WO2008001011A2 - Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication - Google Patents

Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication Download PDF

Info

Publication number
WO2008001011A2
WO2008001011A2 PCT/FR2007/051537 FR2007051537W WO2008001011A2 WO 2008001011 A2 WO2008001011 A2 WO 2008001011A2 FR 2007051537 W FR2007051537 W FR 2007051537W WO 2008001011 A2 WO2008001011 A2 WO 2008001011A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layers
article according
sio
article
Prior art date
Application number
PCT/FR2007/051537
Other languages
English (en)
Other versions
WO2008001011A3 (fr
Inventor
Olivier Beinat
Jean-Louis Sirjean
Michèle THOMAS
Original Assignee
Essilor International (Compagnie Generale D'optique)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International (Compagnie Generale D'optique) filed Critical Essilor International (Compagnie Generale D'optique)
Priority to KR1020087031620A priority Critical patent/KR101389372B1/ko
Priority to US12/306,228 priority patent/US9625620B2/en
Priority to BRPI0713984A priority patent/BRPI0713984B1/pt
Priority to CA2656492A priority patent/CA2656492C/fr
Priority to JP2009517351A priority patent/JP5424875B2/ja
Priority to AU2007264771A priority patent/AU2007264771B2/en
Priority to ES07803952.6T priority patent/ES2553886T3/es
Priority to EP07803952.6A priority patent/EP2033021B1/fr
Publication of WO2008001011A2 publication Critical patent/WO2008001011A2/fr
Publication of WO2008001011A3 publication Critical patent/WO2008001011A3/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers

Definitions

  • the present invention generally relates to an optical article comprising a substrate coated with a multilayer anti-glare coating, having increased temperature resistance and good abrasion resistance, in particular an ophthalmic lens for spectacles, and a method of manufacturing such an article.
  • an ophthalmic lens In the field of ophthalmic optics, it is conventional to coat an ophthalmic lens with various coatings in order to confer on this lens various mechanical and / or optical properties.
  • ophthalmic lenses are formed successively with coatings such as anti-shock, anti-abrasion and / or anti-reflection coatings.
  • An anti-reflection coating is defined as a coating, deposited on the surface of an optical article, which improves the anti-reflective properties of the final optical article. It reduces the reflection of light at the article-air interface over a relatively large portion of the visible spectrum.
  • Anti-reflection coatings are well known and typically comprise a monolayer or multilayer stack of dielectric materials such as SiO, SiO 2 , Al 2 O 3 , MgF 2 , LiF, Si 3 N 4 , TiO 2 , ZrO 2 , Nb 2 O 5 , Y 2 O 3 , HfO 2 , Sc 2 O 3 , Ta 2 O 5 , Pr 2 O 3 , or mixtures thereof.
  • dielectric materials such as SiO, SiO 2 , Al 2 O 3 , MgF 2 , LiF, Si 3 N 4 , TiO 2 , ZrO 2 , Nb 2 O 5 , Y 2 O 3 , HfO 2 , Sc 2 O 3 , Ta 2 O 5 , Pr 2 O 3 , or mixtures thereof.
  • antireflection coatings are preferably multilayer coatings alternately comprising high refractive index layers and low refractive index layers.
  • conventional antireflection coatings have good resistance to temperature up to temperatures of the order of 70 ° C.
  • the temperature exceeds this value, cracks may appear in the stack anti-reflections, especially on the surface of the substrate of the article, which reflects a degradation of the anti-reflective coating.
  • the critical temperature of an article or a coating is defined as that from which the appearance of cracks is observed.
  • the deposits of the possible sub-layer and the anti-reflection coating must be carried out by processes operating at moderate temperatures in order to avoid the degradation of the substrate, a precaution which is unnecessary in the case of mineral glass substrates.
  • the durability of the antireflection coating is poorer, in particular the adhesion of this coating to the substrate is poorer, and the properties of thermal resistance are poorer.
  • organic glass substrates have a higher thermal expansion coefficient than inorganic glass substrates, or the inorganic materials constitute the underlays or layers of an anti-reflection coating, they lead to articles that can develop high stresses, causing the appearance of cracks.
  • Some patents describe the replacement, in one or more layers of low refractive index of an antireflection stack, of silica, the most conventional material, with other materials such as silica doped with alumina. , in order to obtain better properties.
  • the patent application US 2005/0219724 discloses an optical article coated with a multilayer dielectric film such as an anti-reflection coating, composed of alternating layers of high refractive index (TiO 2 ) and layers of low refractive index. All low index layers are based on SiO 2 added with a small amount of Al 2 ⁇ 3 so that their refractive index (denoted n) is 1, 47.
  • a multilayer dielectric film such as an anti-reflection coating, composed of alternating layers of high refractive index (TiO 2 ) and layers of low refractive index. All low index layers are based on SiO 2 added with a small amount of Al 2 ⁇ 3 so that their refractive index (denoted n) is 1, 47.
  • Use of a SiO 2 / Al 2 O3 mixture reduces the stresses in the low-index layers, and thereby the probability of occurrence of cracks on the substrate surface.
  • the patent application WO 2005/059603 in the name of the applicant, describes an article comprising a colored multilayer antireflection coating comprising at least two layers of high refractive index which is absorbent in the visible and is based on TiO 2 sub-stoichiometric titanium oxide.
  • Such a layer B1 improves the life of the coating and the homogeneity of the coloring.
  • the relative transmission factor in the visible (Tv) of the article is at most 40% and optimally of the order of 15%.
  • This document describes more particularly a substrate coated successively with a silica underlayer of 100-1 10 nm thick (having an anti-scratch role), with a layer of TiO x , with a layer of SiO 2 / AI 2 ⁇ 3, a TiO x layer, an SiO 2 / Al 2 O 3 layer, a TiO x layer, a SiO 2 / Al 2 O 3 layer and a coating antifouling.
  • a thermally resistant article is not envisaged.
  • the layer of low refractive index farthest from the substrate is always a layer of SiO 2 of high thickness (0.25 ⁇ ).
  • the sub-layer makes it possible to improve the critical temperature of appearance of cracks on the surface of the substrate, which is of the order of 100-105 ° C. at the initial stage.
  • the critical temperature of appearance of cracks on the surface of the substrate is of the order of 95-120 ° C. in the initial stage thanks to this sub-layer essentially comprising a layer of SiO 2 / AI 2 ⁇ 3. Moreover, not all the layers of low refractive index of the antireflection stack are based on SiO 2 / Al 2 O 3
  • the present invention therefore aims to provide a transparent optical article, in particular an ophthalmic lens, comprising a mineral or organic glass substrate, an underlayer and an antireflection stack which overcomes the drawbacks of the prior art. retaining excellent transparency properties, absence of optical defects, and ability to withstand temperature changes.
  • optical articles according to the invention also have excellent resistance to photo-degradation under light radiation, in particular UV. They also have good resistance to treatment by soaking in hot water followed by a mechanical surface stress. Another object of the invention is to obtain an optical article having antistatic properties and good resistance to abrasion.
  • the present invention also aims a method of manufacturing an article as defined above which easily integrates into the conventional manufacturing process and avoids heating the substrate.
  • the present invention has been designed to solve the problem of temperature resistance of anti-reflection coatings. It is based on a double selection on the one hand on the nature of the underlayer and on the other hand on the low refractive index layers of the antireflection stack, and makes it possible to obtain an article of optical anti-reflective properties having both increased thermal resistance and abrasion resistance. It is also based on a choice of the positioning of the different layers.
  • an optical article with anti-reflection properties comprising a substrate and, starting from the substrate: an underlayer comprising a layer based on SiO 2 , said layer based on SiO 2 2 having a thickness greater than or equal to 75 nm and being free of Al 2 ⁇ 3; and a multilayer anti-glare coating comprising a stack of at least one layer of high refractive index and at least one layer of low refractive index, all of whose layers of low refractive index comprise a mixture of SiO 2 and AI 2 ⁇ 3 and whose high refractive index layers are not visible absorbing layers comprising an under-stoichiometric titanium oxide and reducing the transmittance in the visible ( ⁇ v, hereinafter referred to as Tv) , also called visible relative transmission factor, of the optical article of at least 10% with respect to the same article not comprising said absorbent layers in the visible.
  • Tv visible relative transmission factor
  • the Tv factor meets a standardized international definition (ISO 13666: 1998) and is measured in accordance with ISO 8980-3. It is defined in the wavelength range from 380 to 780 nm.
  • the high refractive index layers may contain a substoichiometric titanium oxide, of the formula TiO x , with x ⁇ 2, provided that they do not reduce the relative transmission factor in the visible (Tv) of the article. optical of the invention of at least 10% with respect to the same article not comprising said absorbent layers in the visible. It should be noted that titanium oxide, generally represented by the formula TiO 2 , is actually slightly substoichiometric.
  • the optical article of the invention does not absorb in the visible or absorbs little in the visible, which means, within the meaning of the present application, that its relative factor Visible transmittance (Tv) is greater than 90%, more preferably greater than 95%, more preferably greater than 96% and optimally greater than 97%.
  • Tv Visible transmittance
  • the high refractive index layers of the antireflection coating do not absorb in the visible; the high refractive index layers of the antireflection coating do not comprise substoichiometric titanium oxide of formula TiO x such that x ⁇ 1.5, preferably x ⁇ 1.7, and better x ⁇ 1.9.
  • the light absorption of the coated article according to the invention is less than or equal to 1%.
  • the average reflection factor in the visible range (400-700 nm) of a coated article according to the invention is less than 2.5% per side, better still less than 2% per side and even better below 1% per face of the article.
  • the article has a value of R m total (cumulative reflection due to both sides) less than 1%, preferably between 0.7 and 0.8%.
  • the "average reflection factor” is as defined in ISO 13666: 1998, and measured in accordance with ISO 8980-4, that is, it is the average of the spectral reflection over the entire visible spectrum between 400 and 700 nm.
  • the optical article comprises a substrate, preferably transparent, of organic or inorganic glass, having main front and rear faces, at least one of said main faces having an undercoat coated with a multilayer anti-reflective coating.
  • an A ⁇ Os-free SiO 2 -based sublayer is used in combination with SiO 2 / Al 2 O 3 low refractive index layers.
  • the present inventors have found that it is undesirable to use an SiO 2 / Al 2 O 3 sub-layer, as taught in Japanese Patent Nos. H05-011101 and H05-034502, in combination with the anti-stack. -reflets of the present invention. Without wishing to be bound by any theory, it may be thought that such an underlayer induces excessive compressive stresses, these stresses possibly leading to delamination and a decrease in abrasion resistance of the article.
  • underlayer, or adhesion layer is meant a coating which is deposited on the substrate (bare or coated) before depositing the antireflection stack.
  • the underlayer must be of sufficient thickness to promote the abrasion resistance of the antireflection coating, but preferably not so great as not to cause light absorption which would significantly reduce the relative transmission factor Tv.
  • the underlayer does not participate in the anti-reflective optical activity. It is not part of the antireflection stack and has no significant optical effect.
  • the underlayer comprises an Al 2 O 3 -free SiO 2 layer with a thickness greater than or equal to 75 nm, preferably greater than or equal to 80 nm, better still greater than or equal to 100 nm and even better still greater than or equal to 120 nm. nm. Its thickness is generally less than 250 nm, better still less than 200 nm.
  • the underlayer may be laminated, that is to say comprise other layers than the SiO 2 based layer of greater than or equal to 75 nm and free of Al 2 O 3.
  • the sub-layer preferably comprises a SiO 2 layer with a thickness greater than or equal to 75 nm and free of Al 2 O 3 and at most three layers, preferably at most two layers, interposed between the substrate, optionally coated, and this layer. SiO 2 free of AI 2 ⁇ 3.
  • the substrate has a high refractive index (greater than or equal to 1.55, preferably greater than or equal to 1.57) and the underlayer is deposited directly on the substrate or the substrate is coated with an anti-abrasion coating of high refractive index (greater than or equal to 1.55, preferably greater than or equal to 1.57), preferably based on epoxysilanes, and that the underlayer is deposited directly on the abrasion-resistant coating
  • the sublayer preferably comprises, besides the above-mentioned SiO 2 layer, a layer of high refractive index and of small thickness, less than or equal to 80 nm, better than or equal to 50 nm and better still less than or equal to 30 nm.
  • This high refractive index layer is directly in contact with the high index substrate or the high index abrasion resistant coating.
  • the underlayer comprises, in addition to the abovementioned SiO 2 layer and the above-mentioned high refractive index layer, a layer of SiO 2 -based refractive index material, free of AI 2 ⁇ 3 or not. on which is deposited the high refractive index layer.
  • the sub-layer comprises, deposited in this order from the substrate, a 25 nm layer of SiO 2 , a 10 nm layer of ZrO 2 , a 160 nm layer of SiO 2 .
  • Said layer based on SiO 2 with a thickness greater than or equal to 75 nm may comprise, in addition to silica, one or more other materials conventionally used for the manufacture of underlays, for example one or more materials chosen from the materials dielectrics described above in the present description, with the exception of alumina.
  • the underlayer of the present invention preferably comprises at least
  • said layer comprises 100% by weight of silica.
  • a layer of an antireflection stack is said layer of high refractive index when its refractive index is greater or equal to 1, 6, preferably greater than or equal to 1.7, better still greater than or equal to 1.8, and more preferably greater than or equal to 1.9.
  • a layer of an antireflection stack is called a low refractive index layer when its refractive index is less than or equal to 1.54, preferably less than or equal to 1.52, better still less than or equal to 1.50.
  • the refractive indexes referred to in the present invention are expressed at 25 ° C. for a wavelength of 550 nm.
  • the layers B1 of the anti-reflection coating all comprise a mixture of SiO 2 and Al 2 O 3.
  • SiO 2 / Al 2 O 3 layers may comprise, in addition to silica and alumina, one or more other materials conventionally used for the manufacture of an antireflection layer, for example one or more materials chosen from the dielectric materials described previously in the present description.
  • the layers B1 of the anti-reflection coating consist of a mixture of SiO 2 and Al 2 O 3. They preferably comprise 1 to 10%, preferably from 1 to 5% by weight of Al 2 ⁇ 3 with respect to the total mass of SiO 2 + Al 2 ⁇ 3 in these layers. Too high a proportion of alumina is unfavorable to the performance of the anti-reflection coating.
  • the low refractive index (B1) layers based on a mixture of silicon oxide and aluminum oxide have essentially two effects with respect to silicon oxide-based layers B1. On the one hand, they make it possible to improve the life of the antireflection coating, its resistance to external damage, in particular to UV, and, on the other hand, they make it possible to increase the temperature of appearance of the cracks. thin film, in other words, the critical temperature of the coating.
  • the critical temperature of a coated article according to the invention is preferably greater than or equal to 80 ° C., better still greater than or equal to 85 ° C. and more preferably greater than or equal to 90 ° C.
  • the H1 layers are conventional high refractive index layers, well known in the art. They generally comprise one or more mineral oxides such as, without limitation, zirconia (ZrO 2 ), titanium oxide (TiO 2 ), tantalum pentoxide (Ta 2 ⁇ 5 ), neodymium oxide (Nd 2 O 5 ), praseodymium oxide
  • the high-index layers may also contain silica or alumina, provided that their refractive index is greater than or equal to 1, 6, preferably greater than or equal to 1.7, better still greater than or equal to 1, 8.
  • Preferred materials are TiO 2 , PrTiO 3 , ZrO 2 and mixtures thereof.
  • At least one layer H1 of the antireflection stack is a layer based on TiO 2 , whose high refractive index is particularly interesting. It is preferably deposited under ionic assistance (IAD), which increases the compression of this layer and thereby its refractive index.
  • IAD ionic assistance
  • At least one layer H1 of the antireflection stack is a layer based on PrTiO 3 , the high thermal resistance is particularly interesting.
  • the layers H1 have a physical thickness varying from 10 to 120 nm
  • the layers B1 have a physical thickness varying from 10 to 100 nm.
  • the total physical thickness of the antireflection coating is less than 1 micrometer, better still less than or equal to 500 nm and better still less than or equal to 250 nm.
  • the total physical thickness of the antireflection coating is generally greater than 100 nm, preferably greater than 150 nm.
  • the thicknesses mentioned in the present application are physical thicknesses, unless otherwise indicated.
  • the multilayer anti-reflection coating is directly in contact with the underlayer.
  • the multilayer antireflection coating is formed of a stack comprising at least two layers of low refractive index (B1) and at least two layers of high refractive index (H1).
  • the total number of layers of the antireflection coating is less than or equal to 6. It is not necessary for the layers H1 and B1 to be alternated in the stack, although they may be alternated according to a method of embodiment of the invention. Two or more layers H1 may be deposited one on top of the other, just as two or more layers B1 (or more) can be deposited one on top of the other. Thus, it is interesting in terms of abrasion resistance to stack on top of one another, for example a layer H1 of Z1O2 and a TiO2 layer H1 rather than using a TiO2 layer in place of these two adjacent layers H1.
  • the SiO 2 layer of the underlayer is adjacent to a high refractive index layer (H1) of the anti-glare stack.
  • H1 high refractive index layer
  • the first layer B1 comprising a mixture of silicon oxide and aluminum oxide in the stacking order is deposited on a layer H1 and coated with another layer H1 of identical or different chemical nature. .
  • the outer layer of the multilayer antireflection coating is a layer comprising a mixture of silicon oxide and aluminum oxide.
  • optical articles tend to charge in static electricity, especially when they are cleaned in dry conditions by rubbing their surface with a cloth, a piece of synthetic foam or polyester . They are then able to attract and fix small particles nearby such as dust, during the entire time the load remains on the article. It is well known in the state of the art that an article can acquire antistatic properties thanks to the presence on its surface of an electrically conductive layer. This technique has been applied in international application WO 01/55752 and patent EP 0834092. This layer allows rapid dissipation of the charge.
  • antistatic is meant the property of not retaining and / or developing an appreciable electrostatic charge.
  • An article is generally considered to have acceptable antistatic properties, when it does not attract and fix dust and small particles after one of its surfaces has been rubbed with a suitable cloth.
  • One of these techniques consists in taking into account the static potential of the material.
  • the static potential of the material measured while the article has not been loaded
  • the material is antistatic, but when its static potential is different from 0 KV +/- 0.1 KV (in absolute value), the material is said to be static.
  • the ability of a glass to evacuate a static charge obtained after friction by a fabric or by any other method of generating an electrostatic charge can be quantified by a measurement of dissipation time of said charge.
  • the antistatic glasses have a discharge time of the order of one hundred milliseconds, while it is of the order of several tens of seconds for a static glass.
  • the article of the invention can be made antistatic by incorporating at least one electrically conductive layer into the antireflection stack.
  • the electrically conductive layer may be located at different locations of the anti-reflective coating, provided that its anti-reflective properties are not disturbed. It may for example be deposited on the underlayer of the invention and constitute the first layer of the anti-reflection coating. It is preferably located under a low refractive index layer.
  • the electrically conductive layer must be sufficiently thin so as not to alter the transparency of the anti-reflection coating. Generally, its thickness varies from 0.1 to 150 nm, better from 0.1 to 50 nm, depending on its nature. A thickness of less than 0.1 nm generally does not provide sufficient electrical conductivity, whereas a thickness greater than 150 nm generally does not provide the required transparency and low absorption characteristics.
  • the electrically conductive layer is preferably made from an electrically conductive and highly transparent material.
  • its thickness preferably varies from 0.1 to 30 nm, better from 1 to 20 nm and even better from
  • the electrically conductive and optically transparent layer is a layer of tin-indium oxide, denoted ITO layer.
  • the electrically conductive layer contributes to obtaining anti-reflective properties and constitutes a high refractive index layer in the anti-reflection coating. This is the case of layers made from an electrically conductive and highly transparent material such as ITO layers.
