TW200423533A - Period and pulse width modulation - Google Patents

Period and pulse width modulation Download PDF

Info

Publication number
TW200423533A
TW200423533A TW92110092A TW92110092A TW200423533A TW 200423533 A TW200423533 A TW 200423533A TW 92110092 A TW92110092 A TW 92110092A TW 92110092 A TW92110092 A TW 92110092A TW 200423533 A TW200423533 A TW 200423533A
Authority
TW
Taiwan
Prior art keywords
pulse
value
period
time interval
time
Prior art date
Application number
TW92110092A
Other languages
Chinese (zh)
Other versions
TWI238596B (en
Inventor
Cheng-Yen Chou
Original Assignee
Hawkeye Vision Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawkeye Vision Technology Co Ltd filed Critical Hawkeye Vision Technology Co Ltd
Priority to TW92110092A priority Critical patent/TWI238596B/en
Publication of TW200423533A publication Critical patent/TW200423533A/en
Application granted granted Critical
Publication of TWI238596B publication Critical patent/TWI238596B/en

Links

Abstract

A method of modulating analog or multi-valued digital signal, which generates three-valued pulse applied to switching power amplifier, controls the behavior of power transistor in the output stage. Said method wherein generating three-valued method while it concurrently modulate both period and pulse width, so called as period and pulse width modulation (Hereinafter referred to as the PPWM that stands for period and pulse width modulation). As generating three-valued pulse wave through digital system, it will arise quantization error due to the limit to base clock of digital system. Said method herein is a theory that mainly calculates analog or multi-valued digital signals, during a period of interval, with numeral integral, and that meanwhile seeks optimized period and pulse width, which will result in the minimum quantization error that remains appropriate switching frequency.

Description

200423533 五、發明說明(1) 【發明所屬之技術領域】 這個發明提出一種調變類比訊號或多值數位訊號,以 產生二值脈波的方法,主要應用於切換式功率放大器,特 別是應用於聲音D類放大器。 【先前技術】 所謂脈波寬度調變(Pulse Width Modulation,以下 簡稱PWM) ’係指一種調變類比訊號或多值數位訊號,以產 生一值(two-vaiued)脈波或三值(three-valued)脈波的方 法。該類比訊號或多值數位訊號,以下簡稱為輸入訊號。 該二值脈波係指其波形大小只有最大值與最小值兩個常數 值,若是單極性(unipolar)輸入訊號,其最小值為〇,若 是雙極性(b i p〇 1 ar )輸入訊號,其最小值為負值。該三值 脈波係指其波形大小只有最大值、最小值,及〇三個常數 值’ β亥隶小值為負值。該二值脈波之產生方法通常應用於 雙極性輸入訊號。該最大值、最小值等常數值之大小與實 際系統有關。上述兩種脈波之特性,與本節所要提的問題 無直接關係’且兩種脈波都會產生本節所要提的門題 所 以接下來的内容主要以二值脈波為例加以說明。 、 當輸入訊號為正時,PWM所產生之三值脈波之大小, 只有最大值與0兩種常數值’當輸入訊號為負時,PWM所產 生的三值脈波之大小,只有最小值與0兩種常數值。兮兩 種情況下之脈波,皆是在一固定脈波週期下,改變脈波寬200423533 V. Description of the invention (1) [Technical field to which the invention belongs] This invention proposes a method for modulating an analog signal or a multi-value digital signal to generate a binary pulse wave, which is mainly used in switching power amplifiers, especially in Sound Class D amplifier. [Prior technology] The so-called Pulse Width Modulation (hereinafter referred to as PWM) 'refers to a modulation analog signal or a multi-value digital signal to generate a two-vaiued pulse or a three-value valued) Pulse wave method. This analog signal or multi-value digital signal is hereinafter referred to as the input signal. The binary pulse wave means that the waveform size has only two constant values: the maximum value and the minimum value. If it is a unipolar input signal, the minimum value is 0. If it is a bipolar (bip〇1 ar) input signal, the minimum value is The value is negative. The three-valued pulse wave means that the size of the waveform is only the maximum value, the minimum value, and the three constant values, β β, which are small values, are negative values. The method of generating a binary pulse is usually applied to a bipolar input signal. The magnitudes of the maximum and minimum constant values are related to the actual system. The characteristics of the above two types of pulse waves are not directly related to the questions to be raised in this section ’, and both types of pulse waves will generate the topics to be mentioned in this section. The following content will mainly use binary pulse waves as an example. 、 When the input signal is positive, the size of the three-valued pulse wave generated by PWM is only the maximum value and 0 constant values. When the input signal is negative, the size of the three-valued pulse wave generated by PWM is only the minimum value. And two constant values. In both cases, the pulse wave changes the pulse width under a fixed pulse period.

第6頁 200423533 五、發明說明(2) --- 度,而其脈波寬度與脈波週期之卜 ^ 不同的Duty Ratio,可表示不同 稱為Duty Ratio。 J之輸入訊號大小。 PWM之主要應用領域之_,B & /¾ 田 JL· 器上:將一輸入訊號,透過一 PWAjr 了 在切換式功率放大 波,以控制切換式功率放大哭+认 ㊈交成三值脈 動作,產生一輸出脈波,該輸出脈、、功率電晶體之開關 器,或具有低通濾波功能的負載, 再級一低通濾波 電流,該輸出電壓或輸出電流,ρ 生一輸出電壓或輸出 出訊號大小與該輸入訊號大^ j下稱為輸出訊號,該輸 是成正比。 對的關係,而且通常 率後所產生之脈波,該兩種脈^ 及功率電晶體放大功 外,兩者之波形-樣。就訊號的觀二ί 了脈波大小之 樣的訊號。 而§ ,兩者可視為同 PWM技術應用在切換式功 間。在之前是用類比電路來杂 杰上已有报長的時 分別比較一固定週期之- ^ 要疋以二個比較器, 之三角波與輸入訊垆之如G^ 及違固定週期 做法,電路的訊嗓&(S/N Rati〇),或是種種元件皮特这種 導致的訊號失真,都會影響到Duty Rati〇之精確戶、 影響到輸出訊號值。 X 進而Page 6 200423533 V. Description of the invention (2) ---, and its pulse width and pulse period ^ Different Duty Ratio can be referred to as the Duty Ratio. J input signal size. The main application areas of PWM are: B & / Tian JL · Device: An input signal is passed through a PWAjr to switch the power amplification wave to control the switching power amplification. Action to generate an output pulse, the output pulse, a switch of a power transistor, or a load with a low-pass filter function, and then a low-pass filter current, the output voltage or output current, ρ generates an output voltage or The size of the output signal is called the output signal, which is proportional to the input signal. The relationship between the two, and usually the pulse wave generated after the rate, the two pulses and power transistor amplification, the waveforms of the two are similar. The second aspect of the signal is a signal with a pulse size. §, both can be regarded as the same as PWM technology applied to switching power. In the past, the analog signal was used to compare the fixed period when the signal was already reported.-^ To use two comparators, the triangle wave and the input signal are like G ^ and the fixed period is violated. Signal & (S / N Rati〇), or various components such as Pete, will cause signal distortion, which will affect the accuracy of Duty Rati〇 and the output signal value. X further

第7頁 200423533Page 7 200423533

,來,因數位技術的發展與成熟,可以改用純數位電 路,貫現PWM,降低上述訊噪比及種種訊號失真的影響, 並簡化電路。雖然,在純數位電路中,不需要產生^一3固定 週,士角波,也不需要其他的類比元件,如比較器等,但 其演算法則,基本上還是與類比電路的原理一樣y所以產 2 $的!值脈波,理論上,應該也與一理想的類比電路 斤生的二值脈波一樣才對。但是,純數位電路有最小時 脈的,制,以下稱之為基本時脈。脈波週期與脈波寬度都 必需是基本時脈之整數倍。假設脈波週期為Tp㈣,基^ 脈之週期為Tbase,則Duty Ratio的解析度是Tbase,In the future, due to the development and maturity of digital technology, pure digital circuits can be used instead, and PWM can be implemented to reduce the above-mentioned signal-to-noise ratio and various signal distortion effects, and simplify the circuit. Although, in purely digital circuits, there is no need to generate ^ 3 fixed cycles, angle waves, and other analog components, such as comparators, etc., but the algorithm is basically the same as the principle of analog circuits. Produce 2 $! The value pulse should, in theory, be the same as an ideal analog circuit's binary pulse. However, pure digital circuits have a minimum clock, and the system is hereinafter referred to as the basic clock. Both the pulse period and pulse width must be integer multiples of the basic clock. Assuming that the pulse period is Tp㈣ and the period of the base pulse is Tbase, the resolution of the Duty Ratio is Tbase,

Tpwm,所以,純數位電路所產生的三值脈波,與類比電路 =產生的三值脈波無法完全一樣,而產生解析度所引起的 訣差,以下稱為量化誤差(Quantizati〇n Err〇^。 用純數位電路來實現PWM,因基本時脈的限制而產生 的ίί誤差1在實用上,往往不可忽略。舉例來說,應用 在聲音放大上:一般數位音響的pCM⑶別為“ bits, 用來表示正負兩個方向之雙極性聲音訊號數值,解析度為 1 / 6 5 5 3 6,若計算單方向的解析度,則為1 /3 2 768。假設有 一純數位PWM電路之基本時脈為4〇MHz,而其產生之二值脈 波之頻率设定為40 0kHz,則每個脈波週期為丨〇〇個基本時 脈,所以其Duty Ratio之解析度為1/1〇()。遠低於pcM之解 析度。圖1 A所舉之例為一正弦波之輸入訊號,&幅為最大Tpwm, therefore, the three-valued pulse wave generated by a purely digital circuit cannot be exactly the same as the three-valued pulse wave generated by the analog circuit =, and the difference caused by the resolution is called the quantization error (Quantizati〇n Err〇) ^. Using purely digital circuits to implement PWM, the error 1 caused by the limitation of the basic clock is often not practical. For example, it is used in sound amplification: The pCMCD of general digital audio is "bits, It is used to represent the value of the bipolar sound signal in both positive and negative directions. The resolution is 1/6 5 5 3 6 and if the resolution in one direction is calculated, it is 1/3 2 768. Assume that there is a basic time for a pure digital PWM circuit. The pulse is 40MHz, and the frequency of the two-valued pulse wave is set to 40kHz, then each pulse wave period is 丨 00 basic clocks, so the resolution of its Duty Ratio is 1 / 1〇 ( ). Far lower than the resolution of pcM. Figure 1 A is an example of a sine wave input signal, with the & amplitude being the largest

