WO2008018202A1 - Pompe et système de pompe - Google Patents

Pompe et système de pompe Download PDF

Info

Publication number
WO2008018202A1
WO2008018202A1 PCT/JP2007/057264 JP2007057264W WO2008018202A1 WO 2008018202 A1 WO2008018202 A1 WO 2008018202A1 JP 2007057264 W JP2007057264 W JP 2007057264W WO 2008018202 A1 WO2008018202 A1 WO 2008018202A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
motor stator
electronic substrate
drive
impeller
Prior art date
Application number
PCT/JP2007/057264
Other languages
English (en)
French (fr)
Inventor
Yukinobu Kurita
Original Assignee
Nidec Sankyo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corporation filed Critical Nidec Sankyo Corporation
Priority to JP2008528733A priority Critical patent/JP4932839B2/ja
Priority to CN2007800292991A priority patent/CN101501341B/zh
Publication of WO2008018202A1 publication Critical patent/WO2008018202A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/08Feeding by means of driven pumps electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0673Units comprising pumps and their driving means the pump being electrically driven the motor being of the inside-out type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/586Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
    • F04D29/588Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps cooling or heating the machine

Definitions

  • the present invention relates to a pump and a pump system, and more particularly to a pump and a pump system used for circulation of a refrigerant that cools an electronic component, fuel circulation of a fuel cell, and the like.
  • the thin eddy current pump disclosed in Patent Document 1 incorporates a rotor magnet or the like in a space formed by a pump casing and a cover. Further, outside the space formed by the pump casing and the cover, the stator is disposed to face the magnet. In such a configuration, when current flows in the stator, electromagnetic interaction between the stator and the rotor magnet rotates the blades integrally provided with the rotor magnet, and the refrigerant and the fuel can be circulated.
  • a flexible tape or a lead is drawn from a pump in order to supply a current to the above-described stator. Then, the drawn-out flexible tape or lead wire is connected via a connector to a processing circuit (such as a driving IC) present on the electronic substrate at a position distant from the pump.
  • a processing circuit such as a driving IC
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-161284 (FIG. 1) Disclosure of the invention
  • the processing circuit including the drive IC and the pump are located at a distance from each other, the area of the electronic substrate is increased by that amount! It can not meet the high density mounting requirements of electronic parts.
  • the minute output signal necessary for motor control is also transmitted through the flexible tape or lead wire.
  • the electrical signal flowing through may cause noise to the electronic board. In this case, it may lead to malfunction or failure of various electronic components.
  • a detection magnet is attached separately from the rotor magnet, for example, to detect the number of rotations of the rotor, and the pump external force also detects the magnetism of the detection magnet.
  • the Hall element for magnetic detection is disposed outside the pump, care must be taken not to cause a mount displacement (the Hall element also shifts the desired position force). If the mounting displacement occurs, the magnetic detection will be disturbed, causing the motor to malfunction.
  • the present invention has been made in view of these points, and its object is to improve the mounting efficiency so as to meet the requirements for miniaturization of information equipment and high density mounting of various electronic components. Providing a pump and a pump system.
  • the present invention provides the following.
  • An impeller having a plurality of blades formed on the outer periphery thereof and a rotor magnet provided on the inner periphery thereof, a motor stator disposed opposite to the rotor magnet, the impeller and the motor stator
  • a pump comprising: a pump casing having a recess formed therein for partitioning the motor stator, and an electronic substrate on which a drive IC for supplying a current to the motor stator is mounted, the electronic substrate being mounted
  • the drive IC is disposed to face the motor stator and fixed to the pump casing.
  • an impeller provided with a rotor magnet on its inner periphery, a motor stator disposed opposite to the rotor magnet, a pump casing for partitioning the impeller and the motor stator, and a drive IC
  • a motor stator having an electronic substrate mounted thereon, the motor stator being housed in a recess formed in the pump casing, the electronic substrate being arranged such that the mounted drive IC faces the stator core Since it is fixed to the pump casing, the recess can be utilized. Therefore, it is possible to improve the mounting efficiency so as to meet the demand for miniaturization of information equipment and the need for high density mounting of various electronic components.
  • the outer peripheral end of the electronic substrate is fixed to the pump casing, and as a result, the recess is covered by the electronic substrate, so the mounting efficiency is improved, and the information device can be miniaturized. And high-density mounting of various electronic components can be realized.
  • the processing circuit including the driving IC and the pump are combined, and the flexible tape as in the prior art is obtained.
  • the motor stator can be supplied with current without drawing the lead wire from the pump. Therefore, the mounting efficiency is improved, and the miniaturization (thinning) of the information device and the high density mounting (or optimum arrangement) of various electronic components can be realized.
  • the present invention does not need to draw the flexible tape or the lead wire from the pump, it is possible to prevent the malfunction or failure of the electronic component which causes no noise to the electronic substrate.
  • the outer peripheral end of the electronic substrate to the pump casing, it is possible to prevent water from entering the recess from the gap between the electronic substrate and the pump casing, and thus the waterproofness can be improved. . In addition, it is possible to prevent foreign matter such as dust and dirt from getting into the recess with water alone, and thus to improve dust resistance. Furthermore, it is also possible to prevent the mounting deviation of the magnetic detection means by, for example, attaching the magnetic detection means for detecting the magnetism of the rotor magnet to the concave side of the electronic substrate.
  • fixing the outer peripheral end of the electronic substrate to the pump casing Can also prevent the generation of abnormal noise.
  • the outer peripheral end of the electronic substrate is not fixed to the pump casing, the outer peripheral end is a free end, and the high speed rotation of the impeller causes vibrations, resulting in noise. There is no denying the possibility that (vibration noise) will occur.
  • the outer peripheral end of the electronic substrate is fixed to the pump casing, the outer peripheral end becomes a fixed end, so that vibration hardly occurs even if the impeller rotates at high speed. . As a result, the generation of abnormal noise can be prevented.
  • the electronic board "covers the recess” not only covers the space in which the motor stator is accommodated as a sealed space, but also covers the recess so that the motor stator is hidden. Shall also be included. Therefore, for example, when a groove for passing the wiring of the electronic board is provided in a part of the pump casing, the space in which the motor stator is accommodated may not be a sealed space.
  • the force at which the outer peripheral end of the electronic substrate is fixed to the pump casing does not mean that the other part of the electronic substrate is fixed to the pump casing. Therefore, for example, the outer peripheral end and the vicinity of the center of the electronic substrate may be fixed to the pump casing.
  • the “peripheral end” may be an outer peripheral end face of the electronic substrate, or may be a front surface or a rear surface in the vicinity of the outer periphery of the electronic substrate, regardless of a specific place.
  • the outer peripheral end of the electronic substrate to the pump casing it may be fixed by fitting, may be fixed by engaging, or may simply be in contact. You may fix by ⁇ . Note that a medium such as an adhesive may be used to "fix”.
  • the pump further includes magnetic detection means for performing magnetic detection of the rotor magnet, and the magnetic detection means is attached to the recess side of the electronic substrate and in the vicinity of the outer peripheral end.
  • the pump described above is provided with the magnetic detection means for detecting the magnetism of the rotor magnet, and the magnetic detection means is attached to the recess side of the electronic substrate and in the vicinity of the outer peripheral end. It becomes possible to make it approach to a magnet, and it is possible to improve the SN ratio at the time of magnetic detection, and as a result, it is possible to suppress noise and improve detection accuracy.
  • the lead wire connecting the above-mentioned magnetic detection means and the drive IC is wired on the electronic board, the lead wire is suppressed on the electronic board, and the electromagnetic noise is suppressed compared to the case. As a result, detection accuracy can be improved.
  • a pump characterized in that a groove for passing the wiring of the electronic substrate is formed in the pump casing.
  • the groove for passing the wiring of the electronic substrate is formed in the above-described pump casing, it does not prevent the thinning of the pump, and the structure of the pump is complicated. Power can be supplied to the electronic substrate and signal transmission can be performed.
  • the drive system of the pump using the above-described drive IC is a three-phase drive system
  • rotation can be smoother and rotation efficiency can be improved compared to the case of the two-phase drive system. He is happy.