  • the electrically conductive layer may also be a layer of a noble metal of very small thickness, typically less than 1 nm thick, better than less than 0.5 nm.
  • the antireflection stack comprises five dielectric layers and optionally an electrically conductive layer which gives antistatic properties to the article.
  • an SiO 2 sub-layer having a thickness greater than or equal to 75 nm, a ZrO 2 layer, generally 10 to 40 nm thick is successively deposited from the surface of the substrate and preferably from 15 to 35 nm, a layer of SiO 2 / Al 2 O 3, generally 10 to 40 nm thick and preferably 15 to 35 nm, a TiO 2 layer, generally 40 to 150 nm thick and preferably from 50 to 120 nm, a ZrO 2 layer, generally 10 to 30 nm thick and preferably 10 to 25 nm, optionally an electrically conductive layer, preferably an ITO layer, generally of 0.1 to 30 nm thick and preferably 1 to 20 nm, and a Si ⁇ 2 / Al 2 ⁇ 3 layer, generally 40 to 150 nm thick and preferably 50 to 100 nm.
  • the antireflection stack of the invention comprises an electrically conductive layer. More preferably, the article of the invention comprises a TiO
  • the three successive layers TiO 2 / ZrO 2 / electrically conductive layer are preferably deposited under ionic assistance (IAD).
  • Such an article has a very good resistance to abrasion, measured by the BAYER test.
  • the underlayer and the anti-reflection coating of the optical article according to the invention may be deposited on any substrate, preferably transparent, made of organic or inorganic glass, and preferably on glass substrates.
  • organic for example a thermoplastic or thermosetting plastic material.
  • thermoplastic materials that are suitable for substrates, mention may be made of (meth) acrylic (co) polymers, in particular poly (methyl methacrylate) (PMMA), thio (meth) acrylic (co) polymers, polyvinyl butyral (PVB) ), polycarbonates (PC), polyurethanes (PU), poly (thiourethanes), polyol allyl carbonates (co) polymers, ethylene / vinyl acetate thermoplastic copolymers, polyesters such as poly (terephthalate), ethylene) (PET) or poly (butylene terephthalate) (PBT), polyepisulfides, polyepoxides, polycarbonate / polyester copolymers, copolymers of cycloolefins such as ethylene / norbornene or ethylene / cyclopentadiene copolymers and combinations thereof.
  • PMMA poly (methyl methacrylate)
  • PVB polyvinyl butyral
  • PC polycarbonates
  • (co) polymer is meant a copolymer or a polymer.
  • (meth) acrylate is meant an acrylate or a methacrylate.
  • substrates obtained by polymerization of alkyl methacrylates in particular (C 1 -C 4 ) alkyl (meth) acrylates, such as (meth) acrylate. of methyl and ethyl (meth) acrylate, polyethoxylated aromatic (meth) acrylates such as polyethoxylated bisphenol di (meth) acrylates, allyl derivatives such as linear or branched aliphatic or aromatic polyol allyl carbonates, thio (meth) acrylates, episulfides and polythiol / polyisocyanate precursor mixtures (for obtaining polythiourethanes).
  • alkyl methacrylates in particular (C 1 -C 4 ) alkyl (meth) acrylates, such as (meth) acrylate. of methyl and ethyl (meth) acrylate, polyethoxylated aromatic (meth) acrylates such as polyethoxylated bisphenol di (meth)
  • polycarbonate is intended to mean homopolycarbonates as well as copolycarbonates and copolycarbonates that are sequenced.
  • the polycarbonates are commercially available, for example from the companies GENERAL ELECTRIC COMPANY under the trademark LEXAN ® , TEIJIN under the trademark PANLITE ® , BAYER under the brand BAYBLEND ® , MOBAY CHEMICHAL Corp. under the trademark MAKROLON ® and DOW CHEMICAL Co. under the trade name CALIBER ® .
  • Examples of (co) polymers of polyol allyl carbonates include (co) polymers of ethylene glycol bis (allyl carbonate), diethylene glycol bis 2-methyl carbonate, diethylene glycol bis (allyl carbonate), ethylene glycol bis (2-chloro allyl carbonate), triethylene glycol bis (allyl carbonate), 1,3-propanediol bis (allyl carbonate), propylene glycol bis (2-ethyl allyl carbonate), 1,3-butenediol bis (allyl carbonate) ), 1,4-butenediol bis (2-bromo allyl carbonate), dipropylene glycol bis
  • Particularly recommended substrates are substrates obtained by (co) polymerizing the bis allyl carbonate of diethylene glycol, sold, e.g., under the trade name CR 39 ® from PPG Industries (ORMA ® lenses ESSILOR).
  • the substrates that are also particularly recommended, mention may be made of the substrates obtained by polymerization of the thio (meth) acrylic monomers, such as those described in the French patent application FR 2734827.
  • the substrates may be obtained by polymerization of mixtures of the above monomers, or may further comprise mixtures of these polymers and (co) polymers.
  • Preferred organic substrates in the context of the invention are those having a coefficient of thermal expansion of 50 ⁇ 10 -6 0 C -1 at 180 ⁇ 10 -6 0 C -1 , and preferably 100 ⁇ 10 -6 0 C -1 at 180 ⁇ 10 -6. 0 C "1.
  • the undercoat layer and the multilayer antireflection coating can be applied on the front and / or rear face of the substrate. They are preferably applied to the front and rear faces of the substrate .
  • rear face of the substrate is meant the face which, when using the article, is closest to the eye of the wearer.
  • front face of the substrate means the face which, when using the article, is furthest from the eye of the wearer.
  • the surface of said optionally coated substrate Before the deposition of the underlayer on the substrate optionally coated with an anti-abrasion coating based on epoxysilanes, it is common to subject the surface of said optionally coated substrate to a treatment intended to increase the adhesion of the sub-layer.
  • a treatment intended to increase the adhesion of the sub-layer. layer which is usually vacuum-driven, such as a bombardment with energy species, for example an ion beam ("Ion Pre-Cleaning" or "IPC"), corona discharge treatment, effluvage or vacuum plasma treatment.
  • IPC ion Pre-Cleaning
  • corona discharge treatment corona discharge treatment
  • effluvage effluvage
  • vacuum plasma treatment With these cleaning treatments, the cleanliness of the substrate surface is optimized. Ion bombardment treatment is preferred.
  • optical layers The different layers of the anti-reflection coating, called “optical layers", and the underlayer are preferably deposited by vacuum deposition according to one of the following techniques: i) by evaporation, possibly assisted by ion beam; ii) ion beam sputtering; iii) sputtering; iv) plasma enhanced chemical vapor deposition.
  • the electrically conductive layer which is generally a layer of high refractive index of the antireflection stack, may be deposited by any suitable technique, for example by vacuum deposition by evaporation, preferably assisted by ion beam (IAD), or by a cathode sputtering or ion beam technique.
  • IAD ion beam
  • the electrical and transparency characteristics of the electrically conductive layer depend, among other things, on precise control of the oxygen content during the coating process, which is well known in the state of the art.
  • energetic species especially ions
  • the deposits of the layers of the antireflection coating (including the electrically conductive layer) and the underlayer may in particular be carried out under ionic assistance ("IAD" method: Ion Assisted Deposition).
  • IAD ionic assistance
  • This technique involves tamping said layers with heavy ions as they are being formed to increase their density.
  • IAD Ion Assisted Deposition
  • energetic species is meant species having an energy of from 1 to 150 eV, preferably from 10 to 150 eV, and more preferably from 40 to 150 eV.
  • the energetic species can be chemical species such as ions, radicals, or species such as photons or electrons.
  • IAD and IPC can be carried out using an ion gun (Commonwealth type Mark II for example), the ions being particles consisting of gas atoms from which one or more electrons have been extracted ( s). They consist preferentially in a bombardment of the surface to be treated with argon ions (Ar + ), with a current density of between 10 and 100 ⁇ A / cm 2 on the surface activated and under a residual pressure in the vacuum chamber which can vary from 8.10 "5 mbar to 2.10 " 4 mbar.
  • ion gun Commonwealth type Mark II for example
  • the ions being particles consisting of gas atoms from which one or more electrons have been extracted ( s). They consist preferentially in a bombardment of the surface to be treated with argon ions (Ar + ), with a current density of between 10 and 100 ⁇ A / cm 2 on the surface activated and under a residual pressure in the vacuum chamber which can vary from 8.10 "5 mbar to 2.10 " 4 m
  • the undercoat and the anti-reflective coating can be deposited directly on a bare substrate.
  • the main surface of the substrate is coated with an anti-abrasion and / or anti-scratch layer, with a layer of impact-resistant primer, or with a layer of anti-shock primer and an anti-abrasion and / or anti-scratch layer, in that order.
  • Other conventionally used coatings may also be employed.
  • the underlayer and the anti-reflection coating are preferably deposited on an anti-abrasion and / or anti-scratch coating.
  • the anti-abrasion and / or anti-scratch coating may be any layer conventionally used as an anti-abrasion and / or anti-scratch coating in the field of ophthalmic lenses.
  • the abrasion-resistant and / or scratch-resistant coatings are preferably hard coatings based on poly (meth) acrylates or silanes.
  • the anti-abrasion and / or anti-scratch hard coatings are preferably prepared from compositions comprising at least one alkoxysilane and / or a hydrolyzate thereof, obtained for example by hydrolysis with a hydrochloric acid solution. After the hydrolysis step, the duration of which is generally between 2 h and 24 h, preferably between 2 h and 6 h, catalysts may optionally be added.
  • a surfactant compound is also preferably added to promote the optical quality of the deposit.
  • a preferred anti-abrasion and / or anti-scratch coating composition is that disclosed in FR 2702486, in the name of the applicant. It comprises a hydrolyzate of epoxy trialkoxysilane and dialkyl dialkoxysilane, colloidal silica and a catalytic amount of aluminum-based curing catalyst such as aluminum acetylacetonate, the remainder consisting essentially of solvents conventionally used to the formulation of such compositions.
  • the hydrolyzate used is a hydrolyzate of ⁇ -glycidoxypropyltrimethoxysilane (GLYMO) and dimethyldiethoxysilane (DMDES).
  • the anti-abrasion and / or anti-scratch coating composition may be deposited on the main surface of the substrate by dipping or centrifugation. It is then cured by the appropriate route (preferably thermal, or UV).
  • the thickness of the anti-abrasion and / or anti-scratch coating generally varies from 2 to 10 ⁇ m, preferably from 3 to 5 ⁇ m. Prior to the deposition of the anti-abrasion and / or anti-scratch coating, it is possible to deposit on the substrate a primer coating improving the impact resistance and / or adhesion of the subsequent layers in the final product.
  • This coating may be any layer of anti-shock primer conventionally used for articles made of transparent polymer material, such as ophthalmic lenses.
  • compositions based on thermoplastic polyurethanes such as those described in Japanese Patents JP 63-141001 and JP 63-87223, poly (meth) acrylic primer compositions, such as those described in US Pat. in US Pat. No. 5,015,523, compositions based on thermosetting polyurethanes, such as those described in patent EP 0404111, and compositions based on poly (meth) acrylic latex or polyurethane type latex, such as those described in US Pat. 5,316,791 and EP 0680492.
  • Preferred primer compositions are polyurethane-based compositions and latex-based compositions, particularly polyurethane latices.
  • the poly (meth) acrylic latexes are latexes of copolymers consisting mainly of a (meth) acrylate, such as for example ethyl (meth) acrylate, butyl, methoxyethyl or ethoxyethyl, with a generally minor proportion of at least one other comonomer, such as, for example, styrene.
  • a (meth) acrylate such as for example ethyl (meth) acrylate, butyl, methoxyethyl or ethoxyethyl
  • at least one other comonomer such as, for example, styrene.
  • Preferred poly (meth) acrylic latexes are acrylate-styrene copolymer latices.
  • Such latexes of acrylate-styrene copolymers are commercially available from Zeneca Resins under the name Neocryl ®.
  • Polyurethane latices are also known and commercially available. By way of example, mention may be made of polyurethane latices containing polyester units. Such latices are also marketed by ZENECA
  • primer compositions may be deposited on the faces of the article by dipping or centrifugation and then dried at a temperature of at least 70 ° C. and up to 100 ° C., preferably of the order of 90 ° C. for a period of 2 minutes to 2 hours, generally of the order of 15 minutes, to form primer layers having thicknesses, after curing, of 0.2 to 2.5 ⁇ m, preferably of 0.5 to 1.5 ⁇ m.
  • the optical article according to the invention may also comprise coatings formed on the anti-reflection coating and capable of modifying their surface properties, such as hydrophobic and / or oleophobic coatings (anti-fouling top coat). . These coatings are preferably deposited on the outer layer of the antireflection coating. Their thickness is generally less than or equal to 10 nm, preferably from 1 to 10 nm, more preferably from 1 to 5 nm.
  • fluorosilane or fluorosilazane type coatings are generally fluorosilane or fluorosilazane type coatings. They can be obtained by depositing a fluorosilane or fluorosilazane precursor, preferably comprising at least two hydrolyzable groups per molecule.
  • the precursor fluorosilanes preferentially contain fluoropolyether groups and better still perfluoropolyether groups.
  • fluorosilanes are well known and are described, inter alia, in US Pat. Nos. 5,081,192, US 5,763,061, US 6,183,872, US 5,739,639, US 5,922,787, US 6,337,235, US 6,277,485 and EP 0933377.
  • optical system comprises a substrate successively coated with a layer of anti-shock primer, with an anti-abrasion and / or anti-scratch layer, with an underlayer according to the invention, with an antireflection coating according to the invention and a hydrophobic and / or oleophobic coating.
  • the article according to the invention is preferably an optical lens, better an ophthalmic lens, or an optical or ophthalmic lens blank.
  • the invention also relates to a method for manufacturing an optical article with anti-reflection properties as described above, in which all the layers of the underlayer and then all the layers of the anti-reflection coating are deposited by evaporation under vacuum.
  • Such a method has the advantage of avoiding heating the substrate, which is particularly interesting in the case of organic glasses.
  • optical articles employed in the examples comprise a ORMA ® ESSILOR lens substrate 65 mm in diameter, with a power of -2.00 diopters and a thickness of 1.2 mm, coated with the anti-abrasion and / or anti-abrasion coating.
  • stripes (hard coat) disclosed in example 3 of patent EP 0614957 (refractive index equal to 1.50), based on a hydrolyzate of GLYMO and DMDES, colloidal silica and aluminum acetylacetonate.
  • This abrasion-resistant coating is obtained by depositing and curing a composition comprising, by mass, 224 parts of GLYMO, 80.5 parts of 0.1 N HCl, 120 parts of DMDES, 718 parts of 30% by weight colloidal silica in methanol, 15 parts of aluminum acetylacetonate and 44 parts of ethylcellosolve.
  • the composition also comprises 0.1% surfactant FLUORAD TM FC-430 from 3M ® by weight based on the total weight of the composition.
  • This anti-abrasion coating is deposited directly on the substrate.
  • the sub-layers and layers of the antireflection coating were deposited without heating the substrates by evaporation under vacuum possibly assisted by ion beam, when specified (source of evaporation: electron gun).
  • the mixture SiO 2 / Al 2 ⁇ 3 is used LIMA ® marketed by Umicore Materials
  • the deposit rack is a Leybold 1104 machine equipped with an ESV14 ion gun
  • the thickness of the layers is controlled by means of a quartz scale.
  • the deposition process comprises introducing the article into a vacuum deposition chamber, a pumping step, an ionic surface preparation step by IPC (at a pressure of 2.10 -5 mBar), a deposition step of the underlayer Bl abrasion (SiO 2 or SiO 2 / AI 2 ⁇ 3) with a rate of 1 nm / s, depositing the 1 st HI layer (ZrO 2) with a rate of 0.3 nm / s, the deposition of the 1 st layer BI (SiO 2 or SiO 2 / Al 2 O 3) with a speed of 0.7 nm / s, depositing the 2 nd layer Hl (TiO 2) at a pressure of 1 .10 " 4 mbar with a speed of 0.3 to 0.5 nm / s and an oxygen ion assistance corresponding to 2.5 a - 120 V, the deposition of the 3rd layer Hl (ZrO 2) with a speed of 0 , 3
  • the deposition process includes introducing the material in a deposition vacuum chamber, a pumping step, an ionic surface preparation step by IPC (at a pressure of 1 .10 "4 mBar), the deposit of the 1 st HI layer (ZrO 2) in an atmosphere of O 2 at a pressure of 8.10 "5 mBar and with a speed of 0.3 nm / s, depositing the 1 st layer Bl (SiO 2) with a speed of 0.7 nm / s, the deposition of the 2 nd layer Hl (Zr ⁇ 2 ) regulated under an atmosphere of O 2 at a pressure of 8.10 "5 mBar with a speed of 0.3 nm / s, the deposition of 2 nde BI layer (SiO 2 ) with a speed of 1 nm / s, a deposition step of a top coat and a ventilation step.
  • IPC at a pressure of 1 .10 "4 mBar
  • IPC at
  • the ophthalmic organic glass coated with an antireflection coating is placed for 1 hour in a thermostatted oven at a temperature T of 50 ° C., removed from the oven and then the visual appearance of the article is evaluated in reflection under desk lamp. If the antireflection coating appears intact, the organic ophthalmic glass is placed back in the oven for 1 hour at a temperature of T + 5 ° C. As soon as the antireflection coating appears cracked, the test is stopped.
  • the critical temperature corresponds to the temperature of appearance of the cracks.
  • the abrasion resistance was evaluated by determining the Bayer value on substrates coated with an underlayer (except Example 8) and an antireflection coating.
  • This test consists in simultaneously shaking a sample glass and a standard glass of a determined reciprocating movement in a tray containing an abrasive powder (Sand) particle size defined at a frequency of 100 cycles / minute for 2 minutes.
  • the "before / after" diffusion measurement H of the sample glass is compared with that of a standard glass, in this case a bare glass based on CR-39 ® , for which the BAYER value is set to 1.
  • the abrasion is carried out over 300 cycles using approximately 500 g of alumina (Al2O3 aluminum oxide) ZF 152412 supplied by Ceramic Grains.
  • Bayer ASTM (Bayer Sands) is rated good when R is greater than or equal to 3.4 and less than 4.5.
  • Bayer ISTM is qualified as good when R is greater than or equal to 3 and less than 4.5.
  • the value of Bayer Sable or ISTM is described as excellent for
  • the lens of Example 8 (traditional tetracouche antireflection coating) has a very good resistance to abrasion, but its critical temperature is only 70 ° C.
  • Examples 1, 2 and 4 corresponding to the invention possess both high abrasion resistance and critical temperature.
  • Example 4 provides the best compromise between these two properties.
  • a comparison of Examples 1 and 2 reveals that the use of two juxtaposed layers of TiO 2 / ZrO 2 rather than a single layer of TiO 2 improves the abrasion resistance by only slightly decreasing the critical temperature.
  • the fact of inserting a ZrO 2 layer between a TiO 2 layer and an ITO layer makes it possible to reduce the diffusion with respect to an article in which an ITO layer and a TiO 2 layer are juxtaposed.
  • the lenses of Examples 3 and 5 have good heat resistance thanks to the presence of SiO 2 / Al 2 O 3 in the layers B 1 and the underlayer, but a low resistance to abrasion, particularly that of Example 3. Surprisingly it is found that it is not advantageous to employ an underlayer comprising a mixture of SiO 2 and Al 2 O 3 (a direct comparison is possible between Examples 2 and 5). Without wishing to be bound by any theory, the inventors believe that the increase in the global constraint of the compression stack, provided by the substitution of silica with alumina doped silica, becomes indeed too important, although that the adhesion of the stack of layers is weakened and the response to abrasion tests is lower.
  • a comparison of Examples 2 and 7 shows that the replacement of the two layers B1 of SiO2 by two layers B1 of SiO2 / Al2O3, all things being equal, has no influence on the abrasion resistance but increases the critical temperature consistently (+ 10 0 C).
  • Example 1 Example 2
  • Example 3 Invention (Invention) (Comparative)
  • Example 6 Example 7
  • Example 8 (comparative) (comparative) (comparative)
  • the sub-layers are grayed out.
  • the layers H1 appear in bold.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Eyeglasses (AREA)
  • Physical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