第8頁 200423533 五、發明說明(4) 訊號的5%,頻率為3kHz。此正弦波經過該純數位pWM電路 調變,產生一三值脈波,再經過一適當之低通濾波器,其 輸出訊號波形出現如圖1 B之階梯狀波形。圖1 c為此三值脈 波之富利葉轉換(Fourier Transform)之頻譜,此頻譜除 了 3kHz處有一頂點(peak)之外,在高頻處還有兩個較小之 頂點(p e a k)’為量化誤差所引起之雜訊。輸入訊號愈小 時’輸出訊號上因量化誤差所引起之雜訊對輸出訊號造成 之影響愈大。 當然’可以用提高基本時脈,或增加三值脈波週期的 方法,來提南解析度,降低量化誤差。但是,基本時脈愈 南’需用愈先進的製程,且牽涉到整個系統的規格,是很 複雜的問題;而脈波週期也不可以增加太多,以免降低輸 出號的品質或影響到輸出訊號之頻寬。 所以丄用純數位電路來實現pwM技術,應用在切換式 功,放大态,尤其是聲音放大器時,如何提高解析度以減 少篁化誤差’是彳艮重要的問題。 針對上述因數位系統基本時脈之限制而引起之解析度 的問題,有很多的解決方案,如下所述: 方法一是用脈波密度調變(Pulse Density Modulation,以下簡稱pDM)取代pwM qPM與pWM不同之Page 8 200423533 V. Description of the invention (4) 5% of the signal and the frequency is 3kHz. This sine wave is modulated by the pure digital pWM circuit to generate a three-valued pulse wave, and then passed through an appropriate low-pass filter. The output signal waveform appears as a stepped waveform as shown in Figure 1B. Figure 1c is the spectrum of the Fourier Transform of this three-valued pulse. In addition to a peak at 3kHz, this spectrum also has two smaller peaks at high frequencies. Noise caused by quantization errors. The smaller the input signal is, the greater the effect of noise on the output signal due to quantization errors on the output signal. Of course, you can increase the basic clock or increase the period of the three-valued pulse wave to improve the South resolution and reduce the quantization error. However, the more basic the clock is, the more advanced the process is used, and it involves the specifications of the entire system, which is a very complicated problem. The pulse period should not be increased too much, so as not to reduce the quality of the output number or affect the output. Signal bandwidth. Therefore, pure digital circuits are used to implement pwM technology, which is applied to switching power and amplified states, especially in sound amplifiers. How to improve the resolution to reduce the error of quantization is an important issue. There are many solutions to the resolution problem caused by the limitation of the basic clock of the digital system, as described below: The first method is to replace the pwM qPM and pwM qPM with pulse density modulation (hereinafter referred to as pDM). pWM is different

200423533 五、發明說明(5) 處係固、疋脈波寬度,改變脈波週期,以產生不同Duty Rat 10 ’_代表不同的輸入訊號值。輸入訊號經過PDM調變而 產^的三值脈波,當小的輸入訊號值時,可避免上述因基 本時脈限制而導致的的解析度問題,但是,輸入訊號值愈 大 f 一值脈波之週期愈短,也就是說,該三值脈波之波 而刀換到低’及由低切換到高的切換頻率(s w丨七c h丨n g freqUfnCy)愈來愈高。當代表訊號值的Duty Ratio在0.5 附近寸有最咼的切換頻率,大約每一個基本時脈週期, 都會切換一次三值脈波之波形。如此高的切換頻 在=換式功率放大器時,往往會造成輸出級功率電曰二 ί: 3 :換損。而且’若功率電晶體之切換動作所口時Η f於基本時脈週期,則無法產生正確的輸出脈 二0:間 號。 彌出訊 需要在此先提出來的是:實現PDM時,通常 訊號予以積分運算,再將積分運算結果數值經過旦輸入抑 (Quantizer),以調變成三值脈波,而本發明中也3里化器 入訊號予以積分運算,但對積分運算結果數值之/將輪 法,與PDM的處理方法不同,所以不會產生如 处理方 到之切換頻率問題。 方法—所提 方法二,是使用閉迴路控制技術,來補償包括旦 差在内之各種誤差,但是要實現這種技術,需^ 里化誤 電路或元件,將使系統複雜化,不再是純數二系:到類比 值得200423533 V. Description of the invention (5) Attach the pulse wave width at 疋 and change the pulse period to generate different Duty Rat 10 ′ _ to represent different input signal values. The input signal undergoes PDM modulation to produce a three-valued pulse. When the input signal is small, the resolution problem caused by the basic clock limitation can be avoided. However, the larger the input signal value is, the higher the value is. The shorter the wave period, that is, the three-valued pulse wave, the knife is switched to low 'and the switching frequency (sw 丨 7ch 丨 ng freqUfnCy) is switched from low to high. When the Duty Ratio, which represents the signal value, has the highest switching frequency around 0.5, the waveform of the three-valued pulse wave will be switched once for each basic clock cycle. When such a high switching frequency is used, a power amplifier of the output stage often results in a power loss of the output stage. Moreover, if the switching action of the power transistor Η f is at the basic clock cycle, the correct output pulse cannot be generated. It is necessary to put forward the message in advance: when implementing PDM, the signal is usually integrated, and then the value of the integrated operation is input to the quantizer to tune it into a three-value pulse. In the present invention, 3 The input signal of the internalizer is integrated for calculation, but the value of the integral calculation result / round method is different from the processing method of PDM, so it does not cause problems such as the switching frequency of the processing party. Method-The second method mentioned is to use closed-loop control technology to compensate for various errors including denier. However, to implement this technology, it is necessary to eliminate the wrong circuits or components, which will complicate the system. Pure number two: it's worth the analogy

第10頁 200423533 五、發明說明(6) 轉 注意的是:應用閉迴路控制技術的切換式功率放大器,其 主流之一稱為delta-sigma轉換器(ΔΣ converter),該類 換為主要就是由P D Μ及閉迴路系統組成,所以同樣存在著 方法一提到之切換頻率問題。 方法三,是改變切換式功率放大器之輸出級硬體電 路。如美國專利號碼6,4 9 2,8 6 8及6,5 3 5,0 5 8所示,是使 用”多參考電壓”的方式,提供兩種以上的外部電源,以提 供不同的解析度。 美國專利號碼5, 6 1 0, 5 5 3的方法,是使用昇壓式 (joost)或昇降壓式(Buck —B〇〇st)之電源電路,增加其動 態範圍,以增加其解析度。 美國專利號碼5,4 2 2,5 9 7的方法,是提供不同的功率 電晶體’有不同的内部電阻,產生不同的輸出電壓,以提 供不同的解析度。Page 10 200423533 V. Description of the invention (6) Turn to note that one of the mainstream of switching power amplifiers using closed-loop control technology is called delta-sigma converter (ΔΣ converter). This type of replacement is mainly caused by PD M and closed-loop system are composed, so there is also the problem of switching frequency mentioned in Method 1. The third method is to change the output stage hardware circuit of the switching power amplifier. As shown in U.S. Patent Nos. 6, 4 9 2, 8 6 8 and 6, 5 3 5, 0 5 8, it is a "multi-reference voltage" method that provides two or more external power supplies to provide different resolutions. . The method of US Patent No. 5, 6 1 0, 5 5 3 is to use a boost (joost) or buck-boost (Buck-Bost) power supply circuit to increase its dynamic range to increase its resolution. The method of U.S. Patent No. 5, 4 2 2, 5 9 7 is to provide different power. Transistors' have different internal resistances and generate different output voltages to provide different resolutions.