  • a pump system comprising: the pump according to any one of (1) to (6); and a control circuit for transmitting a control signal for changing the number of rotations of the impeller to the pump.
  • the pump includes an FG terminal for outputting an FG signal that changes periodically according to the rotation speed of the impeller, and the control circuit performs the control based on the FG signal received by the FG terminal force.
  • a pump system characterized by transmitting a signal.
  • a pump system comprising: the above-described pump; and a control circuit for transmitting a control signal for changing the rotational speed of the impeller to the pump.
  • a control circuit for transmitting a control signal for changing the rotational speed of the impeller to the pump.
  • There is an FG terminal that outputs an FG signal that changes periodically according to the number, and the control circuit sends a control signal based on the FG signal received from this FG terminal.
  • an impeller provided with a rotor magnet on its inner periphery, a motor stator disposed opposite to the rotor magnet, a pump casing for partitioning the impeller and the motor stator, and a drive IC
  • a motor stator having an electronic substrate mounted thereon, the motor stator being housed in a recess formed in the pump casing, the electronic substrate being configured such that the mounted drive IC faces the motor stator.
  • the recess can be utilized. Therefore, it is possible to improve the mounting efficiency so as to meet the demand for miniaturization of information equipment and the need for high density mounting of various electronic components.
  • FIG. 1 is a view showing a mechanical structure of a pump according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an appearance configuration of a motor stator.
  • FIG. 3 is a block diagram showing an electrical configuration of a pump according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing an electric circuit of a pump according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an overview of a pump system according to an embodiment of the present invention.
  • FIG. 6 is an explanatory view for explaining a pump according to another embodiment of the present invention.
  • FIG. 7 is an explanatory view for explaining a pump according to another embodiment of the present invention. Explanation of sign
  • FIG. 1 is a view showing a mechanical structure of a pump 1 according to an embodiment of the present invention.
  • FIG. 1 (a) shows a side cross-sectional view of the pump 1
  • FIG. 1 (b) shows a plan view of the pump 1 with the force on the bottom plate 14 side also seen
  • FIG. 1 (c) Shows a plan view when the pump 1 is viewed from the electronic substrate 15 side
  • FIG. 1 (d) shows a side view when the pump 1 is viewed from the suction port (or the discharge port) 31 .
  • FIG. 1 (a) is a side sectional view taken along the A-A plane of FIG. 1 (b).
  • the pump 1 mainly includes an impeller 11, a motor stator 12, a pump case 13, and a bottom plate 14 and a force.
  • the impeller 11 is a disk-shaped rotating body, and a plurality of ring-shaped blades 111 are formed on the outer periphery of a disk-shaped yoke 114.
  • the disk-shaped yoke 114 also functions as a magnetic material such as an SK material.
  • the blade 111 is also made of a heat-resistant plastic material such as PPS (polyphenylene sulfide), and is fixed to the outer periphery of the disk-like yoke 114 with an adhesive or the like.
  • PPS polyphenylene sulfide
  • a rotor magnet 112 is attached to the inner periphery of the impeller 11.
  • the rotor magnet 112 is a ring-shaped member attached to the inner peripheral wall surface of the yoke 114 with an adhesive or the like, and a permanent magnet such as a neodymium bond magnet is used, for example.
  • a rotational force is generated according to the magnetic field generated by the motor stator 12, and the rotor magnet 112 and the impeller 11 rotate integrally.
  • the motor structure is an outer-port motor type in which the rotor magnet 112 located outside the motor stator 12 rotates.
  • the impeller 11 is fixed to a shaft 113, and the shaft 113 is rotatably supported by a ball bearing 30.
  • a dynamic pressure bearing capable of higher speed rotation may be adopted, but by using the ball bearing 30 as in the present embodiment, the impeller 11 rotates while swinging up and down. Can be prevented, which in turn can prevent the generation of abnormal noise due to a collision and the decrease in rotational efficiency.
  • the motor stator 12 is disposed to face the rotor magnet 112 with a predetermined gap, and has a plurality of salient pole portions 121 extending radially outward of the impeller 11 in the radial direction. .
  • the external appearance is as shown in Fig. 2 (a).
  • FIG. 2 is a schematic view showing an appearance configuration of the motor stator 12.
  • the motor stator 12 has nine salient pole portions 121 extending outward in the radial direction of the impeller 11 in the radial direction, The tip 122 is arranged to face the rotor magnet 112.
  • the illustration of the coil wound around the salient pole portion 121 is omitted.
  • six salient pole portions 121 are adopted as the force employing nine salient salient pole portions 121, and each salient pole portion 121 is used.
  • the coil 123 may be wound so that the tip end portion 122 of each salient pole portion 121 faces the rotor magnet 112.
  • a magnetic field can be generated in the vicinity of the motor stator 12 by supplying a current to the coil 123 wound around the salient pole portion 121.
  • the pump casing 13 includes a rotor region 21 in which the impeller 11 is present, a pump chamber 22 in which a fluid such as a refrigerant or a fuel circulates, and a motor stator 12. It is for airtightly separating the internal space 23 formed by the recessed portion 133, and prevents a fluid such as a refrigerant or a fuel from adhering to the motor stator 12 to prevent the motor stator 12 from being broken. That is, the impeller 11 and the motor stator 12 are spatially separated by the pump casing 13.
  • the pump chamber 22 is a region in which any one force of the suction port (or the discharge port) 31 also flows in, and a liquid such as a refrigerant or a fuel flowing out from the other circulates due to turbulent flow.
  • the pump chamber 22 is formed by the pump casing 13 and the bottom plate 14 being fixed. Further, the pump chamber 22 is formed with a wide width so as to surround the periphery of the blade 111, and the cross section thereof is formed with a size that widely surrounds the outer side of the blade 111.
  • the pump casing 13 is preferably a synthetic resin (heat-resistant plastic or the like) from the viewpoint of weight reduction, but in addition, a metal material such as copper or aluminum (or an aluminum alloy) may be used. Absent. Further, by providing an O-ring between the pump casing 13 and the bottom plate 14, it is possible to ensure the sealing between the members. In addition, with regard to the method of fixing the pump casing 13 and the bottom plate 14, it is possible to use a bolt and nut or use an adhesive.
  • the pump casing 13 has the recess 133 for housing the motor stator 12, and the motor stator 12 is incorporated therein. Further, in the pump casing 13, as shown in FIG. 2A, in the vicinity of the center of the motor stator 12 formed in an annular shape, a mounting portion for fixing the electronic substrate 15 while positioning it is formed. That is, by mounting the electronic substrate 15 on the mounting portion, the Hall element 42 can be positioned so that the magnetic detection of the rotor magnet 112 can be performed.
  • the mounting portion is formed with a plurality of raised portions 131 formed.
  • An electronic substrate 15 on which a drive IC 41 for supplying a current to the motor stator 12 is mounted is fixed to the leading end portion of the convex portion 131. More specifically, an insertion hole 15a into which the projection 131 of the pump casing 13 can be inserted is formed at the center of the electronic substrate 15, and when the projection 131 is inserted into the insertion hole 15a, the electronic substrate The outer peripheral end 152 of the 15 abuts on the pump casing 13. In this manner, the electronic board 15 covers the recess 133 (the internal space 23 formed by the motor stator 12) and further performs the present embodiment. In the embodiment, the outer peripheral end 152 is fixed to the pump casing 13.
  • the electronic board 15 has a disk shape, and the area thereof is smaller than the area of the bottom plate 14 of the pump 1 (see FIGS. 1 (b) and 1 (c)).
  • a Hall element 42 for detecting the magnetism of the rotor magnet 112 is disposed on the surface of the electronic substrate 15 (on the side of the recess 133 of the pump casing 13). Specifically, as shown in FIG. 1 (a), a Hall element 42 is provided in the axial direction with respect to the rotor magnet 112 with a predetermined gap therebetween. The predetermined gap is formed with a convex portion (placement portion) 131 formed in the pump casing 13 and having a plurality of steps for fixing the electronic substrate while positioning it. Furthermore, in the present embodiment, as shown in FIG. 1, the Hall element 42 is attached near the outer peripheral end 152 of the electronic substrate 15 from the position of the rotor magnet 112.
  • the wiring of the electronic substrate 15, specifically the line for supplying power, is passed through a groove 134 formed in the pump casing 13 (see FIG. 1 (c)).
  • the size of the groove 134 may be such that the wiring of the electronic substrate 15 can pass through.
  • the electronic substrate 15 is disposed such that the mounted drive IC 41 faces the motor stator 12, and is fixed to the pump casing 13. That is, the surface force of the electronic substrate 15 is to face the motor stator 12.
  • the drive IC 41 and the like mounted on the electronic substrate 15 are not exposed to the outside, damage and the like of the electronic component such as the drive IC 4 can be prevented.
  • FIG. 3 is a configuration diagram showing an electrical configuration of the pump 1 according to the embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing an electric circuit of the pump 1 according to the embodiment of the present invention.
