WO2008007755A1 - inducteur de mort cellulaire - Google Patents

inducteur de mort cellulaire Download PDF

Info

Publication number
WO2008007755A1
WO2008007755A1 PCT/JP2007/063946 JP2007063946W WO2008007755A1 WO 2008007755 A1 WO2008007755 A1 WO 2008007755A1 JP 2007063946 W JP2007063946 W JP 2007063946W WO 2008007755 A1 WO2008007755 A1 WO 2008007755A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
amino acid
variable region
seq
chain variable
Prior art date
Application number
PCT/JP2007/063946
Other languages
English (en)
French (fr)
Inventor
Naoki Kimura
Shigeto Kawai
Original Assignee
Chugai Seiyaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Seiyaku Kabushiki Kaisha filed Critical Chugai Seiyaku Kabushiki Kaisha
Priority to JP2008524847A priority Critical patent/JPWO2008007755A1/ja
Priority to US12/307,042 priority patent/US20100150927A1/en
Priority to CA002657385A priority patent/CA2657385A1/en
Priority to MX2009000487A priority patent/MX2009000487A/es
Priority to BRPI0714209-9A2A priority patent/BRPI0714209A2/pt
Priority to EP07790727A priority patent/EP2048230A4/en
Priority to AU2007273507A priority patent/AU2007273507A1/en
Publication of WO2008007755A1 publication Critical patent/WO2008007755A1/ja
Priority to IL196134A priority patent/IL196134A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Definitions

