WO2008012904A1 - Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique - Google Patents

Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique Download PDF

Info

Publication number
WO2008012904A1
WO2008012904A1 PCT/JP2006/314917 JP2006314917W WO2008012904A1 WO 2008012904 A1 WO2008012904 A1 WO 2008012904A1 JP 2006314917 W JP2006314917 W JP 2006314917W WO 2008012904 A1 WO2008012904 A1 WO 2008012904A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pcm signal
sampling period
pcm
pwm signal
Prior art date
Application number
PCT/JP2006/314917
Other languages
English (en)
French (fr)
Inventor
Akihiko Yoneya
Original Assignee
National University Corporation Nagoya Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya Institute Of Technology filed Critical National University Corporation Nagoya Institute Of Technology
Priority to US12/309,630 priority Critical patent/US8116368B2/en
Priority to JP2008526650A priority patent/JP4660778B2/ja
Priority to PCT/JP2006/314917 priority patent/WO2008012904A1/ja
Publication of WO2008012904A1 publication Critical patent/WO2008012904A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes

Definitions

  • the present invention relates to a PWM signal generator and a PWM signal generation device that perform pulse width modulation on a digital signal, and to a digital amplifier that uses these generators and the generation device.
  • a digital amplifier using a switching amplifier has been used because of its power efficiency.
  • the sound source signal r [i] is a pulse code modulation (PCM) signal.
  • PCM pulse code modulation
  • the sampling frequency of the sound source signal r [i] is 44.1 kHz.
  • the sound source signal r [i] is input to the oversampler 4 and converted to a 705.6 kHz PCM signal u [k] whose sampling frequency is 16 times the sampling frequency of the sound source signal r [i].
  • the PCM signal u [k] is converted by the quantizer 1 into a coarsely quantized PCM signal y [k] with the same sampling period.
  • the resolution of the PCM signal y [k] is determined by the quantizer 1 and is the same as that of the pulse width modulator 2.
  • the PCM signal y [k] is converted by the pulse width modulator 2 into a pulse width modulation (PWM) signal w (t).
  • PWM pulse width modulation
  • the noise shaving filter 3 feedback compensates for the quantization noise generated by the quantum filter 1 and the signal distortion generated by the pulse width modulator 2, and the audible component power of the PWM signal w (t) PCM signal u [ corresponding to the audible range component of k]. Therefore, the audible range component of the PWM signal w (t) corresponds to the sound source signal r [i].
  • the PWM signal w (t) is supplied to the switching amplifier 5 and converted into a power signal, which is sent to the LC. After passing through the low-pass filter 6 constructed, it is supplied to a speaker as a load.
  • Patent Document 1 harmonic distortion is reduced by feeding back signal distortion generated by pulse width modulation to a noise shaping filter, and at the input of the quantizer for harmonic distortion compensation.
  • a low distortion pulse width modulation signal generator with superimposed feedforward signals is shown.
  • Patent Document 1 JP 2004-236617
  • the carrier frequency in pulse width modulation is constant, the carrier frequency is an integer. At twice the frequency, there is a risk of radiating peak electromagnetic noise.
  • FIGS. An example of a spectrum of a PWM signal generated by a conventional full digital amplifier is shown in FIGS.
  • the method described in Patent Document 3 was used for PWM signal generation.
  • the input signal is a pulse code modulation (PCM) signal with a sampling frequency of 44.1 kHz, and a sine wave with a frequency of 2.7563 kHz and a modulation rate of 82%.
  • Pulse width modulation uses a 31-level symmetric pulse width modulator with a carrier frequency of 705.6 kHz.
  • the quantization noise in the audible range is well suppressed.
  • a large spectrum peak occurs at every integral multiple of the carrier frequency. If this leaks due to electromagnetic radiation, etc., for example, it will cause radio interference to AM radio.
  • the present invention solves such a problem, and maintains desired performance while dynamically varying the carrier frequency of pulse width modulation, and performs spread diffusion on the PWM signal. It is an object of the present invention to provide a PWM signal generator and a PWM signal generator that can effectively prevent the generation of electromagnetic noise, and a digital amplifier using these generators and generators.
  • the low-frequency component of the PWM signal is the low-frequency component of the first PCM signal.
  • the first PCM signal has a first sampling period
  • the PWM signal is generated by a digital means based on a second PCM signal having a second sampling period, and the first PCM signal has the first sampling period.
  • the sampling period of 2 is changed for each sampling period so that the same period may be continued by an external force command or a predetermined sequence, and the first sampling period is the second sampling period.
  • the resolution of the second PCM signal equal to the sampling period of the second PCM signal is coarser than the resolution of the first PCM signal, and the first PCM signal is Converted to PCM signal
  • the delta-sigma modulator has a filter and a quantizer, and the filter inputs the first PCM signal and the second PCM signal, outputs a third PCM signal, and outputs the third PCM signal.
  • the PCM signal is converted into the second PCM signal through the quantizer, and the gain of the quantizer is dynamically changed in proportion to the value of the second sampling period.
  • the coefficient and function are determined by the second sampling period and change dynamically. Yes.
  • the low-frequency component of the PWM signal is changed to the low-frequency component of the first PCM signal.
  • the first PCM signal has a first sampling period
  • the PWM signal is generated by a digital means based on a second PCM signal having a second sampling period
  • the second PCM signal The sampling period of the first PCM signal is varied for each sampling period by an external force command or a predetermined sequence so that the same period may continue.
  • the timing of sampling of the second PCM signal is added to the timing of sampling of the second PCM signal, and the resolution of the second PCM signal is higher than the resolution of the first PCM signal.
  • the first PCM signal is converted to the second PCM signal by a delta sigma modulator, the delta sigma modulator has a filter and a quantizer, and the filter is the first PCM signal A PCM signal and the second PCM signal are input and a third PCM signal is output, and the third PCM signal is converted into the second PCM signal through the quantizer, and the quantizer
  • the gain is dynamically changed in proportion to the value of the second sampling period, and the coefficient and function in the internal calculation of the filter are determined by the second sampling period and dynamically change. It is a feature.
  • the low frequency component of the PWM signal is changed to the low frequency component of the first PCM signal.
  • the first PCM signal has a first sampling period, the first sampling period is constant, and the PWM signal is a second PCM signal having a second sampling period.
  • the first PCM signal is converted to the second PCM signal by a delta-sigma modulator, the delta-sigma modulator has a filter and a quantizer, and the filter has the first PCM signal and
  • the function changes dynamically as determined by the second sampling period, or the relative relationship between the second sampling period and the sampling timing of the first PCM signal and the sampling timing of the second PCM signal. It is characterized by
  • a PWM signal generator having the PWM signal generator according to the first to third inventions, wherein the fourth PCM signal is input and the PWM signal is output.
  • the low frequency component of the PWM signal is in accordance with the fourth PCM signal, the fourth PCM signal has a third sampling period, the third sampling period is constant, and the fourth PCM signal is constant. It has an over sam- pler that receives four PCM signals and outputs the first PCM signal, and the third sampling period is longer than the first sampling period.
  • the digital amplifier according to the fifth invention is characterized by having a switching amplifier driven by the PWM signal generated by the PWM signal generating device according to the fourth invention.
  • signal distortion is minimized while effectively preventing the generation of electromagnetic noise by dynamically spreading the PWM signal by dynamically changing the carrier frequency of pulse width modulation. Therefore, the desired performance of the PWM signal generator and the digital amplifier using the PWM signal generator can be maintained.
  • Equation 1 [Equation 1]
  • u * (t) is a continuous time signal corresponding to PCM signal u [k]
  • w (t) is a PWM signal generated by a pulse width modulator
  • v * (t) is a noise shaving filter
  • X * (t) is a continuous-time signal corresponding to the correction signal v [k] generated by x. This continuous-time filter is converted to discrete time with a sampling period using zero-order hold.
  • the input signal u * (t) is represented by an intermediate time value between sampling points. This is shown in Figure 3. However, the correction signal v [k] samples the value at the sampling time. That is, (Equation 2)
  • the input / output transfer characteristics are also close to those of continuous-time filters.
  • Equation 4 becomes a matrix of ⁇ ⁇ ⁇ , so that the number of coefficients of the digital filter increases and k
  • the amount of calculation of the digital filter operation increases. Therefore, when designing the continuous-time filter of Equation 1, the matrix * ( ⁇ ) in Equation 4 is also diagonalized by k blocks by diagonalizing the matrix A *. The number of coefficients can be reduced, and the amount of digital filter computation can be reduced. In addition, along with block diagonalization of matrix A *, digital filter operation is performed by making each of the elements be either 1 or 0 for the output vector c of the continuous-time filter of Equation 1. The amount of computation can be further reduced. This is because the output vector does not change as a result of the discrete time by Equation 2, as shown in Equation 5.
  • This digital filter includes a direct term from input to output that is not strictly proper.
  • Equation 8 [Equation 8]
  • Equation 1 When the continuous-time filter expressed by Equation 1 is converted to discrete time using this interpolated time function, the following equations 10 to 13 are obtained.
  • the correction signal v [k] represents the value of the continuous time signal v * (t) at the sample time.
  • the value of k is an odd number.
  • quadratic interpolation is performed between each sampling point using the sampling time of force filter operation, which is a quadratic interpolation of continuous time signal u * (t), and the value of one input signal in between.
  • u * (t) continuous time signal
  • Fig. 6 This situation is shown in Fig. 6.
  • the sampling interval of the input signal is narrowed, so it can be expected that the signal distortion with respect to the fluctuation of the sampling period is reduced.
  • V, or PCM signal u [k] is assumed to be the value of u * (t) at the sampling time of the loop shaving filter, and the input signal between the sampling points is newly set at one point between sampling points. It shall be sampled and input.
  • the time at which the sample point is sampled is arbitrary.
  • the signal is sampled at the time of the midpoint of the sample, and the signal is u [k].
  • the value of u * (t) at t ⁇ t ⁇ t is u [k] c k k + 1
  • Equation 14 Using the values of u [k + l] and u [k], a quadratic approximation can be obtained as shown in Equation 14.
  • Equation 15 represents the value of the continuous time signal v * (t) at the sample time.
  • This digital filter includes a direct term from input to output, which is not strictly proper.
  • the noise shaping filter is designed in the same way even when using the force triangle hold or other interpolation method that applied the zero-order hold to the PCM signal u [h]. be able to.
  • a (T u ) exp (A * T u )
  • the present embodiment is a full digital audio amplifier using a PWM signal whose carrier period dynamically varies.
  • the configuration is as shown in FIG. 1 and FIG.
  • the sound source signal r [i] is a PCM signal with a sampling frequency of 44.1 kHz and is input to the oversampler 4.
  • Oversampler 4 is a force sample that is converted into a PCM signal u [k] with a sampling interval ⁇ .
  • the sampling interval ⁇ is 1/16 times the sampling interval of the source signal r [i], which is not constant (approximately 1.472 s
  • the filter operations shown in Equations 4 and 5 using the 0th-order interpolation are performed, and the frequency shaving of the quantization noise in the PCM signal y [k] that is the output signal of the quantizer 1 is performed. Suppresses audible range components.
  • the number of quantization steps of quantizer 1 is the sampling interval ⁇
  • the signal range (full scale) of the input signal is made to correspond to the signal range (full scale) of the output signal. While the signal range of the input signal is constant, the signal range of the output signal varies with the sampling interval ⁇ .
  • the pulse width modulator 2 generates a PWM signal according to the PCM signal y [k].
  • the period of the carrier signal at this time is the same as the sampling interval ⁇ and changes dynamically. Living
  • the switching amplifier 5 is driven by the generated PWM signal, and the switching amplifier 5 drives a speaker as a load through the low-pass filter 6.
  • FIG. 9 shows an example of the spectrum of the PWM signal w (t) near the audible range.
  • the sound source signal is a sine wave with a frequency of 2.7563 kHz and a modulation rate of 80%.
  • the second harmonic is slightly observed, it can be seen that the quantization noise in the audible range is suppressed.
  • the noise floor in the audible range has risen slightly due to the influence of the interpolation error of the signal u [k] in the noise shaving filter compared to the case where the u [k] sampling period is constant.
  • Figure 10 shows the wide spectrum of the PWM signal w (t). It can be seen that the spectrum is spread by dynamically changing the carrier frequency of the PWM signal. Total amount of spectrum Although there is not much change, spectrum concentration at a specific frequency can be avoided, thus providing a measure against electromagnetic noise.
  • FIG. 11 is a spectrum of the PWM signal w (t) in the vicinity of the audible range when the sound source signal is a sine wave having a frequency of 16.5378 kHz and a modulation rate of 80%.
  • the frequency of the sound source signal has increased, floor noise in the audible range has increased. This is due to the influence of the interpolation error of the signal u [k] in the noise sibing filter.
  • One of the advantages of the present embodiment is that the amount of calculation can be suppressed because the concept of zero-order interpolation is used for the calculation of the noise shaving filter.