  • 3 (a) is a schematic view of the electronic substrate 15 shown in FIG. 1 (a) when viewed from the side of the recess 133 of the pump casing 13, and
  • FIG. 3 (b) is a view of FIG. It is the schematic when the electronic board
  • the electric circuit of the pump 1 mainly comprises a drive IC 41 for supplying current to the motor stator 12 and three Hall elements 42 for detecting the position of the rotor magnet 112 (U phase, V phase and W From the electronic substrate 15 provided with 42a, 42b and 42c), three sets of FET sets 43a to 43c, and a Hall IC 45 for generating a Frequency Generator signal (FG signal) in the order of phases.
  • a drive IC 41 for supplying current to the motor stator 12 and three Hall elements 42 for detecting the position of the rotor magnet 112 (U phase, V phase and W From the electronic substrate 15 provided with 42a, 42b and 42c), three sets of FET sets 43a to 43c, and a Hall IC 45 for generating a Frequency Generator signal (FG signal) in the order of phases.
  • Terminals 44 a to 44 c are terminals for supplying current to the U-phase coil, V-phase coil and W-phase coil of motor stator 12, respectively, and terminal 46 is for control sent to pump 1.
  • the terminal 47 is a PWM terminal that receives a signal, and the terminal 47 is an FG terminal that outputs an FG signal that changes periodically according to the rotation speed of the impeller 11 by the Hall IC 45.
  • the terminal 48 is a power supply terminal (Vcc terminal), and the terminal 49 is a ground terminal (GND terminal).
  • Hall elements 42a to 42c which are magnetoelectric conversion elements utilizing the Hall effect, are connected to the drive IC 41, and the drive IC 41 receives electric signals from the Hall elements 42a to 42c.
  • the rotational state of the impeller 11 can be recognized.
  • three sets of FET sets 43a to 43c are connected to the drive IC 41, and each FET set is configured by two FETs.
  • the drive IC 41 supplies appropriate current to the motor stator 12 through the FET sets 43a to 43c.
  • the driving IC 41, the Hall elements 42a to 42c, the FETs 43a to 43c, and the like can receive power of 5 V through the power supply terminal 48.
  • the Hall element 42 may be of a type using InSb, a type using GaAs, or the like, regardless of the type.
  • the Hall IC 45 is connected to the drive IC 41, and the FG signal can be taken out from the FG terminal 47 through the Hall IC 45.
  • the FG signal is generated in the drive IC 41, for example, based on the electrical signals received from the Hall elements 42a to 42c.
  • the drive IC 41 is connected to the PWM terminal 46.
  • the PWM terminal 46 is a PWM (Pulse Width Modulation) signal from the control circuit 100 (see FIG. 5 described later) which is an upper circuit, that is, the impeller 11 It is a terminal for receiving a control signal that changes the rotational speed of
  • the drive IC 41 of the pump 1 is PWM controlled via the PWM terminal 46. Note that with PWM control, the width ratio (so-called duty ratio) of voltage pulses is changed. To control the power supply.
  • FIG. 5 is a diagram showing an overview of a pump system according to an embodiment of the present invention.
  • the pump system mainly supplies an electric current to the coils of the motor stator 12 and the motor stator 12 which apply the rotational force to the impeller 11 by applying the impeller 11 which actually circulates the refrigerant and the fuel.
  • the electronic board 15 on which the drive IC 41 is mounted, and the control circuit 100 for transmitting a control signal to the electronic board 15 are composed of force. The operation of this pump system will be described using FIG. 4 and FIG.
  • the control circuit 100 transmits a control signal for starting the rotation of the impeller 11 to the drive IC 41.
  • This control signal is received at the PWM terminal 46 of the drive IC 41.
  • current is supplied from the drive IC 41 to the motor stator 12.
  • a magnetic field is generated at the tip 122 of the motor stator 12, and in response to this magnetic field, a repulsive force is generated in the rotor magnet 112.
  • the repulsive force causes the impeller 11 to which the rotor magnet 112 is attached.
  • turbulent flow is caused to circulate refrigerant and fuel in the pump chamber 22.
  • the refrigerant flowing from the suction port passes through the pump chamber 22 and is discharged from the discharge port to the outside.
  • the control circuit 100 receives the FG signal output from the FG terminal 47 of the drive IC 41 as described above, and generates a desired PWM signal (a signal with an increased duty ratio) based on the FG signal. Then, the control circuit 100 transmits the generated PWM signal to the PWM terminal 46 of the drive IC 41.
  • the drive IC 41 receiving the PWM signal through the PWM terminal 46 increases the amount of current supplied to the coil of the motor stator 12 based on this. As a result, the rotational speed of the impeller 11 is increased. The same may be applied to reducing the rotational speed of the impeller 11. That is, a PWM signal with a reduced duty ratio may be transmitted from the control circuit 100 to the drive IC 41 to reduce the number of rotations of the impeller 11.
  • the three-phase drive system is adopted as the drive system of the pump 1 from the viewpoint of rotational efficiency, it goes without saying that it may be a single-phase drive system or a two-phase drive system. May be.
  • nine salient pole portions 121 shown in FIG. 2A are used as the motor stator 12 (the coil is omitted in FIG. 2A), for example, shown in FIG. 6 salient poles
  • the portion 121 the gap between the salient pole portions 121 becomes wide.
  • the electronic substrate 15 may be fixed to the pump casing 13 with the drive IC 41 interposed between the plurality of salient pole portions 121 by utilizing this gap. As a result, the axial thickness of the impeller 11 in the pump 1 can be reduced, which can contribute to the thinning of the entire pump 1.
  • the control circuit 100 appropriately grasps the rotational speed of the pump 1 (impeller 11) by the FG signal, and at the same time, the PWM signal Thus, pump performance (discharge amount) can be appropriately controlled.
  • the electronic substrate 15 is arranged such that the mounted drive IC 41 and Hall element 45 etc. face the motor stator 12. Since the outer peripheral end 152 of the electronic board 15 is fixed to the pump casing 13, the mounting efficiency can be improved to realize the miniaturization of the information device, the thinning and the high density mounting of various electronic parts. it can. In addition, by integrating the electronic substrate 15 and the pump 1 integrally, the noise resistance of the electronic substrate 15 is improved, which eliminates the need to draw the flexible wire lead wire from the pump, and the malfunction or failure of the electronic component is caused. You can also prevent it.
  • lead wires connecting the Hall elements 42a to 42c and the drive IC 41 are disposed on the electronic substrate 15. Therefore, compared with the case where the lead wire is not on the electronic board 15, the electromagnetic noise can be suppressed, and hence the detection accuracy can be improved.
  • the groove 134 (FIG. 1 (c)) formed in the pump casing 13 prevents the thinning of the pump 1 and prevents the pump 1 from becoming complicated. Supply and signal transmission can be performed. Furthermore, by fixing the outer peripheral end 152 of the electronic substrate 15 to the pumping 13, the outer peripheral end 152 changes from the free end to the fixed end, and noise is generated. Can prevent the occurrence of
  • FIG. 6 is an explanatory view for explaining a pump 1A according to another embodiment of the present invention.
  • FIG. 7 is an explanatory view for explaining a pump IB, 1C according to another embodiment of the present invention.
  • the convex portion (mounting portion) 131 of the pump casing 13 is covered with the electronic substrate 15. Further, in FIG. 6, the convex portion (mounting portion) 131 of the pump casing 13 and the vicinity of the center of the electronic substrate 15 are in contact with each other. That is, according to the present invention, as shown in FIG. 1, the outer peripheral end 152 of the electronic substrate 15 and the edge of the insertion hole 15a may be fixed to the pump casing 13 or, as shown in FIG. The outer peripheral end portion 15 of 15 and the vicinity of the center of the electronic board 15 may be fixed to the pump casing 13.
  • FIG. 1 the force fixing the portion near the suction port (or the discharge port) 31 in the outer peripheral end 152 of the electronic substrate 15 to the stepped portion of the pump casing 13 is shown in FIG. As indicated by the dotted line frame Y and the dotted line frame Y in a), the suction port (or the discharge port) of the outer peripheral end 152 of the electronic substrate 15
  • the opposite part which is only close to the outlet 31, may also be fixed to the shoulder of the pump housing 13. Conversely, as shown by dotted frame Z and Z in FIG. 7C, the outer periphery of the electronic substrate 15
  • the outer peripheral end face is fixed to the inner peripheral wall surface of the pump casing 13 as it is.
  • the motor stator includes a plurality of salient pole portions radially extending outward in the radial direction of the impeller, and the electronic board has a state in which the drive IC is interposed between the plurality of salient pole portions. It may be fixed to the pump casing.
  • the motor stator is provided with a plurality of salient pole portions that radially extend outward in the radial direction of the impeller, and the electronic substrate includes a plurality of salient pole portions including electronic components such as a drive IC.
  • the pump is fixed to the pump casing in a state of being interposed therebetween, so that the axial thickness of the impeller can be made thinner in the pump as compared with the above-described embodiment, and thus the whole pump as a whole.
  • the pump and the pump system according to the present invention are useful as those that can integrate electronic components such as drive ICs or Hall elements to improve mounting efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

