WO2008010564A1 - Batterie secondaire - Google Patents

Batterie secondaire Download PDF

Info

Publication number
WO2008010564A1
WO2008010564A1 PCT/JP2007/064301 JP2007064301W WO2008010564A1 WO 2008010564 A1 WO2008010564 A1 WO 2008010564A1 JP 2007064301 W JP2007064301 W JP 2007064301W WO 2008010564 A1 WO2008010564 A1 WO 2008010564A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
negative electrode
secondary battery
positive electrode
Prior art date
Application number
PCT/JP2007/064301
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Nakamura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP07768450.4A priority Critical patent/EP2045866A4/en
Priority to CN2007800266944A priority patent/CN101490894B/zh
Priority to US12/373,647 priority patent/US8642208B2/en
Publication of WO2008010564A1 publication Critical patent/WO2008010564A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery configured by stacking a plurality of unit batteries.
  • a secondary battery in which a plurality of battery cells each having a positive electrode and a negative electrode formed on the surface of an electrolyte layer are stacked via a current collector plate.
  • Such secondary batteries are used as storage batteries, and are discharged by an electrode reaction that occurs between the positive and negative electrodes.
  • the heat dissipation efficiency differs between the inner side and the end side of the secondary battery, and the temperature tends to increase toward the inner side of the secondary battery. For this reason, the electrode reaction of the battery cell located inside the secondary battery becomes active, the battery cell located inside the secondary battery deteriorates quickly, and the life of the secondary battery is shortened. There is a problem power S. ,
  • the present invention has been made in view of the above problems, and a first object thereof is a secondary battery in which the heat dissipation efficiency differs depending on the position and the temperature of each battery cell varies. However, it is to provide a secondary battery in which the output variation such as the voltage and current amount of each battery cell is suppressed and the life is extended. A second object is to provide a secondary battery that is improved in the accuracy of identifying a defective battery cell.
  • the secondary battery according to the present invention includes a plate-shaped electrolyte layer, a positive electrode formed on the first main surface of the electrolyte layer and including a positive electrode active material, and a second electrolyte layer.
  • a secondary battery comprising: a unit battery having a negative electrode including a negative electrode active material formed on a main surface; and a conductive layer provided between the unit batteries, wherein the unit battery and a plurality of conductive films are stacked.
  • the concentration of the positive electrode active material and the negative electrode active material is set according to the temperature distribution in the secondary battery.
  • the unit battery includes a first unit battery and a second unit battery having a temperature higher than that of the first unit battery, and the concentration of the positive electrode active material and the negative electrode active material of the first unit battery is higher.
  • the concentration of the positive electrode active material and the negative electrode active material of the second unit battery is lowered.
  • the positive electrode further includes a first additive
  • the negative electrode further includes a second additive, and the first additive and the second additive are added according to the temperature distribution in the secondary battery. Set the amount to be added.
  • the secondary battery according to the present invention includes a plate-shaped electrolyte layer, a positive electrode including a positive electrode active material formed on the first main surface of the electrolyte layer, and a second main layer of the electrolyte layer.
  • a unit battery comprising: a unit battery having a negative electrode including a negative electrode active material formed on a surface; and a conductive layer disposed between the unit batteries, wherein the unit battery and a plurality of conductive films are stacked.
  • the temperature of the unit battery increases as it goes inward from the end face side of the secondary battery positioned in the stacking direction, and the concentrations of the positive electrode active material contained in the positive electrode and the negative electrode active material contained in the negative electrode become lower.
  • the positive electrode actives included in the positive electrode and the negative electrode of each unit cell are set so that the output of each unit cell becomes the reference output, with the output of the unit cell positioned inward in the stacking direction of the unit cells as a reference output.
  • Set the concentration of material and negative electrode active material Preferably, the concentration of the positive electrode active material and the negative electrode active material contained in the positive electrode and the negative electrode of each unit cell is set so that the output of each unit cell becomes the reference output, using the output of the unit cell located on the end face as a reference output.
  • the concentration of the negative electrode active material and the positive electrode active material is set in accordance with the temperature distribution in the secondary battery, and the higher the unit battery, the positive electrode active material and the negative electrode active material.
  • the output of each unit cell is made uniform by reducing the concentration of It is possible to suppress deterioration of only a specific unit battery.
  • FIG. 1 is a cross-sectional view of a bipolar secondary battery according to the present embodiment.
  • FIG. 2 is a graph showing the concentration distribution of the positive electrode active material and the negative electrode active material.
  • Figure 3 is a graph showing the input / output value (current amount) distribution of the bipolar secondary battery when the concentration distributions of the positive electrode active material and the negative electrode active material are set as shown in FIG.
  • FIG. 4 is a graph showing the output voltage distribution for each electrode sheet.
  • FIG. 5 is a graph showing the temperature distribution of the bipolar 2 battery when the concentration distribution of the positive electrode active material and the negative electrode active material is set as shown in FIG.
  • Fig. 6 shows the output of the electrode sheet 25 located on the end face of the bipolar secondary battery as the reference output, and the positive and negative electrodes of each electrode sheet 25 so that the output of each electrode sheet 25 becomes the reference output.
  • 6 is a graph showing a concentration distribution when the concentrations of a positive electrode active material and a negative electrode active material contained are set.
  • FIG. 7 is a graph showing the output current of each electrode sheet when the concentrations of the positive electrode active material and the negative electrode active material are set as shown in FIG.
  • FIG. 8 is a graph showing the output voltage of each electrode sheet when the concentrations of the positive electrode active material and the negative electrode active material are set as shown in FIG.
  • FIG. 9 is a graph showing the temperature distribution in the bipolar secondary battery when the concentrations of the positive electrode active material and the negative electrode active material are set as shown in FIG.
  • FIG. 10 is a graph showing the concentration distribution of the positive electrode active material and the negative electrode active material of other electrode sheets, with the output of the electrode sheet positioned between the center portion and the end face of the bipolar secondary battery as a reference output. .
  • FIG. 11 is a graph showing the output current of each electrode sheet when the concentrations of the positive electrode active material and the negative electrode active material are set as shown in FIG.
  • FIG. 12 is a graph showing the output voltage of each electrode sheet when the concentrations of the positive electrode active material and the negative electrode active material are set as shown in FIG.
  • FIG. 13 is a graph showing the temperature distribution in the stacking direction of the bipolar secondary battery in which the concentrations of the positive electrode active material and the negative electrode active material are set as shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view of a bipolar secondary battery according to the present embodiment.
  • the bipolar secondary battery 4 is formed by laminating a plurality of electrode sheets (unit cells) 25 via current collector foils (conductive films) 29.
  • the bipolar secondary battery 4 has a substantially rectangular parallelepiped shape.