  • the present embodiment is a full digital audio amplifier using a PWM signal whose carrier period dynamically varies.
  • the configuration is shown in Fig. 2.
  • the sound source signal r [i] is a PCM signal with a sampling frequency of 44.1 kHz and is input to the oversampler 4.
  • Oversampler 4 is a force that is converted into a PCM signal u [k] with a sampling interval ⁇ . Sampling interval ⁇ k
  • the signal range (full scale) of the input signal is made to correspond to the signal range (full scale) of the output signal. While the signal range of the input signal is constant, the signal range of the output signal varies with the sampling interval ⁇ .
  • the gain must be proportional to the sampling interval ⁇ .
  • the pulse width modulator 2 generates a PWM signal according to the PCM signal y [k]. So The period of the carrier signal at this time is the same as the sampling interval ⁇ and changes dynamically. Living
  • the switching amplifier 5 is driven by the generated PWM signal, and the switching amplifier 5 drives a speaker as a load through the low-pass filter 6.
  • FIG. 12 shows an example of the spectrum of the PWM signal w (t) in the vicinity of the audible range.
  • the sound source signal is a sine wave with a frequency of 2.7563 kHz and a modulation rate of 80%.
  • the second harmonic is slightly observed, it can be seen that the quantization noise in the audible range is suppressed.
  • Use the first-order interpolation because the noise floor in the audible range is slightly higher than when the sampling period of u [k] is constant due to the interpolation error of the signal u [k] in the noise-shaving filter. Therefore, the increase is suppressed compared to the case of Fig.
  • FIG. 13 shows the wide spectrum of the PWM signal w (t). It can be seen that the spectrum is spread by dynamically changing the carrier frequency of the PWM signal. Although the total amount of spectrum does not change much, it is possible to avoid the concentration of spectrum at a specific frequency, which is a countermeasure against electromagnetic noise.
  • FIG. 14 shows a spectrum of the PWM signal w (t) near the audible range when the sound source signal is a sine wave having a frequency of 16.5378 kHz and a modulation rate of 80%.
  • floor noise in the audible range has increased. This is due to the influence of the interpolation error of the signal u [k] in the noise shaving filter.
  • the floor noise is almost the same size as the 0th order interpolation.
  • One of the advantages of the present embodiment is that since the concept of linear interpolation is used in the calculation of the noise shaving filter, the frequency of the sound source signal is low without significantly increasing the amount of calculation. The floor noise due to the interpolation error can be reduced compared to the case of the next interpolation.
  • the present embodiment is a full digital audio amplifier using a PWM signal whose carrier period dynamically varies.
  • the configuration is shown in Fig. 2.
  • the sound source signal r [i] is a PCM signal with a sampling frequency of 44.1 kHz and is input to the oversampler 4.
  • Oversampler 4 is the force converted to the PCM signal u [k] at the sampling interval. Is 1/16 times the sampling interval of the sound source signal r [i] that is not constant (approximately 1.472 s) or 15 / k
  • the signal range (full scale) of the input signal is made to correspond to the signal range (full scale) of the output signal. While the signal range of the input signal is constant, the signal range of the output signal varies with the sampling interval ⁇ .
  • the gain must be proportional to the sampling interval ⁇ .
  • the pulse width modulator 2 generates a PWM signal in accordance with the PCM signal y [k].
  • the period of the carrier signal at this time is the same as the sampling interval ⁇ and changes dynamically. Living
  • the switching amplifier 5 is driven by the generated PWM signal, and the switching amplifier 5 drives a speaker as a load through the low-pass filter 6.
  • FIG. 15 shows an example of the spectrum of the PWM signal w (t) near the audible range.
  • the sound source signal is a sine wave with a frequency of 2.7563 kHz and a modulation rate of 80%. It can be seen that the second harmonic is well suppressed and the quantization noise in the audible range is also suppressed. The influence of the interpolation error of the signal u [k] in the noise shaving filter is so small that it is hidden by the quantization error.
  • Figure 16 shows the wide spectrum of the PWM signal w (t). It can be seen that the spectrum is spread by the dynamic fluctuation of the carrier frequency of the PWM signal.
  • FIG. 17 is a spectrum of the PWM signal w (t) in the vicinity of the audible range when the sound source signal is a sine wave having a frequency of 16.5378 kHz and a modulation rate of 80%.
  • floor noise in the audible range has increased. This is due to the influence of the interpolation error of the signal u [k] in the noise shaving filter.
  • the floor noise is almost the same size as the 0th order interpolation.
  • One of the advantages of the present embodiment is that since the concept of quadratic interpolation is used in the calculation of the noise shaving filter, the frequency of the sound source signal is low without increasing the amount of calculation. The floor noise due to the interpolation error can be reduced compared to the case of the next interpolation.
  • the present embodiment is a full digital audio amplifier using a PWM signal whose carrier period dynamically varies.
  • the configuration is similar to Fig. 2, except that the oversampler 4 outputs not only the PCM signal u [k] but also u [k], and u [k] is added to the input of the noise shaving filter 3. .
  • the sound source signal r [i] is a PCM signal with a sampling frequency of 44.1 kHz and is input to the oversampler 4.
  • Oversampler 4 is a PCM signal with a sampling interval ⁇ .
  • the signal range (full scale) of the input signal is made to correspond to the signal range (full scale) of the output signal. While the signal range of the input signal is constant, the signal range of the output signal varies with the sampling interval ⁇ .
  • the gain must be proportional to the sampling interval ⁇ .
  • the pulse width modulator 2 generates a PWM signal in accordance with the PCM signal y [k].
  • the period of the carrier signal at this time is the same as the sampling interval ⁇ and changes dynamically. Living
  • the switching amplifier 5 is driven by the generated PWM signal, and the switching amplifier 5 drives a speaker as a load through the low-pass filter 6.
  • FIG. 18 shows an example of the spectrum of the PWM signal w (t) in the vicinity of the audible range.
  • the sound source signal is a sine wave with a frequency of 2.7563 kHz and a modulation rate of 80%. It can be seen that the second harmonic is well suppressed and the quantization noise in the audible range is also suppressed. The influence of the interpolation error of the signal u [k] in the noise shaving filter is so small that it is hidden by the quantization error.
  • Figure 19 shows the wide spectrum of the PWM signal w (t). It can be seen that the spectrum is spread by the dynamic fluctuation of the carrier frequency of the PWM signal. Although the total amount of spectrum does not change much, it can be used as a countermeasure against electromagnetic noise because it can avoid concentration of spectrum at a specific frequency.
  • FIG. 20 shows a spectrum of the PWM signal w (t) near the audible range when the sound source signal is a sine wave having a frequency of 16.5378 kHz and a modulation rate of 80%. It can be seen that even if the frequency of the sound source signal is high, the floor noise in the audible range is not high. This is due to the fact that the interpolation error is reduced by using the value u [k] between the sampling points in the interpolation of the signal u [k] in the noise shaving filter.
  • One of the advantages of the present embodiment is that the floor noise due to the interpolation error can be reduced because the value between sample points and the concept of quadratic interpolation are used for the calculation of the noise shaving filter.
  • the present embodiment is a full digital audio amplifier using a PWM signal whose carrier period dynamically changes.
  • the configuration is as shown in FIG.
  • the sound source signal r [i] is a PCM signal with a sampling frequency of 44.1 kHz and is input to the oversampler 4.
  • Over-sampler 4 outputs a PCM signal u [h] with a sampling frequency of 16 times and 705.6 kHz.
  • Noise shaving filter 3 and quantum filter 1 are connected to PCM signal y [
  • the filter operation shown in Equations 17 to 22 based on the concept of zero-order interpolation is performed, and the frequency of quantization noise in the PCM signal y [k] that is the output signal of the quantizer 1 is calculated. Shaving is performed to suppress audible range components.
  • the number of quantization steps of the quantizer 1 is 31 steps when the sampling interval ⁇ is 1/16 times the sampling interval of the sound source signal r [i].
  • the signal range (full scale) of the input signal is made to correspond to the signal range (full scale) of the output signal. While the signal range of the input signal is constant, the signal range of the output signal varies with the sampling interval ⁇ .
  • the pulse width modulator 2 generates a PWM signal in accordance with the PCM signal y [k].
  • the period of the carrier signal at this time is the same as the sampling interval ⁇ and changes dynamically. Living
  • the switching amplifier 5 is driven by the generated PWM signal, and the switching amplifier 5 drives a speaker as a load through the low-pass filter 6.
  • FIG. 21 shows an example of the spectrum of the PWM signal w (t) in the vicinity of the audible range.
  • the sound source signal is a sine wave with a frequency of 2.7563 kHz and a modulation rate of 82%. It can be seen that the second harmonic is well suppressed and the quantization noise in the audible range is also suppressed. Since the sampling cycle of the PCM signal u [h] is constant, floor noise due to the influence of interpolation errors can be generated.
  • Figure 22 shows the wide spectrum of the PWM signal w (t). It can be seen that the spectrum is spread by the dynamic variation of the carrier frequency of the PWM signal. The total amount of the spectrum does not change much, but avoid spectral concentration at a specific frequency. Can be used to prevent electromagnetic noise. Since the fluctuation of the carrier frequency is large, the spread of the spectrum is also increasing.
  • FIG. 23 is a spectrum of the PWM signal w (t) near the audible range when the sound source signal is a sine wave having a frequency of 16.5378 kHz and a modulation rate of 82%. It can be seen that even when the frequency of the sound source signal is high, floor noise does not occur in the audible range.
  • One advantage of the present embodiment is that since the sampling period of the PCM signal u [h] is constant, no floor noise is generated due to the interpolation error of the PCM signal u [h].
  • Another advantage of the present embodiment is that the sampling interval of the PCM signal y [k], that is, the fluctuation range of the carrier period of the PWM signal w (t) can be increased, so that the width of the PWM signal can be increased.
  • the tuttle can be sufficiently diffused.
  • the noise shaving filter 3 performs the filter operation shown in Equations 17 to 22 for each sampling cycle of the PCM signal y [k]. However, the u [h] sampling cycle is performed. The filter operation shown in Equation 23 to Equation 27 may be performed every time.
  • FIG. 1 is a block diagram showing a configuration of a noise shaving filter.
  • FIG. 2 is a block diagram showing a configuration of a full digital amplifier.
  • FIG. 3 is a diagram showing a relationship between variable sampling signals when using zero-order hold in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a relationship between variable sampling signals when using first-order approximation in the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a relationship between variable sampling signals when second-order approximation is used in the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between variable sampling signals when secondary interpolation is used in the second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a full digital amplifier according to a third embodiment of the present invention.
  • FIG. 8 is a diagram showing a relationship between variable sampling signals when zero-order hold is used in the third embodiment of the present invention.
  • FIG. 9 is a spectrum diagram in the vicinity of the audible range of the pulse width modulation signal in the first embodiment of the present invention.
  • ⁇ 10 A wideband spectrum diagram of the pulse width modulation signal in the first embodiment of the present invention.
  • ⁇ 11 A spectrum diagram in the vicinity of the audible range of the pulse width modulation signal for the high frequency sound source signal in the first embodiment of the present invention. is there.
  • ⁇ 13 A wideband spectrum diagram of the pulse width modulation signal in the second embodiment of the present invention.
  • ⁇ 14 A spectrum diagram in the vicinity of the audible range of the pulse width modulation signal for the high frequency sound source signal in the second embodiment of the present invention. is there.
  • FIG. 15 is a spectrum diagram in the vicinity of the audible range of the pulse width modulation signal in the third embodiment of the present invention.
  • ⁇ 16 A wideband spectrum diagram of the pulse width modulation signal in the third embodiment of the present invention.
  • ⁇ 17 A spectrum diagram in the vicinity of the audible range of the pulse width modulation signal for the high frequency sound source signal in the third embodiment of the present invention. is there.
  • FIG. 18 is a spectrum diagram in the vicinity of the audible range of the pulse width modulated signal in the fourth embodiment of the present invention.
  • ⁇ 19 A wideband spectrum diagram of the pulse width modulation signal in the fourth embodiment of the present invention.
  • ⁇ 20 A spectrum diagram in the vicinity of the audible range of the pulse width modulation signal for the high frequency sound source signal in the fourth embodiment of the present invention. is there.
  • FIG. 21 is a spectrum diagram in the vicinity of the audible range of the pulse width modulation signal in the fifth exemplary embodiment of the present invention.
  • FIG. 22 is a wideband spectrum diagram of a pulse width modulated signal in the fifth embodiment of the present invention.
  • FIG. 23 is a spectrum diagram in the vicinity of the audible range of a pulse width modulated signal with respect to a high-frequency sound source signal in the fifth embodiment of the present invention.
  • FIG. 24 is a spectrum diagram in the vicinity of the audible range of a pulse width modulation signal generated by the conventional technology.
  • FIG. 25 is a wideband spectrum diagram of a pulse width modulation signal generated by a conventional technique. Explanation of symbols