技術分野
[0001] 本発明は、ポンプ及びポンプシステムに関し、特に、電子部品を冷却する冷媒の循 環や燃料電池の燃料循環などに用いられるポンプ及びポンプシステムに関する。 背景技術
[0002] 近年、情報機器の高性能化,高機能化に伴い、その情報機器の内部にある電子部 品の発熱が増加してきており、冷却装置の重要度が増してきている。例えば、 CPU のクロック周波数などは以前と比べて格段に大きなものとなっており、このため内部で 冷媒を循環させて LSIなどを冷却する方式が実用化されている。一方で、近年になつ て、燃料電池の開発が急速に進んできている。この燃料電池は、燃料を循環させて 電気を取り出す電池である力 益々小型化する傾向にあり、ノートパソコンや PDAな どの情報処理端末に内蔵されるケースが増えてきている。
[0003] ところで、このような冷媒ゃ燃料の循環には、小型化されたポンプが用いられること が多い。小型化されたポンプを情報機器に組み込むことによって、情報機器内部で の冷媒ゃ燃料の循環が実現して 、た (例えば特許文献 1参照)。
[0004] 特許文献 1記載に開示された薄型渦流ポンプは、ポンプケーシングとカバーとで形 成された空間内に、ロータマグネット等を内蔵させている。また、ポンプケーシングと カバーとで形成された空間外に、そのマグネットと対向するようにステータが配置され ている。このような構成においてステータに電流を流すと、ステータとロータマグネット との電磁的相互作用によって、ロータマグネットと一体的に設けられた羽根が回転し 、冷媒ゃ燃料を循環させることができる。
[0005] ここで、特許文献 1では開示されていないが、一般に、上述したステータに電流を 供給するために、フレキシブルテープやリード線がポンプから引き出される。そして、 引出されたフレキシブルテープやリード線は、コネクタを介して、電子基板上でポンプ から離れた位置に存在する処理回路 (駆動 ICなど)と接続される。
[0006] 特許文献 1 :特開 2003— 161284号公報(図 1) 発明の開示
発明が解決しょうとする課題
[0007] しカゝしながら、駆動 ICを含む処理回路とポンプとが離れた位置に存在するとなると、 その分だけ電子基板の面積が大きくなつてしま!、、情報機器の小型化要求や各種電 子部品の高密度実装要求を満たすことができない。
[0008] また、従来のように、フレキシブルテープやリード線をポンプから引き出すような方 式では、モータ制御に必要な微小な出力信号もフレキシブルテープやリード線を用 Vヽて伝送するので、これらを流れる電気信号が電子基板に対してノイズを発生させて しまう場合がある。この場合、各種電子部品の動作不良や故障に繋がるおそれがあ る。
[0009] さらに、ロータの回転数を検出するべぐ例えばロータに、ロータマグネットとは別に 検出用マグネットを取り付けて、ポンプ外力もその検出用マグネットの磁気検出を行う 場合を考える。この場合、磁気検出を行うホール素子はポンプ外に配置されているこ とから、マウントずれ (ホール素子が所望位置力もずれること)が生じないように注意し なければならない。仮に、マウントずれが生じてしまうと、磁気検出に支障をきたし、モ ータの動作不良を惹き起こしてしまう。
[0010] 本発明は、このような点に鑑みてなされたものであり、その目的は、情報機器の小 型化要求や各種電子部品の高密度実装要求を満たすように、実装効率を向上させ るポンプ及びポンプシステムを提供することにある。
課題を解決するための手段
[0011] 以上のような課題を解決するために、本発明は、以下のものを提供する。
[0012] (1) 外周に複数の羽根が形成され、内周にロータマグネットが設けられた羽根車 と、前記ロータマグネットと対向して配置されたモータステータと、前記羽根車と前記 モータステータを仕切るとともに、前記モータステータを収容する凹部が形成された ポンプケーシングと、前記モータステータに電流供給を行う駆動 ICが実装された電 子基板と、を有するポンプであって、前記電子基板は、実装された前記駆動 ICが前 記モータステータと対面するように配置され、前記ポンプケーシングに固定されてい る、ことを特徴とするポンプ。 [0013] 本発明によれば、内周にロータマグネットが設けられた羽根車と、このロータマグネ ットと対向して配置されたモータステータと、羽根車とモータステータを仕切るポンプ ケーシングと、駆動 ICが実装された電子基板と、を有するポンプで、モータステータ 力 ポンプケーシングに形成された凹部に収容されているとともに、前記電子基板は 、実装された前記駆動 ICが前記ステータコアと対面するように配置され、前記ポンプ ケーシングに固定されているので、前記凹部を活用することができる。そのため、情 報機器の小型化要求や各種電子部品の高密度実装要求を満たすように、実装効率 を向上することができる。
[0014] (2) 前記電子基板は、前記凹部を覆うようにして、その外周端部が前記ポンプケ 一シングに固定されていることを特徴とする請求項 1記載のポンプ。
[0015] 本発明によれば、電子基板の外周端部を、ポンプケーシングに固定することとし、 その結果、凹部が電子基板によって覆われるようにしたので、実装効率を向上させ、 情報機器の小型化や各種電子部品の高密度実装を実現することができる。
[0016] すなわち、電子基板の外周端部をポンプケーシングに固定することで、結果的に駆 動 ICを含む処理回路とポンプとがー体ィ匕することになり、従来のようにフレキシルテ ープゃリード線をポンプから引き出さなくても、モータステータに電流供給を行うこと ができる。従って、実装効率が向上し、情報機器の小型化 (薄型化)や各種電子部品 の高密度実装 (又は最適配置)を実現することができる。
[0017] また、本発明は、フレキシブルテープやリード線をポンプから引き出す必要がない ので、電子基板に対してノイズを発生させることもなぐ電子部品の動作不良や故障 を防ぐこともできる。
[0018] また、電子基板の外周端部をポンプケーシングに固定することで、電子基板とボン プケーシングの隙間から凹部に水が入り込むのを防ぐことができ、ひいては防水 ¾を 向上することができる。なお、水だけでなぐ塵や埃などの異物が凹部に入り込むの を防ぐこともでき、ひいては耐粉塵性を向上することもできる。さらに、例えばロータマ グネットの磁気検出を行う磁気検出手段を電子基板の凹部側に取り付けることによつ て、その磁気検出手段のマウントずれを防ぐことも可能である。
[0019] さらにまた、本発明では、電子基板の外周端部をポンプケーシングに固定すること によって、異音の発生を防ぐこともできる。詳細に説明すると、電子基板の外周端部 がポンプケーシングに固定されていない場合には、その外周端部は自由端となるた め、羽根車の高速回転によって振動が生じ、その結果、異音 (振動音)が発生する可 能性は否定できない。しかし、本発明のように、電子基板の外周端部がポンプケーシ ングに固定されている場合には、その外周端部は固定端となるため、たとえ羽根車が 高速回転したとしても振動は生じにくい。その結果、異音の発生を防ぐことができる。
[0020] ここで、電子基板が「凹部を覆う」には、モータステータが収容された空間を密閉空 間とするように覆う場合のみならず、単に、モータステータが隠れるように凹部を覆う 場合も含まれるものとする。したがって、例えばポンプケーシングの一部に、電子基 板の配線を通すための溝が設けられて 、る場合など、モータステータが収容された 空間が密閉空間となっていなくても構わない。
[0021] また、電子基板の外周端部は、ポンプケーシングに固定されている力 これは、電 子基板の他の部分がポンプケーシングに固定されていることを排除する趣旨ではな い。したがって、例えば、電子基板の外周端部及び中央付近がポンプケーシングに 固定されていてもよい。なお、この「外周端部」は、電子基板の外周端面であってもよ いし、電子基板の外周付近における表面又は裏面であってもよいし、具体的な場所 の如何は問わない。
[0022] さらに、電子基板の外周端部をポンプケーシングに「固定」するにあたって、嵌合す ることによって固定してもよいし、係合することによって固定してもよいし、単に当接す ること〖こよって固定してもよい。なお、「固定」するにあたって、接着剤などの媒体を用 いてもよい。