  • the bipolar secondary battery 4 is housed in a casing (not shown), and is mounted on, for example, a hybrid vehicle or an electric vehicle.
  • the bipolar secondary battery 4 includes a positive electrode current collector plate 23 provided on one end surface of the electrode sheet 25 in the stacking direction, and a negative electrode current collector plate 21 provided on the other end surface.
  • the positive current collector plate 23 and the negative current collector plate 21 are provided with terminal portions to which wiring connected to external members such as a PCU (Power Control Unit) is connected. It protrudes toward.
  • PCU Power Control Unit
  • the end face side of the bipolar secondary battery 4 has higher heat dissipation efficiency than the central part of the bipolar secondary battery 4 .
  • the electrode sheet 25 includes a plate-like electrolyte layer 27, a positive electrode 28 formed on one main surface of the electrolyte layer 27, and a negative electrode 26 formed on the other main surface. It has. Each electrode sheet 25 is connected in series via a current collector foil (conductive film) 29. Specifically, the negative electrode current collector plate 2 1 is in contact with the lower surface of the electrode sheet 2 5 n 1 is provided, an electrode sheet 25 n 2 adjacent to the electrode sheet 25 n 1 is provided via the conductive foil 29, and a plurality of electrode sheets are further laminated. An electrode sheet 25 (m is a positive number) is provided on the upper surface of the positive electrode current collector plate 23. In the present embodiment, m electrode sheets 25 are laminated. Yes.
  • the negative electrode 26 is formed by applying a negative electrode active material or an additive to one surface of the current collector foil 29 by sputtering, and the positive electrode 28 is formed on the other surface of the current collector foil 29. It is formed by applying a positive electrode active material or an additive by sputtering.
  • the concentration of the positive electrode active material contained in the positive electrode 28 and the concentration of the negative electrode active material contained in the negative electrode 26 are set according to the temperature distribution in the bipolar secondary battery 4 when the bipolar secondary battery 4 is driven. Yes.
  • Another electrode sheet (second unit battery) 2 5 whose temperature is higher than that of one electrode sheet (first unit battery) 2 5 is one electrode sheet 2
  • the concentration of positive electrode active material and negative electrode active material of 5 is set lower than the concentration of positive electrode active material and negative electrode active material of other electrode sheets 25.
  • each electrode sheet 25 uniform, it is possible to suppress the deterioration of the specific electrode sheet 25, and to extend the life of the bipolar secondary battery 4. it can.
  • the temperature of the portion located on the inner side in the stacking direction is higher than the portion positioned on the end face side in the stacking direction of the electrode sheet 25.
  • the positive electrode active material of the positive electrode 28 and the negative electrode active material of the negative electrode 26 of the electrode sheet 25 are moved inwardly from the end surface side of the bipolar secondary battery 4 positioned in the stacking direction of the electrode sheet 25. It is preferable to make the concentration low. As a result, Even if temperature variations occur in the stacking direction of the electrode sheets 25, the output of each electrode sheet 25 can be made uniform.
  • the content of the positive electrode active material in each positive electrode 28 can be adjusted.
  • the additive contained in each positive electrode 28 (first additive) and the additive contained in the negative electrode 26 (second additive) A method for adjusting the content of) is considered.
  • each positive electrode 2 8 increases from the inner side in the stacking direction of the electrode sheet 25 toward the end face side of the bipolar secondary battery 4.
  • the content of additives contained in each negative electrode 26 is reduced, and the positive electrode active material contained in each positive electrode 28 and each negative electrode 26 are Increasing the content of the negative electrode active material contained.
  • the concentration of the positive electrode active material and the negative electrode active material contained in the positive electrode 28 and the negative electrode 26 can be increased toward the end face side of the bipolar secondary battery 4, and the bipolar secondary battery 4
  • the thickness of each positive electrode 28 and each negative electrode 26 decreases toward the end face side, and the bipolar secondary battery 4 can be configured compactly.
  • the total mass of the positive electrode active material and additives constituting each positive electrode 28 may be varied while keeping the total mass of the negative electrode active material and the additives constituting each negative electrode 26 constant. In this way, by setting the concentrations of the positive electrode active material of each positive electrode 28 and the negative electrode active material of negative electrode 26, the volume does not fluctuate even when compared with conventional bipolar secondary batteries, and it has been used conventionally. Bipolar secondary battery casings can be used.
  • FIG. 2 is a graph showing the concentration distribution of the positive electrode active material and the negative electrode active material.
  • Fig. 3 shows the distribution of input / output values (current amount) of the bipolar secondary battery 4 when the concentration distribution of the positive electrode active material and the negative electrode active material is set as shown in Fig. 2, and Fig. 4 The output voltage distribution is shown for each electrode sheet.
  • Fig. 5 shows a bipolar 2 battery when the concentration distribution of the positive electrode active material and the negative electrode active material is set as shown in Fig. 2.
  • 4 is a graph showing a temperature distribution of 4. 2 to 13, the vertical axis represents each electrode sheet 25 nl to 25 nm shown in FIG. 1, and the electrode sheet 25 n 1 is positioned at the center in the stacking direction of the electrode sheet 25 n 1 to 25 nm. An electrode sheet is used.
  • the concentration distribution of the positive electrode active material and the negative electrode active material in the stacking direction of the bipolar secondary battery 4 shown in FIG. 2 is set to correspond to the temperature distribution in the stacking direction of the bipolar secondary battery 4 shown in FIG. Yes.
  • the output voltage and the output current amount of each electrode sheet 25 n 1 to 25 nm are substantially the same, and become a predetermined voltage and a predetermined current.
  • the output voltage of each electrode sheet 25 ⁇ 1 to 25 nm becomes a predetermined voltage, so the output voltage of each electrode sheet 25 n 1 to 25 nm is sensed.
  • the output of the electrode sheet 25 n 1 positioned inward in the stacking direction of the electrode sheet 25 nl to 25 nm is used as a reference output, and each electrode sheet 25 n 1 to 25 nm The output is set to be the reference output. Since the electrode sheet 25 n 1 located at the center of the bipolar secondary battery 4 tends to be hot during driving, the reference output also increases, and the total output voltage and current of the bipolar secondary battery 4 must be increased. Can do.
  • the concentration distribution of the positive electrode active material and the negative electrode active material contained in the positive electrode 28 and the negative electrode 26 of the electrode sheet 25 n 1 located in the center of the electrode sheet 25 nl to 25 nm in the stacking direction is as follows.
  • the concentration of positive electrode active material and negative electrode active material contained in the positive electrode 28 and negative electrode 26 of the electrode sheet 25 n 1 and 25 nm located on the end face of the pipeline secondary battery 4 is set to about 95%.
  • Figure 6 shows the electrode sheet located on the end face of the bipolar secondary battery 4 25 n 1, 25 ⁇
  • Each electrode sheet is included in the positive and negative electrodes of 25 n 1 to 25 nm so that the output of each electrode sheet 25 n 1 to 25 nm becomes the reference output, with m output as the reference output 6 is a graph showing the concentration distribution when the concentration of the positive electrode active material and the negative electrode active material is set, specifically, the positive electrode active material of 25 n 1, 25 nm positioned on the end face side, and The concentration of the negative electrode active material is about 85%, and the concentration of the positive electrode active material and the negative electrode active material of the electrode sheet 25 n 1 located in the center in the stacking direction is about 75%.