Description

明 細 書
PWM信号生成器、 PWM信号生成装置およびデジタルアンプ
技術分野
[0001] 本発明は、デジタル信号をパルス幅変調する PWM信号生成器と PWM信号生成 装置、並びにこれら生成器と生成装置を利用したデジタルアンプに関するものである 背景技術
[0002] スピーカなどを駆動するオーディオアンプにおいては、その電力効率の良さなどか ら、スイッチングアンプ (D級増幅器)を用いたデジタルアンプが用いられるようになつ てきた。このデジタルアンプは、アナログ信号を入力するタイプのものと、デジタル信 号を入力とするタイプであるフルデジタルアンプとがある。フルデジタルアンプにお!、 ては、アナログ信号を経由せずに出力信号を発生させることができるため、オーディ ォシステムの低コストィ匕が望めることや、高 、エネルギー効率を持ちながら高性能化 を図ることができるなどの利点を有して 、る。
[0003] 一般的なフルデジタルアンプの動作について説明する。フルデジタルアンプの構 成の一例を図 2に示す。音源信号 r[i]はパルス符号変調 (PCM)信号である。たとえ ば CD力も音源信号を得て 、る場合、音源信号 r[i]のサンプリング周波数は 44.1kHz である。音源信号 r[i]はオーバーサンブラ 4に入力され、サンプリング周波数が音源 信号 r[i]のサンプリング周波数の 16倍である 705.6kHzの PCM信号 u[k]に変換される 。 PCM信号 u[k]は量子化器 1によって同じサンプリング周期で量子化が粗い PCM信 号 y[k]に変換される。 PCM信号 y[k]の分解能は量子化器 1によって決まり、パルス幅 変調器 2の分解能と同じである。 PCM信号 y[k]はパルス幅変調器 2によりパルス幅変 調(PWM)信号 w(t)〖こ変換される。ノイズシェービングフィルタ 3は量子ィ匕器 1によつ て発生した量子化ノイズやパルス幅変調器 2により発生する信号歪をフィードバック 補償し、 PWM信号 w(t)の可聴域成分力 PCM信号 u[k]の可聴域成分に対応するよう にする。したがって、 PWM信号 w(t)の可聴域成分は音源信号 r[i]に対応したものとな る。 PWM信号 w(t)はスイッチング増幅器 5に供給されて電力信号に変換され、 LCに より構成されるローノ スフィルタ 6を通した後、負荷であるスピーカに供給される。
[0004] なお、特許文献 1には、パルス幅変調によって発生する信号歪をノイズシエーピン グフィルタにフィードバックさせることにより高調波歪を低減させるとともに、量子化器 の入力に高調波歪補償のためのフィードフォワード信号を重畳させた低歪パルス幅 変調信号発生器が示されて ヽる。
特許文献 1 :特開 2004— 236617号
発明の開示
発明が解決しょうとする課題
[0005] し力し、上記従来のフルデジタルアンプにおいては、デジタル回路によって生成さ れる PWM信号によってスイッチングアンプを駆動するため、パルス幅変調における キャリア周波数が一定である場合には、キャリア周波数の整数倍の周波数にぉ 、て 強 、ピークの電磁ノイズを放射してしまう危険性を持って 、た。
[0006] 従来のフルデジタルアンプによって生成した PWM信号のスペクトルの一例を図 24 および図 25に示す。 PWM信号生成には特許文献 3に記載の方法を用いた。入力 信号はサンプリング周波数 44.1kHzのパルス符号変調 (PCM)信号であり、周波数 2. 7563kHzで変調率 82%の正弦波である。パルス幅変調は 31レベルの対称型パルス幅 変調器を用いており、そのキャリア周波数は 705.6kHzである。図 24に示すように可聴 域における量子化ノイズはよく抑制されている力 図 25に示すようにキャリア周波数 の整数倍ごとにスペクトルの大きなピークが発生して 、る。これが電磁輻射等によつ て漏洩すると、たとえば AMラジオなどに対して電波妨害を与えてしまう。
[0007] このような、内部動作信号やその高調波の周波数の電磁ノイズによる影響を緩和す る方法として、クロック周波数を動的に変動させて電磁ノイズのスペクトルを拡散する 方法が知られている。し力し、フルデジタルアンプにおいてこのスペクトルを拡散する 方法を適用するにはパルス幅変調器 2における PWMのキャリア周波数を動的に変 化させる必要があり、このためにはデジタルフィルタであるノイズシェービングフィルタ 3のサンプリング周期を動的に変化させる必要が生じる。ところが、サンプリング周期 を動的に変化させても所望の特性を維持するノイズシェービングフィルタは提案され ておらず、フルデジタルアンプにぉ 、てはスペクトル拡散技術を用いることができなと いう問題があった。
[0008] そこで、本発明はこのような課題を解決するもので、パルス幅変調のキャリア周波数 を動的に変動させながら所望の性能を維持し、 PWM信号に対してスぺ外ル拡散を 行うことで電磁ノイズの発生を有効に防止できる PWM信号生成器と PWM信号生成 装置、並びにこれら生成器と生成装置を利用したデジタルアンプを提供することを目 的とする。
課題を解決するための手段
[0009] サンプリング周期が変動しても所望の特性を維持するノイズシェービングフィルタを 実現する手段としては、ノイズシェービングフィルタ内部での演算における係数をサ ンプリング周期に応じて変化させる方法を用いる。この場合、単に係数を変化させる だけではなぐノイズシェービングフィルタの構成にも配慮する必要がある。また、入 力信号のサンプリング周期と出力信号のサンプリング周期の関係などにより、ノイズシ エービングフィルタの設計方法は異なる。
[0010] そこで、本第 1発明では、第 1の PCM信号を入力とし PWM信号を出力とする PW M信号生成器において、前記 PWM信号の低周波成分は前記第 1の PCM信号の 低周波成分に応じたものであり、前記第 1の PCM信号は第 1のサンプリング周期を 持ち、前記 PWM信号は第 2のサンプリング周期を持つ第 2の PCM信号に基づきデ ジタル的手段により生成され、前記第 2のサンプリング周期は外部力 の指令または 予め決められたシーケンスにより、同一周期が連続することもあるように各サンプリン グ周期毎に変動させられるものであり、前記第 1のサンプリング周期は前記第 2のサ ンプリング周期と等しぐ前記第 2の PCM信号の分解能は前記第 1の PCM信号の分 解能よりも粗いものであり、前記第 1の PCM信号はデルタ'シグマ変調器により前記 第 2の PCM信号に変換され、前記デルタ ·シグマ変調器はフィルタおよび量子化器 を持ち、前記フィルタは前記第 1の PCM信号および前記第 2の PCM信号を入力し て第 3の PCM信号を出力し、当該第 3の PCM信号は前記量子化器を通して前記第 2の PCM信号に変換され、前記量子化器のゲインは前記第 2のサンプリング周期の 値に比例して動的に変化させられ、前記フィルタの内部演算における係数および関 数が前記第 2のサンプリング周期により決定されて動的に変化することを特徴として いる。
[0011] 本第 2発明では、第 1の PCM信号を入力とし PWM信号を出力とする PWM信号生 成器において、前記 PWM信号の低周波成分は前記第 1の PCM信号の低周波成 分に応じたものであり、前記第 1の PCM信号は第 1のサンプリング周期を持ち、前記 PWM信号は第 2のサンプリング周期を持つ第 2の PCM信号に基づきデジタル的手 段により生成され、前記第 2のサンプリング周期は外部力 の指令または予め決めら れたシーケンスにより、同一周期が連続することもあるように各サンプリング周期毎に 変動させられるものであり、前記第 1の PCM信号のサンプリングのタイミングは前記 第 2の PCM信号のサンプリングのタイミングに前記第 2の PCM信号のサンプリング 間のタイミングを加えたものであり、前記第 2の PCM信号の分解能は前記第 1の PC M信号の分解能よりも粗いものであり、前記第 1の PCM信号はデルタ'シグマ変調器 により前記第 2の PCM信号に変換され、前記デルタ ·シグマ変調器はフィルタおよび 量子化器を持ち、前記フィルタは前記第 1の PCM信号および前記第 2の PCM信号 を入力して第 3の PCM信号を出力し、前記第 3の PCM信号は前記量子化器を通し て前記第 2の PCM信号に変換され、前記量子化器のゲインは前記第 2のサンプリン グ周期の値に比例して動的に変化させられ、前記フィルタの内部演算における係数 および関数が前記第 2のサンプリング周期により決定されて動的に変化することを特 徴としている。
[0012] 本第 3発明では、第 1の PCM信号を入力とし PWM信号を出力とする PWM信号生 成器において、前記 PWM信号の低周波成分は前記第 1の PCM信号の低周波成 分に応じたものであり、前記第 1の PCM信号は第 1のサンプリング周期を持ち、当該 第 1のサンプリング周期は一定であり、前記 PWM信号は第 2のサンプリング周期を持 つ第 2の PCM信号に基づきデジタル的手段により生成され、前記第 2のサンプリング 周期は外部力 の指令または予め決められたシーケンスにより、同一周期が連続す ることもあるように各サンプリング周期毎に変動させられるものであり、第 1の PCM信 号はデルタ ·シグマ変調器により前記第 2の PCM信号に変換され、前記デルタ ·シグ マ変調器はフィルタおよび量子化器を持ち、前記フィルタは前記第 1の PCM信号お よび前記第 2の PCM信号を入力して第 3の PCM信号を出力し、当該第 3の PCM信 号は前記量子化器を通して第 2の PCM信号に変換され、前記量子化器のゲインは 第 2のサンプリング周期の値に比例して動的に変化させられ、前記フィルタの内部演 算における係数および関数が前記第 2のサンプリング周期、または前記第 2のサンプ リング周期および第 1の PCM信号のサンプリングのタイミングと第 2の PCM信号のサ ンプリングのタイミングの相対的関係により決定されて動的に変化することを特徴とし ている。