  • the present invention relates to an antibody that recognizes HLA and a cell death inducer containing the antibody as an active ingredient.
  • HLA is an important molecule in an immune response that recognizes foreign antigens, bacteria, virus-infected cells, etc. as foreign substances and removes them.
  • the main role of HLA molecules is to present CD8 + T cells with antigenic peptides consisting of about 8 to 10 amino acids that are made in the cells, and the immune response and tolerance induced thereby. It plays a very important role.
  • HLA is a classic ⁇ ⁇ ⁇ ⁇ formed by a heterodimer of 45 KD ⁇ chain consisting of three domains of ⁇ ⁇ -3 and 12 KD j82 microglobulin (j8 2M), 30 to 30 domains consisting of two domains 34!
  • HLA classl HLA-I
  • HLA-IA HLA classl A
  • Non-Patent Documents 1 and 2 Two antibodies against the a1 domain, MoAb90 and YTH862, have been reported to induce apoptosis on activated lymphocytes (Non-Patent Documents 2, 3, and 4). It has been clarified that apoptosis induced by these two antibodies is a caspase-mediated reaction (Non-patent Document 4). It is speculated that it is also involved in signal transmission.
  • Non-patent Document 5 antibodies against human HLA classl A ⁇ 3 domain 5-7 (Non-patent Document 5), mouse An antibody RE2 against HC class I a 2 domain (Non-patent Document 6) has also been reported to induce cell death in activated lymphocytes and the like.
  • Monoclonal antibody 2D7 obtained by immunizing human myeloma cells is also an antibody that recognizes HLA classl A, and human 2D7 is reduced to a low molecular weight (diabody). It has been reported to induce severe cell death in a short period of time for osteomyeloma cells. 2D7 dia body exhibits strong cell death-inducing activity against various human myeloma cell lines and activated lymphocyte cells, and can be used in multiple myeloma model mice transplanted with human myeloma cells.
  • Patent Documents 1, 2, 3, 4, Non-Patent Documents 7, 8 Since it showed a significant life-prolonging effect, it has been developed as a therapeutic agent for myeloma (Patent Documents 1, 2, 3, 4, Non-Patent Documents 7, 8). If this kind of treatment using induction of cell death involving HLA classl is further developed, it is expected that highly effective drugs for myeloma and the like will be developed.
  • Patent Document 1 WO2004 / 033499
  • Patent Document 2 WO2005 / 056603
  • Patent Document 3 WO2005 / 100560
  • Patent Document 4 PCT / JP2006 / 309890
  • Non-Patent Literature l Fayen et al., Int. Immunol, 10: 1347-1358 (1998)
  • Non-Patent Document 2 Genestier et al., Blood, 90: 3629-3639 (1997)
  • Non-Patent Document 3 Genestier et al., Blood, 90: 726-735 (1997)
  • Non-Patent Document 4 Genestier et al., J. Biol. Chem., 273: 5060-5066 (1998)
  • Non-Patent Document 5 Woodle et al., J. Immunol, 158: 2156-2164 (1997)
  • Non-Patent Document 6 Matsuoka et al., J. Exp. Med., 181: 2007—2015 (1995)
  • Non-Patent Document 7 Goto, et al "Blood, 84: 1922-30 (1994)
  • Non-Patent Document 8 Kimura, et al., Biochem Biophys Res Commun., 325: 1201-1209 (200 4)
  • Non-Patent Document 9 Tatsuzo Oka Sankyo Life Science Foundation Research Report 12: 46-56 (1998) Invention Disclosure
  • the present invention has been made in view of such a situation, and an object thereof is a heavy chain variable region having CDR1, 2, and 3 having the amino acid sequence ability described in SEQ ID NOs: 7, 8, and 9.
  • An antibody comprising is provided.
  • Another object of the present invention is to provide an antibody comprising a light chain variable region having CDR1, 2, 3 consisting of the amino acid sequences set forth in SEQ ID NOs: 10, 11, 1, and 12.
  • the present invention provides an antibody that recognizes HLA classl A and has a higher cell death-inducing activity than before.
  • mice were immunized with cells co-expressing human HLA cla ssl A and human ⁇ 2 ⁇ to obtain monoclonal antibodies. Furthermore, the obtained antibody was screened, and 10 new monoclonal antibodies having cell death-inducing activity were obtained. Analysis of these clones revealed that 3 clones (C3B3, C11B9, and C17D11 antibodies) that have the at 2 domain of the HLA class I antigen in the epitope are strong cells by cross-linking with anti-mouse IgG antibodies. It has been found that it exhibits an injury activity.
  • C3B3 diabody a low molecular weight antibody
  • cell death induction that significantly exceeds the antitumor effect of the conventional anti-HLA class IA low molecular weight antibody (2D7 diabody) with the antibody alone. Succeeded in creating an agonist antibody.
  • the present invention provides the following [1] to [25].
  • An antibody comprising a heavy chain variable region having CDR1, 2, and 3 having the amino acid sequence ability described in SEQ ID NOs: 7, 8, and 9.
  • An antibody comprising a light chain variable region having CDR1, 2, and 3 consisting of the amino acid sequence set forth in SEQ ID NOs: 10, 11 and 12.
  • [8] An antibody that binds to the same epitope of human leukocyte antigen (HLA) protein to which the antibody according to any one of [1] to [7] binds.
  • HLA human leukocyte antigen
  • [18] A method for producing the antibody according to any one of [1] to [14], comprising the following steps. (a) A step of producing the polynucleotide according to [15]
  • a cell death inducer comprising the antibody according to any one of [1] to [14] as an active ingredient.
  • [20] The cell death inducer of [19], which is cell death induction for B cells or T cells.
  • the cell death inducer according to [20] which is a B cell or T cell force activated B cell or activated T cell.
  • a cell growth inhibitor comprising the antibody according to any one of [1] to [14] as an active ingredient.
  • An antitumor agent comprising the antibody according to any one of [1] to [14] as an active ingredient.
  • An autoimmune disease therapeutic agent comprising the antibody according to any one of [1] to [14] as an active ingredient.
  • FIG. 1 shows the results of confirming the expression level of HLA classl A in HLA-expressing Ba / F3 cell lines and ARH77 cells by FACS.
  • FIG. 2 A schematic diagram of a cell line expressing human mouse murine HLA classl A, in which one of the HLA classl A domains ( ⁇ 1 to ⁇ 3 domains) is replaced with the corresponding domain of mouse MHC classl A. It is shown.
  • FIG. 3 shows the results of epitope analysis of 10 antibody clones obtained by immunizing mice with HLA-A / ⁇ 2 microglobulin (2 ⁇ ) co-expressed Ba / F3 cells.
  • Various human 'mouse chimeras H LA classl A expression The binding activity to Ba / F3 cells (MHH, HMH, HHM) was analyzed by FACS, and binding was confirmed (+), and binding was not recognized Is represented by (1).
  • Each staining pattern power Epitope of each clone was determined.
  • FIG. 4 HLA-A / ⁇ 2 microglobulin (j8 2 ⁇ ) co-expressed obtained by immunizing mice with Ba / F3 cells
  • FIG. 6 is a graph showing the results of examining the cell death-inducing activity of 10 antibody clones against ARH77 in the presence and absence of a secondary antibody.
  • FIG. 5-l shows amino acid sequences of the heavy chain variable regions of 2D7 and newly obtained C3B3, C17D11, and CI 1B9.
  • FIG. 5-2 is a diagram showing amino acid sequences of the light chain variable region of 2D7 and newly obtained C3B3, C17D11, and CI1B9.
  • FIG. 6 shows a separation chart of gel filtration chromatography purification of C3B3 minibody.
  • FIG. 7 is a graph showing in vitro cytotoxic activity against ARH77 for each of peaks (1) to (3) of C3B3 minibody separated by gel filtration chromatography.
  • FIG. 8 is a graph showing in vitro cytostatic activity against ARH77 for C3B3 diabody (C3B3 DB) and 2D7 diabody (2D7 DB).
  • FIG. 9 In vitro cytostatic activity of C3B3 diabody (C3B3 DB) ⁇ and 2D7 diabody (2D7 DB) on human myeloma cells (ARH77, IM-9, HS-Sultan, MC / CAR) It is a graph.
  • FIG. 10 is a graph showing the survival time of mice administered with PBS / tween20 (control), 2D7 diabody (2D7 DB), or C3B3 diabody (C3B3 DB) in IM-9 transplanted mice.
  • FIG. 11 Shows the amount of human IgG in serum on day 14 after transplantation in mice administered with PBS / tween20 (control), 2D7 diabody (2D7 DB), or C3B3 diabody (C3B3 DB) in IM-9 transplanted mice It is a graph.
  • FIG. 12 is a graph showing in vitro cytotoxic activity of C3B3 diabody and 2D7 diabody against human peripheral blood mononuclear cells (PBMC).
  • PBMC peripheral blood mononuclear cells
  • FIG. 13 is a graph showing the growth inhibitory effect of C3B3 diabody and 2D7 diabody on human T-cell tumor cells. The growth inhibitory effect of each antibody on Jurkat cells in 3 days of culture is shown.
  • the present invention relates to an antibody comprising a heavy chain variable region having CDR1, 2, and 3 having the amino acid sequence ability described in SEQ ID NOs: 7, 8, and 9.
  • the present invention also relates to an antibody comprising a light chain variable region having CDR1, 2, and 3 consisting of the amino acid sequences set forth in SEQ ID NOs: 10, 11, and 12.
  • the present inventors obtained a new antibody having HLA class I as an antigen and having cell death-inducing activity.
  • 3 clones C3B3, C11 B9, and C17D11 antibodies
  • C3B3 antibody having an ⁇ 2 domain of HLA class I in the epitope are found to exhibit strong cytotoxic activity by cross-linking with anti-mouse IgG antibodies.
  • the C3B3 antibody by altering the C3B3 antibody to a low molecular weight antibody (diabody) by antibody engineering technology, the antibody alone exerts a strong antitumor effect compared to the conventional 2D7 antibody diabody (C3B3 diabody)
  • the present invention provides an antibody comprising a heavy chain variable region having CDR1, 2, and 3 having the amino acid sequence ability described in SEQ ID NOs: 7, 8, and 9.
  • the present invention also provides an antibody comprising a light chain variable region having CDR1, 2, and 3 consisting of the amino acid sequences set forth in SEQ ID NOs: 10, 11, and 12.
  • the antibody of the present invention has CDR1, 2, and an amino acid sequence ability described in SEQ ID NOs: 7, 8, and 9 above.
  • the heavy chain variable region having 3 or the light chain variable region having CDR1, 2, 3 consisting of the amino acid sequence set forth in SEQ ID NOs: 10, 11, 12 is not particularly limited.
  • Preferable examples of the antibody of the present invention include an antibody comprising the heavy chain variable region described in any of (a) to (d) below.
  • examples of the antibody of the present invention include antibodies comprising the light chain variable region described in any of (e) to (h) below. (e) a light chain variable region having the amino acid sequence of SEQ ID NO: 4
  • an antibody having such a heavy chain variable region and a light chain variable region an antibody having an amino acid sequence described in any one of the following (a) to (d) is given as an example: It is possible.
  • the amino acid sequence of the heavy chain variable region or the light chain variable region may be substituted, deleted, added, and Z or inserted. Further, when the heavy chain variable region and the light chain variable region are associated with each other, as long as they have antigen-binding activity, a part thereof may be deleted or another polypeptide may be added.
  • the variable region may be chimerized or humanized.
  • “functionally equivalent” means that the antibody of interest has a heavy chain variable region having CDR1, 2, 3 consisting of the amino acid sequence described in SEQ ID NOs: 7, 8, 9 or SEQ ID NO: :
  • Activity equivalent to an antibody having a light chain variable region having CDR1, 2, 3 consisting of the amino acid sequence described in 10, 11, 12 for example, HLA-A binding activity, cell death inducing activity, etc. It means having.
  • New antibodies can be prepared. Amino acid mutations can also occur in nature. As described above, an antibody having one or more amino acid sequences mutated in the amino acid sequence of the antibody of the present invention and functionally equivalent to the antibody is also included in the antibody of the present invention.
  • the number of amino acids to be mutated is not particularly limited, but is usually within 30 amino acids, preferably within 15 amino acids, and more preferably within 5 amino acids (for example, within 3 amino acids).
  • the amino acid residue to be mutated is preferably mutated to another amino acid in which the properties of the amino acid side chain are conserved.
  • amino acid side chain properties include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids with aliphatic side chains (G, A, V, L, I, P), amino acids with hydroxyl-containing side chains (S, T, ⁇ ), sulfur atom-containing side Amino acids with chains (C, M), amino acids with carboxylic acid and amide-containing side chains (D, N, E, Q), amino acids with base-containing side chains (R, K, H), aromatic-containing side Examples include amino acids having chains (H, F, Y, W).
  • the antibody of the present invention includes an antibody in which a plurality of amino acid residues are added to the amino acid sequence of the antibody of the present invention. Also included are fusion proteins in which these antibodies are fused with other peptides or proteins.
  • a method for producing a fusion protein comprises the steps of: The polynucleotide to be transferred and the other peptide or polynucleotide encoding the polypeptide may be linked so that the frames coincide with each other, introduced into an expression vector, and expressed in a host. Techniques known to those skilled in the art are used. be able to.
  • peptides or polypeptides to be subjected to fusion with the antibody of the present invention include, for example, FLAG (Hopp, TP et al., BioTechnology (1988) 6, 1204-1210), 6 His (histidine) Residue 6 X His, lO X Hi s, influenza agglutinin (HA), human c-myc fragment, VSV-GP fragment, pl8HIV fragment, T7-tag, HSV-tag, E-tag, SV40T
  • peptides such as an antigen fragment, lck tag, a-tubulin fragment, B-tag, protein chain fragment and the like can be used.
  • examples of other polypeptides to be subjected to fusion with the antibody of the present invention include GST (Dalthathione S-Transferase), HA (Influenza agglutinin), Immunoglobulin constant region, ⁇ -galatatosidase, ⁇ (maltose binding protein) and the like.
  • a fusion polypeptide is prepared by fusing a commercially available polynucleotide encoding the peptide or polypeptide with a polynucleotide encoding the antibody of the present invention and expressing the prepared fusion polynucleotide. can do.
  • the present invention also provides an antibody that binds to the same epitope as that to which the antibody disclosed in the present invention binds. That is, the present invention relates to an antibody that recognizes the same epitope as that recognized by the antibody of the present invention, and its use. Such an antibody can be obtained, for example, by the following method.
  • test antibody binds to the same epitope as the antibody binds, that is, shares an epitope with an antibody, can be confirmed by competition for the same epitope.
  • competition between antibodies can be detected by FACS or cross-blocking assay.
  • FACS FACS, first, the fluorescent signal is measured by binding the monoclonal antibody of the present invention to a cell expressing HLA-IA on the cell surface. Next, after reacting the candidate competing antibody with the cells, the antibody of the present invention is reacted with the same cells, and similarly analyzed by FACS. Alternatively, the monoclonal antibody of the present invention and the test competitive antibody can be reacted with the same cell at the same time.
  • competitive ELISA assay is preferably a cross-blocking assay. Specifically, in the cross-blocking assay, cells expressing HLA-IA are immobilized on the microtiter plate wells. After preincubation in the presence or absence of a candidate competing antibody, the monoclonal antibody of the invention is added. The amount of the antibody of the present invention bound to HLA-IA-expressing cells in the well is inversely correlated with the binding ability of a candidate competitive antibody (test antibody) that competes for binding to the same epitope. That is, the greater the affinity of the test antibody for the same epitope, the higher the HL of the antibody of the present invention.
  • test antibody candidate competitive antibody
  • the amount of binding to the well in which A-IA protein-expressing cells are immobilized decreases.
  • the affinity of the test antibody for the same epitope increases, the amount of the test antibody bound to the well to which the HLA-IA protein-expressing cells are immobilized increases.
  • the amount of antibody bound to the well can be easily measured by labeling the antibody in advance.
  • a piotin-labeled antibody can be measured by using an avidin peroxidase conjugate and an appropriate substrate.
  • Cross-blocking assays using enzyme labels such as peroxidase are called competitive ELISA assays.
  • the antibody can be labeled with other labeling substances that can be detected or measured. Specifically, radiolabels or fluorescent labels are known.
  • any antibody bound to the well is labeled with a labeled antibody that specifically recognizes the constant region derived from any species. It can also be measured. Alternatively, even if the antibodies are of the same species, if the classes are different, antibodies bound to the well can be measured by antibodies that specifically identify each class.
  • Candidate antibodies are at least 20%, preferably at least 20-50%, more preferred compared to the binding activity obtained in a control study performed in the absence of the candidate competing antibody! Or at least 50% if it can block the binding of the monoclonal antibodies of the invention.
  • the candidate competing antibody is an antibody that binds to substantially the same epitope as the antibody of the present invention or competes for binding to the same epitope.
  • Examples of the antibody that binds to the same epitope to which the antibody of the present invention binds include the antibodies described in [8] or [9] above.
  • the antibody described in [8] or [9] includes a multivalent antibody consisting of only a monovalent antibody.
  • the multivalent antibody of the present invention includes multivalent antibodies that all have the same antigen-binding site, or multivalent antibodies that have some or all different antigen-binding sites.
  • the antibody of the present invention may differ in amino acid sequence, molecular weight, isoelectric point, presence / absence of sugar chain, form, etc., depending on the cell, host or purification method producing the antibody described later. However, so long as the obtained antibody has a function equivalent to that of the antibody of the present invention, it is included in the present invention.
  • the antibody of the present invention when expressed in prokaryotic cells such as E. coli, a methionine residue is added to the N-terminus of the amino acid sequence of the original antibody.
  • the antibody of the present invention includes such an antibody.
  • the antibody of the present invention may be a conjugated antibody bound to various molecules such as polyethylene glycol (PEG), radioactive substances, and toxins.
  • PEG polyethylene glycol
  • Such a conjugated antibody can be obtained by chemically modifying the obtained antibody.
  • Methods for modifying antibodies have already been established in the art (e.g., US5057313, US5156840) o These antibodies are "antibody" in the present invention are also encompassed.
  • mouse antibody, rat antibody, rabbit antibody, Hedge antibody, camel antibody, chimeric antibody, humanized antibody, human antibody and the like can be used as appropriate.
  • a low molecular weight antibody or the like can be used as the antibody of the present invention.
  • a recombinant antibody produced by using a gene recombination technique in which an antibody gene is incorporated into a suitable vector and introduced into a host can be used (for example, Carl, AK Borrebaeck, James, W. Larrick, THERAPEUTIC MO NOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PU BLISHERS LTD, 1990).
  • the heavy chain variable region having CDR1, 2, 3 having the amino acid sequence shown in SEQ ID NO: 7, 8, 9 or the amino acid sequence having SEQ ID NO: 10, 11, 12
  • DNA encoding the light chain variable region having CDR1, 2, and 3 is obtained, it is ligated with DNA encoding the desired antibody constant region (C region) and incorporated into an expression vector.
  • DNA encoding the variable region of an antibody may be incorporated into an expression vector containing antibody constant region DNA. It is incorporated into an expression vector so as to be expressed under the control of an expression control region such as an enhancer or promoter.
  • this expression vector The host cell can be transformed with a protein to express the antibody.
  • the present invention also relates to a polynucleotide encoding the antibody of the present invention, or a polynucleotide encoding an antibody that has the activity equivalent to that of the antibody of the present invention under the stringent conditions with the polynucleotide.
  • Nucleotides are provided.
  • the polynucleotide of the present invention is not particularly limited as long as it encodes the antibody of the present invention, and is a polymer having a base or base pairing force such as a plurality of deoxyribonucleic acids (DNA) or ribonucleic acids (RNA).
  • the polynucleotide of the present invention may contain a non-natural base.
  • the polynucleotide of the present invention can be used when an antibody is expressed by a genetic engineering technique. It can also be used as a probe when screening an antibody having a function equivalent to that of the antibody of the present invention. That is, a polynucleotide encoding the antibody of the present invention, or a part thereof, is used as a probe under conditions stringent with the polynucleotide by a technique such as hybridization, gene amplification technology (eg, PCR), etc. It is possible to obtain DNA encoding an antibody that has been hybridized and has the same activity as the antibody of the present invention. Such DNA is also included in the polynucleotide of the present invention.
  • hybridization conditions include low stringency conditions.
  • Low stringent conditions are, for example, conditions of 42 ° C., 0.1 ⁇ SSC, 0.1% SDS in washing after hybridization, preferably 50.
  • the conditions are C, 0.1 X SSC, and 0.1% SDS.
  • More preferable hybridization conditions include highly stringent conditions.
  • High stringent conditions include, for example,
  • the conditions are 65 ° C, 5 X SSC and 0.1% SDS. Under these conditions, it can be expected that the higher the temperature, the more efficiently a polynucleotide having homology will be obtained. However, multiple factors such as temperature and salt concentration can be considered as factors affecting the stringency of hybridization, and those skilled in the art can achieve the same stringency by selecting these factors as appropriate. Is possible.
  • the antibody functionally equivalent to the antibody of the present invention encoded by the polynucleotide obtained by the hybridization technique or gene amplification technique usually has high homology in amino acid sequence with these antibodies. .
  • the antibody of the present invention is functionally combined with the antibody of the present invention.
  • Antibodies that are equivalent and have high homology with the amino acid sequence of the antibody are also included.
  • High homology usually means at least 50% identity, preferably 75% identity, more preferably 85% identity, more preferably 95% identity at the amino acid level. Point to.
  • the algorithm described in the literature Wang, WJ and Lipman, DJ Proc. Natl. Acad. Sci. USA (1983) 80, 726-730
  • polynucleotide encoding the antibody of the present invention include the polynucleotide described in the following (a) or (b).
  • an antibody gene is once isolated and introduced into an appropriate host to produce an antibody, a combination of an appropriate host and an expression vector can be used.
  • the present invention provides a vector comprising the above polynucleotide.
  • vectors include M13 vectors, pUC vectors, pBR322, pBluescript, pCR-Script, and the like.
  • pGEM-T for example, pGEM-T, pDIRECT, pT7 and the like can be mentioned.
  • An expression vector is particularly useful when a vector is used for the purpose of producing the antibody of the present invention.
  • an expression vector for example, for the purpose of expression in Escherichia coli, in addition to the above-mentioned characteristics that the vector is amplified in Escherichia coli, the host is E.
  • coli such as JM109, DH5a, HB101, XL1-Blue Promoters that can be expressed efficiently in E. coli, such as the lacZ promoter (Ward et al., Nature (1989) 341, 544-546; FASEB J. (1 992) 6, 2422-2427), araB It is essential to have a promoter (Better et al., Science (1988) 240, 1041-1043) or a T7 promoter!
  • pGEX-5X-1 manufactured by Pharmacia
  • QIAexpress system Qiagen
  • pEGFP pEGFP
  • pET in this case, the host expresses T7 RNA polymerase.
  • BL21 is preferred,;) etc.
  • the vector may contain a signal sequence for polypeptide secretion. Yes.
  • the pelB signal sequence (Lei, SP et al J. Bacteriol. (1987) 169, 4379) may be used when it is produced in the periplasm of E. coli.
  • Introduction of a vector into a host cell can be performed using, for example, the salt calcium method or the electoral position method.
  • vectors for producing the polypeptide of the present invention include mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen)), pEGF-BOS (Nucleic Acids.
  • insect cell-derived expression vectors for example, “Bac-to- BAC baculovairus expression system” (manufactured by Gibco BRL), pBacPAK8), plant-derived expression vectors (Eg, ⁇ 1, pMH2), animal virus-derived expression vectors (eg, pHSV, pMV, pAdexLcw), retrovirus-derived expression vectors (eg, pZIPneo), yeast-derived expression vectors (eg, “Pichia Expression Kit”) (Invitrogen), P NV11, SP-Q01), and an expression vector derived from Bacillus subtilis (for example, pPL608, pKTH50).
  • Bacillus subtilis for example, pPL608, pKTH50.
  • promoters required for expression in cells such as the SV40 promoter (Mulligan et al., Nature (1979) 277 108), MMLV-LTR promoter, EF1 ⁇ promoter (Mi zushima et al., Nucleic Acids Res. (1990) 18, 5322), CMV promoter, etc., and selection for cell transformation. It is more preferable to have a gene for this purpose (for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)). Examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.
  • the CHO cell lacking the nucleic acid synthesis pathway has a DHFR gene complementary thereto.
  • examples include a method of introducing a vector (for example, pCHOI) and amplifying with methotrexate (MTX), and when transient expression of the gene is intended, a gene expressing the SV40 T antigen is selected.
  • a vector for example, pCHOI
  • MTX methotrexate
  • An example is a method in which COS cells possessed on chromosomes are transformed with vectors having an SV40 replication origin (such as pcD).
  • the origin of replication may also be due to poliovirus, adenovirus, ushipapilloma virus (BPV), etc.
  • the polynucleotide of the present invention is incorporated into an appropriate vector, for example, retrovirus method, liposome method, cationic ribosome. And the method of introducing it into a living body by the adenovirus method or the like.
  • an appropriate vector for example, retrovirus method, liposome method, cationic ribosome.
  • the vector to be used include adenovirus vectors (eg, pAdexlcw) and retrovirus vectors (eg, pZIPneo), but are not limited thereto.
  • General genetic manipulations such as insertion of the polynucleotide of the present invention into a vector can be performed according to a conventional method (Molecular Cloning, 5.61-5.63).
  • Administration to a living body may be an ex vivo method or an in vivo method.
  • the present invention also provides a host cell into which the vector of the present invention has been introduced.
  • the host cell into which the vector of the present invention is introduced is not particularly limited, and for example, Escherichia coli and various animal cells can be used.
  • the host cell of the present invention can be used, for example, as a production system for production and expression of the antibody of the present invention.
  • Production systems for polypeptide production include in vitro and in vivo production systems. Examples of in vitro production systems include production systems that use eukaryotic cells and production systems that use prokaryotic cells.
  • animal cells for example, animal cells, plant cells, and fungal cells can be used as the host.
  • Animal cells include mammalian cells such as CH0 (J. Exp. Med. (199 5) 108, 945), COS ⁇ NIH3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells such as African cells. Megael oocytes (Valle, et al., Nature (1981) 291, 358-340) or insect cells such as S19, Sf21, Tn5 are known.
  • CHO cells dhfr-CHO (Proc. Natl. Acad. Sci.
  • Vectors can be introduced into host cells by, for example, calcium phosphate method, DEAE dextran method, cationic ribosome DOTAP (Boehringer It is possible to carry out by a method using Mannheim Co., Ltd., an electo-poration method, a lipofussion method, or the like.
  • Nicotiana tabacum cells derived from Nicotiana tabacum are known as polypeptide production systems, and these may be cultured in callus.
  • Fungal cells include yeasts such as the genus Saccharomyces, such as Saccharomyces cerevisiae, filamentous fungi such as the genus Aspergillus, such as Aspergillus. niger) is known.
  • prokaryotic cells When prokaryotic cells are used, there are production systems using bacterial cells.
  • bacterial cells include E. coli, such as JM109, DH5a, HB101, etc., and Bacillus subtilis is also known.
  • An antibody can be obtained by transforming these cells with a target polynucleotide and culturing the transformed cells in vitro.
  • the culture can be performed according to a known method.
  • DMEM, MEM, RPMI1640, and IMDM can be used as the culture medium for animal cells.
  • serum supplement such as fetal calf serum (FCS) can be used together, or serum-free culture may be performed.
  • FCS fetal calf serum
  • the pH during culture is preferably about 6-8.
  • the culture is usually performed at about 30 to 40 ° C for about 15 to 200 hours, and medium exchange, aeration and agitation are added as necessary.
  • examples of the system for producing a polypeptide in vivo include a production system using animals and a production system using plants.
  • the desired polynucleotide is introduced into these animals or plants, and the polypeptide is produced in the body of the animals or plants and recovered.
  • the “host” in the present invention includes these animals and plants.
  • mammals When animals are used, there are production systems using mammals and insects. As mammals, goats, pigs, hidges, mice, and bushes can be used (Vicki Glaser, SPECTRU M Biotechnology Applications, 1993). In addition, when a mammal is used, a transgenic animal can be used.
  • the target polynucleotide is prepared as a fusion gene with a gene encoding a polypeptide inherently produced in milk such as goat j8 casein.
  • the polynucleotide fragment containing the fusion gene is then injected into a goat embryo and the embryo is transferred to a female goat.
  • An antibody of interest can be obtained from milk produced by a transgene goat born or a descendant of a goat that has received the embryo.
  • Transgenic rabbits Hormones may be used as appropriate in transgenic dogs to increase milk production, including the polypeptide produced (Ebert, KM et al., Bio / Technology (1994) 12 699-702).
  • silkworms can be used as insects.
  • the desired polypeptide can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus inserted with the target polynucleotide (Susumu, M. et al., Nature (1985) 315, 592-594) o
  • tobacco when plants are used, for example, tobacco can be used.
  • the target polynucleotide is inserted into a plant expression vector such as pMON530, and this vector is introduced into a bacterium such as Agrobacterium tumefaciens.
  • This bacterium can be infected with tobacco, for example Nicotiana tabacum, to obtain the desired polypeptide from the leaves of this tobacco (Julian K.-C. Ma et al, Eur. J. Immunol. (1994) 24, 131-138).
  • the antibody of the present invention thus obtained can be isolated in a host cell or extracellular (medium or the like) force and purified as a substantially pure and homogeneous antibody.
  • Separation and purification of antibodies are not limited in any way as long as separation and purification methods used in normal antibody purification are used. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. When combined, antibodies can be separated and purified.
  • chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, adsorption chromatography, and the like (Strategies for Protein Purification and Characterization) : A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor or Laboratory Press, 1996). These chromatography can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. Columns used for affinity chromatography include protein A columns and protein G columns. Is mentioned. Examples of the column using protein A include Hyper D, POROS, Sepharose FF (Pharmacia) and the like. The present invention also encompasses antibodies highly purified using these purification methods.
  • a known means may be used for the measurement of the antigen-binding activity of the prepared antibody (Ant3 ⁇ 4odies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988). It can.
  • ELISA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • fluorescent immunoassay can be used.
  • the present invention provides an antibody comprising a step of producing the above polynucleotide, a step of producing a vector containing the polynucleotide, a step of introducing the vector into a host cell, and a step of culturing the host cell.
  • a method of making is also provided.
  • a genetically engineered antibody that has been artificially modified for the purpose of reducing the heterologous antigenicity to humans such as a chimeric antibody or a humanized antibody, etc.
  • modified antibodies can be produced using known methods.
  • a chimeric antibody is a non-human mammal, for example, an antibody comprising the heavy and light chain variable regions of a mouse antibody and the heavy and light chain constant regions of a human antibody, and a DNA encoding the murine antibody variable region.
  • a humanized antibody is also referred to as a reshaped human antibody, and a complementarity determining region (CDR) of a mammal other than a human, for example, a mouse antibody is transferred to the complementarity determining region of a human antibody. It is transplanted and its general gene recombination technique is also known. Specifically, a DNA sequence designed to link the CDR of a mouse antibody and the framework region (FR) of a human antibody was prepared in several pieces prepared so as to have a portion overlapping the terminal portion. It is synthesized from oligonucleotides by PCR.
  • the obtained DNA is ligated with DNA encoding the constant region of a human antibody, and then incorporated into an expression vector and introduced into a host for production (European Patent Application Publication No. EP 239400, International Patent Application Publication Number WO 96/02576).
  • human antibody FRs ligated via CDRs, select those whose complementarity-determining regions form good antigen-binding sites. It is. If necessary, the amino acid in the framework region of the variable region of the antibody may be substituted so that the complementarity-determining region of the reshaped human antibody forms an appropriate antigen-binding site (Sato, K • et al, Cancer Res. (1993) 53, 851—856).
  • a method for obtaining a human antibody is also known.
  • human lymphocytes are sensitized with a desired antigen or cells expressing the desired antigen in vitro, and the sensitized lymphocytes are fused with human myeloma cells such as U266, and the desired human antibody having activity to bind to the antigen.
  • a desired human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a desired antigen (International Patent Application Publication Nos.
  • variable region of a human antibody can be expressed as a single chain antibody (scFv) on the surface of the phage by the phage display method, and a phage that binds to the antigen can be selected.
  • scFv single chain antibody
  • the DNA sequence encoding the variable region of the human antibody that binds to the antigen can be determined.
  • a suitable expression vector containing the sequence can be prepared, and a human antibody can be obtained.
  • the antibody of the present invention is preferably an antibody that recognizes human leukocyte antigen (HLA).
  • HLA human leukocyte antigen
  • the antibody that recognizes human leukocyte antigen (HLA) according to the present invention is useful in that the activity increases!
  • the activity means a biological action caused by binding of an antibody to an antigen.
  • Specific examples include cell death inducing action, apoptosis inducing action, cell growth suppression production, cell differentiation inhibiting action, cell division inhibiting action, cell proliferation inducing action, cell differentiation inducing action, cell division inducing action, cell cycle.
  • Examples thereof include a regulating action, but preferred are a cell death-inducing action and a cell growth-inhibiting action.
  • the cells to be subjected to the above-described actions are not particularly limited, but blood cells and floating cells are preferable.
  • blood cells include lymphocytes (B cells, T cells), neutrophils, eosinophils, basophils, monocytes (preferably active cells).
  • PBMC Peripheral blood mononuclear cells
  • PBMC blood tumor cells
  • myeloma cells, lymphoma cells, leukemia cells etc.
  • Power lymphocytes B cells, T cells, activated B
  • activated B cells or activated T cells Particularly preferred are activated B cells or activated T cells, and hematological tumor cells.
  • a floating cell is a cell that proliferates in a floating state when the cell is cultured and does not adhere to the surface of an incubator such as glass or plastic.
  • preferred examples of floating cells include Jurkat cells or ARH77 cells.
  • adherent cells adherent cells are cells that adhere to the surface of an incubator such as glass or plastic when the cells are cultured.
  • full-length anti-HLA antibodies may be cross-linked by anti-IgG antibodies or the like in order to enhance cell death-inducing activity, and can be performed by methods known to those skilled in the art. .
  • Whether or not the antibody of the present invention induces cell death in suspension cells can be determined by whether or not it has the ability to induce cell death in Jurkat cells or ARH77 cells. Whether or not to induce cell death to cells can be determined by whether or not to induce cell death to HeLa cells (WO2004 / 033499).
  • a tumor such as a blood tumor (hematopoietic tumor)
  • hematopoietic tumor a tumor such as a blood tumor (hematopoietic tumor)
  • a tumor such as a blood tumor (hematopoietic tumor)
  • hematopoietic tumor specific examples include leukemia, myelodysplastic syndrome, malignant lymphoma, Chronic myelogenous leukemia, plasma cell abnormalities (myeloma, multiple myeloma, macroglobulinemia), myeloproliferative disorders (erythrocytosis, essential thrombocythemia, idiopathic myelofibrosis, etc.)
  • Autoimmune diseases specifically examples include rheumatism, autoimmune hepatitis, autoimmune thyroiditis, autoimmune blistering, autoimmune corticosteroids, autoimmune hemolytic anemia, autoimmune thrombocytopenia Purpura, autoimmune atrophic gastritis, autoimmune neutropenia,
  • HLA means a human leukocyte antigen.
  • HLA molecules are classified into classl and classl I, classl is known as HLA—A, B, C, E, F, G, H, J, etc., and classll is HLA-DR, DQ, DP, etc.
  • the antigen recognized by the antibody of the present invention is not particularly limited as long as it is an HLA molecule, but is preferably a molecule classified as classl, more preferably HLA-IA.
  • the antibody of the present invention may be a low molecular weight antibody! /.
  • the low molecular weight antibody is not particularly limited as long as it includes an antibody fragment lacking a part of a full-length antibody (whole antibody such as whole IgG) and has an ability to bind to an antigen.
  • the antibody fragment of the present invention is not particularly limited as long as it is a part of a full-length antibody, but it is particularly preferable that it contains a heavy chain variable region (VH) or a light chain variable region (VL). It is a fragment containing both VH and VL.
  • Specific examples of the antibody fragment include, for example, Fab, Fab ′, F (ab ′) 2, Fv, scFv (single chain Fv), sc (Fv) and the like, preferably diabody (Husto)
  • the molecular weight-reduced antibody in the present invention is preferably smaller in molecular weight than the full-length antibody.
  • it may form a multimer such as a dimer, trimer, tetramer, etc.
  • the molecular weight can be large.
  • the low molecular weight antibody preferred in the present invention comprises an antibody having two or more VH and two or more VL of the antibody, and these variable regions are bound directly or indirectly through a linker or the like. Is the body.
  • the bond can be covalent or non-covalent, and can be both covalent and non-covalent.
  • a more preferred low molecular weight antibody is an antibody comprising two or more VH-VL pairs formed by binding VH and VL by a non-covalent bond. In this case, an antibody in which the distance force between one VH-VL pair and the other VH-VL pair in the low molecular weight antibody is shorter than the distance in the full-length antibody is preferable.
  • scFv is obtained by linking an H chain V region and an L chain V region of an antibody.
  • the H chain V region and the L chain V region are linked via a linker, preferably a peptide linker (Huston, JS et al., Proc. Natl. Acad. Sci. USA (1988) 8 5, 5879-5883) o
  • the H chain V region and the L chain V region in scFv are described as the above-mentioned antibodies, but may be derived from deviations.
  • the peptide linker that links the V regions for example, any single chain peptide having 12 to 19 amino acid residues can be used.
  • the DNA encoding scFv is a DNA that encodes the H chain or H chain V region of the antibody, and a DNA that encodes the L chain or L chain V region.
  • the DNA portion encoding the desired amino acid sequence is amplified by the PCR method using a primer pair defining both ends, and then the DNA encoding the peptide linker portion and both ends thereof are respectively designated as H chain and L chain. Obtained by combining and amplifying primer pairs that are defined to be ligated.
  • DNA encoding scFv is prepared, an expression vector containing them and a host transformed with the expression vector can be obtained according to a conventional method. Can be used to obtain scFv according to conventional methods.
  • antibody fragments can be produced by a host by obtaining and expressing the gene in the same manner as described above.
  • the term “antibody” as used in the present invention includes fragments of these antibodies.
  • the low molecular weight antibody is a diabody.
  • a diabody is a dimer formed by linking two fragments (for example, scFv, etc.) obtained by combining a variable region and a variable region with a linker (eg, scFv) (hereinafter referred to as a fragment constituting diabody).
  • the bond between the fragments constituting the diabody may be a non-covalent bond or a covalent bond, but is preferably a non-covalent bond.
  • Fragments constituting the diabody include VL and VH combined, VL and VL combined, VH and VH combined, etc., preferably VH and VL combined It is.
  • the linker that binds the variable region to the variable region is not particularly limited. However, the linker should be short enough so that no non-covalent bond occurs between the variable regions in the same fragment. Is preferred.
  • the length of such a linker can be appropriately determined by those skilled in the art. Usually, it is 2 to 14 amino acids, preferably 3 to 9 amino acids, particularly preferably 4 to 6 amino acids.
  • VL and VH encoded on the same fragment have a short linker between them, so no non-covalent bond occurs between VL and VH on the same chain, and no single-chain V region fragment is formed.
  • Dimers by non-covalent bonds with other fragments it is possible to produce antibodies in the form of multimers such as trimers and tetramers by combining three or more fragments constituting diabody on the same principle as diabody production.
  • the diabody in the present invention includes a diabody having the amino acid sequence set forth in SEQ ID NO: 6, or one or more amino acid sequences in the amino acid sequence set forth in SEQ ID NO: 6 being mutated (substitution, deletion, insertion, A diabody having the amino acid sequence added and Z) or a diabody functionally equivalent to the diabody having the sequence of SEQ ID NO: 6, or the CDR (or variable region) of SEQ ID NO: 2 and SEQ ID NO: 1 or 2 in the amino acid sequence of a diabody having an amino acid sequence of 4 CDR (or variable region) or CDR (or variable region) of SEQ ID NO: 2 and CDR (or variable region) of SEQ ID NO: 4.
  • “functionally equivalent” means that the target diabody has the sequence described in SEQ ID NO: 6, or the CDR (or variable region) of SEQ ID NO: 2 and SEQ ID NO: 4. It means having activity equivalent to diabody having CDR (or variable region) sequence (for example, binding activity to HLA-A, cell death-inducing activity, etc.).
  • the number of amino acids to be mutated is not particularly limited, but is usually within 30 amino acids, preferably within 15 amino acids, and more preferably within 5 amino acids (for example, within 3 amino acids).
  • humanization or chimerization may be performed for the purpose of reducing the heterologous antigenicity to humans.
  • the low molecular weight antibody that recognizes HLA is not particularly limited as long as it specifically binds to HLA and has a biological action.
  • the low molecular weight antibody of the present invention can be prepared by methods known to those skilled in the art. For example, as described in the Examples, gene recombination techniques known to those skilled in the art can be performed based on the sequence of an antibody recognizing HLA (particularly the sequence of a variable region or the sequence of a complementary chain determining region (CDR)). It is possible to produce by using.
  • the sequence of the antibody recognizing HLA a known antibody sequence can be used. It is also possible to prepare an anti-HLA antibody using HLA as an antigen by a method known to those skilled in the art, and obtain and use the antibody sequence. Specifically, for example, it can be performed as follows. Using HLA protein or a fragment thereof as a sensitizing antigen, this is immunized according to a normal immunization method, and the resulting immune cells are fused with a known parent cell by a normal cell fusion method, followed by normal screening. By this method, monoclonal antibody-producing cells (hybridomas) are screened.
  • HLA protein or a fragment thereof as a sensitizing antigen
  • the antigen can be prepared according to a known method, for example, a method using a baculovirus (W098 / 46777 etc.).
  • the hybridoma can be prepared, for example, according to the method of Milstein et al. (Kohler. G. and Milstein, C, Methods Enzymol. (1981) 73: 3-46).
  • Milstein et al. Kohler. G. and Milstein, C, Methods Enzymol. (1981) 73: 3-46.
  • the immunogenicity of the antigen When the immunogenicity of the antigen is low, it may be immunized by binding to an immunogenic macromolecule such as albumin.
  • the cDNA of the variable region (V region) of the antibody can be synthesized using the mRNA power reverse transcriptase of the hyperidoma, and the sequence of the obtained cDNA can be decoded by a known method.
  • a chimeric antibody is a mammal other than a human, for example, a mouse antibody heavy chain, light chain variable region and a human antibody heavy chain, light chain constant antibody, etc., and encodes a mouse antibody variable region.
  • This DNA can be obtained by ligating the DNA to be encoded with the DNA encoding the constant region of a human antibody, introducing it into an expression vector, introducing it into a host, and producing it.
