要に応じて混合されていてもよい。 本発明の診断方法は in vitro又は in vivoのどちらでも行なうことが可能である力 in vitroで行なわれることが好まし!/、。
本発明の癌の診断方法の好ましい態様として以下の工程を含む方法を挙げること ができる。
(a) 被験者力 採取された試料を提供する工程;
(b) (a)の試料に含まれる DSG3タンパク質を検出する工程。
さらに、本発明の癌の診断方法の好ましい態様として以下の工程を含む方法を挙 げること力 Sでさる。
(a)被験者力 採取された試料を提供する工程;
(b) (a)の試料に含まれる DSG3遺伝子を検出する工程。
[0055] 抗 DSG3抗体の作製 本発明で用いられる抗 DSG3抗体は DSG3タンパク質に特異的に結合すればよく 、その由来、種類 (モノクローナル、ポリクローナル)および形状は問われない。具体 的には、動物抗体 (例えば、マウス抗体、ラット抗体、ラクダ抗体)、ヒト抗体、キメラ抗 体、ヒト化抗体などの公知の抗体が使用できる。抗体はポリクローナル抗体でもよい 力 S、モノクローナル抗体であることが好ましい。
[0056] 本発明で使用される抗 DSG3抗体は、公知の手段を用いてポリクローナルまたは モノクローナル抗体として取得できる。本発明で使用される抗 DSG3抗体として、特 に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノクローナル 抗体は、ハイプリドーマにより産生されるもの、および遺伝子工学的手法により抗体 遺伝子を含む発現ベクターで形質転換した宿主により産生されるもの等を含む。
[0057] モノクローナル抗体産生ハイブリドーマ力 基本的には公知技術を使用し、以下の ようにして作製できる。すなわち、 DSG3タンパク質を感作抗原として使用して、これ を通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によ つて公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体 産生細胞をスクリーニングすることによって抗 DSG3抗体を産生するハイブリドーマが 選択できる。
[0058] 具体的には、モノクローナル抗体の作製は例えば以下に示すように行われる。まず
、 GenBank登録番号 NM_001944 (配列番号: 39)にそのヌクレオチド配列が開示され た DSG3遺伝子を発現することによって、抗体取得の感作抗原として使用される DS
G3タンパク質が取得できる。すなわち、 DSG3をコードする遺伝子配列を公知の発 現ベクターに揷入して適当な宿主細胞を形質転換させた後、その宿主細胞中または 培養上清中から目的のヒト DSG3タンパク質が公知の方法で精製できる。また、精製 した天然の DSG3タンパク質もまた同様に使用できる。
[0059] 哺乳動物に対する免疫に使用する感作抗原として該精製 DSG3タンパク質が使用 できる。 DSG3の部分ペプチドもまた感作抗原として使用できる。この際、該部分ぺ プチドはヒト DSG3のアミノ酸配列より化学合成によっても取得でき、 DSG3遺伝子の 一部を発現ベクターに組込んで発現させることによつても取得でき、さらには DSG3 タンパク質をタンパク質分解酵素により分解することによつても取得できるが、部分ぺ プチドとして用いる DSG3の領域および大きさは限定されるものではない。
該感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞 融合に使用する親細胞との適合性を考慮して選択するのが好ましぐ一般的にはげ つ歯類の動物、例えば、マウス、ラット、 ムスター、あるいはゥサギ、サル等が使用さ れる。
[0060] 公知の方法にしたがって上記の動物が感作抗原により免疫できる。例えば、一般 的方法として、感作抗原を哺乳動物の腹腔内または皮下に注射することにより免疫 が実施できる。具体的には、 PBS (Phosphate-Buffered Saline)や生理食塩水等で適 当な希釈倍率で希釈された感作抗原が、所望により通常のアジュバント、例えばフロ イント完全アジュバントと混合され、乳化された後に、該感作抗原が哺乳動物に 4から 21日毎に数回投与される。また、感作抗原の免疫時には適当な担体が使用できる。 特に分子量の小さい部分ペプチドが感作抗原として用いられる場合には、該感作抗 原ペプチドをアルブミン、キーホールリンペットへモシァニン等の担体タンパク質と結 合させて免疫することが望まし!/ヽ。
このように哺乳動物が免疫され、血清中における所望の抗体量の上昇が確認され た後に、哺乳動物から免疫細胞が採取され、細胞融合に付される。好ましい免疫細 胞としては、特に脾細胞が使用できる。
[0061] 前記免疫細胞と融合される細胞として、哺乳動物のミエローマ細胞が用いられる。
該ミエローマ細胞としては、公知の種々の細胞株、例えば、 P3 (P3x63Ag8.653) (J. Im munol. (1979) 123, 1548-1550)、 P3x63Ag8U. Current Topics in Microbiology and Immunology (1978) 81, 1-7 NS- 1 ( ohler. G. and Milstein, C. Eur. J. Immunol. (1 976) 6, 511-519) , MPC-11 (Margulies. D.H. et al., Cell (1976) 8, 405- 415)、 SP2/0 (Shulman, M. et al. , Nature (1978) 276, 269- 270)、 FO (de St. Groth, S. F. etal. , J. I mmunol. Methods (1980) 35, 1-21 S194 (Trowbridge, I. S. J. Exp. Med. (1978) 148, 313-323 R210 (Galfre, G. et al., Nature (1979) 277, 131-133)等が好適に使用で きる。
[0062] 基本的には公知の方法、たとえば、ケーラーとミルスティンらの方法(Kohler. G. an d Milstein, C.、 Methods Enzymol. (1981) 73, 3-46)等に準じて、前記免疫細胞とミエ ローマ細胞との細胞融合が行われる。
[0063] より具体的には、例えば細胞融合促進剤の存在下で通常の栄養培養液中で、前 記細胞融合が実施できる。融合促進剤としては、例えばポリエチレングリコール (PEG )、センダイウィルス(HVJ)等が使用され、更に融合効率を高めるために所望によりジ メチルスルホキシド等の補助剤が添加されて使用される。
[0064] 免疫細胞とミエローマ細胞との使用割合は任意に設定できる。例えば、ミエローマ 細胞に対して免疫細胞を 1から 10倍とするのが好ましい。前記細胞融合に用いる培 養液としては、例えば、前記ミエローマ細胞株の増殖に好適な RPMI1640培養液、 ME M培養液、その他、この種の細胞培養に用いられる通常の培養液が使用でき、さらに 、牛胎児血清 (FCS)等の血清補液が好適に添加され併用される。
[0065] 細胞融合は、前記免疫細胞とミエローマ細胞との所定量を前記培養液中でよく混 合し、予め 37°C程度に加温した PEG溶液(例えば平均分子量 1000から 6000程度)を 通常 30から 60% (w/v)の濃度で添加し、混合することによって目的とする融合細胞( ノ、イブリドーマ)が形成される。続いて、上記に挙げた適当な培養液を逐次添加し、 遠心して上清を除去する操作を繰り返すことによりハイプリドーマの生育に好ましくな い細胞融合剤等が除去できる。
[0066] このようにして得られたハイプリドーマは、通常の選択培養液、例えば HAT培養液( ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液)で培養することにより選 択できる。 目的とするハイプリドーマ以外の細胞(非融合細胞)が死滅するのに十分 な時間(通常、係る十分な時間は数日から数週間である)上記 HAT培養液を用いた 培養が継続できる。ついで、通常の限界希釈法を実施することによって、 目的とする 抗体を産生するハイブリドーマのスクリーニングおよび単一クローユングが実施できる
[0067] 又、 DSG3を認識する抗体の作製は国際公開 WO03/104453に記載された方法を 用いて作製してもよい。
[0068] 目的とする抗体のスクリーニングおよび単一クローニンダカ 公知の抗原抗体反応 に基づくスクリーニング方法によって好適に実施できる。例えば、ポリスチレン等でで きたビーズや市販の 96ゥエルのマイクロタイタープレート等の担体に抗原を結合させ 、ノ、イブリドーマの培養上清と反応させ、担体を洗浄した後に酵素で標識した二次抗 体等を反応させることにより、培養上清中に感作抗原と反応する目的とする抗体が含 まれるかどうかが決定できる。抗原に対する結合能を有する所望の抗体を産生する ハイプリドーマを限界希釈法等によりクローニングすることが可能となる。この際、抗 原としては免疫に用いたものを始め、実施的に同質な DSG3タンパク質が好適に使 用できる。
[0069] また、ヒト以外の動物に抗原を免疫することによって上記ハイプリドーマを得る方法 以外に、ヒトリンパ球を in vitroにおいて DSG3タンパク質で感作し、感作されたリンパ 球をヒト由来であって永久分裂能を有するミエローマ細胞と融合させることによつても 、 DSG3タンパク質への結合活性を有する所望のヒト抗体が取得できる(特公平 1-59 878号公報参照)。さらに、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェ ニック動物に対して抗原となる DSG3タンパク質を投与することによって得られる抗 D SG3抗体産生細胞を不死化させた後に、該不死化細胞から DSG3タンパク質に対 するヒト抗体を単離することによつても所望のヒト抗体が取得できる(国際公開 WO 94 /25585、 W093/12227、 WO 92/03918、 WO 94/02602参照)。
[0070] このようにして作製されるモノクローナル抗体を産生するハイブリドーマは通常の培 養液中での継代培養が可能であり、また、該ハイブリドーマの液体窒素中での長期 保存もまた同様に実施できる。
[0071] 当該ハイプリドーマからモノクローナル抗体を取得するには、当該ハイプリドーマを 通常の方法に従い培養し、その培養上清として得る方法、あるいはハイプリドーマを これと適合性がある哺乳動物に投与して増殖させ、その腹水として得る方法などが好 適に実施できる。前者の方法は、高純度の抗体を得るのに適しており、一方、後者の 方法は、抗体の大量生産に適している。
[0072] 本発明では、ハイプリドーマから抗体遺伝子をクローユングした後に、該遺伝子を 適当なベクターに組み込んで宿主に導入する遺伝子組換え技術を用いて作出した 組換え細胞により産生させた組換え型の抗体をモノクローナル抗体として用いること ができる(例えば、 Vandamme, A. M. et al., Eur.J. Biochem. (1990) 192, 767- 775参 照)。具体的には、該遺伝子が抗 DSG3抗体を産生するハイプリドーマ細胞から、抗 DSG3抗体の可変領域 (V領域)をコードする mRNAを単離することによって取得で きる。即ち、全 RNAを公知の方法、例えば、グァニジン超遠心法(Chirgwin, J. M. et al., Biochemistry (1979) 18, 5294- 5299)、 AGPC法(Chomczynski, P.et al., Anal. Bi ochem. (1987) 162, 156-159)等によって該ハイブリドーマ細胞力、ら調製した後に、 mR NA Purification Kit (GEヘルスケアバイオサイエンス製)等を使用して目的の mRN Aが調製できる。また、 QuickPrep mRNA Purification Kit (GEヘルスケアバイオサイ エンス製)を用いることにより mRNAが該ハイブリドーマから直接調製できる。
[0073] 得られた mRNAから逆転写酵素を用いて抗体 V領域の cDNAが合成できる。 cD NAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生ィ匕 学工業社製)等を用いて実施できる。また、 cDNAの合成および増幅のために、 5'-A mpli FINDER RACE Kit (Clontech製)および PCRを用いた 5,— RACE法(Frohman, M. A. et al., Proc. Natl. Acad. Sci. USA(1988) 85, 8998-9002、 Belyavsky, A.et al., Nucleic Acids Res. (1989) 17, 2919-2932)等もまた好適に使用でき、こうした cDNA の合成の過程において cDNAの両末端に後述する適切な制限酵素サイトが導入で きる。
[0074] 得られた PCR産物から目的とする cDNA断片が精製され、次!/、でベクター DNAと 連結される。このように組換えベクターが作製され、大腸菌等に導入されコロニーが 選択された後に、該コロニーを形成した大腸菌から所望の組換えベクターが調製で きる。そして、該組換えベクターが目的とする cDNAの塩基配列を有しているか否か について、公知の方法、例えば、ジデォキシヌクレオチドチェインターミネーシヨン法 等により確認できる。 目的とする抗 DSG3抗体の V領域をコードする cDNAが得られ た後に、該 cDNAの両末端に揷入した制限酵素サイトを認識する酵素によって該 cD NAが消化される。上記のように消化された抗 DSG3抗体の V領域をコードする cDN Aが、同じ組み合わせの酵素で消化することにより所望の抗体定常領域 (C領域)を コードする DNAとインフレームで融合させることができるように該 C領域を含んでなる 発現ベクターへライゲートすることによって組み込まれる。
[0075] 本発明で使用される抗 DSG3抗体を製造するには、抗体遺伝子を発現制御領域、 例えば、ェンハンサー、プロモーターによる制御の下で発現するように発現ベクター に組み込む方法が好適に使用できる。次いで、この発現ベクターを用いて好適に宿 主細胞を形質転換することによって、抗 DSG3抗体をコードする DNAを発現する組 換え細胞が取得できる。
[0076] 抗体遺伝子の発現は、抗体重鎖 (H鎖)または軽鎖 (L鎖)をコードする DNAを別々 に発現ベクターに組み込んで宿主細胞を同時形質転換させてもよいし、あるいは H 鎖および L鎖をコードする DNAを単一の発現ベクターに組み込んで宿主細胞を形 質転換させてもよ!/、(国際公開 WO 94/11523参照)。
[0077] 抗体遺伝子を一旦単離し、適当な宿主に導入して抗体を作製する場合には、適当 な宿主と発現ベクターの組み合わせが好適に使用できる。真核細胞を宿主として使 用する場合、動物細胞、植物細胞、真菌細胞が使用できる。動物細胞としては、 (1) 哺乳類細胞、例えば、 CHO、 COS,ミエローマ、 BH (baby hamster kidney )、 Hela、 Vero、 (2)両生類細胞、例えば、アフリカッメガエル卵母細胞、又は(3)昆虫細胞、 例えば、 si9、 si21、 Tn5などが知られている。植物細胞としては、ニコティアナ(Nicotia na)属、例えばニコティアナ.タバカム(Nicotiana tabacum)由来の細胞が知られており 、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス(Sa ccharomyces)属、 f列;^はサッカロミセス 'セレビシェ(Saccharomyces serevisiae八糸 状菌、例えば、ァスペルギルス(Aspergillus)属、例えばアスペスギルス'二ガー(Aspe rgillus niger)などが知られている。原核細胞を使用する場合、細菌細胞を用いる産 生系が好適に使用できる。細菌細胞としては、大腸菌(E. coli)、枯草菌が知られて いる。これらの細胞中に、 目的とする抗体遺伝子を含んでなる発現ベクターを形質転 換により導入し、形質転換された細胞を in vitroで培養することにより所望の抗体が、 該形質転換細胞の培養物から取得できる。
[0078] また、組換え型抗体の産生には上記宿主細胞だけではなぐトランスジエニック動物 も好適に使用できる。例えば、抗体遺伝子は、乳汁中に固有に産生されるタンパク質 (ャギ βカゼインなど)をコードする遺伝子の内部にインフレームで揷入することによ つて融合遺伝子として構築できる。抗体遺伝子が揷入された融合遺伝子を含む DN Α断片はャギの胚へ注入され、該注入胚が雌のャギへ導入できる。胚を受容したャ ギから生まれるトランスジエニックャギ又はその子孫が産生する乳汁から所望の抗体 が取得できる。また、トランスジエニックャギから産生される所望の抗体を含む乳汁量 を増加させるために、ホルモンがトランスジエニックャギに適宜使用できる(Ebert, . M. et al., Bio/Technology (1994) 12, 699-702)。
[0079] 本発明の組換え抗体の C領域として、動物抗体由来の C領域を使用できる。例えば マウス抗体の H鎖 C領域としては、じ 1、(:0/ 2&、(:0/ 213、(:0/ 3、(: 、じ0、じ《1、じ α 2、 C ε力 L鎖 C領域としては C κ、 C λが使用できる。また、マウス抗体以外の動 物抗体としてラット、ゥサギ、ャギ、ヒッジ、ラタダ、サル等の動物抗体が使用できる。こ れらの配列は公知である。また、抗体またはその産生の安定性を改善するために、 C 領域を修飾することができる。
[0080] 本発明では、ヒトに対する異種抗原性を低下させること等を目的として人為的に改 変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗 体などが使用できる。これらの改変抗体は、公知の方法を用いて製造することができ る。キメラ抗体は、ヒト以外の動物、例えば、マウス抗体の重鎖、軽鎖の可変領域とヒト 抗体の重鎖、軽鎖の定常領域からなる抗体であり、マウス抗体の可変領域をコードす る DNAをヒト抗体の定常領域をコードする DNAと連結させ、これを発現ベクターに 組み込むことによって該 DNAを発現する組換えベクターが作製できる。該ベクター により形質転換された組換え細胞を培養し、組み込まれた DNAを発現させることに よって、培養中に生産される該キメラ抗体が取得できる。
[0081] キメラ抗体およびヒト化抗体の C領域には、ヒト抗体のものが使用され、例えば H鎖 としては、 1、 2、 3、 C y 4、 C 、 C δ、 C a 1、 C a 2、 C ε力 L鎖として は C κ、 C λが使用できる。これらの配列は公知である。また、抗体またはその産生の 安定性を改善するために、ヒト抗体 C領域を修飾することができる。
[0082] キメラ抗体は、ヒト以外の動物由来抗体の V領域とヒト抗体由来の C領域とから構成 される。一方、ヒト化抗体は、ヒト以外の動物由来抗体の相補性決定領域(CDR ; com plementarity determining region)と、ヒト抗体由来のフレームワーク領域 (FR ; framew ork region)およびヒト抗体由来の C領域とから構成される。ヒト化抗体はヒト体内にお ける抗原性が低下されているため、本発明の治療剤の有効成分として有用である。
[0083] ヒト化抗体は、再構成(reshaped)ヒト抗体とも称され、ヒト以外の動物、たとえばマウ ス抗体の CDRをヒト抗体の CDRに換えて移植したものであり、その一般的な遺伝子 組換え手法も知られている。具体的には、マウス抗体の CDRとヒト抗体の FRをインフ レームで融合するように設計された DNA配列が、末端部にオーバーラップする部分 を有するように設計された数個のオリゴヌクレオチドをプライマーとして用いた PCR法 により合成される。上記のように得られた DNAとヒト抗体 C領域をコードする DNAとを インフレームで融合するように発現ベクター中に揷入することによって組込みべクタ 一が作成できる。該組込みベクターを宿主に導入して組換え細胞を樹立した後に、 該組換え細胞を培養し、該ヒト化抗体をコードする DNAを発現させることによって、 該ヒト化抗体が該培養細胞の培養物中に産生される(欧州特許公開 EP 239400、国 際公開 WO 96/02576参照)。
[0084] 上記のように作製されたヒト化抗体の抗原への結合活性を定性的又は定量的に測 定し、評価することによって、 CDRを介して連結されたときに該 CDRが良好な抗原結 合部位を形成するようなヒト抗体の FRが好適に選択できる。必要に応じ、再構成ヒト 抗体の CDRが適切な抗原結合部位を形成するように FRのアミノ酸が置換されてもよ い。上記のアミノ酸置換はマウス CDRとヒト FRとの融合の際に用いた PCR法を適宜 使用して導入することができ、アミノ酸を置換した変異型抗体の抗原への結合活性を 上記の方法で測定し評価することによって所望の性質を有する変異 FR配列が選択 できる(Sato, .et al., Cancer Res, 1993, 53, 851-856)。
[0085] また、ヒト抗体の取得方法も知られて!/、る。例えば、ヒトリンパ球を in vitroで所望の 抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミエローマ細胞 、例えば U266と融合させることによって、抗原への結合活性を有する所望のヒト抗体 が取得できる(特公平 1-59878参照)。また、ヒト抗体遺伝子の全てのレパートリーを有 するトランスジエニック動物を所望の抗原で免疫することにより所望のヒト抗体が取得 できる(国際公開 WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, W 0 96/34096, WO 96/33735参照)。さらに、ヒト抗体ライブラリーを用いて、パンユング によりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の V領域を一本鎖抗 体(scFv)としてファージディスプレイ法によりファージの表面に発現させ、抗原に結 合するファージを選択することができる。選択されたファージの遺伝子を解析すること により、抗原に結合するヒト抗体の V領域をコードする DNA配列が決定できる。抗原 に結合する scFvの DNA配列を決定した後、当該 V領域配列を所望のヒト抗体 C領域 の配列とインフレームで融合させた後に適当な発現ベクターに揷入することによって 発現ベクターが作製できる。該発現ベクターを上記に挙げたような好適な発現細胞 中に導入し、該ヒト抗体をコードする遺伝子を発現させることにより該ヒト抗体が取得 できる。これらの方法は既に公知であり、国際公開 WO 92/01047, WO 92/20791, W 0 93/06213, WO 93/11236, WO 93/19172, WO 95/01438, WO 95/15388を参考 にすることカでさる。
[0086] 本発明で使用される抗体には、 DSG3タンパク質に結合する限り、 IgGに代表され る二価抗体だけでなぐ一価抗体、若しくは IgMに代表される多価抗体も含まれる。本 発明の多価抗体には、全て同じ抗原結合部位を有する多価抗体、または、一部もし くは全て異なる抗原結合部位を有する多価抗体が含まれる。
[0087] 本発明で使用される抗体は、抗体の全長分子に限られず、 DSG3タンパク質に結 合する限り、低分子化抗体またはその修飾物であってもよい。