  • the concentration of the positive electrode active material and the negative electrode active material in this way, the required amount of the positive electrode active material and the negative electrode active material can be reduced, and the bipolar secondary battery 4 is configured at low cost. be able to.
  • FIG. 7 is a graph showing the output current of each electrode sheet 25 n 1 to 25 nm when the concentration of the positive electrode active material and the negative electrode active material is set as shown in FIG.
  • FIG. 5 is a graph showing an output voltage of each electrode sheet 25 n 1 to 25 nm.
  • FIG. 9 is a graph showing the temperature distribution in the bipolar secondary battery 4.
  • the electrode sheet 25 k (k is a positive number, 1 k k 1 1 m) located between the center and the end face of the pipola secondary battery 4.
  • concentrations of the positive electrode active material and the negative electrode active material of the other electrode sheet 25 may be set.
  • the concentration of the positive electrode active material and negative electrode active material of electrode seeds 25 n 1 and 25 nm located on the end face is set to nine. / 0, and the concentration of the positive electrode active material and the negative electrode active material of the electrode sheet 25 n 1 located in the center is about 80%.
  • Fig. 13 is a graph showing the temperature distribution in the stacking direction of the positive electrode, the bipolar secondary battery with the active material concentration and the negative electrode active material concentration set as shown in Fig. 10.
  • the concentration distribution of the positive electrode active material and the negative electrode active material of each electrode sheet 25 nl to 25 nm is set.
  • FIG. 11 is a graph showing the output current of each electrode sheet from 25 nl to 25 nm when the concentrations of the positive electrode active material and the negative electrode active material are set as shown in FIG. 2 is a graph showing the output voltage of each electrode sheet 25 n 1 to 25 nm.
  • the output voltage and output current of each electrode sheet 25 n l to 25 nm are equalized.
  • the present invention is not limited to this.
  • each positive electrode 28 and negative electrode 26 also varies in the direction of the main surface, and depending on the position in each positive electrode 28 and negative electrode 26, the portion where the electrode reaction is active and the inactivity There are some parts.
  • the temperature of the connection part to which the wiring is connected tends to increase.
  • the temperature of the portion located in the vicinity of the connection portion is likely to be higher than the other portions. Therefore, even in one electrode sheet 25, the density of the part where the temperature is high is lowered and the density of the part where the temperature is low is raised so that partial deterioration occurs in the one electrode sheet 25. Can be suppressed.
  • the electrolyte layer 27 is a layer formed from a material exhibiting ionic conductivity.
  • the electrolyte layer 27 may be a solid electrolyte or a gel electrolyte.
  • the bipolar electrode 30 is formed between the electrolyte layers 27, and is formed on one of the main surfaces of the current collector foil 29 and the current collector foil 29, and on the other main surface. And a negative electrode 26 formed.
  • a plate-like negative electrode current collector plate 21 and a plate-like positive electrode current collector 23 are provided on the end surface of the bipolar secondary battery 4 positioned at the end of the electrode sheet 25 in the stacking direction.
  • the negative electrode 26 of the electrode sheet 25 adjacent to the negative electrode current collector plate 21 in the stacking direction is in contact with one main surface of the negative electrode current collector plate 21.
  • one main surface of the positive electrode current collector plate 23 is in contact with the positive electrode 28 of the electrode sheet 25 adjacent to the positive electrode current collector plate 23 in the stacking direction of the electrode sheet 25.
  • the configuration of the bipolar secondary battery 4 configured as described above will be described in detail.
  • the current collector foil 29 is made of aluminum, for example. In this case, even if the active material layer provided on the surface of the current collector foil 29 contains a solid polymer electrolyte, the mechanical strength of the current collector foil 29 can be sufficiently ensured.
  • the current collector foil 29 may be formed by coating aluminum on the surface of a metal other than aluminum, such as copper, titanium, nickel, stainless steel (SUS), or an alloy thereof.
  • the positive electrode 28 includes additives such as a positive electrode active material and a solid polymer electrolyte.
  • the positive electrode '28 includes, as additives, a supporting salt (lithium salt) for enhancing ionic conductivity, a conductive auxiliary for enhancing electron conductivity, and NMP as a slurry viscosity adjusting solvent.
  • a I BN azobisisopropylonitrile
  • a polymerization initiator may be included.
  • the positive electrode active material a composite oxide of lithium and a transition metal generally used in a lithium ion secondary battery can be used.
  • the positive electrode active material was example, if, L i C o 0 L i ⁇ C o based composite oxide such as 2, L i N i 0 L i ⁇ N i based composite oxides such as 2, spinel L IMN 2 ⁇ 4 L i ⁇ ⁇ complex oxides such as L i ⁇ Fe complex oxides such as L i F e 0 2 and the like.
  • L i F e P_ ⁇ phosphate compound or sulfate compound of transition metal and lithium such as 4; V 2 0 5, Mn_ ⁇ 2, T i S 2, Mo S 2, Mo 0 3 transition metal oxide such as goods and sulfides; Pb_ ⁇ 2, AgO, N i O OH and the like.
  • the solid polymer electrolyte is not particularly limited as long as it is a polymer exhibiting ionic conductivity, and examples thereof include polyethylene oxide (PEO), polypropylene oxide (PP *), and copolymers thereof.
  • PEO polyethylene oxide
  • PP * polypropylene oxide
  • the solid polymer electrolyte is contained in at least one of the positive electrode 28 and the negative electrode 26. More preferably, the solid polymer electrolyte Is included in both the positive electrode 28 and the negative electrode 26.
  • Li (C 2 F 5 S 0 2 ) 2 N, Li .BF 4 , Li PF 6 , Li N (S0 2 C 2 F 5 ) 2 , or a mixture thereof. can do.
  • the conductive aid acetylene black, carbon black, graphite and the like can be used.
  • the negative electrode 26 includes additives such as a negative electrode active material and a solid polymer electrolyte.
  • the negative electrode active material includes, as additives, a supporting salt (lithium salt) for increasing ionic conductivity, a conductive auxiliary agent for increasing electron conductivity, and NMP (N-methyl-2-methyl) as a solvent for adjusting slurry viscosity.
  • a supporting salt lithium salt
  • a conductive auxiliary agent for increasing electron conductivity
  • NMP N-methyl-2-methyl
  • ⁇ ' ⁇ BN Azobisipuchi-tolyl
  • the negative electrode active material materials generally used in lithium ion secondary batteries can be used.
  • a solid electrolyte it is preferable to use a single oxide or a composite oxide of lithium and a metal oxide or metal as the negative electrode active material.
  • the negative electrode active material is a composite oxide of carbon or lithium and a transition metal. More preferably, the transition metal is titanium. In other words, the negative electrode active material is more preferably titanium oxide or a composite oxide of titanium and lithium.
  • a solid polymer electrolyte such as polyethylene oxide (PEO), polypropylene oxide (PPO), or a copolymer thereof can be used.
  • the solid electrolyte includes a supporting salt (lithium salt) for ensuring ionic conductivity.
  • the supporting salt it is possible to use L i BF 4, L i PF 6, L i N (S0 2 CF 3) 2, L i N (S0 2 C 2 F 5) 2, or mixtures thereof .
  • Table 1 shows specific examples when the electrolyte layer 27 is an organic solid electrolyte
  • Table 2 shows specific examples when the electrolyte layer 27 is an inorganic solid electrolyte
  • Table 3 shows that the electrolyte layer 27 is A specific example in the case of a gel electrolyte is shown.
  • the electrolyte used in the secondary battery is a liquid.
  • dilute sulfuric acid is used as the electrolyte.
  • the positive current collector plate 23 and the negative current collector plate 21 have a certain degree of strength.
  • each of the plurality of bipolar secondary batteries 4 is sandwiched between the positive current collector plate 23 and the negative current collector plate 21.
  • the gap between the positive current collector plate 2 3 and the bipolar secondary battery 4 or the negative current collector plate 21 The gap with the bipolar secondary battery 4 can be eliminated.
  • the present invention is suitable for a bipolar secondary battery configured by stacking a plurality of unit batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)