  • the present inventors have found that the antibody of the present invention induces cell death. Based on this finding, a cell death inducer or cell growth inhibitor containing the antibody of the present invention as an active ingredient is provided. Furthermore, the present inventors have already found that a diabody having a low molecular weight anti-HLA antibody has an antitumor effect on a human myeloma model animal (WO2004 / 033 499). Furthermore, the cell death-inducing activity of the antibody of the present invention is considered to be particularly effective in activated T cells or B cells. Therefore, the antibody of the present invention is considered to be particularly effective for the treatment and prevention of tumors such as cancer (particularly blood tumors) and autoimmune diseases. The present invention An antitumor agent or an autoimmune disease therapeutic agent comprising the antibody of the present invention as an active ingredient is also provided.
  • the present invention also provides a cell death inducing agent or cell growth inhibitor containing the antibody of the present invention as an active ingredient. Since the cell death-inducing activity of the antibody of the present invention is considered to be particularly effective for activated T cells or B cells, it is useful for the treatment and prevention of tumors such as cancer (particularly hematologic tumors) and autoimmune diseases. It is considered to be particularly effective. Thus, the present invention also provides methods for treating and preventing tumors such as cancer (particularly blood tumors) and autoimmune diseases using the antibodies of the present invention. When a low molecular weight! /! Antibody is used as an active ingredient, cross-linking with an anti-IgG antibody or the like is preferable.
  • the agent of the present invention can also be used in combination with interferon.
  • the combined use of anti-HLA class I antibodies and interferons strongly enhances the effects of anti-HLA class I antibodies such as cell death induction (WO2006 / 123724).
  • interferon is a general term for proteins or glycoproteins having an antiviral action induced by animal cells by viruses, double-stranded RNA, lectins and the like. In addition to antiviral action, it has cell growth inhibitory action and immunoregulatory action. Production cells, ability to bind to specific receptors, biological 'physicochemical properties' are classified into several types, and the main ones are ⁇ , j8, ⁇ , but also IFN ⁇ , IFN ⁇ Existence is known. Furthermore, interferon ⁇ is known to have more than 20 subtypes. Currently, various genetically modified preparations such as PEGylated, consensus interferon, etc. are being developed and promoted!
  • the interferon in the present invention may be any of the above types, but is preferably ⁇ or ⁇ .
  • the interferon in the present invention is a natural type, an artificially mutated genetically modified type, a naturally occurring mutant, a fusion protein, or these as long as it enhances cell death induction by an anti-HLA class I antibody. It can be any of the following fragments.
  • the origin of the interferon in the present invention for example, human, chimpanzee, orangutan, inu, horse, hidge, goat, ronoku, pig, cat, mouse, guinea pig, rat, rabbit, etc. However, it is not limited to these, and other mammals can be derived.
  • the combined use of the antibody of the present invention and interferon means that the antibody of the present invention and interferon are administered or used together (hereinafter simply referred to as "administration"). It is not limited by the order of administration or the administration interval.
  • the order of administration of the antibody of the present invention and interferon is any order of administration of the antibody of the present invention after administration of interferon, administration of interferon and antibody of the present invention at the same time, administration of interferon after administration of the antibody of the present invention.
  • the administration interval between the interferon and the antibody of the present invention is not particularly limited, and can be set in consideration of factors such as administration route and dosage form.
  • An example of the administration interval is usually 0 hour to 72 hours, preferably 0 hours to 24 hours, and more preferably 0 hours to 12 hours.
  • the antibody of the present invention can be made into one pharmaceutical composition together with interferon.
  • the antibody of the present invention can be used as a pharmaceutical composition characterized by being used in combination with interferon.
  • the drug of the present invention can be administered in the form of a pharmaceutical, and can be administered systemically or locally, orally or parenterally.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral intestinal solvent, etc.
  • the effective dose is selected in the range of O.Olmg to lOOmg per lkg body weight.
  • a dose of 1-1000 mg, preferably 5-50 mg per patient can be selected.
  • an effective dose is an effective dose that is such that there is free antibody in the blood, and a specific example is 1 per kg body weight.
  • Monthly (4 weeks) 0.5mg to 40mg, preferably lmg to 20mg divided into several doses, for example, twice a week, once a Z week, once a Z2 week, once a Z4 week Intravenous injection such as infusion or subcutaneous injection, etc.
  • the dosing schedule is to extend the dosing interval as follows: Z-week or once Z-week, once Z-week, once Z-week 3, once Z-week 4 while observing the post-dose status and observing blood test values. Adjust as you go It's pretty cute.
  • a pharmaceutically acceptable carrier such as a preservative and a stabilizer may be added.
  • the pharmaceutically acceptable carrier means a pharmaceutically acceptable material that can be administered with the above-mentioned drug, which may or may not be a material having the above-mentioned activity. To do. Moreover, even if it is a material which does not have said activity, it may be a material which has a synergistic or additive effect by using together with an anti- HLA antibody.
  • Examples of materials that are acceptable for formulation include sterilized water, physiological saline, stabilizers, excipients, buffers, preservatives, surfactants, chelating agents (EDTA, etc.), binders, and the like.
  • the stabilizer about 0.2% of gelatin dextran, 0.1-1.0% sodium glutamate, or about 5% lactose or about 2% sorbitol can be used. However, it is not limited to these. Typical examples of preservatives include about 0.01% chime mouth sal and about 0.1% betapropionolaton.
  • examples of the surfactant include nonionic surfactants, such as sorbitan fatty acid esters such as sorbitan monocaprylate, sorbitan monolaurate, and sorbitan monopalmitate; glycerin Glycerin fatty acid esters such as monocaprylate, glycerin monomyristate and glycerin monostearate; polyglycerin fatty acid esters such as decaglyceryl monostearate, decaglyceryl distearate and decaglyceryl monolinoleate; polyoxyethylene sorbitan monolaur Polyoxyethylene sorbitan monooleate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan trioleate, polyoxy Polyoxyethylene sorbitan fatty acid esters such as tylene sorbitan tristearate; Polyoxyethylene sorbite fatty acid esters such as polyoxyethylene sorbite
  • Examples of the surfactant also include an anionic surfactant, for example, an alkyl sulfate having an alkyl group having 10 to 18 carbon atoms such as sodium cetinole sulfate, sodium lauryl sulfate, sodium oleyl sulfate; Polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl sulfate having an average addition mole number of ethylene oxide of 2 to 4 and an alkyl group having 10 to 18 carbon atoms; such as ester sodium lauryl sulfosuccinate Alkyl sulfosuccinic acid ester salts having 8 to 18 carbon atoms in the alkyl group; natural surfactants such as lecithin and glycephine phospholipids; fingophospholipids such as sphingomyelin; fatty acid having 12 to 18 carbon atoms A typical example is sucrose fatty acid ester.
  • an anionic surfactant for example, an al
  • surfactants can be added to the agent of the present invention in combination.
  • Preferred surfactants for use in the formulations of the present invention are polyoxyethylene sorbitan fatty acid esters such as polysorbate 20, 40, 60 or 80, with polysorbate 20 and 80 strength S being particularly preferred.
  • polyoxyethylene polyoxypropylene glycol represented by poloxamer such as Pull Knick F-68 (registered trademark) is also preferred.
  • the amount of surfactant added depends on the type of surfactant used. In the case of polysorbate 20 or polysorbate 80, it is generally 0.001 to 100 mg / mL, preferably 0.003 to 50 mg / mL, and more preferably 0.005 to 2 mg / mL.
  • buffering agent phosphate, citrate buffer, acetic acid, malic acid, tartar Acids, succinic acid, lactic acid, potassium phosphate, darconic acid, strong prillic acid, deoxycholic acid, salicylic acid, triethanolamine, fumaric acid, other organic acids, etc., or carbonate buffer, tris buffer, Examples thereof include histidine buffer and imidazole buffer.
  • the solution preparation may be prepared by dissolving in an aqueous buffer known in the field of solution preparations.
  • concentration of the buffer is generally 1 to 500 mM, preferably 5 to 100 mM, and more preferably 10 to 20 mM.
  • the drug of the present invention contains other low molecular weight polypeptides, proteins such as serum albumin, gelatin and immunoglobulin, saccharides such as amino acids, polysaccharides and monosaccharides, carbohydrates, and sugar alcohols. Moyo.
  • the amino acids include basic amino acids such as arginine, lysine, histidine, ortin, or inorganic salts of these amino acids (preferably in the form of hydrochlorides or phosphates, That is, phosphoric acid amino acid).
  • the preferred pH value is determined by appropriate physiologically acceptable buffer substances such as inorganic acids, especially hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, formic acid or their salts. Adjusted.
  • the use of phosphate is particularly advantageous in that a stable lyophilizate is obtained.
  • the preparation is substantially free of organic acids such as malic acid, tartaric acid, succinic acid, succinic acid, fumaric acid, etc. or the corresponding anions (malate ion, tartaric acid ion, succinic acid ion, succinic acid ion, This is particularly advantageous when no fumaric acid ion or the like is present.
  • organic acids such as malic acid, tartaric acid, succinic acid, succinic acid, fumaric acid, etc. or the corresponding anions (malate ion, tartaric acid ion, succinic acid ion, succinic acid ion, This is particularly advantageous when no fumaric acid ion or the like is present.
  • Preferred amino acids are arginine, lysine, histidine or ortin.
  • acidic amino acids such as glutamic acid and aspartic acid, and their salt forms (preferably sodium salts) or neutral amino acids such as isoleucine, leucine, glycine, serine, threonine, parin, methionine, cysteine, or alanine, or Aromatic amino acids such as ferulalanin, tyrosine, tryptophan, or the derivative N-acetyl tryptophan can be used.
  • saccharides and carbohydrates such as polysaccharides and monosaccharides include dextran, gnolecose, fructose, ratatose, xylose, mannose, manolethose, sucrose, trehalose, and raffinose. it can.
  • examples of the sugar alcohol include mannitol, sorbitol, and ino Citol and the like can be mentioned.
  • aqueous solution for injection for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-manntol, and sodium chloride. And may be used in combination with an appropriate solubilizer such as alcohol (ethanol, etc.), polyalcohol (propylene glycol, PEG, etc.), nonionic surfactant (polysorbate 80, HCO-50), etc.
  • alcohol ethanol, etc.
  • polyalcohol propylene glycol, PEG, etc.
  • nonionic surfactant polysorbate 80, HCO-50
  • it may further contain a diluent, a solubilizer, a pH adjuster, a soothing agent, a sulfur-containing reducing agent, an antioxidant and the like.
  • the sulfur-containing reducing agent includes, for example, N-acetyl cysteine, N-acetyl cysteine, thiotate acid, thiodiglycol, thioethanolamine, thioglycerol, thiosorbitol, thioglycolic acid. And salts thereof, sodium thiosulfate, glutathione, and those having a sulfhydryl group such as thioalkanoic acid having 1 to 7 carbon atoms.
  • examples of the anti-oxidation agent include erythorbic acid, dibutylhydroxytoluene, butylhydroxyl-sol, -tocopherol, tocopherol acetate, L-ascorbic acid and salts thereof, L- Chelating agents such as ascorbyl palmitate, L-ascorbyl stearate, sodium bisulfite, sodium sulfite, triamyl gallate, propyl gallate or disodium ethylenediammine tetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate Can be mentioned.
  • L- Chelating agents such as ascorbyl palmitate, L-ascorbyl stearate, sodium bisulfite, sodium sulfite, triamyl gallate, propyl gallate or disodium ethylenediammine tetraacetate (EDTA), sodium pyrophosphate, sodium metaphosphate Can be mentioned.
  • microcapsules such as hydroxymethylcellulose, gelatin, and poly (methacrylic acid)
  • colloid drug delivery systems ribosomes, albumin microspheres, microemulsions, nanos Particle and nano force psenore etc.
  • a method of making a drug a sustained-release drug is also known and can be applied to the present invention (Langer et al., J. Biomed. Mater. Res. 1981, 15: 167-277; Langer, Chem. Tech. 1982, 12: 98-105; US Pat. No. 3,773,919; European Patent Application Publication (EP) 58,481; Sidman et al., Biopolymers 1983, 22: 547-556? 133,988).
  • the pharmaceutically acceptable carrier to be used is appropriately or in combination from the above depending on the dosage form. It is selected together but is not limited to these! / ⁇ .
  • the injection may be a solid preparation or a preparation prepared at the time of use by lyophilization after storing the solution in a container.
  • One dose may be stored in a container, or a plurality of doses may be stored in the same container.
  • administering includes administering orally or parenterally.
  • Oral administration can include administration in the form of oral preparations, and the oral dosage form is selected from granules, powders, tablets, capsules, solvents, emulsions, suspensions, etc. be able to.
  • Parenteral administration can include injections and! /, In the form of a tube, and as injections, intravenous injection such as infusion, subcutaneous injections, intramuscular injections, or Examples include intraperitoneal injections.
  • intravenous injection such as infusion, subcutaneous injections, intramuscular injections, or Examples include intraperitoneal injections.
  • the effect of the method of the present invention can be achieved by introducing a gene containing an oligonucleotide to be administered into a living body using a gene therapy technique.
  • the agent of the present invention can be locally administered to an area where treatment is desired. For example, it can be administered by local injection during surgery, use of a catheter, or targeted gene delivery of DNA encoding an inhibitor of the present invention.
  • Administration to patients is known to those skilled in the art, for example, intraarterial injection, intravenous injection, subcutaneous injection, intranasal, transbronchial, intramuscular, transdermal, or oral This method can be used.
  • the dose varies depending on the weight and age of the patient, the administration method, etc., but those skilled in the art can appropriately select an appropriate dose.
  • the compound can be encoded by DNA, it may be possible to incorporate the DNA into a gene therapy vector and perform gene therapy.
  • the dose and administration method vary depending on the patient's weight, age, symptoms, etc., but can be appropriately selected by those skilled in the art.
  • the dose of the drug of the present invention varies depending on the administration subject, target organ, symptom, and administration method, but for example, in the form of an injection, usually in an adult (with a body weight of 60 kg) About 0.1 to 1000 mg per day, preferably about 1.0 to 50 mg, more preferably about 1.0 Are considered to be 20 mg.
  • the single dose varies depending on the subject of administration, target organ, symptom, and administration method.
  • it is usually for adults (weight 60 kg).
  • it is considered convenient to administer about 0.01 to 30 mg, preferably about 0.1 to 20 mg, more preferably about 0.1 to 10 mg per day by intravenous injection.
  • an amount converted per 60 kg body weight or an amount converted per body surface area can be administered.
  • the container can be a vial or a pre-filled syringe. If necessary, it may be a solution or a powder product by freeze-drying. It can be used for single or multiple inoculations.
  • the dosage varies depending on the type, weight, age, administration method, etc. of the subject to be inoculated, but those skilled in the art can appropriately select an appropriate dosage.
  • HLA-foll human HLA classl A and Ba / F3 cells expressing human ⁇ 2 ⁇ were established.
  • a full-length HLA classl A (HLA-foll) expression vector was prepared as follows.
  • a cDNA encoding full-length HLA classl A was converted into a saddle shape and PCR was performed with the following primers (sHLA-1, 1HLA-3) to amplify a gene fragment encoding full-length HLA classl A.
  • sHLA-1 TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC (sequence number: 13)
  • 1HLA-3 ' TTG CGG CCG CTC ACA CTT TAC AAG CTG TGA GAG ACA (SEQ ID NO: 14)
  • the obtained DNA fragment was cleaved with EcoRI / Notl, and the EcoP of animal cell expression vector pCXND3 A full-length HLA classl A (1HLA-A) expression vector (pCXND3-HLA-foil) was constructed by inserting between RI / Notl.
  • ⁇ 2-microglobulin ( ⁇ 2M) expression vector was prepared as follows. Perform PCR using the human spleen cDNA (human spleen cDNA, clontech # S1206) and the following primers (j8 2M-1 and j8 2M-2) to amplify the gene fragment encoding full-length ⁇ 2 ⁇ did.
  • ⁇ 2M -2 TTT CTA GAT TAC ATG TCT CGA TCC CAC TTA ACT (SEQ ID NO: 16)
  • the obtained DNA fragment was cleaved with Notl / Xbal and inserted between NotI / Xbal of pCOS2-ZEO to construct a full-length j8 2M expression vector (pCOS2zeo- ⁇ 2 ⁇ ).
  • the HLA-A / ⁇ 2 -expressing Ba / F3 cell line was established as follows. pCXND3- HLA- foll, pCOS2zeo- ⁇ 2M 20 ⁇ g each, cut with Pvul, and suspended in PBS (-) Ba / F3 cells (1 X 10 7 cells / mL, 800 ⁇ L) by the electoral position method (BIO-RAD, GenePulser, 0.33 kV, 950 ⁇ F, time const 27.0).
  • HLA-A / ⁇ 2 ⁇ expression Ba / F3 cell line (# 9, # 10, # 22) and ARH77 cell HLA classl A expression level was 2D7 IgG (10 ⁇ g / mL) And the expression of each antigen on the cell membrane was analyzed by FACS (Coulter, ELITE) (Fig. 1). As a result, HLA classl A expression similar to that of ARH77 cells was observed in the # 9 strain. Therefore, this strain was expanded and cultured in RPMIl 640 medium containing 1 ng / mL IL- 3,500 ⁇ g / mL G418, 800 ⁇ g / mL zeocin (invitrogen # 46-0072) and 10% FCS. Used for.
  • HLA-A / ⁇ 2 ⁇ expression Ba / F3 cell line (BaF-HLA # 9) was washed twice with PBS (-) and washed with PBS (-) to 1.5-2.0 X 10 7 cells / 200 ⁇ L. Suspend and add 200 ⁇ L of this suspension to the mouse (MRL / 1 Injected into the abdominal cavity of pr, male, 4 weeks old, Japanese chili survivor) (Terumo syringe 1 mL, needle 26G).
  • Immunization was performed once a week for a total of 8 times. The 9th time, the final immunization was performed with 200 ⁇ L of a 2.5 ⁇ 10 7 cells / 200 ⁇ L suspension, and cell fusion was performed 4 days later.
  • the spleen was aseptically removed from the mouse and crushed in medium 1 [RPMI1640 (+ P / S)] to give a single cell suspension. This was passed through a 70 m nylon mesh (Falcon) to remove adipose tissue and the like, and the number of cells was counted. The resulting B cells are mixed with mouse myeloma cells (P3U1 cells) at a cell number ratio of approximately 2: 1 and 1 mL of 50% PEG (Roche, cat #: 783 641, lot #: 14982000 ) Was added to perform cell fusion.
  • PEG mouse myeloma cells
  • the fused cells are suspended in medium 2 [RPM I1640 (+ P / S, 10% FCS)], dispensed at an appropriate number (10) of 96-well plates at 100 ⁇ L / well, and cultured at 37 ° C. did.
  • medium 3 [RPMI1640 (+ P / S, 10% FCS, HAT (S igma, H0262), 5% BM condimed HI (Roche, cat #: 1088947, lot #: 14994800)]] 10 0 ⁇ L /
  • 100 ⁇ L of medium was removed from the well every day, and 100 ⁇ L / wellwell of medium 3 was newly added for 4 days.
  • the cell fusion was screened for hyperidoma having cell death-inducing activity. Screening for cell death-inducing antibodies was performed as follows using the ability to induce cell aggregation as an index.
  • HLA-A / j8 2-expressing Ba / F3 cells were seeded on a 96-well plate at 2.5 ⁇ 10 4 cells / well, and 80 / zL of culture supernatant of each hyperidoma was added and cultured at 37 ° C. for 1 hour. Thereafter, an anti-mouse IgG antibody (Cappel # 55482, # 55459) was added to 6 ⁇ g / mL. After further incubation for 4 hours, the cross-linking reaction was performed, and the wells where cell aggregation was observed were selected by observation with a microscope. As a result of screening the culture supernatant of 1000 clones, 10 positive hyperidomas were finally obtained. These positive well cells were seeded on a 96-well plate at 2.5 cells / well, cultured for about 10 days, and analyzed for cell aggregation-inducing activity again. Ten single clones were obtained by this operation.
  • Antibody panel 5-1 Purification of antibodies
  • the antibody was purified from 80 mL of the culture supernatant of the resulting clone of high-pridoma using a Hi Trap Protein G HP 1 mL column (Amersham Biosciences # 17-0404-01).
  • the hybridoma supernatant was adsorbed at a flow rate of 1 mL / min, washed with 20 mL of 20 mM phosphate buffer (pH 7.0), and then eluted with 3.5 mL of 0.1 M Glycine-HCl (pH 2.7). .
  • the elution fraction was collected in an amount of 0.5 mL in an Eppendorf tube to which 50 ⁇ L of 1 M Tris-HCl (pH 9.0) was added in advance. Measure OD, collect antibody-containing fractions, cover PBS (-), total volume 2.5 m
  • the buffer was replaced with PBS (-) using a PD-10 column (Amersham Biosciences # 17-0851-01).
  • the purified antibody was passed through a 0.22 ⁇ m filter (MILLIPORE # SLGV033RS), and the properties of each purified antibody were examined in detail below.
  • Antibody subtypes were determined using IsoStrip (Roche # 1 493 027). To determine the subtype, the culture supernatant of high-pridoma diluted 10-fold with PBS (-) was used.
  • each domain of the HLA classl A ( ⁇ 1 domain, ⁇ 2 domain, ⁇ 3 domain)
  • FIG. 2 A cell line expressing a chimeric HLA classl A substituted with the corresponding domain of mouse MHC class I was established as follows (FIG. 2).
  • mouse MHC class IA gene was made into a saddle type and cloned by the following method.
  • mouse spleen cDNA MTC panel, clontech
  • the following primers mHLA-
  • the gene fragment of mouse HLA classl A was amplified.
  • mHLA- 1 CTG CTC CTG CTG TTG GCG GC (SEQ ID NO: 17)
  • mHLA- 2 CAG GGT GAG GGG CTC AGG CAG (SEQ ID NO: 18)
  • the obtained gene fragment was designated as pCRII-TOPO (Invitrogen TOPO TA-cloning kit, # 45-06
  • An MHH expression vector (pCOS2-chHLA-MHH flag) in which the a1 domain of HLA-A is mouse (MHH) was constructed by the following method.
  • the expression vector (pCXND3-HLA foll) with full-length HLA-A is made into a saddle shape and pyrobest DNA polymerase (TAKARA # R005) is used. From the following primers (sHLA-A and chHLA-HI), The signal sequence (fragment A) was PCR amplified.
  • sHLA-A TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC (including EcoRI site) (SEQ ID NO: 19)
  • chHLA- HI AAT CTA GAC TGG GTC AGG GCC AGG GCC CC (including Xbal site) (SEQ ID NO: 20)
  • fragment B HLA-A up to the a2 domain-stop codon was PCR amplified with the following primers (chHLA-H2 and chHLA-H3).
  • chHLA— H2 TTT CTA GAG CCG GTT CTC ACA CCA TCC AGA GG (including Xbal site) (SEQ ID NO: 21)
  • chHLA- H3 AAG GAT CCC ACT TTA CAA GCT GTG AGA GAC ACA T (including Ba mHI site) (SEQ ID NO: 22)
  • Fragment A was cleaved with EcoRI-Xbal and fragment B was cleaved with Xbal-BamHI, and these were inserted between EcoRI-BamHI of pCOS2-FLAG.
  • the nucleotide sequence of the obtained plasmid was confirmed and designated pCO S2- (M) HH.
  • mouse MHC class IA gene was made into a saddle type, and pyrobest DNA polymerase (T AKARA # R005) was used. From the following primers (chHLA-Ml and chHLA-M2), oc 1 of mouse MHC class The domain (fragment C) was PCR amplified.
  • chHLA— Ml TTT CTA GAG CGG GCC CAC ATT CGC TGA GG (including Xbal site) (SEQ ID NO: 23)
  • chHLA-M2 TTT CTA GAC TGG TTG TAG TAT CTC TGT GCG GTC C (including Xba I site) (SEQ ID NO: 24)
  • the resulting fragment C was cut with Xbal and inserted into pCOS2- (M) HH opened with Xbal. base The sequence was confirmed, and the construction of the expression vector pCOS2-chHLA-MHH-flag in which one domain was replaced with mouse MHC-A was completed.
  • HMH expression vector in which the a2 domain is mouse (HMH) was constructed by the following method.
  • the expression vector (pCXND3-HLA foll) with full length HLA-A is made into a saddle shape and pyrobest DNA polymerase (TAKARA # R005) is used. From the following primers (sHLA-A and chHLA-H4), Signal sequence-The ⁇ 1 domain (fragment D) was PCR amplified.
  • sHLA-A TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC (including EcoRI site) (SEQ ID NO: 19)
  • chHLA-H4 TTG TCG ACC CGG CCT CGC TCT GGT TGT AGT AG (including Sail site) (SEQ ID NO: 25)
  • chHLA- H5 AAG TCG ACG CCC CCA AAA CGC ATA TGA CT (including the Sail site) (SEQ ID NO: 26)
  • chHLA- H3 AAG GAT CCC ACT TTA CAA GCT GTG AGA GAC ACA T (including Ba mHI site) (SEQ ID NO: 22)
  • Fragment D was cleaved with EcoRI-Sall and fragment E was cleaved with Sall-BamHI, and these were inserted between EcoRI-BamHI of pCOS2-F LAG.
  • the nucleotide sequence of the obtained plasmid was confirmed and designated pCOS2—H (M) H.
  • mouse MHC class IA gene was made into a saddle shape, and pyrobest DNA polymerase (T AKARA # R005) was used. From the following primers (chHLA-M3 and chHLA-M4), ⁇ of mouse MHC class IA Two domains (fragment F) were PCR amplified.
  • chHLA— M3 TTG TCG ACC ACG TTC CAG CGG ATG TTC GGC (including the Sail site) (SEQ ID NO: 27)
  • chHLA-M4 GAG TCG ACG CGC AGC AGC GTC TCA TTC CCG (including the Sail site) (SEQ ID NO: 28)
  • the obtained fragment F was cut with Sail and inserted into pCOS2-H (M) H opened with Sail. Base arrangement The column was confirmed, and the construction of the expression vector pCOS2-chHLA-H MH-flag in which two domains were replaced with mouse MHC-A was completed.
  • HHM expression vector in which the a3 domain is mouse (HHM) was constructed by the following method.
  • the expression vector (pCXND3-HLA foll) with full-length HLA-A is made into a saddle shape and pyrobest DNA polymerase (TAKARA # R005) is used. From the following primers (sHLA-A and chHLA-H6), The signal sequence- ⁇ 2 domain (fragment G) was PCR amplified.
  • sHLA-A TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC (including EcoRI site) (SEQ ID NO: 19)
  • chHLA- H6 TTT CTA GAG TCC GTG CGC TGC AGC GTC TCC T (including Xbal site) (SEQ ID NO: 29)
  • fragment H The intracellular domain (fragment H) of HLA-A was PCR amplified from the following primers (chHLA-H7 and chHLA-H3).
  • chHLA-H7 TTT CTA GAA TGG GAG CCG TCT TCC CAG CCC A (including Xbal site) (SEQ ID NO: 30)
  • chHLA- H3 AAG GAT CCC ACT TTA CAA GCT GTG AGA GAC ACA T (including BamHI site) (SEQ ID NO: 22)
  • Fragment G was cleaved with EcoR ⁇ Xbal and fragment H was cleaved with Xba ⁇ BamHI, and these were inserted between EcoRI-BamHI of pCOS2-FLAG.
  • the nucleotide sequence of the obtained plasmid was confirmed and designated as pCO S2- HH (M).
  • mouse MHC class IA gene was made into a saddle shape, and pyrobest DNA polymerase (T AKARA # R005) was used. From the following primers (chHLA-M5 and chHLA-M6), the mouse MHC class IA ⁇ 3 domain ( Fragment I) was PCR amplified.
  • chHLA- M5 AAT CTA GAA AGG CCC ATG TGA CCT ATC ACC CC (including Xbal site) (SEQ ID NO: 31)
  • chHLA- M6 TAT CTA GAG TGA GGG GCT CAG GCA GCC CC (including Xbal site) (SEQ ID NO: 32)
  • the resulting fragment I was cut with Xbal and inserted into pCOS2-HH (M) opened with Xbal. Base arrangement The column was confirmed, and the construction of the expression vector pCOS2-chHLA-H HM-flag in which the 3 domains were replaced with mouse MHC-A was completed.
  • the ⁇ expression vector (pCOS2-chHLA- MM MM flag) in which the ⁇ 1 to ⁇ 3 domains are mice ( ⁇ ) was constructed by the following method.
  • Fragment A was cleaved with EcoRI-Xbal and fragment H was cleaved with Xbal-BamHI, and these were inserted between EcoRI-BamHI of pCOS2-FLAG.
  • the nucleotide sequence of the obtained plasmid was confirmed and designated pCO S2 ⁇ (MMM).
  • Mouse MHC class IA gene in a saddle shape using pyrobest DNA polymerase (TAKARA # R005) and the following primers (chHLA-Ml and chHLA-M6) J) was PCR amplified.
  • chHLA— Ml TTT CTA GAG CGG GCC CAC ATT CGC TGA GG (including Xbal site) (SEQ ID NO: 23)
  • chHLA- M6 TAT CTA GAG TGA GGG GCT CAG GCA GCC CC (including XbaI site) (SEQ ID NO: 32)
  • the obtained fragment J was cut with Xbal and inserted into pCOS2- (MMM) opened with Xbal.
  • the base sequence was confirmed, and the construction of the expression vector pCOS2-ch HLA-MMM-flag in which the ⁇ 1 to ⁇ 3 domains were replaced with mouse MHC- ⁇ was completed.
  • the cells were introduced into Ba / F3 cells (1 ⁇ 10 7 cells / mL, 800 ⁇ L) by the electopore method (BIO-RAD GenePulser, 0.33 kV, 950 ⁇ F, time const 27.0).
  • NP40 Lysis buffer 10% Tris-HCl (pH7.5) containing 0.5% NP40, 150 mM NaCl, 5 mM EDTA. After dissolution, SDS-PAGE was performed using 12 ⁇ L of the supernatant. After blotting to PVDF membrane, Ant Flag M2 Western plots were performed on the body (SIGMA # F3165) and HRP-anti-mouse antibody (Amersham Biosciences # NA9310) to screen for cell lines producing chHLA.
  • ChHLA expression was the highest chHLA-MHH # 8, chHLA-HMH # 6, chHLA-HHM # 2, chHLA -MMM # 4, 1 ng / mL IL-3, 500 ⁇ g / mL G418, 10
  • the cells were expanded in RPMI 1640 medium containing% FCS. Furthermore, 15 ⁇ g each of pCOS2zeo- ⁇ 2 ⁇ cleaved with Pvul was introduced into these chHLA-expressing cell lines by the electopore position method. The next day, G418 was added to 500 ⁇ g / mL, and Zeocin (Invitrogen # 46-0072) was added to 800 g / mL.
  • j8 2M expression was highest ch HLA-MHH / ⁇ 2 ⁇ # 1-3, chHLA— HMH / ⁇ 2M # 2—1, chHLA— HHM / ⁇ 2M # 3—4, ch HLA— MMM / ⁇ 2M # 4-6 was expanded in RPMI1640 medium containing 1 ng / mL IL-3,500 ⁇ g / mL G418, 800 ⁇ g / mL zeocin, 10% FCS, and used for epitope analysis.
  • C3B3, C11B9, and C17D11 did not bind to HMH / Ba / F3 (the a2 domain was mouse HLA), indicating that the epitope is an ⁇ 2 domain.
  • C 17A4, C 17E9, C23H12, and C26D8 do not cross mouse MHC class I (results not shown), but bind to all chimeric HLA and their FACS staining pattern is stained with anti-
  • C3B3, C17D11, and C11B9 antibodies showed relatively strong cell death-inducing activity in the presence of cross-linking.
  • RNA was purified from about 5 ⁇ 10 6 hyperidomas using RNeasy Mini Kit (QIAGEN # 74104) and QIAshredder (QIAGEN # 79654).
  • cDNA was synthesized from 1 ⁇ g of total RNA using SMART RACE cDNA Amplification Kit (CLONTECH # PT3269-1). At that time, the 5'-CDS primer included in the kit was used. The obtained cDNA was converted into a cage and PCR was performed under the following conditions to amplify the heavy chain variable region (V) and the light chain variable region (V).
  • the obtained gene fragment was TA-cloned into pCRII-TOPO (Invitrogen TOPO TA-cloning kit, # 45-0640), and the nucleotide sequence was confirmed. At least two plasmids were analyzed for one gene to confirm the sequence.
  • the base sequence of the heavy chain variable region containing the leader sequence confirmed in this Example is shown in SEQ ID NO: 46, and the amino acid sequence of the heavy chain variable region encoded by this base sequence is shown in SEQ ID NO: 47.
  • the 58th force of SEQ ID NO: 46, the 432th base sequence (SEQ ID NO: 1), and the 20th force of SEQ ID NO: 47 corresponds to the 144th amino acid sequence (SEQ ID NO: 2) corresponding to the heavy chain variable region. .
  • nucleotide sequence of the light chain variable region containing the leader sequence confirmed in this example is shown in SEQ ID NO: 48
  • amino acid sequence of the light chain variable region encoded by this nucleotide sequence is shown in SEQ ID NO: 49. 61-381 base sequence of SEQ ID NO: 48 (SEQ ID NO: 3)
  • 21st power of SEQ ID NO: 49 and the 127th amino acid sequence correspond to the light chain variable region.
  • the heavy chain variable region of 3 clones (C3B3, C17D11, C11B9) having a 2 domain in the epitope had the same amino acid as C3B3, C17D11.
  • C11B9 differed by 1 amino acid compared to C3B3 / C17D11 ( Figure 5-1).
  • the light chain variable region was identical in all three clones ( Figure 5-2).
  • the obtained C3B3 antibody was found to have cell death-inducing activity against ARH77 cells in the presence of the secondary antibody (GAM), but the antibody alone was strong, but no cell death-inducing activity was observed.
  • a diabody was prepared by linking the variable region of the C3B3 antibody with a 5-mer peptide (GGGGS) (SEQ ID NO: 33).
  • TAKA PCR Vaporized TA-cloned into pCRII-TOPO in a saddle shape and pyrobest DNA polymerase (TAKA PCR was performed using RA # R005) to amplify the signal sequence from the heavy chain variable region to FR4.
  • the 5 'primer used the EcoRI site, and the 3' primer used a linker sequence (amino acid GGGGS) attached.
  • the FR1 power of up to FR4 was also amplified.
  • the 5 ′ primer used was a linker sequence (amino acid: GGG GS), and the 3 ′ primer was a calorie with a Flag tag and Notl site.
  • the gene of ody was amplified.
  • the obtained fragment was digested with EcoRI / Notl and inserted between EcoRI / Notl of pCXND3 to confirm the nucleotide sequence, and the construction of the expression vector was completed.
  • the following are the primers and PCR reaction conditions when C3B3 diabody (linker: 5 amino acids) was prepared.
  • C3B3DB-H1 cct gaa ttc CAC CAT GTA CTT CAG GCT CAG CTC AG (SEQ ID NO: 34)
  • C3B3DB-H2 GGA TAT Cgc tac cgc etc cac cTG AGG AGA CGG TGA CTG A AA TTC CTT (SEQ ID NO: 35)
  • C3B3DB-L1 CAg gtg gag gcg gta gcG ATA TCC AGA TGA CAC AGA CTA C AT CCT CC (SEQ ID NO: 36)
  • the obtained PCR product was purified with an S-300 HR column (Amersham Biosciences # 27-5130-01), and 1 ⁇ L each of V and V was used under the following conditions using pyrobest DNA polymerase.
  • Primer C3B3 shorter than C3B3DB-Hl and C3B3DB-L2 PCR was performed under the following conditions using DB-5 and C3B3DB-3.
  • C3B3DB-5 cct gaa ttc CAC CAT GTA CTT CAG GC (SEQ ID NO: 38)
  • C3B3DB-3 att gcg gcc get tat cac tta tcg (SEQ ID NO: 39)
  • the amplified fragment is purified with an S-400 HR column (Amersham Biosciences # 27-5140-01), cut with EcoRI / Notl, inserted between EcoRI / Notl of pCXND3, the nucleotide sequence is confirmed, and pCXND3 -C3B3DB-Flag construction was finished.
  • SEQ ID NO: 50 the base sequence of the diabody containing the leader sequence and the flag-tag sequence confirmed in this example is shown in SEQ ID NO: 50
  • the amino acid sequence of the diabody encoded by this base sequence is shown in SEQ ID NO: 51.
  • the 58th base sequence corresponds to the heavy chain variable region
  • the 433th base sequence corresponds to the 447th base sequence
  • the 447th to 768th base sequence corresponds to the light chain variable region.
  • the 20th force 144th amino acid sequence of SEQ ID NO: 51 is the heavy chain variable region
  • the 145th force 1 49th amino acid sequence is the linker sequence
  • the 150th to 256th amino acid sequences are the light chain variable region. Equivalent to.
  • the column was washed with 6 mL of 50 mM Tris-HC1 (pH7.4), 150 mM NaCI, 0.01% Tween20, and then eluted with 7 mL of 0.1 M Glycine-HC1 (pH3.5), 0.01% Tween20. Washing and elution were performed with an AKTAexplorer 10S at a flow rate of 1 mL / min. The eluted fraction was collected in 0.5 mL aliquots while monitoring the absorbance at 280 nm in a 5 mL tube containing 50 L of 1 M Tris-HCl (pH 8.0) in advance. The collected fractions were collectively concentrated to 300 ⁇ L using Centricon YM-10 (amicon # 4205), and immediately subjected to gel filtration chromatography.
  • C3B3 minibody was largely separated into three fractions (peak (1), peak (2), peak (3 )). Cell death-inducing activity was measured for each of these fractions. The cell death-inducing activity of 2D 7 diabody was compared.
  • the purified C3B3 diabody (Fig. 6, peak (3)) and the current 2D7 diabody were compared in terms of their ability to inhibit growth.
  • ARH77 cells are seeded on a 96-well plate at a cell concentration of 1-2 x 10 4 cells / well, each antibody obtained is added to an appropriate concentration, and the number of cells is measured after 3 days of culture. Went.
  • the number of viable cells was measured using WST-8 (viable cell count measuring reagent SF; Nacalai Tester). That is, add this reagent to cells at 10 / z L / well, incubate at 37 ° C for 1.5 hours, Absorbance at 450 ° was measured with a photometer, and the value was taken as the relative number of living cells (Fig.
  • C3B3 diabody showed a strong growth inhibitory ability at a lower concentration. From this, it was proved that C3B3 diabody is a low molecular weight antibody having a strong antitumor effect compared to 2D7 diabody.
  • C3B3 diabody—Flag expressing DG44 cells lxl0 7 cells were suspended in 2 L of CHO—S—SFMII (Invitrogen, c / n: 12052-098) / PS (Invitrogen, c / n: 15140-122) medium and cellSTACK (Corning, c / n: 3271) Cultivate at 37 ° C in a 5% CO incubator with a viability of 60
  • the culture supernatant was collected when it became less than% (about 7 days).
  • the collected culture supernatant was centrifuged at 3000 rpm at 4 ° C for 20 minutes, and the supernatant was passed through a 0.22 m filter (Corning, c / n: 430513) and stored at 4 ° C.
  • Q bepharose Fast Flow (Amersham Biosciences, c / n: 17-0510-01) was packed into XK50 Kahum (bed volume 100 mL). Wash this with 500 mL of milliQ water, 20 mM Tris-HCl (pH 7.5) (QB) containing 1 M NaCl, 0.01% Tween20, and then 20 mM Tris-HCl containing 0.01% Tween20. (pH 7.5) (QA) Equilibrated with 500 mL. To 2 L of the culture supernatant, 2 L of milliQ water was added and diluted 2-fold, and about 20 mL of 1 M Tris was adjusted to pH 7.8 and adsorbed onto an equilibrated column.
  • Adsorption was carried out using a P1 pump at a maximum flow rate of 10 mL / min at 4 ° C for about 15 hours.
  • AKTAprime was used for washing and elution at a flow rate of 10 mL / min.
  • Fractions were fractionated into 12 mL 15 mL tubes. While monitoring the absorbance at 280 nm, the fraction from the first peak after switching to 25% QB to the point when 100 mL of 30% QB was flowed was collected.
  • the collected fractions were collectively passed through a 0.22 ⁇ m filter (Corning, c / n: 430626), 0.6 equivalent of QA was added to bring the salt concentration to about 150 mM, and then stored at 4 ° C.
  • the column was washed with QB 400 mL, 0.1M NaOH 200 mL QB 200 mL, and then 500 mL. Regenerated after equilibration with QA.
  • ANTI-FLAG M2 Affinity Gel Freezer-Safe (SIGMA, c / n: A2220) was packed into an XK26 column (bed volume 10 mL). This was washed with 50 mL Tris-HCl (pH7.4) (MA) 50 mL containing 150 mM NaCl, 0.01% Tween20, and 30 mL 0.1 M Glycine-HC1 (pH3.5) (MB) containing 0.01% Tween20. After that, it was equilibrated with 50 mL of MA.
  • MA Tris-HCl
  • MA Tris-HCl
  • MB Glycine-HC1
  • the column was equilibrated with 50 mL of MA and stored at 4 ° C. 30 mL of 50 mM Tris-HC1 (pH7.4) containing 150 mM NaCl and 0.02% NaN when not used for more than 1 week
  • the force was stored at 4 ° C.
  • the diabody was separated by gel filtration using HiLoad 26/60 Superdex 200 pg (Amersham, c / n: 17-1071-01) and the buffer was replaced. The operation was performed using an AKTAexplorer 10S at a flow rate of 2 mL / min. After equilibration with PBS (-) containing 0.01% Tween 20, the M2 purified sample was manually injected. While monitoring the absorbance at 280 nm, 2.5 mL of the peak eluting at a retention volume of about 200 mL was collected in a 5 mL tube. The collected fractions were collectively stored at 4 ° C through a 0.22 ⁇ m filter (MILLIPORE, c / n: SLGV 033RS).
  • MILLIPORE 0.22 ⁇ m filter
  • the purified diabody was tested for lot-by-lot activity, then collected together with Centriprep YM-10 (amico n, c / n: 4304) and concentrated to about 1 mg / mL, and stored through a 0.22 m filter (MILLIPORE, c / n: SLGV033RS).
  • C3B3 diab ody was purified by the three steps of ion exchange chromatography, hydroxyapatite chromatography, and gel filtration chromatography.
  • the culture supernatant was diluted 3-fold with ultrapure water and then adjusted to pH 8.0 with 1 M Tris. After that, the column was applied to a Q Sepharose Fast Flow column (GE Healthcare) equilibrated with 20 mM Tri-HCl (pH 8.0) containing 0.02% Tween20, and the column was washed with the same buffer solution. The polypeptide adsorbed on the column was eluted with a linear NaCl gradient up to 0.5 M. The obtained fractions were analyzed by SDS-PAGE, and all fractions containing C3B3 minibody (C3B3 multimer and C3B3 diabody) were collected.
  • C3B3 minibody C3B3 multimer and C3B3 diabody
  • the C3B3 fraction obtained in the first step was applied to a hydroxyapatite column (BIO-RAD, type I, 20 m) equilibrated with 10 mM phosphate buffer (pH 7.0) containing 0.02% Tween20. After adding the column and washing the column with the same buffer, the phosphate buffer concentration was linearly increased to 250 mM to elute the polypeptide adsorbed on the force ram. The eluted peak was analyzed by gel filtration using SDS-PAGE and Superdex 200 PC 3.2 / 30 column (GE Healthcare). Only peaks showing the molecular weight of the target C3B3 diabody were collected.
  • the peak fraction of C3B3 diabody obtained in the second step was concentrated with amicon ultra 10 kDa cut (Millipore), equilibrated with PBS (-) containing 0.01% Tween20, HiLoad 26/60 Superdex 200 pg column (GE Healthcare) The obtained fraction was analyzed by SDS-PAGE, and the main peak containing the target C3 B3 diabody was used as the purified fraction.
  • the purified C3B3 diabody was subjected to analytical gel filtration using Superdex 200 PC 3.2 / 30 column, and showed a single peak with an apparent molecular weight of about 52 kDa.
  • C3B3 diabody showed a single band at the molecular weight position (about 27 kDa) of the monomer under both reducing and non-reducing conditions. From the above, it was found that C3B3 diab ody is a dimer in which two molecules of single-chain Fv are bound noncovalently.
  • Human EBV-transformed B cell lines ARH-77, IM-9, MC / CAR, and human Burkit t's lymphoma cell line HS-Sultan were used.
  • RPMI1640 medium containing 10% FCS was used for culture of ARH-77, IM-9, and HS-Sultan.
  • Iscove's modified Dulbecco's medium medium containing 20% FCS was used for MC / CAR culture.
  • ARH-77 and IM-9 are seeded on 96 well plates at 3 X 10 3 cells / well, MC / CAR at 5 X lo'cells / well, HS-Sultan at 1 X 10 4 cells / well, 37 ° C in a 5% CO incubator in the presence of C3B3 diabody or 2D7 diabody
  • WST-8 (Cat. No. 07553-15, Nacalai Testa Co., Ltd.) was added to each well, and after further incubation for 4 hours, the absorbance at 450 nm (reference wavelength 655 nm) was measured with a microplate reader. .
  • Cell proliferation was measured with the absorbance of the well without antibody added as 100%, the cell absorbance as 0%, and the absorbance of the well as 0%. The test was performed using triplicate, and the mean and standard deviation were calculated (Fig. 9).
  • C3B3 diabody and 2D7 diabody all inhibited cell growth in a concentration-dependent manner.
  • C3B3 diabody showed a growth inhibitory effect that was significantly lower than 2D 7 diabody and greatly increased with maximum activity.
  • Human IgG contained in mouse serum was quantified by the following ELISA. Power 100 ⁇ L of goat anti-human IgG (BIOSOURCE) diluted to 0.1 ⁇ g / mL with 0.1 mol / L bicarbonate buffer (pH 9.6) to 96 well plate (Nunc)! Incubate at 4 ° C to immobilize the antibody. After blocking, 100 ⁇ L of HI HgG (manufactured by CAPPEL) was added as serially diluted mouse serum or standard, and incubated at room temperature for 2 hours. After washing, 100 ⁇ L of alkaline phosphatase-labeled anti-human IgG (BIOSOURCE) diluted 500-fold was added, and incubated at room temperature for 2 hours.
  • BIOSOURCE alkaline phosphatase-labeled anti-human IgG
  • IM-9 transplanted mice were prepared as follows. IM-9 cells subcultured in vitro with RPMI16 40 medium (SIGMA-ALDRICH) containing 10% FCS (Hyclone) were adjusted to 5 ⁇ 10 6 cells I mL with the above medium. Sdd mice (female, 6-week-old, CLEA Japan) intraperitoneally administered with anti-asharo GM1 (manufactured by Wako Pure Chemical Industries, Ltd.) 10 0 / z L on the previous day in advance 200 ⁇ L of the above IM-9 cell preparation solution from the tail vein Injected.
  • SIGMA-ALDRICH RPMI16 40 medium
  • FCS Hyclone
  • the mouse (9) transplanted with the antibody (2D7 diabody or C3B3 diabody) was administered via the tail vein at a dose of 10 mg / kg twice a day on days 1, 2, and 3 after -9 transplantation.
  • PBS containing tween 20 was administered at 10 mL / kg via the tail vein.
  • C3B3 diabody The antitumor effect of C3B3 diabody was evaluated based on the survival time of mice and the amount of human IgG in serum. As shown in FIG. 10, the survival of the mice administered with C3B3 diabody was clearly increased compared to the mice in the control group. Survival was also prolonged compared to 2D7 diabody. Serum was collected from mice 14 days after IM-9 transplantation and measured using the above 8-2-1 ELISA (Fig. 11). As a result, as shown in FIG. 11, the serum HgG level was clearly decreased in the mice administered with C3B3 diabody as compared to the mice in the control group. Even when compared with 2D7 diabody, the serum HgG decreased. Therefore, it was shown that C3B3 diabody is stronger than 2D7 diabody against human EBV transformed B cell-transplanted mice and has an antitumor effect.
  • PBMCs peripheral blood mononuclear cells
  • Kit-8 (Dojindo)
  • absorbance at 450 nm (reference wavelength 630 nm) was measured using MICROPLATE READER (BIO-RAD).
  • C3B3 diabody exhibited stronger cell death-inducing activity than 2D7 diabody when stimulated with ConA and when stimulated with SAC.
  • the cells used were Jurkat (E6-1) strain (purchased from ATCC). RPMI1640 medium containing 10% FCS was used for the culture of Jurkat (E6-1) cells.
  • Jurkat cells are seeded on 96-well plates at a concentration of 2 X 10 4 cells / well and 5% CO incubated in the presence of C3B3 diabody or 2D7 diabody.
  • the cells were cultured in a plate at 37 ° C for 3 days. Subsequently, Cell Counting Kit-8 (Code. No. CK04, Dojindo Laboratories, Japan) was added to each well. After further incubation for 2 hours, 450 ⁇ l (reference wavelength: 630 nm) was obtained using a microplate reader. Absorbance was measured. Cell proliferation was measured with the absorbance of the well without antibody added at 100% and without absorbance of the wells at 0%. The test was performed using triplicate, and the mean and standard error (SE) were calculated (Fig. 13).
  • SE standard error
  • C3B3 diabody and 2D7 diabody inhibited cell growth in a concentration-dependent manner.
  • C3B3 diabody showed a strong growth inhibitory effect at a lower concentration than 2D7 diabody.
  • HLA antibodies have an effect on lymphocytes in general (WO2004 / 033499, WO2005 / 100560), and were newly found in the present invention based on the above results. Full-length antibodies and low-molecular-weight antibodies are considered to have an effect on lymphocytes in general.
  • cell death-inducing activity is achieved by cross-linking with an anti-mouse IgG antibody.
  • a new anti-HLA-A antibody, C3B3 antibody was provided.
  • C3B3 antibodies with low molecular weight show strong cell death-inducing activity without the addition of anti-mouse IgG antibodies, and this activity is the same as that of conventional in vitro tumor cell assembly systems.
  • the low molecular weight antibody showed a higher antitumor effect than the conventional low molecular weight antibody even in an in vivo tumor transplantation model mouse.
  • C3B3 low molecular weight antibody is superior to conventional low molecular weight antibody in that it exhibits high cell killing activity against blood tumor cells and at the same time exhibits cell death inducing activity at a lower concentration. Therefore, the low molecular weight antibody can be expected to have a medicinal effect superior to conventional low molecular weight antibodies as a therapeutic agent for hematological tumors, bone marrow immune diseases, autoimmune diseases and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Transplantation (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