[0088] 低分子化抗体は、全長抗体 (whole antibody,例えば whole IgG等)の一部分が欠損 している抗体断片を含み、抗原への結合能を有していれば特に限定されない。本発 明の抗体断片は、全長抗体の一部分であれば特に限定されないが、重鎖可変領域 (VH)又は/及び軽鎖可変領域 (VL)を含んで!/、ること力 S好ましレ、。 VHまたは VLの アミノ酸配列は、置換、欠失、付加及び/又は揷入がされていてもよい。さらに抗原 への結合能を有する限り、 VH又は/及び VLの一部を欠損させてもよい。又、可変領 域はキメラ化ゃヒト化されていてもよい。抗体断片の具体例としては、例えば、 Fab, F ab'、 F(ab')2、 Fvなどを挙げること力 Sできる。また、低分子化抗体の具体例としては、例 えは、 Pab、 Fab、 r(ab')2、 rv、 scFv (single chain rv)、 D body、 sc(Fv)2 (single chain (Fv)2)などを挙げることができる。これら抗体の多量体 (例えば、ダイマー、トリマー、 テトラマー、ポリマー)も、本発明の低分子化抗体に含まれる。
[0089] 抗体の断片は、抗体を酵素、例えばパパイン、ペプシンで処理し抗体断片を生成さ せるか、または、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに 導入した後、適当な宿主細胞で発現できる(例えば、 Co, M.S. et al., J. Immunol. (19 94) 152, 2968-2976、 Better, M. & Horwitz, A. H. Methods in Enzymology (1989) 17 8, 476-496、 Plueckthun, A. & Skerra, A. Methods in Enzymology (1989) 178, 476-4 96、 Lamoyi, Ε·, Methods in Enzymology (1989) 121, 652-663、 Rousseaux, J. et al., Methods in Enzymology (1989) 121, 663-669、 Bird, R. E. et al., TIBTECH (1991) 9, 132-137参照)。
[0090] Diabodyは、遺伝子融合により構築された二価 (bivalent)の抗体断片を指す (Holliger
P et al., Proc.Natl.Acad.Sci.USA 90: 6444-6448 (1993)、 EP404,097号、 W093/111 61号等)。 Diabodyは、 2本のポリペプチド鎖から構成されるダイマーであり、通常、ポリ ペプチド鎖は各々、同じ鎖中で VL及び VH力 S、互いに結合できない位に短い、例え ば、 5残基程度のリンカ一により結合されている。同一ポリペプチド鎖上にコードされ る VLと VHとは、その間のリンカ一が短いため単鎖可変領域フラグメントを形成するこ とが出来ず二量体を形成するため、 Diabodyは 2つの抗原結合部位を有することとな
[0091] scFvは、抗体の H鎖 V領域と L鎖 V領域とを連結することにより得られる。この scFvに おいて、 H鎖 V領域と L鎖 V領域は、リンカ一、好ましくはペプチドリンカ一を介して連 結される (Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A, 1988, 85, 5879-5883·)。 scFvにおける H鎖 V領域および L鎖 V領域は、本明細書に抗体として記載されたもの のいずれの抗体由来であってもよい。 V領域を連結するペプチドリンカ一としては、 特に制限はないが、例えば 3から 25残基程度からなる任意の一本鎖ペプチド、また、 後述のペプチドリンカ一等を用いることができる。 V領域の連結方法としては上記のよ うな PCR法が利用できる。前記抗体の H鎖または H鎖 V領域をコードする DNA配列 、および L鎖または L鎖 V領域をコードする DNA配列のうち、全部又は所望のァミノ 酸配列をコードする DNA部分を铸型として、及び、その両端の配列に対応する配列 を有するプライマーの一対を用いた PCR法によって scFvをコードする DNAが増幅で きる。次いで、ペプチドリンカ一部分をコードする DNA、およびその両端が各々 H鎖 、 L鎖と連結されるように設計された配列を有するプライマーの一対を組み合わせて PCR反応を行うことによって、所望の配列を有する DNAが取得できる。また、一旦 sc Fvをコードする DNAが作製されると、それらを含有する発現ベクター、および該発現 ベクターにより形質転換された組換え細胞が常法に従って取得でき、また、その結果 得られる組換え細胞を培養して該 scFvをコードする DNAを発現させることにより、該 s cFvが取得できる。
[0092] sc(Fv)2は、 2つの VH及び 2つの VLをリンカ一等で結合して一本鎖にした低分子化 抗体である(Hudson et al、 J Immunol. Methods 1999 ; 231: 177-189)。 sc(Fv)2は、例 えば、 scFvをリンカ一で結ぶことによって作製できる。
[0093] また 2つの VH及び 2つの VL力 一本鎖ポリペプチドの N末端側を基点として VH、
VL、 VH、 VL ( [VH]リンカ一 [VL]リンカ一 [VH]リンカ一 [VL] )の順に並んで!/、る ことを特徴とする抗体が好ましレ、。
[0094] 2つの VHと 2つの VLの順序は特に上記配置に限定されず、どのような順序で並べ られていてもよい。例えば以下のような配置も挙げることができる。
[VL]リンカ一 [ VH]リンカ一 [ VH]リンカ一 [ VL]
[VH]リンカ一 [ VL]リンカ一 [ VL]リンカ一 [ VH]
[VH]リンカ一 [ VH]リンカ一 [ VL]リンカ一 [ VL]
[VL]リンカ一 [ VL]リンカ一 [ VH]リンカ一 [ VH]
[VL]リンカ一 [ VH]リンカ一 [ VL]リンカ一 [ VH]
[0095] 抗体の可変領域を結合するリンカ一としては、遺伝子工学により導入し得る任意の ペプチドリンカ一、又は合成化合物リンカ一(例えば、 Protein Engineering, 9(3), 299
-305, 1996参照)に開示されるリンカ一等を用いることができる力 本発明においては ペプチドリンカ一が好ましい。ペプチドリンカ一の長さは特に限定されず、 目的に応じ て当業者が適宜選択することが可能である力 通常、 1から 100アミノ酸、好ましくは 3 力、ら 50アミノ酸、更に好ましくは 5から 30アミノ酸、特に好ましくは 12から 18アミノ酸 (例 えば、 15アミノ酸)である。
[0096] 例えば、ペプチドリンカ一の場合:
¾er
ly Ser
ly Gly Ser
¾er' Gly Gly Gly . Gly . Gly . Ser (配列番号:72)
Ser . Gly . Gly . Gly (配列番号:73)
Gly · Gly · Gly · Gly · Ser (配列番号: 74)
Ser · Gly · Gly · Gly · Gly (配列番号:75)
Gly · Gly · Gly . Gly . Gly . Ser (配列番号:76)
Ser . Gly . Gly . Gly . Gly . Gly (配列番号:77)
Gly . Gly . Gly . Gly . Gly . Gly . Ser (配列番号:78)
Ser . Gly . Gly . Gly . Gly . Gly . Gly (配列番号:79)
(Gly . Gly . Gly . Gly . Ser (配列番号: 74) )n
(Ser . Gly . Gly . Gly . Gly (配列番号: 75) )n
[nは 1以上の整数である]等を挙げることができる。但し、ペプチドリンカ一の長さや 配列は目的に応じて当業者が適宜選択することができる。
[0097] よって本発明において特に好ましい sc(Fv)2の態様としては、例えば、以下の sc(Fv)
2を挙げること力 Sでさる。
[VH]ペプチドリンカ一 (15アミノ酸) [VL]ペプチドリンカ一 (15アミノ酸) [VH]ぺプチ ドリンカ一 (15アミノ酸) [VL]
[0098] 合成化学物リンカ一(化学架橋剤)は、ペプチドの架橋に通常用いられている架橋 剤、例えば N-ヒドロキシスクシンイミド(NHS)、ジスクシンイミジルスべレート(DSS)、ビ ス(スルホスクシンィミジル)スべレート(BS3)、ジチォビス(スクシンィミジルプロビオネ ート) (DSP)、ジチォビス(スルホスクシンィミジルプロピオネート) (DTSSP)、エチレン グリコールビス(スクシンイミジルスクシネート)(EGS)、エチレングリコールビス(スルホ スクシンィミジルスクシネート)(スルホ— EGS)、ジスクシンィミジル酒石酸塩(DST)、 ジスルホスクシンィミジル酒石酸塩(スルホー DST)、ビス [2- (スクシンイミドォキシカ ノレボニルォキシ)ェチノレ]スルホン(BSOCOES)、ビス [2- (スルホスクシンイミドォキシ カルボニルォキシ)ェチル]スルホン(スルホ -BSOCOES)などであり、これらの架橋剤 は市販されている。
[0099] 4つの抗体可変領域を結合する場合には、通常、 3つのリンカ一が必要となるが、全 て同じリンカ一を用いてもよいし、異なるリンカ一を用いてもよい。本発明において好 ましい低分子化抗体は Diabody又は sc(Fv)2である。このような低分子化抗体を得るに は、抗体を酵素、例えば、パパイン、ペプシンなどで処理し、抗体断片を生成させる 、、又はこれら抗体断片をコードする DNAを構築し、これを発現ベクターに導入した 後、適当な宿主細胞で発現させればよい(例えば、 Co, M. S. et al., J. Immunol. (199 4) 152, 2968-2976; Better, M. and Horwitz, A. Η·, Methods Enzymol. (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; L amoyi, Ε·, Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods E nzymol. (1986) 121, 663—669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1 991) 9, 132-137参照)。
本発明の抗体としては、以下(1)から ½2)に記載の抗体が例示できる力 これらに 限定されるものではない。また、以下(1)から ½2)に記載の抗体としては、例えば、 全長抗体、低分子化抗体、動物抗体、キメラ抗体、ヒト化抗体、ヒト抗体等が挙げられ
( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列(DF151抗体の H鎖 CDR1の配 歹 IJ)、 CDR2として配列番号: 4に記載のアミノ酸配列(DF151抗体の H鎖 CDR2の配 歹 IJ)、および CDR3として配列番号: 6に記載のアミノ酸配列(DF151抗体の H鎖 CDR 3の配歹 IJ)を有する H鎖を含む抗体、
(2) (1)に記載の H鎖であって、 CH (H鎖定常領域)として配列番号: 8に記載のアミ ノ酸配列(DF151抗体の CHの配歹 IJ)を有する H鎖を含む抗体、
(3) (1)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列(DF15 1マウスーヒトキメラ抗体の CHの配歹 IJ)を有する H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配列(DF151抗体の L鎖 CDR1の配 歹 IJ)、 CDR2として配列番号: 14に記載のアミノ酸配列(DF151抗体の L鎖 CDR2の 配列)、および CDR3として配列番号: 16に記載のアミノ酸配列(DF151抗体の L鎖 C DR3の配歹 IJ)を有する L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CL (L鎖定常領域)として配列番号: 18に記載のアミ ノ酸配列(DF151抗体の CLの酉己列)を有する L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列(DF15 1マウスーヒトキメラ抗体の CLの配歹 IJ)を有する L鎖を含む抗体、
(7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(10) CDR1として配列番号: 22に記載のアミノ酸配列(DF364抗体の H鎖 CDR1の 配列)、 CDR2として配列番号: 24に記載のアミノ酸配列(DF364抗体の H鎖 CDR2 の配列)、および CDR3として配列番号: 26に記載のアミノ酸配列(DF364抗体の H 鎖 CDR3の配歹 IJ)を有する H鎖を含む抗体、
(11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列(D F364抗体の CHの酉己列)を有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列(D F364マウスーヒトキメラ抗体の CHの配歹 IJ)を有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列(DF364抗体の L鎖 CDR1の 配列)、 CDR2として配列番号: 32に記載のアミノ酸配列(DF364抗体の L鎖 CDR2 の配列)、および CDR3として配列番号: 34に記載のアミノ酸配列(DF364抗体の L鎖 CDR3の配歹 IJ)を有する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列(DF 364抗体の CLの酉己列)を有する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列(DF 364マウスーヒトキメラ抗体の CLの配歹 IJ)を有する L鎖を含む抗体、
(16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) (1)に記載の H鎖、および(13)に記載の L鎖を有する抗体、
(20) (2)に記載の H鎖、および(14)に記載の L鎖を有する抗体、
(21) (3)に記載の H鎖、および(15)に記載の L鎖を有する抗体、
(22) (10)に記載の H鎖、および (4)に記載の L鎖を有する抗体、
(23) (11)に記載の H鎖、および(5)に記載の L鎖を有する抗体、 (24) (12)に記載の H鎖、および(6)に記載の L鎖を有する抗体、
(25) CDR1として配列番号: 81に記載のアミノ酸配列(DF366抗体の H鎖 CDR1の 配列)、 CDR2として配列番号: 83に記載のアミノ酸配列(DF366抗体の H鎖 CDR2 の配列)、 CDR3として配列番号: 85に記載のアミノ酸配列(DF366抗体の H鎖 CDR 3の配歹 IJ)を有する H鎖を含む抗体、
(26) (25)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列(D F366抗体の CHの酉己列)を有する H鎖を含む抗体、
(27) (25)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列(D F366マウスーヒトキメラ抗体の CHの配歹 IJ)を有する H鎖を含む抗体、
(28) CDR1として配列番号: 87に記載のアミノ酸配列(DF366抗体の L鎖 CDR1の 配列)、 CDR2として配列番号: 89に記載のアミノ酸配列(DF366抗体の L鎖 CDR2 の配列)、 CDR3として配列番号: 91に記載のアミノ酸配列(DF366抗体の L鎖 CDR 3の配歹 IJ)を有する L鎖を含む抗体、
(29) (28)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列(DF 366抗体の CLの酉己列)を有する L鎖を含む抗体、
(30) (28)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列(DF 366マウスーヒトキメラ抗体の CLの配歹 IJ)を有する L鎖を含む抗体、
(31) (25)に記載の H鎖、および(28)に記載の L鎖を含む抗体、
(32) (26)に記載の H鎖、および(29)に記載の L鎖を含む抗体、
(33) (27)に記載の H鎖、および(30)に記載の L鎖を含む抗体、
(34) (1)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(35) (2)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(36) (3)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(37) (10)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(38) (11)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(39) (12)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(40) (25)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(41) (26)に記載の H鎖、および(5)に記載の L鎖を含む抗体、 (42) (27)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(43) (25)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(44) (26)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(45) (27)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(46) (1)に記載の H鎖であって、 CHとして配列番号: 108に記載のアミノ酸配列(マ ウス IgG2a抗体の CHの配歹 IJ)を有する H鎖を含む抗体、
(47) (4)に記載の L鎖であって、 CLとして配列番号: 112に記載のアミノ酸配列(マ ウス IgG2a抗体の CLの酉己列)を有する L鎖を含む抗体、
(48) (10)に記載の H鎖であって、 CHとして配列番号: 108に記載のアミノ酸配列( マウス IgG2a抗体の CHの酉己列)を有する H鎖を含む抗体、
(49) (13)に記載の L鎖であって、 CLとして配列番号: 112に記載のアミノ酸配列( マウス IgG2a抗体の CLの配歹 IJ)を有する L鎖を含む抗体、
(50) (25)に記載の H鎖であって、 CHとして配列番号: 108に記載のアミノ酸配列( マウス IgG2a抗体の CHの酉己列)を有する H鎖を含む抗体、
(51) (28)に記載の L鎖であって、 CLとして配列番号: 112に記載のアミノ酸配列( マウス IgG2a抗体の CLの配歹 IJ)を有する L鎖を含む抗体、
(52) (46)に記載の H鎖、および(47)に記載の L鎖を含む抗体、
(53) (48)に記載の H鎖、および(49)に記載の L鎖を含む抗体、
(54) (50)に記載の H鎖、および(51)に記載の L鎖を含む抗体、
(55) (46)に記載の H鎖、および(49)に記載の L鎖を含む抗体、
(56) (48)に記載の H鎖、および(51)に記載の L鎖を含む抗体、
(57) (50)に記載の H鎖、および(47)に記載の L鎖を含む抗体、
(58) (46)に記載の H鎖、および(51)に記載の L鎖を含む抗体、
(59) (48)に記載の H鎖、および(47)に記載の L鎖を含む抗体、
(60) (50)に記載の H鎖、および(49)に記載の L鎖を含む抗体、
(61) (1)から ½0)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から ½0)のいずれか に記載の抗体と同等の活性を有する抗体、 (62) (1)から(60)のいずれかに記載の抗体が結合する DSG3タンパク質のェピトー プと同じェピトープに結合する抗体。
[0101] 上記(1)に記載の「CDR1として配列番号: 2に記載のアミノ酸配列(DF151抗体の H鎖 CDR1の配歹 IJ)、 CDR2として配列番号: 4に記載のアミノ酸配列(DF151抗体の H鎖 CDR2の配列)、および CDR3として配列番号: 6に記載のアミノ酸配列(DF151 抗体の H鎖 CDR3の酉己列)を有する H鎖」における VHとしては、配列番号: 46に記 載のアミノ酸配列(DF151抗体の VHの配列)を有する VHが例示できる。
[0102] また、上記(4)に記載の「CDR1として配列番号: 12に記載のアミノ酸配列(DF151 抗体の L鎖 CDR1の酉己列)、 CDR2として配列番号: 14に記載のアミノ酸配列(DF15 1抗体の L鎖 CDR2の酉己列)、および CDR3として配列番号: 16に記載のアミノ酸配 列(DF151抗体の L鎖 CDR3の配列)を有する L鎖」における VLとしては、配列番号: 48に記載のアミノ酸配列(DF151抗体の VLの配歹 IJ)を有する VLが例示できる。
[0103] また、上記(10)に記載の「CDR1として配列番号: 22に記載のアミノ酸配列(DF36 4抗体の H鎖 CDR1の配列)、 CDR2として配列番号: 24に記載のアミノ酸配列(DF3 64抗体の H鎖 CDR2の配歹 1])、および CDR3として配列番号: 26に記載のアミノ酸配 列(DF364抗体の H鎖 CDR3の配列)を有する H鎖」における VHとしては、配列番号 : 50に記載のアミノ酸配列(DF364抗体の VHの配列)を有する VHが例示できる。
[0104] また、上記(13)に記載の「CDR1として配列番号: 30に記載のアミノ酸配列(DF36 4抗体の L鎖 CDR1の配列)、 CDR2として配列番号: 32に記載のアミノ酸配列(DF3 64抗体の L鎖 CDR2の配歹 1])、および CDR3として配列番号: 34に記載のアミノ酸配 列(DF364抗体の L鎖 CDR3の配列)を有する L鎖」における VLとしては、配列番号: 52に記載のアミノ酸配列(DF364抗体の VLの配歹 IJ)を有する VLが例示できる。 また、上記(25)に記載の「CDR1として配列番号: 81に記載のアミノ酸配列(DF36 6抗体の H鎖 CDR1の配列)、 CDR2として配列番号: 83に記載のアミノ酸配列(DF3 66抗体の H鎖 CDR2の配列)、 CDR3として配列番号: 85に記載のアミノ酸配列(DF 366抗体の H鎖 CDR3の酉己列)を有する H鎖」における VHとしては、配列番号: 93に 記載のアミノ酸配列(DF366抗体の VHの酉己列)を有する VHが例示できる。
また、上記(28)に記載の「CDR1として配列番号: 87に記載のアミノ酸配列(DF36 6抗体の L鎖 CDR1の配列)、 CDR2として配列番号: 89に記載のアミノ酸配列(DF3 66抗体の L鎖 CDR2の配列)、 CDR3として配列番号: 91に記載のアミノ酸配列(DF 366抗体の L鎖 CDR3の配歹 IJ)を有する L鎖」における VLとしては、配列番号: 95に記 載のアミノ酸配列(DF366抗体の VLの配歹 IJ)を有する VLが例示できる。