[0023] (3) 前記ポンプは、さらに、前記ロータマグネットの磁気検出を行う磁気検出手段 を備え、前記磁気検出手段は、前記電子基板の前記凹部側かつ外周端部近傍に取 り付けられて 、ることを特徴とするポンプ。
[0024] 本発明によれば、上述したポンプに、ロータマグネットの磁気検出を行う磁気検出 手段を設け、この磁気検出手段を、電子基板の凹部側かつ外周端部近傍に取り付 けるので、ロータマグネットに近接させることが可能となり、磁気検出の際の SN比を 向上させることができ、その結果、ノイズを抑制して検出精度向上を図ることができる [0025] (4) 前記磁気検出手段と前記駆動 ICを接続するリード線が、前記電子基板上に 配線されて 、ることを特徴とするポンプ。
[0026] 本発明によれば、上述した磁気検出手段と駆動 ICを接続するリード線を、電子基 板上に配線するので、リード線が電子基板上にな 、場合と比べて電磁ノイズを抑制 することができ、ひいては検出精度向上を図ることができる。
[0027] (5) 前記ポンプケーシングには、前記電子基板の配線を通すための溝が形成さ れて 、ることを特徴とするポンプ。
[0028] 本発明によれば、上述したポンプケーシングには、電子基板の配線を通すための 溝が形成されているので、ポンプの薄型化を妨げることなぐまた、ポンプの構造を複 雑化させることなぐ電子基板への電力供給や信号送信を行うことができる。
[0029] (6) 前記駆動 ICによる前記ポンプの駆動方式は、三相駆動方式であることを特徴 とするポンプ。
[0030] 本発明によれば、上述した駆動 ICによるポンプの駆動方式は、三相駆動方式であ るので、二相駆動方式の場合と比べて回転時がスムーズになり、回転効率を高めるこ とがでさる。
[0031] (7) (1)から(6)のいずれか記載のポンプと、前記ポンプに対し、前記羽根車の回 転数を変化させる制御信号を送信する制御回路と、を有するポンプシステムであって 、前記ポンプは、前記羽根車の回転数に応じて周期的に変化する FG信号を出力す る FG端子を備え、前記制御回路は、前記 FG端子力 受信する FG信号に基づき、 前記制御信号を送信することを特徴とするポンプシステム。
[0032] 本発明によれば、上述したポンプと、このポンプに対して羽根車の回転数を変化さ せる制御信号を送信する制御回路と、を有するポンプシステムで、ポンプに、羽根車 の回転数に応じて周期的に変化する FG信号を出力する FG端子を設け、制御回路 によって、この FG端子から受信する FG信号に基づき制御信号が送信されるので、 ポンプの回転数を制御回路側で適切に把握すると同時に、ポンプ性能(吐出量)を 適切にコントロールすることができる。
発明の効果 [0033] 本発明によれば、内周にロータマグネットが設けられた羽根車と、このロータマグネ ットと対向して配置されたモータステータと、羽根車とモータステータを仕切るポンプ ケーシングと、駆動 ICが実装された電子基板と、を有するポンプで、モータステータ 力 ポンプケーシングに形成された凹部に収容されているとともに、前記電子基板は 、実装された前記駆動 ICが前記モータステータと対面するように配置され、前記ボン プケーシングに固定されているので、前記凹部を活用することができる。そのため、 情報機器の小型化要求や各種電子部品の高密度実装要求を満たすように、実装効 率を向上することができる
図面の簡単な説明
[0034] [図 1]本発明の実施の形態に係るポンプの機械構造を示す図である。
[図 2]モータステータの外観構成を示す概略図である
[図 3]本発明の実施の形態に係るポンプの電気的構成を示す構成図である。
[図 4]本発明の実施の形態に係るポンプの電気回路を示す回路図である。
[図 5]本発明の実施の形態に係るポンプシステムの概要を示す図である。
[図 6]本発明の他の実施の形態に係るポンプを説明するための説明図である。
[図 7]本発明の他の実施の形態に係るポンプを説明するための説明図である。 符号の説明
[0035] 1 ポンプ
11 羽根車
111 羽根
112 ロータマグネット
113 軸
114 ヨーク
12 ステータ
121 突極部
122 先端部
123 コイル
13 ポンプケーシング 131 凸部 (載置部)
14 底板
15 電子基板
15a 嵌入穴
152 外周端部
16 駆動 IC
22 ポンプ室
30 ボールベアリング
41 駆動 IC
42 ホール素子
発明を実施するための最良の形態
[0036] 以下、本発明を実施するための最良の形態について、図面を参照しながら説明す る。
[0037] [機械構造]
図 1は、本発明の実施の形態に係るポンプ 1の機械構造を示す図である。特に、図 1 (a)は、ポンプ 1の側断面図を示しており、図 1 (b)は、ポンプ 1を底板 14側力も見た ときの平面図を示しており、図 1 (c)は、ポンプ 1を電子基板 15側から見たときの平面 図を示しており、図 1 (d)は、ポンプ 1を吸込口(又は排出口) 31から見たときの側面 図を示している。また、図 1 (a)は、図 1 (b)の A— A面で切断したときの側断面図であ る。
[0038] 図 1 (a)において、ポンプ 1は、主に、羽根車 11と、モータステータ 12と、ポンプケー シング 13と、底板 14と、力 構成されている。
[0039] 羽根車 11は、円盤形状の回転体であって、円盤状のヨーク 114の外周に、リング状 力 なる複数の羽根 111が形成されている。本実施の形態では、円盤状のヨーク 11 4は、例えば SK材などの磁性材料力もなる。羽根 111は、例えば PPS (ポリフエ-レ ンサルファイド)等の耐熱性プラスチックの材質力もなり、円盤状のヨーク 114の外周 に接着剤等で固定されている。そして、円盤状のヨーク 114 (羽根車 11)の回転によ つて、羽根 111の周囲に乱流が引き起こされるようになつている。なお、この羽根 111 の表面に撥水加工を施すことによって、回転の初動をスムーズにすることができる。
[0040] 一方、羽根車 11の内周には、ロータマグネット 112が取り付けられている。ロータマ グネット 112は、ヨーク 114の内周壁面に接着剤等で装着されたリング状の部材であ り、例えばネオジボンドマグネット等の永久磁石が用いられる。ロータマグネット 112 には、モータステータ 12が発生する磁界に応じて回転力が生じ、ロータマグネット 11 2と羽根車 11とが一体になつて回転するようになっている。なお、本実施形態では、 モータステータ 12よりも外側に位置するロータマグネット 112が回転する、アウター口 ータ型のモータ構造となって 、る。
[0041] また、羽根車 11は、軸 113に固定されており、その軸 113は、ボールベアリング 30 によって回転可能に支持されている。軸受部材としては、より高速回転に対応可能な 動圧軸受を採用することもできるが、本実施形態のようにボールベアリング 30を用い ることで、羽根車 11が上下に揺動しながら回転するのを防ぐことができ、ひいては衝 突による異音の発生や回転効率の低下を防ぐことができる。
[0042] モータステータ 12は、ロータマグネット 112と所定の隙間を介して対向して配置され 、羽根車 11の径方向外側に向かって放射状に延出する複数の突極部 121を有して いる。外観構成は、図 2 (a)に示すとおりである。図 2は、モータステータ 12の外観構 成を示す概略図である。
[0043] 図 2 (a)に示すように、モータステータ 12は、羽根車 11の径方向外側に向力つて放 射状に延出する 9個の突極部 121を有しており、その先端部 122はロータマグネット 1 12と対向して配置されるようになっている。図 2 (a)では、突極部 121に卷回するコィ ルの図示を省略している。また、図 2 (a)では 9極の突極部 121を採用している力 例 えば図 2 (b)に示すように、 6個の突極部 121を採用し、各突極部 121にコイル 123を 卷回し、各突極部 121の先端部 122をロータマグネット 112と対向させるようにしても よい。突極部 121に卷回されたコイル 123に電流を流すことによって、モータステータ 12の近傍に磁界を発生させることができる。なお、モータステータ 12の形態について は、図 2 (a)及び図 2 (b)以外の形態であっても構わな!/、。