仁疋方法三所提到的種種技術’都需要改變功率放大 器輸出級的硬體電路,增加系統複雜度及增加成本。 本發明是針對上述問題,融合PDM與PWM的做法,提出 一種新的產生脈波的方法,不需要改變功率放大器輸出級 之硬體電路,而能有效提高解析度,降低量化誤差,並使All the techniques mentioned in the third method of Renmin ’s all require changing the hardware circuit of the output stage of the power amplifier, increasing the complexity of the system and increasing the cost. The present invention is directed to the above-mentioned problem, and a method of combining PDM and PWM is proposed, and a new method for generating pulse wave is proposed, which does not need to change the hardware circuit of the output stage of the power amplifier, but can effectively improve the resolution, reduce the quantization error, and make

第11頁 200423533 五、發明說明(7) 切換式功率放大器之輸出級功率電晶體之切換頻率保持 一適當的範圍,不致於過高或過低。 、、 【内容】 以純數位系統實現PWM時,如上一節的例子所示,因 為基本時脈的限制,會產生因解析度所引起的量化誤差。 尤其’當應用在聲音放大器時,這個問題更嚴重,因 為,人耳可分辨的最小聲音強度變化(jND, Just Noticeable Difference),大約是〇·8dB( = 20 x l〇gl0 (聲音強度比值))’也就是說,當兩個聲音強度的比 值大約是1 · 1時,人耳能分辨出來。而同樣的比值,聲音 強度愈小,對解析度的要求愈高。 舉例來說,在上一節例子中的純數位PWM電路,若三 值脈波之週期固定為1 0 〇個基本時脈週期,脈波寬度的最 小改變量為1個基本時脈週期。當Duty Ratio為20/100 時,〇.8dB的改變量大略使Duty Ratio變成22/100,尚能 以此數位系統來表示。而當D u t y R a t i 〇為2 / 1 0 0時,〇 · 8 d B 的改變量大略使Duty Ratio變成2.2/100,已無法用此數 位系統來表示了。 但是,若三值脈波之週期可變,將會有完全不一樣的Page 11 200423533 V. Description of the invention (7) The switching frequency of the output stage power transistor of the switching power amplifier is kept in a proper range, not too high or too low. [,] [Content] When implementing PWM with a pure digital system, as shown in the example in the previous section, due to the limitation of the basic clock, a quantization error due to the resolution will occur. In particular, when applied to a sound amplifier, this problem is more serious, because the minimum sound intensity change (jND, Just Noticeable Difference) that can be discerned by the human ear is about 0.8 dB (= 20 x 10 gl0 (sound intensity ratio)) 'That is, when the ratio of the two sound intensities is about 1.1, the human ear can tell. At the same ratio, the lower the sound intensity, the higher the resolution requirements. For example, in the pure digital PWM circuit in the example in the previous section, if the period of the ternary pulse wave is fixed at 100 basic clock cycles, the minimum change in the pulse width is 1 basic clock cycle. When the Duty Ratio is 20/100, the amount of change of 0.8dB roughly makes the Duty Ratio 22/100, which can still be represented by this digital system. When Du t y Ra t i 〇 is 2/1 0 0, the amount of change of 〇 8 d B roughly makes Duty Ratio 2.2 / 100, which cannot be expressed by this digital system. However, if the period of the ternary pulse is variable, it will be completely different.

200423533 發明說明 結果。在上述例子中,若脈波寬度維持為2個基本時脈, 但改變脈波週期,則D u t y R a t i 〇可出現:2 / 1 0 1 < 2 / 1 〇 〇 < 2/99 ’也就是說’允許的最小改變量為—與+ 0· 0 8 7dB,比JND之0· 8dB小很多。這種固定脈波寬度、改 變脈波週期的做法,稱為脈波密度調變(PDM,Pulse200423533 Description of the invention Results. In the above example, if the pulse width is maintained at 2 basic clocks, but the pulse wave period is changed, Duty R ati 〇 may appear: 2/1 0 1 < 2/1 〇〇 < 2/99 ' In other words, the minimum allowable change is-with + 0 · 0 8 7dB, which is much smaller than JND's 0 · 8dB. This method of fixing the pulse width and changing the pulse period is called pulse wave density modulation (PDM, Pulse

Density Modulation ),可提高 Duty Ratio 的解析度,但 是’這種調變方式,輸入訊號值愈大,該三值脈波之週期 愈& ’也就是說’該三值脈波之波形由高切換到低,及由 低切換到高的切換頻率愈來愈高。當代表訊號值的DutyDensity Modulation), can improve the resolution of Duty Ratio, but 'this modulation method, the larger the input signal value, the more the period of the three-valued pulse wave & The frequency of switching to low and switching from low to high is increasing. When Duty represents the signal value

Rft10在〇· 5附近時,有最高的切換頻率,大約每一個基本 週期’都會切換一次三值脈波之波形。如此高的切換 $率i應用在切換式功率放大器時,往往會造成輸出級功 作^ ΐ,上太高的切換損。而且,若功率電晶體之切換動 :日守間大於基本時脈週期,則無法產生正確的輸出脈 疫及輪出訊號。 太_ =純數位電路實現PWM,其所產生的三值脈波,因基 期固定 4產生無法忽略的量化誤差。但因脈波週 PDM所產’所以一不會產生切換頻率過高的問題。相對地, 時, 生之二值脈波,量化誤差比PWM小,但當訊號愈大 切換^ 率隨著增加’在Duty Ratio約等於0· 5時’其 率放'彳主往過向’造成太大的切換損,甚至使切換式功 卞從大器 輸出脈波 Κ、、及功率電晶體無法正常動作’產生正確的When Rft10 is around 0.5, it has the highest switching frequency, and the waveform of the three-valued pulse wave will be switched about every basic period. When such a high switching rate is applied to a switching power amplifier, it often causes output stage functions ^ ΐ, which results in too high switching loss. In addition, if the switching of the power transistor: the day-to-day interval is greater than the basic clock cycle, it will not be able to produce the correct output pulse and rotation signal. Too _ = purely digital circuit implements PWM. The three-valued pulses generated by it are fixed at the base period. However, due to the pulse-cycle PDM ', there is no problem that the switching frequency is too high. On the other hand, when generating a two-value pulse, the quantization error is smaller than that of PWM, but when the signal becomes larger, the switching rate increases with the increase in the Duty Ratio when it is approximately equal to 0.5. Causes too much switching loss, and even makes the switching power output pulse wave κ from the amplifier, and the power transistor can not operate normally.

第13頁 200423533Page 13 200423533

考慮上述PWM與PDM所面臨的的種種問題,本發明提出 一種車父好的產生脈波的方法’係結合兩種調變方法,而同 時調變脈波週期與脈波寬度,以產生一高解析度\且能保 持一個適當的切換頻率的三值脈波。 I μ 這種調變輸入訊號’以產生三值脈波的方法,盥傳统 PWM及PDM皆不同,以下稱之為”脈波週期及脈波寬度調、 變”’簡稱PPWM(Period and Pulse Width Modulation)。 傳統P^VM的原理’在產生脈波前,需先設定一固定的 脈波週期,而PPWM為了使Duty Rat i〇與輸入訊號間之誤差 值最小’需同時調整脈波寬度與脈波週期,很難在決定脈 波寬度前先確定脈波週期,所以傳統上產生ρ ψ Μ的方法並 不適用於PPWM。另外,傳統PDM的原理,是固定脈波寬 度’而PPWM的脈波寬度是不固定的,所以傳統上產生ρρΜ 的方法也不適用於PPWM。需另行發展PPWM之方法,以將輸 入訊號調變成三值脈波。 以下描述一種將PPWM的方法,將輸入訊號調變成三值 脈波,降低D u t y R a t i 〇與輸入訊號值之間的誤差,且保持 適當的切換頻率。需注意的是,以下主要討論如何使輸出 訊號之電壓值與輸入訊號值有正比關係,而有些應用主要 是希望使輸出訊號之電流值與輸入訊號值有正比關係,但Considering the above-mentioned problems faced by PWM and PDM, the present invention proposes a method for generating a good pulse wave for the driver's car, which combines two modulation methods and simultaneously modifies the pulse wave period and pulse width to produce a high Resolution, and can maintain a three-value pulse with an appropriate switching frequency. I μ This method of modulating the input signal to generate a three-valued pulse wave is different from traditional PWM and PDM. It is hereinafter referred to as "pulse period and pulse width modulation and change" and is referred to as PPWM (Period and Pulse Width). Modulation). The principle of traditional P ^ VM 'Before generating a pulse wave, a fixed pulse wave period needs to be set first, and PPWM needs to adjust the pulse wave width and pulse wave period at the same time in order to minimize the error between Duty Rat i〇 and the input signal' It is difficult to determine the pulse period before determining the pulse width, so the traditional method of generating ρ ψ M is not suitable for PPWM. In addition, the principle of traditional PDM is to fix the pulse width 'and the pulse width of PPWM is not fixed, so the traditional method of generating pρM is not applicable to PPWM. A separate method of PPWM needs to be developed to tune the input signal into a three-value pulse. The following describes a method of PPWM, which tunes the input signal to a three-valued pulse wave, reduces the error between Du t y R a t i 〇 and the input signal value, and maintains an appropriate switching frequency. It should be noted that the following mainly discusses how to make the voltage value of the output signal proportional to the input signal value, and some applications mainly want to make the current value of the output signal proportional to the input signal value, but

200423533 五、發明說明(10) 以下討論仍然適用,只要將討論中有關電壓的論述改為電 流即可,而這些改變為此技術領域之專家所容易了解。 切換式功率放大器之輸入訊號通常是類比訊號,或是 多值數位訊號,而一般切換式功率放大器之輸出級所能提 供的電壓值只有三種:正電源電壓+ V s s、負電源電壓-V s s,與零電壓。所以,在任一瞬間,放大器之輸出脈波 之電壓值幾乎都不等於輸入訊號所需的電壓值。200423533 V. Description of the invention (10) The following discussion is still applicable, as long as the discussion about voltage in the discussion is changed to current, and these changes are easily understood by experts in the technical field. The input signal of a switching power amplifier is usually an analog signal or a multi-valued digital signal, and the output voltage of an ordinary switching power amplifier output stage can only provide three types: positive supply voltage + V ss, negative supply voltage-V ss , With zero voltage. Therefore, at any instant, the voltage value of the output pulse of the amplifier is almost not equal to the voltage value required by the input signal.