Description

明細書
2次電池 技術分野
本発明は、 複数の単位電池を積層して構成された 2次電池に関する。 背景技術
従来から、 特開 2004— 03 1255号公報、 特開 2004— 095400 号公報、 特開 2005-1 746 91号公報、 特開 2005— 050756号公 報および特開 2005-01 16 60号公報等に提案されているように、 電解質 層の表面に正極と負極とが形成された複数の電池セルを集電板を介して積層して 構成された 2次電池が知られている。
このような 2次電池は、 蓄電池として利用されており、 正極と負極との間に生 じる電極反応によって放電が行われる。 , 上記のような 2次電池においては、 2次電池の内方側と端部側とでは放熱効率 が異なり、 2次電池の内方ほど温度が高くなる傾向にある。 このため、 2次電池 の内方に位置する電池セルの電極反応が活発となり、 2次電池の内方に位置する 電池セルが早期に劣化してしまい、 2次電池全体の寿命が短くなるとレ、う問題力 S ある。 ,
さらに、 各電池セルが正常に駆動している場合においても、 2次電池内の温度 分布によって各電池セルの出力電圧にばらつきが生じる。 このため、 各電池セル の出力電圧をセンシングして所定電圧からずれた電池セルを検出することができ たとしても、 その原因が当該電池セルの故障によるものなのか、 温度によるもの なのかを判断することが困難なものとなっている。 このように、 従来の 2次電池 においては、 不具合を生じた電池セルの特定が困難なものとなっている。
発明の開示
本発明は、 上記のような課題に鑑みてなされたものであり、 その第 1の目的は、 位置によって放熱効率が異なり、 各電池セルの温度にばらつきがある 2次電池に おいても、 各電池セルの電圧や電流量等の出力のばらつきが抑制され、 長寿命化 が図られた 2次電池を提供することである。 また、 第 2の目的は、 不具合の生じ た電池セルを特定する正確さの向上が図られた 2次電池を提供することである。 本発明に係る 2次電池は、 1つの局面では、 板状に形成された電解質層と、 電 解質層の第 1主表面上に形成され正極活物質を含む正極と、 電解質層の第 2主表 面上に形成され負極活物質を含む負極とを有する単位電池と、 単位電池間に設け られた導電層とを備え、 単位電池および導電膜を複数積層した 2次電池であって、 2次電池内の温度分布に応じて、 正極活物質および負極活物質の濃度が設定され る。 好ましくは、 上記単位電池は、 第 1単位電池と、 第 1単位電池より温度が高 くなる第 2単位電池とを含み、 第 1単位電池の正極活物質およぴ負極活物質の濃 度よりも、 第 2単位電池の正極活物質および負極活物質の濃度を低くする。 好ま しくは、 上記正極は、 第 1添加物をさらに含み、'負極は、 第 2添加物をさらに含 み、 2次電池内の温度分布に応じて、 第 1添加物および第 2添加物の添加量を設 定する。
本発明に係る 2次電池は、 他の局面では、 板状に形成された電解質層と、 電解 質層の第 1主表面上に形成され正極活物質を含む正極と、 電解質層の第 2主表面 上に形成され負極活物質を含む負極とを有する単位電池と、 単位電池間に配置さ れた導電層とを備え、 単位電池および導電膜を複数積層した 2次電池であって、 単位電池の積層方向に位置する 2次電池の端面側から内方に向かうに従って単位 電池の温度が高くなると共に、 正極に含まれる正極活物質および負極に含まれる 負極活物質の濃度が低くなる。 好ましくは、 上記単位電池の積層方向の内方に位 置する単位電池の出力を基準出力として、 各単位電池の出力が基準出力となるよ うに、 各単位電池の正極および負極に含まれる正極活物質および負極活物質の濃 度を設定する。 好ましくは、 上記端面に位置する単位電池の出力を基準出力とし て、 各単位電池の出力が基準出力となるように、 各単位電池の正極および負極に 含まれる正極活物質および負極活物質の濃度を設定する。
本発明に係る 2次電池においては、 2次電池内の温度分布にあわせて、 負極活 物質および正極活物質の濃度を設定して、 温度の高い単位電池程、 正極活物質お よび負極活物質の濃度を低くすることにより、 各単位電池の出力を均一化するこ とができ、 特定の単位電池のみが劣化することを抑制することができる。 さらに、
2次電池内の各単位電池の出力を近似させることができるため、 各単位電池の出 力をセンシングすることにより、 不具合を生じた単位電池を特定することができ る。 図面の簡単な説明
図 1は、 本実施の形態に係るバイポーラ 2次電池の断面図である。
図 2は、 正極活物質および負極活物質の濃度分布を示すグラフである。
図 3は、 正極活物質および負極活物質の濃度分布を図 2に示すように設定した ときにおける、 バイポーラ 2次電池の入出力値 (電流量) の分布を示すグラフで める。
図 4は、 各電極シートについて、 出力される電圧分布を示すグラフである。 図 5は、 正極活物質および負極活物質の濃度分布を図 2に示すように設定した ときの、 バイポーラ 2電池の温度分布を示すグラフである。
図 6は、 バイポーラ 2次電池の端面に位置する電極シート 2 5の出力を基準出 力として、 各電極シート 2 5の出力が、 基準出力となるように各電極シート 2 5 の正極および負極に含まれる正極活物質および負極活物質の濃度を設定したとき の濃度分布を示すグラフである。
図 7は、 図 6の示すように、 正極活物質および負極活物質の濃度を設定したと きの、 各電極シートの出力電流を示すグラフである。
図 8は、 図 6の示すように、 正極活物質および負極活物質の濃度を設定したと きの、 各電極シートの出力電圧を示すグラフである。
図 9は、 図 6の示すように、 正極活物質および負極活物質の濃度を設定したと きの、 パイポーラ 2次電池内の温度分布を示すグラフである。
図 1 0は、 バイポーラ 2次電池の中央部と端面との間に位置する電極シートの 出力を基準出力として、 他の電極シートの正極活物質および負極活物質の濃度分 布を示すグラフである。
図 1 1は、 図 1 0に示すように、 正極活物質および負極活物質の濃度が設定さ れたときの各電極シートの出力電流を示すグラフである。 図 1 2は、 図 1 0に示すように、 正極活物質および負極活物質の濃度が設定さ れたときの各電極シートの出力電圧を示すグラフである。
図 1 3は、 図 1 0のように正極活物質および負極活物質の濃度が設定されたパ ィポーラ 2次電池の積層方向の温度分布を示すグラフである。 発明を実施するための最良の形態
図 1から図 1 3を用いて、 本実施の形態に係るバイポーラ 2次電池 4について 説明する。 図 1は、 本実施の形態に係るバイポーラ 2次電池の断面図である。 こ の図 1に示されるように、 バイポーラ 2次電池 4は、 集電箔 (導電膜) 2 9を介 して、 複数の電極シート (単位電池) 2 5を積層して形成されている。 バイポ一 ラ 2次電池 4は、 略直方体形状とされている。
バイポーラ 2次電池 4は、 図示されないケーシングに収納され、 たとえば、 ハ イブリツド車や、 電気自動車などに搭載される。 このバイポーラ 2次電池 4は、 電極シート 2 5の積層方向の一端面に設けられた正極集電板 2 3と、 他方の端面 に設けられた負極集電板 2 1とを備えている。
この正極集電板 2 3と負極集電板 2 1とには、 P C U (Power Control Unit) などの外部の部材に接続された配線が接続される端子部が形成されており、 ケー シングから外方に突出している。
このため、 この端子部からケーシングの外部に熱が放熱されたり、 ケーシング を介して、 正極集電板 2 3および負極集電板 2 1の表面から外方に熱が放熱され たりする。 このように、 バイポーラ 2次電池 4の端面側は、 バイポーラ 2次電池 4の中央部よりも放熱効率が高いものとなっている。
そして、 バイポーラ 2次電池の内部に熱がこもり、 バイポーラ 2次電池 4の端 面側に位置する電極シート 2 5の温度よりも、 バイポーラ 2次電池 4の内部側に 位置する電極シート 2 5の温度の方が高くなる。
電極シート 2 5は、 板状に形成された電解質層 2 7と、 電解質層 2 7の一方の 主表面上に形成された正極 2 8と、 他方の主表面上に形成された負極 2 6とを備 えている。 そして、 各電極シート 2 5は、 集電箔 (導電膜) 2 9を介して直列に 接続されている。 具体的には、 負極集電板 2 1の下面と接触する電極シート 2 5 n 1が設けられ、 導電箔 2 9を介して電極シート 2 5 n 1に隣接する電極シート 2 5 n 2が設けられ、 さらに複数の電極シートが積層される。 そして、 正極集電 板 2 3の上面には、 電極シート 2 5 (mは、 正の数である。 ) が設けられ、 本実施の形態においては、 m個の電極シート 2 5が積層されている。