明 細 書
細胞死誘導剤
技術分野
[0001] 本発明は、 HLAを認識する抗体、および該抗体を有効成分として含有する細胞死 誘導剤に関する。
背景技術
[0002] HLAは外来性の抗原、細菌、ウィルス感染細胞等を異物と認識し除去する免疫反 応において重要な分子である。 HLA分子の主な役割は、細胞の中で作られる 8〜10 程度のアミノ酸でできた抗原ペプチドを CD8+T細胞に提示することであり、これによつ て誘導される免疫応答や免疫寛容に非常に重要な役割を担っている。 HLAは、 α ΐ 〜3の 3つのドメインからなる 45KDの α鎖と 12KDの j8 2マイクログロブリン( j8 2M)のへ テロダイマーによって形成される classic α ΐ、 ひ2の2っのドメィンからなる30〜34! Dの α鎖と j8 1、 β 2の 2つのドメインからなる 26〜29KDの 13鎖のへテロダイマーによ つて形成される classllに分類される。さらに、 HLA classl (HLA-I)には、 HLA-A、 B, C 等の存在が知られている (以下において、 HLA-Aを「HLA classl A (HLA-IA)」とも称 する)。
[0003] これまでに、リンパ球細胞にぉ 、て抗 HLA classl A抗体によるライゲーシヨンで、細 胞増殖抑制効果や細胞死誘導効果が報告されており、 HLA分子のシグナル伝達分 子としての可能性が示唆されている。例えばヒト HLA classl Aの a 1ドメインに対する 抗体 Β9.12.1、 α 2ドメインに対する抗体 W6/32、 α 3ドメインに対する抗体 TP25.99, A 1.4は、活性化リンパ球に対して細胞増殖を抑制するとの報告がある(非特許文献 1 , 2)。また、 a 1ドメインに対する二種類の抗体 MoAb90, YTH862は、活性化リンパ球 に対してアポトーシスを誘導することが報告されている(非特許文献 2, 3, 4)。この 2 つの抗体によって誘導されるアポトーシスはカスパーゼを介した反応であることが明 らかにされており(非特許文献 4)、このことカゝらリンパ球細胞で発現する HLA classl A は、アポトーシスの信号伝達にも関与して 、ると推測されて 、る。
さらに、ヒト HLA classl Aの α 3ドメインに対する抗体 5Η7 (非特許文献 5)、マウス Μ HC class Iの a 2ドメインに対する抗体 RE2 (非特許文献 6)も、活性化リンパ球などに 細胞死を誘導することが報告されて 、る。
[0004] ヒト骨髄腫細胞を免疫して得られたモノクローナル抗体 2D7 (非特許文献 9)も、 HLA classl Aを認識する抗体であり、該 2D7を低分子化(diabody化)することにより、ヒト骨 髄腫細胞に対して短時間で激しい細胞死を誘導することが報告されている。 2D7 dia bodyは、各種ヒト骨髄腫細胞株、および、活性化リンパ球細胞に対して強い細胞死 誘導活性を示し、マウスにヒト骨髄腫細胞を移植した多発性骨髄腫モデルマウス〖こ おいても、有意な延命効果を示したことから、骨髄腫治療薬として開発が進められて いる (特許文献 1、 2、 3、 4、非特許文献 7、 8)。このような、 HLA classl関与の細胞死 誘導を利用した治療をさらに発展させれば、骨髄腫等に対する有効性の高い医薬品 が開発されるものと期待される。
[0005] なお、本出願の発明に関連する先行技術文献情報を以下に示す。
特許文献 1: WO2004/033499
特許文献 2: WO2005/056603
特許文献 3: WO2005/100560
特許文献 4: PCT/JP2006/309890
非特許文献 l : Fayen et al., Int. Immunol, 10: 1347-1358(1998)
非特許文献 2 : Genestier et al., Blood, 90: 3629-3639 (1997)
非特許文献 3 : Genestier et al., Blood, 90: 726-735 (1997)
非特許文献 4 : Genestier et al., J. Biol. Chem., 273: 5060-5066 (1998)
非特許文献 5 :Woodle et al., J. Immunol, 158: 2156-2164 (1997)
非特許文献 6 : Matsuoka et al., J. Exp. Med., 181: 2007—2015 (1995)
非特許文献 7 : Goto, et al" Blood, 84: 1922-30 (1994)
非特許文献 8 : Kimura, et al., Biochem Biophys Res Commun., 325: 1201-1209 (200 4)
非特許文献 9 :岡達三 三共生命科学財団研究報告集 12: 46-56 (1998) 発明の開示
発明が解決しょうとする課題 [0006] 本発明はこのような状況に鑑みて為されたものであり、その目的は、配列番号: 7、 8 、 9に記載のアミノ酸配列力 なる CDR1、 2、 3を有する重鎖可変領域を含む抗体を 提供する。また、本発明は、配列番号: 10、 1 1、 12に記載のアミノ酸配列からなる CD Rl、 2、 3を有する軽鎖可変領域を含む抗体を提供することを目的とする。詳しくは、 H LA classl Aを認識し、従来よりもさらに高い細胞死誘導活性を有する抗体を提供す ることにめる。
課題を解決するための手段
[0007] 本発明者らは、上記課題を解決するために、鋭意研究を行った。まず、ヒト HLA cla ssl Aと、ヒト β 2Μを共発現する細胞をマウスに免疫してモノクローナル抗体を得た。 さらに、得られた抗体をスクリーニングし、細胞死誘導活性を有する 10クローンの新た なモノクローナル抗体を得た。これらのクローンの解析を行ったところ、 HLA class I抗 原の at 2ドメインをェピトープに持つ 3クローン(C3B3、 C 11B9、 C 17D11抗体)は抗マ ウス IgG抗体でクロスリンクすることにより、強い細胞傷害活性を示すことを見出した。 さらに、得られた C3B3抗体を低分子抗体 (C3B3 diabody)へと改変することにより、抗 体単独で従来の抗 HLA class IA低分子抗体 (2D7 diabody)の抗腫瘍作用を大きく上 回る細胞死誘導ァゴニスト抗体を創製することに成功した。
[0008] 本発明は、より具体的には以下の〔1〕〜〔25〕を提供するものである。
〔1〕 配列番号: 7、 8、 9に記載のアミノ酸配列力 なる CDR1、 2、 3を有する重鎖可変 領域を含む抗体。
〔2〕 配列番号: 10、 1 1、 12に記載のアミノ酸配列からなる CDR1、 2、 3を有する軽鎖 可変領域を含む抗体。
〔3〕 配列番号: 7、 8、 9に記載のアミノ酸配列力 なる CDR1、 2、 3を有する重鎖可変 領域および配列番号: 10、 1 1、 12に記載のアミノ酸配列からなる CDR1、 2、 3を有す る軽鎖可変領域を含む抗体。
〔4〕 以下の(a)〜(d)の 、ずれかに記載の重鎖可変領域を含む抗体。
(a)配列番号: 2に記載のアミノ酸配列を有する重鎖可変領域
(b)配列番号: 2に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換 、欠失、挿入、および Zまたは付加したアミノ酸配列を有する重鎖可変領域であって 、(a)に記載の重鎖可変領域と機能的に同等な重鎖可変領域
(c)配列番号: 1に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 重鎖可変領域
(d)配列番号: 1に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する重鎖可変領域
〔5〕 以下の(e)〜 (h)の 、ずれかに記載の軽鎖可変領域を含む抗体。
(e)配列番号: 4に記載のアミノ酸配列を有する軽鎖可変領域
(f)配列番号: 4に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換、 欠失、挿入、および Zまたは付加したアミノ酸配列を有する軽鎖可変領域であって、 ( e)に記載の軽鎖可変領域と機能的に同等な軽鎖可変領域
(g)配列番号: 3に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 軽鎖可変領域
(h)配列番号: 3に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する軽鎖可変領域
〔6〕 以下の(a)〜(d)の 、ずれかに記載の重鎖可変領域および (e)〜 (h)の ヽずれ かに記載の軽鎖可変領域を含む抗体。
(a)配列番号: 2に記載のアミノ酸配列を有する重鎖可変領域
(b)配列番号: 2に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換
、欠失、挿入、および Zまたは付加したアミノ酸配列を有する重鎖可変領域であって 、(a)に記載の重鎖可変領域と機能的に同等な重鎖可変領域
(c)配列番号: 1に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 重鎖可変領域
(d)配列番号: 1に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する重鎖可変領域
(e)配列番号: 4に記載のアミノ酸配列を有する軽鎖可変領域
(f)配列番号: 4に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換、 欠失、挿入、および Zまたは付加したアミノ酸配列を有する軽鎖可変領域であって、 ( e)に記載の軽鎖可変領域と機能的に同等な軽鎖可変領域 (g)配列番号: 3に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 軽鎖可変領域
(h)配列番号: 3に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する軽鎖可変領域
〔7〕 以下の(a)〜(d)の 、ずれかに記載のアミノ酸配列を有する抗体。
(a)配列番号: 6に記載のアミノ酸配列
(b)配列番号: 6に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換 、欠失、挿入、および Zまたは付加したアミノ酸配列
(c)配列番号: 5に記載の塩基配列力 なる DNAがコードするアミノ酸配列
(d)配列番号: 5に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列
〔8〕〔1〕〜〔7〕の 、ずれかに記載の抗体が結合するヒト白血球抗原 (HLA)タンパク質 のェピトープと同じェピトープに結合する抗体。
〔9〕モノクローナル抗体である〔1〕〜〔8〕の 、ずれかに記載の抗体。
〔10〕 ヒト白血球抗原 (HLA)を認識する、〔1〕〜〔9〕のいずれか〖こ記載の抗体。
〔11〕 HLAが HLA classlである、〔10〕に記載の抗体。
〔12〕 HLA classlが HLA- Aである、〔11〕に記載の抗体。
〔13〕 低分子化抗体である、〔1〕〜〔12〕のいずれかに記載の抗体。
〔14〕 低分子化抗体が diabodyである〔 13〕に記載の抗体。
〔15〕 以下の(a)または (b)に記載のポリヌクレオチド。
(a)配列番号: 1、 3、または 5に記載の塩基配列からなるポリヌクレオチド
(b) (a)に記載のポリヌクレオチドとストリンジェントな条件下でノ、イブリダィズし、かつ〔 1〕〜〔14〕のいずれかに記載の抗体と同等の活性を有する抗体をコードするポリヌク レオチド。
〔16〕 [15]に記載のポリヌクレオチドを含むベクター。
〔17〕 [15]に記載のポリヌクレオチドまたは〔16〕に記載のベクターを保持する宿主 細胞。
〔18〕 以下の工程を含む〔1〕〜〔14〕の 、ずれかに記載の抗体を作製する方法。 (a) [15]に記載のポリヌクレオチドを作製する工程
(b) (a)に記載のポリヌクレオチドを含むベクターを作製する工程
(c) (b)に記載のベクターを宿主細胞に導入する工程
(d) (c)に記載の宿主細胞を培養する工程
〔19〕 〔1〕〜〔14〕のいずれかに記載の抗体を有効成分として含有する、細胞死誘 導剤。
〔20〕 B細胞又は T細胞に対する細胞死誘導であることを特徴とする、〔19〕に記載 の細胞死誘導剤。
〔21〕 B細胞又は T細胞力 活性化 B細胞又は活性化 T細胞である、〔20〕に記載の 細胞死誘導剤。
[22] 〔1〕〜〔14〕のいずれかに記載の抗体を有効成分として含有する、細胞増殖 抑制剤。
〔23〕 〔1〕〜〔14〕のいずれかに記載の抗体を有効成分として含有する、抗腫瘍剤。 〔24〕 腫瘍が血液腫瘍である〔23〕に記載の抗腫瘍剤。
〔25〕 〔1〕〜〔14〕のいずれかに記載の抗体を有効成分として含有する、自己免疫 疾患治療剤。
図面の簡単な説明
[図 1]HLA発現 Ba/F3細胞株、および ARH77細胞の HLA classl Aの発現量を FACSに て確認した結果を示す図である。
[図 2]HLA classl Aのドメイン( α 1〜 α 3ドメイン)のうち、 1ドメインをマウス MHC classl Aの対応するドメインに置き換えたヒト'マウスキメラ HLA classl Aを発現する細胞株の 模式図を示したものである。
[図 3]HLA-A/ β 2マイクログロブリン( 2Μ)共発現 Ba/F3細胞をマウスに免疫して得 られた抗体 10クローンのェピトープ解析の結果を表に示した。各種ヒト 'マウスキメラ H LA classl A発現 Ba/F3細胞 (MHH, HMH, HHM)に対する結合活性を FACSで解析 し、結合が認められたものを(+ )で、結合が認められな力 たものを(一)で表した。 それぞれの染色パターン力 各クローンのェピトープを決定した。
[図 4]HLA-A/ β 2マイクログロブリン(j8 2Μ)共発現 Ba/F3細胞をマウスに免疫して得 られた抗体 10クローンの ARH77に対する細胞死誘導活性を、二次抗体存在下、非存 在下で検討した結果を示す図である。
[図 5-l]2D7、および新たに得られた C3B3、 C17D11、 CI 1B9の重鎖可変領域のァミノ 酸配列を示す図である。
[図 5-2]2D7、および新たに得られた C3B3、 C17D11、 CI 1B9の軽鎖可変領域のァミノ 酸配列を示す図である。
[図 6]C3B3 minibodyのゲルろ過クロマトグラフィー精製による分離チャートを示した図 である。
[図 7]ゲルろ過クロマトグラフィーにより分離された C3B3 minibodyのピーク (1)〜(3)そ れぞれの、 ARH77に対する in vitro細胞傷害活性を示したグラフである。
[図 8]C3B3 diabody (C3B3 DB)、および 2D7 diabody (2D7 DB)それぞれの、 ARH77 に対する in vitro細胞増殖抑制活性を示したグラフである。
[図 9]C3B3 diabody (C3B3 DB)ゝおよび 2D7 diabody (2D7 DB)それぞれの、ヒト由来 骨髄腫細胞(ARH77、 IM- 9、 HS-Sultan、 MC/CAR)に対する in vitro細胞増殖抑制 活性を示したグラフである。
[図 10]IM- 9移植マウスにおいて、 PBS/tween20 (コントロール)、 2D7 diabody (2D7 D B)、あるいは C3B3 diabody(C3B3 DB)を投与したマウスの生存期間を示すグラフであ る。
[図 11]IM- 9移植マウスにおいて、 PBS/tween20 (コントロール)、 2D7 diabody (2D7 D B)、あるいは C3B3 diabody(C3B3 DB)を投与したマウスの移植後 14日目の血清中ヒト IgG量を示すグラフである。
[図 12]C3B3 diabody,および 2D7 diabodyそれぞれの、ヒト末梢血単核球(peripheral blood mononuclear cell, PBMC)に対する in vitro細胞傷害活性を示したグラフであ る。
[図 13]C3B3 diabody,および 2D7 diabodyのヒト T細胞系腫瘍細胞に対する増殖抑制 効果を示した図面である。 3日間培養における Jurkat細胞に対する各抗体の増殖抑 制効果を示す。
〔発明の実施の形態〕 本発明は、配列番号: 7、 8、 9に記載のアミノ酸配列力 なる CDR1、 2、 3を有する重 鎖可変領域を含む抗体に関する。また、本発明は、配列番号: 10、 11、 12に記載の アミノ酸配列からなる CDR1、 2、 3を有する軽鎖可変領域を含む抗体に関する。
[0011] 本発明者らは、 HLA class Iを抗原とし、細胞死誘導活性を有する新たな抗体を得 た。これらのうち、 HLA class Iの α 2ドメインをェピトープに持つ 3クローン(C3B3、 C11 B9、 C17D11抗体)は抗マウス IgG抗体でクロスリンクすることにより、強い細胞傷害活 性を示すことを見出した。さらに抗体エンジニアリング技術により C3B3抗体を低分子 抗体 (diabody)へと改変することにより、抗体単独で従来の 2D7抗体の diabodyに比べ て強 ヽ抗腫瘍効果を発揮するァゴ-スト抗体 (C3B3 diabody)を提供することに成功 した。本発明はこれらの知見に基づくものである。
[0012] 本発明は、配列番号: 7、 8、 9に記載のアミノ酸配列力 なる CDR1、 2、 3を有する重 鎖可変領域を含む抗体を提供する。また、本発明は、配列番号: 10、 11、 12に記載 のアミノ酸配列からなる CDR1、 2、 3を有する軽鎖可変領域を含む抗体を提供する。
[0013] 本発明の抗体は、上記配列番号: 7、 8、 9に記載のアミノ酸配列力 なる CDR1、 2、
3を有する重鎖可変領域または配列番号: 10、 11、 12に記載のアミノ酸配列からなる CDR1、 2、 3を有する軽鎖可変領域を有するものであれば、特に限定されない。
[0014] 本発明の抗体の好ましい例として、以下の(a)〜(d)のいずれかに記載の重鎖可変 領域を含む抗体が挙げられる。
(a)配列番号: 2に記載のアミノ酸配列を有する重鎖可変領域
(b)配列番号: 2に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換 、欠失、挿入、および Zまたは付加したアミノ酸配列を有する重鎖可変領域であって 、(a)に記載の重鎖可変領域と機能的に同等な重鎖可変領域
(c)配列番号: 1に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 重鎖可変領域
(d)配列番号: 1に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する重鎖可変領域
[0015] または、本発明の抗体として、以下の(e)〜 (h)のいずれかに記載の軽鎖可変領域 を含む抗体が例として挙げられる。 (e)配列番号: 4に記載のアミノ酸配列を有する軽鎖可変領域
(f)配列番号: 4に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換、 欠失、挿入、および Zまたは付加したアミノ酸配列を有する軽鎖可変領域であって、 ( e)に記載の軽鎖可変領域と機能的に同等な軽鎖可変領域
(g)配列番号: 3に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 軽鎖可変領域
(h)配列番号: 3に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する軽鎖可変領域
[0016] さらに、このような重鎖可変領域および軽鎖可変領域を有する抗体の例としては、 以下の(a)〜(d)の 、ずれかに記載のアミノ酸配列を有する抗体が例として挙げられ る。
(a)配列番号: 6に記載のアミノ酸配列
(b)配列番号: 6に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換 、欠失、挿入、および Zまたは付加したアミノ酸配列
(c)配列番号: 5に記載の塩基配列力 なる DNAがコードするアミノ酸配列
(d)配列番号: 5に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列
[0017] 重鎖可変領域又は軽鎖可変領域のアミノ酸配列は、置換、欠失、付加及び Z又は 挿入されていてもよい。さらに、重鎖可変領域と軽鎖可変領域を会合させた場合に、 抗原結合活性を有する限り、一部を欠損させてもよいし、他のポリペプチドを付加し てもよい。又、可変領域はキメラ化ゃヒト化されていてもよい。
[0018] ここで「機能的に同等」とは、対象となる抗体が、配列番号: 7、 8、 9に記載のァミノ 酸配列からなる CDR1、 2、 3を有する重鎖可変領域または配列番号: 10、 11、 12に 記載のアミノ酸配列からなる CDR1、 2、 3を有する軽鎖可変領域を有する抗体と同等 の活性 (例えば、 HLA-Aへの結合活性、細胞死誘導活性、など)を有することを意味 する。
[0019] あるポリペプチドと機能的に同等なポリペプチドを調製するための、当業者によく知 られた方法としては、ポリペプチドに変異を導入する方法が知られている。例えば、 当業者であれば、部位特異的変異誘発法(Hashimoto-Gotoh, T. et al. (1995) Gene 152, 271-275, Zoller, MJ, and Smith, M.(1983) Methods Enzymol. 100, 468-500、 K ramer, W. et al. (1984) Nucleic Acids Res. 12, 9441—9456、 Kramer W, and Fritz HJ( 1987) Methods. Enzymol. 154, 350-367、 Kunkel,TA(1985) Proc Natl Acad Sci USA. 82, 488-492、 Kunkel (1988) Methods Enzymol. 85, 2763-2766)などを用いて、本発 明の抗体に適宜変異を導入することにより、該抗体と機能的に同等な抗体を調製す ることができる。また、アミノ酸の変異は自然界においても生じうる。このように、本発 明の抗体のアミノ酸配列にぉ 、て 1もしくは複数のアミノ酸が変異したアミノ酸配列を 有し、該抗体と機能的に同等な抗体もまた本発明の抗体に含まれる。
[0020] 変異するアミノ酸数は特に制限されないが、通常、 30アミノ酸以内であり、好ましく は 15アミノ酸以内であり、さらに好ましくは 5アミノ酸以内(例えば、 3アミノ酸以内)であ ると考えられる。変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されて いる別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、 疎水性アミノ酸 (A、 I、 L、 M、 F、 P、 W、 Y、 V)、親水性アミノ酸(R、 D、 N、 C、 E、 Q、 G、 H、 K、 S、 T)、脂肪族側鎖を有するアミノ酸 (G、 A、 V、 L、 I、 P)、水酸基含有側鎖を有 するアミノ酸 (S、 T、 Υ)、硫黄原子含有側鎖を有するアミノ酸 (C、 M)、カルボン酸及 びアミド含有側鎖を有するアミノ酸 (D、 N、 E、 Q)、塩基含有側鎖を有するアミノ酸 (R 、 K、 H)、芳香族含有側鎖を有するアミノ酸 (H、 F、 Y、 W)を挙げることができる(括弧 内はいずれもアミノ酸の一文字標記を表す)。あるアミノ酸配列に対する 1又は複数 個のアミノ酸残基の欠失、付加及び Z又は他のアミノ酸による置換により修飾された アミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知ら れている(Mark, D. F. et al" Proc. Natl. Acad. Sci. USA (1984) 81, 5662-5666、 Zol ler, M. J. & Smith, M. Nucleic Acids Research (1982) 10, 6487—6500、 Wang, A. et al" Science 224, 1431-1433、 Dalbadie-McFarland, G. et al" Proc. Natl. Acad. Sci. USA (1982) 79, 6409-6413)。
[0021] 本発明の抗体には、本発明の抗体のアミノ酸配列に複数個のアミノ酸残基が付カロ された抗体も含まれる。また、これら抗体と他のペプチド又はタンパク質とが融合した 融合タンパク質も含まれる。融合タンパク質を作製する方法は、本発明の抗体をコー ドするポリヌクレオチドと他のペプチド又はポリペプチドをコードするポリヌクレオチドを フレームが一致するように連結してこれを発現ベクターに導入し、宿主で発現させれ ばよく、当業者に公知の手法を用いることができる。本発明の抗体との融合に付され る他のペプチド又はポリペプチドとしては、例えば、 FLAG (Hopp, T. P. et al., BioTe chnology (1988) 6, 1204- 1210 )、 6個の His (ヒスチジン)残基からなる 6 X His、 lO X Hi s、インフルエンザ凝集素(HA)、ヒト c-mycの断片、 VSV-GPの断片、 pl8HIVの断片、 T7- tag、 HSV- tag、 E- tag、 SV40T抗原の断片、 lck tag, a -tubulinの断片、 B- tag、 Pr otein Cの断片等の公知のペプチドを使用することができる。また、本発明の抗体と の融合に付される他のポリペプチドとしては、例えば、 GST (ダルタチオン一 S—トラン スフエラーゼ)、 HA (インフルエンザ凝集素)、ィムノグロブリン定常領域、 β—ガラタト シダーゼ、 ΜΒΡ (マルトース結合タンパク質)等が挙げられる。市販されているこれら ペプチドまたはポリペプチドをコードするポリヌクレオチドを、本発明の抗体をコードす るポリヌクレオチドと融合させ、これにより調製された融合ポリヌクレオチドを発現させ ることにより、融合ポリペプチドを調製することができる。
また本発明は、本願発明で開示された抗体が結合するェピトープと同じェピトープ に結合する抗体もまた提供する。すなわち本発明は、本発明の抗体が認識するェピ トープと同一のェピトープを認識する抗体と、その用途に関する。このような抗体は、 例えば、以下の方法により得ることができる。
被験抗体が、ある抗体が結合するェピトープと同じェピトープに結合すること、即ち ある抗体とェピトープを共有することは、両者の同じェピトープに対する競合によって 確認することができる。本発明において、抗体間の競合は、 FACSや交叉ブロッキン グアツセィなどによって検出することができる。 FACSにおいては、まず本発明のモノク ローナル抗体を HLA-IAを細胞表面に発現させた細胞に結合させて蛍光シグナルが 測定される。次に、候補の競合抗体を細胞と反応後に本発明の抗体を同じ細胞と反 応させて、同様に FACSにより解析する。あるいは、本発明のモノクローナル抗体と被 験競合抗体とを同時に同じ細胞に反応させることもできる。競合抗体を反応させたと きに、本発明の抗体の FACSの解析パターンが変化すれば、競合抗体が本発明の抗 体と同じェピトープを認識することが確認できる。 [0023] その他、例えば競合 ELISAアツセィは、好まし 、交叉ブロッキングアツセィである。具 体的には、交叉ブロッキングアツセィにおいては、マイクロタイタープレートのゥエル上 に HLA-IAを発現した細胞が固定される。候補の競合抗体の存在下、または非存在 下でプレインキュペートした後に、本発明のモノクローナル抗体が添加される。ゥエル 中の HLA-IA発現細胞に結合した本発明の抗体の量は、同じェピトープへの結合に 対して競合する候補競合抗体 (被験抗体)の結合能と逆相関して!/ヽる。すなわち同 ーェピトープに対する被験抗体の親和性が大きくなればなる程、本発明の抗体の HL
A-IAタンパク質発現細胞を固定したゥエルへの結合量は低下する。ある 、は逆に、 同一ェピトープに対する被験抗体の親和性が大きくなればなる程、被験抗体の HLA -IAタンパク質発現細胞を固定したゥエルへの結合量は増加する。
[0024] ゥエルに結合した抗体量は、予め抗体を標識しておくことによって、容易に測定す ることができる。たとえば、ピオチン標識された抗体は、アビジンペルォキシダーゼコ ンジュゲートと適切な基質を使用することにより測定できる。ペルォキシダーゼなどの 酵素標識を利用した交叉ブロッキングアツセィを、特に競合 ELISAアツセィという。抗 体は、検出あるいは測定が可能な他の標識物質で標識することができる。具体的に は、放射標識あるいは蛍光標識などが公知である。
更に被験抗体が本発明の抗体と異なる種に由来する定常領域を有する場合には、 ゥエルに結合したいずれかの抗体を、いずれかの種に由来する定常領域を特異的に 認識する標識抗体によって測定することもできる。あるいは同種由来の抗体であって も、クラスが相違する場合には、各クラスを特異的に識別する抗体によって、ゥエルに 結合した抗体を測定することができる。
[0025] 候補の競合抗体非存在下で実施されるコントロール試験にお!ヽて得られる結合活 性と比較して、候補抗体が、少なくとも 20%、好ましくは少なくとも 20-50%、さらに好 ましくは少なくとも 50%、本発明のモノクローナル抗体の結合をブロックできるならば
、該候補競合抗体は本発明の抗体と実質的に同じェピトープに結合するか、又は同 じェピトープへの結合に対して競合する抗体である。
[0026] 本発明の抗体が結合するェピトープと同じェピトープに結合する抗体としては、例 えば、上記〔8〕または〔9〕に記載の抗体が挙げられる。 また、上記〔8〕又は〔9〕に記載の抗体には、上述の通り、一価抗体だけでなぐ多 価抗体も含まれる。本発明の多価抗体には、全て同じ抗原結合部位を有する多価抗 体、または、一部もしくは全て異なる抗原結合部位を有する多価抗体が含まれる。
[0027] 本発明の抗体は、後述するそれを産生する細胞や宿主あるいは精製方法により、 アミノ酸配列、分子量、等電点又は糖鎖の有無や形態などが異なり得る。しかしなが ら、得られた抗体が、本発明の抗体と同等の機能を有している限り、本発明に含まれ る。例えば、本発明の抗体を原核細胞、例えば大腸菌で発現させた場合、本来の抗 体のアミノ酸配列の N末端にメチォニン残基が付加される。本発明の抗体はこのよう な抗体も包含する。
[0028] 本発明の抗体は、ポリエチレングリコール (PEG)、放射性物質、トキシン等の各種 分子と結合したコンジュゲート抗体でもよい。このようなコンジュゲート抗体は、得られ た抗体に化学的な修飾を施すことによって得ることができる。なお、抗体の修飾方法 はこの分野においてすでに確立されている(例えば、 US5057313、 US5156840) o本 発明における「抗体」にはこれらのコンジュゲート抗体も包含される。
[0029] 本発明の抗体としては、マウス抗体、ラット抗体、ゥサギ抗体、ヒッジ抗体、ラクダ 抗体、キメラ抗体、ヒト化抗体、ヒト抗体等を適宜用いることができる。さらに本発明の 抗体として、低分子化抗体等を用いることができる。
[0030] 本発明の抗体としては、抗体遺伝子を適当なベクターに組み込んで、これを宿主 に導入し、遺伝子組換え技術を用いて産生させた遺伝子組換え型抗体を用いること ができる(例えば、 Carl, A. K. Borrebaeck, James, W. Larrick, THERAPEUTIC MO NOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PU BLISHERS LTD, 1990参照)。具体的には、配列番号: 7、 8、 9に記載のアミノ酸配列 力らなる CDR1、 2、 3を有する重鎖可変領域または配列番号: 10、 11、 12に記載のァ ミノ酸配列力 なる CDR1、 2、 3を有する軽鎖可変領域コードする DNAが得られれば、 これを所望の抗体定常領域 (C領域)をコードする DNAと連結し、これを発現ベクター へ組み込む。または、抗体の可変領域をコードする DNAを、抗体定常領域の DNAを 含む発現ベクターへ組み込んでもよい。発現制御領域、例えば、ェンハンサー、プロ モーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現べク ターにより宿主細胞を形質転換し、抗体を発現させることができる。
[0031] また本発明は、本発明の抗体をコードするポリヌクレオチド、または該ポリヌクレオ チドとストリンジェントな条件下でノ、イブリダィズし、かつ本発明の抗体と同等の活性 を有する抗体をコードするポリヌクレオチドを提供する。本発明のポリヌクレオチドは、 本発明の抗体をコードする限り、特に限定されず、複数のデォキシリボ核酸 (DNA)ま たはリボ核酸 (RNA)等の塩基または塩基対力もなる重合体である。本発明のポリヌク レオチドは天然以外の塩基を含んでいてよい。本発明のポリヌクレオチドは、抗体を 遺伝子工学的な手法により発現させる際に使用することができる。また本発明の抗体 と同等な機能を有する抗体をスクリーニングする際に、プローブとして用いることもで きる。即ち本発明の抗体をコードするポリヌクレオチド、またはその一部をプローブと して用い、ハイブリダィゼーシヨン、遺伝子増幅技術 (例えば PCR)等の技術により、 該ポリヌクレオチドとストリンジェントな条件下でノヽイブリダィズし、かつ本発明の抗体 と同等の活性を有する抗体をコードする DNAを得ることができる。このような DNAも本 発明のポリヌクレオチドに含まれる。ハイブリダィゼーシヨン技術(SambrookJ et al., Molecular Cloning 2nd ed., 9.47—9.58, Cold Spring Harbor Lab. press, 1989)は当業 者によく知られた技術である。ハイブリダィゼーシヨンの条件としては、例えば、低スト リンジェントな条件が挙げられる。低ストリンジェントな条件とは、ハイブリダィゼーショ ン後の洗浄において、例えば 42°C、 0.1 X SSC、 0.1%SDSの条件であり、好ましくは 50 。C、 0.1 X SSC 、 0.1%SDSの条件である。より好ましいハイブリダィゼーシヨンの条件と しては、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば
65°C、 5 X SSC及び 0.1%SDSの条件である。これらの条件において、温度を上げる程 に高 、相同性を有するポリヌクレオチドが効率的に得られることが期待できる。但し、 ハイブリダィゼーシヨンのストリンジエンシーに影響する要素としては温度や塩濃度な ど複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様の ストリンジエンシーを実現することが可能である。
[0032] これらハイブリダィゼーシヨン技術や遺伝子増幅技術により得られるポリヌクレオチ ドがコードする、本発明の抗体と機能的に同等な抗体は、通常、これら抗体とアミノ酸 配列において高い相同性を有する。本発明の抗体には、本発明の抗体と機能的に 同等であり、かつ該抗体のアミノ酸配列と高い相同性を有する抗体も含まれる。高い 相同性とは、アミノ酸レベルにおいて、通常、少なくとも 50%以上の同一性、好ましく は 75%以上の同一性、さらに好ましくは 85%以上の同一性、さらに好ましくは 95%以 上の同一性を指す。ポリペプチドの相同性を決定するには、文献 (Wilbur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80, 726-730)に記載のアルゴリズム にしたがえばよい。
[0033] 本発明の抗体をコードするポリヌクレオチドの好ましい例としては、以下の(a)また は (b)に記載のポリヌクレオチドが挙げられる。
(a)配列番号: 1、 3、または 5に記載の塩基配列力 なるポリヌクレオチド
(b) (a)に記載のポリヌクレオチドとストリンジェントな条件下でノヽイブリダィズし、 つ本発明の抗体と同等の活性を有する抗体をコードするポリヌクレオチド。
[0034] 抗体遺伝子を一旦単離し、適当な宿主に導入して抗体を作製する場合には、適 当な宿主と発現ベクターの組み合わせを使用することができる。