L'invention concerne un article d'optique à propriétés anti-reflets, éventuellement antistatique, possédant une résistance thermique et une résistance à l'abrasion élevées, ainsi que son procédé de fabrication. L'article de l'invention comprend un substrat et, en partant du substrat : - une sous-couche comprenant une couche à base de SiO2, ladite couche à base de SiO2 ayant une épaisseur supérieure ou égale à 75 nm et étant exempte d'Al2O3; et - un revêtement anti-reflets multicouches comprenant un empilement d'au moins une couche de haut indice de réfraction et d'au moins une couche de bas indice de réfraction, dont toutes les couches de bas indice de réfraction comprennent un mélange de SiO2 et d'Al2O3, et dont les couches de haut indice de réfraction ne sont pas des couches absorbant dans le visible comprenant un oxyde de titane sous- stoechiométrique et réduisant le facteur relatif de transmission dans le visible (Tv) de l'article d'optique d'au moins 10 % par rapport au même article ne comportant pas lesdites couches absorbant dans le visible.

Description

Article d'optique revêtu d'une sous-couche et d'un revêtement anti-reflets multicouches résistant à la température, et procédé de fabrication
La présente invention concerne, de manière générale, un article d'optique comprenant un substrat revêtu d'un revêtement anti-reflets multicouches, possédant une résistance accrue vis-à-vis de la température et une bonne résistance à l'abrasion, en particulier une lentille ophtalmique pour lunettes, ainsi qu'un procédé de fabrication d'un tel article. Dans le domaine de l'optique ophtalmique, il est classique de revêtir une lentille ophtalmique de divers revêtements afin de conférer à cette lentille diverses propriétés mécaniques et/ou optiques. Ainsi, classiquement, on forme sur une lentille ophtalmique successivement des revêtements tels que des revêtements anti-chocs, anti-abrasion et/ou anti-reflets. Un revêtement anti-reflets se définit comme un revêtement, déposé à la surface d'un article d'optique, qui améliore les propriétés anti-réfléchissantes de l'article d'optique final. Il permet de réduire la réflexion de la lumière à l'interface article-air sur une portion relativement large du spectre visible.
Les revêtements anti-reflets sont bien connus et comprennent classiquement un empilement monocouche ou multicouches de matériaux diélectriques tels que SiO, SiO2, AI2O3, MgF2, LiF, Si3N4, TiO2, ZrO2, Nb2O5, Y2O3, HfO2, Sc2O3, Ta2O5, Pr2O3, ou leurs mélanges.
Comme cela est bien connu également, les revêtements anti-reflets sont, de préférence, des revêtements multicouches comprenant alternativement des couches de haut indice de réfraction et des couches de bas indice de réfraction.
Il est connu d'interposer une sous-couche entre le substrat et le revêtement antireflets dans le but d'améliorer la résistance à l'abrasion et/ou aux rayures dudit revêtement.
D'une manière générale, les revêtements anti-reflets classiques présentent une bonne tenue à la température jusqu'à des températures de l'ordre de 70 0C. Lorsque la température dépasse cette valeur, des craquelures peuvent apparaître au niveau de l'empilement anti-reflets, notamment à la surface du substrat de l'article, ce qui traduit une dégradation du revêtement anti-reflets. Dans la présente demande, la température critique d'un article ou d'un revêtement est définie comme étant celle à partir de laquelle on observe l'apparition de craquelures.
Dans le cas de substrats en verre organique (résine synthétique), les dépôts de l'éventuelle sous-couche et du revêtement anti-reflets doivent être effectués par des procédés fonctionnant à des températures modérées afin d'éviter la dégradation du substrat, une précaution qui est inutile dans le cas des substrats en verre minéral. II en découle, dans le cas de substrats en verre organique, une moins bonne durabilité du revêtement anti-reflets, notamment une moins bonne adhésion de ce revêtement au substrat, et de moins bonnes propriétés de résistance thermique.
De plus, les substrats en verre organique ayant un coefficient d'expansion thermique plus élevé que les substrats en verre minéral ou que les matériaux inorganiques constituant les sous-couches ou les couches d'un revêtement anti-reflets, ils conduisent à des articles pouvant développer des contraintes élevées, à l'origine de l'apparition de craquelures.
Certains brevets décrivent le remplacement, dans une ou plusieurs couches de bas indice de réfraction d'un empilement anti-reflets, de la silice, le matériau le plus classique, par d'autres matériaux tels que de la silice dopée par de l'alumine, dans le but d'obtenir de meilleures propriétés.
La demande de brevet US 2005/0219724 décrit un article d'optique revêtu d'un film diélectrique multicouches tel qu'un revêtement anti-reflets, composé d'une alternance de couches de haut indice de réfraction (TÏO2) et de couches de bas indice de réfraction. Toutes les couches de bas indice sont à base de Siθ2 additionné d'une faible quantité d'AI2θ3 de sorte que leur indice de réfraction (noté n) vaille 1 ,47.
Ce document recommande de ne pas utiliser de couches de bas indice de réfraction exclusivement composées de Siθ2 (n = 1 ,46), car de telles couches conduisent à des films qui développent des contraintes en compression intenses, si bien qu'il n'est pas possible d'obtenir un film durable et ayant une bonne adhérence au substrat. L'utilisation d'un mélange Siθ2 / AI2O3 permet de réduire les contraintes dans les couches bas indice, et par là la probabilité d'apparition de craquelures à la surface du substrat. Le brevet russe SU 1 176280 décrit un substrat revêtu d'un empilement de cinq couches alternativement de haut indice de réfraction (Zrθ2, n = 1 ,95-2,05) et de bas indice de réfraction (SiO2 dopée par 3 % d'AI2O3, n = 1 ,45-1 ,47).
La demande de brevet WO 2005/059603, au nom du déposant, décrit un article comprenant un revêtement anti-reflets multicouches coloré comprenant au moins deux couches de haut indice de réfraction absorbant dans le visible à base d'oxyde de titane sous-stœchiométrique TiOx (x < 2) et de préférence au moins une couche de bas indice de réfraction (Bl) à base de SiO2 dopée par 1 -5 % en masse d'AI2θ3, par rapport à la masse totale SiO2 + AI2O3. Une telle couche Bl améliore la durée de vie du revêtement et l'homogénéité de la coloration. Le facteur relatif de transmission dans le visible (Tv) de l'article est d'au plus 40 % et de façon optimale de l'ordre de 15 %.
Ce document décrit plus particulièrement un substrat revêtu successivement d'une sous-couche de silice de 100-1 10 nm d'épaisseur (ayant un rôle anti-rayures), d'une couche de TiOx, d'une couche de SiO2/AI2θ3, d'une couche de TiOx, d'une couche de SiO2/AI2O3, d'une couche de TiOx, d'une couche de SiO2/AI2O3 et d'un revêtement anti-salissures. Le problème de l'obtention d'un article thermiquement résistant n'y est pas envisagé.
Le brevet japonais H05-011101 décrit la préparation d'articles d'optique ayant initialement une bonne résistance thermique et dont les propriétés de résistance à la chaleur, qui chutent inévitablement avec le temps, se maintiennent à un niveau élevé au bout de plusieurs mois. Ces deux caractéristiques sont obtenues grâce à l'utilisation d'une sous-couche de Siθ2/Al2θ3 d'indice de réfraction n = 1 ,48-1 ,52.
L'article d'optique décrit dans ce brevet comprend donc un substrat revêtu de ladite sous-couche (d'épaisseur 0,125 λ - 0,8 λ, avec λ = 500 nm) et d'un empilement anti-reflets comprenant une couche de haut indice de réfraction intercalée entre deux couches de bas indice de réfraction. La couche de bas indice de réfraction la plus éloignée du substrat est toujours une couche de SiO2 d'épaisseur élevée (0,25 λ). La sous-couche permet d'améliorer la température critique d'apparition de craquelures à la surface du substrat, qui est de l'ordre de 100-105 0C au stade initial. Le brevet japonais H05-034502 présente une variante de l'invention décrite ci- dessus, dans laquelle la sous-couche de SiO2/AI2θ3 d'indice de réfraction n = 1 ,48-1 ,52 est remplacée par une sous-couche laminée comprenant les trois couches suivantes : une couche de SiO2 de faible épaisseur (0,05 λ - 0,15 λ) et d'indice de réfraction n = 1 ,45-1 ,47, une couche de Ta2O5 de très faible épaisseur (0,01 λ - 0,10 λ) et d'indice de réfraction n = 2-2,1 , et une couche de SiO2/AI2θ3 d'indice de réfraction n = 1 ,48-1 ,52 plus épaisse que celle décrite dans le brevet H05-011101 (0,75 λ - 1 ,50 λ), ces trois couches étant déposées sur le substrat dans l'ordre dans lequel elles ont été citées. La température critique d'apparition de craquelures à la surface du substrat, mentionnée dans le brevet H05-034502, est de l'ordre de 95-120 0C au stade initial grâce à cette sous-couche comprenant essentiellement une couche de SiO2/AI2θ3. Par ailleurs, toutes les couches de bas indice de réfraction de l'empilement anti-reflets ne sont pas à base de SiO2/AI2O3
II est cependant préférable d'éviter la préparation d'une telle sous-couche laminée, qui augmente le nombre d'opérations de dépôt. La présente invention a donc pour objectif de fournir un article d'optique transparent, notamment une lentille ophtalmique, comprenant un substrat en verre minéral ou organique, une sous-couche et un empilement anti-reflets qui remédie aux inconvénients de l'art antérieur tout en conservant d'excellentes propriétés de transparence, d'absence de défauts optiques, et une aptitude à supporter des variations de température.
Les articles d'optique selon l'invention présentent également une excellente résistance à la photo-dégradation sous un rayonnement lumineux, en particulier UV. Ils présentent également une bonne résistance à un traitement au trempé dans l'eau chaude suivi d'une sollicitation mécanique de surface. Un autre objectif de l'invention est l'obtention d'un article d'optique doté de propriétés antistatiques et d'une bonne résistance à l'abrasion.
La présente invention a encore pour but un procédé de fabrication d'un article tel que défini ci-dessus qui s'intègre aisément dans le processus classique de fabrication et qui évite un chauffage du substrat.
La présente invention a été conçue pour résoudre le problème de la tenue en température des revêtements anti-reflets. Elle est basée sur une double sélection portant d'une part sur la nature de la sous-couche et d'autre part sur les couches de bas indice de réfraction de l'empilement anti-reflets, et permet d'obtenir un article d'optique à propriétés anti-reflets ayant à la fois une résistance thermique et une résistance à l'abrasion accrues. Elle repose également sur un choix du positionnement des différentes couches.
Les buts fixés sont atteints selon l'invention par un article d'optique à propriétés anti-reflets comprenant un substrat et, en partant du substrat : - une sous-couche comprenant une couche à base de Siθ2, ladite couche à base de Siθ2 ayant une épaisseur supérieure ou égale à 75 nm et étant exempte d'AI2θ3 ; et - un revêtement anti-reflets multicouches comprenant un empilement d'au moins une couche de haut indice de réfraction et d'au moins une couche de bas indice de réfraction, dont toutes les couches de bas indice de réfraction comprennent un mélange de SiO2 et d'AI2θ3 et dont les couches de haut indice de réfraction ne sont pas des couches absorbant dans le visible comprenant un oxyde de titane sous- stœchiométrique et réduisant le facteur de transmission dans le visible (τv, ci après désigné par Tv), encore nommé facteur relatif de transmission dans le visible, de l'article d'optique d'au moins 10 % par rapport au même article ne comportant pas lesdites couches absorbant dans le visible.
Le facteur Tv répond à une définition internationale normalisée (norme ISO 13666:1998) et est mesuré conformément à la norme ISO 8980-3). Il est défini dans la gamme de longueur d'onde allant de 380 à 780 nm.
Les couches de haut indice de réfraction peuvent contenir un oxyde de titane sous-stœchiométrique, de formule TiOx, avec x < 2, pourvu qu'elles ne réduisent pas le facteur relatif de transmission dans le visible (Tv) de l'article d'optique de l'invention d'au moins 10 % par rapport au même article ne comportant pas lesdites couches absorbant dans le visible. Il faut en effet préciser que l'oxyde de titane, généralement représenté par la formule TiO2, est en réalité légèrement sous-stœchiométrique. Selon un mode de réalisation particulier de l'invention, l'article d'optique de l'invention n'absorbe pas dans le visible ou absorbe peu dans le visible, ce qui signifie, au sens de la présente demande, que son facteur relatif de transmission dans le visible (Tv) est supérieur à 90 %, mieux supérieur à 95 %, mieux encore supérieur à 96 % et de façon optimale supérieure à 97 %. Selon d'autres modes de réalisation, les couches de haut indice de réfraction du revêtement anti-reflets n'absorbent pas dans le visible ; les couches de haut indice de réfraction du revêtement anti-reflets ne comprennent pas d'oxyde de titane sous- stœchiométrique de formule TiOx tel que x ≤ 1 ,5, de préférence x ≤ 1 ,7 et mieux x ≤ 1 ,9. De préférence, l'absorption lumineuse de l'article revêtu selon l'invention est inférieure ou égale à 1 %.
De préférence, le facteur moyen de réflexion dans le domaine visible (400-700 nm) d'un article revêtu selon l'invention, noté Rm, est inférieur à 2,5 % par face, mieux inférieur à 2 % par face et encore mieux inférieur à 1 % par face de l'article. Dans un mode de réalisation optimal, l'article présente une valeur de Rm totale (cumul de réflexion due aux deux faces) inférieure à 1 %, de préférence comprise entre 0,7 et 0,8 %.
Dans la présente demande, le "facteur moyen de réflexion" est tel que défini dans la norme ISO 13666:1998, et mesuré conformément à la norme ISO 8980-4, c'est- à-dire qu'il s'agit de la moyenne de la réflexion spectrale sur l'ensemble du spectre visible entre 400 et 700 nm.
Selon l'invention, l'article d'optique comprend un substrat, de préférence transparent, en verre organique ou minéral, ayant des faces principales avant et arrière, l'une au moins desdites faces principales comportant une sous-couche revêtue d'un revêtement anti-reflets multicouches.
Dans la présente invention, une sous-couche à base de Siθ2 exempte d'A^Os est utilisée en combinaison avec des couches de bas indice de réfraction à base de Siθ2/Al2θ3. Les présents inventeurs ont constaté qu'il n'était pas souhaitable d'utiliser une sous-couche à base de Siθ2/Al2θ3, comme enseigné dans les brevets japonais H05-011101 et H05-034502, en combinaison avec l'empilement anti-reflets de la présente invention. Sans vouloir être lié par une quelconque théorie, on peut penser qu'une telle sous-couche induit des contraintes en compression trop importantes, ces contraintes pouvant alors entraîner une délamination et une diminution de la résistance à l'abrasion de l'article. Par sous-couche, ou couche d'adhésion, on entend un revêtement qui est déposé sur le substrat (nu ou revêtu) avant le dépôt de l'empilement anti-reflets. La sous-couche doit avoir une épaisseur suffisante pour promouvoir la résistance à l'abrasion du revêtement anti-reflets, mais de préférence pas trop importante pour ne pas provoquer une absorption lumineuse qui réduirait significativement le facteur relatif de transmission Tv.
Compte tenu de son épaisseur relativement importante, la sous-couche ne participe pas à l'activité optique anti-réfléchissante. Elle ne fait pas partie de l'empilement anti-reflets et n'a aucun effet optique significatif. La sous-couche comprend une couche à base de Siθ2 exempte d'Al2θ3 et d'épaisseur supérieure ou égale à 75 nm, de préférence supérieure ou égale à 80 nm, mieux supérieure ou égale à 100 nm et encore mieux supérieure ou égale à 120 nm. Son épaisseur est généralement inférieure à 250 nm, mieux inférieure à 200 nm. La sous-couche peut être laminée, c'est-à-dire comprendre d'autres couches que la couche à base de Siθ2 d'épaisseur supérieure ou égale à 75 nm et exempte d'AI2θ3. La sous-couche comprend préférentiellement une couche de SiO2 d'épaisseur supérieure ou égale 75 nm et exempte d'AI2θ3 et au plus trois couches, de préférence au plus deux couches, intercalées entre le substrat, éventuellement revêtu, et cette couche de SiO2 exempte d'AI2θ3.
En particulier, lorsque le substrat possède un indice de réfraction élevé (supérieur ou égal à 1 ,55, de préférence supérieur ou égal à 1 ,57) et que la sous- couche est déposée directement sur le substrat ou que le substrat est revêtu d'un revêtement anti-abrasion d'indice de réfraction élevé (supérieur ou égal à 1 ,55, de préférence supérieur ou égal à 1 ,57), préférentiellement à base d'époxysilanes, et que la sous-couche est déposée directement sur le revêtement anti-abrasion, la sous- couche comprend préférentiellement, outre la couche de SiO2 précitée, une couche d'indice de réfraction élevé et de faible épaisseur, inférieure ou égale à 80 nm, mieux inférieure ou égale à 50 nm et mieux encore inférieure ou égale à 30 nm. Cette couche d'indice de réfraction élevé est directement en contact avec le substrat d'indice élevé ou le revêtement anti-abrasion d'indice élevé.
En alternative, la sous-couche comprend, outre la couche de SiO2 précitée et la couche d'indice de réfraction élevé précitée, une couche de matériau de bas indice de réfraction à base de SiO2, exempte ou non d'AI2θ3 sur laquelle est déposée la couche d'indice de réfraction élevé.
Typiquement, dans ce cas, la sous-couche comprend, déposées dans cet ordre à partir du substrat, une couche de 25 nm de SiO2, une couche de 10 nm de ZrO2, une couche de 160 nm de SiO2.
On préfère utiliser une sous-couche de type monocouche. Ladite couche à base de SiO2 d'épaisseur supérieure ou égale à 75 nm peut comprendre, en plus de la silice, un ou plusieurs autres matériaux conventionnellement utilisés pour la fabrication de sous-couches, par exemple un ou plusieurs matériaux choisis parmi les matériaux diélectriques décrits précédemment dans la présente description, à l'exception de l'alumine. La sous-couche de la présente invention comprend de préférence au moins
70 % en masse de SiO2, mieux 80 % en masse et mieux encore 90 % en masse. Dans une réalisation optimale, ladite couche comprend 100 % en masse de silice.