[0105] 上記(61)に記載の抗体の好ましい態様は、 CDRに改変が生じていない抗体であ る。一例として、上記(61)に記載の抗体のうち、「(1)に記載の抗体において 1若しく は複数のアミノ酸が置換、欠失、付加および/または揷入された抗体であって、 (1) に記載の抗体と同等の活性を有する抗体」の好ましい態様は、「(1)に記載の抗体と 同等の活性を有し、(1)に記載の抗体において 1若しくは複数のアミノ酸が置換、欠 失、付加および/または揷入された抗体であって、 CDR1として配列番号: 2に記載 のアミノ酸配歹 IJ、 CDR2として配列番号: 4に記載のアミノ酸配歹 IJ、および CDR3とし て配列番号: 6に記載のアミノ酸配列を有する H鎖を含む抗体」である。上記(61)に 記載の抗体のうち、その他の抗体の好ましい態様も同様に表現することができる。
[0106] あるポリペプチドと機能的に同等なポリペプチドを調製するための、当業者によく知 られた方法としては、ポリペプチドに変異を導入する方法が知られている。例えば、 当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275、 Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、 ramer, W. et al. (1984) Nucleic Acids Res. 12, 9441-9456、 Kramer W, and Fritz HJ( 1987) Methods. Enzymol. 154, 350-367、 unkel,TA(1985) Proc Natl Acad Sci USA. 82, 488-492、 unkel (1988) Methods Enzymol. 85, 2763-2766)などを用いて、本発 明の抗体に適宜変異を導入することにより、該抗体と機能的に同等な抗体を調製す ること力 Sできる。また、アミノ酸の変異は自然界においても生じうる。このように、本発 明の抗体のアミノ酸配列において 1もしくは複数のアミノ酸が変異したアミノ酸配列を 有し、該抗体と機能的に同等な抗体もまた本発明の抗体に含まれる。このような変異 体における、変異するアミノ酸数は、通常、 50アミノ酸以内であり、好ましくは 30ァミノ 酸以内であり、さらに好ましくは 10アミノ酸以内(例えば、 5アミノ酸以内)であると考え られる。
[0107] 変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ 酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸( A、 I、し、 M、 F、 P、 W、 Y、 V)、親水十生アミノ酸(R、 D、 N、 C、 E、 Q、 G、 H、 K、 S、 T)、月旨 肪族側鎖を有するアミノ酸 (G、 A、 V、 L、 I、 P)、水酸基含有側鎖を有するアミノ酸 (S、 T、 Υ)、硫黄原子含有側鎖を有するアミノ酸 (C、 M)、カルボン酸及びアミド含有側鎖 を有するアミノ酸 (D、 N、 E、 Q)、塩基含有側鎖を有するアミノ酸 (R、 K、 Η)、芳香族 含有側鎖を有するアミノ酸 (H、 F、 Y、 W)を挙げることができる(括弧内はいずれもアミ ノ酸の一文字標記を表す)。
[0108] あるアミノ酸配列に対する 1又は複数個のアミノ酸残基の欠失、付加及び/又は他 のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物 学的活性を維持することはすでに知られている(Mark, D . F. et al. , Proc. Natl. Acad • Sci. USA (1984) 81, 5662—5666、 Zoller, M. J. and Smith, M. , Nucleic Acids Resea rch (1982) 10, 6487-6500、 Wang, A. et al. , Science 224, 1431- 1433、 Dalbadie-Mc Farland, G. et al. , Proc. Natl. Acad. Sci. USA ( 1982) 79, 6409-6413 )。
[0109] また、本願発明で開示された抗 DSG3抗体が結合するェピトープと同じェピトープ に結合する抗体もまた提供する。このような抗体は、例えば、以下の方法により得るこ と力 Sできる。
被検抗体が、本願発明で開示された抗 DSG3抗体が結合したェピトープと同じェ ピトープへの結合に対して競合可能であるか否かを決定するために、交叉ブロッキン グアツセィ、例えば競合 ELISAアツセィを実施することができる。例えば、競合 ELIS Aアツセィにお!/、ては、マイクロタイタープレートのゥエル上にコートした DSG3タンパ ク質を候補の競合抗体の存在下又は非存在下でプレインキュペートした後に、ビォ チン標識された本発明の抗 DSG3抗体が添加される。ゥエル中の DSG3タンパク質 に結合した表紙機構 DSG3抗体の量は、アビジンペルォキシダーゼコンジュゲートと 適切な基質を使用することにより測定できる。抗体は放射標識又は蛍光標識など検 出及び測定が可能な他の標識で標識することができる。 DSG3タンパク質に結合し た標識抗 DSG3抗体の量は、同じェピトープへの結合に対して競合する候補競合抗 体 (被検抗体)の結合能に間接的に相関している。すなわち同一ェピトープに対する 被検抗体の親和性が大きくなればなる程、標識抗 DSG3抗体の DSG3タンパク質を コートしたゥエルへの結合活性は低下する。候補の競合抗体非存在下で実施される コントロール試験において得られる結合活性と比較して、候補抗体が、少なくとも 20 %、好ましくは少なくとも 20-50%、さらに好ましくは少なくとも 50%、抗 DSG3抗体 の結合をブロックできるならば、該候補競合抗体は本発明の抗 DSG3抗体と実質的 に同じェピトープに結合するか、又は同じェピトープへの結合に対して競合する抗体 であると考えられる。
[0110] 抗 DSG3抗体が結合するェピトープと同じェピトープに結合する抗体としては、例 えば、上記 ½2)に記載の抗体が挙げられる力 S、これに限定されるものではない。 また、上記(1)から(62)に記載の抗体には、上述の通り、一価抗体だけでなぐ二 価以上の多価抗体も含まれる。本発明の多価抗体には、全て同じ抗原結合部位を 有する多価抗体、または、一部もしくは全て異なる抗原結合部位を有する多価抗体 が含まれる。
[0111] 異なる抗原結合部位を有する多価抗体として、以下の抗体が例示できる力 本発 明の抗体は、これら抗体に限定されるものではない。
(7)、(16)、(19)、(22)、(31)、(34)、(37)、 (40)および(43)に記載の H鎖と L 鎖の対(以下、 HL対と称する)から選択される、少なくとも 2つの HL対を含む抗体。
(8)、(17)、(20)、(23)、(32)、(35)、(38)、(41)および(44)に記載の HL対か ら選択される、少なくとも 2つの HL対を含む抗体。
(9)、(18)、(21)、(24)、(33)、(36)、(39)、(42)および(45)に記載の HL対か ら選択される、少なくとも 2つの HL対を含む抗体。
(52)から(60)に記載の HL対から選択される、少なくとも 2つの HL対を含む抗体。
[0112] 抗体の修飾物として、ポリエチレングリコール (PEG)等の各種分子と結合した抗体 を使用することもできる。又、抗体に化学療法剤、毒性ペプチド或いは放射性化学物 質などを結合することも可能である。このような抗体修飾物(以下、抗体コンジュゲート と称する)は、得られた抗体に化学的な修飾を施すことによって得ることができる。尚 、抗体の修飾方法はこの分野においてすでに確立されている。また後に述べるように 、 DSG3タンパク質のみならず、化学療法剤、毒性ペプチド或いは放射性化学物質 などを認識するように遺伝子組換え技術を用いて設計した二重特異性抗体 (bispecifi c antibody)のような分子型として取得することもできる。本発明における「抗体」にはこ れらの抗体も包含される。
[0113] 抗 DSG3抗体に結合させて細胞障害活性を機能させる化学療法剤(生体内で酵 素的に、又は非酵素的に該化学療法剤に変換されるプロドラッグを含むものとする) としては azaribine、 anastrozoie^ azacytidine^ oleomycin、 bortezom 、 bryostatin- 1、 D usulfan^ camptothecin^ 10-hydroxycamptothecins carmustine^ celebrex^ chlorambuci 1、 cisplatin^ irinotecan^ carboplatin^ cladribine^ cyclophosphamide s cytarabine^ dacar bazine^ docetaxeU dactinomycin^ daunomycin glucuronide^ daunorubicin^ dexametha sone、 diethylstilbestroU doxorubicin s doxorubicin glucuronide^ epirubicin^ ethinyl es tradioU estramustine^ etoposide s etoposide glucuronide^ floxuridine^ fludarabine^ flut amide s fluorouraciU fluoxymesterone^ gemcitabine^ hydroxyprogesterone caproate^ h ydroxyurea^ idaruoicin^ ifosf腿 ide、 leucovorin^ lomustine、 mechloreth腿 ine、 medrox yprogesterone acetate s megestrol acetate s melphalan^ mercaptopurine^ methotrexat e、 mitoxantrone^ mithramycin、 mitomycin、 mitotane、 phenylbutyrate^ prednisone、 pr ocarbazine^ paclitaxeU pentostatin^ semustine streptozocin^ tamoxifen s taxanes^ tax ol、 testosterone propionate^ thalidomide s thioguanine^ thiotepa, teniposide^ topotec an、 uracil mustard^ vinblastine s vinorelbine、 vincristineなどの低分子のィ匕学療法斉 lj カ好適に使用できる。ま 7こ、 ricin、 abrin、 ribonuclease^ onconase、 DNase I、 Staphyloc occal enterotoxin-As pokeweed antiviral protein s gelonin、 diphtheria toxin s Pseudom onas exotoxin s Pseudomonas endotoxin^ L-asparaginases PEG L_Asparaginaseなど の毒性ペプチドが好適に使用できる。また別の態様では、一又は二以上の低分子化 学療法剤と毒性ペプチドをそれぞれ好適に組み合わせて使用できる。また、抗 DSG 3抗体と上記の低分子化学療法剤との結合は共有結合又は非共有結合が好適に選 択でき、該化学療法剤を結合した抗体の作製方法は公知である。
[0114] 更に、タンパク質性薬剤又は毒素との結合には遺伝子組換え法により、上記毒性 ペプチドをコードする DNAと抗 DSG3抗体をコードする DNAをインフレームで融合 させて発現ベクター中に組み込んだ組換えベクターが構築できる。該ベクターによつ て適切な宿主細胞に導入することにより得られる形質転換細胞を培養し、組み込ん だ DNAを発現させることにより、該組換えタンパク質が調製できる。
[0115] さらに、本発明で使用される抗体は二重特異性抗体(bispecific antibody)であって もよ!/、。二重特異性抗体は DSG3分子上の異なるェピトープを認識する抗原結合部 位を有する二重特性抗体であってもよレ、し、一方の抗原結合部位が DSG3を認識し 、他方の抗原結合部位が化学療法剤、毒性ペプチド或いは放射性化学物質等の細 胞障害性物質を認識してもよい。この場合、 DSG3を発現している細胞に直接細胞 障害性物質を作用させ腫瘍細胞に特異的に障害を与え、腫瘍細胞の増殖を抑制す ること力 S可能である。また、該他方の抗原結合部位が、 DSG3と同様に標的とする癌 細胞の細胞表面に特異的に発現する抗原であって、 DSG3とは異なる抗原を認識 するような二重特異性抗体を作製してもよレ、。二重特異性抗体は 2種類の抗体の HL 対を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブ リドーマを融合させて、二重特異性抗体産生融合細胞を作製することもできる。さらに 、遺伝子工学的手法により二重特異性抗体が作製できる。
[0116] 前記のように構築した抗体遺伝子は、公知の方法により発現させ、取得することが できる。哺乳類細胞の場合、常用される有用なプロモーター、発現させる抗体遺伝子 、その 3 '側下流にポリ Aシグナルを機能的に結合させて発現させることができる。例 えばプロモーター/ェンハンサ一としては、ヒトサイトメガロウィルス前期プロモーター Zエノノヽンケー (human cytomegalovirus immediate early promoter/ enhancer) げること力 Sでさる。
[0117] また、その他に本発明で使用される抗体発現に使用できるプロモーター/ェンハン サ一として、レトロウイルス、ポリオ一マウィルス、アデノウイルス、シミアンウィルス 40 ( SV40)等のウィルスプロモーター/ェンハンサー、あるいはヒトェロンゲーシヨンファタ ター 1 a (HEF1 α )などの哺乳類細胞由来のプロモーター/ェンハンサ一等が挙げ られる。
[0118] SV40プロモーター/ェンハンサーを使用する場合は Mulliganらの方法(Nature (19 79) 277, 108)により、また、 HEF1 αプロモーター/ェンハンサーを使用する場合は M izushimaらの方法(Nucleic Acids Res. (1990) 18, 5322)により、容易に遺伝子発現を fiうこと力 Sでさる。 [0119] 大腸菌の場合、常用される有用なプロモーター、抗体分泌のためのシグナル配列 および発現させる抗体遺伝子を機能的に結合させて当該遺伝子が発現できる。プロ モーターとしては、例えば lacZプロモーター、 araBプロモーターを挙げることができる
。 lacZプロモーターを使用する場合は Wardらの方法(Nature (1098) 341, 544-546; F ASEBJ. (1992) 6, 2422-2427)により、あるいは araBプロモーターを使用する場合は Be tterらの方法(Science (1988) 240, 1041-1043)により当該遺伝子が発現できる。
[0120] 抗体分泌のためのシグナル配列としては、大腸菌のペリブラズムに産生させる場合 、 pelBシグナル配列(Lei, S. P. et al., J. Bacteriol. (1987) 169, 4379)を使用すればよ い。そして、ペリブラズムに産生された抗体を分離した後、尿素のグァニジン塩酸塩 の様なタンパク質変性剤を使用することによって所望の結合活性を有するように、抗 体の構造が組み直される(refolded)。
[0121] 発現ベクターに揷入される複製起源としては、 SV40、ポリオ一マウィルス、アデノウ ィルス、ゥシパピローマウィルス(BPV)等の由来のものを用いることができ、さらに、宿 主細胞系で遺伝子コピー数増幅のため、発現ベクター中に、選択マーカーとしてアミ ノグリコシドトランスフェラーゼ (APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌 キサンチングァニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸 還元酵素(dhfr)遺伝子等が揷入できる。
[0122] 本発明で使用される抗体の製造のために、任意の発現系、例えば真核細胞または 原核細胞系が使用できる。真核細胞としては、例えば樹立された哺乳類細胞系、昆 虫細胞系、真糸状菌細胞および酵母細胞などの動物細胞等が挙げられ、原核細胞 としては、例えば大腸菌細胞等の細菌細胞が挙げられる。好ましくは、本発明で使用 される抗体は、哺乳類細胞、例えば CHO、 COS,ミエローマ、 BHK、 Vero、 Hela細胞 を用いて発現される。
[0123] 次に、形質転換された宿主細胞を in vitroまたは in vivoで培養して目的とする抗体 を産生させる。宿主細胞の培養は公知の方法に従い行う。例えば、培養液として、 D MEM, MEM, RPMI1640, IMDMを使用することができ、牛胎児血清(FCS)等の血清 ネ甫 ί夜を併用することもできる。
[0124] 前記のように発現、産生された抗体は、通常のタンパク質の精製で使用されている 公知の方法を単独で使用することによって又は適宜組み合わせることによって精製 できる。例えば、プロテイン Aカラムなどのァフィ二ティーカラム、クロマトグラフィーカラ ム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体 を分離、精製すること力できる(Antibodies A Laboratory Manual. Ed Harlow, David L ane, Cold Spring Harbor Laboratory, 1988)。
[0125] 抗体の抗原結合活性(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)の測定には公知の手段を使用することができ る。例えば、 ELISA (酵素結合免疫吸着検定法)、 EIA (酵素免疫測定法)、 RIA (放 射免疫測定法)あるいは蛍光免疫法などを用いることができる。
[0126] 本発明で使用される抗体は糖鎖が改変された抗体であってもよい。抗体の糖鎖を 改変することにより抗体の細胞障害活性を増強できることが知られている。糖鎖が改 変された抗体としては、例えば、グリコシル化が修飾された抗体 (W099/54342など) 、糖鎖に付加するフコースが欠損した抗体(WO00/61739、 WO02/31140など))、バ イセクティング GlcNAcを有する糖鎖を有する抗体(WO02/79255など)などが知られ ている。
[0127] 本発明で使用される抗体は、好ましくは細胞障害活性を有する抗体である。
本発明における細胞障害活性としては、例えば抗体依存性細胞介在性細胞障害( antibody-dependent cell-mediated cytotoxicity : ADCC)活十生、補体依存十生細胞障 害(complement-d印 endent cytotoxicity: CDC)活性などを挙げることができる。本発 明において、 CDC活性とは補体系による細胞障害活性を意味し、 ADCC活性とは 標的細胞の細胞表面抗原に特異的抗体が付着した際、その Fc部分に Fc γ受容体 保有細胞 (免疫細胞等)が Fc γ受容体を介して結合し、標的細胞に障害を与える活 性を意味する。
[0128] 抗 DSG3抗体が ADCC活性を有するか否か、又は CDC活性を有するか否かは公 知の方法により測定することができる(例えば、 Current protocols in Immunology, Ch apter7. Immunologic studies in humans, Editor, John E, し oligan et al., John Wiley & Sons, Inc.,(1993)等)。
[0129] 具体的には、まず、エフェクター細胞、補体溶液、標的細胞の調製が実施される。 (1)エフェクター細胞の調製
CBA/Nマウスなどから脾臓を摘出し、 RPMI1640培地(Invitrogen社製)中で脾臓 細胞が分離される。 10%ゥシ胎児血清 (FBS、 HyClone社製)を含む同培地で洗浄後 、細胞濃度を 5 X 106/mlに調製することによって、エフェクター細胞が調製できる。
(2)補体溶液の調製
Baby Rabbit Complement (CEDARLANE社製)を 10% FBS含有培地(Invitrogen社 製)にて 10倍希釈し、補体溶液が調製できる。
(3)標的細胞の調製
DSG3タンパク質を発現する細胞(DSG3タンパク質をコードする遺伝子で形質転 換された細胞、肺癌細胞、大腸癌細胞、食道癌細胞、胃癌細胞、瞵癌細胞、皮膚癌 細胞又は子宮癌細胞等)を 0.2 mCiの 51Cr-クロム酸ナトリウム(GEヘルスケアバイオ サイエンス社製)とともに、 10% FBS含有 DMEM培地中で 37°Cにて 1時間培養するこ とにより該標的細胞を放射性標識できる。放射性標識後、細胞を 10% FBS含有 RPMI 1640培地にて 3回洗浄し、細胞濃度を 2 X 105/mlに調製することによって、該標的細 胞が調製できる。
[0130] ADCC活性、又は CDC活性は下記に述べる方法により測定できる。 ADCC活性 の測定の場合は、 96ゥエル U底プレート(Becton Dickinson社製)に、標的細胞と、抗 DSG3抗体を 50 1ずつ加え、氷上にて 15分間反応させる。その後、エフェクター細 胞 100 1を加え、炭酸ガスインキュベーター内で 4時間培養する。抗体の終濃度は 0 または lO g/mlとする。培養後、 100 1の上清を回収し、ガンマカウンター(COBRAII AUTO-GAMMA, MODEL D5005、 Packard Instrument Company社製)で放射活性 を測定する。細胞障害活性 (%)は得られた値を使用して (A-C) I (B-C) X 100の計算 式に基づいて計算できる。 Aは各試料における放射活性(cpm)、 Bは 1% NP-40 (nac alai tesque社製)を加えた試料における放射活性 (cpm)、 Cは標的細胞のみを含む試 料の放射活性 (cpm)を示す。
[0131] 一方、 CDC活性の測定の場合は、 96ゥエル平底プレート (Becton Dickinson社製) に、標的細胞と、抗 DSG3抗体を 50 1ずつ加え、氷上にて 15分間反応させる。その 後、補体溶液 100 1を加え、炭酸ガスインキュベーター内で 4時間培養する。抗体の 終濃度は 0または 3 g/mlとする。培養後、 100 1の上清を回収し、ガンマカウンタ 一で放射活性を測定する。細胞障害活性は ADCC活性の測定と同様にして計算で きる。
[0132] 一方、抗体コンジュゲートによる細胞障害活性の測定の場合は、 96ゥエル平底プレ ート(Becton Dickinson社製)に、標的細胞と、抗 DSG3抗体コンジュゲートを 50 μ 1 ずつ加え、氷上にて 15分間反応させる。炭酸ガスインキュベーター内で 1から 4時間 培養する。抗体の終濃度は 0または 3 g/mlとする。培養後、 100 1の上清を回収し 、ガンマカウンターで放射活性を測定する。細胞障害活性は ADCC活性の測定と同 様にして計算できる。
[0133] 本発明の細胞障害活性を有する抗体は、さらに好ましくは細胞崩壊活性を有しな い抗体である。該抗体は、試験管内においてもケラチノサイトの細胞接着を阻害する 細胞崩壊活性を測定することにより該細胞崩壊活性を有しない抗体として好適に選 択し、取得できる。該細胞崩壊活性を測定する方法は、例えば J.Invest.Dermatol., 1 24, 939-946, 2005に記載された方法により試験管内で測定できる。更には該細胞活 性を生体内で観察する方法として、該細胞崩壊活性の生体内における表現型である PV病変の誘起活性として該活性が評価できる。 PV病変の誘起活性は J.Immunology 170, 2170-2178, 2003に記載された方法により評価できる。