[0044] 再び図 1において、ポンプケーシング 13は、羽根車 11が存在するロータ領域 21や 冷媒又は燃料などの液体が循環するポンプ室 22と、モータステータ 12が収容される 凹部 133によって形成される内部空間 23と、を気密して分離するためのものであって 、冷媒又は燃料などの液体がモータステータ 12に付着し、モータステータ 12が故障 するのを防いでいる。すなわち、ポンプケーシング 13によって、羽根車 11とモータス テータ 12とが空間的に仕切られている。
[0045] ポンプ室 22は、吸込口(又は吐出口) 31のいずれか一方力も流入し、他方から流 出する冷媒ゃ燃料などの液体が、乱流により循環する領域である。このポンプ室 22 は、ポンプケーシング 13と底板 14とが固着することによって形成されている。また、ポ ンプ室 22は、羽根 111の周辺を囲むように広い幅で形成されており、その断面は、 羽根 111の外方を広く囲む大きさで形成されている。
[0046] なお、ポンプケーシング 13は、軽量化の観点から合成樹脂(耐熱性プラスチックな ど)であることが好ましいが、その他、銅やアルミニウム(又はアルミニウム合金)などの 金属材料を用いても構わない。また、ポンプケーシング 13と底板 14との間に Oリング を設けることによって、部材間の密閉性を確保することができる。また、ポンプケーシ ング 13と底板 14の固着方法については、ボルト'ナットを用いたり、接着剤を用いた りすることがでさる。
[0047] ポンプケーシング 13は、上述のとおり、モータステータ 12を収容する凹部 133を有 しており、ここにモータステータ 12が組み込まれるようになつている。また、ポンプケー シング 13において、図 2 (a)に示すように円環状に形成されたモータステータ 12の中 央付近には、電子基板 15を位置決めしながら固定する載置部が形成されている。す なわち、載置部に電子基板 15を載置することで、ロータマグネット 112の磁気検出が できるように、ホール素子 42を位置決めできるようになつている。本実施の形態では、 載置部は、複数段からなる凸部 131が形成されて!ヽる。
[0048] この凸部 131の最先端の部分には、モータステータ 12に電流供給を行う駆動 IC4 1が実装された電子基板 15が固定されている。より具体的に説明すると、電子基板 1 5の中央には、ポンプケーシング 13の凸部 131を嵌入しうる嵌入穴 15aが形成されて おり、凸部 131を嵌入穴 15aに嵌入したとき、電子基板 15の外周端部 152がポンプ ケーシング 13に当接する。このようにして、電子基板 15は、モータステータ 12が収容 された凹部 133 (によって形成された内部空間 23)を覆うようにして、さらに、本実施 の形態では、その外周端部 152がポンプケーシング 13に固定されている。より具体 的には、外周端部 152とポンプケーシング 13との間には接着剤が塗布(充填)されて 、密封性を高め、凹部 133内に水等の液体が浸入しにくいようにしている。なお、電 子基板 15は、円板形状をしており、その面積はポンプ 1の底板 14の面積よりも小さい ものとなっている(図 1 (b) ,図 1 (c)参照)。
[0049] 電子基板 15の表面(ポンプケーシング 13の凹部 133側)には、ロータマグネット 11 2の磁気検出を行うホール素子 42が配置されている。具体的には、図 1 (a)に示すよ うに、ロータマグネット 112と軸方向において、所定の隙間を介してホール素子 42が 設けられている。なお、所定の隙間は、ポンプケーシング 13に形成された、電子基板 を位置決めしながら固定する複数段力 なる凸部 (載置部) 131が形成されている。 さらに、本実施形態では、図 1に示すように、ロータマグネット 112の位置から、ホー ル素子 42は、電子基板 15の外周端部 152近傍に取り付けられている。したがって、 ロータマグネット 112の近傍に配置されるので、磁気検出の際の SN比を向上させる ことができる。なお、電子基板 15の配線、具体的には電源を供給する線は、ポンプケ 一シング 13に形成された溝 134に通されている(図 1 (c)参照)。この溝 134の大きさ は、電子基板 15の配線が通る程度の大きさであればよい。
[0050] また、本実施の形態では、電子基板 15は、実装された前記駆動 IC41がモータステ ータ 12と対面するように配置され、ポンプケーシング 13に固定されている。すなわち 、電子基板 15の表面力 モータステータ 12に対面するようになっている。これにより、 電子基板 15に実装された駆動 IC41等が外部に露出することがないので、駆動 IC4 ェ等の電子部品の破損等を防止することができる。
[0051] 次に、ポンプ 1の電気的構成について詳述する。
[0052] [回路構成]
図 3は、本発明の実施の形態に係るポンプ 1の電気的構成を示す構成図である。ま た、図 4は、本発明の実施の形態に係るポンプ 1の電気回路を示す回路図である。な お、図 3 (a)は、図 1 (a)に示す電子基板 15を、ポンプケーシング 13の凹部 133側か ら見たときの概略図であって、図 3 (b)は、図 1 (a)に示す電子基板 15を、外部側から 見たときの概略図である。また、図 3 (b)に示す面については、プラスチックカバー等 によって外部力 視認し得な 、ようにしてもょ 、。
[0053] 図 3において、ポンプ 1の電気回路は、主として、モータステータ 12に電流を供給 する駆動 IC41と、ロータマグネット 112の位置検出を行う 3個のホール素子 42 (U相 , V相及び W相の順に、 42a, 42b及び 42c)と、 3セットの FET組 43a〜43cと、周波 数発電(Frequency Generator)信号(FG信号)を生成するホール IC45と、が設けら れた電子基板 15から構成される。
[0054] 端子 44a〜44cは、それぞれモータステータ 12の U相コイル, V相コイル及び W相 コイルに電流を供給するための端子であって、端子 46は、ポンプ 1に送られてくる制 御信号を受信する PWM端子であって、端子 47は、ホール IC45により羽根車 11の 回転数に応じて周期的に変化する FG信号を出力する FG端子である。また、端子 48 は、電源端子 (Vcc端子)であり、端子 49は、アース端子 (GND端子)である。
[0055] 図 4において、駆動 IC41には、ホール効果を利用した磁電変換素子であるホール 素子 42a〜42cが接続されており、駆動 IC41は、これらホール素子 42a〜42cから 電気信号を受信することによって、羽根車 11の回転状態を認識することができる。ま た、駆動 IC41には、 3セットの FET組 43a〜43cが接続されており、各 FET組は 2個 の FETによって構成されている。駆動 IC41は、これら FET組 43a〜43cを通じて、モ 一タステータ 12に適切な電流供給を行う。なお、駆動 IC41,ホール素子 42a〜42c 及び FET組 43a〜43cなどは、電源端子 48を通じて 5Vの電力供給を受けることが できるようになつている。また、ホール素子 42としては、 InSbを使用したタイプのもの や、 GaAsを使用したタイプのもの等がある力 その種類の如何は問わない。
[0056] 一方で、駆動 IC41には、ホール IC45が接続されており、このホール IC45を通じて 、 FG端子 47から FG信号を取り出せるようになつている。この FG信号は、駆動 IC41 において、例えばホール素子 42a〜42cから受信した電気信号に基づいて生成され る。また、駆動 IC41は PWM端子 46と接続されている力 この PWM端子 46は、上 位回路である制御回路 100 (後述する図 5参照)からの PWM (Pulse Width Modulati on)信号、すなわち羽根車 11の回転数を変化させる制御信号を受信する端子である 。ポンプ 1の駆動 IC41は、この PWM端子 46を介して、 PWM制御されるようになって いる。なお、 PWM制御とは、電圧パルスの幅比(いわゆるデューティ比)を変化させ て供給電力を制御する方式を 、う。