本発明は上記ポリヌクレオチドを含むベクターを提供する。ベクターの例としては 、 M13系ベクター、 pUC系ベクター、 pBR322、 pBluescript、 pCR-Scriptなどが挙げら れる。また、 cDNAのサブクローユング、切り出しを目的とした場合、上記ベクターの他 に、例えば、 pGEM- T、 pDIRECT、 pT7などが挙げられる。本発明の抗体を生産する 目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現 ベクターとしては、例えば、大腸菌での発現を目的とした場合は、ベクターが大腸菌 で増幅されるような上記特徴を持つほかに、宿主を JM109、 DH5 a、 HB101、 XL1- Bl ueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモー ター、例えば、 lacZプロモーター(Wardら, Nature (1989) 341, 544-546; FASEB J. (1 992) 6, 2422- 2427)、 araBプロモーター(Betterら, Science (1988) 240, 1041-1043)、 または T7プロモーターなどを持って!/、ることが不可欠である。このようなベクターとし ては、上記ベクターの他に pGEX- 5X- 1 (フアルマシア社製)、「QIAexpress system] ( キアゲン社製)、 pEGFP、または pET (この場合、宿主は T7 RNAポリメラーゼを発現し て 、る BL21が好まし 、;)などが挙げられる。
[0035] また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよ い。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリブラズムに産生 させる場合、 pelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4379)を使 用すればよい。宿主細胞へのベクターの導入は、例えば塩ィ匕カルシウム法、エレクト 口ポレーシヨン法を用いて行うことができる。
[0036] 大腸菌以外にも、例えば、本発明のポリペプチドを製造するためのベクターとして は、哺乳動物由来の発現ベクター(例えば、 pcDNA3 (インビトロゲン社製)や、 pEGF- BOS (Nucleic Acids. Res.1990, 18(17),p5322)、 pEF、 pCDM8)、昆虫細胞由来の発 現ベクター (例えば「Bac— to— BAC baculovairus expression system」 (ギブコ BRL社製) 、 pBacPAK8)、植物由来の発現ベクター(例えば ρΜΗ1、 pMH2)、動物ウィルス由来 の発現ベクター(例えば、 pHSV、 pMV、 pAdexLcw)、レトロウイルス由来の発現べクタ 一(例えば、 pZIPneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」( インビトロゲン社製)、 PNV11、 SP-Q01)、枯草菌由来の発現ベクター(例えば、 pPL6 08、 pKTH50)が挙げられる。
[0037] CHO細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場合に は、細胞内で発現させるために必要なプロモーター、例えば SV40プロモーター(Mull iganら, Nature (1979) 277, 108)、 MMLV-LTRプロモーター、 EF1 αプロモーター(Mi zushimaら, Nucleic Acids Res. (1990) 18, 5322)、 CMVプロモーターなどを持ってい ることが不可欠であり、細胞への形質転換を選抜するための遺伝子 (例えば、薬剤( ネオマイシン、 G418など)により判別できるような薬剤耐性遺伝子)を有すればさら〖こ 好ましい。このような特性を有するベクターとしては、例えば、 pMAM、 pDR2、 pBK-RS V、 pBK-CMV, pOPRSV、 pOP13などが挙げられる。
[0038] さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅 を目的とする場合には、核酸合成経路を欠損した CHO細胞にそれを相補する DHFR 遺伝子を有するベクター(例えば、 pCHOIなど)を導入し、メトトレキセート (MTX)によ り増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、 SV40 T抗原を発現する遺伝子を染色体上に持つ COS細胞を用いて SV40の複製起 点を持つベクター (pcDなど)で形質転換する方法が挙げられる。複製開始点として は、また、ポリオ一マウィルス、アデノウイルス、ゥシパピローマウィルス(BPV)等の由 来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発 現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ (ApH)遺伝子、 チミジンキナーゼ (TK)遺伝子、大腸菌キサンチングァニンホスホリボシルトランスフエ ラーゼ (Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。
[0039] 一方、動物の生体内で本発明のポリヌクレオチドを発現させる方法としては、本発 明のポリヌクレオチドを適当なベクターに組み込み、例えば、レトロウイルス法、リポソ ーム法、カチォニックリボソーム法、アデノウイルス法などにより生体内に導入する方 法などが挙げられる。用いられるベクターとしては、例えば、アデノウイルスベクター( 例えば pAdexlcw)やレトロウイルスベクター (例えば pZIPneo)などが挙げられるが、こ れらに制限されない。ベクターへの本発明のポリヌクレオチドの挿入などの一般的な 遺伝子操作は、常法に従って行うことが可能である(Molecular Cloning ,5.61-5.63)。 生体内への投与は、 ex vivo法であっても、 in vivo法であってもよい。
[0040] また、本発明は、本発明のベクターが導入された宿主細胞を提供する。本発明の ベクターが導入される宿主細胞としては特に制限はなぐ例えば、大腸菌や種々の 動物細胞などを用いることが可能である。本発明の宿主細胞は、例えば、本発明の 抗体の製造や発現のための産生系として使用することができる。ポリペプチド製造の ための産生系は、 in vitroおよび in vivoの産生系がある。 in vitroの産生系としては、 真核細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。
[0041] 真核細胞を使用する場合、例えば、動物細胞、植物細胞、真菌細胞を宿主に用 いることができる。動物細胞としては、哺乳類細胞、例えば、 CH0 (J. Exp. Med. (199 5) 108, 945)、 COSゝ NIH3T3、ミエローマ、 BHK (baby hamster kidney)、 HeLa、 Vero 、両生類細胞、例えばアフリカッメガエル卵母細胞(Valle, et al., Nature (1981) 291, 358-340)、あるいは昆虫細胞、例えば、 S19、 Sf21、 Tn5が知られている。 CHO細胞と しては、特に、 DHFR遺伝子を欠損した CHO細胞である dhfr- CHO (Proc. Natl. Acad. Sci. USA (1980) 77, 4216- 4220)や CHO K- 1 (Proc. Natl. Acad. Sci. USA (1968) 60 , 1275)を好適に使用することができる。動物細胞において、大量発現を目的とする 場合には特に CHO細胞が好ましい。宿主細胞へのベクターの導入は、例えば、リン 酸カルシウム法、 DEAEデキストラン法、カチォニックリボソーム DOTAP (ベーリンガー マンハイム社製)を用いた方法、エレクト口ポーレーシヨン法、リポフエクシヨンなどの方 法で行うことが可能である。
[0042] 植物細胞としては、例えば、ニコチアナ 'タパカム(Nicotiana tabacum)由来の細 胞がポリペプチド生産系として知られており、これをカルス培養すればよい。真菌細 胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えば、サッカロミセ ス 'セレビシェ (Saccharomyces cerevisiae)、糸状菌、例えば、ァスぺノレギノレス (Asper gillus)属、例えば、ァスペルギルス '二ガー(Aspergillus niger)が知られている。
[0043] 原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、 大腸菌(E. coli)、例えば、 JM109、 DH5 a、 HB101等が挙げられ、その他、枯草菌が 知られている。
[0044] これらの細胞を目的とするポリヌクレオチドにより形質転換し、形質転換された細 胞を in vitroで培養することにより抗体が得られる。培養は、公知の方法に従い行うこ とができる。例えば、動物細胞の培養液として、例えば、 DMEM、 MEM, RPMI1640, I MDMを使用することができる。その際、牛胎児血清 (FCS)等の血清補液を併用する こともできるし、無血清培養してもよい。培養時の pHは、約 6〜8であるのが好ましい。 培養は、通常、約 30〜40°Cで約 15〜200時間行い、必要に応じて培地の交換、通気 、攪拌を加える。
[0045] 一方、 in vivoでポリペプチドを産生させる系としては、例えば、動物を使用する産 生系や植物を使用する産生系が挙げられる。これらの動物又は植物に目的とするポ リヌクレオチドを導入し、動物又は植物の体内でポリペプチドを産生させ、回収する。 本発明における「宿主」とは、これらの動物、植物を包含する。
[0046] 動物を使用する場合、哺乳類動物、昆虫を用いる産生系がある。哺乳類動物とし ては、ャギ、ブタ、ヒッジ、マウス、ゥシを用いることができる(Vicki Glaser, SPECTRU M Biotechnology Applications, 1993)。また、哺乳類動物を用いる場合、トランスジェ ニック動物を用いることができる。
例えば、目的とするポリヌクレオチドを、ャギ j8カゼインのような乳汁中に固有に産 生されるポリペプチドをコードする遺伝子との融合遺伝子として調製する。次いで、こ の融合遺伝子を含むポリヌクレオチド断片をャギの胚へ注入し、この胚を雌のャギへ 移植する。胚を受容したャギカ 生まれるトランスジエニックャギ又はその子孫が産生 する乳汁から、 目的の抗体を得ることができる。トランスジエニックャギカ 産生される ポリペプチドを含む乳汁量を増加させるために、適宜ホルモンをトランスジエニックャ ギに使用してもよい(Ebert, K.M. et al., Bio/Technology (1994) 12, 699-702)。
[0047] また、昆虫としては、例えばカイコを用いることができる。カイコを用いる場合、 目 的のポリヌクレオチドを挿入したバキュロウィルスをカイコに感染させることにより、この カイコの体液から目的のポリペプチドを得ることができる(Susumu, M. et al., Nature ( 1985) 315, 592-594) o
[0048] さらに、植物を使用する場合、例えばタバコを用いることができる。タバコを用いる 場合、 目的のポリヌクレオチドを植物発現用ベクター、例えば pMON 530に挿入し、こ のベクターをァグロバタテリゥム.ッメファシエンス (Agrobacterium tumefaciens)のよう なバクテリアに導入する。このバクテリアをタバコ、例えば、ニコチアナ 'タパカム (Nico tiana tabacum)に感染させ、本タバコの葉より所望のポリペプチドを得ることができる( Julian K.-C. Ma et al, Eur. J. Immunol. (1994) 24, 131—138)。
[0049] これにより得られた本発明の抗体は、宿主細胞内または細胞外 (培地など)力 単 離し、実質的に純粋で均一な抗体として精製することができる。抗体の分離、精製は 、通常の抗体の精製で使用されている分離、精製方法を使用すればよぐ何ら限定 されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、 溶媒沈殿、溶媒抽出、蒸留、免疫沈降、 SDS-ポリアクリルアミドゲル電気泳動、等電 点電気泳動法、透析、再結晶等を適宜選択、組み合わせれば抗体を分離、精製す ることがでさる。
[0050] クロマトグラフィーとしては、例えばァフィ二ティークロマトグラフィー、イオン交換ク 口マトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着 クロマトグラフィー等が挙げられる (Strategies for Protein Purification and Characteriz ation: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harb or Laboratory Press, 1996)。これらのクロマトグラフィーは、液相クロマトグラフィー、 例えば HPLC、 FPLC等の液相クロマトグラフィーを用いて行うことができる。ァフィ-テ ィークロマトグラフィーに用いるカラムとしては、プロテイン Aカラム、プロテイン Gカラム が挙げられる。例えば、プロテイン Aを用いたカラムとして、 Hyper D, POROS, Sephar ose F. F. (Pharmacia)等が挙げられる。本発明は、これらの精製方法を用い、高度に 精製された抗体も包含する。
[0051] 本発明にお 、て、調製された抗体の抗原結合活性 (Ant¾odies A Laboratory Man ual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)の測定には公知 の手段を使用することができる。例えば、 ELISA (酵素結合免疫吸着検定法)、 EIA ( 酵素免疫測定法)、 RIA (放射免疫測定法)あるいは蛍光免疫法などを用いることが できる。
[0052] 本発明は、上記ポリヌクレオチドを作製する工程、該のポリヌクレオチドを含むベタ ターを作製する工程、該ベクターを宿主細胞に導入する工程、および該宿主細胞を 培養する工程を含む、抗体の作製方法もまた、提供する。
[0053] また、本発明では、ヒトに対する異種抗原性を低下させること等を目的として人為 的に改変した遺伝子組換え型抗体、例えば、キメラ(chimeric)抗体、ヒト化 (humanize d)抗体などを使用できる。これらの改変抗体は、既知の方法を用いて製造することが できる。キメラ抗体は、ヒト以外の哺乳動物、例えば、マウス抗体の重鎖、軽鎖の可変 領域とヒト抗体の重鎖、軽鎖の定常領域からなる抗体であり、マウス抗体の可変領域 をコードする DNAをヒト抗体の定常領域をコードする DNAと連結し、これを発現べクタ 一に組み込んで宿主に導入し産生させることにより得ることができる。
[0054] ヒト化抗体は、再構成 (reshaped)ヒト抗体とも称され、ヒト以外の哺乳動物、たとえ ばマウス抗体の相補性決定領域(CDR; complementarity determining region)をヒト 抗体の相補性決定領域へ移植したものであり、その一般的な遺伝子組換え手法も知 られている。具体的には、マウス抗体の CDRとヒト抗体のフレームワーク領域 (framew ork region ; FR)を連結するように設計した DNA配列を、末端部にオーバーラップする 部分を有するように作製した数個のオリゴヌクレオチドから PCR法により合成する。得 られた DNAをヒト抗体定常領域をコードする DNAと連結し、次 、で発現ベクターに組 み込んで、これを宿主に導入し産生させることにより得られる(欧州特許出願公開番 号 EP 239400、国際特許出願公開番号 WO 96/02576参照)。 CDRを介して連結され るヒト抗体の FRは、相補性決定領域が良好な抗原結合部位を形成するものが選択さ れる。必要に応じ、再構成ヒト抗体の相補性決定領域が適切な抗原結合部位を形成 するように抗体の可変領域のフレームワーク領域のアミノ酸を置換してもよ 、 (Sato, K • et al, Cancer Res. (1993) 53, 851—856)。
[0055] また、ヒト抗体の取得方法も知られて 、る。例えば、ヒトリンパ球を in vitroで所望の 抗原または所望の抗原を発現する細胞で感作し、感作リンパ球をヒトミエローマ細胞 、例えば U266と融合させ、抗原への結合活性を有する所望のヒト抗体を得ることもで きる(特公平 1-59878参照)。また、ヒト抗体遺伝子の全てのレパートリーを有するトラ ンスジエニック動物を所望の抗原で免疫することで所望のヒト抗体を取得することがで きる(国際特許出願公開番号 WO 93/12227, WO 92/03918, WO 94/02602, WO 94 /25585, WO 96/34096, WO 96/33735参照)。さらに、ヒト抗体ライブラリーを用いて、 パン-ングによりヒト抗体を取得する技術も知られている。例えば、ヒト抗体の可変領 域を一本鎖抗体 (scFv)としてファージディスプレイ法によりファージの表面に発現さ せ、抗原に結合するファージを選択することができる。選択されたファージの遺伝子 を解析すれば、抗原に結合するヒト抗体の可変領域をコードする DNA配列を決定す ることができる。抗原に結合する scFvの DNA配列が明らかになれば、当該配列を含 む適当な発現ベクターを作製し、ヒト抗体を取得することができる。これらの方法は周 知であり、 WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19 172, WO 95/01438, WO 95/15388を参考にすることができる。
[0056] 本発明の抗体は、ヒト白血球抗原 (HLA)を認識する、抗体であることが好ま 、。
本発明〖こおけるヒト白血球抗原 (HLA)を認識する抗体は、活性が上昇して!/ヽる点で 有用である。ここで、活性とは、抗体が抗原に結合することにより生じる生物学的作用 をいう。具体的な例としては、細胞死誘導作用、アポトーシス誘導作用、細胞増殖抑 制作用、細胞分化抑制作用、細胞分裂抑制作用、細胞増殖誘導作用、細胞分化誘 導作用、細胞分裂誘導作用、細胞周期調節作用などを挙げることができるが、好まし くは細胞死誘導作用、細胞増殖抑制作用である。
[0057] 細胞死誘導作用、細胞増殖抑制作用などの上記作用の対象となる細胞は特に限 定されないが、血球系細胞や浮遊細胞が好ましい。血球系細胞の具体的な例として は、リンパ球 (B細胞、 T細胞)、好中球、好酸球、好塩基球、単球 (好ましくは活性ィ匕 した末梢血単核球 (peripheral blood mononuclear cell, PBMC))、血液腫瘍細胞(ミエ ローマ細胞、リンパ腫細胞、白血病細胞)などを挙げることができる力 リンパ球 (B細 胞、 T細胞、活性化 B細胞、活性化 T細胞)が好ましぐ特に活性ィ匕した B細胞又は活 性ィ匕した T細胞、および、血液腫瘍細胞が最も好ましい。浮遊細胞とは、細胞を培養 した際、細胞がガラスやプラスチックなどの培養器の表面に付着することなぐ浮遊状 で増殖する細胞である。本発明において浮遊細胞の好ましい例としては、 Jurkat細胞 又は ARH77細胞を挙げることが出来る。これに対し、接着細胞 (付着細胞)とは、細胞 を培養した際、ガラスやプラスチックなどの培養器の表面に付着する細胞である。
[0058] 一般的に、全長抗 HLA抗体では細胞死誘導活性を増強させる為に抗 IgG抗体な どでクロスリンクを行ってもよぐクロスリンクは当業者に公知の方法により行うことがで きる。
[0059] 本発明の抗体が浮遊細胞に対して細胞死を誘導するか否かは、 Jurkat細胞又は ARH77細胞に対して細胞死を誘導する力否かにより判定することができ、抗体が接 着細胞に対して細胞死を誘導するか否かは、 HeLa細胞に対して細胞死を誘導する か否かにより判定することができる(WO2004/033499)。
[0060] 本発明においては、上記 HLAを認識する抗体を投与することにより、例えば、血 液腫瘍 (造血器腫瘍)などの腫瘍 (具体的な例として、白血病、骨髄異形成症候群、 悪性リンパ腫、慢性骨髄性白血病、形質細胞異常症 (骨髄腫、多発性骨髄腫、マク ログロブリン血症)、骨髄増殖性疾患 (真性赤血球増加症、本態性血小板血症、特発 性骨髄線維症)など)や自己免疫疾患 (具体的な例として、リウマチ、自己免疫性肝 炎、自己免疫性甲状腺炎、自己免疫性水疱症、自己免疫性副腎皮質炎、自己免疫 性溶血性貧血、自己免疫性血小板減少性紫斑病、自己免疫性萎縮性胃炎、自己 免疫性好中球減少症、自己免疫性精巣炎、自己免疫性脳脊髄炎、自己免疫性レセ プター病、自己免疫不妊、クローン病、全身性エリテマトーデス、多発性硬化症、ノ セドウ病、若年性糖尿病、アジソン病、重症筋無力症、水晶体性ブドウ膜炎、乾癬、 ベーチェット病、など)のような疾患の治療、予防などをおこなうことが可能である。ま た、本発明の抗体は生体内での安定性に優れていると考えられる為、生体に投与す る際には特に有効であると考えられる。 [0061] 本発明において、 HLAとは、ヒト白血球抗原を意味する。 HLA分子は classlと classl Iに分類され、 classlとしては HLA—A、 B、 C、 E、 F、 G、 H、 Jなどが知られており、 classll としては HLA- DR、 DQ、 DPなどが知られている。本発明の抗体が認識する抗原は HL A分子であれば特に制限されないが、好ましくは classlに分類される分子であり、より 好ましくは HLA-IAである。
[0062] 本発明の抗体は、低分子化抗体であってもよ!/、。本発明にお 、て低分子化抗体 とは、全長抗体 (whole antibody,例えば whole IgG等)の一部分が欠損している抗体 断片を含み、抗原への結合能を有していれば特に限定されない。本発明の抗体断 片は、全長抗体の一部分であれば特に限定されないが、重鎖可変領域 (VH)又は軽 鎖可変領域 (VL)を含んで 、ることが好ましぐ特に好ま ヽのは VHと VLの両方を含 む断片である。抗体断片の具体例としては、例えば、 Fab, Fab'、 F(ab')2、 Fv、 scFv ( シングルチェイン Fv)、 sc(Fv)などを挙げることができる力 好ましくは diabody (Husto
2
n, J. S. et al, Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879—5883、 Plickthun「The Pharmacology of Monoclonal Antibodies J Vol.113, Resenburg及び Moore編, Spring er Verlag, New York, pp.269- 315, (1994》である。このような抗体断片を得るには、抗 体を酵素、例えば、パパイン、ペプシンなどで処理し抗体断片を生成させる力 又は 、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、 適当な宿主細胞で発現させればよい(例えば、 Co, M. S. et al., J. Immunol. (1994) 1 52, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476 -496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515;し am oyi, E., Methods Enzymol. (198b; 121, 652- 6b3; Rousseaux, J. et al., Methods Enz ymol. (1986) 121, 663—669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (19 91) 9, 132-137参照)。
[0063] 本発明における低分子化抗体は、全長抗体よりも分子量が小さくなることが好まし いが、例えば、ダイマー、トリマー、テトラマーなどの多量体を形成すること等もあり、 全長抗体よりも分子量が大きくなることもある。
本発明にお ヽて好ま ヽ低分子化抗体は、抗体の VHを 2つ以上及び VLを 2っ以 上含み、これら各可変領域を直接あるいはリンカ一等を介して間接的に結合した抗 体である。結合は、共有結合でも非共有結合でもよぐまた、共有結合と非共有結合 の両方でよい。さらに好ましい低分子化抗体は、 VHと VLが非共有結合により結合し て形成される VH-VL対を 2つ以上含んでいる抗体である。この場合、低分子化抗体 中の一方の VH-VL対と他方の VH-VL対との間の距離力 全長抗体における距離よ りも短くなる抗体が好まし 、。
[0064] 本発明にお 、て scFvは、抗体の H鎖 V領域と L鎖 V領域を連結することにより得ら れる。この scFvにおいて、 H鎖 V領域と L鎖 V領域はリンカ一、好ましくは、ペプチドリン カーを介して連結される(Huston, J. S. et al.、 Proc. Natl. Acad. Sci. U.S.A. (1988) 8 5, 5879-5883) o scFvにおける H鎖 V領域および L鎖 V領域は、上記抗体として記載さ れたものの 、ずれの由来であってもよい。 V領域を連結するペプチドリンカ一としては 、例えばアミノ酸 12-19残基力 なる任意の一本鎖ペプチドが用いられる。
[0065] scFvをコードする DNAは、前記抗体の H鎖又は、 H鎖 V領域をコードする DNA、お よび L鎖又は、 L鎖 V領域をコードする DNAを铸型とし、それらの配列のうちの所望の アミノ酸配列をコードする DNA部分を、その両端を規定するプライマー対を用いて PC R法により増幅し、次いで、さらにペプチドリンカ一部分をコードする DNAおよびその 両端を各々 H鎖、 L鎖と連結されるように規定するプライマー対を組み合せて増幅す ることにより得られる。
また、ー且 scFvをコードする DNAが作製されれば、それらを含有する発現べクタ 一、および該発現べクタ一により形質転換された宿主を常法に従って得ることができ 、また、その宿主を用いて常法に従って、 scFvを得ることができる。
[0066] これら抗体の断片は、前記と同様にしてその遺伝子を取得し発現させ、宿主によ り産生させることができる。本発明でいう「抗体」にはこれらの抗体の断片も包含される
[0067] 本発明にお!/、て特に好まし!/、低分子化抗体は diabodyである。 diabodyは、可変領 域と可変領域をリンカ一等で結合したフラグメント (例えば、 scFv等)(以下、 diabodyを 構成するフラグメント)を 2つ結合させて二量体ィ匕させたものであり、通常、 2つの VLと 2つの VHを含む (P.Holliger et al" Proc.Natl.Acad.Sci.USA, 90, 6444-6448 (1993)、 EP404097号、 W093/11161号、 Johnson et al., Method in Enzymology, 203, 88-98, (1991)、 Holliger et al., Protein Engineering, 9, 299—305, (1996)、 Perisic et al., Struc ture, 2, 1217-1226, (1994)、 John et al., Protein Engineering, 12(7), 597—604, (1999) 、 Holliger et al,. Proc.Natl.Acad.Sci.USA., 90, 6444-6448, (1993)、 Atwell et al., Mo l.Immunol. 33, 1301-1312, (1996》。 diabodyを構成するフラグメント間の結合は非共 有結合でも、共有結合でよいが、好ましくは非共有結合である。
[0068] また、 diabodyを構成するフラグメント同士をリンカ一などで結合して、一本鎖 diabo dy (sc diabody)とすることも可能である。その際、 diabodyを構成するフラグメント同士 を 20アミノ酸程度の長 、リンカ一を用いて結合すると、同一鎖上に存在する diabodyを 構成するフラグメント同士で非共有結合が可能となり、二量体を形成する。
[0069] diabodyを構成するフラグメントは、 VLと VHを結合したもの、 VLと VLを結合したも の、 VHと VHを結合したもの等を挙げることができる力 好ましくは VHと VLを結合した ものである。 diabodyを構成するフラグメント中において、可変領域と可変領域を結合 するリンカ一は特に制限されないが、同一フラグメント中の可変領域の間で非共有結 合がおこらな 、程度に短 、リンカ一を用いることが好まし 、。そのようなリンカ一の長 さは当業者が適宜決定することができる力 通常 2〜14アミノ酸、好ましくは 3〜9アミノ 酸、特に好ましくは 4〜6アミノ酸である。この場合、同一フラグメント上にコードされる V Lと VHとは、その間のリンカ一が短いため、同一鎖上の VLと VHの間で非共有結合が おこらず、単鎖 V領域フラグメントが形成されない為、他のフラグメントとの非共有結合 による二量体を形成する。さらに、 diabody作製と同じ原理で、 diabodyを構成するフラ グメントを 3つ以上結合させて、トリマー、テトラマーなどの多量体ィ匕させた抗体を作製 することも可會である。
[0070] 本発明における diabodyとしては、配列番号: 6に記載のアミノ酸配列を有する diab odyまたは配列番号: 6に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列 が変異 (置換、欠失、挿入、および Zまたは付加)したアミノ酸配列を有する diabody であって、配列番号: 6に記載の配列を有する diabodyと機能的に同等な diabodyや、 配列番号: 2の CDR (又は可変領域)および配列番号: 4の CDR (又は可変領域)のァ ミノ酸配列を有する diabodyまたは配列番号: 2の CDR (又は可変領域)および配列番 号: 4の CDR (又は可変領域)のアミノ酸配列にお 、て 1もしくは複数のアミノ酸配列が 変異 (置換、欠失、挿入、および Zまたは付加)したアミノ酸配列を有する diabodyで あって、配列番号: 2の CDR (又は可変領域)および配列番号: 4の CDR (又は可変領 域)の配列を有する diabodyと機能的に同等な diabodyを例示できる力 これらに限定 されるものではない。
[0071] ここで「機能的に同等」とは、対象となる diabodyが、配列番号: 6に記載の配列を 有する diabody、または配列番号: 2の CDR (又は可変領域)および配列番号: 4の CD R (又は可変領域)の配列を有する diabodyと同等の活性 (例えば、 HLA-Aへの結合 活性、細胞死誘導活性など)を有することを意味する。
[0072] 変異するアミノ酸数は特に制限されないが、通常、 30アミノ酸以内であり、好ましく は 15アミノ酸以内であり、さらに好ましくは 5アミノ酸以内(例えば、 3アミノ酸以内)であ ると考免られる。
[0073] また、配列番号: 6に記載のアミノ酸配列を有する diabodyまたは、配列番号: 2の C DR (又は可変領域)および配列番号: 4の CDR (又は可変領域)の配列を有する diabo dyを、ヒトに対する異種抗原性を低下させること等を目的としてヒト化、キメラ化しても よい。
[0074] 配列番号: 2に記載されているアミノ酸配列で、 1番目〜125番目が可変領域に相 当し、 31番目〜35番目力 SCDR1 (配列番号: 7)、 50番目〜66番目力 SCDR2 (配列番号 : 8)、 99番目〜 114番目が CDR3 (配列番号: 9)に相当する。配列番号: 4に記載され ているアミノ酸配列で、 1番目〜107番目が可変領域に相当し、 24番目〜34番目が C DR1 (配列番号: 10)、 50番目〜56番目力 CDR2 (配列番号:11)、 89番目〜97番目 力 CDR3 (配列番号: 12)に相当する。
[0075] 本発明にお 、て HLAを認識する低分子化抗体は、 HLAに特異的に結合し、生物 学的作用を有していれば特に制限されない。本発明の低分子化抗体は、当業者に 公知の方法により作製することが可能である。例えば、実施例に記載されているよう に、 HLAを認識する抗体の配列 (特に可変領域の配列や相補鎖決定領域 (CDR)の 配列)を基に、当業者に公知の遺伝子組換え技術を用いて作製することが可能であ る。
[0076] HLAを認識する抗体の配列は、既に公知の抗体の配列を用いることが可能であり 、又、 HLAを抗原として、当業者に公知の方法により抗 HLA抗体を作製し、その抗体 の配列を取得して用いることも可能である。具体的には、例えば、以下のようにして行 うことができる。 HLAタンパク質若しくはその断片を感作抗原として使用して、これを 通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によつ て公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産 生細胞 (ハイブリドーマ)をスクリーニングする。抗原の調製は公知の方法、例えばバ キュロウィルスを用いた方法 (W098/46777など)等に準じて行うことができる。ハイブ リドーマの作製は、たとえば、ミルスティンらの方法(Kohler. G. and Milstein, C, Met hods Enzymol. (1981) 73: 3-46)等に準じて行うことができる。抗原の免疫原性が低 い場合には、アルブミン等の免疫原性を有する巨大分子と結合させ、免疫を行えば よい。その後、ハイプリドーマの mRNA力 逆転写酵素を用いて抗体の可変領域 (V 領域)の cDNAを合成し、得られた cDNAの配列を公知の方法により解読すればよい。
[0077] HLAを認識する抗体は、 HLAと結合する限り特に制限はなぐマウス抗体、ラット 抗体、ゥサギ抗体、ヒッジ抗体、ヒト抗体等を適宜用いることができる。又、ヒトに対す る異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗 体、例えば、キメラ(Chimeric)抗体、ヒトイ匕(Humanized)抗体なども使用できる。これら の改変抗体は、既知の方法を用いて製造することができる。キメラ抗体は、ヒト以外の 哺乳動物、例えば、マウス抗体の重鎖、軽鎖の可変領域とヒト抗体の重鎖、軽鎖の定 常領域力 なる抗体等であり、マウス抗体の可変領域をコードする DNAをヒト抗体の 定常領域をコードする DNAと連結し、これを発現ベクターに組み込んで宿主に導入 し産生させること〖こより得ることがでさる。
[0078] 本発明者らは、本発明の抗体が細胞死を誘導することを見出した。この知見に基 づき、本発明の抗体を有効成分として含有する、細胞死誘導剤または細胞増殖抑制 剤を提供する。また、既に本発明者らは、抗 HLA抗体を低分子化した diabodyが、ヒト 骨髄腫モデル動物に対して、抗腫瘍効果を有することを見出している (WO2004/033 499)。さらに、本発明の抗体の細胞死誘導活性は、活性化された T細胞又は B細胞 で特に効果が大きいと考えられる。従って、本発明の抗体は、癌などの腫瘍 (特に血 液腫瘍)や自己免疫疾患の治療や予防に特に有効であると考えられる。本発明は、 本発明の抗体を有効成分として含有する、抗腫瘍剤または自己免疫疾患治療剤もま た提供するものである。
[0079] また、本発明は、本発明の抗体を有効成分として含有する、細胞死誘導剤または 細胞増殖抑制剤を提供する。本発明の抗体の細胞死誘導活性は、活性化された T 細胞または B細胞で特に効果が大き 、と考えられるので、癌などの腫瘍 (特に血液腫 瘍)や自己免疫疾患の治療や予防に特に有効であると考えられる。このように本発明 は、本発明の抗体を用いた、癌などの腫瘍 (特に血液腫瘍)や自己免疫疾患の治療 方法や予防方法も提供するものである。低分子化されて!/ヽな ヽ抗体を有効成分とし て用いる場合には、抗 IgG抗体などでクロスリンクすることが好ましい。