[0134] 抗 DSG3抗体が増殖を抑制する細胞は、 DSG3タンパク質が発現している細胞で あれば特に限定されないが、好ましくは癌細胞であり、より好ましくは肺癌細胞、大腸 癌細胞、食道癌細胞、胃癌細胞、瞵癌細胞、皮膚癌細胞又は子宮癌細胞である。さ らに好ましくは非小細胞肺癌である。従って、抗 DSG3抗体は、細胞増殖に起因する 疾患、例えば肺癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌などの治療、 予防を目的として使用できる。より好ましくは非小細胞肺癌、さらに好ましくは肺扁平 上皮癌、腺癌、腺扁平上皮癌、大細胞癌である。
[0135] また本発明は、本発明の抗体をコードするポリヌクレオチド、または該ポリヌクレオチ ドとストリンジェントな条件下でハイブリダィズし、かつ本発明の抗体と同等の活性を 有する抗体をコードするポリヌクレオチドを提供する。また、本発明は、これらポリヌク レオチドを含むベクター、該ベクターを含む形質転換体 (形質転換細胞を含む)を提 供する。 本発明のポリヌクレオチドは、本発明の抗体をコードする限り、特に限定さ れず、複数のデォキシリボ核酸 (DNA)またはリボ核酸 (RNA)等の塩基または塩基対 からなる重合体である。天然以外の塩基を含んでいてよい。本発明のポリヌクレオチ ドは、抗体を遺伝子工学的な手法により発現させる際に使用することができる。また 本発明の抗体と同等な機能を有する抗体をスクリーニングする際に、プローブとして 用いることもできる。即ち本発明の抗体をコードするポリヌクレオチド、またはその一部 をプローブとして用い、ハイブリダィゼーシヨン、遺伝子増幅技術 (例えば PCR)等の 技術により、該ポリヌクレオチドとストリンジェントな条件下でハイブリダィズし、かつ本 発明の抗体と同等の活性を有する抗体をコードする DNAを得ることができる。このよう な DNAも本発明のポリヌクレオチドに含まれる。ハイブリダィゼーシヨン技術(Sambroo k,J et al., Molecular し lomng 2nd ed., 9.47—9.58, し old spring Haroor Lab. press, 19 89)は当業者によく知られた技術である。ハイブリダィゼーシヨンの条件としては、例え ば、低ストリンジェントな条件が挙げられる。低ストリンジェントな条件とは、ハイブリダ ィゼーシヨン後の洗浄において、例えば 42°C、 0.1 X SSC、 0.1 %SDSの条件であり、好 ましくは 50°C、 0.1 X SSC 、 0.1 %SDSの条件である。より好ましいハイブリダィゼーショ ンの条件としては、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件と は、例えば 65°C、 5 X SSC及び 0.1 %SDSの条件である。これらの条件において、温度 を上げる程に高い相同性を有するポリヌクレオチドが効率的に得られることが期待で きる。但し、ハイブリダィゼーシヨンのストリンジエンシーに影響する要素としては温度 や塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択するこ とで同様のストリンジエンシーを実現することが可能である。
これらハイブリダィゼーシヨン技術や遺伝子増幅技術により得られるポリヌクレオチド がコードする、本発明の抗体と機能的に同等な抗体は、通常、これら抗体とアミノ酸 配列において高い相同性を有する。本発明の抗体には、本発明の抗体と機能的に 同等であり、かつ該抗体のアミノ酸配列と高い相同性を有する抗体も含まれる。高い 相同性とは、アミノ酸レベルにおいて、通常、少なくとも 50%以上の同一性、好ましく は 75%以上の同一性、さらに好ましくは 85%以上の同一性、さらに好ましくは 95%以 上の同一性を指す。ポリペプチドの相同性を決定するには、文献 (Wilbur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80, 726-730)に記載のアルゴリズム にしたがえばよい。
[0137] 医薬組成物
別の観点においては、本発明は、 DSG3タンパク質に結合する抗体を有効成分と して含有する医薬組成物を特徴とする。又、本発明は DSG3タンパク質に結合する 抗体を有効成分として含有する細胞増殖抑制剤、特に抗癌剤を特徴とする。本発明 の細胞増殖抑制剤および抗癌剤は、癌を罹患して!/、る対象または罹患して!/、る可能 性がある対象に投与されることが好ましい。本発明における対象としては、 DSG3タ ンパク質を遺伝的に有する動物種であって、癌を罹患している動物種、または罹患し ている可能性がある動物種であればよぐ例えば、ヒト、サル、ゥシ、ヒッジ、マウス、ィ ヌ、ネコ、ハムスター等の哺乳類が挙げられる力 これらに制限されるものではない。
[0138] 本発明にお!/、て、 DSG3タンパク質に結合する抗体を有効成分として含有する細 胞増殖抑制剤は、 DSG3タンパク質に結合する抗体を対象に投与する工程を含む 細胞増殖を抑制する方法、または、細胞増殖抑制剤の製造における DSG3タンパク 質に結合する抗体の使用と表現することもできる。
[0139] また、本発明にお!/、て、 DSG3タンパク質に結合する抗体を有効成分として含有す る抗癌剤は、 DSG3タンパク質に結合する抗体を対象に投与する工程を含む癌を予 防または治療する方法、または、抗癌剤の製造における DSG3タンパク質に結合す る抗体の使用と表現することもできる。
[0140] 本発明において、「DSG3に結合する抗体を有効成分として含有する」とは、抗 DS G3抗体を主要な活性成分として含むという意味であり、抗 DSG3抗体の含有率を制 限するものではない。
[0141] 本発明の医薬組成物(例えば、細胞増殖抑制剤、抗癌剤。以下同様)に含有され る抗体は DSG3タンパク質と結合する限り特に制限はなぐ本明細書中に記載された 抗体が例示できる。
[0142] 本発明の医薬組成物の投与方法は、経口、非経口投与のいずれかによつて実施 できる。特に好ましくは非経口投与による投与方法であり、係る投与方法としては具 体的には、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与 の例としては、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などによつ て本発明の医薬組成物が全身または局部的に投与できる。また、患者の年齢、症状 により適宜投与方法を選択することができる。投与量としては、例えば、一回の投与 にっき体重 1 kgあたり 0.0001 mgから 1000 mgの範囲で投与量が選択できる。あるい は、例えば、患者あたり 0.001 mgから 100000 mg/bodyの範囲で投与量が選択できる 。しかしながら、本発明の医薬組成物はこれらの投与量に制限されるものではない。
[0143] 本発明の医薬組成物は、常法に従って製剤化することができ(例えば、 Remington' s Pharmaceutical science, latest edition, Mark Pubiisning し ompany, J^aston, U.¾.A) 、医薬的に許容される担体や添加物を共に含むものであってもよい。例えば界面活 性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結 合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられるが、これらに制限され ず、その他常用の担体が適宜使用できる。具体的には、軽質無水ケィ酸、乳糖、結 晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウ セタールジェチルァミノアセテート、ポリビュルピロリドン、ゼラチン、中鎖脂肪酸トリグ リセライド、ポリオキシエチレン硬化ヒマシ油 60、 白糖、カルボキシメチルセルロース、 コーンスターチ、無機塩類等を挙げること力 Sできる。
[0144] また、本発明は、 DSG3発現細胞と DSG3タンパク質に結合する抗体とを接触させ ることにより DSG3発現細胞に障害を引き起こす方法又は細胞の増殖を抑制する方 法を提供する。 DSG3タンパク質に結合する抗体は、本発明の細胞増殖抑制剤に含 有される DSG3タンパク質に結合する抗体として上述したとおりである。抗 DSG3抗 体が結合する細胞は DSG3が発現して!/、る細胞であれば特に限定されな!/、が、好ま しくは癌細胞であり、より好ましくは肺癌細胞、大腸癌細胞、食道癌細胞、胃癌細胞、 瞵癌細胞、皮膚癌細胞又は子宮癌細胞であり、さらに好ましくは非小細胞肺癌であ
[0145] 本発明において「接触」は、例えば、試験管内で培養している DSG3発現細胞の培 養液に抗体を添加することにより行われる。この場合において、添加される抗体の形 状としては、溶液又は凍結乾燥等により得られる固体等の形状が適宜使用できる。 水溶液として添加される場合にあっては純粋に抗体のみを含有する水溶液であって もよいし、例えば上記記載の界面活性剤、賦形剤、着色料、着香料、保存料、安定 剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤 等を含む溶液であってもよい。添加する濃度は特に限定されないが、培養液中の最 終濃度として、好ましくは 1 pg/mlから 1 g/mlの範囲であり、より好ましくは 1 ng/mlから 1 mg/mlであり、更に好ましくは 1 g/mlから 1 mg/mlが好適に使用されうる。
[0146] また本発明において「接触」は更に、別の態様では、 DSG3発現細胞を体内に移 植した非ヒト動物や内在的に DSG3を発現する癌細胞を有する動物に投与すること によっても行われる。投与方法は経口、非経口投与のいずれかによつて実施できる。 特に好ましくは非経口投与による投与方法であり、係る投与方法としては具体的には 、注射投与、経鼻投与、経肺投与、経皮投与などが挙げられる。注射投与の例として は、例えば、静脈内注射、筋肉内注射、腹腔内注射、皮下注射などによって本発明 の医薬組成物細胞増殖阻害剤および抗癌剤が全身または局部的に投与できる。ま た、被験動物の年齢、症状により適宜投与方法を選択することができる。水溶液とし て投与される場合にあっては純粋に抗体のみを含有する水溶液であってもよいし、 例えば上記記載の界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤 、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等を含む溶 液であってもよい。投与量としては、例えば、一回の投与につき体重 1 kgあたり 0.000 1 mgから 1000 mgの範囲で投与量が選択できる。あるいは、例えば、患者あたり 0.001 mgから 100000 mg/bodyの範囲で投与量が選択できる。しかしながら、本発明の抗体 投与量はこれらの投与量に制限されるものではない。
[0147] 抗 DSG3抗体の接触によって DSG3発現細胞に引き起こされた細胞障害を評価又 は測定する方法として、以下の方法が好適に使用される。試験管内において該細胞 障害活性を評価又は測定する方法としては、上記に記載の抗体依存性細胞介在性 細胞障害(antibody-d印 endent cell-mediated cytotoxicity : ADCC)活性、補体依存 性細胞障害(complement-d印 endent cytotoxicity: CDC)活性などの測定法を挙げ ること力 Sできる。抗 DSG3抗体が ADCC活性を有するか否か、又は CDC活性を有す るか否かは公知の方法により測定することができる(例えば、 Current protocols in Im munology, Chapter7. Immunologic studies in humans, Editor, John E, Coligan et al., John Wiley & Sons, Inc.,(1993)等)。活性の測定に際しては、対照抗体として抗 DS G3抗体と同一のアイソタイプを有する抗体で該細胞障害活性を有しない結合抗体を 、抗 DSG3抗体と同様に使用して、抗 DSG3抗体が対照抗体よりも強い細胞傷害活 性を示すことにより活性を判定することができる。
[0148] 抗体のアイソタイプはその抗体のアミノ酸配列の H鎖定常領域の配列で規定される 力 抗体産生 B細胞の成熟化の際に起こる染色体上の遺伝子組換えにより生じるク ラススイッチの結果決定される。アイソタイプの相違が抗体の生理的 ·病理的機能の 相違に反映され、例えば、細胞障害活性の強度は抗原の発現量と共に、抗体のアイ ソタイプによっても影響されることが知られている。従って、上記記載の細胞障害活性 の測定に際しては、対照として用いられる抗体は被検抗体と同一のアイソタイプを用 いることが好ましい。
[0149] また、生体内で細胞障害活性を評価又は測定する方法としては、例えば DSG3発 現癌細胞を非ヒト被検動物の皮内又は皮下に移植後、当日又は翌日から毎日又は 数日間隔で被検抗体を静脈又は腹腔内に投与する。腫瘍の大きさを経日的に測定 することにより細胞障害活性と規定することができる。試験管内での評価と同様に同 一のアイソタイプを有する対照抗体を投与し、抗 DSG3抗体投与群における腫瘍の大 きさが対照抗体投与群における腫瘍の大きさよりも有意に小さいことにより細胞傷害 活性を判定することができる。非ヒト被検動物としてマウスを用いる場合には、胸腺を 遺伝的に欠損してその Tリンパ球の機能を欠失したヌード(nu/nu)マウスを好適に用 いること力 Sできる。当該マウスを使用することにより、投与された抗体による細胞障害 活性の評価 ·測定に当たって被検動物中の Tリンパ球の関与を除くことができる。
[0150] 抗 DSG3抗体の接触による DSG3発現細胞の増殖に対する抑制効果を評価又は 測定する方法として、以下の方法が好適に使用される。試験管内において該細胞増 殖抑制活性を評価又は測定する方法としては、培地中に添加した [3H]ラベルしたチミ ジンの生細胞による取り込みを DNA複製能力の指標として測定する方法が用いられ る。より簡便な方法としてトリパンブルー等の色素を細胞外に排除する能力を顕微鏡 下で計測する色素排除法や、 MTT法が用いられる。後者は、生細胞がテトラゾリゥム 塩でめる MTT (3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide)を 青色のホルマザン産物へ転換する能力を有することを利用している。より具体的には 、被検細胞の培養液に被検抗体を添加して一定時間を経過した後に、 MTT溶液を 培養液に加えて一定時間静置することにより MTTを細胞に取り込ませる。その結果 、黄色の化合物である MTTが細胞内のミトコンドリア内のコハク酸脱水素酵素により 青色の化合物に変換される。この青色生成物を溶解し呈色させた後にその吸光度を 測定することにより生細胞数の指標とするものである。 MTT以外に、 MTS、 XTT、 WST— 1、 WST— 8等の試薬も市販されており(nacalai tesqueなど)好適に使用する こと力 Sできる。活性の測定に際しては、対照抗体として抗 DSG3抗体と同一のァイソ タイプを有する抗体で該細胞増殖抑制活性を有しな!/、結合抗体を、抗 DSG3抗体と 同様に使用して、抗 DSG3抗体が対照抗体よりも強い細胞増殖抑制活性を示すこと により活性を判定することができる。
また、生体内で細胞増殖抑制活性を評価又は測定する方法として、上記記載の生 体内において細胞障害活性を評価又は測定する方法と同じ方法を好適に用いること ができる。
なお本明細書において引用されたすベての先行技術文献は、参照として本明細書 に組み入れられる。
実施例
以下に実施例により本発明をより詳細に説明する力 本発明はこれらの実施例によ り限定されるものではない。
〔実施例 1〕各癌種における DSG3の mRNA発現解析
DSG3遺伝子発現解析を行うために Gene chipが用いられた。癌細胞において発 現が亢進する遺伝子を探索するために、表 1、 2に示す各種 RN A及び各種摘出組織 より ISOGEN (二ツボンジーン社製)を用い常法により調製した全 RNAが用いられた。 より具体的には、全 RNAを各 10 a gずつ用いて、 GeneChip U-133A (ァフィメトリタス 社製)に供し Expression Analysis Technical Manual (ァフィメトリタス社製)に準じて遺 伝子発解析が実施された。なお、肺腺癌及び肝細胞癌の解析に際しては、肺腺癌 1 2症例と肝細胞癌 3症例の全 RNAを合わせて合計 10 ^ gとし、解析を実施した(表 1) [表 1]
Figure imgf000062_0001
DSG3遺伝子発現解析に用いた組織 [表 2]
Figure imgf000063_0001
DSG3遺伝子発現解析に使用した癌細胞株と培養条件
全遺伝子の発現スコアの平均値を 100と設定し、各遺伝子の相対的な発現量を比 較することによって、癌組織あるいは癌細胞において発現が亢進する遺伝子の探索 を行った。その結果、 DSG3 mRNA (プローブ ID : 205595_at HG-U133A)の発現が 、正常組織においては皮膚に限局する一方で、癌組織においては肺癌(肺扁平上 皮癌)や大腸癌、また、癌細胞株においては TE2 (食道癌)、 2M (胃癌)及び PK-1 (瞵 癌)において亢進していた(図 1、図 2)。 以上より、 DSG3遺伝子(プローブ ID : 205595_at HG-U133A)は皮膚以外の正常組 織でその発現が非常に低いのに対し、肺癌、大腸癌、食道癌、胃癌及び瞵癌と広範 な癌種でその発現が亢進していることが明ら力、となった。以上の結果から、 DSG3の 発現を指標にすることによって、上記の癌の発生が診断できる可能性が高いことが示 唆された。
〔実施例 2〕肺扁平上皮癌における DSG3の免疫組織染色
DSG3遺伝子の転写が癌細胞、特に肺扁平上皮癌細胞で亢進していることから、 DSG3タンパク質の発現の確認をするために免疫組織染色解析が実施された。 各検体は固定パラフィン包埋標本として調製され、 4 πιに薄切されたその切片が スライドガラスに張り付けられた後に、 37°Cで 16時間程度静置され充分乾燥させられ た。該切片は 100%キシレンに 5分間漬けることを 3回繰り返すことによって脱パラフィン 化され、 100%エタノールに 5分間漬けることを 3回繰り返し、更に 70%エタノールで 5分 間漬けることにより親水化された。その後、 50 mM TBS緩衝液を用いて 5分間の洗浄 を 3回繰り返した後に、該切片をクェン酸バッファー(10 mM, pH 7.0)中で 120°C、 10 分間で処理することによって、切片中の抗原が賦活化された。抗原が賦活化処理さ れた該切片は TBS緩衝液による 5分間の洗浄力 ¾回実施された後に、最終濃度 50 11 g/mlに希釈された抗 DSG3抗体(5G11) (ザィメッド社)を含む TBS緩衝液中で室温 にて 1時間処理された。内在性のペルォキシダーゼを失活させるために、抗 DSG3 抗体を結合させた切片力 .3%の過酸化水素で室温にて 15分間処理された。さらに T BS緩衝液による 3回の洗浄の後、二次抗体である ENVISION+キット/ HRP (DAKO社) により上記切片が室温にて 1時間処理された。 TBS緩衝液による 5分間の洗浄を 3回 実施した後、発色基質として DAB (3, 3' -ジァミノベンザミド テトラハイド口クロライド) を加えることにより切片が染色された。また、核の対比染色にはへマトキシリンが染色 剤として用いられた。
その結果、 5例の肺扁平上皮癌に羅患したがん患者由来の組織切片中、 5例全て が抗 DSG3抗体(5G11)によって染色される陽性反応を示した(図 3)。肺癌特異的な 染色像が得られたことにより、 DSG3が肺癌においてタンパクレベルにおいても発現 亢進することが明らかとなった。抗 DSG3抗体を使用することにより、肺癌の発生が検 出できることが示された。
[0153] 〔実施例 3〕抗 DSG3抗体の作製
3— 1 )ヒト DSG3をコードする全長 cDNAのクローニング
ヒト DSG3をコードする全長 cDNAが、 Human Small Intestine Marathon-Ready cD NA (CLONTECH社)を铸型とした PCR増幅により取得された。すなわち、 2 1の cD NA、 1 1のセンスプライマー(配列番号: 37)、 1 1のアンチセンスプライマー(配 列番号: 38 )、 5 の 10 X KOD-Plus buffer、 5 1の 2 mM dNTPs、 2 μ \の 25 mM M gS04、 1 1の KOD-Plusを含む 50 1の反応液中で、 94 °Cにて 15秒、 70°Cにて 2分 の反応からなる反応サイクルを 5回、 94 °Cにて 15秒、 68°Cにて 2分の反応からなる反 応サイクルを 5回、 94 °Cにて 15秒、 66°Cにて 2分の反応からなる反応サイクル 28回を 続けて行う PCR反応が実施された。上記の PCR反応により得られた増幅産物が pGE M - T Easy Vector System I (Promega社)を用いて pGEM- T easyに揷入された。 ABI3 730 DNAシーケンサーを用いたシークェンシングによって、ヒト DSG3をコードする c DNA配列の成功裏のクローユングが確認された。配列番号: 39で表される配列はヒ ト DSG3遺伝子の塩基配列を、配列番号: 40で表される配列はヒト DSG3タンパク質 のアミノ酸配列を示す。
[0154] 3— 2)全長ヒト DSG3定常発現細胞の樹立
全長ヒト DSG3 cDNAを哺乳細胞発現用ベクター(pMCN)にクローユングした(pM CN/hDSG3)。 pMCNは、 mouse CMVプロモータ(ACCESSION No. U68299)による制 御下で誘導発現が可能で、ネオマイシン耐性遺伝子が組み込まれたベクターである 。 pMCN/hDSG3を CHO細胞 DG44株(Invitrogen社)へエレクト口ポレーシヨンにより導 入し、 500 g/mlの Geneticinでの選抜により、全長ヒト DSG3を定常的に発現する C HO細胞株が樹立された。同様に、 DSG3を発現していないヒト肺上皮癌細胞株であ る A549細胞へ pMCN/hDSG3を導入し、 1000 g/mlの Geneticinでの選抜により、全 長ヒト DSG3を定常的に発現する A549細胞株が樹立された。
[0155] 3— 3)可溶型ヒト DSG3/マウス IgG2a Fc融合タンパク質の作製