Dans la présente demande, une couche d'un empilement anti-reflets est dite couche de haut indice de réfraction lorsque son indice de réfraction est supérieur ou égal à 1 ,6, de préférence supérieur ou égal à 1 ,7, mieux supérieur ou égal à 1 ,8 et encore mieux supérieur ou égal à 1 ,9. Une couche d'un empilement anti-reflets est dite couche de bas indice de réfraction lorsque son indice de réfraction est inférieur ou égal à 1 ,54, de préférence inférieur ou égal à 1 ,52, mieux inférieur ou égal à 1 ,50. Sauf indication contraire, les indices de réfraction auxquels il est fait référence dans la présente invention sont exprimés à 25 0C pour une longueur d'onde de 550 nm. Les couches Bl du revêtement anti-reflets comprennent toutes un mélange de Siθ2 et d'AI2θ3. Dans le reste de la description, elles seront généralement notées couches SiO2/AI2O3. Elles peuvent comprendre, en plus de la silice et de l'alumine, un ou plusieurs autres matériaux conventionnellement utilisés pour la fabrication d'une couche antireflets, par exemple un ou plusieurs matériaux choisis parmi les matériaux diélectriques décrits précédemment dans la présente description.
De préférence, les couches Bl du revêtement anti-reflets consistent cependant toutes en un mélange de SiO2 et d'AI2θ3. Elles comprennent préférentiellement de 1 à 10 %, préférentiellement de 1 à 5 % en masse d'AI2θ3 par rapport à la masse totale de SiO2 + Al2θ3 dans ces couches. Une proportion d'alumine trop importante est défavorable aux performances du revêtement anti-reflets.
Des mélanges SiO2/AI2θ3 disponibles dans le commerce peuvent être employés, tels que le LIMA® commercialisé par Umicore Materials AG (indice de réfraction n = 1 ,48-1 ,50 à 550 nm), ou la substance L5® commercialisée par Merck KGaA (indice de réfraction n = 1 ,48 à 500 nm).
Les couches de bas indice de réfraction (Bl) à base d'un mélange d'oxyde de silicium et d'oxyde d'aluminium présentent essentiellement deux effets par rapport à des couches Bl à base d'oxyde de silicium. D'une part, elles permettent d'améliorer la durée de vie du revêtement anti-reflets, sa résistance aux dégradations extérieures, en particulier aux UV, et, d'autre part, elles permettent d'augmenter la température d'apparition des craquelures du film mince, autrement dit, la température critique du revêtement. La température critique d'un article revêtu selon l'invention est de préférence supérieure ou égale à 80 0C, mieux supérieure ou égale à 85 0C et encore mieux supérieure ou égale à 90 0C.
Sans vouloir donner d'interprétation limitative à l'invention, les inventeurs pensent que la substitution de la silice pure par de la silice dopée par de l'alumine, toutes choses étant strictement égales par ailleurs, permet d'augmenter la contrainte en compression de l'ensemble de l'empilement, ce qui améliore la température critique de l'article. Ceci est contraire à l'enseignement de la demande de brevet US 2005/0219724, qui indique qu'une couche de SiO2/AI2θ3 induit des contraintes plus faibles qu'une couche de SiO2. D'un autre côté, une contrainte en compression trop élevée peut entraîner des problèmes d'adhérence et une diminution de la résistance à l'abrasion, ce qui apparaîtra clairement à la lecture des exemples.
Les couches Hl sont des couches d'indice de réfraction élevé classiques, bien connues dans la technique. Elles comprennent généralement un ou plusieurs oxydes minéraux tels que, sans limitation, la zircone (Zrθ2), l'oxyde de titane (TÏO2), le pentoxyde de tantale (Ta2θ5), l'oxyde de néodyme (Nd2O5), l'oxyde de praséodyme
(Pr2O3), le titanate de praséodyme (PrTiO3), La2O3, Dy2O5, Nb2O5, Y2O3.
Eventuellement, les couches haut indice peuvent contenir également de la silice ou de l'alumine, pourvu que leur indice de réfraction soit supérieur ou égal à 1 ,6, de préférence supérieur ou égal à 1 ,7, mieux supérieur ou égal à 1 ,8. Les matériaux préférés sont TiO2, PrTiO3, ZrO2 et leurs mélanges.
Selon un mode de réalisation particulier de l'invention, au moins une couche Hl de l'empilement anti-reflets est une couche à base de TiO2, dont l'indice de réfraction élevé est particulièrement intéressant. Elle est de préférence déposée sous assistance ionique (IAD), ce qui augmente la compression de cette couche et par là son indice de réfraction.
Selon un autre mode de réalisation particulier de l'invention, au moins une couche Hl de l'empilement anti-reflets est une couche à base de PrTiO3, dont la résistance thermique élevée est particulièrement intéressante.
Généralement, les couches Hl ont une épaisseur physique variant de 10 à 120 nm, et les couches Bl ont une épaisseur physique variant de 10 à 100 nm.
Préférentiellement, l'épaisseur physique totale du revêtement anti-reflets est inférieure à 1 micromètre, mieux inférieure ou égale à 500 nm et mieux encore inférieure ou égale à 250 nm. L'épaisseur physique totale du revêtement anti-reflets est généralement supérieure à 100 nm, de préférence supérieure à 150 nm. Les épaisseurs mentionnées dans la présente demande sont des épaisseurs physiques, sauf indication contraire.
De préférence, le revêtement anti-reflets multicouches est directement en contact avec la sous-couche.
De préférence encore, le revêtement anti-reflets multicouches est formé d'un empilement comprenant au moins deux couches de bas indice de réfraction (Bl) et au moins deux couches de haut indice de réfraction (Hl). Préférentiellement, le nombre total de couches du revêtement anti-reflets est inférieur ou égal à 6. II n'est pas nécessaire que les couches Hl et Bl soient alternées dans l'empilement, bien qu'elles puissent l'être selon un mode de réalisation de l'invention. Deux couches Hl (ou plus) peuvent être déposées l'une sur l'autre, tout comme deux couches Bl (ou plus) peuvent être déposées l'une sur l'autre. Ainsi, il est intéressant en termes de résistance à l'abrasion d'empiler l'une sur l'autre par exemple une couche Hl de Z1O2 et une couche Hl de Tiθ2 plutôt que d'utiliser une couche de Tiθ2 à la place de ces deux couche Hl adjacentes.
De préférence, la couche à base de Siθ2 de la sous-couche est adjacente à une couche de haut indice de réfraction (Hl) de l'empilement anti-reflets. De préférence encore, la première couche Bl comprenant un mélange d'oxyde silicium et d'oxyde d'aluminium dans l'ordre d'empilement est déposée sur une couche Hl et revêtue d'une autre couche Hl, de nature chimique identique ou différente.
Selon une autre préférence, la couche externe du revêtement anti-reflets multicouches, c'est-à-dire sa couche la plus éloignée du substrat, est une couche comprenant un mélange d'oxyde silicium et d'oxyde d'aluminium.
Il est bien connu que les articles d'optique ont tendance à se charger en électricité statique, particulièrement lorsqu'ils sont nettoyés en conditions sèches par frottement de leur surface au moyen d'un chiffon, d'un morceau de mousse synthétique ou de polyester. Ils sont alors capables d'attirer et de fixer les petites particules se trouvant à proximité telles que les poussières, et ce durant tout le temps où la charge reste sur l'article. Il est bien connu dans l'état de la technique qu'un article peut acquérir des propriétés antistatiques grâce à la présence à sa surface d'une couche électriquement conductrice. Cette technique a été appliquée dans la demande internationale WO 01/55752 et le brevet EP 0834092. Cette couche permet une dissipation rapide de la charge.
Par "antistatique", on entend la propriété de ne pas retenir et/ou développer une charge électrostatique appréciable. Un article est généralement considéré comme ayant des propriétés antistatiques acceptables, lorsqu'il n'attire et ne fixe pas la poussière et les petites particules après que l'une de ses surfaces a été frottée au moyen d'un chiffon approprié.
Il existe différentes techniques pour quantifier les propriétés antistatiques d'un matériau.
Une de ces techniques consiste à prendre en compte le potentiel statique du matériau. Lorsque le potentiel statique du matériau (mesuré alors que l'article n'a pas été chargé) est de 0 KV +/- 0,1 KV (en valeur absolue), le matériau est antistatique, en revanche lorsque son potentiel statique est différent de 0 KV +/- 0,1 KV (en valeur absolue), le matériau est dit statique.
Selon une autre technique, la capacité d'un verre à évacuer une charge statique obtenue après frottement par un tissu ou par tout autre procédé de génération d'une charge électrostatique (charge appliquée par corona...) peut être quantifiée par une mesure du temps de dissipation de ladite charge. Ainsi, les verres antistatiques possèdent un temps de décharge de l'ordre de la centaine de millisecondes, alors qu'il est de l'ordre de plusieurs dizaines de secondes pour un verre statique. L'article de l'invention peut être rendu antistatique grâce à l'incorporation d'au moins une couche électriquement conductrice dans l'empilement anti-reflets. La couche électriquement conductrice peut être localisée à différents endroits du revêtement anti-reflets, pourvu que ses propriétés anti-réfléchissantes ne soient pas perturbées. Elle peut par exemple être déposée sur la sous-couche de l'invention et constituer la première couche du revêtement anti-reflets. Elle est de préférence localisée sous une couche de bas indice de réfraction.
La couche électriquement conductrice doit être suffisamment fine pour ne pas altérer la transparence du revêtement anti-reflets. Généralement, son épaisseur varie de 0,1 à 150 nm, mieux de 0,1 à 50 nm, selon sa nature. Une épaisseur inférieure à 0,1 nm ne permet généralement pas d'obtenir une conductivité électrique suffisante, alors qu'une épaisseur supérieure à 150 nm ne permet généralement pas d'obtenir les caractéristiques de transparence et de faible absorption requises.
La couche électriquement conductrice est de préférence fabriquée à partir d'un matériau électriquement conducteur et hautement transparent. Dans ce cas, son épaisseur varie de préférence de 0,1 à 30 nm, mieux de 1 à 20 nm et encore mieux de
1 à 10 nm. Ledit matériau est de préférence un oxyde métallique choisi parmi les oxydes d'indium, d'étain, de zinc et leurs mélanges. L'oxyde d'étain-indium (ln2θ3:Sn, oxyde d'indium dopé à l'étain) et l'oxyde d'étain (In2Os) sont préférés. Selon un mode de réalisation optimal, la couche électriquement conductrice et optiquement transparente est une couche d'oxyde d'étain-indium, notée couche ITO.
Généralement, la couche électriquement conductrice contribue à l'obtention de propriétés anti-réfléchissantes et constitue une couche de haut indice de réfraction dans le revêtement anti-reflets. C'est le cas de couches fabriquées à partir d'un matériau électriquement conducteur et hautement transparent telles que les couches ITO.
La couche électriquement conductrice peut également être une couche d'un métal noble de très faible épaisseur, typiquement de moins de 1 nm d'épaisseur, mieux de moins de 0,5 nm.
De manière particulièrement avantageuse, l'empilement anti-reflets comprend cinq couches diélectriques et éventuellement une couche électriquement conductrice qui confère des propriétés antistatiques à l'article.
Selon un mode de réalisation préféré, sont déposées successivement, depuis la surface du substrat, une sous-couche de SiO2 d'épaisseur supérieure ou égale à 75 nm, une couche de ZrO2, généralement de 10 à 40 nm d'épaisseur et préférentiellement de 15 à 35 nm, une couche de SiO2/AI2θ3, généralement de 10 à 40 nm d'épaisseur et préférentiellement de 15 à 35 nm, une couche de TiO2, généralement de 40 à 150 nm d'épaisseur et préférentiellement de 50 à 120 nm, une couche de ZrO2, généralement de 10 à 30 nm d'épaisseur et préférentiellement de 10 à 25 nm, éventuellement une couche électriquement conductrice, de préférence une couche ITO, généralement de 0,1 à 30 nm d'épaisseur et préférentiellement de 1 à 20 nm, et une couche de Siθ2/Al2θ3, généralement de 40 à 150 nm d'épaisseur et préférentiellement de 50 à 100 nm. Il est préférable que l'empilement anti-reflets de l'invention comprenne une couche électriquement conductrice. Mieux, l'article de l'invention comprend un empilement TiO2 / ZrO2 / couche électriquement conductrice.
Selon un mode de réalisation particulièrement préféré, sont déposées successivement, depuis la surface du substrat, une sous-couche de SiO2 d'épaisseur supérieure ou égale à 120 nm, une couche de ZrO2 de 20 à 30 nm d'épaisseur, une couche de SiO2/AI2θ3 de 20 à 30 nm d'épaisseur, une couche de TiO2 de 75 à 105 nm d'épaisseur, une couche de ZrO2 de 10 à 20 nm d'épaisseur, une couche ITO de 2 à 20 nm d'épaisseur, et une couche de SiO2/AI2θ3 de 60 à 90 nm d'épaisseur.
Les trois couches successives TiO2 / ZrO2 / couche électriquement conductrice (de préférence ITO) sont de préférence déposées sous assistance ionique (IAD).
Un tel article possède une très bonne résistance à l'abrasion, mesurée par le test BAYER.
De manière générale, la sous-couche et le revêtement anti-reflets de l'article d'optique selon l'invention peuvent être déposés sur tout substrat, de préférence transparent, en verre organique ou minéral, et de préférence sur des substrats en verre organique, par exemple une matière plastique thermoplastique ou thermodurcissable. Parmi les matériaux thermoplastiques convenant pour les substrats, on peut citer les (co)polymères (méth)acryliques, en particulier le poly(méthacrylate de méthyle) (PMMA), les (co)polymères thio(méth)acryliques, le polyvinylbutyral (PVB), les polycarbonates (PC), les polyuréthanes (PU), les poly(thiouréthanes), les (co)polymères d'allylcarbonates de polyols, les copolymères thermoplastiques éthylène/acétate de vinyle, les polyesters tels que le poly(téréphtalate d'éthylène) (PET) ou le poly(téréphtalate de butylène) (PBT), les polyépisulfures, les polyépoxydes, les copolymères polycarbonates/polyesters, les copolymères de cyclooléfines tels que les copolymères éthylène/norbornène ou éthylène/cyclopentadiène et leurs combinaisons.
Par (co)polymère, on entend un copolymère ou un polymère. Par (méth)acrylate, on entend un acrylate ou un méthacrylate.
Parmi les substrats préférés selon l'invention, on peut citer des substrats obtenus par polymérisation des (métha)crylates d'alkyle, en particulier des (méth)acrylates d'alkyle en C1-C4, tels que le (méth)acrylate de méthyle et le (méth)acrylate d'éthyle, des (méth)acrylates aromatiques polyéthoxylés tels que les di(méth)acrylates de bisphénols polyéthoxylés, des dérivés allyles tels que les allylcarbonates de polyols aliphatiques ou aromatiques, linéaires ou ramifiés, des thio(méth)acrylates, des épisulfures et de mélanges précurseurs polythiols/polyisocyanates (pour l'obtention de polythiouréthanes). Par polycarbonate (PC), on entend au sens de la présente invention aussi bien les homopolycarbonates que les copolycarbonates et les copolycarbonates séquences. Les polycarbonates sont disponibles dans le commerce, par exemple auprès des sociétés GENERAL ELECTRIC COMPANY sous la marque LEXAN®, TEIJIN sous la marque PANLITE®, BAYER sous la marque BAYBLEND®, MOBAY CHEMICHAL Corp. sous la marque MAKROLON® et DOW CHEMICAL Co. sous la marque CALIBRE®.
Comme exemples de (co)polymères d'allyl carbonates de polyols, on peut citer les (co)polymères d'éthylèneglycol bis (allyl carbonate), de diéthylèneglycol bis 2-méthyl carbonate, de diéthylèneglycol bis (allyl carbonate), d'éthylèneglycol bis (2-chloro allyl carbonate), de triéthylèneglycol bis (allyl carbonate), de 1 ,3-propanediol bis (allyl carbonate), de propylèneglycol bis (2-éthyl allyl carbonate), de 1 ,3-butènediol bis (allyl carbonate), de 1 ,4-butènediol bis (2-bromo allyl carbonate), de dipropylèneglycol bis
(allyl carbonate), de triméthylèneglycol bis (2-éthyl allyl carbonate), de pentaméthylèneglycol bis (allyl carbonate), d'isopropylène bisphénol A bis (allyl carbonate).
Les substrats particulièrement recommandés sont les substrats obtenus par (co)polymérisation du bis allyl carbonate du diéthylèneglycol, vendu, par exemple, sous la dénomination commerciale CR 39® par la société PPG Industries (lentilles ORMA® ESSILOR).
Parmi les substrats également particulièrement recommandés, on peut citer les substrats obtenus par polymérisation des monomères thio(méth)acryliques, tels que ceux décrits dans la demande de brevet français FR 2734827.
Bien évidemment, les substrats peuvent être obtenus par polymérisation de mélanges des monomères ci-dessus, ou peuvent encore comprendre des mélanges de ces polymères et (co)polymères.
Les substrats organiques préférés dans le cadre de l'invention sont ceux présentant un coefficient de dilatation thermique de 50.10~6 0C"1 à 180.10"6 0C"1, et préférentiellement de 100.10"6 0C"1 à 180.10"6 0C"1. Selon la présente invention, la sous-couche et l'empilement anti-reflets peuvent être appliqués sur la face avant et/ou la face arrière du substrat. Ils sont de préférence appliqués sur les faces avant et arrière du substrat.
Par face arrière du substrat, on entend la face qui, lors de l'utilisation de l'article, est la plus proche de l'œil du porteur. Inversement, par face avant du substrat, on entend la face qui, lors de l'utilisation de l'article, est la plus éloignée de l'œil du porteur.
Avant le dépôt de la sous-couche sur le substrat éventuellement revêtu d'un revêtement anti-abrasion à base d'époxysilanes, il est courant de soumettre la surface dudit substrat éventuellement revêtue à un traitement destiné à augmenter l'adhésion de la sous-couche, qui est généralement conduit sous vide, tel qu'un bombardement avec des espèces énergétiques, par exemple un faisceau d'ions ("Ion Pre- Cleaning" ou "IPC"), un traitement par décharge corona, par effluvage ou un traitement par plasma sous vide. Grâce à ces traitements de nettoyage, la propreté de la surface du substrat est optimisée. Un traitement par bombardement ionique est préféré. Les différentes couches du revêtement anti-reflets, dites "couches optiques", et la sous-couche sont préférentiellement déposées par dépôt sous vide selon l'une des techniques suivantes : i) par évaporation, éventuellement assistée par faisceau ionique ; ii) par pulvérisation par faisceau d'ion ; iii) par pulvérisation cathodique ; iv) par dépôt chimique en phase vapeur assistée par plasma. Ces différentes techniques sont décrites dans les ouvrages "Thin Film Processes" and "Thin Film Processes II," Vossen & Kern, Ed., Académie Press, 1978 et 1991 respectivement. Une technique particulièrement recommandée est la technique d'évaporation sous vide.