[0013] 本第 4発明では、本第 1発明ないし本第 3発明に係る PWM信号生成器を持ち、第 4の PCM信号を入力として前記 PWM信号を出力とする PWM信号生成装置であつ て、前記 PWM信号の低周波成分は前記第 4の PCM信号に応じたものであり、前記 第 4の PCM信号は第 3のサンプリング周期を持ち、当該第 3のサンプリング周期は一 定であり、前記第 4の PCM信号を入力とし前記第 1の PCM信号を出力とするオーバ 一サンブラを持ち、前記第 3のサンプリング周期は前記第 1のサンプリング周期よりも 長いことを特徴としている。
[0014] 本第 5発明のデジタルアンプは、本第 4発明に係る PWM信号生成装置により生成 された PWM信号によって駆動されるスイッチング増幅器を持つことを特徴としている 発明の効果
[0015] 本発明によれば、パルス幅変調のキャリア周波数を動的に変動させて PWM信号 に対しスペクトル拡散を行うことによって電磁ノイズの発生を効果的に防止しつつ、信 号歪を最小限に抑えて PWM信号生成器やこれを利用したデジタルアンプの所望の 性能を維持することができる。
発明を実施するための最良の形態
[0016] (第 1実施形態)
PCM信号 u[k]と PCM信号 y[k]のサンプリング周期が同じであり、そのサンプリング 周期が変動する場合について説明する。このときのフルデジタルアンプの構成は図 2 に示すものと同じであり、ノイズシェービングフィルタの構成は図 1に示すものである。
[0017] 最初に、ノイズシェービングフィルタの目標とする周波数特性を決めるのに、連続時 間系のフィルタを設計し、数 1のように状態変数表現する。 [0018] [数 1]
x* (t) = A*
Figure imgf000007_0001
+ b* (u*(t) - w(t))
v*(t) - c x*(t)
[0019] ただし、 u*(t)は PCM信号 u[k]に対応する連続時間信号、 w(t)はパルス幅変調器に より生成される PWM信号、 v*(t)はノイズシェービングフィルタが生成する補正信号 v[k ]に対応する連続時間信号、 x*(t)は状態変数である。この連続時間フィルタに対して 零次ホールドを用いてサンプリング周期て で離散時間化する。ただし、サンプリング k
周期 τ は動的に変化するものであるので、サンプリングとサンプリングの間において k
は、入力信号 u*(t)はサンプリング点間の中間の時刻の値で代表させる。この様子を 図 3に示す。しかし補正信号 v[k]はサンプリング時刻の値をサンプルする。すなわち、 (数 2)
u[k]=u*((t +t )/2)
k k+1
(数 3)
v[k]=v (t )
k
であり、 tは k番目のサンプリング時刻である。すると数 4、数 5で示すデジタルフィルタ k
を得る。
[0020] 画 x[k + l] = A(zk) x[k] + b(rk ) u[k] - e(y[k]) ν[Λ1 = c x[k
[0021] [数 5]
Figure imgf000008_0001
b(Tk) = exp(A*t)dtb'
c - c
Figure imgf000008_0002
[0022] このとき、デジタルフィルタの状態変数 x[k]は、連続時間のフィルタの状態変数 x*(t) をサンプルしたものに対応している。すなわち、 x[k]=x(t ), t - t = τ となっている。し k k+1 k k
たがって、サンプリング周期 τ がサンプリング毎に異なっても、離散時間フィルタの k
安定性が保証されることは勿論、入出力の伝達特性も連続時間フィルタの伝達特性 に近いものとなる。
[0023] ここで、次数力 ¾のフィルタを設計する場合にっ 、て考えてみる。このとき、数 4にお ける Α( τ )は η Χ ηの行列となるので、デジタルフィルタの係数の数が多くなるとともに k
、デジタルフィルタ演算の計算量も多くなつてしまう。そこで、数 1の連続時間フィルタ を設計する際に、行列 A*をブロック対角化することにより、数 4における行列 Α( τ )も k ブロック対角化されるので、デジタルフィルタの非ゼロの係数の数を減らすこともでき るし、デジタルフィルタ演算の計算量も減らすことができる。さらに、行列 A*のブロック 対角化とともに、数 1の連続時間フィルタの出力ベクトル cに対して、その要素のそれ ぞれが 1または 0のどちらかになるようにすることにより、デジタルフィルタ演算の計算 量をさらに減らすことができる。出力ベクトルは数 5に示されるように数 2による離散時 間化によって変化しないからである。
[0024] 上記の離散時間フィルタは、入力信号に関して零次ホールドを仮定してサンプル 点間における値を一定としていたので、サンプリング周期の変動により、この仮定が 信号の歪を発生させてしまう。この信号歪に対処する方法として、サンプル点間にお ける入力信号の値を補間する方法が考えられる。その補間の方法としてはいくつか の方法が考えられる。
[0025] まず、入力信号としてサンプル点間の信号波形を直線で結んで近似した場合を考 える。この様子を図 4に示す。一次近似を行うことにより、零次ホールドを用いる場合 に比べて、サンプリング周期の変動による信号歪が小さくなることが期待できる。サン プル点間の応答を直線で結んで近似するホールド要素は三角ホールドと呼ばれる。 その三角ホールドを用いて連続時間信号 u*(t)を補間し数 1で表される連続時間フィ ルタを離散時間化すると数 6、数 7に示すようになる。ただし、補正信号 v[k]はサンプ ル時刻における連続時間信号 v*(t)の値を代表させるものとする。
[0026] [数 6] ぶ[ + l] = A(rk ) x[k] + b, ( ) u[k] + b2 ( k )u[k + l] - e y[k]) y[k] = c x[k]
[0027] [数 7]
Figure imgf000009_0001
+ t)dt
[0028] このデジタルフィルタは厳密にプロパーなものではなぐ入力から出力への直達項 を含むものになっている。
[0029] 次に、入力信号としてサンプル点間の信号波形を 2次曲線で近似した場合を考え る。この様子を図 5に示す。 2次近似を行うことにより、 1次近似を用いる場合に比べて 、サンプリング周期の変動による信号歪が小さくなることが期待できる。ここでは、 t≤t k
≤t における u*(t)の値を u(t )および u(t )および u(t )の値を用いて 2次近似する。
k+2 k k+1 k+2
ただし kの値は奇数とする。すると、 2次近似された u*(t)は数 8、数 9で示すものになる [0030] [数 8]
(り = [k] + (p0u[k] + Plu[k + 1] + p2u[k + 2])t + [q0u[k] + qxu[k + 1] + q2u[k + 2])t2
[0031] [数 9] p - 2^ + i 。 .∑L±∑^_ D k
/ , Pi , p2
Tk + ) TkTk+1 Tk+1 (Tk + Tk+l )
1
o 7 T
Figure imgf000010_0001
k+1 + Tk+] )
[0032] この補間された時間関数を用いて数 1で表される連続時間フィルタを離散時間化す ると、数 10ないし数 13に示すものとなる。ただし、補正信号 v[k]はサンプル時刻にお ける連続時間信号 v*(t)の値を代表させるものとする。また、 kの値は奇数とする。
[0033] [数 10] x[k + 1] = A(rk ) x[k] + b u[k] + b° u[k + \] + b2° u[k + 2] - e(y[k]) y[k] = c x[k]
[0034] [数 11]
Figure imgf000011_0001
c = c yW) = f
Figure imgf000011_0002
- t))b* w(tk + t)dt
[0035] [数 12] xik + 2] = ) + 1] + K u[k] + b[ u[k + 1] + b\ u[k + 2] - e{y[k + 1]) y[k + l] = c x[k + l]
[0036] [数 13]
Figure imgf000011_0003
+て — t))dtb* b" = C ^ + 2) exp ( ¾ + rk+l - t))dtb" = jTk + 2) exp ( ( + τΜ― t))dtb*
*
c - c
+ 1]) Qxp(A* (rk + Tk+l - t))b* w{tk + t)dt
Figure imgf000011_0004
[0037] 連続時間信号 u*(t)を連続する 3点のサンプリング時刻における PCM信号 u[k]の値 を用いて補間近似したので、このようにフィルタ演算は奇数番目のサンプル時刻にお けるものと偶数番目のサンプル時刻におけるものとでは異なる。また、このデジタルフ ィルタに関しては因果律が成り立たないので、入力信号を 1サンプル先読みできる場 合か出力信号を 1サンプル遅らせることができる場合にのみ用いることができる。
[0038] (第 2実施形態)
さらに他の方法として、連続時間信号 u*(t)を 2次補間するのである力 フィルタ演算 のサンプリング時刻およびその間の 1点の入力信号の値を用いて、各サンプル点間 において 2次補間をする場合について考える。この様子を図 6に示す。前述の方法に 対して入力信号のサンプル間隔が狭くなるため、サンプリング周期の変動に対する 信号歪が小さくなることが期待できる。