抗 DSG3抗体作製のための免疫抗原として可溶型ヒト DSG3/マウス IgG2a Fc 融合タンパク質(以下、 shDSG3_mIgG2aFc)が作製された。発現ベクター pMCNに DH FR遺伝子を組み込んだ pMCDNベクターに、ヒト DSG3細胞外領域(Metl_Leu616) とマウス IgG2a定常領域をヒンジ部位の Cpol認識配列で連結した shDSG3_mIgG2aFc がクローニングされた(pMCDN/shDSG3_mIgG2aFc)。配列番号: 41で表される配列 は shDSG3_mIgG2aFc遺伝子の塩基配列を、配列番号: 42で表される配列は shDSG3 — mIgG2aFcのアミノ酸配列を示す。 pMCDN/shDSG3_mIgG2aFcを DG44細胞へエレク トロポレーシヨンにより導入し、 500 ^ g/ml Geneticinで選抜することにより、 shDSG3_ mIgG2aFcを定常的に発現する CHO細胞株が樹立された。次に樹立された該 shDSG 3_mIgG2aFc発現 CHO細胞株の培養上清より shDSG3_mIgG2aFcの精製が実施された 。培養上清が Hi Trap ProteinG HP (GEヘルスケアバイオサイエンス社)カラムにァプ ライされ、結合バッファー(20mMリン酸ナトリウム(pH 7.0))にて洗浄後、溶出バッファ 一(0.1Mグリシン- HC1 (pH 2.7))で溶出された。溶出液は中和バッファー(1M Tris- HC1 (pH 9.0))を加えたチューブに溶出することにより直ちに中和された。該溶出液 は Superdex 200 HR 10/30 (GEヘルスケアバイオサイエンス社)によるゲルろ過に供さ れることにより、所望の抗体を含有する溶液の溶媒が PBSバッファーに置換された。 精製タンパク質は DC protein assay kit (BIO-RAD社)を用いて、該キットに添付され たゥシ IgGを標準試料とした濃度に換算され定量された。
3— 4)抗 DSG3抗体の作製
Balbんマウス、もしくは MRL/MpJUmmCrj-lpr/lprマウス(以下、 MRL/lprマウス、 日 本チャールズ 'リバ一より購入)が免疫動物として用いられた。 7週齢、又は 8週齢より 免疫が開始され、初回免疫に際しては shDSG3_mIgG2aFcを一頭当たり 100 g含む ように PBSバッファーを用いて調製され、フロイント完全アジュバント (ベタトンディツキ ンソン社)を用いてェマルジヨン化された抗原が皮下に投与された。 2週間後に一頭 当たり 50 H g含むように PBSバッファーを用いて調製されたものをフロイント不完全ァ ジュバント(ベタトンディッキンソン社)でェマルジヨン化された抗原が皮下に投与され た。以降 1週間間隔で追加免疫が 2から 4回行われて、最終免疫として一頭当たり 50 11 gとなるように PBSで希釈され尾静脈内に投与された。最終免疫の 4日後、脾臓細 胞を摘出し、マウスミエローマ細胞 P3-X63Ag8Ul (P3Ul、ATCCより購入)と 2 : 1にな るように混合し、 PEG1500 (ロシュ'ダイァグノスティックス社)を徐々に加える事により 細胞融合が実施された。続いて慎重に RPMI1640培地(Invitrogen社)を加えることに より PEG1500が希釈された後に、遠心分離で上清を除くことにより PEG1500が除去さ れた。 10%FBS入り RPMI1640にて懸濁した融合細胞群が 100 μ 1/wellとなるように 96 穴培養プレート中に播種された。翌日、 100 ^ 1/wellとなるように 10%FBS、 1 x HAT media supplement (SIGMA社)、 0.5 x BM -し ondimed HI Hybndoma cloning supplem ent (ロシュ.ダイァグノスティックス社)を含む RPMI1640 (以下、 HAT培地と称する。 ) を添加した。 2、 3日後に培養液の半分が HAT培地に置き換えられ、 7日後の培養上 清を用いて DSG3分子に対する結合活性を指標としたスクリーニングが実施された。 該スクリーニングは全長ヒト DSG3を定常的に発現する CHO細胞への結合を検出す る Flowcytometry解析によって実施された。該解析で得られた陽性クローンが限界希 釈法によりモノクローン化された。即ち、 DSG3に特異的に結合する抗体として、 DF1 20、 DF122、 DF148、 DF151、 DF153、 DF168、 DF331、 DF364、 DF366が樹立された。
FBS (Ultra low IgG) (Invitrogen社)を血清として用いた HAT培地にて培養したハイ ブリドーマの培養上清から、該モノクローナル抗体の精製が shDSG3_mIgG2aFcと同 様に Hi Trap ProteinG HPカラムを用いて実施された。溶出画分は、 PD-10カラム(G Eヘルスケアバイオサイエンス社)を用いてその溶液の溶媒を PBSに置換した後に、 4 °Cにて保管された。精製抗体は DC protein assay kit (BIO-RAD社)を用いて、該キッ トに添付のゥシ IgGを標準試料とした濃度に換算されることによって定量された。
3- 5) Flowcytometryによる結合活性の評価
取得した抗体を用い、全長ヒト DSG3を定常的に発現する CHO細胞に対するその 結合が Flowcytometryにより評価された。 5 x 105 cells/mlになるように FACS Buffer (1%
FBS/PBS)に懸濁し Multiscreen - HV Filter Plates (ミリポア社)に分注した細胞懸濁 液から、遠心分離によって上清が除去された。上清が除去された細胞に対して FACS
Bufferによって適当な濃度(3 H g/ml)に希釈された抗 DSG3モノクローナル抗体を 含む FACS Bufferを添加した後に氷上に 30分間静置させることによって、該細胞を該 モノクローナル抗体と反応させた。遠心分離によって該反応液から上清を除去した後 に細胞は FACS Bufferによって一回洗浄された。次に、二次抗体として FITC標識抗 マウス IgG抗体を含む FACS Bufferによって細胞を懸濁させることによって、細胞を該 二次抗体と氷上にて 30分間反応させた。反応終了後、遠心分離により上清が除去さ れた細胞は FACS Buffer 100 1に懸濁後、フローサイトメトリー解析に供された。フロ 一サイトメーターは FACS Calibur (ベタトンディッキンソン社)が用いられた。前方散乱 光(forward scatter)及び側方散乱光(side scatter)のヒストグラムにて生細胞集団に ゲートが設定された。図 4に示すように 3 g/mlの抗 DSG3モノクローナル抗体(DF1 20, DF122, DF148, DF151, DF153, DF168, DF331, DF364, DF366)が DSG3を発 現した CHO細胞に強く結合し、親株である CHO細胞には結合しなかった事から、該 抗 DSG3モノクローナル抗体が細胞膜上に提示された DSG3に特異的に結合する 事が判明した。
〔実施例 4〕抗 DSG3抗体が有する細胞障害活性の測定
4 - 1 )抗 DSG3抗体の complement-d印 endent cytotoxicity (CDC)活性の測定 標的細胞として全長ヒト DSG3を定常的に発現する CHO (DSG3_CHO、実施例 3— 2)に記載されている)細胞株を用いた。 DSG3-CHO細胞株の培養には 500 g/ml Geneticin (Invitrogen社)、 HT supplement (Invitrogenネェリ、 penicillin/streptomycin (I nvitrogen社)を含む CHO-S-SFM II培地(Invitrogen社)(以下、「培地」と称する)を用 いた。 DSG3-CHO細胞株 5 X 105細胞を 4°Cにて 5分間遠心分離(1000 rpm)すること により得られた細胞ペレットは 3.7 MBqの Chromium-51 (GEヘルスケアバイオサイエ ンス社)を含有する約 200 1の培地に懸濁された後に、 5%炭酸ガスインキュベータ 一中で 37°Cにて 1時間培養された。この細胞を培地で 3回洗浄した後、培地にて細胞 密度が 1 X 105 cells/mlに調製された後に、 96ゥエル平底プレートに 100 1ずつ分注 された。次に、培地にて希釈した抗 DSG3抗体及びコントロールマウス IgG2a抗体(B D Biosciences Pharmingen社)が各ゥエルに 50 1ずつ添加された。抗体は終濃度 10 g/mlになるように調製された。続いて、培地にて 5倍希釈した幼令ゥサギ補体(Ced erlane社)が各ゥエルに 50 1ずつ添加された後に、プレートは 5%炭酸ガスインキュべ 一ター中で 37°Cにて 1.5時間静置された。静置後 4°Cにて 5分間、遠心(1000 rpm)し たプレートの各ゥエルから上清が 100 a 1ずつ回収され、ガンマカウンター(1480 WIZ ARD 3"、 Wallac社)にて放射活性が測定された。下式に基づいて特異的クロム遊離 率が決定された。 特異的クロム遊離率 (%) = (A-C) X 100/(B-C)
Aは各ゥエルにおける放射活性(cpm) Bは 100 μ 1の細胞と 100 μ 1の 2% Nonidet P -40溶液(ナカライテスタ社)を添加したゥエルにおける放射活性 (cpm)の平均値、 Cは 100 1の細胞と 100 1の培地を添加したゥエルにおける放射活性 (cpm)の平均値を 示す。測定は duplicateにて行われ、特異的クロム遊離率の平均値及び標準偏差が 昇山 れ7
実験に用いた全ての抗 DSG3抗体が CDC活性を有することが確認された(図 5) 一方コントロールマウス IgG2a抗体は同濃度で CDC活性を示さなかった。
次に、ヒト皮膚上皮癌細胞株 A43 UATCCより購入)、ヒト肺上皮癌細胞株 A549 (AT CCより購入)、および全長ヒト DSG3を定常発現させた A549細胞株(DSG3_A549、実 施例 3— 2)に記載されている)が標的細胞として用いられ該抗体の CDC活性の有無 が検討された。 A431及び DSG3-A549は細胞膜上に DSG3を発現する。 A431 A549 の培 には 10% fetal bovine serum (Invitrogen社)、 penicillin/streptomycinを む Dul becco ' s Modified Eagle Medium培地(Invitrogen社)(以下、 DMEM培地と称する)を 用いた。 DSG3-A549細胞株の培養には 1 mg/ml Geneticinを含む DMEM培地が使用 された。 A431 A549 DSG3-A549細胞が 96ゥエル平底プレートの各ゥエルに 2 x 103 細胞(A549 DSG3-A549)または 4 x 103細胞(A431 )ずつ添加され、 5%炭酸ガスイン キュベータ一中で 37°Cにて 3日間培養された。培養後 Chromium-51が終濃度 1.85 M Bq/mlにて添加され、さらに 1時間培養が継続された。各ゥエルが 300 1の DMEM培 地で洗浄された後、 100 1の DMEM培地が添加された。次に抗 DSG3抗体および 幼令ゥサギ補体が DSG3-CHO細胞株を用いた試験で用いられた条件と同様に添カロ されることにより特異的クロム遊離率が決定された。
抗 DSG3抗体 DF151は DSG3を発現する A431および DSG3-A549細胞株に対して 濃度依存的に CDCを誘導した力 S DSG3を発現しない A549細胞株に対しては CDC 活性を示さな力、つた(図 6)。以上の結果より、抗 DSG3抗体が抗原特異的に CDC活 性を発揮することが示された。
4 2)抗 DSG3抗体の antibody-dependent cellular cytotoxicity (ADCC)活性の測 定 ADCC活性の測定には DSG3-A549細胞株および A431細胞株が使用された。 CD C活性の測定の場合と同様に 96ゥエル平底プレートにて上記細胞を培養し Chromium —51と反 、 せこ。ての後、各ウエノレ (ュ 10% fetal bovine serum penicillin/ streptomyci nを含む RPMI 1640培地(Invitrogen社)(以下、 RPMI培地と称する)にて洗浄後、 100 H 1の RPMI培地が添加された。次に、 RPMI培地にて希釈された抗 DSG3抗体および コントロールマウス IgG2a抗体が各ゥエルに 50 1ずつ添加された。抗体は終濃度 10
11 g/ml (骨髄由来エフェクター細胞)または 1 μ g/ml (脾臓由来エフェクター細胞)に なるように調製された。続いて、後述するエフェクター細胞溶液(1 X 107細胞/ ml)を各 ゥエルに 50 1ずつ添加した後に、 5%炭酸ガスインキュベータ一中で 37°Cにて 4時間 静置したプレートを用いて測定された各ゥエルの放射活性から特異的クロム遊離率 が決定された。エフェクター細胞としては、 Balbんマウス(日本チヤ一ルス'リバ一社)の 脾臓細胞を 50 ng/mlリコンビナントヒ Hnterleukin-2 (P印 rotech社)を含む RPMI培地 で 5日間培養した細胞、もしくは同マウスの骨髄細胞を 50 ng/mlリコンビナントヒト inter leukin-2および 10 ng/mlリコンビナントマウス GM- CSF (P印 rotech社)を含む RPMI培 地で 6日間培養した細胞を用いた。
抗 DSG3抗体 DF151、 DF364及び DF366は DSG3-A549細胞株および A431細胞株 に対して ADCCを誘導した(図 7)。以上の結果より抗 DSG3抗体は ADCC活性を通 じて DSG3タンパク質を発現する細胞に対して細胞障害を発揮することが示された。 〔実施例 5〕抗 DSG3抗体可変領域遺伝子配列の決定
DSG3発現細胞に対し ADCC活性、 CDC活性を示したモノクローナル抗体 DF151 、 DF364及び DF366を産生するハイブリドーマより、抗体可変領域遺伝子がクロー二 ングされその配列が決定された。抗 DSG3抗体産生ハイプリドーマより抽出した全 R NAを用いて、モノクローナル抗体 DF151、 DF364及び DF366をコードする抗体遺伝 子が RT— PCR法によって増幅された。全 RNAが、 RNeasy Plant Mini Kits (QIAGE N社)を用いて 1 x 107細胞のハイプリドーマより抽出された。 l〃gの全 RNAを使用し て、 SMART RACE cDNA Amplification Kit (CLONTECH社)、マウス IgG2b定常領 域配列に相補的な合成オリゴヌクレオチド MHC_IgG2b (配列番号: 43)、マウス IgGl 定常領域配列に相補的な合成オリゴヌクレオチド MHC-IgGl (配列番号: 100)また はマウス κ鎖定常領域塩基配列に相補的な合成オリゴヌクレオチド kappa (配列番号 : 44)を用い、 5'末端側遺伝子断片が増幅された。逆転写反応は 42°Cで 1時間 30分 間ネ亍われた。 5 μ 1(7)10 X Advantage 2 PCR Buffer, 5 1の 10 x Universal Primer A Mix, 0.2 mM dNTPs (dATP,dGTP,dCTP,dTTP)、 1 μ 1の Advantage 2 Polymerase Mi x (以上、 CLONTECH社製)、 2.5 μ 1の逆転写反応産物、 10 pmolの合成オリゴヌタレ ォチド MHC_IgG2b、 MHC-IgGlまたは kappaを含有する 50 1の PCR反応液中で PC R反応が実施された。反応条件としては、 94°Cの初期温度にて 30秒間反応後、 94°C にて 5秒、 72°Cにて 3分の反応からなる反応サイクルを 5回、 94°Cにて 5秒、 70°Cにて 1 0秒、 72°Cにて 3分の反応からなる反応サイクルを 5回反復、さらに 94°Cにて 5秒、 68°C にて 10秒、 72°Cにて 3分の反応からなる反応サイクルを 25回反復する PCR反応が実 施された。最後に反応産物は 72°Cで 7分間加熱された。各 PCR産物が QIAquick Gel Extraction Kit (QIAGEN社製)を用いて、ァガロースゲルから精製された後、 pGEM- T Easyベクター(Promega社製)へクローニングされ、該クローンの塩基配列が決定さ 1
DF151の H鎖の CDR1の塩基配列を配列番号: 1、アミノ酸配列を配列番号: 2、 CD R2の塩基配列を配列番号: 3、アミノ酸配列を配列番号: 4、 CDR3の塩基配列を配列 番号: 5、アミノ酸配列を配列番号: 6に示す。また、 DF151の L鎖の CDR1の塩基配列 を配列番号: 11、アミノ酸配列を配列番号: 12、 CDR2の塩基配列を配列番号: 13、 アミノ酸配列を配列番号: 14、 CDR3の塩基配列を配列番号: 15、アミノ酸配列を配 列番号: 16に示す。
DF364の H鎖の CDR1の塩基配列を配列番号: 21、アミノ酸配列を配列番号: 22、 CDR2の塩基配列を配列番号: 23、アミノ酸配列を配列番号: 24、 CDR3の塩基配歹 IJ を配列番号: 25、アミノ酸配列を配列番号: 26に示す。また、 DF364の L鎖の CDR1の 塩基配列を配列番号: 29、アミノ酸配列を配列番号: 30、 CDR2の塩基配列を配列 番号: 31、アミノ酸配列を配列番号: 32、 CDR3の塩基配列を配列番号: 33、アミノ酸 配列を配列番号: 34に示す。
DF366の H鎖の CDR1の塩基配列を配列番号: 80、アミノ酸配列を配列番号: 81、 C DR2の塩基配列を配列番号: 82、アミノ酸配列を配列番号: 83、 CDR3の塩基配列を 配列番号: 84、アミノ酸配列を配列番号: 85に示す。また、 DF366の L鎖の CDR1の塩 基配列を配列番号: 86、アミノ酸配列を配列番号: 87、 CDR2の塩基配列を配列番 号: 88、アミノ酸配列を配列番号: 89、 CDR3の塩基配列を配列番号: 90、アミノ酸酉己 列を配列番号: 91に示す。
DF151の H鎖可変領域の塩基配列を配列番号: 45、アミノ酸配列を配列番号: 46、 L鎖可変領域の塩基配列を配列番号: 47、アミノ酸配列を配列番号: 48に示す。ま た、 DF364の H鎖可変領域の塩基配列を配列番号: 49、アミノ酸配列を配列番号: 5 0、 L鎖可変領域の塩基配列を配列番号: 51、アミノ酸配列を配列番号: 52に示す。 また、 DF366の H鎖可変領域の塩基配列を配列番号: 92、アミノ酸配列を配列番号: 93、 L鎖可変領域の塩基配列を配列番号: 94、アミノ酸配列を配列番号: 95に示す
〔実施例 6〕抗 DSG3抗体全長遺伝子配列の決定
DF151、 DF364および DF366の可変領域遺伝子配列が決定される際に、可変領域 に隣接する定常領域の遺伝子配列も決定された。この配列と同じ配列を有する遺伝 -†-¾rNational Center for Biotechnology Information (http://www.ncb1. nlm.mh.g0v/B LAST/)の Basic Local Alignment Search Tool (BLAST)を用いて検索することにより、 定常領域の全域の塩基配列を得ることができる。得られた定常領域の塩基配列に可 変領域塩基配列を結合することにより全長塩基配列を決定することができる。このよう にして DF151の H鎖定常領域の塩基配歹 IJ (配列番号: 53)、 DF151、 DF364および DF 366の L鎖定常領域の塩基配歹 IJ (配列番号: 54)、 DF364および DF366の H鎖定常領 域の塩基酉己列 (配列番号: 55)から、それぞれマウス IgG2b塩基配列 (DDBJ Accession #: BC025447)、マウス kappa light chain塩基配列 (DDBJ Accession#: AY704179)、マ ウス IgG l塩基配列 (DDBJ Accessions: BC057688)を得ることができる。
なお、 DF151 (マウス IgG2b κ )、 DF364 (マウス IgG l κ )および DF366 (マウス IgG l κ )のアイソタイプは IsoStrip Mouse Monoclonal Antibody Isotyping Kit (ROCHE社)を 用いて予め決定された。予想される DF151の H鎖全長の塩基配列を配列番号: 56、 アミノ酸配列を配列番号: 57、 L鎖全長の塩基配列を配列番号: 58、アミノ酸配列を 配列番号: 59に示す。また、予想される DF364の H鎖全長の塩基配列を配列番号: 6 0、アミノ酸配列を配列番号: 61、 L鎖全長の塩基配列を配列番号: 62、アミノ酸配列 を配列番号: 63に示す。また、予想される DF366の H鎖全長の塩基配列を配列番号 : 101、アミノ酸配列を配列番号: 102、 L鎖全長の塩基配列を配列番号: 103、ァミノ 酸配列を配列番号: 104に示す。また、 DF151の H鎖定常領域の塩基配列を配列番 号: 7、アミノ酸配列を配列番号: 8、 L鎖定常領域の塩基配列を配列番号: 17、ァミノ 酸配列を配列番号: 18に示す。また、 DF364および DF366の H鎖定常領域の塩基配 列を配列番号: 27、アミノ酸配列を配列番号: 28、 L鎖定常領域の塩基配列を配列 番号: 35、アミノ酸配列を配列番号: 36に示す。
〔実施例 7〕抗 DSG3マウスーヒトキメラ抗体の作製
各抗体の H鎖および L鎖可変領域配列がヒト H鎖およびヒト L鎖定常領域配列にィ ンフレームで連結された。 H鎖可変領域をコードする塩基配列の 5'末端にコザック配 列の相補配列と EcoRI部位を有する合成オリゴヌクレオチド、および 3'末端塩基配列 に相補的であってその配列中に Nhel部位を揷入した合成オリゴヌクレオチドを用いて PCRが実施された。 L鎖可変領域をコードする塩基配列の 5'末端にコザック配列の 相補配列と BamHI部位を有する合成オリゴヌクレオチド、および 3'末端側塩基配列 に相補的であってその配列中に BsiWI部位を有する合成オリゴヌクレオチドを用いて PCRが実施された。得られた PCR産物が抗体発現プラスミドである pMCDN_Glkにク ローニングされた。 pMCDN_Glkは、 pMCDNベクターにヒト IgGl定常領域(塩基配列 を配列番号: 9、アミノ酸配列を配列番号: 10に示す)がクローユングされており、 Nhel 部位によりマウス H鎖可変領域とヒト H鎖( γ 1鎖)定常領域が連結される構造を持つ 。また、もう一つの mouse CMVプロモータを含む発現ユニット、及びヒト κ定常領域( 塩基配列を配列番号: 19、アミノ酸配列を配列番号: 20に示す)が揷入されており、 BsiWI部位によりマウス L鎖可変領域とヒト L鎖( κ鎖)定常領域が連結される構造を 持つ。本プラスミドは動物細胞内でネオマイシン耐性遺伝子、 DHFR遺伝子、抗 DS G3マウスーヒトキメラ抗体遺伝子を発現する。
上記のように作成された pMCDN_Glk_DF151、 pMCDN_G lk_DF364及び pMCDN_G lk_DF366が DG44細胞へエレクト口ポレーシヨンにより導入された。 500 μ g/mL Gene ticinでの選抜により、 DF151マウス一ヒトキメラ抗体(以下、 DF151cと称する)、 DF364 マウスーヒトキメラ抗体(以下、 DF364cと称する)及び DF366マウスーヒトキメラ抗体(以 下、 DF366cと称する)を定常的に発現する CHO細胞が樹立された。次に、該 CHO細 胞の培養上清より Hi Trap rProtein Aカラム(GEヘルスケアバイオサイエンス社)を用 いて抗 DSG3マウス一ヒトキメラ抗体が精製された。精製抗体は PD-10カラム(GEへ ルスケアバイオサイエンス社)にて PBSバッファーにバッファー交換され、 DC Protein Assayにより定量後、 4°Cで保管された。精製した抗 DSG3マウス一ヒトキメラ抗体は、 Flowcytometry解析によりマウス抗体と同様に DSG3に特異的に結合することが確認 された。なお、 DF151cの H鎖全長の塩基配列を配列番号: 64、アミノ酸配列を配列 番号: 65、 L鎖全長の塩基配列を配列番号: 66、アミノ酸配列を配列番号: 67に示 す。また、 DF364cの H鎖全長の塩基配列を配列番号: 68、アミノ酸配列を配列番号: 69、 L鎖全長の塩基配列を配列番号: 70、アミノ酸配列を配列番号: 71に示す。また 、 DF366cの H鎖全長の塩基配列を配列番号: 96、アミノ酸配列を配列番号: 97、 L鎖 全長の塩基配列を配列番号: 98、アミノ酸配列を配列番号: 99に示す。