[0057] 図 5は、本発明の実施の形態に係るポンプシステムの概要を示す図である。このポ ンプシステムは、主に、実際に冷媒ゃ燃料を循環させる羽根車 11と、羽根車 11に電 磁的に回転力を付与するモータステータ 12と、モータステータ 12のコイルに電流を 供給する駆動 IC41が実装された電子基板 15と、電子基板 15に対して制御信号を 送信する制御回路 100と、力 構成される。図 4及び図 5を用いて、このポンプシステ ムの動作にっ 、て説明する。
[0058] まず、制御回路 100は、羽根車 11の回転を始動させる制御信号を駆動 IC41に対 して送信する。この制御信号は、駆動 IC41の PWM端子 46において受信される。そ の後、駆動 IC41からモータステータ 12に対して電流供給が行われる。そうすると、モ 一タステータ 12の先端部 122に磁界が発生し、この磁界に反応して、ロータマグネッ ト 112に反発力が発生し、この反発力によって、ロータマグネット 112が取り付けられ た羽根車 11が回転し始める。羽根車 11がポンプ室 22内で回転すると、乱流が引き 起こされて、冷媒ゃ燃料がポンプ室 22内部を循環する。このようにして、吸込口から 流入した冷媒ゃ燃料がポンプ室 22を経て、吐出口から外部へ吐出される。
[0059] ここで、例えば、羽根車 11の回転数を増カロさせることを考える。制御回路 100は、 上述のとおり駆動 IC41の FG端子 47から出力された FG信号を受信しており、この F G信号に基づいて、所望の PWM信号 (デューティ比を大きくした信号)を生成する。 そして、制御回路 100は、生成した PWM信号を駆動 IC41の PWM端子 46に送信 する。 PWM端子 46を通じて PWM信号を受信した駆動 IC41は、これに基づきモー タステータ 12のコイルに供給する電流量を増加させる。これにより、羽根車 11の回転 数が増加することになる。羽根車 11の回転数を減少させる場合にも同様にすればよ い。すなわち、デューティ比を小さくした PWM信号を制御回路 100から駆動 IC41に 送信し、羽根車 11の回転数を減少させればよい。
[0060] なお、本実施形態では、回転効率の観点から、ポンプ 1の駆動方式として三相駆動 方式を採用したが、勿論、単相駆動方式であってもよいし、二相駆動方式であっても よい。また、本実施形態では、モータステータ 12として、図 2 (a)に示す 9個の突極部 121を用いたが(図 2 (a)ではコイルは省略)、例えば図 2 (b)に示すように 6個の突極 部 121を用いることによって、各突極部 121の間の隙間が広くなる。この隙間を利用 して、電子基板 15を、駆動 IC41が複数の突極部 121の間に介在する状態で、ボン プケーシング 13に固定してもよい。これにより、ポンプ 1において羽根車 11の軸方向 の厚さを薄くすることができ、ひいてはポンプ 1全体の薄型化に資することができる。
[0061] [実施形態の効果]
以上説明したように、本実施形態に係るポンプシステムによれば(図 5)、 FG信号に よって、ポンプ 1 (羽根車 11)の回転数を制御回路 100側で適切に把握すると同時に 、 PWM信号によって、ポンプ性能(吐出量)を適切にコントロールすることができる。
[0062] そして、本実施形態に係るポンプ 1によれば(図 1〜図 4)、電子基板 15は、実装さ れた駆動 IC41やホール素子 45等がモータステータ 12と対面するように配置され、 電子基板 15の外周端部 152を、ポンプケーシング 13に固定しているので、実装効 率を向上させて、情報機器の小型化'薄型化や各種電子部品の高密度実装を実現 することができる。また、電子基板 15とポンプ 1とを一体ィ匕させることで、フレキシルテ ープゃリード線をポンプから引き出す必要がなぐ電子基板 15の耐ノイズ性を向上さ せて、電子部品の動作不良や故障を防ぐこともできる。
[0063] また、電子基板 15の外周端部 152をポンプケーシング 13に固定することで、防水 性,耐粉塵性を向上することができる。また、ホール素子 42a〜42cを、ポンプケーシ ング 13の凹部 133によって形成される内部空間 23 (モータステータ 12が収容された 空間)に配置することで、外力に起因したホール素子 42a〜42cのマウントずれを防 ぐことができる。
[0064] また、図 3 (a)及び図 3 (b)〖こ示すように、ホール素子 42a〜42cと駆動 IC41とを接 続するリード線は、電子基板 15上に配置されている。したがって、リード線が電子基 板 15上にない場合と比べて電磁ノイズを抑制することができ、ひいては検出精度向 上を図ることができる。
[0065] また、ポンプケーシング 13に形成された溝 134 (図 1 (c) )によって、ポンプ 1の薄型 化を妨げることなぐまた、ポンプ 1の構造を複雑化させることなぐ電子基板 15に電 力供給や信号送信を行うことができる。さらにまた、電子基板 15の外周端部 152をポ ンプケ一シング 13に固定することで、外周端部 152は自由端から固定端となり、異音 の発生を防ぐことができる。
[0066] [変形例]
図 6は、本発明の他の実施の形態に係るポンプ 1Aを説明するための説明図である 。図 7は、本発明の他の実施の形態に係るポンプ IB, 1Cを説明するための説明図 である。
[0067] 図 6の点線枠 Xに示すように、ポンプ 1Aでは、ポンプケーシング 13の凸部(載置部 ) 131が電子基板 15で覆われている。また、図 6では、ポンプケーシング 13の凸部( 載置部) 131と電子基板 15の中央付近が接触している。すなわち、本発明は、図 1に 示すように、電子基板 15の外周端部 152及び嵌入穴 15aの縁がポンプケーシング 1 3に固定されていてもよいし、図 6に示すように、電子基板 15の外周端部 152及び電 子基板 15の中央付近がポンプケーシング 13に固定されていてもよい。なお、ポンプ ケーシング 13の凸部 (載置部) 131と電子基板 15の中央付近とは、接触していなくて もよぐ電子基板 15の外周端部 152のみがポンプケーシング 13に固定されていても よい。
[0068] 一方、図 1では、電子基板 15の外周端部 152のうち、吸込口(又は排出口) 31に近 い部分を、ポンプケーシング 13の段部に固定している力 例えば図 7 (a)の点線枠 Y 及び点線枠 Yに示すように、電子基板 15の外周端部 152のうち、吸込口(又は排
1 2
出口) 31に近い部分だけでなぐその反対側の部分も、ポンプケーシング 13の段部 に固定してもよい。逆に、図 7 (c)の点線枠 Z , Zに示すように、電子基板 15の外周
1 2
端部 152において、外周端面が、ポンプケーシング 13の内周壁面に固定されていて ちょい。
[0069] さらに、モータステータは、羽根車の径方向外側に向かって放射状に延出する複 数の突極部を備え、電子基板は、駆動 ICが複数の突極部の間に介在する状態で、 ポンプケーシングに固定するようにしてもよい。これにより、モータステータには、羽根 車の径方向外側に向かって放射状に延出する複数の突極部が設けられており、電 子基板は、駆動 IC等の電子部品が複数の突極部の間に介在する状態で、ポンプケ 一シングに固定されているので、ポンプにおいて、上述した実施の形態に比べて、羽 根車の軸方向の厚さをより薄くすることができ、ひいてはポンプ全体の薄型化を図る ことができる。例えば、図 2 (b)のように、突極部の数が少ない場合には、突極部の間 が図 2 (a)に比べて広くとれるので、駆動 IC等の電子部品を配置しやすい構成が取 れる。
産業上の利用可能性
本発明に係るポンプ及びポンプシステムは、駆動 IC又はホール素子などの電子部 品を一体化し、実装効率を向上させることが可能なものとして有用である。