但是,可以調整輸出脈波之脈波寬度與脈波週期,使 之在一很小的時間區間内,切換式功率放大器之輸出脈波 之電壓值對時間積分所得之積分值^與該時間區間内輸入 訊號對時間積分所得之積分值,兩者相等。則切換式功率 放大器的輸出脈波,經過低通濾波器,或直接接至有低通 濾波特性的負載上,所產生的輸出訊號,其電壓值與輸入 訊號值有正比的關係。 以下内容是描述如何產生此種輸出脈波之脈波週期、 脈波寬度:However, the pulse width and pulse period of the output pulse can be adjusted so that within a small time interval, the integrated value obtained by integrating the voltage value of the output pulse of the switching power amplifier with time ^ and the time interval The integral value obtained by integrating the input signal and time is equal. The output pulse of the switching power amplifier is passed through a low-pass filter or directly connected to a load with low-pass filtering characteristics. The voltage value of the output signal is directly proportional to the input signal value. The following content describes how to generate the pulse period and pulse width of this output pulse:

(1)式所示,為在輸入訊號中,取一任意的時間點為時間 軸原點,當做希望產生之輸出脈波之某一週期之起點。從 該起點開始,在一個脈波週期T之間(此時T尚未決定),執 行輸入訊號對時間的積分。同時也對希望產生的輸出脈波Equation (1) shows that in the input signal, an arbitrary time point is taken as the time axis origin, and it is used as the starting point of a certain period of the output pulse wave that is desired to be generated. From this starting point, the integration of the input signal over time is performed between a pulse period T (at this time T has not yet been determined). At the same time as the desired output pulse

第15頁 200423533 五、發明說明(11) 做積分。輸入訊號與輸出脈波,兩者之積分值需要一樣 …·⑴ JVin dt=JVppnm dt............................................ τ τ ..........................................輸入訊號Page 15 200423533 V. Description of the invention (11) Integral. The input signal and the output pulse must have the same integral value ... · ⑴ JVin dt = JVppnm dt ............ ... τ τ ... .......... input signal

Vppwm................................輸tb脈波 Τ.........................................某一輸出脈波週期 輸出脈波在這個時間區間内,只有兩種訊號大小·· + Vss與0,或者—Vss與〇,若是這段時間内的輸入訊號大 小為,,則輪出脈波只有+Vss與〇,若是這段時間内的輸 入。fi號值為負,則輸出脈波只有〜V s s與〇兩種訊號大小, 而Vss通常是切換式功率放大器的輸出級功率電晶體所能 提^的最大電壓。以下以正的輪入訊號為例,加以說明, 此時PPWM訊號只有+Vss與〇兩種訊號值。若是負的輸入訊 號一下述之推導及描述依然成立,只要將+ Vss改成, 而w些改變為此技術領域之專家所容易了解。 :又,波寬度為DUty Rat i〇 χ τ (此時Μ” Rati〇之值 尚、决疋)’在這段時間内,輸出脈波值為+ Vss,其餘時 間為0所以’可以推算出輸出脈波在這一整段時間區間 内的積分值,如(2 )式所示:Vppwm ............ input tb pulse wave Τ ............ ............. A certain output pulse period Output pulses in this time interval have only two signal sizes. + Vss and 0, or -Vss and 〇, if the input signal size during this period is, then the output pulse is only + Vss and 〇, if it is input during this period. The value of fi is negative, so the output pulse wave has only two signal sizes of ~ V s s and 0, and Vss is usually the maximum voltage that the output power transistor of the switching power amplifier can raise. The following uses a positive round-in signal as an example to illustrate. At this time, the PPWM signal has only two signal values of + Vss and 0. If it is a negative input signal, the following derivation and description is still valid, as long as + Vss is changed, and some changes are easily understood by experts in the technical field. : Also, the wave width is DUty Rat i〇χ τ (At this time, the value of M ”Rati〇 is still determined). 'During this period, the output pulse value is + Vss, and the remaining time is 0, so' can be calculated. The integral value of the output pulse wave in this entire time interval is shown in formula (2):

第16頁 200423533 五、發明說明(12)Page 16 200423533 V. Description of the invention (12)

JVppwm T dt JOdt + JVss (1-DutyRatio )xT DutyRatio xJVppwm T dt JOdt + JVss (1-DutyRatio) xT DutyRatio x

dt = DutyRatio T T x Vss..(2) 由(1 )、( 2 )式,可推算出脈波寬度與輸入訊號的關 係,並定義脈寬數為脈波寬度與基本時脈週期之比值,得 到其表示式如(3 )式所示:dt = DutyRatio TT x Vss .. (2) From the formulas (1) and (2), the relationship between the pulse width and the input signal can be calculated, and the number of pulse widths is defined as the ratio of the pulse width to the basic clock cycle. The expression is obtained as shown in (3):

_DutyRatiox 基本時脈週爾 Tbase_DutyRatiox Tbase

定義:脈寬數Vw 進一步,定義正規化輸入訊號如(4 )式: 定義:正規化輸入訊號··Definition: Pulse width number Vw Further, define a normalized input signal such as (4): Definition: Normalized input signal ··

Yin Vss (4)Yin Vss (4)

第17頁 200423533 五、發明說明(13) 並且,將(3 )式之積分式以一數值積分取代,則正規 化輸入訊號之數值積分就等於脈寬數,如(5)式所示。Page 17 200423533 V. Description of the invention (13) Moreover, if the integral formula of the formula (3) is replaced by a numerical integral, the numerical integral of the normalized input signal is equal to the pulse width number, as shown in the formula (5).

T TT T

Tbase λ kxTbase TbaseTbase λ kxTbase Tbase

Nw =-CVnormal dt = \ [—- f^normal^] ^ ^Vnormal(k)...(5)Nw = -CVnormal dt = \ [—- f ^ normal ^] ^ ^ Vnormal (k) ... (5)

Tbas4 tl TbaSe Tbase tlTbas4 tl TbaSe Tbase tl

又:數值積分是每一個基本時脈執行一次,(5 )式中 的k只能是整數,且T需為Tbase的整數倍。所以,定義脈 波週期數: T Tbase 脈波週期數=冲Also: Numerical integration is performed once for each basic clock. K in (5) can only be an integer, and T needs to be an integer multiple of Tbase. So, define the number of pulse periods: T Tbase Number of pulse periods = impulse

Nw =Nw =

Vnormal(k)· ⑹Vnormal (k)

在(6 )式中,每隔一個基本時脈,N p遞增1,並執行一 次數值積分,數值積分結果之數值為N w,也會跟著改變,In formula (6), every other basic clock, N p is incremented by 1 and a number of times of integration is performed. The value of the numerical integration result is N w and will change accordingly.

第18頁 200423533 五、發明說明(14) ,系不疋整數。所以,依(6 )式,理想的脈波寬度通常不 是基本時脈的整數倍。 但是以數位系統產生脈波時,脈波寬度只能是基本時 脈的整數倍。為使實際上所能產生的脈波寬度/基本時 脈週期,與N w的誤差最小,每執行一次數值積分,就要檢 查一次積分結果之數值Nw,看是否最接近一個整數。 通常會有兩個鄰近的積分值, 一個整數值 此^數值,一個大於此整數值,若要判斷此二積分值,何 者最靠近此整數值,則演算法將會太複雜,而且,不管選 擇那厂個,誤差不會太大。所以,可固定選擇在時間上較 後面得到的積分值,以方便設計規則如下: 當執行數值積分時,若出現從小數進位到整數的产 形,則這時的Nw為一最靠近整數的積分值,這個時間^, =為"準量化時間點” ’而在這個時間點之Nw的整數部份 :為此:’準量化時間點之脈寬數",這個時間點的Np稱為 此準Ϊ化時間點之脈波週期數”。 因為Vnormal是一正規化的數值,其絕對 於母次執行數值積分後,其改變量小於1。因此於1 N w 值積分時,若且唯若出現從小數進位至整數’執士仃數 之整數部份的最小一個位元值會改變。所以月开^日寸’ Nw ’只要監視NwPage 18 200423533 V. Description of the invention (14) is not an integer. Therefore, according to formula (6), the ideal pulse width is usually not an integer multiple of the basic clock. However, when a digital system generates a pulse wave, the pulse width can only be an integer multiple of the basic clock. In order to minimize the error between the pulse width / basic clock period that can actually be generated and Nw, every time a numerical integration is performed, the value Nw of the integration result must be checked to see if it is closest to an integer. There are usually two adjacent integral values, an integer value and a value greater than this integer value. To determine the two integral values, which is the closest to the integer value, the algorithm will be too complicated, and regardless of the choice That factory, the error will not be too big. Therefore, the integral value obtained later in time can be fixed to facilitate the design rules as follows: When performing numerical integration, if a shape from decimal to integer appears, then Nw is the integral value closest to the integer. , This time ^, = is the "quasi-quantized time point" "and the integer part of Nw at this time point: for this: 'the pulse width number of the quasi-quantized time point", the Np at this time point is called this Number of pulse wave periods at quasi-normalized time points. " Because Vnormal is a normalized value, its absolute value is less than 1 after the numerical integration is performed by the parent. Therefore, when integrating at a value of 1 N w, the value of the smallest digit of the integer part from the decimal place to the integer ′ 仃 仃 will change if and only if it appears. So open every month ^ day inch ‘Nw’ Just monitor Nw

第19頁 200423533Page 19 200423533

之整數部份之最小一個位 否出現準量化時間點。70值疋否發生改變,就能判斷是 口不同的正規化輸入訊號’每 就會出現一次準量化時間點,如 在數值積分的過程中 隔幾次不等的數值積分, 圖3例子所示。 可從數個準量化時間Whether the quasi-quantized time point appears in the least significant bit of the integer part. If the value of 70 has changed, you can determine that the normalized input signal is different. Every time a quasi-quantized time point appears, such as the numerical integration that varies several times during the numerical integration process, as shown in the example in Figure 3. . Quantifiable time from several