〔実施例 8〕低フコース型抗 DSG3マウスーヒトキメラ抗体の作製
抗体の ADCC活性を増強する方法としては、抗体の糖鎖を改変する方法が知られ ている。例えば、 WO 99/54342には、抗体のグリコシル化を修飾することにより ADC C活性を改良することが記載されている。また、 WO 00/61739には、抗体の糖鎖にお けるフコースの存否により ADCC活性を調節することが記載されている。 WO 02/311 40には、 YB2/0細胞株において抗体を産生せしめることにより、 α -1,6コアフコースを 含まな!/、糖鎖を有する抗体を調製することが記載されて!/、る。抗 DSG3抗体が上記 に挙げた ADCC改良技術によりその活性が増強されるか検討された。まず、宿主細 胞として ΥΒ2/0細胞株 (ATCCより購入)が 10%FBSを含む RPMI1640培地にて培養さ れた。実施例 7で作製された抗 DSG3マウス一ヒトキメラ抗体発現ベクターが YB2/0 細胞株へエレクト口ポレーシヨン法で 1.4 kV、 25 ^ Fの条件で導入された。 500 ^ g/m 1 Geneticinでの選抜により、低フコース型 DF151マウスーヒトキメラ抗体(以下、 YB-D F151cと称する)、低フコース型 DF364マウスーヒトキメラ抗体(以下、 YB-DF364cと称 する)及び低フコース型 DF366マウス—ヒトキメラ抗体(以下、 YB-DF366Cと称する)を 定常的に発現する YB2/0細胞株が樹立された。次に、低フコース型抗 DSG3マウス —ヒトキメラ抗体が培養上清より Hi Trap rProtein Aカラムを用いて精製された。精製 抗体は PD- 10カラムにて PBSバッファーにバッファー交換され、 DC Protein Assayに より定量後、 4°Cで保管された。精製された低フコース型抗 DSG3マウス一ヒトキメラ 抗体は、 Flowcytometry解析により抗 DSG3マウスーヒトキメラ抗体と同様に DSG3に 特異的に結合することが確認された。
[0164] 〔実施例 9〕抗 DSG3マウスーヒトキメラ抗体および低フコース型抗 DSG3マウスーヒト キメラ抗体の CDC活性および ADCC活性の測定
9 - 1 )全長ヒト DSG3を定常的に発現する細胞株の樹立
全長ヒト DSG3の cDNAが哺乳細胞発現用ベクター(pMCDN)にクローユングされ た(pMCDN/hDSG3)。 pMCDNは、 mouse CMVプロモータ(ACCESSION No.U68299 )下で誘導発現が可能で、ネオマイシン耐性遺伝子、 DHFR遺伝子が組み込まれた ベクターである。 pMCDN/hDSG3が Ba/F3細胞(理化学研究所バイオリソースセンタ 一より購入)へエレクト口ポレーシヨンにより導入され、 500 ^ g/ml Geneticin (Invitroge n社)での選抜により、全長ヒト DSG3を定常的に発現する Ba/F3細胞株(DSG3_Ba/F 3)が樹立された。 DSG3_Ba/F3細胞の培養には 500 g/ml Geneticin, penicillin/str eptomycin (Invitrogen社)、 recombinant mouse interleukin- «5 (R&D Systemsネェリ、 10% f etal bovine serum (Invitrogen社)を含む RPMI 1640培地(Invitrogen社)が用いられた。
[0165] 9 2)全長ヒト CD 16定常発現細胞の樹立
全長ヒト CD 16 (ReiSeq ID、 NM_000569)力 ¾MCDNにクローニングされた後に、 NK- 92細胞(ATCCより購入)へエレクト口ポレーシヨンにより導入され、 500 u g/ml Genet icinでの選抜により、全長ヒト CD 16を定常的に発現する NK-92細胞株(CD 16-NK92 )が樹立された。 CD 16-NK92細胞株の培養には 500 β g/ml Geneticin, penicillin/str eptomycin 0.2 mM inositol (Sigmaf土リ、 0. 1 mM 2_mercaptoethanol (Invitrogen†土リ、 0 .02 mM folic acid (Sigma社)、 100 U/ml recombinant human interleukin-2 (Peprotech 社)、 12.5% horse serum (Invitrogen社)、 12.5% fetal bovine serumを含む Alpha minim um essential medium without ribonucleosides and deoxyribonucleosides with L-gluta mine培地(Invitrogen社)が用いられた。
[0166] 9 3)抗 DSG3マウスーヒトキメラ抗体の CDC活性の測定 5 X 105細胞の DSG3_Ba/F3細胞懸濁液が遠心分離(1000 rpm、 5分間、 4°C)され、 細胞ペレツ卜力、約 200 μ 1の 10% fetal bovine serum, penicillin/streptomycin及び 3·7 MBqの Chromium-51 (GEヘルスケアバイオサイエンス社)を含有する RPMI1640培地 ( 以下、培地と称する)に懸濁され、 5%炭酸ガスインキュベータ一中で 37°Cにて 1時間 培養された。この細胞が培地による 3回の洗浄後、 2 X 105細胞/ mlに調製され、 96ゥェ ノレ丸底プレートの各ゥエルに 50 1ずつ添加された。次に、 DF151c, DF364c及び DF 366cおよびコントロールヒト IgG抗体(Zymed社)が各ゥエル当たり 50 μ 1ずつ添加され た。抗体は終濃度 10 g/mlとなるよう調製された。続いて、幼令ゥサギ補体(Cederla ne社)が培地にて 5倍に希釈された後に 100 1ずつ添加された。該プレートは 5%炭 酸ガスインキュベータ一中で 37°Cにて 4時間静置された。培養後、該プレートは遠心 分離(1000 rpm、 5分間、 4°C)され、上清 100 1の放射活性がガンマカウンター(148 0 WIZARD 3"、 Wallac社)にて測定された。下式に基づいて特異的クロム遊離率が決 定された。
特異的クロム遊離率 (%) = (A-C) X 100/(B-C)
Aは各ゥエルの放射活性(cpm)、 Bは 50 μ 1の細胞と 150 μ 1の 2% Nonidet P-40溶液 (ナカライテスタ社)を添加したゥエルの放射活性(cpm)の平均値、 Cは 50 1の細胞 と 150 1の培地を添加したゥエルの放射活性(cpm)の平均値を示す。試験は duplica teにて行われ、特異的クロム遊離率の平均値及び標準偏差が算出された。 DF151C, DF364c及び DF366cが CDC活性を有することが示された(図 8)。
9— 4)抗 DSG3マウスーヒトキメラ抗体および低フコース型抗 DSG3マウスーヒトキメ ラ抗体の ADCC活性の測定
DSG3_Ba/F3細胞が Chromium-51で標識された後、 96ゥエル丸底プレートの各ゥェ ル当たり 50 a 1ずつ添加された。次に、 DF364c, DF366c, YB_DF364c, YB_DF366c およびコントロールヒ HgG抗体が各ゥエル当たり 50 1ずつ添加された。抗体の終濃 度は 1 g/mlから公比 10にて 4段階の連続希釈により調製された。続いて、 2 X 105細 胞 /mlの CD16-NK92細胞が各ゥエル当たり 100 1ずつ添加された。該プレートは 5% 炭酸ガスインキュベータ一中で 37°Cにて 4時間静置された後、 8 - 3)と同様の方法に より特異的クロム遊離率が決定された。 、ずれの抗体も抗体濃度依存的に ADCC活性を示した(図 9)。特に低フコース型 抗体である YB-DF364c及び YB-DF366cは強い ADCC活性を示した。
〔実施例 10〕肺癌、皮膚癌、子宮癌における DSG3の免疫組織染色
DSG3が肺扁平上皮癌においてタンパクレベルで発現亢進していた (実施例 2参照) 。そこで新たに、皮膚癌、子宮癌、および肺癌の中でも罹患数の多い肺腺癌につい て、 DSG3タンパク質の発現を確認するために、免疫組織染色解析を実施した。まず 谷検体より 4% pararormaldehyde (PFAまた (ュ penodate— lysine— pararormaidehyde (PL P)固定 AMeX包埋パラフィンブロック及び 10% neutral buffer formaldehyde (NBF)固定 パラフィン包埋ブロックを作製し、 3 mの薄切切片を作製した。脱パラフィン後これら の切片について Ventana HX Discovery System (Ventana Medical Systems, Inc., Ari zona, USA)を用いて下記のように免疫組織化学的に染色した。各標本は脱パラフィ ン後に水洗を行い、内因性 peroxidaseの除去のため、室温にて 4分間 3.0% hydrogen peroxide solution (Inhibitor D)で反応させた。洗浄後、非特異的反応の除去のため p rotein blockを加え、室温にて 30分間反応をさせた。次に、洗浄を行い、一次抗体とし てマヮス仇ヒト Desmogiein抗体 (Clone 5G丄丄, ZYMED Laboratories Inc., California, U SA)を加え室温にて 1時間反応させた。洗浄後二次抗体 (Ventana Universal Secondar y Antibody, Ventana Medical Systems)を加え、室温にて 30分反応させた。洗浄後 B1 ocker Dにて非特異的反応の除去のため室温で 2分間反応をさせ、続いて streptavidi n horseradish peroxidase (¾A-HRP, \ entana Medical systemsノをカロえ、 37。しにて 16 分 f H汉心させた。、洗净後 diaminobenzidine (DAB map solution, Ventana Medical Sy stems)と hydrogen peroxide solution (DAB map solution, Ventana Medical Systemsを 混和させて加え、基質の発色のため 37°Cにて 8分間反応をさせた。次に Copper sulfa te solution (Ventana Medical Systems)にて発色の増感を行った。洗浄後へマトキシリ ンにて核染を行い、脱水、透徹、封入を行った。
その結果、肺扁平上皮癌では 3例中 2例、肺腺癌では 9例中 1例、皮膚扁平上皮癌 では 2例中 2例、皮膚 basal cell carcinomaでは 1例中 1例、子宮扁平上皮癌では 1例中 1例で DSG3の発現が確認された(表 3)。
[表 3] し unga Skin Uterus sccb Adenocarcinoma sec BCC SCC
2C 3 3- 1 2 2 2- 3 3 3 3-M 3-M 1 3 - 2
1d 2 3 4 5 6 7 8 9 10 1 1 12 14 15 16 17
Desmoglein-3
Intensity 3-4e2-4 0 0 0 0 0 2-4 0 0 0 0 2-4 1-4 -Λ 2-4 Frequency 4f 4 - - - - - 2 - - - 4 3 3 4
Abbreviations: BCC, basal cell carcinoma; M, metastatic cancer; SCC, squamous cell carcinoma a) tissue site of cancer
b) tissue type
c) grade of cancer (1, well-differentiated; 2, moderately-differentiated; 3, poorly-diff erentiated)
d) case number
e) 1, faint; 2, weak; 3, moderate; 4, strong
f) 1, rare (less than 10%); 2, occasional (10% and above, less than 50%); 3, frequent ( 50% and above, less than 90%); 4, constant (90% and above)
〔実施例 11〕抗 DSG3抗体の抗腫瘍活性の評価
11 - 1)マウス IgG2aキメラ DF366抗体 (DF366m)の作製
DF366抗体の H鎖可変領域遺伝子の塩基配列をマウス IgG2aの H鎖定常領域遺伝 子の塩基配列にインフレームで連結した。まず、 H鎖可変領域遺伝子の 5 '末端塩基 配列とコザック配列と制限酵素 EcoR耀己列を有するプライマー (配列番号: 105)、およ び 3 '末端塩基配列の相補配歹 IJに c残基を付加したアンチセンスプライマー (配列番号 : 106)を用いて PCRを実施した。得られた増幅産物を制限酵素 EcoRIで処理し、マウ ス IgG2aキメラ H鎖発現プラスミド (pMCD/G2a)の EcoRI-NruIサイトに組み込むことによ りマウス IgG2aキメラ DF366抗体 H鎖発現ベクターを構築した (pMCD/G2a_DF366)。 p MCD/G2aは、哺乳細胞発現用プラスミド pMCDにマウス IgG2aの H鎖定常領域遺伝 子 (塩基配列:配列番号: 107、アミノ酸配列:配列番号: 108)がクローユングされて おり、 H鎖可変領域に H鎖定常領域の制限酵素 NrtJ配列が連結される。 pMCDベクタ 一は、 mouse CMVプロモータ (ACCESSION No. U68299)による制御下で誘導発現が 可能で、 DHFR遺伝子が組み込まれたベクターである。
DF366抗体の L鎖可変領域遺伝子の塩基配列をマウス IgG2aの L鎖( κ鎖)定常領域 遺伝子の塩基配列にインフレームで連結した。まず、 L鎖可変領域遺伝子の 5 '末端 塩基配列とコザック配列と制限酵素 EcoR耀己列を有するプライマー (配列番号: 109)、 および 3 '末端塩基配列の相補配列に gcccg残基を付加したアンチセンスプライマー( 配列番号: 1 10)を用いて PCRを実施した。得られた増幅産物を制限酵素 EcoRIで処 理し、マウス IgG2aキメラし鎖( κ鎖)発現プラスミド (pMCN/k)の EcoRト Nrulサイトに組 み込むことによりマウス IgG2aキメラ DF366抗体 L鎖発現ベクターを構築した (pMCN/k -DF366 pMCN/kは、プラスミド pMCNにマウス IgG2aのし鎖( κ鎖)定常領域遺伝子( 塩基配列:配列番号: 1 1 1、アミノ酸配列:配列番号: 1 12)がクローユングされており 、 L鎖可変領域に L鎖( κ鎖)定常領域の制限酵素 配列が連結される。
プラスミド pMCD/G2a_DF366およびプラスミド pMCN/k-DF366を DG44細胞へエレ タトロポレーシヨンにより導入した。 500 μ g/ml Geneticinおよび核酸 (HT supplement) 不含培地での選抜により、マウス IgG2aキメラ DF366抗体 (DF366m)を定常的に発現す る CHO細胞 (DF366m-DG44)を樹立した。次に、この DF366m_DG44の培養上清より Hi Trap ProteinG HPカラムを用いて DF366m抗体を精製した。 PD- 10カラムを用いて 溶媒を PBSに置換した。精製した DF366m抗体の濃度は DC Protein Assay kitを用い て定量した。 DF366m抗体は、フローサイトメトリー解析により DF366抗体 (実施例 3— 5 に記載されている)と同様に DSG3に特異的に結合することを確認した。 DF366m抗体 の H鎖遺伝子全長の塩基配列を配列番号: 1 13、アミノ酸配列を配列番号: 1 14、 L 鎖遺伝子全長の塩基配列を配列番号: 1 15、アミノ酸配列を配列番号: 1 16に示す。
1 1 - 2)低フコースマウス IgG2aキメラ DF366抗体 (低フコース DF366m)の作製 プラスミド pMCD/G2a_DF366およびプラスミド pMCN/k-DF366をフコーストランスポ 一ターノックアウト CHO細胞 (FTPKO-DXB 11細胞、国際公開公報 WO2006/067913、 国際公開公報 WO2006/067847)へエレクト口ポレーシヨンにより導入した。 500 μ g/ml Geneticinおよび核酸 (HT supplement)不含培地での選抜により、低フコースマウス Ig G2aキメラ DF366抗体 (低フコース DF366m)を定常的に発現する CHO細胞 (DF366m- DXB 11)を樹立した。次に、この DF366m_DXB l lの培養上清より Hi Trap ProteinG HP カラムを用いて低フコース DF366m抗体を精製した。 PD-10カラムを用いて溶媒を PBS に置換し、 DC Protein Assay kitにより抗体濃度を定量した。
[0171] 11 3) ADCC活性の測定
実験には penicillin/streptomycin、 10% fetal bovine serumを含む RPMI1640培地 (Inv itrogen社)(以下、 RPMI培地と称する)を用いた。 DSG3_Ba/F3細胞 1 x 106個を 3.7 M Bqの Chromium-51 (GEヘルスケアバイオサイエンス社)を含む約 200 1の RPMI培地 に懸濁した後に、 5%炭酸ガスインキュベータ一中で 37°Cにて 1時間培養した。洗浄後 、細胞密度を 2 X 105 cells/mlに調製し、 96ゥエル U底プレートに 50 μ 1ずつ分注した。 次に、抗体溶液を各ゥエルに 50 1ずつ添加した。室温で 15分間静置後、ェフエクタ 一細胞 (後述)を 100 1ずつ添加した。プレートは 5%炭酸ガスインキュベータ一中で 3 7°Cにて 6時間静置した。その後、各ゥエルから上清を 100 1ずつ回収し、ガンマカウ ンター(1480 WIZARD 3"、 Wallac社)にて放射活性を測定した。下式に基づいて特 異的クロム遊離率を算出した。
特異的クロム遊離率 (%) = (A-C) X 100/(B-C)
[0172] Aは各ゥヱルにおける放射活性 (cpm)、 Bは 50 μ 1の細胞と 150 μ 1の 2% Nonidet P-4 0溶液 (ナカライテスタ社)を添加したゥエルにおける放射活性 (cpm)の平均値、 Cは 50 H 1の細胞と 150 H 1の RPMI培地を添加したゥエルにおける放射活性 (cpm)の平均値 を示す。測定は duplicateにて行い、特異的クロム遊離率の平均値及び標準偏差を算 し/し。
エフェクター細胞としては C3Hマウス(日本チヤ一ルス ·リバ一社)から調製した脾臓 細胞に 50 ng/mlリコンビナントヒト interleukin-2 (P印 rotech社)を添加した細胞 (以下、 S PLと称する)、もしくは脾臓細胞を 50 ng/mlリコンビナントヒト interleukin-2存在下で 4日 間培養した細胞 (以下、 SPL-LAKと称する)を用いた。ゥエルあたりのエフェクター細 胞数は 5 X 105個 (SPL)もしくは 2 X 105個 (SPL-LAK)とした。陰性対照としてマウス IgG2 a (Cat. No. 553453、 Becton Dickinson社)およびヒト IgGl (Cat. No. PHP010、 Serotec 社)を用いた。
[0173] DF366mおよび低フコース DF366mでは ADCC活性が測定されたが、 DF366c、 YB- DF366cではほとんど ADCC活性は測定されなかった (図 10、 11)。従ってマウスでは DF366c、 YB-DF366cより DF366m、低フコース DF366mの方が強い薬効を示すと考え られた。
[0174] 11 -4)全長ヒト DSG3定常発現細胞株の樹立
pMCDN/hDSG3を制限酵素 Pvulで消化した後 FuGENE (Roche社)を用いたトランス フエクシヨンにより SK-HEP-1細胞(ATCCより購入)へ導入し、 1 mg/ml Geneticinでの 選抜により、全長ヒト DSG3を定常的に発現する SK-HEP-1細胞株 (以下、 DSG3-SKと 称する)を樹立した。 DSG3-SK細胞の培養には 1 mg/ml Geneticin, 10% fetal bovine s erumを含む D-MEM培地 (Sigma社)を用レ、た。
[0175] 11 - 5) DF366m、低フコース DF366m抗腫瘍活性の評価
DSG3-SK細胞を D-MEM培地と MATRIGEL (Cat. No. 354234、 BD Bioscience社)を 1: 1で含む溶液にて 1 X 108 cell/mlに調製し、前日に抗ァシァロ GM1抗体 100 μ 1 (和 光純薬社、 1バイアルを 1 mlの注射用蒸留水で溶解後、 4 mlの生理的食塩水を添加) を腹腔内投与した SCIDマウス (メス、 9週齢、 日本クレア社)の腹部皮下へ 100 1移植 した。移植後 19日目より DF366mおよび低フコース DF366mを週に一回、 4週間、尾静 脈より投与した。抗体は PBSにて 1 mg/ml (10 mg/kg投与群)または 0.2 mg/ml (2 mg/ kg投与群)に調製し 10 ml/kgにて投与した。陰性対照として PBS (vehicle)を同様に投 与した。 1群 5匹にて試験を行った。抗腫瘍活性は腫瘍体積で評価した。腫瘍体積は 下式に基づ!/、て測定し、平均値および標準偏差を算出した。
腫瘍体積 =長径 X短径 X短径 /2
有意差検定にはノンパラメトリック Dunnett型多重比較を用い、 P値 0.05未満を有意 とした。
試験の結果 DF366mおよび低フコース DF366mは 10 mg/kg投与群で vehicle投与群 に対して有意に腫瘍増殖を抑制した (図 12)。また有意ではないものの低フコース DF 366mは 2 mg/kgでも抑制する傾向を示した。以上から抗 DSG3抗体が抗腫瘍活性を 示すことが確認された。
産業上の利用可能性
[0176] 本願発明に係る DSG3タンパク質に特異的な抗体を用いれば、肺癌のみならず、 大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌などの診断薬として使用することが できる。更に、当該抗 DSG3抗体を化学物質又はラジオアイソトープなどにより標識 し使用することにより生体内において肺癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又 は子宮癌の存在を検出することができる。
また、本願発明に係る細胞障害活性を有する抗 DSG3抗体は、 DSG3タンパク質 を発現する肺癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌などの各種の癌 細胞の細胞障害剤又は細胞増殖抑制剤として使用することができる。
更に、本願発明に係る細胞障害活性を有する抗 DSG3抗体は、肺癌、大腸癌、食 道癌、胃癌、瞵癌、皮膚癌又は子宮癌などの各種の癌に対する治療薬として使用す ること力 Sできる。加えて、本願発明に係る抗 DSG3抗体を使用すれば天疱瘡病態を 誘起することなく、これらの癌-冶療薬として使用すること力 Sでさる。
加えて、本願発明に係る抗体をコードする遺伝子及び当該遺伝子により形質転換 された組換え細胞は上記記載の効果、及びより好適な効果を奏する組換え抗体を作 製するために使用することができる。