Claims

請求の範囲
[1] 外周に複数の羽根が形成され、内周にロータマグネットが設けられた羽根車と、 前記ロータマグネットと対向して配置されたモータステータと、
前記羽根車と前記モータステータを仕切るとともに、前記モータステータを収容する 凹部が形成されたポンプケーシングと、
前記モータステータに電流供給を行う駆動 ICが実装された電子基板と、を有する ポンプであって、
前記電子基板は、実装された前記駆動 ICが前記モータステータと対面するように 配置され、前記ポンプケーシングに固定されている、ことを特徴とするポンプ。
[2] 前記電子基板は、前記凹部を覆うようにして、その外周端部が前記ポンプケーシン グに固定されていることを特徴とする請求項 1記載のポンプ。
[3] 前記ポンプは、さらに、前記ロータマグネットの磁気検出を行う磁気検出手段を備え 前記磁気検出手段は、前記電子基板の前記凹部側かつ外周端部近傍に取り付け られていることを特徴とする請求項 1または 2記載のポンプ。
[4] 前記磁気検出手段と前記駆動 ICを接続するリード線が、前記電子基板上に配線さ れて 、ることを特徴とする請求項 3記載のポンプ。
[5] 前記ポンプケーシングには、前記電子基板の配線を通すための溝が形成されてい ることを特徴とする請求項 1から 4のいずれか記載のポンプ。
[6] 前記駆動 ICによる前記ポンプの駆動方式は、三相駆動方式であることを特徴とす る請求項 1から 5の!、ずれか記載のポンプ。
[7] 請求項 1から 6のいずれか記載のポンプと、
前記ポンプに対し、前記羽根車の回転数を変化させる制御信号を送信する制御回 路と、
を有するポンプシステムであって、
前記ポンプは、前記羽根車の回転数に応じて周期的に変化する FG信号を出力す る FG端子を備え、
前記制御回路は、前記 FG端子から受信する FG信号に基づき、前記制御信号を 送信することを特徴とするポンプシステム。
PCT/JP2007/057264 2006-08-09 2007-03-30 Pompe et système de pompe WO2008018202A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008528733A JP4932839B2 (ja) 2006-08-09 2007-03-30 ポンプ及びポンプシステム
CN2007800292991A CN101501341B (zh) 2006-08-09 2007-03-30 泵和泵系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006216524 2006-08-09
JP2006-216524 2006-08-09

Publications (1)

Publication Number Publication Date
WO2008018202A1 true WO2008018202A1 (fr) 2008-02-14

Family

ID=39032741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057264 WO2008018202A1 (fr) 2006-08-09 2007-03-30 Pompe et système de pompe

Country Status (3)

Country Link
JP (1) JP4932839B2 (ja)
CN (1) CN101501341B (ja)
WO (1) WO2008018202A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129478B2 (ja) * 2012-03-27 2017-05-17 日本電産サンキョー株式会社 ポンプ装置およびポンプ装置の製造方法
CN107035652B (zh) * 2016-12-02 2019-05-03 青岛海尔股份有限公司 冷藏冷冻装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740780B2 (ja) * 1985-04-26 1995-05-01 松下電器産業株式会社 無刷子電動機
JP3038858U (ja) * 1996-12-18 1997-06-30 陳富英 洪 定方向送風可能な超薄型扇風機
JP2001135964A (ja) * 1999-11-04 2001-05-18 Nippon Densan Corp ファン装置
JP2001280286A (ja) * 2000-03-30 2001-10-10 Matsushita Electric Ind Co Ltd ターボ型ポンプ
JP2003139086A (ja) * 2001-10-29 2003-05-14 Matsushita Electric Ind Co Ltd 超薄型ポンプ
JP2003172287A (ja) * 2001-12-05 2003-06-20 Toshiba Corp 流体ポンプ及び冷却装置並びにノート形パーソナルコンピュータ
JP2003343492A (ja) * 2002-05-31 2003-12-03 Matsushita Electric Ind Co Ltd 薄型ポンプ
JP2004324551A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 組み込み用ポンプ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338858U (ja) * 1989-08-23 1991-04-15
JPH09170586A (ja) * 1995-12-18 1997-06-30 Nippon Seiko Kk ウォータポンプ
JPH09324786A (ja) * 1996-06-06 1997-12-16 Nakagawa Seimitsu Kogyo Kk ポンプ
US5823261A (en) * 1996-09-25 1998-10-20 Sandia Corporation Well-pump alignment system
JP2000337287A (ja) * 1999-05-25 2000-12-05 Matsushita Electric Ind Co Ltd 外部駆動形dcラインポンプ
JP3752594B2 (ja) * 2000-04-25 2006-03-08 愛三工業株式会社 磁気結合ポンプ
JP4244703B2 (ja) * 2003-05-26 2009-03-25 パナソニック株式会社 冷却装置
JP2005317796A (ja) * 2004-04-28 2005-11-10 Toshiba Corp ポンプ、冷却装置および電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740780B2 (ja) * 1985-04-26 1995-05-01 松下電器産業株式会社 無刷子電動機
JP3038858U (ja) * 1996-12-18 1997-06-30 陳富英 洪 定方向送風可能な超薄型扇風機
JP2001135964A (ja) * 1999-11-04 2001-05-18 Nippon Densan Corp ファン装置
JP2001280286A (ja) * 2000-03-30 2001-10-10 Matsushita Electric Ind Co Ltd ターボ型ポンプ
JP2003139086A (ja) * 2001-10-29 2003-05-14 Matsushita Electric Ind Co Ltd 超薄型ポンプ
JP2003172287A (ja) * 2001-12-05 2003-06-20 Toshiba Corp 流体ポンプ及び冷却装置並びにノート形パーソナルコンピュータ
JP2003343492A (ja) * 2002-05-31 2003-12-03 Matsushita Electric Ind Co Ltd 薄型ポンプ
JP2004324551A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 組み込み用ポンプ

Also Published As

Publication number Publication date
JP4932839B2 (ja) 2012-05-16
CN101501341B (zh) 2012-04-25
JPWO2008018202A1 (ja) 2009-12-24
CN101501341A (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
US7304446B2 (en) Sensorless and brushless DC motor
JP2009033786A (ja) バスバーを内蔵したインナーロータブラシレスモータ
US20100117468A1 (en) Fan motor
JP6621491B2 (ja) 回転電機
US20230077214A1 (en) Axial gap type motor and water pump using same
US20030057781A1 (en) Brushless DC motor, pump, and electronic apparatus
US20110058963A1 (en) Inner Rotor Type Motor and Heat Dissipating Fan Including the Inner Rotor Type Motor
TWI406481B (zh) Pump and pump system
JP6766535B2 (ja) ステータユニット、モータ、およびファンモータ
JP2005098268A (ja) 電動内接ギアポンプ
KR101333798B1 (ko) 차량용 모터 구동장치 및 이를 이용한 차량용 워터펌프
JP2005073325A (ja) Dcキャンドポンプ
JP4932839B2 (ja) ポンプ及びポンプシステム
CN114157098A (zh) 旋转电机
JP2014003799A (ja) ブラシレスモータ
JP6049584B2 (ja) 電動機
CN113141088A (zh) 旋转电机
CN211778044U (zh) 泵装置
JP2004015956A (ja) 駆動回路一体型モータ
CN113169606A (zh) 转子、马达及雨刮器马达
JP5227869B2 (ja) 電動機
JP2004092610A (ja) 液冷システムの軸流ポンプ
JP4014101B2 (ja) ロータファン駆動装置、及び、このロータファン駆動装置を備えた冷却装置、換気装置、吸排液装置
WO2021059976A1 (ja) ファン装置
JP4254164B2 (ja) ブラシレスモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780029299.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740700

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008528733

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07740700

Country of ref document: EP

Kind code of ref document: A1