[0039] V、ま、 PCM信号 u[k]はループシェービングフィルタのサンプリング時刻における u*(t )の値であるものとし、サンプル点間における入力信号を新たにサンプリング点間ごと に 1点ずつサンプルして入力するものとする。サンプル点間におけるどの時刻におい てサンプルするかは任意である力 ここではサンプルの中間点の時刻にお 、てサン プルするものとし、その信号を u [k]とする。すると、 t≤t≤t における u*(t)の値を u[k] c k k+1
および u[k+l]および u [k]の値を用いて数 14のように 2次近似できる。
[0040] [数 14] u (t) = u[k] + (― 3u[k] + 4uc[k] - u[k + 1])—
Λ
+ (2u[k] - 4uc[k] + 2u[k + 1])—
て k
[0041] この補間された時間関数を用いて数 1で表される連続時間フィルタを離散時間化す ると数 15、数 16に示すものとなる。ただし、補正信号 v[k]はサンプル時刻における連 続時間信号 v*(t)の値を代表させるものとする。
[0042] [数 15] x[k + 1] = A(rk ) x[k] + bl u[k] + b uc [k] + b2 c [k + 1]— e( [k]) y[k] = c x[k] [0043] [数 16]
b*
Figure imgf000013_0001
*
c - c yW) = k
Figure imgf000013_0002
- t))b* w(tk + t)dt
[0044] このデジタルフィルタは厳密にプロパーなものではなぐ入力から出力への直達項 を含むものになっている。
[0045] (第 3実施形態)
次に、 PCM信号 u[h]のサンプリング周期が一定で、 PCM信号 y[k]のサンプリング 周期が変動する場合を考える。ノイズシェービングフィルタは PCM信号 y[k]のサンプ リングと同期して動作させる。このときのフルデジタルアンプの構成を図 7に示す。 PC M信号 u[h]のサンプリング周期を一定とすることにより、ノイズシェービングフィルタの サンプリング周期が動的に変動することによる信号歪を小さく抑えることができる。こ の場合においても、ノイズシェービングフィルタの動特性の目標は数 1で表される連 続時間フィルタで与えられるものとする。
[0046] PCM信号 u[h]のサンプリングは PCM信号 y[k]のそれぞれのサンプル点間に多くて も 1回しか発生しな 、ものとする。 PCM信号 u[h]に対しては零次ホールドを適用する 。その様子を図 8に示す。出力信号 v[k]に関してはサンプル時刻における信号の値 を代表させる場合を考える。このようなデジタルフィルタは数 18、数 19および数 21、 数 22に示すものとなる。ここで、入力 u[h]がサンプルされる時刻を tu、出力 y[k]がサン
h
プノレされる時亥 ijを tとする。 [0047] (数 17)
tu≤t <t < tu
h k k+1 h+1
のとき、すなわち、出力のサンプル点間において入力信号がサンプルされなかったと き、数 18、数 19で示すものになる。
[0048] [数 18] x[k + 1] = A{rk ) x[k] + b(rk ) u[h]― e(y[k]) v[k] = c x[k]
[0049] [数 19]
Figure imgf000014_0001
c = c*
Figure imgf000014_0002
[0050] また、
(数 20)
tu≤t <tu ≤t <tu
h k h+1 k+1 h+2
のとき、すなわち、出力のサンプル点間において入力信号が 1回サンプルされたとき 、 21、 22【こ すちの【こなる。
[0051] [数 21] x[k + l] = A(Tk)x[k] + b, (Tk,iM -tlMh] + tk+1 -th"+Mh + l]-e(y[k]) vik] = cx[k]
[0052] [数 22]
Figure imgf000015_0001
- i) = I"'1" exp ( dt
Figure imgf000015_0002
e{y[k]) = " exp ( ( - t) w(tk + t)dt
[0053] なお、 u[h]と v[k]の加算においては、 tに対して直前の u[h]の値^ v[k]に加算するも k
のとする。上述の方法は PCM信号 u[h]に零次ホールドを適用していた力 三角ホー ルドを用いる場合や他の補間手法を用いた場合にぉ ヽても同様にノイズシエーピン グフィルタを設計することができる。
[0054] 次に、 PCM信号 u[h]のサンプリング周期に合わせてノイズシェービングフィルタの 演算を行う場合を考える。 PCM信号 v[k]のサンプリング周期は動的に変化するので 、 PCM信号 v[k]はノイズシェービングフィルタの演算周期とは必ずしも同期しない。 P CM信号 u[h]に対しては零次ホールドを用い、数 1により表される連続時間フィルタを 離散時間化する。この場合、 PWM信号 w(t)をそのまま用いるとノイズシェービングフ ィルタの演算に必要なテーブルが大きくなつてしまうので、 PWM信号 w(t)は PCM信 号 y[k]で近似する。
[0055] ここで、求めるノイズシェービングフィルタは、次のようになる。 r u=tu -tuとすると、 h+l h 求めるノイズシェービングフィルタは、数 24、数 26、数 27で示すものになる。
[0056] (数 23)
t ≤tu≤t <tu ≤t
k-l h k h+l k+1
である場合、
[0057] [数 24] x[h + 1] = A{Tu)x[k] + b^)u[K\-b,( , i - tk)y[k - ] -Ktli - )y[k]
= ) x[h] + d3 (tk - fh )(u[h] - y{k- 1]) [0058] (数 25)
t ≤tu≤t <t <tu である場合、
k-l h k k+1 h+1
[0059] [数 26] x[h + 1] = A ) x[k] + b{ ) u[h] -b, , i— ) [ - 1]
-¾( i - , i -^) [ ]
[ ] = ( - h)x[h] + d3(ik - h)(u{h- k- })
[ +1〗= (
Figure imgf000016_0001
+ d,{tk+x -tk)(u[h]-y[k])
+ 4( + "ん "[〗-
[0060] [数 27]
A(Tu) = exp(A*Tu) A (て") =j cxp{A t)dtb (Λ th u +l -tk)= i cxp(A#t)dtb*
Figure imgf000016_0002
d ( +1— Λ+ι - = c \ exp(^ dtb
J ! 1一
[0061] となる。なお、 u[h]と v[k]の加算においては、 tに対して直前の u[h]の値^ v[k]に加算 k
するものとする。上述の方法は入力に零次ホールドを用いることを仮定して 、たが、 ホールドを用いな 、場合や、三角ホールドを用いる場合にぉ ヽても同様にデジタル フィルタを設計することができる。
[0062] (第 1実施例)
本実施例は、キャリア周期が動的に変動する PWM信号を用いたフルデジタルのォ 一ディォアンプである。その構成は図 1および図 2に示す通りである。音源信号 r[i]は サンプリング周波数 44.1kHzの PCM信号であり、オーバーサンプラ 4に入力される。 オーバーサンプラ 4はサンプリング間隔 τ の PCM信号 u[k]に変換される力 サンプリ
k
ング間隔 τ は一定ではなぐ音源信号 r[i]のサンプリング間隔の 1/16倍 (約 1.472 s
k
)または 15/64倍 (約 1.329 s)のどちらかの値をとり、そのどちらかの値をとるかはほ ぼ同じ割合で擬似乱数により決められる。ノイズシェービングフィルタ 3においては、 0 次補間を用いた数 4および数 5に示されるフィルタ演算がなされ、量子化器 1の出力 信号である PCM信号 y[k]における量子化ノイズの周波数シェービングがなされ、可 聴域成分を抑制する。量子化器 1の量子化ステップ数は、サンプリング間隔 τ が音
k 源信号 r[i]のサンプリング間隔の 1/16倍のときは 31ステップ、 15/64倍のときは 29ステ ップである。
[0063] 量子化器 1にお 、ては、入力信号の信号範囲(フルスケール)を出力信号の信号 範囲(フルスケール)に対応させる。入力信号の信号範囲が一定であるのに対して出 力信号の信号範囲はサンプリング間隔 τ によって変化するため、量子化器 1の変換
k
ゲインはサンプリング間隔て に比例させる必要がある。式であらわすと、
k
y[kj = round ( g * s[k] * τ )
k
となる。ただし、 gは適当な定数であり、 s[k]は量子化器 1の入力信号である。また、 ro und()は引数に最も近い整数に変換する関数である。
[0064] ノ ルス幅変調器 2においては、 PCM信号 y[k]に従った PWM信号を生成する。そ の際のキャリア信号の周期はサンプリング間隔 τ と同じであり、動的に変化する。生
k
成された PWM信号によりスイッチング増幅器 5が駆動され、スイッチング増幅器 5は ローパスフィルタ 6を通して負荷であるスピーカを駆動する。
[0065] このフルデジタルのオーディオアンプにおける PWM信号 w(t)のスペクトルを!、くつ か示す。図 9は、可聴域付近における PWM信号 w(t)のスペクトルの例であり、音源信 号は周波数 2.7563kHzで変調率 80%の正弦波である。第 2高調波がわずかに認めら れるものの、可聴域における量子化ノイズが抑制されていることが見て取れる。ただし 、ノイズシェービングフィルタにおける信号 u[k]の補間誤差の影響で、 u[k]のサンプリ ング周期が一定の場合に比べて可聴域のノイズフロアが少し上昇している。図 10は 、 PWM信号 w(t)の広域スペクトルを示したものである。 PWM信号のキャリア周波数 が動的に変動することによりスペクトルが拡散していることがわかる。スペクトルの総量 はあまり変化ないが、特定周波数におけるスペクトルの集中を避けることができるので 、電磁ノイズ対策となる。