La couche électriquement conductrice, qui est généralement une couche de haut indice de réfraction de l'empilement anti-reflets, peut être déposée selon toute technique appropriée, par exemple par dépôt sous vide par évaporation, de préférence assistée par faisceau ionique (IAD), ou bien par une technique de pulvérisation cathodique ou par faisceau d'ion.
Les caractéristiques électriques et de transparence de la couche électriquement conductrice dépendent, entre autres, d'un contrôle précis de la teneur en oxygène durant le processus de revêtement, ce qui est bien connu de l'état de la technique.
Comme cela a été indiqué précédemment, il est possible de réaliser une étape de traitement avec des espèces énergétiques, notamment des ions, de façon concomitante au dépôt d'une ou plusieurs des différentes couches précitées. Les dépôts des couches du revêtement anti-reflets (dont la couche électriquement conductrice) et de la sous-couche peuvent notamment être réalisés sous assistance ionique (procédé "IAD" : Ion Assisted Déposition). Cette technique consiste à tasser lesdites couches avec des ions lourds, pendant qu'elles sont en train d'être formées, afin d'accroître leur densité. Outre une densification, elle permet d'améliorer l'adhérence des couches déposées et d'augmenter leur indice de réfraction. Par espèces énergétiques, on entend des espèces ayant une énergie allant de 1 à 15O eV, de préférence de 10 à 15O eV, et mieux de 40 à 15O eV. Les espèces énergétiques peuvent être des espèces chimiques telles que des ions, des radicaux, ou des espèces telles que des photons ou des électrons.
Les opérations d'IAD et d'IPC peuvent être effectuées au moyen d'un canon à ions (Commonwealth de type Mark II par exemple), les ions étant des particules constituées d'atomes de gaz dont on a extrait un ou plusieurs électron(s). Elles consistent préférentiellement en un bombardement de la surface à traiter par des ions argon (Ar+), d'une densité de courant comprise entre 10 et 100 μA/cm2 sur la surface activée et sous une pression résiduelle dans l'enceinte à vide pouvant varier de 8.10"5 mbar à 2.10"4 mbar.
La sous-couche et le revêtement anti-reflets peuvent être déposés directement sur un substrat nu. Dans certaines applications, il est préférable que la surface principale du substrat soit revêtue d'une couche anti-abrasion et/ou anti-rayures, d'une couche de primaire anti-chocs, ou d'une couche de primaire anti-chocs et d'une couche anti-abrasion et/ou anti-rayures, dans cet ordre. D'autres revêtements classiquement utilisés peuvent également être employés.
La sous-couche et le revêtement anti-reflets sont de préférence déposés sur un revêtement anti-abrasion et/ou anti-rayures. Le revêtement anti-abrasion et/ou antirayures peut être toute couche classiquement utilisée comme revêtement anti-abrasion et/ou anti-rayures dans le domaine des lentilles ophtalmiques.
Les revêtements résistant à l'abrasion et/ou aux rayures sont de préférence des revêtement durs à base de poly(méth)acrylates ou de silanes. Les revêtements durs anti-abrasion et/ou anti-rayures sont de préférence élaborés à partir de compositions comprenant au moins un alcoxysilane et/ou un hydrolysat de celui-ci, obtenu par exemple par hydrolyse avec une solution d'acide chlorhydrique. Après l'étape d'hydrolyse, dont la durée est généralement comprise entre 2h et 24h, préférentiellement entre 2h et 6h, des catalyseurs peuvent optionnellement être ajoutés. Un composé tensioactif est de préférence également ajouté afin de favoriser la qualité optique du dépôt.
Parmi les revêtements recommandés dans la présente invention, on peut citer les revêtements à base d'hydrolysats d'époxysilanes tels que ceux décrits dans les brevets FR 2702486 (EP 0614957), US 4,21 1 ,823 et US 5,015,523. Une composition pour revêtement anti-abrasion et/ou anti-rayures préférée est celle divulguée dans le brevet FR 2702486, au nom du déposant. Elle comprend un hydrolysat d'époxy trialcoxysilane et de dialkyl dialcoxysilane, de la silice colloïdale et une quantité catalytique de catalyseur de durcissement à base d'aluminium tel que l'acétylacétonate d'aluminium, le reste étant essentiellement constitué par des solvants classiquement utilisés pour la formulation de telles compositions. Préférentiellement l'hydrolysat utilisé est un hydrolysat de γ-glycidoxypropyltriméthoxysilane (GLYMO) et de diméthyldiéthoxysilane (DMDES).
La composition de revêtement anti-abrasion et/ou anti-rayures peut être déposée sur la surface principale du substrat par trempage ou centrifugation. Elle est ensuite durcie par la voie appropriée (de préférence thermique, ou UV).
L'épaisseur du revêtement anti-abrasion et/ou anti-rayures varie généralement de 2 à 10 μm, préférentiellement de 3 à 5 μm. Préalablement au dépôt du revêtement anti-abrasion et/ou antirayures, il est possible de déposer sur le substrat un revêtement de primaire améliorant la résistance aux chocs et/ou l'adhésion des couches ultérieures dans le produit final.
Ce revêtement peut être toute couche de primaire anti-chocs classiquement utilisée pour les articles en matériau polymère transparent, tels que des lentilles ophtalmiques.
Parmi les compositions de primaire préférées, on peut citer les compositions à base de polyuréthanes thermoplastiques, telles que celles décrites dans les brevets japonais JP 63-141001 et JP 63-87223, les compositions de primaire poly(méth)acryliques, telles que celles décrites dans le brevet US 5,015,523, les compositions à base de polyuréthanes thermodurcissables, telles que celles décrites dans le brevet EP 0404111 et les compositions à base de latex poly(méth)acryliques ou de latex de type polyuréthane, telles que celles décrites dans les brevets US 5,316,791 et EP 0680492. Les compositions de primaire préférées sont les compositions à base de polyuréthanes et les compositions à base de latex, en particulier les latex de polyuréthane.
Les latex poly(méth)acryliques sont des latex de copolymères constitués principalement par un (méth)acrylate, tel que par exemple le (méth)acrylate d'éthyle, de butyle, de méthoxyéthyle ou d'éthoxyéthyle, avec une proportion généralement mineure d'au moins un autre co-monomère, tel que par exemple du styrène.
Les latex poly(méth)acryliques préférés sont les latex de copolymères acrylate- styrène. De tels latex de copolymères acrylate-styrène sont disponibles commercialement auprès de la Société ZENECA RESINS sous la dénomination NEOCRYL®.
Les latex de polyuréthane sont également connus et disponibles dans le commerce. A titre d'exemple, on peut citer les latex de polyuréthane contenant des motifs polyesters. De tels latex sont également commercialisés par la société ZENECA
RESINS sous la dénomination NEOREZ® et par la société BAXENDEN CHEMICALS sous la dénomination WITCOBOND®.
On peut également utiliser dans les compositions de primaire des mélanges de ces latex, en particulier de latex polyuréthane et de latex poly(méth)acrylique.
Ces compositions de primaire peuvent être déposées sur les faces de l'article par trempage ou centrifugation puis séchées à une température d'au moins 70 0C et pouvant aller jusqu'à 100 0C, de préférence de l'ordre de 90 0C, pendant une durée de 2 minutes à 2 heures, généralement de l'ordre de 15 minutes, pour former des couches de primaire ayant des épaisseurs, après cuisson, de 0,2 à 2,5 μm, de préférence de 0,5 à 1 ,5 μm. Bien évidemment, l'article d'optique selon l'invention peut également comporter des revêtements formés sur le revêtement anti-reflets et capables de modifier leurs propriétés de surface, tels que des revêtements hydrophobes et/ou oléophobes (top coat anti-salissures). Ces revêtements sont de préférence déposés sur la couche externe du revêtement anti-reflets. Leur épaisseur est en général inférieure ou égale à 10 nm, de préférence de 1 à 10 nm, mieux de 1 à 5 nm.
Il s'agit généralement de revêtements de type fluorosilane ou fluorosilazane. Ils peuvent être obtenus par dépôt d'un fluorosilane ou fluorosilazane précurseur, comprenant de préférence au moins deux groupes hydrolysables par molécule. Les fluorosilanes précurseurs contiennent préférentiellement des groupements fluoropolyéthers et mieux des groupements perfluoropolyéthers. Ces fluorosilanes sont bien connus et sont décrits, entre autres, dans les brevets US 5,081 ,192, US 5,763,061 , US 6,183, 872, US 5,739, 639, US 5,922,787, US 6,337,235, US 6,277,485 et EP 0933377. Typiquement, un article d'optique selon l'invention comprend un substrat successivement revêtu d'une couche de primaire anti-chocs, d'une couche antiabrasion et/ou anti-rayures, d'une sous-couche selon l'invention, d'un revêtement antireflets selon l'invention et d'un revêtement hydrophobe et/ou oléophobe. L'article selon l'invention est de préférence une lentille optique, mieux une lentille ophtalmique, ou une ébauche de lentille optique ou ophtalmique.
L'invention concerne également un procédé de fabrication d'un article d'optique à propriétés anti-reflets tel que décrit ci-dessus, dans lequel toutes les couches de la sous-couche puis toutes les couches du revêtement anti-reflets sont déposées par évaporation sous vide. Un tel procédé présente l'avantage d'éviter de chauffer le substrat, ce qui est particulièrement intéressant dans le cas des verres organiques.
Les exemples suivants illustrent l'invention de façon plus détaillée mais non limitative.
EXEMPLES
1. Procédures générales
Les articles d'optique employés dans les exemples comprennent un substrat de lentille ORMA® ESSILOR de 65 mm de diamètre, de puissance -2,00 dioptries et d'épaisseur 1 ,2 mm, revêtu du revêtement anti-abrasion et/ou anti-rayures (hard coat) divulgué dans l'exemple 3 du brevet EP 0614957 (d'indice de réfraction égal à 1 ,50), à base d'un hydrolysat de GLYMO et DMDES, de silice colloïdale et d'acétylacétonate d'aluminium. Ce revêtement anti-abrasion est obtenu par dépôt et durcissement d'une composition comprenant en masse, 224 parties de GLYMO, 80,5 parties de HCI 0,1 N, 120 parties de DMDES, 718 parties de silice colloïdale à 30 % massique dans le méthanol, 15 parties d'acétylacétonate d'aluminium et 44 parties d'éthylcellosolve. La composition comporte également 0,1 % de tensioactif FLUORAD™ FC-430® de 3M en masse par rapport à la masse totale de la composition. Ce revêtement anti-abrasion est déposé directement sur le substrat.
Les sous-couches et les couches du revêtement anti-reflets ont été déposées sans chauffage des substrats par évaporation sous vide éventuellement assistée par faisceau ionique, lorsque précisé (source d'évaporation : canon à électrons). Le mélange Siθ2/Al2θ3 utilisé est le LIMA® commercialisé par Umicore Materials
AG comprenant 4 % en masse d'AI2θ3 par rapport à la masse totale de SiO2 + AI2O3 (exemples 1 , 2, 3, 5), ou la substance L5® commercialisée par Merck KGaA (exemple 4).
Le bâti de dépôt est une machine Leybold 1104 équipé d'un canon à ions ESV14
(8kV) pour l'évaporation des oxydes, d'un creuset à effet Joule pour le dépôt du top coat et d'un canon à ions (Commonwealth Mark II) pour la phase préliminaire de préparation de surface par des ions argon.
L'épaisseur des couches est contrôlée au moyen d'une balance à quartz.
2. Modes opératoires
Exemples 1 à 7
Le procédé de dépôt comprend l'introduction de l'article dans une enceinte de dépôt sous vide, une étape de pompage, une étape de préparation de surface ionique par IPC (à une pression de 2.10"5 mBar), une étape de dépôt de la sous-couche Bl antiabrasion (SiO2 Ou SiO2/AI2θ3) avec une vitesse de 1 nm/s, le dépôt de la 1ere couche Hl (ZrO2) avec une vitesse de 0,3 nm/s, le dépôt de la 1ere couche BI (SiO2 Ou SiO2/AI2O3) avec une vitesse de 0,7 nm/s, le dépôt de la 2nde couche Hl (TiO2) à une pression de 1 .10"4 mBar avec une vitesse de 0,3 à 0,5 nm/s et une assistance d'ions oxygène correspondant à 2,5 A - 120 V, le dépôt de la 3eme couche Hl (ZrO2) avec une vitesse de 0,3 nm/s (sauf exemples 2, 5, 7), le dépôt d'une couche ITO avec une vitesse de 0,3 à 0,5 nm/s et une assistance d'ions oxygène correspondant à 2,5 A - 120 V (sauf exemples 3 et 6), le dépôt de la 2nde couche BI (SiO2 ou SiO2/AI2O3) avec une vitesse de 1 nm/s, une étape de dépôt d'un revêtement anti-salissure (top coat) et une étape de ventilation. Exemple 8
Le procédé de dépôt comprend l'introduction de l'article dans une enceinte de dépôt sous vide, une étape de pompage, une étape de préparation de surface ionique par IPC (à une pression de 1 .10"4 mBar), le dépôt de la 1ere couche Hl (Zrθ2) sous atmosphère de O2 à une pression de 8.10"5 mBar et avec une vitesse de 0,3 nm/s, le dépôt de la 1ere couche Bl (Siθ2) avec une vitesse de 0,7 nm/s, le dépôt de la 2nde couche Hl (Zrθ2) régulé sous atmosphère de O2 à une pression de 8.10"5 mBar avec une vitesse de 0,3 nm/s, le dépôt de la 2nde couche BI (SiO2) avec une vitesse de 1 nm/s, une étape de dépôt d'un revêtement anti-salissure (top coat) et une étape de ventilation.
3. Caractérisations
a. Caractérisation de la résistance thermique : détermination de la température critique
Le verre organique ophtalmique revêtu d'un revêtement anti-reflets est placé pendant 1 heure dans une étuve thermostatée à une température T de 500C, retiré de l'étuve puis l'aspect visuel de l'article est évalué en réflexion sous une lampe de bureau. Si le revêtement anti-reflets apparaît intact, le verre organique ophtalmique est replacé dans l'étuve pendant 1 heure à la température T + 5 0C. Dès que le revêtement antireflets apparaît craquelé, le test est arrêté. La température critique correspond à la température d'apparition des craquelures.
Lorsque plusieurs verres sont testés, la température d'apparition des craquelures mentionnée est la moyenne des résultats.
b. Caractérisation de la résistance à l'abrasion
La résistance à l'abrasion a été évaluée par détermination de la valeur BAYER sur les substrats revêtus d'une sous-couche (sauf l'exemple 8) et d'un revêtement antireflets.
Test BAYER ASTM (Baver sable)
La détermination de cette valeur BAYER a été établie conformément à la norme
ASTM F 735.81 . Plus la valeur obtenue au test BAYER est élevée, plus la résistance à l'abrasion est élevée.
Ce test consiste à agiter simultanément un verre échantillon et un verre étalon d'un mouvement alternatif déterminé dans un bac contenant une poudre abrasive (sable) de granulométrie définie à une fréquence de 100 cycles/minute pendant 2 minutes. La mesure de diffusion H "avant / après" du verre échantillon est comparée à celle d'un verre étalon, en l'occurrence un verre nu à base de CR-39®, pour lequel la valeur BAYER est fixée à 1. La valeur de Bayer est R= H étalon/H verre échantillon.
Test Baver ISTM
La détermination de cette valeur BAYER a été établie en suivant la norme ASTM F735-81 , avec les modifications suivantes :
L'abrasion s'effectue sur 300 cycles en utilisant approximativement 500 g d'alumine (oxyde d'aluminium AI2O3) ZF 152412 fournie par la société Ceramic Grains
(anciennement Norton Materials, New Bond Street, PO Box 15137 Worcester, Mass.
01615-00137). La diffusion est mesurée en utilisant un appareil Hazemeter modèle XL- 21 1 .
La valeur de Bayer ASTM (Bayer sable) est qualifiée de bonne lorsque R est supérieur ou égal à 3,4 et inférieur à 4,5.
La valeur de Bayer ISTM est qualifiée de bonne lorsque R est supérieur ou égal à 3 et inférieur à 4,5. La valeur de Bayer Sable ou ISTM est qualifiée d'excellente pour des valeurs de
4,5 et plus.
4. Résultats
Les empilements obtenus selon les exemples 1 à 8 sont détaillés en page 26 ci- après. Les résultats des mesures de températures critiques (TC, en 0C) et de résistance à l'abrasion sont regroupés dans le tableau 1.
Tableau 1
Figure imgf000020_0001
La lentille de l'exemple 8 (revêtement anti-reflets tétracouche classique) possède une très bonne résistance à l'abrasion, mais sa température critique n'est que de 70 0C.
Les lentilles des exemples 1 , 2 et 4 correspondant à l'invention possèdent à la fois une résistance à l'abrasion et une température critique élevées. L'exemple 4 fournit le meilleur compromis entre ces deux propriétés. Une comparaison des exemples 1 et 2 révèle que l'utilisation de deux couches Hl Tiθ2/Zrθ2 juxtaposées plutôt qu'une simple couche de TÏO2 améliore la résistance à l'abrasion en ne diminuant que faiblement la température critique. D'autre part, le fait d'intercaler une couche de Zrθ2 entre une couche de TÏO2 et une couche ITO permet de réduire la diffusion par rapport à un article dans lequel une couche ITO et une couche de Tiθ2 sont juxtaposées.
Les lentilles des exemples 3 et 5 ont une bonne résistance thermique grâce à la présence de Siθ2/Al2θ3 dans les couches Bl et la sous-couche, mais une faible résistance à l'abrasion, particulièrement celle de l'exemple 3. De façon surprenante, on constate qu'il n'est pas avantageux d'employer une sous-couche comprenant un mélange de Siθ2 et d'AI2θ3 (une comparaison directe est possible entre les exemples 2 et 5). Sans vouloir être lié par une quelconque théorie, les inventeurs pensent que l'augmentation de la contrainte globale de l'empilement en compression, apportée par la substitution de la silice par de la silice dopée en alumine, devient en effet trop importante, si bien que l'adhérence de l'empilement des couches est affaiblie et la réponse aux tests d'abrasion est moindre.
Les lentilles des exemples 6 et 7, dont les couches Bl du revêtement anti-reflets sont faites de Siθ2, ont une température critique relativement faible. Une comparaison des exemples 2 et 7 montre que le remplacement des deux couches Bl de Siθ2 par deux couches Bl de Siθ2/Al2θ3, toutes choses étant égales par ailleurs, n'a pas d'influence sur la résistance à l'abrasion mais augmente la température critique de façon conséquente (+ 10 0C).
Il a été vérifié grâce à un spectrophotomètre, tel que le lambda 900 de Perkin Elmer, que le facteur relatif de transmission dans le visible Tv des articles selon l'invention, calculé entre 380 et 780 nm, était supérieur à 90 %. CONSTITUTION DES LENTILLES PREPAREES DANS LES EXEMPLES
Exemple 1 Exemple 2 Exemple 3 (invention) (invention) (comparatif)
Figure imgf000022_0001
Figure imgf000022_0002
Figure imgf000022_0003
Air Air Air
Exemple 4 Exemple 5 (invention) (comparatif)
Figure imgf000022_0005
Air Air
* SiO2/AI2O3 : substance L5® (Merck KGaA).
Exemple 6 Exemple 7 Exemple 8 (comparatif) (comparatif) (comparatif)
Substrat + hard coat
ZrO2 27 nm
SiO2 21 nm
ZrO2 80 nm
SiO2 81 nm
Top coat
Figure imgf000022_0006
Figure imgf000022_0007
Air Air Air
Les sous-couches apparaissent en grisé. Les couches Hl apparaissent en gras.