Claims

請求の範囲 [1] DSG3タンパク質に結合する抗体を有効成分として含有する医薬組成物。 [2] DSG3タンパク質に結合する抗体を有効成分として含有する細胞増殖抑制剤。 [3] DSG3タンパク質に結合する抗体を有効成分として含有する抗癌剤。 [4] DSG3タンパク質に結合する抗体が細胞障害活性を有する抗体である、請求項 3に 記載の抗癌剤。 [5] DSG3タンパク質に結合する抗体力 以下(1)から(47)のいずれかに記載の抗体で ある、請求項 3または 4に記載の抗癌剤; ( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、 (2) (1)に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、 (3) (1)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、 (4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、 (5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、 (6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、 (7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、 (8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、 (9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、 (10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、 (11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、 (12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、 (13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、 (14) (13)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、 (15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、 (16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、 (17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、 (18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、 (19) (1)に記載の H鎖、および(13)に記載の L鎖を有する抗体、 (20) (2)に記載の H鎖、および(14)に記載の L鎖を有する抗体、 (21) (3)に記載の H鎖、および(15)に記載の L鎖を有する抗体、 (22) (10)に記載の H鎖、および (4)に記載の L鎖を有する抗体、 (23) (11)に記載の H鎖、および(5)に記載の L鎖を有する抗体、 (24) (12)に記載の H鎖、および(6)に記載の L鎖を有する抗体、 (25) CDR1として配列番号: 81に記載のアミノ酸配列、 CDR2として配列番号: 83 に記載のアミノ酸配列、 CDR3として配列番号: 85に記載のアミノ酸配列を有する H 鎖を含む抗体、 (26) (25)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、 (27) (25)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、 (28) CDR1として配列番号: 87に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 89 に記載のアミノ酸配列、 CDR3として配列番号: 91に記載のアミノ酸配列を有する L 鎖を含む抗体、 (29) (28) 二記載の L鎖であって、じしとして配列番号: 36に記載のァ :ノ酸配列を有 する L鎖を含む抗体、 (30) (28) 二記載の L鎖であって、じしとして配列番号: 20に記載のァ :ノ酸配列を有 する L鎖を含む抗体、 (31) (25) 二記載の Η鎖、および(28) ί二記載の L鎖を含む抗体、 (32) (26) 二記載の Η鎖、および(29) ί二記載の L鎖を含む抗体、 (33) (27) 二記載の Η鎖、および(30) ί二記載の L鎖を含む抗体、 (34) (1)に:記載の Η鎖、および(28)に—記載の L鎖を有する抗体、 (35) (2)に:記載の Η鎖、および(29)に—記載の L鎖を有する抗体、 (36) (3)に:記載の Η鎖、および(30)に—記載の L鎖を有する抗体、 (37) (10) 二記載の Η鎖、および(28) ίニ記載の L鎖を有する抗体、 (38) (11) 二記載の Η鎖、および(29) ίニ記載の L鎖を有する抗体、 (39) (12) 二記載の Η鎖、および(30) ίニ記載の L鎖を有する抗体、 (40) (25) 二記載の Η鎖、および(4)に-記載の L鎖を含む抗体、 (41) (26) 二記載の Η鎖、および(5)に—記載の L鎖を含む抗体、 (42) (27) 二記載の Η鎖、および(6)に—記載の L鎖を含む抗体、 (43) (25) 二記載の Η鎖、および(13) ί二記載の L鎖を含む抗体、 (44) (26) 二記載の Η鎖、および(14) ί二記載の L鎖を含む抗体、 (45) (27) 二記載の Η鎖、および(15) ί二記載の L鎖を含む抗体、 (46) (1)か ί (45)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(45)のいずれか に記載の抗体と同等の活性を有する抗体、 (47) (1)から(45)のいずれかに記載の抗体が結合する DSG3タンパク質のェピトー プと同じェピトープに結合する抗体。 癌が肺癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌である、請求項 3から 5 の!/、ずれかに記載の抗癌剤。 [7] 肺癌が非小細胞肺癌である請求項 6に記載の抗癌剤。 [8] DSG3タンパク質を発現する細胞と DSG3タンパク質に結合する抗体とを接触させる ことにより該 DSG3発現細胞に細胞障害を引き起こす方法。 [9] DSG3タンパク質を発現する細胞と DSG3タンパク質に結合する抗体とを接触させる ことにより該 DSG3発現細胞の増殖を抑制する方法。 [10] DSG3タンパク質に結合する抗体が細胞障害活性を有する抗体である、請求項 8ま たは 9に記載の方法。 [11] DSG3タンパク質に結合する抗体力 以下(1)から(47)のいずれかに記載の抗体で ある、請求項 8から 10のいずれかに記載の方法;
( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、
(2) (1)に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
(3) (1)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、
(7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
(11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) (1)に記載の H鎖、および(13)に記載の L鎖を有する抗体、
(20) (2)に記載の H鎖、および(14)に記載の L鎖を有する抗体、
(21) (3)に記載の H鎖、および(15)に記載の L鎖を有する抗体、
(22) (10)に記載の H鎖、および (4)に記載の L鎖を有する抗体、
(23) (11)に記載の H鎖、および(5)に記載の L鎖を有する抗体、
(24) (12)に記載の H鎖、および(6)に記載の L鎖を有する抗体、
(25) CDR1として配列番号: 81に記載のアミノ酸配列、 CDR2として配列番号: 83 に記載のアミノ酸配列、 CDR3として配列番号: 85に記載のアミノ酸配列を有する H 鎖を含む抗体、
(26) (25)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(27) (25)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、 (28) CDR1として配列番号: 87に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 89 に記載のアミノ酸配列、 CDR3として配列番号: 91に記載のアミノ酸配列を有する L 鎖を含む抗体、
(29) (28)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(30) (28)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(31) (25)に記載の H鎖、および(28)に記載の L鎖を含む抗体、
(32) (26)に記載の H鎖、および(29)に記載の L鎖を含む抗体、
(33) (27)に記載の H鎖、および(30)に記載の L鎖を含む抗体、
(34) (1)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(35) (2)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(36) (3)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(37) (10)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(38) (11)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(39) (12)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(40) (25)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(41) (26)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(42) (27)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(43) (25)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(44) (26)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(45) (27)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(46) (1)から(45)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(45)のいずれか に記載の抗体と同等の活性を有する抗体、
(47) (1)から(45)のいずれかに記載の抗体が結合する DSG3タンパク質のェピトー プと同じェピトープに結合する抗体。
DSG3タンパク質を発現する細胞が癌細胞である、請求項 8から 11のいずれかに記 載の方法。
[13] DSG3タンパク質に結合し、かつ DSG3タンパク質を発現する細胞に対して細胞障 害活性を有する抗体。
[14] 細胞障害活性が ADCC活性である請求項 13に記載の抗体。
[15] 細胞障害活性が CDC活性である請求項 13に記載の抗体。
[16] 低分子の化学療法剤、または、毒性ペプチドを結合した請求項 13から 15のいずれ かに記載の抗体。
[17] DSG3タンパク質に結合する抗体であって、低分子の化学療法剤、または、毒性ぺ プチドが結合された抗体。
[18] 以下(1)から(47)のいずれかに記載の抗体である、請求項 13力も 17のいずれかに 記載の抗体;
( 1 ) CDR1として配列番号: 2に記載のアミノ酸配列、 CDR2として配列番号: 4に記 載のアミノ酸配列、および CDR3として配列番号: 6に記載のアミノ酸配列を有する H 鎖を含む抗体、
(2) (1)に記載の H鎖であって、 CHとして配列番号: 8に記載のアミノ酸配列を有す る H鎖を含む抗体、
(3) (1)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を有す る H鎖を含む抗体、
(4) CDR1として配列番号: 12に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 14に 記載のアミノ酸配列、および CDR3として配列番号: 16に記載のアミノ酸配列を有す る L鎖を含む抗体、
(5) (4)に記載の L鎖であって、 CLとして配列番号: 18に記載のアミノ酸配列を有す る L鎖を含む抗体、
(6) (4)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有す る L鎖を含む抗体、
(7) (1)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(8) (2)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(9) (3)に記載の H鎖、および(6)に記載の L鎖を含む抗体、 (10) CDR1として配列番号: 22に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 24 に記載のアミノ酸配列、および CDR3として配列番号: 26に記載のアミノ酸配列を有 する H鎖を含む抗体、
(11) (10)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、
(12) (10)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(13) CDR1として配列番号: 30に記載のアミノ酸配列、 CDR2として配列番号: 32 に記載のアミノ酸配列、および CDR3として配列番号: 34に記載のアミノ酸配列を有 する L鎖を含む抗体、
(14) (13)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(15) (13)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(16) (10)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(17) (11)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(18) (12)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(19) (1)に記載の H鎖、および(13)に記載の L鎖を有する抗体、
(20) (2)に記載の H鎖、および(14)に記載の L鎖を有する抗体、
(21) (3)に記載の H鎖、および(15)に記載の L鎖を有する抗体、
(22) (10)に記載の H鎖、および (4)に記載の L鎖を有する抗体、
(23) (11)に記載の H鎖、および(5)に記載の L鎖を有する抗体、
(24) (12)に記載の H鎖、および(6)に記載の L鎖を有する抗体、
(25) CDR1として配列番号: 81に記載のアミノ酸配列、 CDR2として配列番号: 83 に記載のアミノ酸配列、 CDR3として配列番号: 85に記載のアミノ酸配列を有する H 鎖を含む抗体、
(26) (25)に記載の H鎖であって、 CHとして配列番号: 28に記載のアミノ酸配列を 有する H鎖を含む抗体、 (27) (25)に記載の H鎖であって、 CHとして配列番号: 10に記載のアミノ酸配列を 有する H鎖を含む抗体、
(28) CDR1として配列番号: 87に記載のアミノ酸配歹 IJ、 CDR2として配列番号: 89 に記載のアミノ酸配列、 CDR3として配列番号: 91に記載のアミノ酸配列を有する L 鎖を含む抗体、
(29) (28)に記載の L鎖であって、 CLとして配列番号: 36に記載のアミノ酸配列を有 する L鎖を含む抗体、
(30) (28)に記載の L鎖であって、 CLとして配列番号: 20に記載のアミノ酸配列を有 する L鎖を含む抗体、
(31) (25)に記載の H鎖、および(28)に記載の L鎖を含む抗体、
(32) (26)に記載の H鎖、および(29)に記載の L鎖を含む抗体、
(33) (27)に記載の H鎖、および(30)に記載の L鎖を含む抗体、
(34) (1)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(35) (2)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(36) (3)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(37) (10)に記載の H鎖、および(28)に記載の L鎖を有する抗体、
(38) (11)に記載の H鎖、および(29)に記載の L鎖を有する抗体、
(39) (12)に記載の H鎖、および(30)に記載の L鎖を有する抗体、
(40) (25)に記載の H鎖、および (4)に記載の L鎖を含む抗体、
(41) (26)に記載の H鎖、および(5)に記載の L鎖を含む抗体、
(42) (27)に記載の H鎖、および(6)に記載の L鎖を含む抗体、
(43) (25)に記載の H鎖、および(13)に記載の L鎖を含む抗体、
(44) (26)に記載の H鎖、および(14)に記載の L鎖を含む抗体、
(45) (27)に記載の H鎖、および(15)に記載の L鎖を含む抗体、
(46) (1)から(45)のいずれかに記載の抗体において 1若しくは複数のアミノ酸が置 換、欠失、付加および/または揷入された抗体であって、(1)から(45)のいずれか に記載の抗体と同等の活性を有する抗体、
(47) (1)から(45)のいずれかに記載の抗体が結合する DSG3タンパク質のェピトー プと同じェピトープに結合する抗体。
[19] 癌診断マーカーとしての DSG3タンパク質の使用。
[20] DSG3タンパク質に結合する抗体を用いて DSG3タンパク質を検出することを特徴と する癌の診断方法。
[21] 以下の工程:
(a) 被験者から試料を採取する工程;
(b) 採取された試料に含まれる DSG3タンパク質を、 DSG3タンパク質に結合する 抗体を用いて検出する工程
を含む癌の診断方法。
[22] DSG3タンパク質に結合する抗体が、陽電子放出核種により標識された抗体である 請求項 20または 21に記載の診断方法。
[23] 陽電子放出核種が 11C、 13N、 150、 18F、 45Ti、 55Co、 64Cu、 66Ga、 68Ga、 76Br、 89
Zr、 1241のいずれかから選択される核種である請求項 22に記載の診断方法。
[24] DSG3タンパク質をコードする遺伝子の発現を検出することを特徴とする癌の診断方 法。
[25] 癌が肺癌、大腸癌、食道癌、胃癌、瞵癌、皮膚癌又は子宮癌である請求項 20から 2
4の!/、ずれかに記載の診断方法。
[26] 肺癌が非小細胞肺癌である請求項 25に記載の診断方法。
[27] 請求項 20から 26のいずれかに記載の診断方法に用いるための診断薬。
[28] 請求項 20から 26のいずれかに記載の診断方法に用いるためのキット。
[29] 細胞増殖抑制剤の製造における DSG3タンパク質に結合する抗体の使用。
[30] 抗癌剤の製造における DSG3タンパク質に結合する抗体の使用。
[31] DSG3タンパク質に結合する抗体を対象に投与する工程を含む細胞増殖を抑制す る方法。
[32] DSG3タンパク質に結合する抗体を対象に投与する工程を含む癌を予防または治 療する方法。
PCT/JP2007/065834 2006-08-14 2007-08-14 Diagnosis and treatment of cancer using anti-desmoglein-3 antibody WO2008020586A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16178652.0A EP3111955B1 (en) 2006-08-14 2007-08-14 Diagnosis and treatment of cancer using anti-desmoglein-3 antibody
BRPI0713086-4A BRPI0713086A2 (pt) 2006-08-14 2007-08-14 diagnóstico e tratamento de cáncer usando anticorpo anti-desmogleìna-3
EP07792477.7A EP2050466B1 (en) 2006-08-14 2007-08-14 Diagnosis and treatment of cancer using anti-desmoglein-3 antibodies
AU2007285217A AU2007285217B2 (en) 2006-08-14 2007-08-14 Diagnosis and treatment of cancer using anti-desmoglein-3 antibodies
CA002658050A CA2658050A1 (en) 2006-08-14 2007-08-14 Diagnosis and treatment of cancer using anti-desmoglein 3 antibodies
US12/308,695 US20100092457A1 (en) 2006-08-14 2007-08-14 Diagnosis and Treatment of Cancer Using Anti-Desmoglein-3 Antibodies
JP2008529863A JP5317697B2 (ja) 2006-08-14 2007-08-14 抗Desmoglein3抗体を用いる癌の診断および治療
US15/430,031 US10696743B2 (en) 2006-08-14 2017-02-10 Diagnosis and treatment of cancer using anti-desmoglein-3 antibodies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-221230 2006-08-14
JP2006221230 2006-08-14
JP2007019108 2007-01-30
JP2007-019108 2007-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/308,695 A-371-Of-International US20100092457A1 (en) 2006-08-14 2007-08-14 Diagnosis and Treatment of Cancer Using Anti-Desmoglein-3 Antibodies
US15/430,031 Division US10696743B2 (en) 2006-08-14 2017-02-10 Diagnosis and treatment of cancer using anti-desmoglein-3 antibodies