なお、 負極 2 6は、 集電箔 2 9の一方の表面に負極活物質や添加物をスパッタ リングにより塗布することにより形成され、 正極 2 8は、 集電箔 2 9の他方の表 面に正極活物質や添加物をスパッタリングにより塗布することにより形成される。 正極 2 8に含まれる正極活物質の濃度および負極 2 6に含まれる負極活物質の 濃度は、 バイポーラ 2次電池 4が駆動したときのパイポーラ 2次電池 4内の温度 分布に応じて設定されている。
すなわち、 バイポーラ 2次電池 4の駆動時に、 一の電極シート (第 1単位電 池) 2 5よりも温度が高くなる他の電極シート (第 2単位電池) 2 5は、 一の電 極シート 2 5の正極活物質および負極活物質の濃度よりも、 他の電極シート 2 5 の正極活物質および負極活物質の濃度よりも、 低く設定する。
このため、 バイポーラ 2次電池 4が駆動して、 バイポーラ 2次電池 4内の温度 分布にばらつきが生じて、 電極シート 2 5の位置によって温度が異なるようにな つても、 温度が高くなる電極シート 2 5の電極反応が活発化することを抑制する ことができる。 これにより、 各電極シート 2 5の放電電流量や電圧にばらつきが 生じることを抑制することができ、 各電極シード 2 5の出力を均一化することが できる。
このように、 各電極シート 2 5の出力が均一化されることにより、 特定の電極 シート 2 5が劣化されることを抑制することができ、 バイポーラ 2次電池 4の長 寿命化を図ることができる。
本実施の形態に係るバイポーラ 2次電池 4においては、 電極シート 2 5の積層 方向の端面側に位置する部分よりも、 積層方向の内方側に位置する部分の温度の 方が高くなる。
このため、 電極シート 2 5の積層方向に位置するバイポーラ 2次電池 4の端面 側から内方に向かうに従って、 電極シート 2 5の正極 2 8の正極活物質および負 極 2 6の負極活物質の濃度が低くなるようにするのが好ましい。 これにより、 電 極シート 2 5の積層方向に温度のばらつきが生じたとしても、 各電極シート 2 5 の出力を均一化することができる。
ここで、 各電極シート 2 5の正極 2 8内の正極活物質および、 負極 2 6内の負 極活物質の濃度を調整する方法としては、 各正極 2 8内の正極活物質の含有量お よび各負極 2 6内の負極活物質の含有量を一定としつつも、 各正極 2 8内に含ま れる添加物 (第 1添加物) および負極 2 6内に含まれる添加物 (第 2添加物) の 含有量を調整する手法が考えられる。
そして、 図 1に示すバイポーラ 2次電池 4においては、 電極シート 2 5の積層 方向の内方側からパイポーラ 2次電池 4の端面側に向かうに従って、 各正極 2 8 内に含まれる添加物おょぴ各負極 2 6内に含まれる添加物の含有量を低減して、 バイポーラ 2次電池 4の内方側に向かうに従って、 各正極 2 8内に含まれる正極 活物質および各負極 2 6内に含まれる負極活物質の含有率を増加させる。
これにより、 バイポーラ 2次電池 4の端面側に向かうに従って、 正極 2 8およ び負極 2 6に含まれる正極活物質および負極活物質の瀵度を高めることができる と共に、 バイポーラ 2次電池 4の端面側に向かうに従って、 各正極 2 8および各 負極 2 6の厚みが薄くなり、 バイポーラ 2次電池 4をコンパクトに構成すること ができる。
なお、 各正極 2 8内に含まれる正極活物質および各負極 2 6内に含まれる負極 活物質の濃度を調整する手法としては、 各正極 2 8を構成する正極活物質および 添加物の総質量と、 各負極 2 6を構成する負極活物質と添加物の総質量を一定と しつつも、 正極活物質および負極活物質の含有率を変動させてもよい。 このよう にして、 各正極 2 8の正極活物質および負極 2 6の負極活物質の濃度を設定する ことにより、 従来のバイポーラ 2次電池と比較しても容積が変動せず、 従来から 用いられているバイポーラ 2次電池のケーシングを援用することができる。
図 2は、 正極活物質および負極活物質の濃度分布を示すグラフである。 図 3は、 正極活物質および負極活物質の濃度分布を図 2に示すように設定したときにおけ る、 バイポーラ 2次電池 4の入出力値 (電流量) の分布を示し、 図 4は、 各電極 シートについて、 出力される電圧分布を示す。 さらに、 図 5は、 正極活物質およ び負極活物質の濃度分布を図 2に示すように設定したときの、 バイポーラ 2電池 4の温度分布を示すグラフである。 なお、 図 2から図 13において、 縦軸は、 図 1に示す各電極シート 25 n l〜25 nmを示し、 電極シート 25 n 1は、 電極 シート 25 n 1〜25 n mの積層方向の中央に位置する電極シートとする。
そして、 図 2に示すバイポーラ 2次電池 4の積層方向の正極活物質および負極 活物質の濃度分布は、 図 5に示すバイポーラ 2次電池 4の積層方向の温度分布と 対応するように設定されている。
このため、 図 3および図 4に示すように、 各電極シート 25 n 1〜25 nmの 出力電圧および出力電流量は、 略一致しており、 所定電圧および所定電流となる。 このように、 バイポーラ 2次電池 4の駆動時において、 各電極シート 25 η 1 〜25 nmの出力電圧等が所定電圧となるため、 各電極シート 25 n 1〜 25 n mの出力電圧などをセンシングすることにより、 不具合を生じて、 出力電圧等が 所定電圧からずれるような電極シート 25を容易に特定することができる。
すなわち、 従来においては、 正常に駆動しているパイポーラ 2次電池の各電極 シート 25 n 1〜25 nmの出力電圧にばらつきが生じるため、 不具合を生じた 電極シート 25 n 1〜 25 n mの特定が非常に困難である一方で、 本実施の形態 に係るバイポーラ 2次電池 4においては、 容易に不具合を生じた電極シート 25 n 1〜25 nmを容易に特定することができる。
また、 図 2に示す例においては、 電極シ一ト 25 n l〜25 nmの積層方向の 内方に位置する電極シート 25 n 1の出力を基準出力として、 各電極シート 25 n 1〜25 nmの出力が基準出力となるように設定されている。 バイポーラ 2次 電池 4の中央部に位置する電極シート 25 n 1は駆動時に温度が高くなり易いた め、 基準出力も高くなり、 バイポーラ 2次電池 4の総出力電圧おょぴ電流を高く することができる。
具体的な濃度分布としては、 電極シート 25 n l〜25 nmの積層方向の中央 部に位置する電極シート 25 n 1の正極 28および負極 26に含まれる正極活物 質および負極活物質の濃度を 85 %程度として、 パイポーラ 2次電池 4の端面に 位置する電極シート 25 n 1、 25 nmの正極 28および負極 26に含まれる正 極活物質および負極活物質の濃度を 95%程度に設定する。
図 6は、 バイポーラ 2次電池 4の端面に位置する電極シート 25 n 1、 25 η mの出力を基準出力として、 各電極シ^"ト 2 5 n 1〜2 5 n mの出力が、 基準出 力となるように各電極シート 2 5 n 1〜2 5 n mの正極および負極に含まれる正 極活物質および負極活物質の濃度を設定したときの濃度分布を示すグラフである。 具体的には、 端面側に位置する電極シート 2 5 n 1、 2 5 n mの正極活物質お よび負極活物質の濃度を 8 5 %程度として、 積層方向の中央部に位置する電極シ ート 2 5 n 1の正極活物質おょぴ負極活物質の濃度を 7 5 %程度とする。
このように正極活物質および負極活物質の濃度を設定することにより、 必要と する正極活物質量および負極活物質量を低減することができ、 低コストでバイポ ーラ 2次電池 4を構成することができる。
図 7は、 図 6の示すように、 正極活物質および負極活物質の濃度を設定したと きの、 各電極シート 2 5 n 1〜2 5 n mの出力電流を示すグラフであり、 図 8は、 各電極シート 2 5 n 1〜2 5 n mの出力電圧を示すグラフである。 さらに、 図 9 は、 バイポーラ 2次電池 4内の温度分布を示すグラフである。
この図 7から図' 9に示すバイポーラ 2次電池 4においても、 パイポーラ 2次電 池 4内の温度分布に応じて、 正極活物質および負極活物質の濃度を設定している ため、 図 7および図 8に示すように、 各電極シート 2 5 n l〜2 5 n mの出力電 圧および出力電流が均一なものとなる。
このため、 このバイポーラ 2次電池 4においても、 各電極シ ト 2 5 η 1〜2 5 n mの出力電圧などをセンシングすることにより、 不具合を生じた電極シート 2 5 n 1〜2 5 n mを容易に特定することができる。
図 1 0に示すように、 パイポーラ 2次電池 4の中央部と端面との間に位置する 電極シート 2 5 k ( kは正の数であり、 1く kく 1く mである。 ) の出力を基準 出力として、 他の電極シート 2 5の正極活物質および負極活物質の濃度を設定し てもよい。