[0080] また、本発明の薬剤は、インターフェロンと併用することもできる。抗 HLAクラス I抗 体とインターフェロンの併用により、細胞死誘導等の抗 HLAクラス I抗体の作用を強く 増強する(WO2006/123724)。
[0081] 一般に、インターフェロンとは、ウィルス、二本鎖 RNA、レクチンなどによって動物 細胞カゝら誘発される抗ウィルス作用をもったタンパク質または糖タンパク質の総称で ある。抗ウィルス作用の他、細胞増殖抑制作用、免疫調節作用を有する。産生細胞 、特異的受容体との結合能、生物'物理化学的性質から数種のタイプに分類され、 主要なものとしては α、 j8、 γがあるが、このほか、 IFN ω、 IFN τの存在が知られて いる。さらにインターフェロン αには、 20種以上のサブタイプの存在が知られている。 現在、天然型のみならず、 PEG化、コンセンサスインターフェロン等の各種遺伝子組 み換え型の製剤が開発 ·上巿されて!/ヽる。
[0082] 本発明におけるインターフェロンは、上記タイプのいずれでもよいが、好ましくは αまたは γである。また、本発明におけるインターフェロンは、抗 HLAクラス I抗体によ る細胞死誘導を増強する限り、天然型、人工的に変異された遺伝子組み換え型、天 然に存在する変異体、融合タンパク質、又はこれらの断片などのいずれであってもよ い。本発明におけるインターフェロンの由来に特に制限はなぐ例えば、ヒト、チンパ ンジ一、オランウータン、ィヌ、ゥマ、ヒッジ、ャギ、ロノく、ブタ、ネコ、マウス、モルモット 、ラット、ゥサギなどを由来とすることができるが、これらに限らずその他の哺乳動物を 由来とすることができる。好ましくはヒト由来のインターフェロンである。 [0083] 本発明において本発明の抗体とインターフェロンとの併用とは、本発明の抗体とィ ンターフ ロンを共に投与または使用(以下、単に「投与」と記載する。)することを意 味し、投与の順番や投与間隔などで限定されるものではない。本発明の抗体とインタ 一フエロンの投与の順番は、インターフェロン投与後に本発明の抗体を投与、インタ 一フエロンと本発明の抗体を同時に投与、本発明の抗体投与後にインターフェロンを 投与、のいずれの順番でもよいが、好ましくはインターフェロン投与後に本発明の抗 体を投与またはインターフェロンと本発明の抗体を同時に投与することであり、さらに 好ましくはインターフェロン投与後に本発明の抗体を投与することである。
インターフェロン投与後に本発明の抗体を投与する場合、インターフェロンと本発 明の抗体の投与間隔は特に限定されず、投与経路や剤形等の要因を考慮して設定 することができる。あえて投与間隔の一例を挙げるとすれば、通常、 0時間〜 72時間 であり、好ましくは 0時間〜 24時間であり、さらに好ましくは 0時間〜 12時間である。
本発明の抗体はインターフェロンとともに一つの医薬組成物とすることができる。ま た、本発明の抗体は、インターフェロンと併用することを特徴とする、医薬組成物とす ることがでさる。
[0084] 本発明の薬剤は、医薬品の形態で投与することが可能であり、経口的または非経 口的に全身あるいは局所的に投与することができる。例えば、点滴などの静脈内注 射、筋肉内注射、腹腔内注射、皮下注射、坐薬、注腸、経口性腸溶剤などを選択す ることができ、患者の年齢、症状により適宜投与方法を選択することができる。有効投 与量は、一回につき体重 lkgあたり O.Olmgから lOOmgの範囲で選ばれる。あるいは、 患者あたり l〜1000mg、好ましくは 5〜50mgの投与量を選ぶことができる。好ましい投 与量、投与方法は、たとえば HLAを認識する抗体の場合には、血中にフリーの抗体 が存在する程度の量が有効投与量であり、具体的な例としては、体重 lkgあたり 1ヶ月 (4週間)に 0.5mgから 40mg、好ましくは lmgから 20mgを 1回力も数回に分けて、例えば 2回 Z週、 1回 Z週、 1回 Z2週、 1回 Z4週などの投与スケジュールで点滴などの静 脈内注射、皮下注射などの方法で、投与する方法などである。投与スケジュールは、 投与後状態の観察および血液検査値の動向を観察しながら 2回 Z週あるいは 1回 Z 週から 1回 Z2週、 1回 Z3週、 1回 Z4週のように投与間隔を延ばしていくなど調整す ることち可會である。
[0085] 本発明の薬剤には、保存剤や安定剤等の製剤上許容しうる担体を添加してもよ い。製剤上許容しうる担体とは、それ自体は上記の活性を有する材料であってもよい し、有さない材料であってもよぐ上記の薬剤とともに投与可能な製剤上許容される 材料を意味する。また、上記の活性を有さない材料であっても、抗 HLA抗体と併用す ることによって相乗的もしくは相加的な効果を有する材料であってもよ 、。
製剤上許容される材料としては、例えば、滅菌水や生理食塩水、安定剤、賦形剤 、緩衝剤、防腐剤、界面活性剤、キレート剤 (EDTA等)、結合剤等を挙げることができ る。
[0086] 本発明において、安定剤としては、 0.2%程度のゲラチンゃデキストラン、 0.1-1.0% のグルタミン酸ナトリウム、ある 、は約 5%の乳糖や約 2%のソルビトールなどを使用する ことが出来るが、これらに限定されるものではない。保存剤としては、 0.01%程度のチメ 口サールや 0.1%程度のベータプロピオノラタトン等を典型的例として挙げることができ る。
[0087] 本発明にお 、て、界面活性剤としては非イオン界面活性剤を挙げることができ、 例えばソルビタンモノカプリレート、ソルビタンモノラウレート、ソルビタンモノパルミテ ート等のソルビタン脂肪酸エステル;グリセリンモノカプリレート、グリセリンモノミリステ ート、グリセリンモノステアレート等のグリセリン脂肪酸エステル;デカグリセリルモノス テアレート、デカグリセリルジステアレート、デカグリセリルモノリノレート等のポリグリセ リン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレン ソルビタンモノォレエート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシ エチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタントリオレエート、ポ リオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸 エステル;ポリオキシエチレンソルビットテトラステアレート、ポリオキシエチレンソルビ ットテトラオレエート等のポリオキシエチレンソルビット脂肪酸エステル;ポリオキシェチ レングリセリルモノステアレート等のポリオキシエチレングリセリン脂肪酸エステル;ポリ エチレングリコールジステアレート等のポリエチレングリコール脂肪酸エステル;ポリオ キシエチレンラウリルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシ エチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシプロピレンプ 口ピルエーテル、ポリオキシエチレンポリオキシプロピレンセチルエーテル等のポリオ キシエチレンポリオキシプロピレンアルキルエーテル;ポリオキシエチレンノニルフエ ニルエーテル等のポリオキシエチレンアルキルフエニルエーテル;ポリオキシェチレ ンヒマシ油、ポリオキシエチレン硬化ヒマシ油(ポリオキシエチレン水素ヒマシ油)等の ポリオキシエチレン硬化ヒマシ油;ポリオキシエチレンソルビットミツロウ等のポリオキシ エチレンミツロウ誘導体;ポリオキシエチレンラノリン等のポリオキシエチレンラノリン誘 導体;ポリオキシエチレンステアリン酸アミド等のポリオキシエチレン脂肪酸アミド等の HLB6〜18を有するもの、等を典型的例として挙げることができる。
[0088] また、界面活性剤としては陰イオン界面活性剤も挙げることができ、例えばセチノレ 硫酸ナトリウム、ラウリル硫酸ナトリウム、ォレイル硫酸ナトリウム等の炭素原子数 10〜 18のアルキル基を有するアルキル硫酸塩;ポリオキシエチレンラウリル硫酸ナトリウム 等の、エチレンォキシドの平均付加モル数が 2〜4でアルキル基の炭素原子数が 10 〜 18であるポリオキシエチレンアルキルエーテル硫酸塩;ラウリルスルホコハク酸エス テルナトリウム等の、アルキル基の炭素原子数が 8〜18のアルキルスルホコハク酸ェ ステル塩;天然系の界面活性剤、例えばレシチン、グリセ口リン脂質;スフインゴミエリ ン等のフィンゴリン脂質;炭素原子数 12〜18の脂肪酸のショ糖脂肪酸エステル等を 典型的例として挙げることができる。
[0089] 本発明の薬剤には、これらの界面活性剤の 1種または 2種以上を組み合わせて添 加することができる。本発明の製剤で使用する好ましい界面活性剤は、ポリソルベー ト 20, 40, 60又は 80などのポリオキシエチレンソルビタン脂肪酸エステルであり、ポリ ソルベート 20及び 80力 S特に好ましい。また、ポロキサマー(プル口ニック F— 68 (登録 商標)など)に代表されるポリオキシエチレンポリオキシプロピレングリコールも好まし い。
界面活性剤の添加量は使用する界面活性剤の種類により異なる力 ポリソルベー ト 20又はポリソルベート 80の場合では、一般には 0.001〜100mg/mLであり、好ましく は 0.003〜50mg/mLであり、さらに好ましくは 0.005〜2mg/mLである。
[0090] 本発明にお 、て緩衝剤としては、リン酸、クェン酸緩衝液、酢酸、リンゴ酸、酒石 酸、コハク酸、乳酸、リン酸カリウム、ダルコン酸、力プリル酸、デォキシコール酸、サリ チル酸、トリエタノールァミン、フマル酸、他の有機酸等、あるいは、炭酸緩衝液、トリ ス緩衝液、ヒスチジン緩衝液、イミダゾール緩衝液等を挙げることが出来る。
[0091] また溶液製剤の分野で公知の水性緩衝液に溶解することによって溶液製剤を調 製してもよい。緩衝液の濃度は一般には l〜500mMであり、好ましくは 5〜100mMであ り、さらに好ましくは 10〜20mMである。
[0092] また、本発明の薬剤は、その他の低分子量のポリペプチド、血清アルブミン、ゼラ チンや免疫グロブリン等の蛋白質、アミノ酸、多糖及び単糖等の糖類や炭水化物、 糖アルコールを含んで 、てもよ 、。
[0093] 本発明にお 、てアミノ酸としては、塩基性アミノ酸、例えばアルギニン、リジン、ヒス チジン、オル-チン等、またはこれらのアミノ酸の無機塩 (好ましくは、塩酸塩、リン酸 塩の形、すなわちリン酸アミノ酸)を挙げることが出来る。遊離アミノ酸が使用される場 合、好ましい pH値は、適当な生理的に許容される緩衝物質、例えば無機酸、特に塩 酸、リン酸、硫酸、酢酸、蟻酸又はこれらの塩の添カ卩により調整される。この場合、リン 酸塩の使用は、特に安定な凍結乾燥物が得られる点で特に有利である。調製物が 有機酸、例えばリンゴ酸、酒石酸、クェン酸、コハク酸、フマル酸等を実質的に含有し ない場合あるいは対応する陰イオン (リンゴ酸イオン、酒石酸イオン、クェン酸イオン、 コハク酸イオン、フマル酸イオン等)が存在しない場合に、特に有利である。好ましい アミノ酸はアルギニン、リジン、ヒスチジン、またはオル-チンである。さらに、酸性アミ ノ酸、例えばグルタミン酸及びァスパラギン酸、及びその塩の形 (好ましくはナトリウム 塩)あるいは中性アミノ酸、例えばイソロイシン、ロイシン、グリシン、セリン、スレオニン 、パリン、メチォニン、システィン、またはァラニン、あるいは芳香族アミノ酸、例えばフ ェ-ルァラニン、チロシン、トリプトファン、または誘導体の N-ァセチルトリプトファンを 使用することちできる。
[0094] 本発明にお 、て、多糖及び単糖等の糖類や炭水化物としては、例えばデキストラ ン、グノレコース、フラクトース、ラタトース、キシロース、マンノース、マノレトース、スクロ ース,トレハロース、ラフイノース等を挙げることができる。
[0095] 本発明にお 、て、糖アルコールとしては、例えばマン-トール、ソルビトール、イノ シトール等を挙げることができる。
[0096] 注射用の水溶液とする場合には、例えば生理食塩水、ブドウ糖やその他の補助 薬を含む等張液、例えば、 D-ソルビトール、 D-マンノース、 D-マン-トール、塩化ナト リウムが挙げられ、適当な溶解補助剤、例えばアルコール (エタノール等)、ポリアルコ ール (プロピレングリコール、 PEG等)、非イオン性界面活性剤 (ポリソルベート 80、 HCO -50)等と併用してもよい。
所望によりさらに希釈剤、溶解補助剤、 pH調整剤、無痛化剤、含硫還元剤、酸化 防止剤等を含有してもよい。
[0097] 本発明において、含硫還元剤としては、例えば、 N—ァセチルシスティン、 N—ァ セチルホモシスティン、チォタト酸、チォジグリコール、チォエタノールァミン、チォグ リセロール、チォソルビトール、チォグリコール酸及びその塩、チォ硫酸ナトリウム、グ ルタチオン、並びに炭素原子数 1〜7のチオアルカン酸等のスルフヒドリル基を有す るもの等を挙げることができる。
[0098] また、本発明にお 、て酸ィ匕防止剤としては、例えば、エリソルビン酸、ジブチルヒド ロキシトルエン、ブチルヒドロキシァ-ソール、 —トコフエロール、酢酸トコフエロール 、 L—ァスコルビン酸及びその塩、 L—ァスコルビン酸パルミテート、 L—ァスコルビン 酸ステアレート、亜硫酸水素ナトリウム、亜硫酸ナトリウム、没食子酸トリァミル、没食 子酸プロピルあるいはエチレンジァミン四酢酸ニナトリウム(EDTA)、ピロリン酸ナトリ ゥム、メタリン酸ナトリウム等のキレート剤を挙げることが出来る。
[0099] また、必要に応じ、マイクロカプセル (ヒドロキシメチルセルロース、ゼラチン、ポリ^ チルメタクリル酸]等のマイクロカプセル)に封入したり、コロイドドラッグデリバリーシス テム (リボソーム、アルブミンミクロスフエア、マイクロエマルジヨン、ナノ粒子及びナノ力 プセノレ等)とすることもできる ( Remington s Pharmaceutical Science 1り edition , Osl o Ed., 1980等参照)。さらに、薬剤を徐放性の薬剤とする方法も公知であり、本発明 に適用し得る (Langer et al., J.Biomed.Mater.Res. 1981 , 15: 167—277; Langer, Chem . Tech. 1982, 12: 98-105;米国特許第 3,773,919号;欧州特許出願公開 (EP)第 58,481 号; Sidman et al. , Biopolymers 1983, 22: 547—556 ?第133,988号)。
使用される製剤上許容しうる担体は、剤型に応じて上記の中から適宜あるいは組 合せて選択されるが、これらに限定されるものではな!/ヽ。
[0100] 注射剤を調製する場合、必要により、 pH調製剤、緩衝剤、安定化剤、保存剤等 を添加し、常法により、皮下、筋肉内、静脈内注射剤とする。注射剤は、溶液を容器 に収納後、凍結乾燥等によって、固形製剤として、用時調製の製剤としてもよい。ま た、一投与量を容器に収納してもよぐまた、複数投与量を同一の容器に収納しても よい。
[0101] 本発明の薬剤の投与方法としては、公知の種々の方法が使用できる。
本発明において、「投与する」とは、経口的、あるいは非経口的に投与することが 含まれる。経口的な投与としては、経口剤という形での投与を挙げることができ、経口 剤としては、顆粒剤、散剤、錠剤、カプセル剤、溶剤、乳剤、あるいは懸濁剤等の剤 型を選択することができる。
[0102] 非経口的な投与としては、注射剤と!/、う形での投与を挙げることができ、注射剤と しては、点滴などの静脈注射、皮下注射剤、筋肉注射剤、あるいは腹腔内注射剤等 を挙げることができる。また、投与すべきオリゴヌクレオチドを含む遺伝子を遺伝子治 療の手法を用いて生体に導入することにより、本発明の方法の効果を達成することが できる。また、本発明の薬剤を、処置を施したい領域に局所的に投与することもでき る。例えば、手術中の局所注入、カテーテルの使用、または本発明の阻害剤をコード する DNAの標的化遺伝子送達により投与することも可能である。
[0103] 患者への投与は、例えば、動脈内注射、静脈内注射、皮下注射などのほか、鼻 腔内的、経気管支的、筋内的、経皮的、または経口的に当業者に公知の方法により 行いうる。投与量は、患者の体重や年齢、投与方法などにより変動するが、当業者で あれば適当な投与量を適宜選択することが可能である。また、該化合物が DNAにより コードされうるものであれば、該 DNAを遺伝子治療用ベクターに組込み、遺伝子治療 を行うことも考えられる。投与量、投与方法は、患者の体重や年齢、症状などにより変 動するが、当業者であれば適宜選択することが可能である。
[0104] 本発明の薬剤の投与量は、その 1回投与量は投与対象、対象臓器、症状、投与 方法によっても異なるが、例えば注射剤の形では通常成人 (体重 60kgとして)におい ては、 1日あたり約 0.1から 1000mg、好ましくは約 1.0から 50mg、より好ましくは約 1.0か ら 20mgであると考えられる。
[0105] 非経口的に投与する場合は、その 1回投与量は投与対象、対象臓器、症状、投 与方法によっても異なるが、例えば注射剤の形では通常成人 (体重 60kgとして)にお いては、通常、 1日当り約 0.01から 30mg、好ましくは約 0.1から 20mg、より好ましくは約 0 .1から 10mg程度を静脈注射により投与するのが好都合であると考えられる。他の動 物の場合も、体重 60kg当たりに換算した量、あるいは体表面積あたりに換算した量を 投与することができる。
[0106] どの接種方法が適切かは薬剤の種類、接種する対象の種類等を考慮して決定さ れる。容器はバイアル、プレフィルドシリンジ製品 (pre-filled syringe) が可能である 。必要に応じて、溶液状でも凍結乾燥などによる粉末製品でもよい。一回接種用でも 複数回接種用でも良い。投与量は、接種する対象の種類や体重や年齢、投与方法 などにより変動するが、当業者であれば適当な投与量を適宜選択することが可能で ある。
なお本明細書において引用されたすベての特許、公開特許公報、および公開文 献は、参照として本明細書に組み入れられる。
実施例
[0107] 以下、本発明を実施例によりさらに具体的に説明するが本発明はこれら実施例に 制限されるものではない。
〔実施例 1〕 HLA classl A/ β 2Μ発現 Ba/F3細胞株の榭立
ヒト HLA classl Aと、ヒト β 2Μを発現する Ba/F3細胞の榭立を行った。 まず全長 HLA classl A (HLA-foll)発現ベクター作製を以下の通り実施した。全長 HLA classl Aをコードする cDNAを铸型にして以下のプライマー(sHLA- 1, 1HLA- 3,) で PCRを行い、全長 HLA classl Aをコードする遺伝子断片を増幅した。
sHLA-1: TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC (配 列番号: 13)
1HLA-3' : TTG CGG CCG CTC ACA CTT TAC AAG CTG TGA GAG ACA (配 列番号: 14)
得られた DNA断片を EcoRI/Notlで切断し、動物細胞発現ベクター pCXND3の Eco RI/Notl間に挿入し全長 HLA classl A (1HLA- A)発現ベクター(pCXND3- HLA- foil) を構築した。
[0108] 次に、全長 β 2-microglobulin( β 2M)発現ベクターを以下の通り作製した。ヒト脾 臓由来 cDNA (human spleen cDNA, clontech #S1206)を铸型にして以下のプライマ 一( j8 2M - 1 , j8 2M -2)で PCRを行 ヽ、全長 β 2Μをコードする遺伝子断片を増幅し た。
β 2Μ -1 : AAG CGG CCG CCA CCA TGT CTC GCT CCG TGG C (配列番号:
15)
β 2M -2: TTT CTA GAT TAC ATG TCT CGA TCC CAC TTA ACT (配列番号 : 16)
得られた DNA断片を Notl/Xbalで切断し、 pCOS2- ZEOの Notl/Xbal間に挿入し全 長 j8 2M発現ベクター (pCOS2zeo- β 2Μ)を構築した。
[0109] 続!、て HLA-A/ β 2Μ発現 Ba/F3細胞株の榭立を以下のとおり行った。 pCXND3- HLA- foll、 pCOS2zeo- β 2M各 20 μ gを Pvulで切断し、 PBS (-)に懸濁した Ba/F3細胞 (1 X 107 cells/mL, 800 μ L)にエレクト口ポレーシヨン法(BIO- RAD社 GenePulser、 0. 33kV、 950 μ F、 time const 27.0)により導入した。生育培地(RPMI1640 + 10% FCS + P/S + 1 ng/mL IL-3)で適当な細胞数に希釈した後、 96ゥエルプレートに撒き、翌日 G418を 400 μ g/mL, Zeocinを 800 μ g/mLになるように添カ卩した。その後 3〜4日おき に半分ずつ培地を交換し、 10日後に単一クローンを選別した。
[0110] 得られた HLA-A/ β 2Μ発現 Ba/F3細胞株 (#9, #10, #22)、および、 ARH77細胞の HLA classl Aの発現量を 2D7 IgG (10 μ g/mL)で染色し、各抗原の細胞膜上での発 現を FACS (コールター, ELITE)にて解析した(図 1)。その結果、 # 9の株で ARH77細 胞と同程度の HLA classl Aの発現が認められた。そこで、この株を 1 ng/mL IL- 3, 50 0 μ g/mL G418, 800 μ g/mL zeocin (invitrogen #46-0072)、 10%FCSを含む RPMIl 640培地で拡大培養し、細胞免疫用に用いた。
[0111] 〔実施例 2〕 細胞免疫
HLA-A/ β 2Μ発現 Ba/F3細胞株(BaF- HLA #9)を PBS (-)で 2回洗浄し、 1.5〜2.0 X 107 cells/200 μ Lになるように PBS (-)に懸濁し、この懸濁液 200 μ Lをマウス(MRL/1 pr、ォス、 4週齢、日本チヤ一ルスリバ一)の腹腔内に注入し免疫した (テルモシリンジ 1 mL、針 26G)。
1週間に 1回、計 8回免疫し、 9回目は 2.5 X 107 cells/200 μ Lの懸濁液 200 μ Lを 最終免疫し、 4日後に細胞融合を行った。
[0112] 〔実施例 3〕 ハイプリドーマの作成
マウスより脾臓を無菌的に摘出し、 medium 1 [RPMI1640(+P/S)]中でつぶして単 一細胞懸濁液にした。これを 70 mのナイロンメッシュ(Falcon)に通して脂肪組織等 を取り除き、細胞数をカウントした。得られた B細胞をマウスミエローマ細胞(P3U1細 胞)と、およそ 2:1の細胞数比になるように混合し、 1 mLの 50% PEG (Roche, cat #: 783 641, lot #: 14982000)を加えて、細胞融合を行った。融合した細胞を medium 2 [RPM I1640(+P/S, 10% FCS)]に懸濁し、適当枚数 (10枚)の 96ゥヱルプレートに 100 μ L/ゥ エルで分注し、 37°Cで培養した。翌日、 medium 3 [RPMI1640(+P/S, 10% FCS, HAT(S igma, H0262), 5% BM condimed HI (Roche, cat #: 1088947, lot #: 14994800))]を 10 0 μ L/ゥェルカ卩ぇ、以後、毎日ゥエルから培地 100 μ Lを除き、新たに medium 3を 100 μ L/ゥエルカ卩える作業を 4日間行った。
[0113] 〔実施例 4〕 細胞死誘導抗体のスクリーニング
細胞融合力も約 1週間後に細胞死誘導活性を有するハイプリドーマのスクリー- ングを行った。細胞死誘導抗体のスクリーニングは、細胞凝集誘導能を指標にして以 下のとおり行った。
HLA- A/ j8 2Μ発現 Ba/F3細胞を 2.5 x 104 cells/wellで 96ゥエルプレートに播種し、 各ハイプリドーマの培養上清 80 /z Lを加え 37°Cで 1時間培養した。その後、抗マウス I gG抗体(Cappel # 55482, #55459)を 6 μ g/mLとなるように加えた。さらに 4時間培養 してクロスリンク反応を行った後、顕微鏡で観察し、細胞凝集の観察されるゥエルを選 択した。 1000クローン分の培養上清をスクリーニングした結果、最終的に 10個の陽性 ハイプリドーマを得た。これら陽性ゥエルの細胞を 2.5 cells/wellとなるように 96ゥエル プレートに播種しなおして約 10日間培養し、再び細胞凝集誘導活性を解析した。こ の操作により 10種類の単一クローンを得た。
[0114] 〔実施例 5〕 抗体のパネルイ匕 5-1.抗体の精製
得られたクローンのハイプリドーマの培養上清 80 mLから Hi Trap Protein G HP 1 mLカラム (Amersham Biosciences #17- 0404- 01)を用いて抗体を精製した。ハイブリド 一マ上清を流速 1 mL/minで吸着させ、 20 mLの 20 mMリン酸緩衝液 (pH7.0)で洗浄 した後、 3.5 mLの 0.1 M Glycine-HCl (pH2.7)で溶出した。溶出分画は、あらかじめ 1 M Tris-HCl (pH9.0)を 50 μ Lずつ加えたエツペンドルフチューブに 0.5mLずつ回収 した。 OD を測定し、抗体が含まれて 、る分画をまとめ、 PBS (-)をカ卩えて全量 2.5 m
280nm
Lとした後、 PD- 10カラム (Amersham Biosciences #17- 0851- 01)を用いて PBS (-)にバッ ファー置換した。精製した抗体は 0.22 μ mフィルター (MILLIPORE #SLGV033RS)を 通し、以下詳細に各精製抗体の性質について検討を行った。
[0115] 5-2.サブタイプの決定
抗体のサブタイプ決定は IsoStrip (Roche #1 493 027)を用いて行った。サブタイプ 決定には PBS (-)で 10倍希釈したハイプリドーマの培養上清を用 、た。
[0116] 5-3.ェピトープ解析
5-3-1.マウス MHC class IA遺伝子のクロー-ング
得られた抗体力 ¾LA classl A分子上のどのドメインを認識しているかを解析する ため、 HLA classl Aの各種ドメイン( α 1ドメイン, α 2ドメイン, α 3ドメイン)をそれぞれ
、マウス MHC class Iの対応するドメインに置き換えたキメラ HLA classl Aを発現する 細胞株の榭立を以下のとおり行った(図 2)。
まずマウス MHC class IA遺伝子を铸型にし、以下の方法でクローユングした。 Mouse spleen cDNA (MTC panel, clontech)に対して、以下のプライマー(mHLA-
1および mHLA- 2)により、 pyrobest DNA polymerase (TAKARA#R005)で PCRを行い
、マウス HLA classl Aの遺伝子断片を増幅した。
mHLA- 1: CTG CTC CTG CTG TTG GCG GC (配列番号: 17)
mHLA- 2: CAG GGT GAG GGG CTC AGG CAG (配列番号: 18)
得られた遺伝子断片を、 pCRII- TOPO (Invitrogen TOPO TA- cloning kit, #45-06
40)に TA-cloningし、塩基配列を確認した。
[0117] 5-3-2.ェピトープ解析用キメラ HLA-A発現ベクターの構築 続いて、ェピトープ解析用キメラ HLA-A発現ベクターの構築を以下のとおり実施 した。
HLA- Aの a 1ドメインがマウス(MHH)である MHH発現ベクター(pCOS2- chHLA- MHH flag)は以下の方法で構築した。
全長 HLA- Aを有する発現ベクター(pCXND3- HLA foll)を铸型にして pyrobest D NA polymerase (TAKARA#R005)を用い、以下のプライマー(sHLA- Aおよび chHLA- HI)〖こより、 HLA- Aの signal配列(断片 A)を PC R増幅した。
sHLA-A: TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC (Ec oRIサイトを含む)(配列番号: 19)
chHLA- HI : AAT CTA GAC TGG GTC AGG GCC AGG GCC CC (Xbalサイトを 含む)(配列番号: 20)
[0118] また、以下のプライマー(chHLA- H2および chHLA- H3)により、 HLA- Aの a 2ドメ イン-終始コドンまでの配列 (断片 B)を PCR増幅した。
chHLA— H2: TTT CTA GAG CCG GTT CTC ACA CCA TCC AGA GG (Xbalサ イトを含む)(配列番号: 21)
chHLA- H3: AAG GAT CCC ACT TTA CAA GCT GTG AGA GAC ACA T (Ba mHIサイトを含む)(配列番号: 22)
断片 Aを EcoRI-Xbalで、断片 Bを Xbal-BamHIでそれぞれ切断し、これらを pCOS2 - FLAGの EcoRI- BamHI間に挿入した。得られたプラスミドの塩基配列を確認し、 pCO S2-(M)HHとした。
[0119] 同時に、マウス MHC class IA遺伝子を铸型にして、 pyrobest DNA polymerase (T AKARA#R005)を用い、以下のプライマー(chHLA- Mlおよび chHLA- M2)〖こより、マ ウス MHC class の oc 1ドメイン(断片 C)を PCR増幅した。
chHLA— Ml : TTT CTA GAG CGG GCC CAC ATT CGC TGA GG (Xbalサイトを 含む)(配列番号: 23)
chHLA-M2: TTT CTA GAC TGG TTG TAG TAT CTC TGT GCG GTC C (Xba Iサイトを含む)(配列番号: 24)
得られた断片 Cを Xbalで切断し、 Xbalで開いた pCOS2- (M)HHに挿入した。塩基 配列を確認し、 1ドメインをマウス MHC-Aに置換した発現ベクター pCOS2-chHLA- MHH- flagの構築を終了した。
[0120] a 2ドメインがマウス(HMH)である HMH発現ベクター(pCOS2- chHLA- HMH flag) は以下の方法で構築した。
全長 HLA- Aを有する発現ベクター(pCXND3- HLA foll)を铸型にして pyrobest D NA polymerase (TAKARA#R005)を用い、以下のプライマー(sHLA- Aおよび chHLA- H4)〖こより、 HLA- Aの signal配列 - α 1ドメイン(断片 D)を PCR増幅した。
sHLA-A: TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC (Ec oRIサイトを含む)(配列番号: 19)
chHLA-H4: TTG TCG ACC CGG CCT CGC TCT GGT TGT AGT AG (Sailサ イトを含む)(配列番号: 25)
[0121] また、以下のプライマー(chHLA- H5および chHLA- H3)により、 HLA- Aの a 3ドメ イン-終始コドンまで(断片 E)を PCR増幅した。
chHLA- H5: AAG TCG ACG CCC CCA AAA CGC ATA TGA CT (Sailサイトを 含む)(配列番号: 26)
chHLA- H3: AAG GAT CCC ACT TTA CAA GCT GTG AGA GAC ACA T (Ba mHIサイトを含む)(配列番号: 22)
断片 Dを EcoRI-Sallで、断片 Eを Sall-BamHIでそれぞれ切断し、これらを pCOS2-F LAGの EcoRI- BamHI間に挿入した。得られたプラスミドの塩基配列を確認し、 pCOS2 — H(M)Hとした。
[0122] 同時に、マウス MHC class IA遺伝子を铸型にして、 pyrobest DNA polymerase (T AKARA # R005)を用い、以下のプライマー(chHLA- M3および chHLA- M4)〖こより、マ ウス MHC class IAの α 2ドメイン (断片 F)を PCR増幅した。
chHLA— M3: TTG TCG ACC ACG TTC CAG CGG ATG TTC GGC (Sailサイト を含む)(配列番号: 27)
chHLA-M4: GAG TCG ACG CGC AGC AGC GTC TCA TTC CCG (Sailサイト を含む)(配列番号: 28)
得られた断片 Fを Sailで切断し、 Sailで開いた pCOS2- H(M)Hに挿入した。塩基配 列を確認し、 2ドメインをマウス MHC- Aに置換した発現ベクター pCOS2- chHLA- H MH-flagの構築を終了した。
[0123] a 3ドメインがマウス(HHM)である HHM発現ベクター(pCOS2- chHLA- HHM flag) は以下の方法で構築した。
全長 HLA- Aを有する発現ベクター(pCXND3- HLA foll)を铸型にして pyrobest D NA polymerase (TAKARA#R005)を用い、以下のプライマー(sHLA- Aおよび chHLA- H6)〖こより、 HLA- Aの signal配列 - α 2ドメイン(断片 G)を PCR増幅した。
sHLA-A: TCC GAA TTC CAC CAT GGC CGT CAT GGC GCC CCG AAC ( EcoRIサイトを含む)(配列番号: 19)
chHLA- H6: TTT CTA GAG TCC GTG CGC TGC AGC GTC TCC T (Xbalサイ トを含む)(配列番号: 29)
[0124] また、以下のプライマー(chHLA- H7および chHLA- H3)〖こより、 HLA- Aの細胞内 ドメイン(断片 H)を PCR増幅した。
chHLA-H7: TTT CTA GAA TGG GAG CCG TCT TCC CAG CCC A (Xbalサ イトを含む)(配列番号: 30)
chHLA- H3: AAG GAT CCC ACT TTA CAA GCT GTG AGA GAC ACA T (B amHIサイトを含む) (配列番号: 22)
[0125] 断片 Gを EcoR卜 Xbalで、断片 Hを Xba卜 BamHIでそれぞれ切断し、これらを pCOS2 -FLAGの EcoRI- BamHI間に挿入した。得られたプラスミドの塩基配列を確認し、 pCO S2- HH(M)とした。
同時に、マウス MHC class IA遺伝子を铸型にして、 pyrobest DNA polymerase (T AKARA # R005)を用い、以下のプライマー(chHLA- M5および chHLA- M6)〖こより、マ ウス MHC class IAの α 3ドメイン (断片 I)を PCR増幅した。
chHLA- M5: AAT CTA GAA AGG CCC ATG TGA CCT ATC ACC CC (Xbalサ イトを含む)(配列番号: 31)
chHLA- M6: TAT CTA GAG TGA GGG GCT CAG GCA GCC CC (Xbalサイトを 含む)(配列番号: 32)
得られた断片 Iを Xbalで切断し、 Xbalで開いた pCOS2-HH(M)に挿入した。塩基配 列を確認し、 3ドメインをマウス MHC- Aに置換した発現ベクター pCOS2- chHLA- H HM-flagの構築を終了した。
[0126] α 1〜 α 3ドメインがマウス(ΜΜΜ)である ΜΜΜ発現ベクター(pCOS2- chHLA- Μ MM flag)は以下の方法で構築した。
断片 Aを EcoRI-Xbalで、断片 Hを Xbal-BamHIでそれぞれ切断し、これらを pCOS2 - FLAGの EcoRI- BamHI間に挿入した。得られたプラスミドの塩基配列を確認し、 pCO S2 - (MMM)とした。
マウス MHC class IA遺伝子を铸型にして、 pyrobest DNA polymerase (TAKARA # R005)を用い、以下のプライマー(chHLA- Mlおよび chHLA- M6)〖こより、マウス MHC class IAの α 1〜 α 3ドメイン(断片 J)を PCR増幅した。