Claims

REVENDICATIONS
1. Article d'optique à propriétés anti-reflets, comprenant un substrat et, en partant du substrat : - une sous-couche comprenant une couche à base de SiO2, ladite couche à base de SiO2 ayant une épaisseur supérieure ou égale à 75 nm et étant exempte d'AI2θ3 ; et - un revêtement anti-reflets multicouches comprenant un empilement d'au moins une couche de haut indice de réfraction et d'au moins une couche de bas indice de réfraction, caractérisé en ce que toutes les couches de bas indice de réfraction du revêtement anti-reflets comprennent un mélange de SiO2 et d'AI2O3, et en ce que les couches de haut indice de réfraction du revêtement anti-reflets ne sont pas des couches absorbant dans le visible comprenant un oxyde de titane sous- stœchiométrique et réduisant le facteur relatif de transmission dans le visible (Tv) de l'article d'optique d'au moins 10 % par rapport au même article ne comportant pas lesdites couches absorbant dans le visible.
2. Article selon la revendication 1 , caractérisé en ce que son facteur relatif de transmission dans le visible (Tv) est supérieur à 90 %.
3. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que son facteur moyen de réflexion par face de l'article dans le domaine visible (Rm) est inférieur à 2,5 %, mieux inférieur à 2 % et encore mieux inférieur à 1 %.
4. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que sa température critique est supérieure ou égale à 80 0C, mieux supérieure ou égale à 85 0C et encore mieux supérieure ou égale à 90 0C.
5. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite couche à base de SiO2 exempte d'AI2O3 a une épaisseur supérieure ou égale à 80 nm, de préférence supérieure ou égale à 100 nm, mieux supérieure ou égale à 120 nm.
6. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que toutes les couches de bas indice de réfraction du revêtement anti-reflets comprennent de 1 à 10 %, préférentiellement de 1 à 5 % en masse d'AI2O3 par rapport à la masse totale de SiO2 + AI2O3 dans ces couches.
7. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que les couches de haut indice de réfraction du revêtement anti-reflets comprennent au moins un matériau choisi parmi TiO2, PrTiO3, ZrO2 et leurs mélanges.
8. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une couche de haut indice de réfraction du revêtement anti-reflets est une couche à base de TiO2.
9. Article selon la revendication 8, caractérisé en ce que la couche à base de Tiθ2 a été déposée sous assistance ionique.
10. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement anti-reflets comprend une couche de TÏO2 et une couche de Zrθ2 déposées l'une sur l'autre.
11. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement anti-reflets comprend au moins une couche électriquement conductrice.
12. Article selon la revendication 11 , caractérisé en ce que l'épaisseur de la couche électriquement conductrice varie de 0,1 à 30 nm, mieux de 1 à 20 nm et encore mieux de 1 à 10 nm.
13. Article selon l'une quelconque des revendications 11 ou 12, caractérisé en ce que la couche électriquement conductrice est fabriquée à partir d'un oxyde métallique choisi parmi les oxydes d'indium, d'étain, de zinc et leurs mélanges.
14. Article selon la revendication 13, caractérisé en ce que l'oxyde métallique est l'oxyde d'étain-indium.
15. Article selon l'une quelconque des revendications 11 à 14, caractérisé en ce que la couche électriquement conductrice a été déposée sous assistance ionique.
16. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement anti-reflets comprend un empilement TÏO2 / Zrθ2 / couche électriquement conductrice.
17. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend, en partant du substrat, une sous-couche de Siθ2 d'épaisseur supérieure ou égale à 75 nm, une couche de Zrθ2 de 10 à 40 nm d'épaisseur, une couche de Siθ2/Al2θ3 de 10 à 40 nm d'épaisseur, une couche de Tiθ2 de 40 à 150 nm d'épaisseur, une couche de Zrθ2 de 10 à 30 nm d'épaisseur, une couche électriquement conductrice de 0,1 à 30 nm d'épaisseur et une couche de Siθ2/Al2θ3 de 40 à 150 nm d'épaisseur.
18. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat est un verre organique ou minéral.
19. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat est un verre organique ayant un coefficient de dilatation thermique de 50.10"6 0C"1 à 180.10"6 0C"1, et préférentiellement de 100.10"6 0C"1 à 180.10"6 0C"1.
20. Article selon l'une quelconque des revendications précédentes, caractérisé en ce que le substrat est revêtu d'une couche anti-abrasion et/ou anti-rayures, d'une couche de primaire anti-chocs, ou d'une couche de primaire anti-chocs revêtue d'une couche anti-abrasion et/ou anti-rayures.
21. Article selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est une lentille optique.
22. Procédé de fabrication d'un article d'optique à propriétés anti-reflets selon l'une quelconque des revendications 1 à 21 , caractérisé en ce que toutes les couches de la sous-couche puis toutes les couches du revêtement anti-reflets sont déposées par évaporation sous vide.
23. Procédé selon la revendication 22, caractérisé en ce que la surface du substrat est soumise avant le dépôt de la sous-couche à un traitement de nettoyage destiné à augmenter l'adhésion de la sous-couche choisi parmi un bombardement avec des espèces énergétiques, un traitement par décharge corona, par effluvage ou un traitement par plasma sous vide.
24. Procédé selon la revendication 23, caractérisé en ce que le traitement de nettoyage est un bombardement par faisceau d'ions.
PCT/FR2007/051537 2006-06-28 2007-06-26 Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication WO2008001011A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020087031620A KR101389372B1 (ko) 2006-06-28 2007-06-26 서브-층 및 내열성, 다층 반사방지성 코팅으로 피복된 광학물품 및 이의 제조방법
US12/306,228 US9625620B2 (en) 2006-06-28 2007-06-26 Optical article coated with a sub-layer and with a heat-resistant, multilayered antireflection coating, and method for producing same
BRPI0713984A BRPI0713984B1 (pt) 2006-06-28 2007-06-26 artigo de óptica e processo de fabricação de um artigo de óptica
CA2656492A CA2656492C (fr) 2006-06-28 2007-06-26 Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication
JP2009517351A JP5424875B2 (ja) 2006-06-28 2007-06-26 下地層および耐温度性多層反射防止被覆層によって被覆された光学製品およびその製造方法
AU2007264771A AU2007264771B2 (en) 2006-06-28 2007-06-26 Optical article coated with an underlayer and with a temperature-resistant multi-layer anti-reflection coating, and manufacturing method
ES07803952.6T ES2553886T3 (es) 2006-06-28 2007-06-26 Artículo de óptica revestido de una subcapa y de un revestimiento antirreflectante multicapas resistente a la temperatura, y procedimiento de fabricación
EP07803952.6A EP2033021B1 (fr) 2006-06-28 2007-06-26 Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0652690 2006-06-28
FR0652690A FR2903197B1 (fr) 2006-06-28 2006-06-28 Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication

Publications (2)

Publication Number Publication Date
WO2008001011A2 true WO2008001011A2 (fr) 2008-01-03
WO2008001011A3 WO2008001011A3 (fr) 2008-03-06

Family

ID=37681388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/051537 WO2008001011A2 (fr) 2006-06-28 2007-06-26 Article d'optique revetu d'une sous-couche et d'un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication

Country Status (11)

Country Link
US (1) US9625620B2 (fr)
EP (1) EP2033021B1 (fr)
JP (1) JP5424875B2 (fr)
KR (1) KR101389372B1 (fr)
CN (2) CN104076413B (fr)
AU (1) AU2007264771B2 (fr)
BR (1) BRPI0713984B1 (fr)
CA (1) CA2656492C (fr)
ES (1) ES2553886T3 (fr)
FR (1) FR2903197B1 (fr)
WO (1) WO2008001011A2 (fr)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072635A (ja) * 2008-08-18 2010-04-02 Seiko Epson Corp 光学物品およびその製造方法
WO2010049887A1 (fr) * 2008-10-28 2010-05-06 Essilor International (Compagnie Generale D'optique) Procédé et appareil de fabrication de substrats ophtalmiques revêtus
JP2011512553A (ja) * 2008-02-14 2011-04-21 インド インテルナシオナル, エス.エー. 硬化層、干渉性多層および両層に挟まれている硬質層を含みポリマーに基づくレンズ、ならびに対応する製造方法
EP2466340A1 (fr) * 2010-12-15 2012-06-20 Seiko Epson Corporation Article optique et procédé de production de l'article optique
JP2012522259A (ja) * 2009-03-27 2012-09-20 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック 酸化スズに基づく導電膜を有する反射防止または反射コーティングを塗膜した光学物品、および製造方法
EP2560031A1 (fr) * 2010-05-20 2013-02-20 Tokai Optical Co., Ltd. Produit optique en plastique et lentille en plastique pour lunettes
WO2013098531A1 (fr) 2011-12-28 2013-07-04 Corporation De L'ecole Polytechnique De Montreal Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps
US8789944B2 (en) 2010-08-02 2014-07-29 Hoya Lens Manufacturing Philippines Inc. Optical article and optical article production method
EP2804026A4 (fr) * 2012-02-08 2015-08-19 Tokai Optical Co Ltd Produit optique et son procédé de fabrication
WO2015166144A1 (fr) 2014-04-28 2015-11-05 Corporation De L'ecole Polytechnique De Montreal Article à propriétés thermomécaniques optimisées comportant une couche de nature titano-organique
EP3392680A1 (fr) 2017-04-18 2018-10-24 Essilor International Article optique présentant un revêtement interférentiel résistant à l'abrasion et à la température ayant un rapport d'épaisseur optimisé des couches à indice de réfraction faible et élevé
EP3640687A1 (fr) 2018-10-18 2020-04-22 Essilor International Article optique comportant un revêtement interférentiel avec une haute résistance à l'abrasion
EP3640688A1 (fr) 2018-10-18 2020-04-22 Essilor International Article optique comportant un revêtement interférentiel ayant une meilleure résistance à l'abrasion
EP3654071A1 (fr) 2018-11-19 2020-05-20 Essilor International Lentille optique dotée d'un revêtement interférentiel et système multicouche pour améliorer la résistance à l'abrasion
EP3654072A1 (fr) 2018-11-19 2020-05-20 Essilor International Lentille optique doté d'un revêtement interférentiel de filtrage et système multicouche pour améliorer la résistance à l'abrasion
WO2020104381A2 (fr) 2018-11-19 2020-05-28 Essilor International Lentille optique ayant un revêtement de miroir et un système multicouche permettant d'améliorer la résistance à l'abrasion
US10732324B2 (en) 2015-08-05 2020-08-04 Essilor International Method for laminating an interference coating comprising an organic/inorganic layer, and item thus obtained
EP3693766A1 (fr) 2019-02-05 2020-08-12 Corporation de L'Ecole Polytechnique de Montreal Article revêtu d'une couche à faible indice de réfraction basé sur des composés d'organosilicium fluorés
WO2022268795A1 (fr) 2021-06-21 2022-12-29 Essilor International Lentille optique ayant un revêtement interférentiel et un système multicouche pour améliorer la résistance à l'abrasion
US11573431B1 (en) 2016-09-29 2023-02-07 Essilor International Optical lens comprising an antireflective coating with multiangular efficiency
US11707921B2 (en) 2015-08-05 2023-07-25 Essilor International Item having improved thermomechanical properties, comprising an organic-inorganic layer
WO2023208941A1 (fr) 2022-04-26 2023-11-02 Essilor International Article optique photochromique ayant un revêtement miroir
WO2024074596A1 (fr) 2022-10-05 2024-04-11 Essilor International Procédé de durcissement d'un substrat à base de polythiouréthane avec un catalyseur à base de sel
EP4369062A1 (fr) 2022-11-14 2024-05-15 Essilor International Article revêtu d'une couche à faible indice de réfraction à base de composés silsesquioxanes organiques