[0066] 図 11は、音源信号が周波数 16.5378kHzで変調率 80%の正弦波である場合の可聴 域付近における PWM信号 w(t)のスペクトルである。音源信号の周波数が高くなつて しまったことにより、可聴域におけるフロアノイズが大きくなつてしまっている。これはノ ィズシヱ一ビングフィルタにおける信号 u[k]の補間誤差の影響によるものである。
[0067] 本実施例の利点の一つは、ノイズシェービングフィルタの演算に 0次補間の考え方 を用いて 、るので、演算の量を抑えることができることである。
[0068] (第 2実施例)
本実施例は、キャリア周期が動的に変動する PWM信号を用いたフルデジタルのォ 一ディォアンプである。その構成は図 2に示す通りである。音源信号 r[i]はサンプリン グ周波数 44.1kHzの PCM信号であり、オーバーサンプラ 4に入力される。オーバーサ ンプラ 4はサンプリング間隔 τ の PCM信号 u[k]に変換される力 サンプリング間隔 τ k
は一定ではなぐ音源信号 r[i]のサンプリング間隔の 1/16倍 (約 1.472 s)または 15/ k
64倍 (約 1.329 s)のどちらかの値をとり、そのどちらかの値をとるかはほぼ同じ割合 で擬似乱数により決められる。ノイズシェービングフィルタ 3においては、 1次補間を用 いた数 6および数 7に示されるフィルタ演算がなされ、量子化器 1の出力信号である P CM信号 y[k]における量子化ノイズの周波数シェービングがなされ、可聴域成分を抑 制する。量子化器 1の量子化ステップ数は、サンプリング間隔 τ が音源信号 r[i]のサ
k
ンプリング間隔の 1/16倍のときは 31ステップ、 15/64倍のときは 29ステップである。
[0069] 量子化器 1にお 、ては、入力信号の信号範囲(フルスケール)を出力信号の信号 範囲(フルスケール)に対応させる。入力信号の信号範囲が一定であるのに対して出 力信号の信号範囲はサンプリング間隔 τ によって変化するため、量子化器 1の変換
k
ゲインはサンプリング間隔 τ に比例させる必要がある。式であらわすと、
k
y[kj = round ( g * s[k] * τ )
k
となる。ただし、 gは適当な定数であり、 s[k]は量子化器 1の入力信号である。また、 ro und()は引数に最も近い整数に変換する関数である。
[0070] ノ ルス幅変調器 2においては、 PCM信号 y[k]に従った PWM信号を生成する。そ の際のキャリア信号の周期はサンプリング間隔 τ と同じであり、動的に変化する。生
k
成された PWM信号によりスイッチング増幅器 5が駆動され、スイッチング増幅器 5は ローパスフィルタ 6を通して負荷であるスピーカを駆動する。
[0071] このフルデジタルのオーディオアンプにおける PWM信号 w(t)のスペクトルを!、くつ か示す。図 12は、可聴域付近における PWM信号 w(t)のスペクトルの例であり、音源 信号は周波数 2.7563kHzで変調率 80%の正弦波である。第 2高調波がわずかに認め られるものの、可聴域における量子化ノイズが抑制されていることがわかる。ノイズシ エービングフィルタにおける信号 u[k]の補間誤差の影響で、 u[k]のサンプリング周期 が一定の場合に比べて可聴域のノイズフロアが少し上昇している力 1次補間を用い ることにより 0次補間を行った場合である図 9に比べてその上昇が抑えられている。図 13は、 PWM信号 w(t)の広域スペクトルを示したものである。 PWM信号のキャリア周 波数が動的に変動することによりスペクトルが拡散していることがわかる。スペクトルの 総量はあまり変化ないが、特定周波数におけるスペクトルの集中を避けることができ るので、電磁ノイズ対策となる。
[0072] 図 14は、音源信号が周波数 16.5378kHzで変調率 80%の正弦波である場合の可聴 域付近における PWM信号 w(t)のスペクトルである。音源信号の周波数が高くなつて しまったことにより、可聴域におけるフロアノイズが大きくなつてしまっている。これはノ ィズシェービングフィルタにおける信号 u[k]の補間誤差の影響によるものである。 0次 補間を行ったときとほぼ同じ大きさのフロアノイズを生じてしまっている。
[0073] 本実施例の利点の一つは、ノイズシェービングフィルタの演算に 1次補間の考え方 を用いているので、演算の量をあまり増大させずに音源信号の周波数が低いときに おいて 0次補間の場合と比べて補間誤差によるフロアノイズが小さくできることである
[0074] (第 3実施例)
本実施例は、キャリア周期が動的に変動する PWM信号を用いたフルデジタルのォ 一ディォアンプである。その構成は図 2に示す通りである。音源信号 r[i]はサンプリン グ周波数 44.1kHzの PCM信号であり、オーバーサンプラ 4に入力される。オーバーサ ンプラ 4はサンプリング間隔て の PCM信号 u[k]に変換される力 サンプリング間隔て は一定ではなぐ音源信号 r[i]のサンプリング間隔の 1/16倍 (約 1.472 s)または 15/ k
64倍 (約 1.329 s)のどちらかの値をとり、そのどちらかの値をとるかはほぼ同じ割合 で擬似乱数により決められる。ノイズシェービングフィルタ 3においては、 2次補間の 考えに基づく数 10から数 13に示されるフィルタ演算がなされ、量子化器 1の出力信 号である PCM信号 y[k]における量子化ノイズの周波数シェービングがなされ、可聴 域成分を抑制する。量子化器 1の量子化ステップ数は、サンプリング間隔 τ が音源
k 信号 r[i]のサンプリング間隔の 1/16倍のときは 31ステップ、 15/64倍のときは 29ステツ プである。
[0075] 量子化器 1にお 、ては、入力信号の信号範囲(フルスケール)を出力信号の信号 範囲(フルスケール)に対応させる。入力信号の信号範囲が一定であるのに対して出 力信号の信号範囲はサンプリング間隔 τ によって変化するため、量子化器 1の変換
k
ゲインはサンプリング間隔 τ に比例させる必要がある。式であらわすと、
k
y[kj = round ( g * s[k] * τ )
k
となる。ただし、 gは適当な定数であり、 s[k]は量子化器 1の入力信号である。また、 ro und()は引数に最も近い整数に変換する関数である。
[0076] ノ ルス幅変調器 2においては、 PCM信号 y[k]に従った PWM信号を生成する。そ の際のキャリア信号の周期はサンプリング間隔 τ と同じであり、動的に変化する。生
k
成された PWM信号によりスイッチング増幅器 5が駆動され、スイッチング増幅器 5は ローパスフィルタ 6を通して負荷であるスピーカを駆動する。
[0077] このフルデジタルのオーディオアンプにおける PWM信号 w(t)のスペクトルを!、くつ か示す。図 15は、可聴域付近における PWM信号 w(t)のスペクトルの例であり、音源 信号は周波数 2.7563kHzで変調率 80%の正弦波である。第 2高調波もよく抑制できて おり、可聴域における量子化ノイズも抑制されていることが見て取れる。ノイズシエー ビングフィルタにおける信号 u[k]の補間誤差の影響も量子化誤差に隠れるほど小さく なっている。図 16は、 PWM信号 w(t)の広域スペクトルを示したものである。 PWM信 号のキャリア周波数が動的に変動することによりスペクトルが拡散していることがわか る。スペクトルの総量はあまり変化ないが、特定周波数におけるスペクトルの集中を避 けることができるので、電磁ノイズ対策となる。 [0078] 図 17は、音源信号が周波数 16.5378kHzで変調率 80%の正弦波である場合の可聴 域付近における PWM信号 w(t)のスペクトルである。音源信号の周波数が高くなつて しまったことにより、可聴域におけるフロアノイズが大きくなつてしまっている。これはノ ィズシェービングフィルタにおける信号 u[k]の補間誤差の影響によるものである。 0次 補間を行ったときとほぼ同じ大きさのフロアノイズを生じてしまっている。
[0079] 本実施例の利点の一つは、ノイズシェービングフィルタの演算に 2次補間の考え方 を用いているので、演算の量をあまり増大させずに音源信号の周波数が低いときに おいて 1次補間の場合と比べて補間誤差によるフロアノイズを小さくできることである
[0080] (第 4実施例)
本実施例は、キャリア周期が動的に変動する PWM信号を用いたフルデジタルのォ 一ディォアンプである。その構成は図 2に似ているが、オーバーサンプラ 4が PCM信 号 u[k]のみではなく u [k]も出力し、ノイズシェービングフィルタ 3の入力に u [k]も加わ る点が異なる。音源信号 r[i]はサンプリング周波数 44.1kHzの PCM信号であり、ォー バーサンプラ 4に入力される。オーバーサンプラ 4はサンプリング間隔 τ の PCM信
k
号 u[k]に変換される力 サンプリング間隔 τ は一定ではなぐ音源信号 r[i]のサンプリ
k
ング間隔の 1/16倍(約 1.472 s)または 15/64倍(約 1.329 s)のどちらかの値をとり、 そのどちらかの値をとるかはほぼ同じ割合で擬似乱数により決められる。ノイズシエー ビングフィルタ 3においては、 2次補間の考えに基づく数 15および数 16に示されるフ ィルタ演算がなされ、量子化器 1の出力信号である PCM信号 y[k]における量子化ノ ィズの周波数シェービングがなされ、可聴域成分を抑制する。量子化器 1の量子化ス テツプ数は、サンプリング間隔 τ が音源信号 r[i]のサンプリング間隔の 1/16倍のとき
k
は 31ステップ、 15/64倍のときは 29ステップである。
[0081] 量子化器 1にお 、ては、入力信号の信号範囲(フルスケール)を出力信号の信号 範囲(フルスケール)に対応させる。入力信号の信号範囲が一定であるのに対して出 力信号の信号範囲はサンプリング間隔 τ によって変化するため、量子化器 1の変換