chHLA— Ml : TTT CTA GAG CGG GCC CAC ATT CGC TGA GG (Xbalサイトを 含む) (配列番号: 23)
chHLA- M6:TAT CTA GAG TGA GGG GCT CAG GCA GCC CC(XbaIサイトを 含む)(配列番号: 32)
得られた断片 Jを Xbalで切断し、 Xbalで開いた pCOS2-(MMM)に挿入した。塩基 配列を確認し、 α 1〜 α 3ドメインをマウス MHC- Αに置換した発現ベクター pCOS2-ch HLA-MMM-flagの構築を終了した。
[0127] 5-3-3.ェピトープ解析用キメラ HLA-A/ β 2Μ発現 Ba/F3細胞株の榭立
pCOS2- chHLA- MHH-flag、 pCOS2- chHLA- HMH-flag、 pCOS2- chHLA- HHM-fl ag、 pCOS2- chHLA- MMM- flag各 20 μ gを Pvulで切断し、 PBS (-)に懸濁した Ba/F3細 胞 (1 X 107 cells/mL, 800 μ L)にエレクト口ポレーシヨン法(BIO- RAD社 GenePulser 、 0.33 kV、 950 μ F、 time const 27.0)により導入した。生育培地(RPMI1640 + 10% F CS + P/S + 1 ng/mL IL- 3)で適当な細胞数に希釈した後、 96ゥエルプレートに播種 し、翌日 G418を 500 /z g/mLになるように添カ卩した。 10日後に単一クローンを顕微鏡 下で選別した。
[0128] これらのクローンについて、 1 X 105個の細胞を 0.5% NP40 Lysis buffer (0.5% NP40 , 150 mM NaCl, 5 mM EDTAを含む 10 mM Tris- HCl (pH7.5)) 50 μ Lに溶解し、上清 12 μ Lを用いて SDS- PAGEを行った。 PVDF膜にブロッテイング後、 Antト Flag M2抗 体(SIGMA #F3165)、 HRP-抗マウス抗体 (Amersham Biosciences #NA9310)でウェス タンプロットを行い、 chHLAを産生する細胞株のスクリーニングを行った。 chHLAの発 現がもっとも高かった chHLA-MHH #8、 chHLA- HMH #6、 chHLA- HHM #2、 chHLA -MMM #4を選び、 1 ng/mL IL- 3, 500 μ g/mL G418, 10% FCSを含む RPMI 1640培 地で拡大培養した。さらに、これらの chHLA発現細胞株へ Pvulで切断した pCOS2zeo - β 2Μ各 15 μ gをエレクト口ポレーシヨン法で導入した。翌日 G418を 500 μ g/mL, Ze ocin (Invitrogen #46- 0072)を 800 g/mLになるように添カ卩した。 12日後に単一クロー ンを顕微鏡下で選別した。これらの細胞を抗ヒト β 2Μ抗体(SIGMA # M7398)と抗マ ウス IgG- FITC抗体(Beckman Coulter # IM0819)で染色し、 13 2Mの細胞膜上での発 現を FACS (Beckman Coulter, ELITE)にて解析した。 j8 2Mの発現が最も高かった ch HLA-MHH/ β 2Μ #1—3、 chHLA— HMH/ β 2M #2—1、 chHLA— HHM/ β 2M #3—4、 ch HLA— MMM/ β 2M #4— 6を 1 ng/mL IL— 3, 500 μ g/mL G418、 800 μ g/mL zeocin , 1 0% FCSを含む RPMI1640培地で拡大培養し、ェピトープ解析に使用した。
5-3-4. FACSによるェピトープ解析
得られた抗体(10クローン)のェピトープを決めるため、これらキメラ HLA/ β 2Μ発 現細胞に対する結合能を解析した。キメラ HLA/ β 2Μ発現細胞を 8 X 105 cells/wellず つ 96ゥエルプレートに播種し、各抗体を 10 g/mLとなるように添加した。氷上で 1時 間インキュベートしたのち FACS buffer 150 μ Lで細胞を洗浄し、抗マウス IgG- FITC 抗体(Beckman Coulter # IM0819)で染色した後、 FACS (Beckman Coulter, ELITE) にて解析した (図 3)。
その結果、 C3B3、 C 11B9、 C 17D 11は HMH/Ba/F3( a 2ドメインがマウス HLA)には 結合しなかったことから、ェピトープが α 2ドメインであることが分かった。一方、 C 17A4 , C 17E9, C23H12, C26D8は、マウス MHC class Iには交差しないものの(結果を示さ ず)、すべてのキメラ HLAに結合し、その FACS染色パターンが抗 |8 2Μ抗体による染 色パターンと一致していたことから、これらのクローンは、 HLAではなく 13 2Μに反応し ていると判断された。 C7C5, C20D4は、 HMH 2ドメインがマウス)、 ΗΗΜ ( α 3ドメイ ンがマウス)の HLAには結合しなかったことから、これらクローンは α 2〜α 3の間を認 識していることが推測された。 [0130] 5-4.細胞死誘導活性
得られた抗体の ARH77細胞に対する細胞死誘導活性の評価を以下のとおり行つ た。 ARH77細胞に精製した各抗体 (5 g/ml)を添加後、二次抗体 (抗マウス IgG抗体 、 Cappel # 55482, #55459)存在下(120 μ g/ml)、または非存在下で 37°C4時間培養 した。培養後、細胞を回収し propidium iodide (PI)染色を行い FACS (Beckman Coulte r, ELITE)にて PI陽性細胞 (死細胞)の割合を測定した(図 4)。
その結果、 C3B3, C17D11, C11B9抗体においてクロスリンク存在下で比較的強い 細胞死誘導活性が認められた。
[0131] 5-5.可変領域のクローユング
ハイプリドーマ約 5 X 106個から RNeasy Mini Kit (QIAGEN #74104)および QIAshre dder (QIAGEN #79654)を用いて total RNAを精製した。 total RNA 1 μ gから SMART RACE cDNA Amplification Kit (CLONTECH #PT3269- 1)を用いて cDNAを合成した 。その際、キットに含まれる 5 ' -CDSプライマーを使用した。得られた cDNAを铸型にし て以下の条件で PCRを行って重鎖可変領域 (V )、軽鎖可変領域 (V )を増幅した。
H L
Primer: UPM < ~~ G2a (V; IgG2a), UPM < ~~ k (V; k)
H L
94。し for 5 sec, 72°C for 2min, 5 cycles
94°C for 5 sec, 70°C for 10 sec, 72°C for 2min, 5 cycles
94°C for 5 sec, 68°C for 10 sec, 72°C for 2min, 27 cycles
得られた遺伝子断片を pCRII- TOPO (Invitrogen TOPO TA- cloning kit, #45-064 0)に TA-cloningし、塩基配列を確認した。 1つの遺伝子に対してプラスミドを最低 2個 以上解析して、配列を確認した。本実施例において確認されたリーダー配列を含む 重鎖可変領域の塩基配列を配列番号: 46に、本塩基配列がコードする重鎖可変領 域のアミノ酸配列を配列番号: 47に示す。配列番号: 46の 58番目力ら 432番目の塩 基配列(配列番号: 1)、および配列番号: 47の 20番目力も 144番目のアミノ酸配列( 配列番号: 2)が重鎖可変領域に相当する。
また、本実施例において確認されたリーダー配列を含む軽鎖可変領域の塩基配 列を配列番号: 48に、本塩基配列がコードする軽鎖可変領域のアミノ酸配列を配列 番号: 49に示す。配列番号: 48の 61番目から 381番目の塩基配列(配列番号: 3)、 および配列番号: 49の 21番目力 127番目のアミノ酸配列(配列番号: 4)が軽鎖可 変領域に相当する。
[0132] 5-6.抗体パネルの作成
以上得られた抗体に関して、抗体のアイソタイプ分類、抗体の可変領域をコード する遺伝子配列、さらに、ェピトープ、 ARH77細胞への結合活性、細胞死誘導活性 などの情報をカ卩え、パネノレィ匕してまとめた (表 1)。
可変領域をコードするアミノ酸配列を分析した結果、 a 2ドメインをェピトープに持 つ 3クローン(C3B3, C17D11, C11B9)の重鎖可変領域は C3B3, C17D11は同一のァ ミノ酸を有していた力 C11B9は、 C3B3/ C17D11と比べて 1アミノ酸異なっていた(図 5— 1)。また、軽鎖可変領域は、 3クローンともまったく同一の配列であった(図 5— 2)
[0133] [表 1]
Figure imgf000046_0001
[0134] 〔実施例 6〕 diabody化
6-1. diabodyベクターの作成
得られた C3B3抗体は、二次抗体(GAM)存在下では ARH77細胞に対して細胞死 誘導活性が認められたものの、抗体単独では強 、細胞死誘導活性は認められなか つた。そこで、 C3B3抗体の可変領域を 5 merのペプチド(GGGGS) (配列番号: 33)で 連結させた diabodyの作成を行った。
[0135] pCRII-TOPOに TA- cloningした Vを铸型にして pyrobest DNA polymerase (TAKA RA#R005)を用いて PCRを行 、、 H鎖可変領域のシグナル配列から FR4までを増幅さ せた。 5'側のプライマーには EcoRIサイトを、 3'側のプライマーにはリンカ一配列 (アミ ノ酸 GGGGS)を付カ卩したものを用いた。
同様に pCRII-TOPOに TA-cloningした Vを铸型にして PCRを行い、 L鎖可変領域
L
の FR1力も FR4までを増幅させた。 5'側のプライマーにはリンカ一配列 (アミノ酸: GGG GS)を、 3'側のプライマーには Flagタグと Notlサイトを付カロしたものを用いた。
[0136] 増幅した V、 V同士をァニールさせてから、両端のプライマーで PCRを行って diab
H L
odyの遺伝子を増幅した。得られた断片を EcoRI/Notlで切断し、 pCXND3の EcoRI/N otl間に挿入して塩基配列を確認し、発現ベクターの構築を終了した。以下に C3B3 d iabody (リンカ一: 5アミノ酸)を作製したときのプライマーと PCR反応条件を示す。 プライマー:
C3B3DB-H1: cct gaa ttc CAC CAT GTA CTT CAG GCT CAG CTC AG (配列 番号: 34)
C3B3DB-H2: GGA TAT Cgc tac cgc etc cac cTG AGG AGA CGG TGA CTG A AA TTC CTT (配列番号: 35)
C3B3DB-L1: CAg gtg gag gcg gta gcG ATA TCC AGA TGA CAC AGA CTA C AT CCT CC (配列番号: 36)
し JB3DB— L2: att gcg gcc get tat cac tta tcg tcg tea tec ttg tag tcT TTT ATT T CC AGC TTG GTC CCC GAT CCG (配列番号: 37)
PCR反応条件:
94°C 1分
94°C 30分、 72°C 30分、 25 cycles
[0137] 次に、得られた PCR産物を S- 300 HRカラム (Amersham Biosciences #27-5130-01) で精製して、 V、 V各々 1 μ Lずつ pyrobest DNA polymeraseを用いて以下の条件で
H L
ァニールさせた。
94°C 1分
94°C 30分、 72°C 30分、 5 cycles
ァニール後の反応液 1 しを C3B3DB- Hl、 C3B3DB- L2より短いプライマー C3B3 DB- 5,、 C3B3DB -3,を用いて以下の条件で PCRを行った。
C3B3DB- 5,: cct gaa ttc CAC CAT GTA CTT CAG GC (配列番号: 38) C3B3DB- 3,: att gcg gcc get tat cac tta tcg (配列番号: 39)
94°C 1分
94°C 30分、 72°C 1分、 25 cycles
増幅した断片を S- 400 HRカラム (Amersham Biosciences #27- 5140- 01)で精製して 、 EcoRI/Notlで切断し、 pCXND3の EcoRI/Notl間に挿入して、塩基配列を確認して、 pCXND3-C3B3DB-Flagの構築を終了した。本実施例にお!、て確認されたリーダー 配列および Flag-tag配列を含む diabodyの塩基配列を配列番号: 50に、本塩基配列 がコードする diabodyのアミノ酸配列を配列番号: 51に示す。配列番号: 50の 58番目 力も 432番目の塩基配列が重鎖可変領域、 433番目力も 447番目の塩基配列がリン カー配列、 448番目から 768番目の塩基配列が軽鎖可変領域に相当する。また、配 列番号: 51の 20番目力 144番目のアミノ酸配列が重鎖可変領域、 145番目力 1 49番目のアミノ酸配列がリンカ一配列、 150番目から 256番目のアミノ酸配列が軽鎖 可変領域に相当する。
[0138] 6-2. diabody発現株の榭立
これを DG44細胞に導入し、 C3B3 diabody産生細胞株を榭立した。 diabody発現べ クタ一各 10 μ gを Pvulで切断し、 PBS (-)に懸濁した DG44細胞(1 x 107 cells/mL, 800 μ L)にエレクト口ポレーシヨン法(BIO- RAD社 GenePulser、 1.5 kV、 25 μ F)により 導入した。生育培地(CHO-S-SFMII I PS)で適当な細胞数に希釈した後、 96 well p lateに撒き、翌日 G418を 500 μ g/mLになるように添カ卩した。約 2週間後に single clon eからなる wellを顕微鏡下で選別し、培養上清 10 μ Lずつを用いて SDS-PAGEを行つ た。 PVDF膜にブロッテイング後、抗 Flag M2抗体(SIGMA #F3165)、 HRP-抗マウス抗 体(Amersham Biosciences # NA9310)でウェスタンブロットを行い、 diabodyを産生す る細胞株のスクリーニングを行った。最も産生量の高 ヽ株を拡大培養した。
[0139] 6-3. diabodyの精製
C3B3 diabody発現 DG44細胞株の培養上清 100 mLを 0.22 μ mフィルター (MILLIP ORE # SLGV033RS)に通した後、 ΑΝΉ- FLAG M2 Agarose Affinity Gel (SIGMA #A- 2220) 1 mLを充填した K9カラム (Amersham Biosciences #19- 0870- 01)に、 PIポンプ を用いて流速 1 mL/minで吸着させた。 6 mLの 50 mM Tris- HC1 (pH7.4), 150 mM Na CI, 0.01% Tween20でカラムを洗浄した後、 7 mLの 0.1 M Glycine- HC1 (pH3.5), 0.01% Tween20で溶出した。洗浄と溶出は AKTAexplorer 10Sを用いて流速 1 mL/minで行 つた。溶出分画は、あらかじめ 50 Lの 1 M Tris-HCl (pH 8.0)を入れた 5 mLチュー ブに、 280nmの吸光度をモニターしながら 0.5 mLずつ回収した。回収したフラクション はまとめて Centricon YM- 10 (amicon #4205)を用いて 300 μ Lまで濃縮した後、直ち にゲルろ過クロマトグラフィーを行った。
[0140] ゲルろ過クロマトグラフィーは、 Superdex 200 HRカラム(Amersham #17-1088-01) を用いて、 AKTAexplorer 10Sを使用して流速 0.4 mL/minで行った。 0.01% Tween 20, PBS (-)で平衡ィ匕した後、手動で上記 M2精製サンプルをインジェタトした。フラクショ ンは 280nmの吸光度をモニターしながら 5 mLチューブに 0.5 mLずつ分取した。各ピ ーク毎にまとめて回収し、 0.22 μ mフィルター (MILLIPORE #SLGV033RSまたは SLG V004SL)を通した後、 4°Cで保存した。
[0141] 6-4. diabodyの細胞死誘導活性の解析
C3B3 minibodyはゲルろ過クロマトグラフィーの結果、図 6のチャートに示すとおり 、分子量(立体構造)の違いにより大きく 3つのフラクションに分離された (ピーク (1)、ピ ーク (2)、ピーク (3))。これら各フラクションに関して、細胞死誘導活性を測定した。、 2D 7 diabodyの細胞死誘導活性と比較した。
その結果、分子量の大きいフラクション(ピーク (1)、 (2) : C3B3 multimer)では、弱 い細胞死誘導活性し力認められな力つた力 ダイマーフラクション (ピーク (3) : C3B3 d iabody)で、 2D7 diabodyをしのぐ強い細胞死誘導活性が認められた(図 7)。
[0142] 6-5. 精製 C3B3 diabodyと 2D7 diabodyとの増殖抑制効果の比較
精製した C3B3 diabody (図 6、ピーク (3))と現行の 2D7 diabodyの増殖抑制能を比 較した。 ARH77細胞を 96ゥエルプレートに 1〜2 x 104cells/wellの細胞濃度で播種し 、そこに得られた各抗体を適当な濃度になるように添加し、 3日培養後細胞数の測定 を行った。生細胞数の測定は、 WST-8 (生細胞数測定試薬 SF;ナカライテスタ)を用い て行った。すなわち本試薬を 10 /z L/wellで細胞に添カ卩し 37°Cで 1.5時間培養後、分 光光度計で 450應の吸光度を測定しその数値を相対的な生細胞数とした(図 8)。 その結果、 2D7 diabodyに比べて、 C3B3 diabodyはより低い濃度で、強い増殖抑 制能を示した。このことから、 C3B3 diabodyは 2D7 diabodyに比べて、強い抗腫瘍効 果を持つ低分子抗体であることが証明された。
[0143] 〔実施例 7〕 C3B3 diabodyの大量調製
7-1.培養上清の調製
C3B3 diabody— Flag発現 DG44細胞 lxl07cellsを CHO—S—SFMII (Invitrogen, c/n: 12052-098) /PS (Invitrogen, c/n: 15140- 122)培地 2 Lに懸濁し cellSTACK (Corning, c/n: 3271)にまきこんだ。 5%COインキュベーター内で 37°Cにて培養し、生存率が 60
2
%未満になったところで培養上清を回収した (約 7日間)。回収した培養上清は 3000rp m、 4°C、 20分間遠心分離して、上清を 0.22 mフィルター(Corning, c/n: 430513) に通して 4°Cで保存した。
[0144] 7-2.クロマトグラフィーによる精製(1)
7-2-1.陰イオンカラムによる粗精製
Q bepharose Fast Flow (Amersham Biosciences, c/n: 17- 0510- 01)を XK50カフム に充填した(ベッド体積 100 mL)。これを 500 mLの milliQ水、 1 M NaCl, 0.01% Tween2 0を含むの 20 mM Tris-HCl (pH7.5)(QB) 500 mLで順に洗った後、 0.01% Tween20を 含む 20 mM Tris-HCl (pH7.5) (QA)500 mLで平衡化した。培養上清 2 Lに milliQ水 2 Lをカ卩えて 2倍希釈し、 1 M Trisを約 20 mLカ卩えて pH7.8に調製したものを平衡化した カラムに吸着させた。吸着は P1ポンプを使用し、流速は最大 10 mL/minとし、 4°Cで約 15時間かけて行った。次に、 AKTAprimeを使用して流速 10 mL/minで洗浄と溶出を 行った。 16% QB 300 mLでカラムを洗浄した後、 400 mLの 25% QB、 100 mLの 30% QB で溶出を行った。フラクションは 12 mLずつ 15 mLチューブに分取した。 280nmの吸光 度をモニターしながら、 25% QBに切り替えた後の最初のピークから 30% QB 100 mLを 流した時点までのフラクションを回収した。
回収したフラクションはまとめて 0.22 μ mフィルター(Corning, c/n: 430626)に通し 、 0.6等量の QAを加えて塩濃度を約 150 mMにした後、 4°Cで保存した。
カラムは QB 400 mL、 0.1M NaOH 200 mL QB 200 mLで順に洗浄した後、 500mL の QAで平衡化して再生した。
[0145] 7-2-2. ANTI-FLAG M2 Affinityカラム (M2カラム)による精製
ANTI-FLAG M2 Affinity Gel Freezer-Safe (SIGMA, c/n: A2220)を XK26カラムに 充填した(ベッド体積 10 mL)。これを 150 mM NaCl, 0.01% Tween20を含む 50 mM Tri s-HCl (pH7.4) (MA) 50 mL 0.01% Tween20を含む 0.1 M Glycine- HC1 (pH3.5)(MB) 30 mLで洗浄した後、 MA 50 mLで平衡化した。
続いて陰イオンカラムで粗精製したサンプル 540 mL (培養上清にして約 2 L分)を 直列につないだ M2カラム 2本に吸着させた。吸着は、 P1ポンプを使用し、流速は最 大 1 mL/minとして、 4°Cで約 15時間かけて行った。その後、 AKTAexplorer 10Sを使用 して流速 4 mL/minで洗浄と溶出を行った。 50 mLの MAでカラムを洗浄した後、 30 mL の 100% MBで溶出を行った。溶出は、あらかじめ 200 Lの 1 M Tris- HC1 (pH.8.0)を 入れた 5 mLチューブに 280nmの吸光度をモニターしながら 2 mLずつ回収した。回収 したフラクションはまとめて Centriprep YM-10 (amicon, c/n: 4304)を用いて 5 mLまで 濃縮した後、直ちにゲルろ過を行い、ノ ッファー置換を行った。 目視で不溶物が認め られた場合は 0.22 μ mフィルター (MILLIPORE, c/n: SLGV013SL)を通してからゲルろ 過を行った。
カラムはサンプル溶出後、 MA 50 mLで平衡ィ匕して 4°Cで保存した。 1週間以上使 用しない場合は 150 mM NaCl, 0.02% NaNを含む 50 mM Tris- HC1 (pH7.4)を 30 mL
3
以上流して力も 4°Cで保存した。
[0146] 7-2-3.ゲルろ過クロマトグラフィーによる精製
HiLoad 26/60 Superdex 200 pg (Amersham, c/n: 17- 1071- 01)を用いたゲルろ過 で diabodyを分離するとともにバッファー置換を行った。操作は AKTAexplorer 10Sを 使用して流速 2 mL/minで行った。 0.01% Tween 20を含む PBS (-)で平衡化した後、手 動で上記 M2精製サンプルをインジェタトした。 280nmの吸光度をモニターしながら、 re tention volume約 200 mLのところに溶出するピークを、 5 mLチューブに 2.5 mLずつ回 収した。回収したフラクションはまとめて 0.22 μ mフィルター (MILLIPORE, c/n: SLGV 033RS)に通して 4°Cで保存した。
精製した diabodyはロット毎に活性を調べた後、まとめて Centriprep YM-10 (amico n, c/n: 4304)で約 1 mg/mLとなるように濃縮して、 0.22 mフィルター (MILLIPORE, c /n: SLGV033RS)に通し保存した。
[0147] 7-3.クロマトグラフィーによる精製(2)
上記 (7-1)で得られた培養上清から、イオン交換クロマトグラフィー、ハイドロキシ アパタイトクロマトグラフィー、ゲルろ過クロマトグラフィーの 3つの工程により C3B3 diab odyの精製を行った。
培養上清は、超純水で 3倍に希釈した後、 1 Mトリスで pHを 8.0に調整した。この後 、 0.02% Tween20を含む 20 mM Tri-HCl (pH 8.0)で平衡化した Q Sepharose Fast Flo w column (GEヘルスケア)にかけ、同緩衝液でカラムを洗浄後、同緩衝液中 0 M力ら 0 .5 Mまでの NaClの直線濃度勾配で、カラムに吸着したポリペプチドを溶出した。得ら れた画分を SDS-PAGEで分析し C3B3 minibody (C3B3 multimerと C3B3 diabody)を 含む画分をすベて集めた。
[0148] 第一工程で得られた C3B3画分は、 0.02% Tween20を含む 10 mMリン酸緩衝液(p H 7.0)で平衡化したハイドロキシアパタイトカラム (BIO- RAD、タイプ I、 20 m)に添カロ し、同緩衝液でカラムを洗浄後、リン酸緩衝液濃度を 250 mMまで直線的に上げ、力 ラムに吸着したポリペプチドを溶出した。溶出したピークは、 SDS-PAGEと Superdex 2 00 PC 3.2/30 column(GEヘルスケア)を使用したゲルろ過で分析した。 目的の C3B3 diabodyの分子量を示したピークのみを集めた。
[0149] 第二工程で得られた C3B3 diabodyのピーク画分を amicon ultra 10 kDa cut (ミリポ ァ)で濃縮し、 0.01% Tween20を含む PBS (-)で平衡化し HiLoad 26/60 Superdex 200 p g column(GEヘルスケア)に添カ卩した。得られた画分を SDS- PAGEで分析し目的の C3 B3 diabodyが含まれるメインピークを精製画分とした。
精製した C3B3 diabodyは、 Superdex 200 PC 3.2/30 columnを使用し分析ゲルろ 過を行ったところシングルピークで、見かけ上の分子量約 52 kDaを示した。
C3B3 diabodyは SDS-PAGE分析の結果、還元と非還元のいずれの条件ともモノ マーの分子量位置(約 27 kDa)に単一のバンドを示した。以上のことから、 C3B3 diab odyは一本鎖 Fvの 2分子がノンコバレントに結合したダイマーであることが分かった。
[0150] 〔実施例 8〕 C3B3 diabodyの薬効評価 8-1. C3B3 diabodyの in vitro細胞増殖に対する抑制効果
C3B3 diabodyの抗腫瘍効果を詳細に解析するため、まず、各種ヒト血液腫瘍細胞 株に対する増殖抑制効果を以下のとおり調べた。
細胞はヒト EBV- transformed B細胞株 ARH- 77、 IM- 9、 MC/CAR、およびヒト Burkit t' s lymphoma細胞株 HS- Sultanを用いた。 ARH- 77、 IM- 9、 HS- Sultanの培養には 10% FCSを含む RPMI1640培地を用いた。 MC/CARの培養には 20% FCSを含む Iscove's modified Dulbecco's medium培地を用いた。 ARH- 77、 IM- 9は 96ゥエルプレートに 3 X 103 cells/well, MC/CARは 5 X lo'cells/well, HS- Sultanは 1 X 104cells/wellの濃度で 播種し、 C3B3 diabodyまたは 2D7 diabodyの存在下 5%COインキュベータ一中で 37°C
2
にて 3日間培養した。続いて各ゥエルに WST-8 (Cat. No. 07553-15、ナカライテスタ 株式会社)を添加し、さらに 4時間培養後、マイクロプレートリーダーにて 450 nm (参照 波長 655 nm)の吸光度を測定した。抗体を加えないゥエルの吸光度を 100%、細胞を カロえな 、ゥエルの吸光度を 0%として細胞増殖を測定した。試験は triplicateにて行 、、 平均値および標準偏差を算出した (図 9)。
実験に用いた全ての細胞株で C3B3 diabodyおよび 2D7 diabodyはいずれも濃度 依存的に細胞増殖を抑制した。し力しながら、両者を比較すると、 C3B3 diabodyは 2D 7 diabodyよりも低濃度で、かつ最大活性で大きく上回る増殖抑制効果を示した。
8-2. C3B3 diabodyの in vivo抗腫瘍効果
8-2-1.マウス血清ヒ HgG定量法
マウスの血清中に含まれるヒト IgGの定量には以下の ELISAで行った。 0.1 mol/L 重炭酸緩衝液 (pH9.6)で 1 μ g/mLに希釈したャギ抗ヒト IgG (BIOSOURCE社製) 100 μ Lを 96ゥエルプレート(Nunc社製)に力!]え、 4°Cでー晚インキュベーションし、抗体を 固相化した。ブロッキングの後、段階希釈したマウス血清あるいは標品としてヒ HgG ( CAPPEL社製) 100 μ Lを添加し、室温にて 2時間インキュベーションした。洗浄後、 50 00倍希釈したアルカリフォスファターゼ標識抗ヒト IgG (BIOSOURCE社製) 100 μ Lを 加え、室温にて 2時間インキュベーションした。洗浄後、基質溶液をカ卩ぇインキュベー シヨンの後、 MICROPLATE READER (BIO-RAD社)を用いて 405 nmでの吸光度を測 し 7こ。 [0152] 8-2-2. C3B3 diabodyのヒト EBV transformed B cell (IM- 9)移植マウスに対する抗腫 瘍効果
8-2-2-1. IM-9移植マウスの作製
IM- 9移植マウスは以下のように作製した。 10% FCS (Hyclone社製)を含む RPMI16 40培地(SIGMA-ALDRICH社製)で in vitro継代した IM-9細胞を上記培地で 5 X 106 c ells I mLになるように調整した。あらかじめ前日に抗ァシァロ GM1 (和光純薬社製) 10 0 /z Lを腹腔内投与した Sddマウス (メス、 6週令、日本クレア)に上記 IM-9細胞調整 液 200 μ Lを尾静脈より注入した。
[0153] 8-2-2-2.抗体投与
上記 ΙΜ- 9移植マウスに ΙΜ- 9移植後 1、 2、 3日目に 1日に 2回、計 6回、抗体(2D7 di abodyまたは C3B3 diabody)を 10mg/kgで尾静脈投与した。コントロール群には tween 20含有 PBSを 10mL/kgで尾静脈投与した。
[0154] 8-2-2-3. C3B3 diabodyの IM-9移植マウスに対する抗腫瘍効果の評価
C3B3 diabodyの抗腫瘍効果については、マウスの生存期間および血清中のヒト Ig G量で評価した。図 10に示す通り、 C3B3 diabodyを投与したマウスではコントロール 群のマウスと比較して明らかな生存期間の延長が認められた。 2D7 diabodyと比較し ても生存期間の延長が認められた。また、 IM-9移植後 14日目にマウスより血清を採 取し、上記 8-2-1の ELISAを用いて測定した(図 11)。その結果、血清中ヒ HgG量は 図 11に示す通り C3B3 diabodyを投与したマウスではコントロール群のマウスと比較し て血清中ヒ HgGの明らかな低下が認められた。 2D7 diabodyと比較しても血清中ヒ Hg Gの低下傾向が認められた。従って、 C3B3 diabodyがヒト EBV transformed B cell移 植マウスに対して 2D7 diabodyよりも強 、抗腫瘍効果を有することが示された。
[0155] 〔実施例 9〕 ヒト PBMCに対する C3B3 diabodyの細胞死誘導作用検討
ヒト末梢血単核球(peripheral blood mononuclear cell, PBMC)に対する C3B3 diab odyおよび 2D7 diabodyの細胞死誘導効果を検討した。健康成人ボランティアの末梢 血より比重遠心法にて PBMCを単離した。この PBMCを 96ゥエルプレートに 5xl04 cells /well (コンカナパリン Aでの刺激時)ある!/、は 1.5xl05 cells/well (SACでの刺激時)で 播種した。コンカナノくリン A (以下 ConA、和光純薬工業)は終濃度 10 μ g/mLで、 SA C (Pansorbin Cells, Carbiochem)は終濃度 0.01%でそれぞれ添カ卩した。さらに C3B3 di abodyあるいは 2D7 diabodyをそれぞれ終濃度 10 g/mLになるように添カ卩した。これ を 5%COインキュベータ一中で 37°Cにて 3日間培養した。培養 3日目に Cell Counting
2
Kit-8 (Dojindo社製)を各ゥエルに 10 Lずつ添カ卩し、 5%COインキュベータ一中で 37
2
°Cにて 7時間反応させた後、 MICROPLATE READER (BIO- RAD社)を用いて 450 nm (参照波長 630 nm)での吸光度を測定した。
その結果、図 12に示すとおり、 ConAで刺激した場合および SAC刺激した場合とも に、 C3B3 diabodyは 2D7 diabodyと比較して強い細胞死誘導活性を示した。
[0156] 〔実施例 10〕 C3B3 diabodyの in vitro細胞増殖に対する抑制効果
C3B3 diabodyのヒト T細胞系腫瘍細胞に対する増殖抑制効果を以下のとおり調べ た。
細胞は Jurkat (E6- 1)株 (ATCCより購入)を用いた。 Jurkat (E6- 1)細胞の培養には 1 0% FCSを含む RPMI1640培地を用いた。 Jurkat細胞は 96ゥエルプレートに 2 X 104 cells /wellの濃度で播種し、 C3B3 diabodyまたは 2D7 diabodyの存在下 5%COインキュべ
2
一ター中で 37°Cにて 3日間培養した。続いて各ゥエルに Cell Counting Kit-8 (Code. No. CK04、 Dojindo Laboratories, Japan)を添カ卩し、さらに 2時間培養後、マイクロプレ 一トリーダーにて 450 nm (参照波長 630 nm)の吸光度を測定した。抗体を加えないゥ エルの吸光度を 100%、細胞をカ卩えな 、ゥエルの吸光度を 0%として細胞増殖を測定し た。試験は triplicateにて行い、平均値および標準誤差 (SE)を算出した(図 13)。
Jurkat細胞で C3B3 diabodyおよび 2D7 diabodyはいずれも濃度依存的に細胞増 殖を抑制した。しかしながら、両者を比較すると、 C3B3 diabodyは 2D7 diabodyよりも 低濃度にぉ ヽて強 ヽ増殖抑制効果を示した。
[0157] これまでの研究において HLA抗体がリンパ球全般に効果を示すことが明ら力となつ ており(WO2004/033499、 WO2005/100560)、以上の結果より本発明において新た に見出された全長抗体および低分子抗体は、リンパ球全般に効果を示すことものと 考えられる。
産業条の利用可能性
[0158] 本発明によって、抗マウス IgG抗体でクロスリンクすることにより細胞死誘導活性を有 する新たな抗 HLA-A抗体、 C3B3抗体が提供された。また、 C3B3抗体を低分子化 (di abody化)した抗体は、抗マウス IgG抗体を添加しなくても強力な細胞死誘導活性を示 し、その活性は、 in vitro腫瘍細胞アツセィ系において従来の低分子化抗体を大きく 上回った。さらに該低分子化抗体は、 in vivo腫瘍移植モデルマウスにおいても、従 来の低分子化抗体よりも高!ヽ抗腫瘍効果を示した。すなわち C3B3低分子化抗体は 従来の低分子化抗体に比べ、血液腫瘍細胞に対して高い殺細胞活性を示すと同時 に、より低濃度で細胞死誘導活性を示す、という点で優れている。したがって該低分 子化抗体は、血液腫瘍、骨髄免疫性疾患、および、自己免疫疾患などに対する治療 薬として、従来の低分子化抗体よりも優れた薬効を期待できる。