具体的には、 端面に位置する電極シード 2 5 n 1、 2 5 n mの正極活物質およ び負極活物質の濃度を 9ひ。 /0とし、 中央部に位置する電極シ一ト 2 5 n 1の正極 活物質および負極活物質の濃度を 8 0 %程度とする。
そして、 図 1 3は、 図 1 0のように正極.活物質おょぴ負極活物質の濃度が設定 されたバイポーラ 2次電池.4の積層方向の温度分布を示すグラフであり、 このバ ィポーラ 2次電池 4内の温度分布に応じて、 各電極シ^"ト 2 5 n l ~ 2 5 n mの 正極活物質および負極活物質の濃度分布を設定する。
図 1 1は、 図 1 0に示すように、 正極活物質および負極活物質の濃度が設定さ れたときの各電極シート 2 5 n l〜2 5 n mの出力電流を示すグラフであり、 図 1 2は、 各電極シート 2 5 n 1〜 2 5 n mの出力電圧を示すグラフである。 これ ら、 図 1 1および図 1 2に示されるように、 各電極シート 2 5 n l ~ 2 5 n mの 出力電圧および出力電流は、 均一化される。
なお、 上述のように電極シート 2 5の積層方向における温度分布のばらつきに 着目して、 各電極シート 2 5の出力の均一化を図ることに着目しているが、 これ に限られない。
たとえば、 各正極 2 8および負極 2 6についても、 主表面方向に温度にばらつ きがあり、 各正極 2 8および負極 2 6内においても位置によって、 電極反応が活 発な部分と、 不活性な部分とがある。
たとえば、 端子部のうち、 配線が接続される接続部分の温度は高くなり易い。 このため、 正極集電板 2 3や負極集電板 2 1に隣接する電極シート 2 5のうち、 接続部分の近傍に位置する部分の温度は、 他の部分より温度が高くなりやすい。 そこで、 1つの電極シート 2 5のうちでも、 温度が高くなる部分の濃度を低く して、 温度が低い部分の濃度を高くして、 1つの電極シート 2 5内においても、 部分劣化が生じることを抑制することができる。
図 1において、 電解質層 2 7は、 イオン伝導性を示す材料から形成される層で ある。 電解質層 2 7は、 固体電解質であってもよいし、 ゲル状電解質であっても よレ、。 電解質層 2 7を介在させることによって、 正極 2 8および負極 2 6間のィ オン伝導がスムーズになり、 バイポーラ 2次電池の出力を向上させることができ る。
なお、 バイポーラ電極 3 0は、 電解質層 2 7間に形成されており、 集電箔 2 9 と集電箔 2 9の一方の主表面上に形成された正極 2 8と他方の主表面上に形成さ れた負極 2 6とを備えている。
電極シート 2 5の積層方向の端部に位置するバイポーラ' 2次電池 4の端面には 板状の負極集電板 2 1と板状の正極集電扳 2 3とを備えている。 そして、 負極集電板 21の一方の主表面には、 この負極集電板 21に対して電 極シート 25の積層方向に隣接する電極シート 25の負極 26が接触している。 また、 正極集電板 23の一方の主表面には、 この正極集電板 23に対して電極シ ート 25の積層方向に隣接する電極シート 25の正極 28が接触している。
上記のように構成されたパイポーラ 2次電池 4の構成について詳細に説明する。 集電箔 29は、 たとえば、 アルミニウムから形成されている。 この場合、 集電箔 29の表面に設けられる活物質層が固体高分子電解質を含んでも、 集電箔 29の 機械的強度を十分に確保することができる。 集電箔 29は、 銅、 チタン、 ニッケ ル、 ステンレス鋼 (SUS) もしくはこれらの合金等、 アルミニウム以外の金属 の表面にアルミニウムを被膜することによって形成されてもよい。
正極 28は、 正極活物質および固体高分子電解質等の添加物を含む。 さらに、 正極' 28は、 添加物として、 イオン伝導性を高めるための支持塩 (リチウム塩) 、 電子伝導性を高めるための導電助剤、 スラリ一粘度の調整溶媒としての NMP
(N—メチルー 2—ピロリ ドン) 、 重合開始剤としての A I BN (ァゾビスイソ プチロニトリル) 等を含んでもよい。
正極活物質としては、 リチウムイオン 2次電池で一般的に用いられる、 リチウ ムと遷移金属との複合酸化物を使用することができる。 正極活物質として、 たと えば、 L i C o 02等の L i · C o系複合酸化物、 L i N i 02等の L i · N i 系複合酸化物、 スピネル L iMn24等の L i · Μη系複合酸化物、 L i F e 02等の L i · F e系複合酸化物などが挙げられる。 その他、 L i F e P〇4等 の遷移金属とリチウムとのリン酸化合物や硫酸化合物; V205、 Mn〇2、 T i S2、 Mo S 2、 Mo 03等の遷移金属酸化物や硫化物; Pb〇2、 AgO, N i O OH等が挙げられる。 '
.固体高分子電解質は、 イオン伝導性を示す高分子であれば、 特に限定されず、 たとえば、 ポリエチレンォキシド (PEO) 、 ポリプロピレンォキシド (P P 〇) 、 これらの共重合体などが挙げられる。 このようなポリアルキレンォキシド 系高分子は、 L i BF4、 L i PF6、 L i N (S 02CF 3) 2、 L i N (S02 G2F5) 2等のリチウム塩を容易に溶解する。 固体高分子電解質は、 正極 28お よび負極 26の少なくとも一方に含まれる。 より好ましくは、 固体高分子電解質 は、 正極 28および負極 26の双方に含まれる。
支持塩としては、 L i (C2F5S〇2) 2N、 L i .BF4、 L i PF6、 L i N (S02C2F5) 2、 もしくはこれらの混合物等を使用することができる。 導電 助剤としては、 アセチレンブラック、 カーボンブラック、 グラフアイト等を使用 することができる。
負極 26は、 負極活物質および固体高分子電解質等の添加物を含む。 負極活物 質は、 添加物として、 イオン伝導性を高めるための支持塩 (リチウム塩) 、 電子 伝導性を高めるための導電助剤、 スラリー粘度の調整溶媒としての NMP (N— メチル一2—ピロリ ドン) 、 重合開始剤としての Α'Ι BN (ァゾビスィ プチ口 -トリル) 等を含んでもよレ、。 . . . —— '
負極活物質としては、 リチウムイオン 2次電池で一般的に用いられる材料を使 用することができる。 伹し、 固体電解質を使用する場合、 負極活物質として、 力 一ボンもしくはリチウムと金属酸化物もしくは金属との複合酸化物を用いること が好ましい。 より好ましくは、 負極活物質は、 カーボンもしくはリチウムと遷移 金属との複合酸化物である。 さらに好ましくは、 遷移金属はチタンである。 つま り、 負極活物質は、 チタン酸化物もしくはチタンとリチウムとの複合酸化物であ ることがさらに好ましい。
電解質層 27·を形成する固体電解質としては、 たとえば、 ポリエチレンォキシ ド (PEO) 、 ポリプロピレンォキシド (PPO) 、 これらの共重合体等、 固体 高分子電解質を使用することができる。 固体電解質は、 イオン伝導性を確保する ための支持塩 (リチウム塩) を含む。 支持塩としては、 L i BF4、 L i PF6、 L i N (S02CF3) 2、 L i N (S02C2F5) 2、 もしくはこれらの混合物 等を使用することができる。
さらに、 正極 28、 負極 26および電解質層 27を形成する材料の具体例を表 1かち表 3に示す。 表 1は、 電解質層 27が有機系固体電解質である場合の具体 例を示し、 表 2は、 電解質層 27が無機系固体電解質である場合の具体例を示し、 表 3は、 電解質層 27がゲル状電解質である場合の具体例を示す。 【表 1】
Figure imgf000014_0001
Figure imgf000015_0001
【表 3】
Figure imgf000016_0001
多くの場合、 2次電池に用いられる電解質は液体である。 たとえば鉛蓄電池の 場合には電解液に稀硫酸が用いられる。 正極集電板 2 3および負極集電板 2 1は ある程度の強度を有する。 本実施の形態では複数のバイポーラ 2次電池 4の各々 は正極集電板 2 3および負極集電板 2 1により挟まれる。 正極集電板 2 3および 負極集電板 2 1をバイポーラ 2次電池 4に挟んだときに正極集電板 2 3とバイポ ーラ 2次電池 4との隙間、 あるいは負極集電板 2 1とバイポーラ 2次電池 4との 隙間をなくすことができる。
以上のように本発明の実施の形態について説明を行なったが、 今回開示された 実施の形態はすべての点で例示であって制限的なものではないと考えられるべき である。 本発明の範囲は請求の範囲によって示され、 請求の範囲と均等の意味お よび範囲内でのすべての変更が含まれることが意図される。 さらに、 上記数値な どは、 例示であり、 上記数値および範囲にかぎられない。 産業上の利用可能性 '
本発明は、 複数の単位電池を積層して構成されたバイポーラ 2次電池に好適で ある。