k
ゲインはサンプリング間隔 τ に比例させる必要がある。式であらわすと、
k
y[kj = round ( g * s[k] * τ )
k となる。ただし、 gは適当な定数であり、 s[k]は量子化器 1の入力信号である。また、 ro und()は引数に最も近い整数に変換する関数である。
[0082] ノ ルス幅変調器 2においては、 PCM信号 y[k]に従った PWM信号を生成する。そ の際のキャリア信号の周期はサンプリング間隔 τ と同じであり、動的に変化する。生
k
成された PWM信号によりスイッチング増幅器 5が駆動され、スイッチング増幅器 5は ローパスフィルタ 6を通して負荷であるスピーカを駆動する。
[0083] このフルデジタルのオーディオアンプにおける PWM信号 w(t)のスペクトルを!、くつ か示す。図 18は、可聴域付近における PWM信号 w(t)のスペクトルの例であり、音源 信号は周波数 2.7563kHzで変調率 80%の正弦波である。第 2高調波もよく抑制できて おり、可聴域における量子化ノイズも抑制されていることが見て取れる。ノイズシエー ビングフィルタにおける信号 u[k]の補間誤差の影響も量子化誤差に隠れるほど小さく なっている。図 19は、 PWM信号 w(t)の広域スペクトルを示したものである。 PWM信 号のキャリア周波数が動的に変動することによりスペクトルが拡散していることがわか る。スペクトルの総量はあまり変化ないが、特定周波数におけるスペクトルの集中を避 けることができるので、電磁ノイズ対策となる。
[0084] 図 20は、音源信号が周波数 16.5378kHzで変調率 80%の正弦波である場合の可聴 域付近における PWM信号 w(t)のスペクトルである。音源信号の周波数が高くなつて も、可聴域におけるフロアノイズが大きくなつていないことが見て取れる。これはノイズ シェービングフィルタにおける信号 u[k]の補間にお 、てサンプル点間の値 u [k]を用 いることにより補間誤差が小さくなつたことによる。
[0085] 本実施例の利点の一つは、ノイズシェービングフィルタの演算にサンプル点間の値 および 2次補間の考え方を用いているので、補間誤差によるフロアノイズを小さくでき ることである。
[0086] (第 5実施例)
本発実施例は、キャリア周期が動的に変動する PWM信号を用いたフルデジタル のオーディオアンプである。その構成は図 7に示す通りである。音源信号 r[i]はサンプ リング周波数 44.1kHzの PCM信号であり、オーバーサンプラ 4に入力される。オーバ 一サンプラ 4はサンプリング周波数が 16倍の 705.6kHzの PCM信号 u[h]を出力する。 ノイズシェービングフィルタ 3および量子ィ匕器 1はサンプリング間隔 τ の PCM信号 y[
k
k]を出力する力 サンプリング間隔 τ は一定ではなぐ PCM信号 u[h]のサンプリング
k
間隔の 1倍 (約 1.472 /z s)または 13/16倍 (約 1.152 /z s)のどちらかの値をとり、そのどち らかの値をとるかはほぼ同じ割合で擬似乱数により決められる。ノイズシェービングフ ィルタ 3においては、零次補間の考えに基づく数 17から数 22に示されるフィルタ演算 がなされ、量子化器 1の出力信号である PCM信号 y[k]における量子化ノイズの周波 数シェービングがなされ、可聴域成分を抑制する。量子化器 1の量子化ステップ数は 、サンプリング間隔 τ が音源信号 r[i]のサンプリング間隔の 1/16倍のときは 31ステツ
k
プ、 13/64倍のときは 25ステップである。
[0087] 量子化器 1にお 、ては、入力信号の信号範囲(フルスケール)を出力信号の信号 範囲(フルスケール)に対応させる。入力信号の信号範囲が一定であるのに対して出 力信号の信号範囲はサンプリング間隔 τ によって変化するため、量子化器 1の変換
k
ゲインはサンプリング間隔て に比例させる必要がある。式であらわすと、
k
y[kj = round ( g * s[k] * τ )
k
となる。ただし、 gは適当な定数であり、 s[k]は量子化器 1の入力信号である。また、 ro und()は引数に最も近い整数に変換する関数である。
[0088] ノ ルス幅変調器 2においては、 PCM信号 y[k]に従った PWM信号を生成する。そ の際のキャリア信号の周期はサンプリング間隔 τ と同じであり、動的に変化する。生
k
成された PWM信号によりスイッチング増幅器 5が駆動され、スイッチング増幅器 5は ローパスフィルタ 6を通して負荷であるスピーカを駆動する。
[0089] このフルデジタルのオーディオアンプにおける PWM信号 w(t)のスペクトルを!、くつ か示す。図 21は、可聴域付近における PWM信号 w(t)のスペクトルの例であり、音源 信号は周波数 2.7563kHzで変調率 82%の正弦波である。第 2高調波もよく抑制できて おり、可聴域における量子化ノイズも抑制されていることがわかる。 PCM信号 u[h]の サンプリング周期を一定としたので、補間誤差の影響によるフロアノイズを発生して ヽ ない。図 22は、 PWM信号 w(t)の広域スペクトルを示したものである。 PWM信号のキ ャリア周波数が動的に変動することによりスペクトルが拡散していることがわかる。スぺ タトルの総量はあまり変化ないが、特定周波数におけるスペクトルの集中を避けること ができるので、電磁ノイズ対策となる。キャリア周波数の変動を大きくとっているので、 スペクトルの拡散も大きくなつている。
[0090] 図 23は、音源信号が周波数 16.5378kHzで変調率 82%の正弦波である場合の可聴 域付近における PWM信号 w(t)のスペクトルである。音源信号の周波数が高くなつて も、可聴域におけるフロアノイズが発生していないことがわかる。
[0091] 本実施例の利点の一つは、 PCM信号 u[h]のサンプリング周期を一定としているの で、 PCM信号 u[h]の補間誤差によるフロアノイズの発生がな 、ことである。
[0092] 本実施例の他の利点の一つは、 PCM信号 y[k]のサンプリング間隔すなわち PWM 信号 w(t)のキャリア周期の変動幅を大きく取ることができるので、 PWM信号のスぺタト ルを十分に拡散することができることである。
[0093] 本実施例においては、ノイズシェービングフィルタ 3において PCM信号 y[k]のサン プリング周期ごとに数 17から数 22に示されるフィルタ演算を行っていたが、 u[h]のサ ンプリング周期ごとに数 23から数 27に示されるフィルタ演算を行ってもよい。
図面の簡単な説明
[0094] [図 1]ノイズシェービングフィルタの構成を示すブロック図である。
[図 2]フルデジタルアンプの構成を示すブロック図である。
[図 3]本発明の第 1実施形態における零次ホールドを使用した場合の可変サンプリン グ信号間の関係を示す図である。
[図 4]本発明の第 1実施形態における 1次近似を使用した場合の可変サンプリング信 号間の関係を示す図である。
[図 5]本発明の第 1実施形態における 2次近似を使用した場合の可変サンプリング信 号間の関係を示す図である。
[図 6]本発明の第 2実施形態における 2次補完を使用した場合の可変サンプリング信 号間の関係を示す図である。
[図 7]本発明の第 3実施形態におけるフルデジタルアンプの構成を示すブロック図で ある。
[図 8]本発明の第 3実施形態における零次ホールドを使用した場合の可変サンプリン グ信号間の関係を示す図である。 圆 9]本発明の第 1実施例におけるパルス幅変調信号の可聴域付近におけるスぺタト ル図である。
圆 10]本発明の第 1実施例におけるパルス幅変調信号の広帯域スペクトル図である 圆 11]本発明の第 1実施例における高い周波数の音源信号に対するパルス幅変調 信号の可聴域付近におけるスペクトル図である。
圆 12]本発明の第 2実施例におけるパルス幅変調信号の可聴域付近におけるスぺク トノレ図である。
圆 13]本発明の第 2実施例におけるパルス幅変調信号の広帯域スペクトル図である 圆 14]本発明の第 2実施例における高い周波数の音源信号に対するパルス幅変調 信号の可聴域付近におけるスペクトル図である。
圆 15]本発明の第 3実施例におけるパルス幅変調信号の可聴域付近におけるスぺク トノレ図である。
圆 16]本発明の第 3実施例におけるパルス幅変調信号の広帯域スペクトル図である 圆 17]本発明の第 3実施例における高い周波数の音源信号に対するパルス幅変調 信号の可聴域付近におけるスペクトル図である。
圆 18]本発明の第 4実施例におけるパルス幅変調信号の可聴域付近におけるスぺク トノレ図である。
圆 19]本発明の第 4実施例におけるパルス幅変調信号の広帯域スペクトル図である 圆 20]本発明の第 4実施例における高い周波数の音源信号に対するパルス幅変調 信号の可聴域付近におけるスペクトル図である。
圆 21]本発明の第 5実施例におけるパルス幅変調信号の可聴域付近におけるスぺク トノレ図である。
圆 22]本発明の第 5実施例におけるパルス幅変調信号の広帯域スペクトル図である [図 23]本発明の第 5実施例における高い周波数の音源信号に対するパルス幅変調 信号の可聴域付近におけるスペクトル図である。
[図 24]従来技術によって生成したパルス幅変調信号の可聴域付近におけるスぺタト ル図である。
[図 25]従来技術によって生成したパルス幅変調信号の広帯域スペクトル図である。 符号の説明
1…量子化器
2…パルス幅変調器
3···ノイズシェービングフィルタ
31···遅延要素
32·· '正方行列
33···出力ベクトル
34···入力ベクトル
35···非線形関数ベクトル
36···非線形要素
4…オーバーサンプラ
5…スイッチング増幅器
6…ローパスフィルタ