Publications (1)

Publication Number Publication Date
WO2008020586A1 true WO2008020586A1 (en) 2008-02-21

Family

ID=39082111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065834 WO2008020586A1 (en) 2006-08-14 2007-08-14 Diagnosis and treatment of cancer using anti-desmoglein-3 antibody

Country Status (7)

Country Link
US (2) US20100092457A1 (ja)
EP (3) EP2050466B1 (ja)
JP (4) JP5317697B2 (ja)
AU (1) AU2007285217B2 (ja)
BR (1) BRPI0713086A2 (ja)
CA (1) CA2658050A1 (ja)
WO (1) WO2008020586A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002862A3 (en) * 2008-07-01 2010-05-27 Aveo Pharmaceuticals, Inc. Fibroblast growth factor receptor 3 (fgfr3) binding proteins
WO2012043533A1 (ja) * 2010-09-28 2012-04-05 積水化学工業株式会社 抗ヒトccr7抗体、ハイブリドーマ、核酸、ベクター、細胞、医薬組成物、並びに、抗体固定化担体
JP2013507114A (ja) * 2009-10-09 2013-03-04 ピエール、ファーブル、メディカマン Cd151に特異的なキメラ抗体および癌の処置におけるその使用
JP5221825B1 (ja) * 2012-10-09 2013-06-26 コニカミノルタホールディングス株式会社 肺扁平上皮癌の検出方法
US10011656B2 (en) 2008-09-26 2018-07-03 Emory University Human anti-PD-1, PD-L1, and PD-L2 antibodies and uses therefor

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1561759B9 (en) * 2002-10-11 2009-08-26 Chugai Seiyaku Kabushiki Kaisha Cell death-inducing agent
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
WO2005056602A1 (ja) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha アゴニスト活性を有する改変抗体のスクリーニング方法
WO2005056603A1 (ja) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha 細胞死誘導剤
EP1710255A4 (en) * 2003-12-12 2008-09-24 Chugai Pharmaceutical Co Ltd MODIFIED ANTIBODIES RECOGNIZING A TRIMER OR LARGER RECEPTOR
JP4799405B2 (ja) * 2004-04-09 2011-10-26 中外製薬株式会社 細胞死誘導剤
WO2006106903A1 (ja) * 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2構造異性体
EP1927367A4 (en) * 2005-05-18 2009-08-12 Univ Tokushima NOVEL PHARMACEUTICAL AGENT BASED ON AN ANTI-HLA ANTIBODY
CA2610987C (en) * 2005-06-10 2013-09-10 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
JP5085322B2 (ja) 2005-06-10 2012-11-28 中外製薬株式会社 sc(Fv)2を含有する医薬組成物
MX2009000487A (es) * 2006-07-13 2009-01-27 Chugai Pharmaceutical Co Ltd Inductor de muerte celular.
JP5317697B2 (ja) 2006-08-14 2013-10-16 中外製薬株式会社 抗Desmoglein3抗体を用いる癌の診断および治療
US8470323B2 (en) * 2007-01-09 2013-06-25 The Trustees Of The University Of Pennsylvania Drug delivery to human tissues by single chain variable region antibody fragments cloned by phage display
CL2008000719A1 (es) * 2007-03-12 2008-09-05 Univ Tokushima Chugai Seiyaku Agente terapeutico para cancer resistente a agentes quimioterapeuticos que comprende un anticuerpo que reconoce hla de clase i como ingrediente activo; composicion farmaceutica que comprende dicho anticuerpo; y metodo para tratar cancer resistente a
US8481688B2 (en) * 2010-05-11 2013-07-09 Aveo Pharmaceuticals, Inc. Anti-FGFR2 antibodies
US8852592B2 (en) 2011-05-10 2014-10-07 Biocare Medical, Llc Systems and methods for anti-PAX8 antibodies
US10316103B1 (en) 2012-03-30 2019-06-11 Biocare Medical, Llc Systems and methods for anti-Uroplakin III antibodies
EP2900265B1 (en) 2012-09-27 2018-05-30 Biocare Medical, LLC Anti-uroplakin ii antibodies systems and methods
WO2014100220A2 (en) * 2012-12-18 2014-06-26 Biocare Medical, Llc Antibody cocktail systems and methods for classification of histologic subtypes in lung cancer
EP2962113B1 (en) 2013-02-28 2019-04-03 Biocare Medical, LLC Anti-p40 antibodies systems and methods
JP6506267B2 (ja) 2013-10-03 2019-04-24 バイオケア メディカル, エルエルシー 抗sox10抗体のシステムおよび方法
WO2017147247A1 (en) * 2016-02-23 2017-08-31 Pires Eusebio S Anti-sas1b antibodies and methods of use
JP2020514303A (ja) 2017-01-11 2020-05-21 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー R−スポンジン(rspo)サロゲート分子
EP3574019A4 (en) 2017-01-26 2021-03-03 Surrozen, Inc. TISSUE SPECIFIC, WNT SIGNAL REINFORCEMENT MOLECULES AND USES THEREOF
CN113476601B (zh) * 2021-08-24 2022-05-20 知佰幸细胞库(浙江)有限公司 干细胞细胞因子联合海藻多糖制备的药物或化妆品
CA3240528A1 (en) * 2021-12-14 2023-06-22 Mohammad RASHIDIAN Compositions and methods for treating disease

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPS6459878A (en) 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Semiconductor laser protective circuit
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO1999057149A2 (en) 1998-05-05 1999-11-11 Adherex Technologies, Inc. Compounds and methods for modulating nonclassical cadherin-mediated functions
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2002086443A2 (en) 2001-04-18 2002-10-31 Protein Design Labs, Inc Methods of diagnosis of lung cancer, compositions and methods of screening for modulators of lung cancer
WO2003020769A1 (fr) 2001-09-04 2003-03-13 Keio University Anticorps monoclonal contre le pemphigus
WO2005110338A2 (de) * 2004-05-11 2005-11-24 Ganymed Pharmaceuticals Ag Identifizierung von oberflächen-assoziierten antigenen für die tumordiagnose und -therapie
US20060057559A1 (en) * 2004-06-23 2006-03-16 Rigel Pharmaceuticals, Inc. High-throughput cell migration screening assay
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201994A (ja) 1982-05-21 1983-11-25 Hideaki Hagiwara 抗原特異的ヒト免疫グロブリンの生産方法
US5530101A (en) * 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
EP0746609A4 (en) 1991-12-17 1997-12-17 Genpharm Int NON-HUMAN TRANSGENIC ANIMALS CAPABLE OF PRODUCING HETEROLOGOUS ANTIBODIES
EP1514928B1 (en) 2002-06-05 2013-07-31 Chugai Seiyaku Kabushiki Kaisha Method for producing antibodies using baculoviruses
JP5317697B2 (ja) 2006-08-14 2013-10-16 中外製薬株式会社 抗Desmoglein3抗体を用いる癌の診断および治療

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPS6459878A (en) 1987-08-31 1989-03-07 Matsushita Electric Ind Co Ltd Semiconductor laser protective circuit
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO1999057149A2 (en) 1998-05-05 1999-11-11 Adherex Technologies, Inc. Compounds and methods for modulating nonclassical cadherin-mediated functions
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2002079255A1 (en) 2001-04-02 2002-10-10 Idec Pharmaceuticals Corporation RECOMBINANT ANTIBODIES COEXPRESSED WITH GnTIII
WO2002086443A2 (en) 2001-04-18 2002-10-31 Protein Design Labs, Inc Methods of diagnosis of lung cancer, compositions and methods of screening for modulators of lung cancer
WO2003020769A1 (fr) 2001-09-04 2003-03-13 Keio University Anticorps monoclonal contre le pemphigus
WO2005110338A2 (de) * 2004-05-11 2005-11-24 Ganymed Pharmaceuticals Ag Identifizierung von oberflächen-assoziierten antigenen für die tumordiagnose und -therapie
US20060057559A1 (en) * 2004-06-23 2006-03-16 Rigel Pharmaceuticals, Inc. High-throughput cell migration screening assay
WO2006067913A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法
WO2006067847A1 (ja) 2004-12-22 2006-06-29 Chugai Seiyaku Kabushiki Kaisha フコーストランスポーターの機能が阻害された細胞を用いた抗体の作製方法

Non-Patent Citations (67)

* Cited by examiner, † Cited by third party
Title
"Antibodies A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"Current Protocols in Immunology, Chapter 7. Immunologic studies in humans", 1993, JOHN WILEY & SONS, INC.
"Remington's Pharmaceutical Science", MARK PUBLISHING COMPANY
ACTA. ONCOL., vol. 32, 1993, pages 825 - 830
BELYAVSKY, A. ET AL., NUCLEIC ACIDS RES., vol. 17, 1989, pages 2919 - 2932
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BETTER, M.; HORWITZ, A. H., METHODS ENZYMOL., vol. 178, 1989, pages 476 - 496
BETTER, M.; HORWITZ, A. H., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
BIRD, R. E. ET AL., TIBTECH, vol. 9, 1991, pages 132 - 137
BIRD, R. E.; WALKER, B. W., TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137
BRAKENHOFF R.H. ET AL.: "THE HUMAN E48 ANTIGEN HIGHLY HOMOLOGOUS TO THE MURINE LY-6 ANTIGEN THB, IS A GPI-ANCHORED MOLECULE APPARENTLY INVOLVED IN KERATINOCYTE CELL-CELL ADHESION", J. CELL BIOL., vol. 129, no. 6, 1995, pages 1677 - 1689, XP000563620 *
CELL, vol. 67, 1991, pages 869 - 877
CHIRGWIN, J. M. ET AL., BIOCHEMISTRY, vol. 18, 1979, pages 5294 - 5299
CHOMCZYNSKI, P. ET AL., ANAL. BIOCHEM., vol. 162, 1987, pages 156 - 159
CLINIC AND RESEARCH, vol. 78, 2001, pages 35 - 40
CO, M. S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
CURRENT TOPICS IN MICROBIOLOGY AND IMMUNOLOGY, vol. 81, 1978, pages 1 - 7
DALBADIE-MCFARLAND, G. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409 - 6413
DE ST. GROTH, S. F. ET AL., J. IMMUNOL. METHODS, vol. 35, 1980, pages 1 - 21
EBERT, K. M. ET AL., BIO/TECHNOLOGY, vol. 12, 1994, pages 699 - 702
FASEB J., vol. 6, 1992, pages 2422 - 2427
FROHMAN, M. A. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 8998 - 9002
GALFRE, G ET AL., NATURE, vol. 277, 1979, pages 131 - 133
HASHIMOTO-GOTOH, T. ET AL., GENE, vol. 152, 1995, pages 271 - 275
HOLLINGER P., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HUDSON ET AL., J. IMMUNOL. METHODS, vol. 231, 1999, pages 177 - 189
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 5879 - 5883
J. CLIN. INVEST., vol. 70, 1982, pages 281 - 288
J. CLIN. INVEST., vol. 74, 1984, pages 313 - 320
J. IMMUNOL., vol. 123, 1979, pages 1548 - 1550
J. IMMUNOLOGY, vol. 170, 2003, pages 2170 - 2178
J. INVEST. DERMATOL., vol. 124, 2005, pages 939 - 946
KOHLER. G.; MILSTEIN, C., EUR. J. IMMUNOL., vol. 6, 1976, pages 511 - 519
KOHLER. G; MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
KRAMER W; FRITZ HJ, METHODS. ENZYMOL., vol. 154, 1987, pages 350 - 367
KRAMER, W. ET AL., NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456
KRUNIC A.L. ET AL.: "DESMOGLEIN IN MULTIPLE SELF-HEALING SQUAMOUS EPITHELIOMA OF FERGUSON-SMITH-COMPARISON OF STAINING PATTERNS WITH ACTINIC KERATOACANTHOMA AND SQUAMOUS CELL CARCINOMA OF THE SKIN", ARCH. DERMATOL. RES., vol. 290, no. 6, 1998, pages 319 - 324, XP003019939 *
KRUNIC ET AL.: "DIFFERENTIAL EXPRESSION OF DESMOSOMAL GLYCOPROTEINS IN KERATOACANTHOMA AND SQUAMOUS CELL CARCINOMA OF THE SKIN: AN IMMUNOHISTOCHEMICAL AID TO DIAGNOSIS", ACTA DERM. VENEREOL., vol. 76, no. 5, 1996, pages 394 - 398, XP003019938 *
KUNKEL, METHODS ENZYMOL., vol. 85, 1988, pages 2763 - 2766
KUNKEL, TA, PROC. NATL. ACAD. SCI. USA., vol. 82, 1985, pages 488 - 492
LAMOYI, E., METHODS ENZYMOL., vol. 121, 1986, pages 652 - 663
LAMOYI, E., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 652 - 663
LEI, S. P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4379
MARGULIES. D.H. ET AL., CELL, vol. 8, 1976, pages 405 - 415
MARK, D. F. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
PLUCKTHUN, A.; SKERRA, A., METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515
PLUECKTHUN, A.; SKERRA, A., METHODS IN ENZYMOLOGY, vol. 178, 1989, pages 476 - 496
PROTEIN ENGINEERING, vol. 9, no. 3, 1996, pages 299 - 305
ROUSSEAUX ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 669
ROUSSEAUX, J. ET AL., METHODS IN ENZYMOLOGY, vol. 121, 1989, pages 663 - 669
SAMBROOK, J. ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LAB. PRESS, pages: 947 - 958
SATO, K. ET AL., CANCER RES., vol. 53, 1993, pages 851 - 856
See also references of EP2050466A4
SHULMAN, M. ET AL., NATURE, vol. 276, 1978, pages 269 - 270
TRENDS OF NATIONAL HEALTH/INDICATORS OF WELFARE, vol. 47, 2000, pages 52 - 53
TROWBRIDGE, I. S., J. EXP. MED., vol. 148, 1978, pages 313 - 323
VANDAMME, A. M. ET AL., EUR. J. BIOCHEM., vol. 192, 1990, pages 767 - 775
WADA N. ET AL.: "EXPRESSION OF DESMOGLEIN 3 IN MEDULLARY THYMIC EPITHELIAL CELLS IN THYMUS", J. INVEST. DERMATOL., vol. 124, 2005, pages A9 + ABSTR. NO. 054, XP003019942 *
WAHL J.K. E: "GENERATION OF MONOCLONAL ANTIBODIES SPECIFIC FOR DESMOGLEIN FAMILY MEMBERS", HYBRIDOMA AND HYBRIDOMICS, vol. 21, no. 1, 2002, pages 37 - 44, XP003019940 *
WANG, A. ET AL., SCIENCE, vol. 224, pages 1431 - 1433
WARD ET AL., NATURE, vol. 341, pages 544 - 546
WILBUR, W. J.; LIPMAN, D. J., PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 726 - 730
YAMAMOTO Y. ET AL.: "ANTI-DESMOGLEIN3 (DSG3) MONOCLONAL ANTIBODIES DEPLETE DSG3 FROM DESMOSOMES IN CULTURED KERATINOCYTES AND THEIR ACTIVITIES DIFFER IN SITES OF EPITOPES", J. INVEST. DERMATOL., vol. 124, 2005, pages A31 + ABSTR. NO. 186, XP003019941 *
ZOLLER, M. J.; SMITH, M., NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 - 6500
ZOLLER, MJ; SMITH, M., METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002862A3 (en) * 2008-07-01 2010-05-27 Aveo Pharmaceuticals, Inc. Fibroblast growth factor receptor 3 (fgfr3) binding proteins
US8187601B2 (en) 2008-07-01 2012-05-29 Aveo Pharmaceuticals, Inc. Fibroblast growth factor receptor 3 (FGFR3) binding proteins
US10011656B2 (en) 2008-09-26 2018-07-03 Emory University Human anti-PD-1, PD-L1, and PD-L2 antibodies and uses therefor
US10370448B2 (en) 2008-09-26 2019-08-06 Emory University Human anti-PD-1, PD-L1, and PD-L2 antibodies and uses therefor
US11261251B2 (en) 2008-09-26 2022-03-01 Dana-Farber Cancer Institute, Inc. Human anti-PD-1, PD-L1, and PD-L2 antibodies and uses therefor
JP2013507114A (ja) * 2009-10-09 2013-03-04 ピエール、ファーブル、メディカマン Cd151に特異的なキメラ抗体および癌の処置におけるその使用
WO2012043533A1 (ja) * 2010-09-28 2012-04-05 積水化学工業株式会社 抗ヒトccr7抗体、ハイブリドーマ、核酸、ベクター、細胞、医薬組成物、並びに、抗体固定化担体
US8865170B2 (en) 2010-09-28 2014-10-21 Sekisui Chemical Co., Ltd. Anti-human CCR7 antibody, hybridoma, nucleic acid, vector, cell, pharmaceutical composition, and antibody-immobilized carrier
US9505844B2 (en) 2010-09-28 2016-11-29 Sekisui Chemical Co., Ltd. Anti-human CCR7 antibody, hybridoma, nucleic acid, vector, cell, pharmaceutical composition, and antibody-immobilized carrier
JP5221825B1 (ja) * 2012-10-09 2013-06-26 コニカミノルタホールディングス株式会社 肺扁平上皮癌の検出方法
WO2014057528A1 (ja) 2012-10-09 2014-04-17 コニカミノルタ株式会社 肺扁平上皮癌の検出方法
US10502743B2 (en) 2012-10-09 2019-12-10 Konica Minolta, Inc. Method for detecting lung squamous cell carcinoma

Also Published As

Publication number Publication date
EP2050466A4 (en) 2010-04-28
EP2050466A1 (en) 2009-04-22
US20170152314A1 (en) 2017-06-01
JP6162864B2 (ja) 2017-07-12
CA2658050A1 (en) 2008-02-21
JP5317697B2 (ja) 2013-10-16
US20100092457A1 (en) 2010-04-15
AU2007285217A1 (en) 2008-02-21
JP5651726B2 (ja) 2015-01-14
EP3111955A1 (en) 2017-01-04
AU2007285217B2 (en) 2013-02-07
EP2548576A1 (en) 2013-01-23
EP2548576B1 (en) 2016-11-30
JP5972325B2 (ja) 2016-08-17
US10696743B2 (en) 2020-06-30
EP3111955B1 (en) 2019-01-23
JPWO2008020586A1 (ja) 2010-01-07
EP2050466B1 (en) 2015-10-28
JP2016185981A (ja) 2016-10-27
BRPI0713086A2 (pt) 2012-10-09
JP2015003912A (ja) 2015-01-08
JP2013189433A (ja) 2013-09-26

Similar Documents

Publication Publication Date Title
JP6162864B2 (ja) 抗Desmoglein3抗体を用いる癌の診断および治療
JP5992480B2 (ja) 抗ereg抗体を用いる癌の診断および治療
JP5918540B2 (ja) 抗dll3抗体
EP3064512B1 (en) Anti-cldn6 antibody
WO2011105573A1 (ja) 抗icam3抗体およびその用途
WO2010073694A1 (ja) 抗tm4sf20抗体を用いた癌の診断と治療
JP5801557B2 (ja) 抗lgr7抗体を用いる癌の診断および治療
US9079957B2 (en) Diagnosis and treatment of cancer using anti-TMPRSS11E antibody
JP5618172B2 (ja) 抗prg−3抗体を用いる癌の診断および治療

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780030389.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008529863

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2658050

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10522/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007792477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007285217

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2007285217

Country of ref document: AU

Date of ref document: 20070814

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12308695

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0713086

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081222