時間點",以此量化時點來忠擇其中一個,設為"量不 數。而此量化時間點之-選疋—個脈波的週期與脈寬 的條件’不可使脈波週期=了法,應考慮實際的硬體電 動作期間的非線性行為,以免功率電晶體路之開 電晶體產生過大的::;輪=訊號品質產生影響’及功 格,也不能使脈波週期過丄另—方面’考慮輸出訊號的 上述種種因素,可以以::免產生過大的連波。考 上述的要求。以下提出ί ±夕種不同的方法,都可以符 以下如出一種較簡單的方法: 兩曰期’以下稱為Ttypical,TtypiC£ 本時脈週期Tbase<整數倍,並以Ttypical與TbasThe time point " is used to quantify the time point to choose one of them faithfully. And at this quantization time point, the conditions of the period of the pulse wave and the pulse width 'can not make the pulse wave period = the method, the nonlinear behavior during the actual hardware electrical operation should be considered to avoid the power transistor circuit Power-on crystals produce too large ::; wheel = signal quality has an effect 'and power grid, and the pulse wave period can not be too large. In addition-considering the above-mentioned factors of the output signal, you can use :: to avoid excessively large continuous waves. . Consider the above requirements. The following is a variety of different methods, which can be compared to the following simpler method: Two periods hereinafter hereinafter referred to as Ttypical, TtypiC £ this clock cycle Tbase < integer multiples, and Ttypical and Tbas

^比值,設為Ntypical,以之來決定脈波週期:當心等 typical 在時間轴上迴溯尋找最後發生的準量化時 點,砥=這個準量化時間點為量化時間點,以該量化時丨 點之脈見數及脈波週期數來當作一個脈波週期之脈寬數』 脈波週期數。如圖3所示’當執行數值積分至3〇4時,積?^ Ratio, set to Ntypical, to determine the pulse period: Be careful to wait for the typical on the time axis to look back for the last quasi-quantization time point, 砥 = this quasi-quantization time point is the quantization time point The number of pulses and the number of pulse periods are regarded as the number of pulse widths of a pulse period. As shown in Figure 3 ’When the numerical integration is performed to 30, the product?

第20頁 200423533 五、發明說明(16) 區間為Ttypi cal ,在這段區間内,共出現3個準量化時間 點,如3 0 1、3 0 2、3 0 3所示,而其中以3 0 3最後發生,所以 可選擇此點為量化時間點,來決定脈波週期數為2 4,脈寬 數為3。 ' 依上述,當Np等於Ntypical時,迴溯尋找最後發生的 ,量化時間點,將之選為量化時間點,該量化時間點之脈 旯數即為:當Np等於Ntypical時之Nw之整數部份。 然而’若輸入訊號為負值,則N w也將是一個負值,所 以其整數部份也同樣是負值,而正好可依此Nw之正負而決 定輸出脈波之大小是+ Vss與0,或-VSS與〇。 而關於該量化時間點之脈波週期數:可設定一個軟體 變數或硬體暫存器,以下稱之為RegP,以Regp來儲存脈波 週期數,每當有準量化時間點發生時,就把當時之Np儲存 於RegP,當下一個準量化時間點發生時,再把當時之Np儲 = KRegP,而覆蓋掉之前的值,於是當Np等於Ttypical 日守’儲存於Regp中的數值就是量化時間點之脈波週期數。 、ρ如上決定了一個脈波之脈波寬度與脈波週期之後,該 I皮遠取之量化時間點與NP = Ntypical之時間點,兩個時間 間的時間,屬於下一個脈波週期的一部四 '驢CNw之小數 部份’為該被選取之量化時間點與Np = Ntypicai之時間Page 20 200423533 V. Description of the invention (16) The interval is Ttypi cal. In this interval, there are 3 quasi-quantized time points, as shown in 3 0 1, 3 0 2, 3 0 3, and 3 0 3 occurred last, so this point can be selected as the quantization time point to determine the number of pulse wave periods is 2 4 and the number of pulse widths is 3. According to the above, when Np is equal to Ntypical, look back to find the last occurrence, quantization time point, and select it as the quantization time point. The pulse number of this quantization time point is: the integer part of Nw when Np is equal to Ntypical. Serving. However, if the input signal is negative, N w will also be a negative value, so its integer part will also be negative, and the size of the output pulse can be determined by the positive and negative values of Nw. + Vss and 0 , Or -VSS and 0. Regarding the number of pulse wave periods at this quantization time point: a software variable or a hardware register can be set, which is hereinafter referred to as RegP. Regp is used to store the number of pulse wave periods. Whenever a quasi-quantization time point occurs, the Store Np at that time in RegP. When the next quasi-quantization time point occurs, store Np at that time = KRegP, and overwrite the previous value, so when Np is equal to Ttypical day guard, the value stored in Regp is the quantization time. The number of pulse wave periods at a point. After the pulse width and pulse period of a pulse wave are determined as above, the quantized time point of the I skin distance and the time point of NP = Ntypical. The time between the two times belongs to one of the next pulse wave period. Part 4 'The fractional part of donkey CNw' is the time of the selected quantized time point and Np = Ntypicai

第21頁 200423533 五、發明說明(I?) 點,兩個時間點之間’正規化過取樣輸入訊號的數值積分 值。所以,將Nw之整數部份減去,並將Np減去此脈波之週 期數,也就是說’將時間軸的原點移至此量化時間點,然 後重複上述的數值積分、尋找準量化時間點、以Ntypi cal 選擇量化時間點,決定脈波週期等過程,以產生輸出脈 波0 此外,有一個例外需討論:當Np等於Ntypical時,若 在這個時間區間内’沒有發生任何準量化時間點,則上述 選擇量化時間點以決定脈波週期之方法並不適用。這種情 況,代表這個時間區間内的輸入訊號很小,其數值積分結 果數值小於此種脈波調變方法所能提供的最小解析度。所 以N w只能取近似值’以最靠近N w之整數為N w之近似值,以 此近似值當作此脈波之脈寬數,以N t y p i c a 1當作此脈波之 脈波週期數。然後,將N w及N p歸零,開始產生下_ 依照上述例外之討論,前述用來儲存準量化 脈波週期數之R e g P ’其初始值之設定,可今為^ # 值’以便能夠由R e g Ρ儲存之值來判斷該日寺間何/ 任何準量化時間點。也可設為Ntypical,*此2 值積分區間内沒有出現任何準量化時點, 或硬體暫存器儲存之值正好就是加㈣,=^體變數 法就無鄉判斷該時間區間是否沒有任何準量=方Page 21 200423533 V. Description of the invention (I?) Point, between the two time points', normalizes the numerical integration value of the oversampling input signal. Therefore, subtract the integer part of Nw and subtract the number of cycles of this pulse from Np, that is, 'move the origin of the time axis to this quantization time point, and then repeat the above numerical integration to find the quasi-quantization time Point, select the quantization time point with Ntypi cal, determine the pulse wave period and other processes to generate the output pulse wave. In addition, there is an exception to be discussed: When Np is equal to Ntypical, if no quasi-quantization time occurs in this time interval Point, the above-mentioned method of selecting the quantization time point to determine the pulse period is not applicable. In this case, it means that the input signal in this time interval is very small, and its numerical integration result value is smaller than the minimum resolution that this pulse wave modulation method can provide. Therefore, N w can only be taken as an approximate value ′, and the integer closest to N w is the approximate value of N w. This approximate value is used as the pulse width number of this pulse wave, and N t y p i c a 1 is used as the pulse cycle number of this pulse wave. Then, reset N w and N p to zero, and start to produce the following _ According to the discussion of the above exception, the initial value of R eg P used to store the number of quasi-quantized pulse wave periods is set as ^ # value. The value stored in R eg RP can be used to determine what / any quasi-quantified time point between the temples on that day. It can also be set to Ntypical. * There is no quasi-quantization time point in this 2-valued integration interval, or the value stored in the hardware register is exactly ㈣. The method of ^ body variable judges whether the time interval is not accurate. Volume = square

第22頁 200423533 五、發明說明(18) 上述產生脈波的方法,並沒有決定脈沖在一個脈波週 期中的位置。事實上,當脈波頻率遠高於輸入訊號頻寬 時,脈沖在一個脈波週期中的位置,對輸出訊號的影響並 不大。為了簡化演算法,將脈沖置於脈波週期的中間點, 就可以產生很好的效果。 上述方法,產生了脈寬數與脈波週期,若是脈寬數為 負,代表脈波訊號之大小為-Vss與0,而真正的脈波寬度 應取脈寬數之絕對值與基本時脈週期之乘積。 若輸入訊號是早極性訊號’即輸入訊號無正負之區 別,則依上述之產生脈波的方法,所得到之Nw皆為正數, 所以產生之輸出脈波之大小只有+ V s s與0,則三值脈波退 化成二值脈波。Page 22 200423533 V. Description of the invention (18) The above method of generating pulse waves does not determine the position of the pulse in a pulse period. In fact, when the pulse frequency is much higher than the input signal bandwidth, the position of the pulse in a pulse period has little effect on the output signal. To simplify the algorithm, placing the pulse at the midpoint of the pulse period can produce good results. The above method generates the pulse width number and pulse wave period. If the pulse width number is negative, it means that the size of the pulse wave signal is -Vss and 0, and the true pulse width should take the absolute value of the pulse width number and the basic clock. Product of cycles. If the input signal is an early polarity signal, that is, the input signal has no difference between positive and negative, according to the above-mentioned method of generating pulse waves, the Nw obtained are all positive numbers, so the size of the output pulse wave generated is only + V ss and 0, The ternary pulse is degraded into a binary pulse.