Claims

請求の範囲
[1] 第 1の PCM信号を入力とし PWM信号を出力とする PWM信号生成器において、前 記 PWM信号の低周波成分は前記第 1の PCM信号の低周波成分に応じたものであ り、前記第 1の PCM信号は第 1のサンプリング周期を持ち、前記 PWM信号は第 2の サンプリング周期を持つ第 2の PCM信号に基づきデジタル的手段により生成され、 前記第 2のサンプリング周期は外部からの指令または予め決められたシーケンスによ り、同一周期が連続することもあるように各サンプリング周期毎に変動させられるもの であり、前記第 1のサンプリング周期は前記第 2のサンプリング周期と等しぐ前記第 2 の PCM信号の分解能は前記第 1の PCM信号の分解能よりも粗いものであり、前記 第 1の PCM信号はデルタ'シグマ変調器により前記第 2の PCM信号に変換され、前 記デルタ ·シグマ変調器はフィルタおよび量子化器を持ち、前記フィルタは前記第 1 の PCM信号および前記第 2の PCM信号を入力して第 3の PCM信号を出力し、当 該第 3の PCM信号は前記量子化器を通して前記第 2の PCM信号に変換され、前記 量子化器のゲインは前記第 2のサンプリング周期の値に比例して動的に変化させら れ、前記フィルタの内部演算における係数および関数が前記第 2のサンプリング周期 により決定されて動的に変化することを特徴とする PWM信号生成器。
[2] 第 1の PCM信号を入力とし PWM信号を出力とする PWM信号生成器において、前 記 PWM信号の低周波成分は前記第 1の PCM信号の低周波成分に応じたものであ り、前記第 1の PCM信号は第 1のサンプリング周期を持ち、前記 PWM信号は第 2の サンプリング周期を持つ第 2の PCM信号に基づきデジタル的手段により生成され、 前記第 2のサンプリング周期は外部からの指令または予め決められたシーケンスによ り、同一周期が連続することもあるように各サンプリング周期毎に変動させられるもの であり、前記第 1の PCM信号のサンプリングのタイミングは前記第 2の PCM信号のサ ンプリングのタイミングに前記第 2の PCM信号のサンプリング間のタイミングをカ卩えた ものであり、前記第 2の PCM信号の分解能は前記第 1の PCM信号の分解能よりも粗 いものであり、前記第 1の PCM信号はデルタ'シグマ変調器により前記第 2の PCM 信号に変換され、前記デルタ'シグマ変調器はフィルタおよび量子化器を持ち、前記 フィルタは前記第 1の PCM信号および前記第 2の PCM信号を入力して第 3の PCM 信号を出力し、前記第 3の PCM信号は前記量子化器を通して前記第 2の PCM信号 に変換され、前記量子化器のゲインは前記第 2のサンプリング周期の値に比例して 動的に変化させられ、前記フィルタの内部演算における係数および関数が前記第 2 のサンプリング周期により決定されて動的に変化することを特徴とする PWM信号生 成器。
[3] 第 1の PCM信号を入力とし PWM信号を出力とする PWM信号生成器において、前 記 PWM信号の低周波成分は前記第 1の PCM信号の低周波成分に応じたものであ り、前記第 1の PCM信号は第 1のサンプリング周期を持ち、当該第 1のサンプリング 周期は一定であり、前記 PWM信号は第 2のサンプリング周期を持つ第 2の PCM信 号に基づきデジタル的手段により生成され、前記第 2のサンプリング周期は外部から の指令または予め決められたシーケンスにより、同一周期が連続することもあるように 各サンプリング周期毎に変動させられるものであり、第 1の PCM信号はデルタ'シグ マ変調器により前記第 2の PCM信号に変換され、前記デルタ ·シグマ変調器はフィ ルタおよび量子化器を持ち、前記フィルタは前記第 1の PCM信号および前記第 2の PCM信号を入力して第 3の PCM信号を出力し、当該第 3の PCM信号は前記量子 ィ匕器を通して第 2の PCM信号に変換され、前記量子化器のゲインは第 2のサンプリ ング周期の値に比例して動的に変化させられ、前記フィルタの内部演算における係 数および関数が前記第 2のサンプリング周期、または前記第 2のサンプリング周期お よび第 1の PCM信号のサンプリングのタイミングと第 2の PCM信号のサンプリングの タイミングの相対的関係により決定されて動的に変化することを特徴とする PWM信 号生成器。
[4] 請求項 1ないし請求項 3に記載の PWM信号生成器を持ち、第 4の PCM信号を入力 として前記 PWM信号を出力とする PWM信号生成装置であって、前記 PWM信号の 低周波成分は前記第 4の PCM信号に応じたものであり、前記第 4の PCM信号は第 3のサンプリング周期を持ち、当該第 3のサンプリング周期は一定であり、前記第 4の PCM信号を入力とし前記第 1の PCM信号を出力とするオーバーサンブラを持ち、 前記第 3のサンプリング周期は前記第 1のサンプリング周期よりも長いことを特徴とす る PWM信号生成装置。 請求項 4に記載の PWM信号生成装置により生成された PWM信号によって駆動さ れるスイッチング増幅器を持つことを特徴とするデジタルアンプ。
PCT/JP2006/314917 2006-07-27 2006-07-27 Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique WO2008012904A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/309,630 US8116368B2 (en) 2006-07-27 2006-07-27 PWM signal generator, PWM signal generating device, and digital amplifier
JP2008526650A JP4660778B2 (ja) 2006-07-27 2006-07-27 Pwm信号生成器、pwm信号生成装置およびデジタルアンプ
PCT/JP2006/314917 WO2008012904A1 (fr) 2006-07-27 2006-07-27 Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/314917 WO2008012904A1 (fr) 2006-07-27 2006-07-27 Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique

Publications (1)

Publication Number Publication Date
WO2008012904A1 true WO2008012904A1 (fr) 2008-01-31

Family

ID=38981219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314917 WO2008012904A1 (fr) 2006-07-27 2006-07-27 Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique

Country Status (3)

Country Link
US (1) US8116368B2 (ja)
JP (1) JP4660778B2 (ja)
WO (1) WO2008012904A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014065408A1 (ja) * 2012-10-25 2016-09-08 株式会社 Trigence Semiconductor 変換器
US9848264B2 (en) 2014-02-18 2017-12-19 Panasonic Intellectual Property Management Co., Ltd. Audio signal amplification device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8792640B2 (en) * 2008-01-29 2014-07-29 Sony Corporation Systems and methods for securing a digital communications link
WO2011006051A1 (en) * 2009-07-09 2011-01-13 Georgia Tech Research Corporation Systems and methods for providing physical layer security
US20120053875A1 (en) * 2010-08-27 2012-03-01 Tektronix, Inc Re-sampling acquired data to prevent coherent sampling artifacts
US10177776B1 (en) * 2017-08-04 2019-01-08 Mitsubishi Electric Research Laboratories, Inc. Noise mitigating quantizer for reducing nonlinear distortion in digital signal transmission
US10958260B1 (en) 2020-04-03 2021-03-23 Infineon Technologies Ag Pulse-width modulation with reduced transmission latency

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563457A (ja) * 1991-06-18 1993-03-12 Matsushita Electric Ind Co Ltd デルタシグマ変調増幅器
JPH11266579A (ja) * 1997-10-16 1999-09-28 Hewlett Packard Co <Hp> デルタシグマパルス幅変調器による制御回路
JP2003264465A (ja) * 2002-03-07 2003-09-19 Nippon Precision Circuits Inc パルス幅変調装置およびdaコンバータ
JP2005236928A (ja) * 2004-02-23 2005-09-02 Akihiko Yonetani パルス幅変調信号発生器
JP2006054815A (ja) * 2004-08-16 2006-02-23 Nagoya Institute Of Technology デジタルパルス幅変調信号発生器
JP2006054800A (ja) * 2004-08-16 2006-02-23 Nagoya Institute Of Technology 低歪パルス幅変調信号発生器
JP2006101112A (ja) * 2004-09-29 2006-04-13 Texas Instr Japan Ltd 周波数スペクトル拡散波形の発生回路およびこれを用いた回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328428A (ja) * 2003-04-25 2004-11-18 Pioneer Electronic Corp Pwm信号発生器及びpwm信号発生方法並びにディジタル・アナログ変換器及びディジタルアンプ
DE10337782B4 (de) * 2003-07-14 2007-03-01 Micronas Gmbh Methode und Schaltung zur effektiven Konvertierung von PCM-in PWM-Daten
US7515072B2 (en) * 2003-09-25 2009-04-07 International Rectifier Corporation Method and apparatus for converting PCM to PWM

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563457A (ja) * 1991-06-18 1993-03-12 Matsushita Electric Ind Co Ltd デルタシグマ変調増幅器
JPH11266579A (ja) * 1997-10-16 1999-09-28 Hewlett Packard Co <Hp> デルタシグマパルス幅変調器による制御回路
JP2003264465A (ja) * 2002-03-07 2003-09-19 Nippon Precision Circuits Inc パルス幅変調装置およびdaコンバータ
JP2005236928A (ja) * 2004-02-23 2005-09-02 Akihiko Yonetani パルス幅変調信号発生器
JP2006054815A (ja) * 2004-08-16 2006-02-23 Nagoya Institute Of Technology デジタルパルス幅変調信号発生器
JP2006054800A (ja) * 2004-08-16 2006-02-23 Nagoya Institute Of Technology 低歪パルス幅変調信号発生器
JP2006101112A (ja) * 2004-09-29 2006-04-13 Texas Instr Japan Ltd 周波数スペクトル拡散波形の発生回路およびこれを用いた回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONEYA A. E: "Full Digital Amplifier no Tameno PWM Hai Hoshogata Noise Shaping Filter/Noise Shaping Filter Compensating PWM Disortion for Fully Digital Amplifier.", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN C IEEJ TRANSACTIONS ON ELECTRONICS, INFORMATION AND SYSTEMS, vol. 125, no. 12, 1 December 2005 (2005-12-01), pages 1818 - 1823, XP003024403 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014065408A1 (ja) * 2012-10-25 2016-09-08 株式会社 Trigence Semiconductor 変換器
US9848264B2 (en) 2014-02-18 2017-12-19 Panasonic Intellectual Property Management Co., Ltd. Audio signal amplification device

Also Published As

Publication number Publication date
JPWO2008012904A1 (ja) 2009-12-17
JP4660778B2 (ja) 2011-03-30
US8116368B2 (en) 2012-02-14
US20090190651A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US7058464B2 (en) Device and method for signal processing
WO2008012904A1 (fr) Générateurs de signaux mid, dispositif générateur de signaux mid et amplificateur numérique
KR20040071289A (ko) 펄스폭 변조 신호를 생성하기 위한 방법 및 장치
KR20180130566A (ko) 디지털 오디오 변환기 및 증폭기 제어기
US20080278209A1 (en) Method of pulse width modulation signal processing and device including signal processing for pulse width modulation
US7782238B2 (en) Asymmetric PWM signal generator, method thereof, and data processing apparatus including the same
US8698662B2 (en) System and method for a high resolution digital input class D amplifier with feedback
US8766840B2 (en) System and method for a high resolution digital input class D amplifier with feedback
JP4477623B2 (ja) デジタルパルス幅制御式振動モジュレータ
JP6361030B2 (ja) オーディオ信号増幅装置
JP2006313958A (ja) Pwm信号生成器およびpwm信号発生装置およびデジタルアンプ
JP6316751B2 (ja) 変換器
US7583137B2 (en) Power supply compensation
CN109756193B (zh) 使用扩谱调制进行pwm波调制的d类数字音频功放系统
JP6509726B2 (ja) 可変の供給電圧のためのスイッチング増幅器
RU2730443C1 (ru) Устройство цифро-аналогового преобразования, способ, носитель данных, электронный музыкальный инструмент и устройство обработки информации
KR102663366B1 (ko) Mems 마이크로폰
JP7213947B2 (ja) デルタシグマ変調装置及び通信機器
US8698661B2 (en) System and method for pulse width modulation digital-to-analog converter
KR100878250B1 (ko) 시그마-델타 펄스 폭 변조기 및 시그마-델타 변조기
JP2010041323A (ja) 高調波生成装置
TWI520499B (zh) 數位類比轉換系統與方法
Forzley et al. A low power Class D audio amplifier with discrete time loop filter compensation
TW200423533A (en) Period and pulse width modulation
JP2007243394A (ja) 信号処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06781828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008526650

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12309630

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06781828

Country of ref document: EP

Kind code of ref document: A1