Claims

請求の範囲
1. 板状に形成された電解質層 (27) と、 前記電解質層 (27) の第 1主表 面上に形成され正極活物質を含む正極 (28) と、 前記電解質層 (27) の第 2 5. 主表面上に形成され負極活物質を含む負極 (26) とを有する単位電池 (25) と、
前記単位電池 (25) 間に設けられた導電層とを備え、 前記単位電池 (25) および前記導電層を複数積層した 2次電池であって、
前記 2次電池内の温度分布に応じて、 前記正極活物質おょぴ前記負極活物質の0 濃度を設定する、 2次電池。
2. 前記単位電池 (25) は、 第 1単位電池 (25) と、 前記第 1単位電池 (25) より温度が高くなる第 2単位電池 (25) とを含み、
前記第 1単位電池 (25) の前記正極活物質および前記負極活物質の濃度より も、 前記第 2単位電池 (25) の前記正極活物質および前記負極活物質の濃度を5 低くする、 請求の範囲 1に記載の 2次電池。
3. 前記正極 (28) は、 第 1添加物をさらに含み、
前記負極 (26) は、 第 2添加物をさらに含み、
前記 2次電池内の温度分布に応じて、 前記第 1添加物お.よび前記第 2添加物の 添加量を設定する、 請求の範囲 1に記載の 2次電池。
0 4. 板状に形成された電解質層 (27) と、 前記電解質層 (27) の第 1主表 · 面上に形成され正極活物質を含む正極 (28) と、 前記電解質層 (27) の第 2 主表面上に形成され負極活物質を含む負極 (26) とを有する電池と、 前記単位 電池 (25) および導電膜を複数積層した 2次電池であって、
前記単位電池 (25) 間に配置された導電層とを備え、 前記単位電池 (25)5 および前記導電層を複数積層した 2次電池であって、
前記単位電池 (25) の積層方向に位置する前記 2次電池の端面側から内方に 向かうに従って前記単位電池 (2 5) の温度が高くなると共に、 前記正極 (2 8) に含まれる正極活物質および前記負極 (26) に含まれる'負極活物質の濃度 が低くなる、 2次電池。 ' '5. 前記単位電池 (25) の積層方向の內方に位置する前記単位電池 (25) の出力を基準出力として、 前記各単位電池 (25).の出力が前記基準出力となる ように、 前記各単位電池 (25) の正極 (28) および負極 (26) に含まれる 前記正極活物質および前記負極活物質の濃度を設定した、 請求の範囲 4に記載の
2次電池。
6. 前記端面に位置する前記単位電池 (25) の出力を基準出力として、 前記 各単位電池 (25) の出力が前記基準出力となるように、 前記各単位電池 (2 5) の正極 (28) および負極 (26) に含まれる前記正極活物質および前記負 極活物質の濃度を設定した、 請求の範囲 4に記載の 2次電池。
PCT/JP2007/064301 2006-07-19 2007-07-12 Batterie secondaire WO2008010564A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07768450.4A EP2045866A4 (en) 2006-07-19 2007-07-12 SECONDARY BATTERY
CN2007800266944A CN101490894B (zh) 2006-07-19 2007-07-12 二次电池
US12/373,647 US8642208B2 (en) 2006-07-19 2007-07-12 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-196981 2006-07-19
JP2006196981A JP5286650B2 (ja) 2006-07-19 2006-07-19 2次電池