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231171A (ja) * 2009-03-04 2010-10-14 Seiko Epson Corp 光学物品およびその製造方法
JP5588135B2 (ja) * 2009-08-10 2014-09-10 ホーヤ レンズ マニュファクチャリング フィリピン インク 光学物品の製造方法
CN102029739A (zh) * 2010-10-09 2011-04-27 杭州科汀光学技术有限公司 一种高导热性和低应变的光学多层膜
FR2968774B1 (fr) 2010-12-10 2013-02-08 Essilor Int Article d'optique comportant un revetement antireflet a faible reflexion dans le domaine ultraviolet et le domaine visible
FR2976680B1 (fr) 2011-06-14 2013-06-28 Essilor Int Procede de fabrication de lentilles
JPWO2013132963A1 (ja) 2012-03-09 2015-07-30 日本電気硝子株式会社 展示物又は表示物用カバー部材
US10330953B2 (en) * 2012-05-16 2019-06-25 Essilor International Ophthalmic lens
JPWO2014199991A1 (ja) * 2013-06-11 2017-02-23 日本電気硝子株式会社 カバー部材、表示装置及びカバー部材の製造方法
WO2015000534A1 (fr) * 2013-07-05 2015-01-08 Essilor International (Compagnie Generale D'optique) Article optique comprenant un revêtement antireflets ayant une très faible réflexion dans la région du visible
US11267973B2 (en) * 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
EP3274485B1 (fr) * 2015-03-25 2023-08-16 Essilor International Anti-reflective sputtering stack with low rv and low ruv
JP2019144552A (ja) * 2018-02-23 2019-08-29 三井化学株式会社 光学部材および光学機器
EP3605189A1 (fr) 2018-08-01 2020-02-05 Schott AG Composite stratifié optique ayant une épaisseur de revêtement inférieure à un seuil et son application dans la réalité augmentée
DE102019211258A1 (de) * 2018-08-01 2020-03-19 Schott Ag Geschichteter optischer verbundwerkstoff mit zwei gruppierungen von beschichtungsschichten und seine augmented-reality-anwendung
US11529230B2 (en) 2019-04-05 2022-12-20 Amo Groningen B.V. Systems and methods for correcting power of an intraocular lens using refractive index writing
US11678975B2 (en) 2019-04-05 2023-06-20 Amo Groningen B.V. Systems and methods for treating ocular disease with an intraocular lens and refractive index writing
US11944574B2 (en) 2019-04-05 2024-04-02 Amo Groningen B.V. Systems and methods for multiple layer intraocular lens and using refractive index writing
US11564839B2 (en) 2019-04-05 2023-01-31 Amo Groningen B.V. Systems and methods for vergence matching of an intraocular lens with refractive index writing
US11583389B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for correcting photic phenomenon from an intraocular lens and using refractive index writing
US11583388B2 (en) 2019-04-05 2023-02-21 Amo Groningen B.V. Systems and methods for spectacle independence using refractive index writing with an intraocular lens
EP3798687A1 (fr) 2019-09-27 2021-03-31 Schott AG Composite optique stratifié ayant une teneur réduite en couches hautement réfractives et son application dans la réalité augmentée
EP4139721A1 (fr) 2020-04-23 2023-03-01 Essilor International Revêtement anti-abrasion à base d'eau
WO2022195442A1 (fr) * 2021-03-17 2022-09-22 3M Innovative Properties Company Ferrules optiques
WO2023158442A1 (fr) * 2022-02-21 2023-08-24 Applied Materials, Inc. Film multicouche antireflet et procédé de fabrication d'un film multicouche antireflet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511101A (ja) * 1991-06-28 1993-01-19 Hoya Corp 反射防止膜を有する光学部材
JPH0534502A (ja) * 1991-07-31 1993-02-12 Hoya Corp 反射防止膜を有する光学部材
WO1996041215A1 (fr) * 1995-06-07 1996-12-19 Sola International, Inc. Revetement antireflet et electroconducteur
WO2001055752A1 (fr) * 2000-01-26 2001-08-02 Sola International Holdings Limited Revetement antistatique et antireflechissant
US20020060848A1 (en) * 2000-08-29 2002-05-23 Takeshi Mitsuishi Optical element having antireflection film
WO2005059603A1 (fr) * 2003-12-17 2005-06-30 Essilor International (Compagnie Generale D'optique) Article d'optique revetu d'un revetement anti-reflets multicouches absorbant dans le visible et procede de fabrication
US20050219724A1 (en) * 2004-03-31 2005-10-06 Konica Minolta Opto, Inc. Optical element having a dielectric multilayer film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242101A (ja) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd 反射防止膜
CN2207163Y (zh) * 1994-08-12 1995-09-13 杨永林 增视护目眼镜片
IT1282106B1 (it) * 1996-01-31 1998-03-12 Sola Optical Italia S P A Substrato trasparente fotocromatico comprendente un rivestimento superficiale antiriflesso
TWI246460B (en) * 1999-01-14 2006-01-01 Sumitomo Chemical Co Anti-reflection film
JP2001013305A (ja) * 1999-06-29 2001-01-19 Minolta Co Ltd 反射防止膜及び光学装置
JP3545359B2 (ja) * 2001-04-27 2004-07-21 Hoya株式会社 反射防止膜を有する光学部材
JP4848583B2 (ja) * 2000-11-21 2011-12-28 大日本印刷株式会社 ハードコート層を有するフィルムの製造方法
FR2817267B1 (fr) * 2000-11-28 2003-08-29 Essilor Int Procede de depot de couche anti-reflets a froid sur substrat organique
JP3988504B2 (ja) 2002-03-29 2007-10-10 セイコーエプソン株式会社 眼鏡用プラスチックレンズ及びその製造方法
JP2004341052A (ja) * 2003-05-13 2004-12-02 Ito Kogaku Kogyo Kk 光学要素
TWI339741B (en) * 2003-06-26 2011-04-01 Zeon Corp Optical laminated film, polarizer and optical article
CN1207580C (zh) * 2003-07-11 2005-06-22 中国科学院上海光学精密机械研究所 宽角度宽光谱反射膜及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0511101A (ja) * 1991-06-28 1993-01-19 Hoya Corp 反射防止膜を有する光学部材
JPH0534502A (ja) * 1991-07-31 1993-02-12 Hoya Corp 反射防止膜を有する光学部材
WO1996041215A1 (fr) * 1995-06-07 1996-12-19 Sola International, Inc. Revetement antireflet et electroconducteur
WO2001055752A1 (fr) * 2000-01-26 2001-08-02 Sola International Holdings Limited Revetement antistatique et antireflechissant
US20020060848A1 (en) * 2000-08-29 2002-05-23 Takeshi Mitsuishi Optical element having antireflection film
WO2005059603A1 (fr) * 2003-12-17 2005-06-30 Essilor International (Compagnie Generale D'optique) Article d'optique revetu d'un revetement anti-reflets multicouches absorbant dans le visible et procede de fabrication
US20050219724A1 (en) * 2004-03-31 2005-10-06 Konica Minolta Opto, Inc. Optical element having a dielectric multilayer film

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512553A (ja) * 2008-02-14 2011-04-21 インド インテルナシオナル, エス.エー. 硬化層、干渉性多層および両層に挟まれている硬質層を含みポリマーに基づくレンズ、ならびに対応する製造方法
JP2010072635A (ja) * 2008-08-18 2010-04-02 Seiko Epson Corp 光学物品およびその製造方法
CN102197004B (zh) * 2008-10-28 2014-04-30 埃西勒国际通用光学公司 标记涂覆的眼科基材的方法和设备
WO2010049887A1 (fr) * 2008-10-28 2010-05-06 Essilor International (Compagnie Generale D'optique) Procédé et appareil de fabrication de substrats ophtalmiques revêtus
CN102197004A (zh) * 2008-10-28 2011-09-21 埃西勒国际通用光学公司 标记涂覆的眼科基材的方法和设备
JP2020034924A (ja) * 2009-03-27 2020-03-05 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) 酸化スズに基づく導電膜を有する反射防止または反射コーティングを塗膜した光学物品、および製造方法
JP2012522259A (ja) * 2009-03-27 2012-09-20 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック 酸化スズに基づく導電膜を有する反射防止または反射コーティングを塗膜した光学物品、および製造方法
JP2016028279A (ja) * 2009-03-27 2016-02-25 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique 酸化スズに基づく導電膜を有する反射防止または反射コーティングを塗膜した光学物品、および製造方法
EP3190436A1 (fr) 2009-03-27 2017-07-12 Essilor International (Compagnie Generale D'optique) Article d optique revêtu d'un revêtement antireflet ou réfléchissant comprenant une couche électriquement conductrice à base d oxyde d étain et procédé de fabrication
JP2017215591A (ja) * 2009-03-27 2017-12-07 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique 酸化スズに基づく導電膜を有する反射防止または反射コーティングを塗膜した光学物品、および製造方法
EP2560031A1 (fr) * 2010-05-20 2013-02-20 Tokai Optical Co., Ltd. Produit optique en plastique et lentille en plastique pour lunettes
EP2560031A4 (fr) * 2010-05-20 2013-11-06 Tokai Optical Co Ltd Produit optique en plastique et lentille en plastique pour lunettes
US9022561B2 (en) 2010-05-20 2015-05-05 Tokai Optical Co., Ltd. Plastic optical product and plastic lens for spectacles
US8789944B2 (en) 2010-08-02 2014-07-29 Hoya Lens Manufacturing Philippines Inc. Optical article and optical article production method
EP2466340A1 (fr) * 2010-12-15 2012-06-20 Seiko Epson Corporation Article optique et procédé de production de l'article optique
US20120154916A1 (en) * 2010-12-15 2012-06-21 Seiko Epson Corporation Optical Article and Method for Producing Optical Article
WO2013098531A1 (fr) 2011-12-28 2013-07-04 Corporation De L'ecole Polytechnique De Montreal Article revetu d'un revetement interferentiel ayant des proprietes stables dans le temps
EP2804026A4 (fr) * 2012-02-08 2015-08-19 Tokai Optical Co Ltd Produit optique et son procédé de fabrication
WO2015166144A1 (fr) 2014-04-28 2015-11-05 Corporation De L'ecole Polytechnique De Montreal Article à propriétés thermomécaniques optimisées comportant une couche de nature titano-organique
US10585211B2 (en) 2014-04-28 2020-03-10 Corporation De L'ecole Polytechnique De Montreal Article having optimised thermomechanical properties, comprising a layer of titano-organic nature
US10732324B2 (en) 2015-08-05 2020-08-04 Essilor International Method for laminating an interference coating comprising an organic/inorganic layer, and item thus obtained
US11707921B2 (en) 2015-08-05 2023-07-25 Essilor International Item having improved thermomechanical properties, comprising an organic-inorganic layer
US11573431B1 (en) 2016-09-29 2023-02-07 Essilor International Optical lens comprising an antireflective coating with multiangular efficiency
WO2018192998A1 (fr) 2017-04-18 2018-10-25 Essilor International Article optique comportant un revêtement interférentiel résistant à l'abrasion et à la température ayant un rapport d'épaisseur optimisé de couches à indice de réfraction faible et élevé
EP3392680A1 (fr) 2017-04-18 2018-10-24 Essilor International Article optique présentant un revêtement interférentiel résistant à l'abrasion et à la température ayant un rapport d'épaisseur optimisé des couches à indice de réfraction faible et élevé
EP3640687A1 (fr) 2018-10-18 2020-04-22 Essilor International Article optique comportant un revêtement interférentiel avec une haute résistance à l'abrasion
WO2020079197A1 (fr) 2018-10-18 2020-04-23 Essilor International Article optique pourvu d'un revêtement interférentiel doué d'une résistance à l'abrasion améliorée
EP3640688A1 (fr) 2018-10-18 2020-04-22 Essilor International Article optique comportant un revêtement interférentiel ayant une meilleure résistance à l'abrasion
WO2020079241A1 (fr) 2018-10-18 2020-04-23 Essilor International Article optique doté d'un revêtement interférentiel ayant une haute résistance à l'abrasion
WO2020104381A2 (fr) 2018-11-19 2020-05-28 Essilor International Lentille optique ayant un revêtement de miroir et un système multicouche permettant d'améliorer la résistance à l'abrasion
WO2020104391A1 (fr) 2018-11-19 2020-05-28 Essilor International Lentille optique ayant un revêtement interférentiel et un système multicouche pour améliorer la résistance à l'abrasion
EP3654071A1 (fr) 2018-11-19 2020-05-20 Essilor International Lentille optique dotée d'un revêtement interférentiel et système multicouche pour améliorer la résistance à l'abrasion
WO2020104392A2 (fr) 2018-11-19 2020-05-28 Essilor International Lentille optique comportant un revêtement de filtrage interférentiel et un système multicouche d'amélioration de la résistance à l'abrasion
EP3654072A1 (fr) 2018-11-19 2020-05-20 Essilor International Lentille optique doté d'un revêtement interférentiel de filtrage et système multicouche pour améliorer la résistance à l'abrasion
EP3693766A1 (fr) 2019-02-05 2020-08-12 Corporation de L'Ecole Polytechnique de Montreal Article revêtu d'une couche à faible indice de réfraction basé sur des composés d'organosilicium fluorés
WO2020161128A1 (fr) 2019-02-05 2020-08-13 Corporation De L'ecole Polytechnique De Montreal Article revêtu d'une couche à faible indice de réfraction à base de composés organosiliciques fluorés
WO2022268795A1 (fr) 2021-06-21 2022-12-29 Essilor International Lentille optique ayant un revêtement interférentiel et un système multicouche pour améliorer la résistance à l'abrasion
WO2023208941A1 (fr) 2022-04-26 2023-11-02 Essilor International Article optique photochromique ayant un revêtement miroir
WO2024074596A1 (fr) 2022-10-05 2024-04-11 Essilor International Procédé de durcissement d'un substrat à base de polythiouréthane avec un catalyseur à base de sel
EP4369062A1 (fr) 2022-11-14 2024-05-15 Essilor International Article revêtu d'une couche à faible indice de réfraction à base de composés silsesquioxanes organiques
WO2024104972A1 (fr) 2022-11-14 2024-05-23 Essilor International Article revêtu d'une couche à faible indice de réfraction à base de composés silsesquioxane organiques

Also Published As

Publication number Publication date
CN104076413B (zh) 2017-05-31
ES2553886T3 (es) 2015-12-14
CA2656492A1 (fr) 2008-01-03
AU2007264771A1 (en) 2008-01-03
AU2007264771B2 (en) 2014-01-09
WO2008001011A3 (fr) 2008-03-06
KR101389372B1 (ko) 2014-04-29
EP2033021A2 (fr) 2009-03-11
EP2033021B1 (fr) 2015-08-26
JP5424875B2 (ja) 2014-02-26
CN104076413A (zh) 2014-10-01
FR2903197A1 (fr) 2008-01-04
BRPI0713984A2 (pt) 2012-11-20
BRPI0713984A8 (pt) 2018-07-31
CN101512390A (zh) 2009-08-19
US9625620B2 (en) 2017-04-18
KR20090025277A (ko) 2009-03-10
CA2656492C (fr) 2016-06-07
US20120075705A1 (en) 2012-03-29
FR2903197B1 (fr) 2009-01-16
BRPI0713984B1 (pt) 2018-10-23
JP2009541810A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
EP2033021B1 (fr) Article d&#39;optique revetu d&#39;une sous-couche et d&#39;un revetement anti-reflets multicouches resistant a la temperature, et procede de fabrication
EP2167997B1 (fr) Article d&#39;optique revetu d&#39;un revetement antireflet comprenant une sous-couche partiellement formee sous assistance ionique et procede de fabrication
EP2122392B1 (fr) Procede de fabrication d&#39;un article d&#39;optique revetu d&#39;un revetement anti-reflets ou reflechissant ayant des proprietes d&#39;adhesion et de resistance a l&#39;abrasion ameliorees
EP3190436B1 (fr) Article d optique revêtu d&#39;un revêtement antireflet ou réfléchissant comprenant une couche électriquement conductrice à base d oxyde d étain et procédé de fabrication
CA2862139C (fr) Article revetu d&#39;un revetement interferentiel ayant des proprietes stables dans le temps
FR2968774A1 (fr) Article d&#39;optique comportant un revetement antireflet a faible reflexion dans le domaine ultraviolet et le domaine visible
EP3237939B1 (fr) Article optique comportant un revêtement interférentiel à forte réflexion dans le domaine de l&#39;ultraviolet
EP3500879A1 (fr) Lentille ophtalmique a revetement multicouche reflechissant et anti-abrasion, et son procede de fabrication

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780032467.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007803952

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07803952

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2656492

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007264771

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2009517351

Country of ref document: JP

Ref document number: 1020087031620

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

ENP Entry into the national phase

Ref document number: 2007264771

Country of ref document: AU

Date of ref document: 20070626

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12306228

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0713984

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081226