第23頁 200423533Page 23 200423533

還是以一搭配軟硬體的微算機系统 設計者可因應ή㈣邊條件及各種ς 來組成實現此演算法的系統。 實際應用上, 非技術因素, 百无 應依硬體電路的你杜^… 一個桿準脈油T + · ”牛及糸、、先的規格要求,訂£{ 1固知+脈波週期丁 typical T + u η卜。1命T U 叹I本犄脈週期T b a s e,而It is still a computer system with software and hardware. Designers can compose the system that implements this algorithm according to the marginal conditions and various kinds of data. In practical applications, non-technical factors, you should never rely on the hardware circuit of your device ^ ... a rod quasi-pulse oil T + · ”cattle and 糸, the first specification requirements, order £ {1 固 知 + pulse period D typical T + u η. 1 life TU sigh I this pulse period T base, and

Ttypical與Tbase的比值應為整數The ratio of Ttypical to Tbase should be an integer

Ntypical : 勹正數,亚且疋義標準週期數Ntypical: 勹 Positive number

NtypicalNtypical

Ttyp i ca 1 / Tbas e ............( 7 ) 演算法的目的暑加^ λ ^ 波。而此輸入訊= = 號經PPWM,轉換成二值脈 於基本時脈週樣,依上-節的討論,應該等 =广大於基本時脈週期,戶斤以,輸入訊號應 =r::pa:lng)的㈣,產生-過取㈣,其取樣 週期4於基本時脈。參見圖2。 而此過取樣機制 的專家所熟知且容易 ’有报多種實現方法,為這一領域中 實現,不為此發明的敘述範圍。Ttyp i ca 1 / Tbas e ............ (7) The purpose of the algorithm is to add ^ λ ^ waves. And this input signal == is converted into a binary value by the basic clock cycle via PPWM. According to the discussion in the previous section, it should be equal to = greater than the basic clock cycle. The input signal should be equal to r :: pa: lng), producing-over-taking radon, with a sampling period of 4 at the basic clock. See Figure 2. The experts of this oversampling mechanism are familiar with and easy to report a variety of implementation methods, which are implemented in this field, and are outside the scope of this invention.

此外, 一正規化的 運算來使一 依上一節的 訊號,關於 般訊號轉成 討論,用來 這點,往往 正規化的訊 進行數值積 並不需要額 號。譬如, 分的必需是 外的電路或 對一 1 6位元In addition, a normalized operation converts a signal according to the previous section into a general signal for discussion. For this purpose, the normalized signal does not need to be numerically multiplied. For example, the points must be external circuits or 16 bits

第24頁 200423533 五、發明說明(20) 1 的數值訊號而言,若操作在大於丨6位元的累力口器中,可直 接認定,小的1 6位元皆是小數,而當數值積分=結果出現 進位至第1 7位元時,就是由小數進位至整數。、σ 正規化的過取樣訊號,經過依ppwM演算法# 的電 路或微算機系統,產生了一資料序列,每筆資料:有兩個 數值,一是脈波週期數,另一是脈寬數,這個資料序列應 該再經一個脈波產生器,產生真正的三值脈波。參見圖 而這種脈波產生器,也有很多種實現方法,為這一領 域中的專家所熟知且容易實現,不為此發明的敘述範圍。 由脈波產生器所產生的三值脈波,經過一”功率電晶 體控制電路’’以控制功率電晶體之開關動作,產生輸出脈 ,經低通濾波器,產生一類比的輸出訊號以驅動揚聲 态。苓見圖2。這部份的電路硬體,也有很多種實現方 法’為這一領域中的專家所熟知且容易實現,不為此發明 的敘述範圍。 以上是描述PPWM技術應用在切換式功率放大器上,系 統與PPWM產生器的關係,參見圖2。以下將描述ρρ ” 器之演算法。 生Page 24 200423533 V. Description of the invention (20) 1 In terms of the numerical signal, if it is operated in a tired mouthpiece with more than 6 digits, it can be directly determined that the small 16 digits are all decimals, and when the value is Integral = When the result is rounded to the 17th digit, it is rounded from decimal to integer. , Σ The normalized oversampling signal passes through the circuit or microcomputer system according to the ppwM algorithm # to generate a data sequence, each data: there are two values, one is the number of pulse cycles, and the other is the pulse width This data sequence should pass a pulse wave generator to generate a true three-valued pulse wave. See the figure. There are also many implementation methods for this kind of pulse wave generator, which are well known and easy to implement by experts in this field, and are beyond the scope of this invention. The three-valued pulse wave generated by the pulse wave generator passes through a "power transistor control circuit" to control the switching action of the power transistor to generate an output pulse. After passing through a low-pass filter, an analog output signal is generated to drive The state of sound. Ling is shown in Figure 2. There are also a variety of implementation methods for this part of the circuit hardware, which are well known and easy to implement by experts in this field, and are beyond the scope of this invention. On the switching power amplifier, the relationship between the system and the PPWM generator is shown in Figure 2. The algorithm of the ρρ ″ generator will be described below. Raw

第25頁 五、發明說明(21) 這個演算法包括下 脈波週期變數或體暫存器、資料:Page 25 V. Description of the invention (21) This algorithm includes the following pulse wave periodic variables or body registers, data:

^ v 又要文或暫存器·· RegP 知分值變數或暫存器:Nw 積分時間變數或暫存器:Np 系、,先基本&脈計數變數 正規化過取樣多佶叙/ *n 像夕值數位訊號·· s (n) 上述之正規化過取樣多值 a 生之數位化資料。 彳σΚ號,疋由過取樣機制所產 上述之脈波方向變數或暫存器,以 以下描述演算法之流程,請參照圖4。 一、 進入演算法之流程,如4〇1所示。 二、 將Nw、Np歸零,如4〇2所示。 三、 將RegP歸零,如4〇3所示。 四、 將Np遞增1,n遞增!,如4〇4所示。 五、 對S (η)執行數值積分,★雜s劳 ^ λΐ ^ 77也就疋累加的動作,並將結果 儲存至Nw。如405所示。 :、、當累加的結果’出現進位至整數的情況時,為一 π準 ί化時間點"。若是準量化時間點,進行至第七步,否則 跳至第八步。如4 0 6所示。 七、 將此時之Np儲存至RegP,如4〇7所示。 八、 檢查積分區間是否等於標準週期,也就是是否 200423533 五、發明說明(22)^ v Another article or register ... RegP Knows the score variable or register: Nw Integral time variable or register: Np system, first basic & pulse count variable normalization oversampling / description / * n Like digital signal of sigma value · s (n) The above-mentioned normalized oversampling multi-valued a digital data.彳 σΚΚ, which is produced by the oversampling mechanism. The above-mentioned pulse direction variables or registers are described below. Please refer to Figure 4 for the algorithm flow. First, enter the algorithm flow, as shown in 401. 2. Reset Nw and Np to zero, as shown in 402. 3. Reset RegP to zero, as shown in 403. Fourth, Np is incremented by 1, n is incremented! , As shown in 40. 5. Perform numerical integration on S (η). ★ Miscellaneous ^ λΐ ^ 77 is also the action of accumulation, and the result is stored to Nw. As shown in 405. : 、、 When the accumulated result ’appears to be rounded to an integer, it is a π-quasi digitized time point ". If it is a quasi-quantization time point, proceed to step 7, otherwise skip to step 8. As shown in 4 0 6. 7. Store Np at this time to RegP, as shown in Figure 407. 8. Check whether the integration interval is equal to the standard period, that is, whether it is 200423533 5. Explanation of the invention (22)

Np = = Ntypical。若是,進行至第九步,若否,回到第四 步,如4 0 8所示。 九、檢查這段積分區間的是否沒有最佳量化時間點。也就 是是否RegP = = 0。若是,進行至第十步,若否,跳至第十 一步,如4 0 9所示。 十、產生脈波資料。因為在積分區間中,沒有出現準量化 時間點’代表此區間之訊號積分值小於1。設定·Np = = Ntypical. If yes, go to step 9. If no, go back to step 4, as shown in 408. Nine, check whether there is no optimal quantization time in this integration interval. That is, whether RegP = = 0. If yes, go to step 10. If no, go to step 11, as shown in 409. 10. Generate pulse wave data. Because in the integration interval, no quasi-quantization time point 'indicates that the signal integration value of this interval is less than 1. set up·

脈波週期數=N t y p i c a 1 脈波寬度數=最靠近Nw之整數 如4 1 0所示。 將上述產生之脈波資料輸出至脈波產生器 十一、準備進行產生下一個脈波。將時間轴原點移到這次 產生脈波之終點,準備開始下一個週期的數值積分。也就 是將如下兩個軟體變或硬體暫存器歸零:Number of pulse wave periods = N t y p i c a 1 Number of pulse width = integer closest to Nw As shown in 4 1 0. Output the pulse wave data generated above to the pulse wave generator. 11. Prepare to generate the next pulse wave. Move the origin of the time axis to the end of the pulse wave this time and prepare to start the numerical integration of the next cycle. That is to reset the following two software changes or hardware registers:

Nw = 0 ;Nw = 0;

Np = 0 ; 跳回第三步。如4 1 1所示。 十二、產生脈波資料。選擇最後產生的準量化時間點為量 化時間點,以之決定脈波週期及脈波寬度,也就是:Np = 0; skip to step 3. As shown in 4 1 1. 12. Generate pulse wave data. Select the last quasi-quantization time point as the quantization time point to determine the pulse period and pulse width, that is:

脈波週期數=R e g P ; 脈波寬度數=N w之整數部份; 如4 1 2所示。 將上述產生之脈波資料輸出至脈波產生器 十三、準備進行產生下一個脈波。將時間軸原點移到這次Number of pulse wave periods = R e g P; Number of pulse width = integer part of N w; as shown in 4 1 2. Output the pulse wave data generated above to the pulse wave generator 13. Prepare to generate the next pulse wave. Move the timeline origin to this time

第27頁 200423533 五、發明說明(23) 產生脈波之終點,準備開始下一個週期的數值積分。也就 是將如下調整兩個暫存器之數值: N w = N w 之小數部份;Page 27 200423533 V. Description of the invention (23) The end point of the pulse wave is ready to start the numerical integration of the next cycle. That is, the values of the two registers will be adjusted as follows: N w = fractional part of N w;

Np = Np - RegP; 跳回第三步。如4 1 3所示。Np = Np-RegP; skip back to step 3. As shown in 4 1 3.