Publications (1)

Publication Number Publication Date
WO2008010564A1 true WO2008010564A1 (fr) 2008-01-24

Family

ID=38956896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064301 WO2008010564A1 (fr) 2006-07-19 2007-07-12 Batterie secondaire

Country Status (5)

Country Link
US (1) US8642208B2 (ja)
EP (2) EP2045866A4 (ja)
JP (1) JP5286650B2 (ja)
CN (1) CN101490894B (ja)
WO (1) WO2008010564A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124265B2 (en) 2006-12-21 2012-02-28 Toyota Jidosha Kabushiki Kaisha Power storage device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4274256B2 (ja) 2006-08-25 2009-06-03 トヨタ自動車株式会社 蓄電装置用電極及び蓄電装置
JP5239375B2 (ja) * 2008-02-14 2013-07-17 トヨタ自動車株式会社 全固体電池およびその製造方法
CN102013512A (zh) * 2010-04-22 2011-04-13 孙润光 一种具有高电位的电能存储装置及制作方法
JP5935405B2 (ja) * 2012-03-08 2016-06-15 日産自動車株式会社 積層構造電池
WO2015105022A1 (ja) * 2014-01-07 2015-07-16 コニカミノルタ株式会社 有機エレクトロルミネセンスデバイス
KR101690497B1 (ko) * 2014-07-24 2016-12-28 에스케이이노베이션 주식회사 이차전지 및 이차전지의 설계 방법
KR101964277B1 (ko) 2015-10-30 2019-04-01 주식회사 엘지화학 전고체 전지용 전극의 제조방법
KR102063604B1 (ko) * 2016-09-21 2020-01-08 에스케이이노베이션 주식회사 이차전지 및 이차전지의 설계 방법
US11362371B2 (en) 2017-02-14 2022-06-14 Volkswagen Ag Method for manufacturing electric vehicle battery cells with polymer frame support
US11870028B2 (en) 2017-02-14 2024-01-09 Volkswagen Ag Electric vehicle battery cell with internal series connection stacking
US11362338B2 (en) 2017-02-14 2022-06-14 Volkswagen Ag Electric vehicle battery cell with solid state electrolyte

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346892A (ja) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd バイポーラ型蓄電池
JP2004031255A (ja) 2002-06-28 2004-01-29 Nissan Motor Co Ltd 組電池
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2005005163A (ja) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd バイポーラ電池
JP2005011660A (ja) 2003-06-18 2005-01-13 Nissan Motor Co Ltd 二次電池用電極及びその製造方法並びにこれを用いた二次電池
JP2005050756A (ja) 2003-07-31 2005-02-24 Nissan Motor Co Ltd ゲル電解質電池
JP2005174691A (ja) 2003-12-10 2005-06-30 Nissan Motor Co Ltd バイポーラ電池
JP2005183287A (ja) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd 固体電解質電池の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3474919B2 (ja) * 1994-03-25 2003-12-08 三洋電機株式会社 積層密閉型ニッケル−水素化物組み電池
JP3110692B2 (ja) * 1996-11-18 2000-11-20 古河電池株式会社 アルカリ蓄電池
JP4411690B2 (ja) 1999-06-30 2010-02-10 パナソニック株式会社 リチウムイオン二次電池
US6503658B1 (en) * 2001-07-11 2003-01-07 Electro Energy, Inc. Bipolar electrochemical battery of stacked wafer cells
EP1652246B1 (en) * 2003-07-31 2016-10-12 Nissan Motor Company Limited Secondary cell electrode and fabrication method, and secondary cell, complex cell, and vehicle
CN100424917C (zh) * 2004-05-25 2008-10-08 松下电器产业株式会社 锂离子二次电池及其制造方法
JP4274256B2 (ja) * 2006-08-25 2009-06-03 トヨタ自動車株式会社 蓄電装置用電極及び蓄電装置
JP4225334B2 (ja) * 2006-08-25 2009-02-18 トヨタ自動車株式会社 蓄電装置用電極および蓄電装置
JP4784485B2 (ja) * 2006-11-02 2011-10-05 トヨタ自動車株式会社 リチウム二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346892A (ja) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd バイポーラ型蓄電池
JP2004031255A (ja) 2002-06-28 2004-01-29 Nissan Motor Co Ltd 組電池
JP2004095400A (ja) 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2005005163A (ja) * 2003-06-12 2005-01-06 Nissan Motor Co Ltd バイポーラ電池
JP2005011660A (ja) 2003-06-18 2005-01-13 Nissan Motor Co Ltd 二次電池用電極及びその製造方法並びにこれを用いた二次電池
JP2005050756A (ja) 2003-07-31 2005-02-24 Nissan Motor Co Ltd ゲル電解質電池
JP2005174691A (ja) 2003-12-10 2005-06-30 Nissan Motor Co Ltd バイポーラ電池
JP2005183287A (ja) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd 固体電解質電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2045866A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124265B2 (en) 2006-12-21 2012-02-28 Toyota Jidosha Kabushiki Kaisha Power storage device

Also Published As

Publication number Publication date
EP2045866A4 (en) 2014-04-02
CN101490894B (zh) 2011-09-07
US20100009250A1 (en) 2010-01-14
EP2843734A2 (en) 2015-03-04
CN101490894A (zh) 2009-07-22
JP5286650B2 (ja) 2013-09-11
EP2045866A1 (en) 2009-04-08
US8642208B2 (en) 2014-02-04
JP2008027662A (ja) 2008-02-07
EP2843734A3 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2008010564A1 (fr) Batterie secondaire
JP5605443B2 (ja) 非水溶媒双極型二次電池用集電体並びにこれを用いた電極および電池
KR101529408B1 (ko) 비수 전해질 2차 전지
JP5200367B2 (ja) 双極型電池用電極
US9017877B2 (en) Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
JP5387011B2 (ja) リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
JP2011165672A (ja) タブ−リード結合部の電極間抵抗差を最小化した電極組立体及びこれを有する電気化学セル
WO2013136524A1 (ja) リチウムイオン伝導性硫化物、固体電解質二次電池および電池パック
JP4661020B2 (ja) バイポーラリチウムイオン二次電池
EP2899791A1 (en) Electrode assembly and electrochemical device including same
JP2009004181A (ja) 電池用電極
KR20100137290A (ko) 와인딩 방식의 전극적층체 제조방법 및 그에 의한 리튬이온 이차전지용 전극적층체
JP2007280687A (ja) 電池用電極
WO2008059740A1 (en) Accumulator
JP2004134210A (ja) 積層型電池、組電池および車両
KR101297866B1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
JP2015115292A (ja) 電池
JP5186730B2 (ja) 電池用電極
JP2013037862A (ja) 組電池
CN113922000B (zh) 卷绕式电芯及电化学装置
JP2005317469A (ja) リチウムイオン二次電池用負極、およびこれを用いてなるリチウムイオン二次電池
JP2022168728A (ja) 電極集電体および二次電池
CN113921751B (zh) 电极结构及电化学装置
JP2021048034A (ja) 全固体リチウムイオン二次電池システム、および全固体リチウムイオン二次電池用soc推定装置
CN111293344B (zh) 密闭型电池以及组电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026694.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12373647

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2007768450

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007768450

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)