Claims

請求の範囲
[1] 配列番号: 7、 8、 9に記載のアミノ酸配列力 なる CDR1、 2、 3を有する重鎖可変領 域を含む抗体。
[2] 配列番号: 10、 11、 12に記載のアミノ酸配列からなる CDR1、 2、 3を有する軽鎖可 変領域を含む抗体。
[3] 配列番号: 7、 8、 9に記載のアミノ酸配列力 なる CDR1、 2、 3を有する重鎖可変領 域および配列番号: 10、 11、 12に記載のアミノ酸配列からなる CDR1、 2、 3を有する 軽鎖可変領域を含む抗体。
[4] 以下の(a)〜(d)の 、ずれかに記載の重鎖可変領域を含む抗体。
(a)配列番号: 2に記載のアミノ酸配列を有する重鎖可変領域
(b)配列番号: 2に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換
、欠失、挿入、および Zまたは付加したアミノ酸配列を有する重鎖可変領域であって 、(a)に記載の重鎖可変領域と機能的に同等な重鎖可変領域
(c)配列番号: 1に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 重鎖可変領域
(d)配列番号: 1に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する重鎖可変領域
[5] 以下の(e)〜 (h)の 、ずれかに記載の軽鎖可変領域を含む抗体。
(e)配列番号: 4に記載のアミノ酸配列を有する軽鎖可変領域
(f)配列番号: 4に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換、 欠失、挿入、および Zまたは付加したアミノ酸配列を有する軽鎖可変領域であって、 ( e)に記載の軽鎖可変領域と機能的に同等な軽鎖可変領域
(g)配列番号: 3に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 軽鎖可変領域
(h)配列番号: 3に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する軽鎖可変領域
[6] 以下の(a)〜(d)の 、ずれかに記載の重鎖可変領域および (e)〜 (h)の 、ずれか に記載の軽鎖可変領域を含む抗体。 (a)配列番号: 2に記載のアミノ酸配列を有する重鎖可変領域
(b)配列番号: 2に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換 、欠失、挿入、および Zまたは付加したアミノ酸配列を有する重鎖可変領域であって 、(a)に記載の重鎖可変領域と機能的に同等な重鎖可変領域
(c)配列番号: 1に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 重鎖可変領域
(d)配列番号: 1に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する重鎖可変領域
(e)配列番号: 4に記載のアミノ酸配列を有する軽鎖可変領域
(f)配列番号: 4に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換、 欠失、挿入、および Zまたは付加したアミノ酸配列を有する軽鎖可変領域であって、 ( e)に記載の軽鎖可変領域と機能的に同等な軽鎖可変領域
(g)配列番号: 3に記載の塩基配列からなる DNAがコードするアミノ酸配列を有する 軽鎖可変領域
(h)配列番号: 3に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列を有する軽鎖可変領域
[7] 以下の(a)〜(d)の 、ずれかに記載のアミノ酸配列を有する抗体。
(a)配列番号: 6に記載のアミノ酸配列
(b)配列番号: 6に記載のアミノ酸配列において 1もしくは複数のアミノ酸配列が置換 、欠失、挿入、および Zまたは付加したアミノ酸配列
(c)配列番号: 5に記載の塩基配列力 なる DNAがコードするアミノ酸配列
(d)配列番号: 5に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNAがコードするアミノ酸配列
[8] 請求項 1〜7の ヽずれかに記載の抗体が結合するヒト白血球抗原 (HLA)タンパク質 のェピトープと同じェピトープに結合する抗体
[9] モノクローナル抗体である請求項 1〜8の 、ずれかに記載の抗体
[10] ヒト白血球抗原 (HLA)を認識する、請求項 1〜9のいずれかに記載の抗体。
[11] HLAが HLA classlである、請求項 10に記載の抗体。
[12] HLA classlが HLA-Aである、請求項 11に記載の抗体。
[13] 低分子化抗体である、請求項 1〜12のいずれかに記載の抗体。
[14] 低分子化抗体が diabodyである請求項 13に記載の抗体。
[15] 以下の(a)または (b)に記載のポリヌクレオチド。
(a)配列番号: 1、 3、または 5に記載の塩基配列からなるポリヌクレオチド
(b) (a)に記載のポリヌクレオチドとストリンジェントな条件下でノ、イブリダィズし、かつ 請求項 1〜14のいずれかに記載の抗体と同等の活性を有する抗体をコードするポリ ヌクレオチド。
[16] 請求項 15に記載のポリヌクレオチドを含むベクター。
[17] 請求項 15に記載のポリヌクレオチドまたは請求項 16に記載のベクターを保持する 宿主細胞。
[18] 以下の工程を含む請求項 1〜14のいずれかに記載の抗体を作製する方法。
(a)請求項 15に記載のポリヌクレオチドを作製する工程
(b) (a)に記載のポリヌクレオチドを含むベクターを作製する工程
(c) (b)に記載のベクターを宿主細胞に導入する工程
(d) (c)に記載の宿主細胞を培養する工程
[19] 請求項 1〜14のいずれかに記載の抗体を有効成分として含有する、細胞死誘導剤
[20] B細胞又は T細胞に対する細胞死誘導であることを特徴とする、請求項 19に記載の 細胞死誘導剤。
[21] B細胞又は T細胞力 活性化 B細胞又は活性化 T細胞である、請求項 20に記載の 細胞死誘導剤。
[22] 請求項 1〜14のいずれかに記載の抗体を有効成分として含有する、細胞増殖抑制 剤。
[23] 請求項 1〜14のいずれかに記載の抗体を有効成分として含有する、抗腫瘍剤。
[24] 腫瘍が血液腫瘍である請求項 23に記載の抗腫瘍剤。
[25] 請求項 1〜14のいずれかに記載の抗体を有効成分として含有する、自己免疫疾患 治療剤。
PCT/JP2007/063946 2006-07-13 2007-07-13 inducteur de mort cellulaire WO2008007755A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008524847A JPWO2008007755A1 (ja) 2006-07-13 2007-07-13 細胞死誘導剤
US12/307,042 US20100150927A1 (en) 2006-07-13 2007-07-13 Cell death inducer
CA002657385A CA2657385A1 (en) 2006-07-13 2007-07-13 Cell death inducer
MX2009000487A MX2009000487A (es) 2006-07-13 2007-07-13 Inductor de muerte celular.
BRPI0714209-9A2A BRPI0714209A2 (pt) 2006-07-13 2007-07-13 Induzidor de morte celular
EP07790727A EP2048230A4 (en) 2006-07-13 2007-07-13 ZELLTODINDUZIERER
AU2007273507A AU2007273507A1 (en) 2006-07-13 2007-07-13 Cell death inducer
IL196134A IL196134A0 (en) 2006-07-13 2008-12-23 Cell death inducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-193053 2006-07-13
JP2006193053 2006-07-13

Publications (1)

Publication Number Publication Date
WO2008007755A1 true WO2008007755A1 (fr) 2008-01-17

Family

ID=38923311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063946 WO2008007755A1 (fr) 2006-07-13 2007-07-13 inducteur de mort cellulaire

Country Status (15)

Country Link
US (1) US20100150927A1 (ja)
EP (1) EP2048230A4 (ja)
JP (1) JPWO2008007755A1 (ja)
KR (1) KR20090038896A (ja)
CN (1) CN101517075A (ja)
AR (1) AR061986A1 (ja)
AU (1) AU2007273507A1 (ja)
BR (1) BRPI0714209A2 (ja)
CA (1) CA2657385A1 (ja)
CL (1) CL2007002057A1 (ja)
IL (1) IL196134A0 (ja)
MX (1) MX2009000487A (ja)
PE (1) PE20081004A1 (ja)
TW (1) TW200808351A (ja)
WO (1) WO2008007755A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111597A1 (ja) * 2007-03-12 2008-09-18 Chugai Seiyaku Kabushiki Kaisha Hlaクラスiを認識する抗体を有効成分として含有する化学療法剤耐性癌治療剤、およびその利用
WO2011037160A1 (ja) 2009-09-24 2011-03-31 中外製薬株式会社 Hlaクラスiを認識する抗体
US8158385B2 (en) 2002-10-11 2012-04-17 Chugai Seiyaku Kabushiki Kaisha Cell death-inducing agent
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004297109A1 (en) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Cell death inducing agent
JP4799405B2 (ja) * 2004-04-09 2011-10-26 中外製薬株式会社 細胞死誘導剤
US20090022687A1 (en) * 2005-05-18 2009-01-22 Chugai Seiyaku Kabushiki Kaisha Novel Pharmaceuticals That Use Anti-HLA Antibodies
UA114108C2 (uk) 2012-07-10 2017-04-25 Борд Оф Ріджентс, Дзе Юніверсіті Оф Техас Сістем Моноклональне антитіло для застосування в діагностиці і терапії злоякісних пухлин і аутоімунного захворювання
EP3156417A1 (en) * 2015-10-13 2017-04-19 Affimed GmbH Multivalent fv antibodies
CA3009484A1 (en) * 2015-12-22 2017-06-29 Abbvie Stemcentrx Llc Novel anti-mmp16 antibodies and methods of use
US20230190810A1 (en) * 2020-03-31 2023-06-22 Fred Hutchinson Cancer Center Anti-cd33 antibodies and uses thereof

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
EP0058481A1 (en) 1981-02-16 1982-08-25 Zeneca Limited Continuous release pharmaceutical compositions
EP0133988A2 (de) 1983-08-02 1985-03-13 Hoechst Aktiengesellschaft Regulatorische Peptide enthaltende pharmazeutische Präparate mit protrahierter Freisetzung und Verfahren zu deren Herstellung
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
US5057313A (en) 1986-02-25 1991-10-15 The Center For Molecular Medicine And Immunology Diagnostic and therapeutic antibody conjugates
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5156840A (en) 1982-03-09 1992-10-20 Cytogen Corporation Amine-containing porphyrin derivatives
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998046777A1 (fr) 1997-04-11 1998-10-22 Centre National De La Recherche Scientifique (Cnrs) Preparation de recepteurs membranaires a partir de baculovirus extracellulaires
WO2004033499A1 (ja) 2002-10-11 2004-04-22 Chugai Seiyaku Kabushiki Kaisha 細胞死誘導剤
WO2005056603A1 (ja) 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha 細胞死誘導剤
WO2005100560A1 (ja) 2004-04-09 2005-10-27 Chugai Seiyaku Kabushiki Kaisha 細胞死誘導剤
WO2006123724A1 (ja) 2005-05-18 2006-11-23 The University Of Tokushima 抗hla抗体を利用した新規医薬品

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618920A (en) * 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
JP2727112B2 (ja) * 1988-04-26 1998-03-11 コニカ株式会社 安定なペルオキシダーゼ組成物及び安定な抗体組成物
US5077216A (en) * 1988-07-06 1991-12-31 The Trustees Of Dartmouth College Monoclonal antibodies specific for a human mononculear phagocyte-specific antigen
US5223241A (en) * 1990-10-01 1993-06-29 The General Hospital Corporation Method for early detection of allograft rejection
EP0627932B1 (en) * 1992-11-04 2002-05-08 City Of Hope Antibody construct
WO1994013804A1 (en) * 1992-12-04 1994-06-23 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
CA2117477C (en) * 1992-12-11 2001-06-12 Peter S. Mezes Multivalent single chain antibodies
US5780021A (en) * 1993-03-05 1998-07-14 Georgetown University Method for treating type 1 diabetes using α-interferon and/or β-i
US5747654A (en) * 1993-06-14 1998-05-05 The United States Of America As Represented By The Department Of Health And Human Services Recombinant disulfide-stabilized polypeptide fragments having binding specificity
KR100241863B1 (ko) * 1993-09-03 2000-03-02 나가야마 오사무 아포토시스를 야기시키는 모노클론성항체
US6719972B1 (en) * 1994-06-03 2004-04-13 Repligen Corporation Methods of inhibiting T cell proliferation or IL-2 accumulation with CTLA4- specific antibodies
US5885574A (en) * 1994-07-26 1999-03-23 Amgen Inc. Antibodies which activate an erythropoietin receptor
US8771694B2 (en) * 1994-08-12 2014-07-08 Immunomedics, Inc. Immunoconjugates and humanized antibodies specific for B-cell lymphoma and leukemia cells
DE69534530T2 (de) * 1994-08-12 2006-07-06 Immunomedics, Inc. Für b-zell-lymphom und leukämiezellen spezifische immunkonjugate und humane antikörper
US6451523B1 (en) * 1994-09-14 2002-09-17 Interneuron Pharmaceuticals, Inc. Detection of a leptin receptor variant and methods for regulating obesity
ES2152514T3 (es) * 1995-02-28 2001-02-01 Procter & Gamble Preparacion de productos de bebidas no carbonatadas que tienen una estabilidad microbiana superior.
AU6113396A (en) * 1995-06-14 1997-01-15 Regents Of The University Of California, The Novel high affinity human antibodies to tumor antigens
IL125073A0 (en) * 1996-01-08 1999-01-26 Genentech Inc Wsx receptor and ligands
FR2745008A1 (fr) * 1996-02-20 1997-08-22 Ass Pour Le Dev De La Rech En Recepteur nucleaire de glucocorticoides modifie, fragments d'adn codant pour ledit recepteur et procedes dans lesquels ils sont mis en oeuvre
AU2232597A (en) * 1996-03-06 1997-09-22 Chugai Seiyaku Kabushiki Kaisha Method of screening apoptosis inducing substances
BR9709068A (pt) * 1996-05-09 2000-01-11 Pharma Pacific Pty Ltd Processo de tratamento.
EP0852951A1 (de) * 1996-11-19 1998-07-15 Roche Diagnostics GmbH Stabile lyophilisierte pharmazeutische Zubereitungen von mono- oder polyklonalen Antikörpern
US6323000B2 (en) * 1996-12-20 2001-11-27 Clark A. Briggs Variant human α7 acetylcholine receptor subunit, and methods of production and uses thereof
US6183744B1 (en) * 1997-03-24 2001-02-06 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
WO1999002567A2 (en) * 1997-07-08 1999-01-21 Board Of Regents, The University Of Texas System Compositions and methods for producing homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells
US6342220B1 (en) * 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
ATE395362T1 (de) * 1997-09-11 2008-05-15 Chugai Pharmaceutical Co Ltd Monoklonale antikörper zur apoptosis-induzierung
US7531643B2 (en) * 1997-09-11 2009-05-12 Chugai Seiyaku Kabushiki Kaisha Monoclonal antibody inducing apoptosis
US5998593A (en) * 1998-03-10 1999-12-07 Abbott Laboratories Fluorescent enzyme substrates
US7081360B2 (en) * 1998-07-28 2006-07-25 Cadus Technologies, Inc. Expression of G protein-coupled receptors with altered ligand binding and/or coupling properties
US20050220787A1 (en) * 2002-11-07 2005-10-06 Lobo Peter I Naturally occuring IgM antibodies that bind to lymphocytes
US7696325B2 (en) * 1999-03-10 2010-04-13 Chugai Seiyaku Kabushiki Kaisha Polypeptide inducing apoptosis
US7442776B2 (en) * 1999-10-08 2008-10-28 Young David S F Cancerous disease modifying antibodies
US20020028178A1 (en) * 2000-07-12 2002-03-07 Nabil Hanna Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
US20040058393A1 (en) * 2000-04-17 2004-03-25 Naoshi Fukishima Agonist antibodies
ES2644275T3 (es) * 2000-08-11 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Preparaciones estabilizadas que contienen anticuerpos
US20040242847A1 (en) * 2000-10-20 2004-12-02 Naoshi Fukushima Degraded agonist antibody
RU2408606C2 (ru) * 2000-10-20 2011-01-10 Тугаи Сейяку Кабусики Кайся Соединение - агонист тро
AU2002303431C1 (en) * 2001-04-19 2008-03-06 The Regents Of The University Of California Methods and composition for the production of orthoganal tRNA-aminoacyltRNA synthetase pairs
US7262278B2 (en) * 2001-10-15 2007-08-28 Kirin Beer Kabushiki Kaisha Anti-HLA-DR antibody
IL161418A0 (en) * 2001-10-15 2004-09-27 Immunomedics Inc Direct targeting binding proteins
AU2003211991B2 (en) * 2002-02-14 2008-08-21 Chugai Seiyaku Kabushiki Kaisha Antibody-containing solution formulations
WO2003072036A2 (en) * 2002-02-21 2003-09-04 Duke University Treatment methods using anti-cd22 antibodies
AU2003227504A1 (en) * 2002-04-15 2003-10-27 Chugai Seiyaku Kabushiki Kaisha METHOD OF CONSTRUCTING scDb LIBRARY
US20050130224A1 (en) * 2002-05-31 2005-06-16 Celestar Lexico- Sciences, Inc. Interaction predicting device
AU2003243651B2 (en) * 2002-06-17 2008-10-16 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Specificity grafting of a murine antibody onto a human framework
US7115373B2 (en) * 2002-06-27 2006-10-03 Genox Research, Inc. Method of testing for atopic dermatitis by measuring expression of the NOR-1 gene
EP1559433A4 (en) * 2002-10-22 2009-11-04 Dainippon Sumitomo Pharma Co STABILIZED COMPOSITION
JP2004279086A (ja) * 2003-03-13 2004-10-07 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
US20070003556A1 (en) * 2003-03-31 2007-01-04 Masayuki Tsuchiya Modified antibodies against cd22 and utilization thereof
AU2004287722A1 (en) * 2003-11-11 2005-05-19 Chugai Seiyaku Kabushiki Kaisha Humanized anti-CD47 antibody
TW200530266A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Method of reinforcing antibody activity
WO2005056605A1 (ja) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha 3量体以上の受容体を認識する改変抗体
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
US20070281327A1 (en) * 2003-12-12 2007-12-06 Kiyotaka Nakano Methods of Screening for Modified Antibodies With Agonistic Activities
KR20070010046A (ko) * 2004-04-06 2007-01-19 제넨테크, 인크. Dr5 항체 및 그의 용도
EP1870458B1 (en) * 2005-03-31 2018-05-09 Chugai Seiyaku Kabushiki Kaisha sc(Fv)2 STRUCTURAL ISOMERS
KR101367544B1 (ko) * 2005-06-10 2014-02-26 추가이 세이야쿠 가부시키가이샤 메글루민을 함유하는 단백질 제제의 안정화제, 및 그의이용
EP1900814A4 (en) * 2005-06-10 2010-07-21 Chugai Pharmaceutical Co Ltd SCREED SC (FV) 2-MUTANTE
HUE029919T2 (en) * 2006-02-02 2017-04-28 Massachusetts Gen Hospital Genetically modified antibody stress protein fusions
US20100092457A1 (en) * 2006-08-14 2010-04-15 Forerunner Pharma Research Co., Ltd. Diagnosis and Treatment of Cancer Using Anti-Desmoglein-3 Antibodies
CL2008000719A1 (es) * 2007-03-12 2008-09-05 Univ Tokushima Chugai Seiyaku Agente terapeutico para cancer resistente a agentes quimioterapeuticos que comprende un anticuerpo que reconoce hla de clase i como ingrediente activo; composicion farmaceutica que comprende dicho anticuerpo; y metodo para tratar cancer resistente a
CN101896163A (zh) * 2007-12-21 2010-11-24 弗·哈夫曼-拉罗切有限公司 抗体制剂

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
EP0058481A1 (en) 1981-02-16 1982-08-25 Zeneca Limited Continuous release pharmaceutical compositions
US5156840A (en) 1982-03-09 1992-10-20 Cytogen Corporation Amine-containing porphyrin derivatives
JPH0159878B2 (ja) 1982-05-21 1989-12-20 Yunibaashitei Obu Karifuorunia
EP0133988A2 (de) 1983-08-02 1985-03-13 Hoechst Aktiengesellschaft Regulatorische Peptide enthaltende pharmazeutische Präparate mit protrahierter Freisetzung und Verfahren zu deren Herstellung
US5057313A (en) 1986-02-25 1991-10-15 The Center For Molecular Medicine And Immunology Diagnostic and therapeutic antibody conjugates
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1992001047A1 (en) 1990-07-10 1992-01-23 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992020791A1 (en) 1990-07-10 1992-11-26 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1992003918A1 (en) 1990-08-29 1992-03-19 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993006213A1 (en) 1991-09-23 1993-04-01 Medical Research Council Production of chimeric antibodies - a combinatorial approach
WO1993011161A1 (en) 1991-11-25 1993-06-10 Enzon, Inc. Multivalent antigen-binding proteins
WO1993011236A1 (en) 1991-12-02 1993-06-10 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
WO1993012227A1 (en) 1991-12-17 1993-06-24 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1993019172A1 (en) 1992-03-24 1993-09-30 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
WO1994002602A1 (en) 1992-07-24 1994-02-03 Cell Genesys, Inc. Generation of xenogeneic antibodies
WO1994025585A1 (en) 1993-04-26 1994-11-10 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1995001438A1 (en) 1993-06-30 1995-01-12 Medical Research Council Sbp members with a chemical moiety covalently bound within the binding site; production and selection thereof
WO1995015388A1 (en) 1993-12-03 1995-06-08 Medical Research Council Recombinant binding proteins and peptides
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
WO1996033735A1 (en) 1995-04-27 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1998046777A1 (fr) 1997-04-11 1998-10-22 Centre National De La Recherche Scientifique (Cnrs) Preparation de recepteurs membranaires a partir de baculovirus extracellulaires
WO2004033499A1 (ja) 2002-10-11 2004-04-22 Chugai Seiyaku Kabushiki Kaisha 細胞死誘導剤
WO2005056603A1 (ja) 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha 細胞死誘導剤
WO2005100560A1 (ja) 2004-04-09 2005-10-27 Chugai Seiyaku Kabushiki Kaisha 細胞死誘導剤
WO2006123724A1 (ja) 2005-05-18 2006-11-23 The University Of Tokushima 抗hla抗体を利用した新規医薬品

Non-Patent Citations (64)

* Cited by examiner, † Cited by third party
Title
"Antibodies A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
"Remington's Pharmaceutical Science", 1980
"Strategies for Protein Purification and Characterization: A Laboratory Course Manual", 1996, COLD SPRING HARBOR LABORATORY PRESS
ATWELL, MOL. IMMUNOL., vol. 33, 1996, pages 1301 - 1312
BETTER ET AL., SCIENCE, vol. 240, 1988, pages 1041 - 1043
BETTER, M.; HORWITZ, A. H., METHODS ENZYMOL., vol. 178, 1989, pages 476 - 496
BIRD, R. E.; WALKER, B. W., TRENDS BIOTECHNOL., vol. 9, 1991, pages 132 - 137
CARL, A. K. BORREBAECK; JAMES, W. LARRICK: "THERAPEUTIC MONOCLONAL ANTIBODIES", 1990, MACMILLAN PUBLISHERS LTD
CO, M. S. ET AL., J. IMMUNOL., vol. 152, 1994, pages 2968 - 2976
DALBADIE-MCFARLAND, G. ET AL., PROC. NATL. ACAD. SCI., vol. 79, 1982, pages 6409 - 6413
EBERT, K.M. ET AL., BIO/TECHNOLOGY, vol. 12, 1994, pages 699 - 702
FASEB J., vol. 6, 1992, pages 2422 - 2427
FAYEN ET AL., INT. IMMUNOL., vol. 10, 1998, pages 1347 - 1358
GENESTIER ET AL., BLOOD, vol. 90, 1997, pages 3629 - 3639
GENESTIER ET AL., BLOOD, vol. 90, 1997, pages 726 - 735
GENESTIER ET AL., J. BIOL. CHEM., vol. 273, 1998, pages 5060 - 5066
GENESTIER L. ET AL.: "Fas-independent apoptosis of activated T cells induced by antibodies to the HLA class I alpha1 domain", BLOOD, vol. 90, no. 9, 1997, pages 3629 - 3639, XP002964772 *
GOTO ET AL., BLOOD, vol. 84, 1994, pages 1922 - 30
HASHIMOTO-GOTOH, T. ET AL., GENE, vol. 152, 1995, pages 271 - 275
HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA., vol. 90, 1993, pages 6444 - 6448
HOLLIGER ET AL., PROTEIN ENGINEERING, vol. 9, 1996, pages 299 - 305
HOPP, T.P. ET AL., BIOTECHNOLOGY, vol. 6, 1988, pages 1204 - 1210
HUSTON, J. S. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 5879 - 5883
J. EXP. MED., vol. 108, 1995, pages 945
JOHN ET AL., PROTEIN ENGINEERING, vol. 12, no. 7, 1999, pages 597 - 604
JOHNSON ET AL., METHOD IN ENZYMOLOGY, vol. 203, 1991, pages 88 - 98
JULIAN K.-C. MA ET AL., EUR. J. IMMUNOL., vol. 24, 1994, pages 131 - 138
KIMURA ET AL., BIOCHEM BIOPHYS RES COMMUN., vol. 325, 2004, pages 1201 - 1209
KIMURA N. ET AL.: "2D7 antibody bound to the alpha2 domain of HLA class I efficiently induces caspase-independent cell death against malignant and activated lymphoid cells", BIOCHEM. BIOPHYS. RES., vol. 325, no. 4, 2004, pages 1201 - 1209, XP004649732 *
KOHLER, G; MILSTEIN, C., METHODS ENZYMOL., vol. 73, 1981, pages 3 - 46
KRAMER W; FRITZ HJ, METHODS. ENZYMOL., vol. 154, 1987, pages 350 - 367
KRAMER, W. ET AL., NUCLEIC ACIDS RES., vol. 12, 1984, pages 9441 - 9456
KUNKEL, METHODS ENZYMOL., vol. 85, 1988, pages 2763 - 2766
KUNKEL, TA, PROC NATL. ACAD. SCI. USA., vol. 82, 1985, pages 488 - 492
LAMOYI, E., METHODS ENZYMOL., vol. 121, 1986, pages 652 - 663
LANGER ET AL., J. BIOMED. MATER. RES., vol. 15, 1981, pages 167 - 277
LANGER, CHEM. TECH., vol. 12, 1982, pages 98 - 105
LEI, S. P. ET AL., J. BACTERIOL., vol. 169, 1987, pages 4379
MARK, D. F. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 5662 - 5666
MATSUOKA, J. EXP. MED., vol. 181, 1995, pages 2007 - 2015
MIZUSHIMA ET AL., NUCLEIC ACIDS RES., vol. 18, 1990, pages 5322
MULLIGAN ET AL., NATURE, vol. 277, 1979, pages 108
NUCLEIC ACIDS RES., vol. 18, no. 17, 1990, pages 5322
OKA, T., SANKYO SEIMEI-KAGAKU-ZAIDAN KENKYU HOKOKU-SHU, vol. 12, 1998, pages 46 - 56
P. HOLLIGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
PERISIC ET AL., STRUCTURE, vol. 2, 1994, pages 1217 - 1226
PLICKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER VERLAG, pages: 269 - 315
PLUCKTHUN, A.; SKERRA, A., METHODS ENZYMOL., vol. 178, 1989, pages 497 - 515
PROC. NATL. ACAD. SCI. USA, vol. 60, 1968, pages 1275
PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216 - 4220
ROUSSEAUX, J. ET AL., METHODS ENZYMOL., vol. 121, 1986, pages 663 - 669
SAMBROOK, J. ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LAB. PRESS, pages: 9.47 - 9.58
SATO, K. ET AL., CANCER RES., vol. 53, 1993, pages 851 - 856
See also references of EP2048230A4
SIDMAN ET AL., BIOPOLYMERS, vol. 22, 1983, pages 547 - 556
SUSUMU, M. ET AL., NATURE, vol. 315, 1985, pages 592 - 594
VALLE ET AL., NATURE, vol. 291, 1981, pages 358 - 340
VICKI GLASER, SPECTRUM BIOTECHNOLOGY APPLICATIONS, 1993
WANG, A. ET AL., SCIENCE, vol. 224, pages 1431 - 1433
WARD ET AL., NATURE, vol. 341, 1989, pages 544 - 546
WILBUR, W. J.; LIPMAN, D. J., PROC. NATL. ACAD. SCI. USA, vol. 80, 1983, pages 726 - 730
WOODLE ET AL., J. IMMUNOL., vol. 158, 1997, pages 2156 - 2164
ZOLLER, M. J.; SMITH, M., NUCLEIC ACIDS RESEARCH, vol. 10, 1982, pages 6487 - 6500
ZOLLER, MJ; SMITH, M., METHODS ENZYMOL., vol. 100, 1983, pages 468 - 500

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158385B2 (en) 2002-10-11 2012-04-17 Chugai Seiyaku Kabushiki Kaisha Cell death-inducing agent
US9493569B2 (en) 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
US8945543B2 (en) 2005-06-10 2015-02-03 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
US9241994B2 (en) 2005-06-10 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
US9777066B2 (en) 2005-06-10 2017-10-03 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical compositions containing sc(Fv)2
WO2008111597A1 (ja) * 2007-03-12 2008-09-18 Chugai Seiyaku Kabushiki Kaisha Hlaクラスiを認識する抗体を有効成分として含有する化学療法剤耐性癌治療剤、およびその利用
WO2011037160A1 (ja) 2009-09-24 2011-03-31 中外製薬株式会社 Hlaクラスiを認識する抗体
JP5785084B2 (ja) * 2009-09-24 2015-09-24 中外製薬株式会社 Hlaクラスiを認識する抗体

Also Published As

Publication number Publication date
IL196134A0 (en) 2011-08-01
MX2009000487A (es) 2009-01-27
JPWO2008007755A1 (ja) 2009-12-10
CN101517075A (zh) 2009-08-26
US20100150927A1 (en) 2010-06-17
AU2007273507A1 (en) 2008-01-17
TW200808351A (en) 2008-02-16
EP2048230A4 (en) 2010-01-20
CA2657385A1 (en) 2008-01-17
CL2007002057A1 (es) 2008-01-11
KR20090038896A (ko) 2009-04-21
PE20081004A1 (es) 2008-09-18
BRPI0714209A2 (pt) 2014-06-24
AR061986A1 (es) 2008-08-10
EP2048230A1 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
WO2008007755A1 (fr) inducteur de mort cellulaire
US11466082B2 (en) Anti-CD33 antibodies, anti-CD33/anti-CD3 bispecific antibodies and uses thereof
AU2010299895B2 (en) Anti-CD33 antibodies and use thereof for immunotargeting in treating CD33-associated illnesses
KR101413402B1 (ko) 항 글리피칸 3 항체
JP2010155841A (ja) 細胞死誘導剤
EP1609803A1 (en) Modified antibody against cd22 and utilization thereof
JP4767016B2 (ja) 細胞死誘導剤
TW201605473A (zh) 用於治療骨髓性白血病的表觀遺傳因子與靶向cd33及cd3之雙特異性化合物的組合
SG194076A1 (en) Method for altering plasma retention and immunogenicity of antigen-binding molecule
JP4799405B2 (ja) 細胞死誘導剤
KR20090119992A (ko) Hla 클래스 i을 인식하는 항체를 유효성분으로서 함유하는 화학요법제 내성 암 치료제, 및 그의 이용
JP5785084B2 (ja) Hlaクラスiを認識する抗体
WO2017022668A1 (ja) 抗Eva1タンパク質抗体
CN117024592B (zh) 抗b7h3抗体及其用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034103.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008524847

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007273507

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 196134

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 128/DELNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2657385

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/000487

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007273507

Country of ref document: AU

Date of ref document: 20070713

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007790727

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097002700

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 12307042

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0714209

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090113