如上所述,為整個演算法之描述。圖5 A是與圖1 A同樣 之輸入訊號。圖5B是將圖5A之波形經過PPWM,產生三值脈 波,再經一適當之低通濾波器,所產生之輸出波形,將之 與圖1 B相比較,可發現,圖5 B沒有階梯狀的波形。圖5 C是 將三值脈波經過富利葉轉換而產生的頻譜。將之與圖1 C比 較,可看出其在高頻處比圖1 C少了兩個次高的頂點。As described above, it is a description of the entire algorithm. Figure 5A is the same input signal as Figure 1A. Fig. 5B is the waveform of Fig. 5A through PPWM to generate a three-valued pulse wave, and then an appropriate low-pass filter, the output waveform generated, compared with Fig. 1 B, it can be found that there is no step in Fig. 5 B Shaped waveform. Figure 5C is the frequency spectrum of the three-valued pulse wave after Fourier transform. Comparing it with Figure 1C, it can be seen that it has two sub-higher vertices at high frequencies than in Figure 1C.

第28頁 200423533 圖式簡單說明 【圖式簡單說明 圖1 ·以一例子解釋,用數位系統實現PWM, 而Page 28 200423533 Simple illustration of the diagram [Simplified illustration of the diagram Figure 1 · Explained with an example, using a digital system to implement PWM, and

圖1 A 圖IB 產生之影響。 夏化誤差 :一輸入訊號波形,為正弦波,振幅為最 分之五,週期為3kHz。 大汛號的百 •將圖1 A之正弦波,經過純數位電路處理, 脈波’再經過一適當之低通濾波器,而產生pWm 形。這裏用的數位系統,假設其基本時生的波Figure 1 A Figure IB. Summerization error: An input signal waveform is a sine wave with an amplitude of five minutes and a period of 3 kHz. Hundreds of the Daxun number • The pure sine wave in Figure 1A is processed by a pure digital circuit, and the pulse wave ’is passed through an appropriate low-pass filter to generate a pWm shape. The digital system used here assumes that the wave

圖1C :其pWM週期為4〇〇kHz,所以每個二μ為週期 1 0 0個糸統時脈,其解析度是i / J 〇 〇。 :將圖1B的波形,經富利葉轉換,得 圖2:PPWM應用於切換式功率放大器之系統示意圖。指 PPWM應用於切換式功率放大器系統中 置與扮演的角色 J仕的位 201 202 203 204 205 206 207 208 209 210 輸入訊號 過取樣機制 正規化過取樣之輸入訊號 PPWM產生器 含脈波週期及脈波寬度之資料序列 脈波產生器 PPWM脈波 功率電晶體控制電路 橋式輪出級功率電晶體 低通濾波器及負載Figure 1C: Its pWM period is 400 kHz, so each two μ is a period of 100 system clocks, and its resolution is i / J 〇 〇. : The waveform of Fig. 1B is converted by Fourier transform. Fig. 2: Schematic diagram of PPWM applied to switching power amplifier system. Refers to the role of PPWM in the switching power amplifier system. Position 202 202 203 204 205 206 207 208 209 210 Input signal oversampling mechanism Normalized oversampling input signal PPWM generator contains pulse period and pulse Wave width data sequence pulse wave generator PPWM pulse wave power transistor control circuit bridge wheel output power transistor low-pass filter and load

200423533 圖式簡單說明 圖3 :產生PPWM之方法。以例子來說明PPWM的想法:以數 值積分尋找最佳量化時間點,以降低輸出脈波之誤200423533 Schematic illustration Figure 3: Method of generating PPWM. Take the example to illustrate the idea of PPWM: find the best quantization time point by numerical integration to reduce the error of output pulse

差。 301 : 產生最佳量化時間點, 脈兔數= :1,脈波週 3 0 2 : 期數=8。 產生最佳量化時間點, 脈見數= :2,脈波週 3 0 3 : 期數=13。 產生最佳量化時間點, 脈兔數= :3,脈波週 3 04 : 期數=2 4。 標準脈波週期數=2 5 〇 圖 3A :表 示 -- 正 規 化 之 過 取樣訊 號, 其 取 樣 週 期等於數位 系 統 ▲之 基 本 時 脈 〇 圖 3B :對 圖 3A 之 訊 號 執 行 數值積 分, 所 得 之 波 形。 圖 3C :由 圖 3B 的 波 形 中 5 決定出 脈波 週 期 及 脈 波寬度,而 產 生 出 脈 波 波 形 〇 圖 4 : PPWM ; 演算法流程圖〔 ,描述產生PPWM脈波資料的實行 方式 401 演 算 法 第 一 步 402 演 算 法 第 二 步 403 演 算 法 第 二 步 404 演 算 法 第 四 步 405 演 算 法 第 五 步 406 演 算 法 第 六 步 407 演 算 法 第 七 步difference. 301: The best quantization time point is generated, the number of pulse rabbits =: 1, the number of pulse cycles 3 0 2: the number of periods = 8. Generate the best quantization time point, the number of pulses =: 2, the number of pulse cycles 3 0 3: the number of periods = 13. Generate the best quantization time point, the number of pulse rabbits =: 3, the number of pulse cycles 3 04: the number of periods = 24. Number of standard pulse wave periods = 25.0. Figure 3A: Representation-a normalized oversampling signal whose sampling period is equal to the basic clock of the digital system ▲ Figure 3B: The waveform obtained by performing numerical integration on the signal of Figure 3A Figure 3C: The pulse wave period and pulse width are determined by 5 in the waveform in Figure 3B to generate the pulse wave waveform. Figure 4: PPWM; Algorithm flow chart [, describing the implementation method of generating PPWM pulse data. 401 algorithm First step 402 Algorithm second step 403 Algorithm second step 404 Algorithm fourth step 405 Algorithm fifth step 406 Algorithm sixth step 407 Algorithm seventh step

第30頁 200423533 圖式簡單說明 4 〇 8 :演算法第八步 4 0 9 :演算法第九步 4 1 0 :演算法第十步 4 1 1 :演算法第十一步 4 1 2 :演算法第十二步 4 1 3 :演算法第十三步 圖5 :以一例子解釋,用數位系統實現PPWM,因量化誤差 而產生之影響。 圖5 A : —測試波形,為正弦波,振幅為最大訊號的百分之 五,週期為3kHz。 修 圖5B :將圖5A之正弦波,經過數位系統處理,產生PPWM脈 波,再經過一適當之低通濾波器,而產生的波形。 這裏用的數位系統,假設其基本時脈為40MHz,其 PPWM之標準脈波週期為40 0kHz。 圖5C :將圖5B的波形,經富利葉轉換,得到的頻譜。Page 30 200423533 Schematic description 4 〇8: Algorithm eighth step 4 0 9: Algorithm ninth step 4 1 0: Algorithm tenth step 4 1 1: Algorithm eleventh step 4 1 2: Algorithm The twelfth step of the method 4 1 3: The thirteenth step of the algorithm Figure 5: Explained with an example, using a digital system to implement PPWM, the impact caused by the quantization error. Figure 5 A: —The test waveform is a sine wave with an amplitude of five percent of the maximum signal and a period of 3 kHz. Figure 5B: Waveform generated by processing the sine wave of Figure 5A through a digital system to generate a PPWM pulse, and then passing through a suitable low-pass filter. The digital system used here assumes that its basic clock is 40MHz and the standard pulse period of its PPWM is 40kHz. Fig. 5C: The spectrum obtained by transforming the waveform of Fig. 5B through Fourier transform.

第31頁Page 31

Claims (1)

200423533 六、申請專利範圍 1、 一種將第一輸入訊號調變成一三值(three-valued)脈 波之第一方法,該第一輸入訊號係一將一類比訊號或 一多值數位訊號經過正規化及過取樣(η 〇 r m a 1 i z e d a n d over-sampling)產生之多值數位訊號。該三值脈波之 大小只有0、最大訊號與最小訊號三個常數值。 該第一方法係於一時間區間内將第一輸入訊號執行數 值積分,以該數值積分之數值來決定於該時間區間内 三值脈波之脈波週期與脈波寬度,並決定下一個執行 數值積分之時間區間。 2、 如申請專利範圍第1項所述之第一方法,至少包含如下 三步驟之循環: 第一步驟:在一時間區間内,以一基本時脈週期為单 位,將第一輸入訊號執行數值積分。 第二步驟:在該時間區間内執行數值積分的過程中尋 找一量化時間點,以該時間區間之起點至該量化時間 點之間之時間長度設為於該時間區間内三值脈波之脈 波週期,以該脈波週期區間内數值積分之數值決定於 該時間區間内三值脈波之脈波寬度。 第三步驟:以該脈波週期之終點當作新的時間區間之 起點,以於該量化時間點之數值積分之數值減去整數 部份,設為新的數值積分之初始值,並如第一步驟所 述,開始對該第一數位訊號於下一個時間區間内執行 下一個數值積分,以決定下一個脈波寬度與脈波週200423533 VI. Scope of patent application 1. A first method for modulating a first input signal into a three-valued pulse wave. The first input signal is a normal analog signal or a multi-value digital signal. Multi-valued digital signal generated by η rma 1 ized and over-sampling. The three-valued pulse wave has only three constant values of 0, the maximum signal and the minimum signal. The first method is to perform numerical integration of a first input signal in a time interval, and use the value of the numerical integration to determine the pulse period and pulse width of the three-valued pulse in the time interval, and determine the next Time interval for numerical integration. 2. The first method described in item 1 of the scope of patent application includes at least the following three-step cycle: The first step: within a time interval, the value of the first input signal is executed as a unit integral. The second step: find a quantized time point in the process of performing numerical integration in the time interval, and set the time length from the start of the time interval to the quantized time point as the pulse of the three-valued pulse in the time interval The wave period is determined by the value of the numerical integration in the pulse period interval, which is determined by the pulse width of the three-valued pulse wave in the time interval. Step 3: Take the end of the pulse period as the starting point of the new time interval, subtract the integer part from the value of the numerical integration at the quantized time point, and set it as the initial value of the new numerical integration. In a step, the next numerical integration of the first digital signal is started in the next time interval to determine the next pulse width and pulse period. 200423533 六、申請專利範圍 期。 3、 如申請專利範圍第2項所述之第一方法,該執行數值積 分之時間區間長度為一常數值。 4、 如申請專利範圍第2項所述之量化時間點,係在數值積 分的過程中,每當數值積分之數值發生由小數進位至 整數的情況,就設為一準量化時間點。由該時間區間 中所有的準量化時間點中選擇一個成為一量化時間 點。以該時間區間之起點至該量化時間點之間之時間 長度設為該時間區間内三值脈波之脈波週期。以該脈 波週期區間内數值積分之數值之整數部份設為該時間 區間内三值脈波之脈寬數,以該脈寬數之絕對值與基 本脈波週期之乘積設為其脈波寬度。 5、 如申請專利範圍第4項所述由該時間區間中所有準量化 時間點中選擇一個量化時間點之一方法,於該時間區 間中不存在任何準量化時間點時,則以該時間區間之 終點設為該量化時間點,以該時間週期區間内數值積 分之數值為參考值,以最靠近該參考值之整數值重新 設定為該數值積分之數值。 6、如申請專利範圍第4項所述之由小數進位至整數之情況 下,判斷該數值積分之數值是否由小數進位至整數的200423533 VI. Scope of patent application. 3. According to the first method described in item 2 of the scope of patent application, the length of the time interval for performing the numerical integration is a constant value. 4. The quantization time point as described in item 2 of the scope of the patent application is a quasi-quantization time point in the process of numerical integration, whenever the value of the numerical integration changes from decimal to an integer. Select one of all quasi-quantization time points in the time interval to become a quantization time point. The time period from the start of the time interval to the quantized time point is set as the pulse period of the three-valued pulse in the time interval. Set the integer part of the value of the numerical integration in the pulse period interval as the pulse width number of the three-valued pulse wave in the time interval, and set the product of the absolute value of the pulse width number and the basic pulse wave period as its pulse wave. width. 5. Select one of the quantization time points from all quasi-quantization time points in the time interval as described in item 4 of the scope of the patent application. When there is no quasi-quantization time point in the time interval, the time interval is used. The end point is set to the quantized time point, the value of the numerical integration in the time period interval is used as the reference value, and the integer value closest to the reference value is reset to the value of the numerical integration. 6. In the case of rounding from decimal to integer as described in item 4 of the scope of patent application, determine whether the value of the numerical integral is rounded from decimal to integer. 第33頁 200423533 六、申清專利範圍 個 方法,係監視數值積分之數值之整數部份之最小问 $疋值,若此位元值發生改變,亦即於發生該數值積 分之數值由小數進位至整數的情況下,該時間點設為 一準量化時間點。 7、 如=睛專利範圍第4項所述之由該時間區間中所有準量 化日守間點中選擇其中一個成為一量化時間點的方法, ,方法係由該時間區間中所有準量化時間點中,選擇 最後一個準量化時間點為量化時間點。以該時間區間 、^點至該量化時間點之時間長度為設該脈波週期, 以遠脈波週期區間内數值積分之數值設為其脈寬數, ^ Ϊ ^寬數之絕對值與基本脈波週期之乘積設為其脈 8、 專利範圍第7項所述之脈波寬度’設定該脈波寬 單位,去★係在該時間區間内,以該基本時脈週期為 數值將第一數位訊號執行數值積分,該數值積分之 基本ίΐϊΓ份’設為脈寬數,該脈寬數之絕對值與 Τ脈週期之乘積設為脈波寬度。 9、 =申請專利範圍第7項所述之脈波週期,設定該脈波週 期的=法,係利用一軟體變數或一硬體暫存器,當發° $準5化時間點時,就將從該時間區間之起點至該‘ $化時間點之間之時間長度儲存於該軟體變數或硬體Page 33 200423533 6. The method of claiming patent scope is to monitor the minimum value of the integer part of the value of the numerical integration value. If the value of this bit is changed, that is, the value of the numerical integration value is rounded by decimals. In the case of an integer, the time point is set as a quasi-quantization time point. 7. As described in item 4 of the patent scope, the method of selecting one of all quasi-quantized day-to-day points in the time interval to become a quantized time point is a method that uses all quasi-quantized time points in the time interval. , Select the last quasi-quantization time point as the quantization time point. Set the pulse period from the time interval, ^ point to the quantized time point, and set the value of the numerical integration in the long pulse period interval as its pulse width number. The absolute value of ^ Ϊ ^ width number and the basic pulse The product of the wave period is set to its pulse width, and the pulse width described in item 7 of the patent range is used to set the pulse width unit. In the time interval, the basic clock period is used as the value to set the first digit. The signal performs numerical integration. The basic integral of the numerical integration is set to the pulse width number, and the product of the absolute value of the pulse width number and the T pulse period is set to the pulse width. 9, = Pulse period described in item 7 of the scope of the patent application, and the method of setting the pulse period = uses a software variable or a hardware register. The length of time between the start of the time interval and the time point is stored in the software variable or hardware 第34頁 200423533 六、申請專利範圍 暫存器,當發現下一個準量化時間點時,就將從該時 間區間之起點至該下一個準量化時間點之間之時間長 度儲存於該軟體變數或硬體暫存器,並覆蓋掉前值。 當該時間區間之數值積分執行完畢時,將該軟體變數 或硬體暫存器中儲存之值,設為脈波週期數。該脈波 週期數與基本時脈週期之乘積設為脈波週期。 1 0、如申請專利範圍第9項所述之軟體變數或硬體暫存 5其初始值設為該時間區間之時間長度值。Page 34 200423533 6. Register for patent application range. When the next quasi-quantization time point is found, the length of time from the beginning of the time interval to the next quasi-quantization time point is stored in the software variable or Hardware register and overwrite previous value. When the numerical integration of the time interval is completed, the software variable or the value stored in the hardware register is set to the number of pulse wave cycles. The product of the number of pulse wave periods and the basic clock period is set as the pulse wave period. 10. The software variable or hardware temporary storage as described in item 9 of the scope of patent application. 5 The initial value is set to the time length value of the time interval. 1 1、如申請專利範圍第9項所述之軟體變數或硬體暫存 器,其初始值設為〇或任何負值。11 1. The software variable or hardware temporary register as described in item 9 of the scope of patent application, its initial value is set to 0 or any negative value. 第35頁Page 35
TW92110092A 2003-04-23 2003-04-23 Period and pulse width modulation TWI238596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92110092A TWI238596B (en) 2003-04-23 2003-04-23 Period and pulse width modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92110092A TWI238596B (en) 2003-04-23 2003-04-23 Period and pulse width modulation

Publications (2)

Publication Number Publication Date
TW200423533A true TW200423533A (en) 2004-11-01
TWI238596B TWI238596B (en) 2005-08-21

Family

ID=37000319

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92110092A TWI238596B (en) 2003-04-23 2003-04-23 Period and pulse width modulation

Country Status (1)

Country Link
TW (1) TWI238596B (en)

Also Published As

Publication number Publication date
TWI238596B (en) 2005-08-21

Similar Documents

Publication Publication Date Title
US7295140B2 (en) Oversampling analog-to-digital converter and method with reduced chopping residue noise
CN102165697B (en) Method and apparatus for dithering in multi-bit sigma-delta analog-to-digital converters
EP1374411B1 (en) Real time correction of a digital pwm amplifier
JP4546527B2 (en) Method and apparatus for random number generator
US8299946B2 (en) Noise shaping for digital pulse-width modulators
US7221302B1 (en) Delta-sigma modulator coefficient calibration method and apparatus
TWI538412B (en) Converter circuit and method thereof
KR100771854B1 (en) Low noise dc-dc converter capable of compensating variation of power supply voltage
US8681029B1 (en) Chopper-stabilization method and apparatus for sigma delta modulators
JP4660778B2 (en) PWM signal generator, PWM signal generator, and digital amplifier
TWI523413B (en) System and method for amplifying a digital input signal to generate an analog output signal
TWI501564B (en) Apparatus for differential interpolation pulse width modulation digital-to-analog conversion and output signal method
EP3567722A1 (en) Class-d amplifier and method for generating a driver signal
CN113381765A (en) Digital-to-analog modulation conversion circuit, conversion method and digital-to-analog modulation converter
TWI504161B (en) System and method of digital-to-analog converter
WO2018064720A1 (en) A device, system and method for digital-to-analogue conversion
TW200423533A (en) Period and pulse width modulation
US20080084921A1 (en) Spectrally shaped pseudo-random noise sequence generator and method thereof
CN109756193B (en) Class D digital audio power amplifier system using spread spectrum modulation for PWM wave modulation
US9929738B2 (en) Spectrally shaped random signal
JPWO2014065408A1 (en) converter
US8471747B1 (en) Phase averaged pulse width modulator
JP2006313958A (en) Pwm signal generator, pwm signal generating apparatus, and digital amplifier
JP2000232361A (en) D/a converter
US20230421167A1 (en) Noise shaper variable quantizer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees