WO2007148519A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2007148519A1
WO2007148519A1 PCT/JP2007/061119 JP2007061119W WO2007148519A1 WO 2007148519 A1 WO2007148519 A1 WO 2007148519A1 JP 2007061119 W JP2007061119 W JP 2007061119W WO 2007148519 A1 WO2007148519 A1 WO 2007148519A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
red
pixels
pixel
display device
Prior art date
Application number
PCT/JP2007/061119
Other languages
English (en)
French (fr)
Inventor
Kozo Nakamura
Shun Ueki
Tokio Taguchi
Akiko Itou
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US12/303,383 priority Critical patent/US7864271B2/en
Priority to CN2007800184376A priority patent/CN101449308B/zh
Priority to EP07744507.0A priority patent/EP2040243B1/en
Priority to JP2008522371A priority patent/JP4528859B2/ja
Publication of WO2007148519A1 publication Critical patent/WO2007148519A1/ja
Priority to US12/835,052 priority patent/US8497957B2/en
Priority to US13/928,550 priority patent/US8994901B2/en
Priority to US14/639,146 priority patent/US9812087B2/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/026Control of mixing and/or overlay of colours in general
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0456Pixel structures with a reflective area and a transmissive area combined in one pixel, such as in transflectance pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/42Fluorescent layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/18Luminescent screens
    • H01J2329/30Shape or geometrical arrangement of the luminescent material
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/30Picture reproducers using solid-state colour display devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a display device. More specifically, the present invention relates to a display device suitably used for a liquid crystal display device or the like.
  • one pixel is composed of three sub-pixels that display red, green, and blue, which are the three primary colors of light, and color display is possible.
  • the displayable color range color reproduction range
  • the displayable color range can be expanded by adjusting the chromaticity of each sub-pixel so that the saturation is high. Since the transmittance of the color filter arranged in each sub-pixel is reduced, the light use efficiency is reduced and the brightness of the white display is insufficient.
  • a multi-primary color display device has been proposed in which yellow sub-pixels with high transmittance of the color filter are arranged in red, green, and blue sub-pixels (see, for example, Patent Document 1). ).
  • a liquid crystal display device in which a display surface 500w is configured by a pixel 11w including four sub-pixels 5Rw, 5Gw, 5Bw, and 5Yw for displaying red, green, blue, and yellow is disclosed.
  • a display surface 500w is configured by a pixel 11w including four sub-pixels 5Rw, 5Gw, 5Bw, and 5Yw for displaying red, green, blue, and yellow.
  • a color display device that includes a second repeating arrangement in which sub-pixels of four colors of green, cyan, and yellow are arranged (see, for example, Patent Document 2). According to these liquid crystal display devices, since yellow sub-pixels with high color filter transmittance are added, it is possible to suppress a decrease in brightness of white display and increase the number of primary colors used for display. As a result, the color reproduction range can be expanded.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-209047
  • Patent Document 2 US Patent Application Publication No. 2005/0134785
  • each open area area of a region (active region, effective region) used for display) is equal from red, green, blue and yellow sub-pixels.
  • a display device having a display surface composed of pixels a display with a wide color reproduction range can be realized, but the displayed red becomes dark red, that is, dark red, and visibility is impaired. I saw that and started.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a display device capable of displaying a wide color reproduction range and displaying bright red. is there.
  • the present inventors have made various studies on a transmissive liquid crystal display device in which a display surface is configured by pixels composed of red, green, blue, and yellow sub-pixels.
  • the brightness of each display color is shown in Table 1.
  • a conventional three-primary-color transmissive type in which a display surface 500x is configured by pixels l lx composed of three red, green, and blue sub-pixels 5Rx, 5Gx, and 5Bx having the same opening area.
  • the brightness of each display color is as shown in Table 2.
  • Tables 1 and 2 show the lightness of six colors of red, green, blue, yellow, cyan, and magenta as typical display colors, respectively.
  • the brightness of each display color corresponds to the Y value in the CIE 1931 (standard) color system (XYZ color system), and is the value when the brightness of white display is 100.
  • a color filter is disposed in each sub-pixel of the transmissive liquid crystal display device, and any transmissive liquid crystal display device having a spectral transmittance shown in FIG. 7 is used.
  • transmissive liquid crystal display devices perform display using a backlight (the light source is a cold cathode fluorescent tube (CCFT, CCFL)).
  • the brightness of yellow display varies, but this is because when yellow display is performed without turning on the yellow subpixel 5Yw and without turning on the red and green subpixels 5Rw and 5Gw, The lightness of yellow display is the lowest value (48.0), and when yellow display is performed by turning on red and green subpixels 5Rw and 5Gw in addition to yellow subpixel 5 Yw, the brightness of yellow display Becomes the highest value (92.4). When yellow display is performed by lighting the red, green and yellow sub-pixels 5Rw, 5Gw and 5Yw at appropriate ratios, the brightness of the yellow display is intermediate. Value.
  • the conventional four-primary-color transmissive liquid crystal display device is a conventional three-primary-color transmissive liquid crystal display for red display, green display, and blue display. I found that it was lower than the device. This is because by increasing the number of primary colors used for display, the number of sub-pixels per pixel increases and the area per sub-pixel becomes relatively small. In other words, by increasing the number of primary colors used for display from three to four, the area of each sub-pixel becomes 3/4. Furthermore, when the reduction of the brightness of each display color was examined, the visibility of green display and blue display is not impaired even if the brightness decreases, but the brightness of red display is reduced. As a result, it has been found that the visibility is easily lost because it becomes dark red, that is, dark red.
  • Fig. 38 shows the spectral characteristics of the light source used for the display of the conventional transmissive liquid crystal display device of the four primary colors
  • Fig. 9 shows the spectral characteristics of the light source used for the display of the conventional transmissive liquid crystal display device of the three primary colors.
  • the conventional transmissive liquid crystal display device of the four primary colors Since the element has yellow sub-pixels in addition to the red, green and blue sub-pixels, the white display becomes yellow when a light source having normal spectral characteristics as shown in FIG. 9 is used. Therefore, in order to adjust the color tone of the white display, as shown in FIG.
  • a light source having a relatively strong bluish color temperature and a high color temperature is used.
  • high color temperature is achieved by increasing blue light emission and reducing green and red light emission.
  • white light emitting diodes LEDs
  • the color temperature is increased by increasing the blue component and decreasing the yellow component.
  • red, green and blue LEDs are used, the color temperature is increased by decreasing the green and red components and increasing the blue component, as in CCFT.
  • the color temperature of the light source must be increased to adjust the color tone of white display, and the yellow component and the red component of the light source must be reduced. Therefore, the intensity of the red component of the light source is decreasing.
  • the visibility was impaired by increasing the number of primary colors used for display, in particular, by reducing the brightness of red. .
  • a high color temperature light source is used to adjust the color tone of the white display, the brightness of the red display is further reduced, and accordingly, the visibility is further impaired.
  • the inventors of the present invention have made extensive studies to display bright red by maximizing the aperture area of the red sub-pixel among the pixels composed of red, green, blue, and yellow sub-pixels. As a result, it has been found that visibility can be improved.
  • Such a function effect is theoretically not only a transmissive display device in which a display surface is configured by pixels including red, green, blue, and yellow sub-pixels, but also red, green, blue, and yellow.
  • a transmissive liquid crystal display device in which the display surface is configured by pixels having magenta sub-pixels, and is not limited to a transmissive liquid crystal display device.
  • Other display systems such as reflective / transmission type display, cathode ray tube (CRT), organic electroluminescence display (OELD), plasma display plane (Plasma)
  • Various display devices such as Display Panel (PDP) and Field Emission Display (FED) such as Surface-conduction Electron-emitter Display (SED). It can also be obtained in the same manner even if As a result, the inventors have arrived at the present invention by conceiving that the above problems can be solved brilliantly.
  • the present invention is a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, and the red sub-pixel has a maximum aperture area. (Hereinafter also referred to as “first display device”).
  • the first to twelfth display devices of the present invention will be described in order, but the first to twelfth display devices of the present invention are capable of displaying a wide color reproduction range in common portions. It is capable of displaying bright red, and since this part surpasses the prior art, it is linked to form a single general inventive concept.
  • the display surface is configured by pixels having red, green, blue, and yellow sub-pixels.
  • pixel refers to the minimum element of the display surface to which color or brightness is independently assigned in a display image
  • sub-pixel refers to a single color point that constitutes a pixel.
  • the combination of sub-pixels constituting a pixel may not be the same for all pixels. For example, red, green, yellow, and two blues with different color characteristics ("first blue” and "second Blue ”)), the pixels having red, green, first blue, and yellow subpixels, red, green, second blue, and yellow
  • the pixels having the sub-pixels may constitute the display surface.
  • a pixel is composed of sub-pixels of a plurality of colors, and expresses a desired color by combining a plurality of colors of light.
  • the pixels include sub-pixels that display yellow in addition to sub-pixels that display red, green, and blue. That is, the first display device of the present invention has more than three primary colors used for display, and therefore can perform display with a wider color reproduction range than a display device having three primary colors.
  • the pixels may have magenta sub-pixels in addition to the red, green, blue, and yellow sub-pixels. However, from the viewpoint of the transmittance of the white color filter, red, green, blue, and yellow It is preferred to have only sub-pixels.
  • magenta sub-pixels are included, the transmittance of the magenta sub-pixels is low, so there is a possibility that the light use efficiency of the color filter cannot be increased. Further, even if there is no magenta sub-pixel, it is possible to display magenta with high color purity by increasing the color purity of the red and blue sub-pixels.
  • the pixel configuration is not particularly limited, and examples include a stripe arrangement, a diagonal arrangement, and a square arrangement.
  • the red sub-pixel has the largest opening area. As described above, when the opening areas of red, green, blue, and yellow are equal, the visibility of the display device may be impaired due to a decrease in the brightness of red.
  • the red sub-pixel since the red sub-pixel has a larger aperture area than the sub-pixels of other colors, the brightness of red display can be improved, and as a result, the visibility of the display device can be improved. it can.
  • the “opening area” refers to the area of a region (active region or effective region) used for display.
  • the ratio of the aperture area to the area of the sub-pixel is constant among all sub-pixels, and the sub-pixel (to increase the aperture area relatively)
  • the area of the sub pixel and the ratio of the opening area to the sub pixel are made constant among all the sub pixels, and the sub pixel (the opening area is For example, a method of providing a larger number of sub-pixels to be relatively larger than other sub-pixels. In order not to make the structure complicated, the method (1) is preferred.
  • the method (1) can suppress an increase in the number of switching elements such as thin film transistors (TFTs) that drive each sub-pixel.
  • the brightness of red display is preferably 12% or more, more preferably 15% or more with respect to the brightness of white display.
  • the brightness of red display is preferably 30% or less of the brightness of white display, more preferably 25% or less.
  • the pixel capacitance of each sub-pixel is greatly different. That is, if the aperture area of each sub-pixel is greatly different, the charging rate, the amount of pixel potential drawn by the gate signal, and the amount of fluctuation of the pixel potential by the source signal differ greatly between the sub-pixels. There is a risk of defects such as crosstalk. Therefore, it is preferable that the opening area of the red sub-pixel is not more than twice the opening area of the other sub-pixel having the smallest opening area. However, the above-mentioned defects may be alleviated by appropriately designing the TFT size, auxiliary capacitance, etc. in consideration of the difference in pixel capacitance.
  • the configuration of the first display device of the present invention includes other components as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as components. There is no particular limitation on whether or not it is present.
  • the size relationship of the aperture areas of the sub-pixels constituting the pixel is such that the aperture area of the red sub-pixel is the largest, and the aperture area of the sub-pixels other than red is the red sub-pixel. There is no particular limitation as long as it is smaller than the opening area of the pixel.
  • the first display device of the present invention is a transmissive liquid crystal display that performs display using a knock light that is preferably displayed using a backlight and a light source device such as Z or a front light.
  • a light source device such as Z or a front light.
  • reflective liquid crystal display device that displays using a front light reflective liquid crystal display device that performs transmissive display using a backlight and performs reflective display using external light and / or front light
  • the chromaticity of the white display of the first display device can be easily optimized by adjusting the spectral characteristics of the light source used for display. it can.
  • the type of backlight is not particularly limited, and it may be a direct type or an edge light type.
  • the light source is not particularly limited, and for example, a white light emitting diode (LED), RGB-LED, cold cathode fluorescent tube (CCFT), hot cathode fluorescent tube (HCFT), organic EL, or the like can be used.
  • each subpixel is preferably provided with a filter that selectively transmits light in a specific wavelength range (hereinafter also referred to as “color filter”).
  • the color of the sub-pixel is defined based on the spectral characteristics of the color filter.
  • the material of the color filter is not particularly limited, and examples thereof include a resin dyed with a dye, a resin in which a pigment is dispersed, and a fluid material (ink) in which a pigment is dispersed.
  • the method for forming the color filter is not particularly limited. For example, a dyeing method, a pigment dispersion method, an electrodeposition method, a printing method, an ink jet method, a color sensitive material method (“transfer method”, “dry film lamination (DF)
  • the five colors of the sub-pixel are defined as follows.
  • the following colors are used, and preferably the main wavelength is 600 nm or more and 640 nm or less.
  • the color purity of “red” From the viewpoint, it is preferably 75% or more and 97% or less.
  • “green” refers to a color having a dominant wavelength of 490 nm to 555 nm, preferably a color having a dominant wavelength of 510 nm to 550 nm. From the same point of view, the color purity of “green” is preferably 50% or more and 80% or less.
  • “Blue” means a color having a dominant wavelength of 450 nm to 490 nm, preferably a color having a dominant wavelength of 450 nm to 475 nm. From the same point of view, the color purity of “blue” is preferably 50% or more and 95% or less. “Yellow” refers to a color having a dominant wavelength of 565 nm to 580 nm, preferably a color having a dominant wavelength of 570 nm to 580 nm. The color purity of “yellow” is preferably 90% or more and 97% or less from the same viewpoint.
  • Magnetica refers to a color having a complementary dominant wavelength of 495 nm to 560 nm, preferably a color having a complementary dominant wavelength of 500 nm to 555 nm.
  • the color purity of “magenta” is preferably 60% or more and 80% or less from the same viewpoint.
  • the dominant wavelength and the complementary dominant wavelength roughly represent the hue, and the color purity roughly represents the saturation.
  • the color purity is measured by measuring the chromaticity coordinates of each filter when a light source actually used in a display device is used as the light source with a spectroradiometer or the like, and measuring the chromaticity coordinates of the white point (0.3333). 0.3333), and the calculation method using the chromaticity coordinates of each filter and the chromaticity coordinates of the point where the straight line connecting the white point and the chromaticity point of the filter intersects the spectrum locus.
  • the green, blue and yellow sub-pixels preferably have the smallest opening area. That is, it is preferable that the green, blue, and yellow sub-pixels have the same and minimum opening area. According to this, since the aperture areas of the green, blue, and yellow sub-pixels are approximately the same, the brightness of red display can be improved.
  • the pixel preferably has a sub-pixel having an opening area smaller than that of the blue sub-pixel.
  • the magnitude relationship between the transmittance of each color filter installed in the red, green, blue and yellow sub-pixels and the transmittance of the white color filter (average transmittance of the color filter) is the transmittance.
  • the red color filter and The magnitude relationship of the transmittance with the blue color filter is reversed, and may be yellow, green, white, blue, red in order from the highest transmittance. According to this size relationship, by minimizing the aperture area of the blue sub-pixel, the aperture area of the other sub-pixel can be increased, and the transmittance of the color filter for white display can be increased.
  • the green sub-pixel has a minimum aperture area.
  • the transmittance of the white color filter decreases when the aperture area of the green sub-pixel is minimized.
  • the brightness of the white display of the display device can be improved.
  • the yellow sub-pixel has the smallest opening area.
  • the transmittance of the white color filter is reduced when the aperture area of the yellow sub-pixel is minimized.
  • it is necessary to lower the color temperature of the light source so that the brightness of the red display can be further improved.
  • the brightness of white display of the display device including the light emission efficiency of the light source can be further improved.
  • the present invention is also a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, and the red and blue sub-pixels have the largest opening area. It is also a display device (hereinafter also referred to as “second display device”). According to this, since the aperture area of the red and blue sub-pixels having a small transmittance of the color filter is maximized, the transmittance of the white color filter is reduced. However, in this case, in order to optimize the white display chromaticity, it is necessary to further increase the light emission efficiency of the light source. The brightness of the white display of the obtained display device can be further improved.
  • the configuration of the second display device of the present invention includes other components as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as a component. There is no particular limitation on whether or not it is present.
  • the size relationship of the aperture areas of the sub-pixels constituting the pixel is such that the aperture areas of the red and blue sub-pixels are the same and maximum, and the sub-pixels other than red and blue
  • the aperture area of the pixel is smaller than the aperture area of the red and blue sub-pixels.
  • the pixels may have magenta sub-pixels in addition to red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, red, green, blue and yellow It is preferable to have only sub-pixels.
  • the second display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • a brown tube CRT
  • an organic electroluminescence display device OELD
  • a plasma display panel PDP
  • And field emission displays FED
  • SED surface conduction electron-emitting device displays
  • a transmissive liquid crystal display device that displays using a light
  • a reflective liquid crystal display device that displays using a front light
  • a transmissive display using a knock light and a reflective display using external light and / or a front light It is more preferable to use a reflection / transmission type liquid crystal display device.
  • (1A) the form in which the red and blue sub-pixels are the largest among the pixels
  • (1B) in the above (1A) Is a form having blue sub-pixels having different color characteristics
  • (1D) a sub-picture of green and yellow Elementary forms have the smallest opening area
  • (1E) green subpixel has the smallest opening area
  • (1F) yellow subpixel has the smallest opening area.
  • red and blue sub- The pixel has the largest number of pixels means that the number of red and blue sub-pixels constituting the pixel is the same and the largest, and the number of sub-pixels other than the red and blue sub-pixels is red. And less than the number of blue sub-pixels.
  • the color reproduction range can be further expanded and the number of display colors can be increased.
  • different color characteristics means that at least one of the three attributes of color, hue, brightness, and saturation, is different, and from the viewpoint of efficiently expanding the color reproduction range.
  • the transmittance of the white color filter is reduced, but the transmittance of the blue component of the color filter is relatively increased. Therefore, it is possible to reduce the blue component of a light source with low light emission efficiency that optimizes the chromaticity of white display, and the light emission efficiency of the light source increases, so the white display of the display device including the light emission efficiency of the light source The brightness of the can be effectively improved.
  • the transmittance of the white color filter is reduced, but the transmittance of the blue component of the color filter is relatively increased.
  • the white display of the display device including the luminous efficiency of the light source It may be more suitable for improving the brightness.
  • the transmittance of the white color filter is further reduced as compared with the form (1E), but the transmittance of the blue component of the color filter is relatively increased. Therefore, it is possible to reduce the blue component of a light source with low luminous efficiency, which optimizes the chromaticity of white display, and the luminous efficiency of the light source increases. The power to improve the brightness of
  • the present invention is also a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, wherein the blue sub-pixel has a maximum aperture area (hereinafter referred to as a display device). Also called “third display device”.)
  • a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, wherein the blue sub-pixel has a maximum aperture area
  • the aperture area of the blue sub-pixel where the transmittance of the color filter is small is the maximum, the transmittance of the color filter for white display is small, but the chromaticity of white display is optimized. Therefore, it is necessary to lower the color temperature of the light source, so that the brightness of red display can be improved.
  • the luminous efficiency of the light source increases by lowering the color temperature of the light source, the luminous efficiency of the light source is included. The brightness of the white display of the display device can be improved.
  • the configuration of the third display device of the present invention includes other components as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as a component. There is no particular limitation on whether or not it is present.
  • the opening area of the sub-pixels constituting the pixel has the largest opening area of the blue sub-pixel and the opening area of the sub-pixels other than blue is the blue sub-area. There is no particular limitation as long as it is smaller than the opening area of the pixel.
  • the pixel may have magenta sub-pixels, but from the viewpoint of the transmittance of the white display color filter, red, green, blue and It is preferable to have only yellow sub-pixels.
  • the third display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • a brown tube CRT
  • an organic electroluminescence display device OELD
  • a plasma display panel PDP
  • And field emission displays FED
  • SED surface conduction electron-emitting device displays
  • a transmissive liquid crystal display device that displays using a light
  • a reflective liquid crystal display device that displays using a front light
  • a transmissive display using a knock light and a reflective display using external light and / or a front light It is more preferable to use a reflection / transmission type liquid crystal display device.
  • the red, green, and yellow sub-pixels preferably have the smallest opening area. That is, the red, green, and yellow sub-pixels preferably have the same and minimum opening area. Masle. According to this, since the aperture areas of the red, green, and yellow sub-pixels are about the same, the transmittance of the white color filter is reduced, but in order to optimize the white display chromaticity. Since the color temperature of the light source needs to be lowered, the brightness of red display can be effectively improved. In addition, since the luminous efficiency of the light source can be increased, the brightness of white display of the display device including the luminous efficiency of the light source can be improved as a result.
  • the pixel preferably includes a sub-pixel having an opening area smaller than that of the red sub-pixel. If the aperture area of the red sub-pixel is minimized, the brightness of the red display will be reduced, which may impair visibility. Therefore, visibility can be ensured by suppressing a decrease in brightness of red display by not minimizing the opening area of the red sub-pixel.
  • the green and yellow sub-pixels preferably have the smallest opening area. That is, it is preferable that the green and yellow sub-pixels have the same and minimum opening area. According to this, although the transmittance of the white color filter is decreased, the transmittance of the blue component of the color filter is relatively increased. Therefore, in order to optimize the chromaticity of the white display, it is possible to reduce the blue component of the light source with low light emission efficiency and increase the light emission efficiency of the light source. Brightness can be improved.
  • the green sub-pixel preferably has the smallest opening area. As can be seen from the above-described relationship between the transmittance of the color finer, minimizing the aperture area of the green sub-pixel reduces the transmittance of the white color filter, but optimizes the white display chromaticity. In order to achieve this, it is necessary to lower the color temperature of the light source, and the light emission efficiency of the light source increases. Therefore, the brightness of white display of the display device including the light emission efficiency of the light source can be improved.
  • the yellow sub-pixel has the smallest opening area. As can be seen from the magnitude relationship of the transmittance of the color filter, minimizing the aperture area of the yellow sub-pixel reduces the transmittance of the white color filter, but in order to optimize the white display chromaticity. Since the color temperature of the light source needs to be lowered, the brightness of red display can be improved. In addition, lowering the color temperature of the light source increases the light emission efficiency of the light source, so the transmittance of the white display color filter is reduced, but the brightness of the white display of the display device including the light emission efficiency of the light source is reduced. It can be improved further.
  • the present invention further relates to a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, wherein the yellow sub-pixel has a minimum opening area.
  • a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, wherein the yellow sub-pixel has a minimum opening area.
  • fourth display device a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, wherein the yellow sub-pixel has a minimum opening area.
  • the configuration of the fourth display device of the present invention includes other components as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as a component. There is no particular limitation on whether or not it is present.
  • the size relationship of the opening areas of the sub-pixels constituting the pixel is such that the opening area of the yellow sub-pixel is the smallest and the opening area of the sub-pixels other than yellow is the There is no particular limitation as long as it is larger than the aperture area of the pixel.
  • the pixel may have magenta sub-pixels, but from the viewpoint of the transmittance of the white display color filter, red, green, blue and It is preferable to have only yellow sub-pixels.
  • the fourth display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • a brown tube CRT
  • an organic electroluminescence display device OELD
  • a plasma display panel PDP
  • And field emission displays FED
  • SED surface conduction electron-emitting device displays
  • the fourth display device of the present invention is preferably a knocklight that displays using a backlight and a light source device such as Z or a front light.
  • a transmissive liquid crystal display device that performs display using a reflective liquid crystal display device that performs display using a front light, a transmissive display using a backlight, and a reflective display using external light and / or a front light. It is more preferable to use a reflection / transmission liquid crystal display device.
  • the red, green, and blue sub-pixels preferably have the largest opening area. That is, The red, green, and blue sub-pixels preferably have the same and maximum aperture areas. As described above, since the aperture area of the yellow sub-pixel is large and the aperture area of the yellow sub-pixel is small, a light source with high luminous efficiency can be used, so that the brightness of red display and white display can be effectively improved. Can be improved.
  • (3A) the form in which the number of red, green and blue sub-pixels is the largest among the pixels
  • (3C) is a form having red sub-pixels having different color characteristics.
  • the pixel has a sub-pixel having an opening area larger than that of the blue sub-pixel.
  • the opening area of the blue sub-pixel with the small transmittance of the color filter is further maximized. Then, the brightness of the white display on the display device may be significantly reduced. Therefore, the decrease in brightness of white display of such a display device can be suppressed by not maximizing the opening area of the blue sub-pixel.
  • the red and green sub-pixels preferably have the largest opening area. That is, it is preferable that the red and green sub-pixels have the same and maximum opening areas. According to this, since the aperture area of the red sub-pixel is the maximum, the brightness of red display can be improved. Also, since the aperture area of the red sub-pixel is the largest, in order to optimize the chromaticity of the white display, it is necessary to increase the color temperature of the light source, which reduces the light emission efficiency of the light source. According to the present invention, since the aperture area of the green sub-pixel having a large transmittance of the color filter is also the maximum, it is possible to suppress the decrease in the brightness of white display of the display device.
  • the form in which the opening area of such red and green sub-pixels is the largest (4 A) the form in which the red and green sub-pixels are the largest among the pixels, and (4B) the pixel is the color Examples include a green sub-pixel having different characteristics.
  • the above-mentioned (4A) and (4B) misalignment forms also do not require changing the aperture area of each sub-pixel. Circuit design can be used. According to the form (4B), the color reproduction range can be expanded and the number of display colors can be increased.
  • the present invention is a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels.
  • the sub-pixels are arranged in descending order of opening area from red, blue, and blue.
  • Green and yellow hereinafter also referred to as “fifth display device”.
  • the red sub-pixel has a large aperture area, so the effect of improving the brightness of red display is significant.
  • a light source with high luminous efficiency can be used to optimize white display chromaticity in which the aperture area of the blue sub-pixel is relatively large and the aperture area of the yellow sub-pixel is small.
  • the ratio of the small opening area is suitable for improving the brightness of red display and suppressing the decrease of the brightness of white display.
  • the configuration of the fifth display device of the present invention includes other components as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as a component. There is no particular limitation on whether or not it is present.
  • the pixels may have magenta sub-pixels in addition to the red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, the red, green, blue and yellow sub-pixels It is preferable to have only.
  • the fifth display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • a brown tube CRT
  • an organic electroluminescence display device OELD
  • a plasma display panel PDP
  • And field emission displays FED
  • SED surface conduction electron-emitting device displays
  • the fifth display device of the present invention is a knock light that is preferably one that displays using a light source device such as a backlight and / or a front light.
  • a transmissive liquid crystal display device that performs display using a reflective liquid crystal display device that performs display using a front light, a transmissive display using a backlight, and a reflective display using external light and / or a front light. It is more preferable to use a reflection / transmission liquid crystal display device.
  • the present invention further relates to a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, the sub-pixels having red, It is also a display device that is blue, yellow, and green (hereinafter also referred to as “sixth display device”). 6th display like this The device also has a great effect of improving the brightness of red display because the aperture area of the red sub-pixel is large.
  • a light source with high luminous efficiency can be used to optimize the chromaticity of white display in which the aperture area of the yellow sub-pixel is relatively small and the aperture area of the yellow sub-pixel is relatively small. It is suitable for improving the brightness of red display with a ratio of the relatively small opening area and suppressing the decrease of the brightness of white display.
  • the configuration of the sixth display device of the present invention includes other components as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as a component. There is no particular limitation on whether or not it is present.
  • the pixels may have magenta sub-pixels in addition to the red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, the red, green, blue and yellow sub-pixels It is preferable to have only.
  • the sixth display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • a brown tube CRT
  • an organic electroluminescence display device OELD
  • a plasma display panel PDP
  • And field emission displays FED
  • SED surface conduction electron-emitting device displays
  • the sixth display device of the present invention is preferably a knocklight that performs display using a light source device such as a backlight and / or a frontlight for the same reason as the first display device of the present invention.
  • a transmissive liquid crystal display device that displays using a light
  • a reflective liquid crystal display device that displays using a front light
  • a transmissive display using a knock light and a reflective display using external light and / or a front light It is more preferable to use a reflection / transmission type liquid crystal display device.
  • the present invention is further a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, the sub-pixels having red, It is also a display device that is green, blue, and yellow (hereinafter also referred to as “seventh display device”).
  • a seventh display device also has a great effect of improving the brightness of red display because the aperture area of the red sub-pixel is large.
  • a light source with high luminous efficiency can be used to optimize the chromaticity of the white display with a small aperture area of the yellow sub-pixel, improving the brightness of the red display with a relatively small aperture area ratio. Therefore, it is suitable for suppressing a decrease in brightness of white display.
  • the red, green, blue and yellow sub-pixels are included.
  • the pixels may have magenta sub-pixels in addition to the red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, the red, green, blue and yellow sub-pixels It is preferable to have only.
  • the seventh display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • a brown tube CRT
  • an organic electroluminescence display device OELD
  • a plasma display panel PDP
  • And field emission displays FED
  • SED surface conduction electron-emitting device displays
  • the seventh display device of the present invention is a knocklight that is preferably a display that uses a backlight and a light source device such as Z or a front light.
  • a transmissive liquid crystal display device that performs display using a reflective liquid crystal display device that performs display using a front light, a transmissive display using a backlight, and a reflective display using external light and / or a front light. It is more preferable to use a reflection / transmission liquid crystal display device.
  • the present invention is further a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels.
  • the sub-pixels are arranged in descending order of opening area, red, It is also a display device that is blue, yellow, and green (hereinafter also referred to as “eighth display device”). “Red, blue, yellow and green in order from the largest opening area” means that the red subpixel has the largest opening area, and the yellow and green subpixels have the same opening area. And it means that the aperture area of the blue sub-pixel is between them.
  • Such an eighth display device also has a great effect of improving the brightness of red display because the aperture area of the red sub-pixel is large.
  • a light source with high luminous efficiency can be used to optimize the aperture area power of the yellow and green sub-pixels where the aperture area of the blue sub-pixel is relatively large and the chromaticity of the white display. It is suitable for improving the brightness of red display with a relatively small ratio of the opening area and suppressing the decrease of the brightness of white display.
  • the configuration of the eighth display device of the present invention includes other components as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as a component. There is no particular limitation on whether or not it is present. Pixel is red, In addition to the green, blue, and yellow sub-pixels, magenta sub-pixels may be included, but from the viewpoint of the transmittance of the white display color filter, only red, green, blue, and yellow sub-pixels may be included. preferable.
  • the eighth display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • a brown tube CRT
  • an organic electroluminescence display device OELD
  • a plasma display panel PDP
  • And field emission displays FED
  • SED surface conduction electron-emitting device displays
  • the eighth display device of the present invention is a knocklight that is preferably a display that uses a backlight and a light source device such as Z or a front light.
  • a transmissive liquid crystal display device that performs display using a reflective liquid crystal display device that performs display using a front light, a transmissive display using a backlight, and a reflective display using external light and / or a front light. It is more preferable to use a reflection / transmission liquid crystal display device.
  • the present invention is further a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, and the sub-pixels are blue, It is also a display device that is red, green, and yellow (hereinafter also referred to as “ninth display device”).
  • a ninth display device also has a great effect of improving the brightness of red display because the aperture area of the red sub-pixel is relatively large.
  • the aperture area of the yellow sub-pixel with a large aperture area of the blue sub-pixel is relatively small because the light source with high luminous efficiency can be used to optimize the chromaticity of the white display with a small S
  • the ratio of the aperture area is suitable for improving the brightness of red display and suppressing the decrease of the brightness of white display.
  • the ninth display device of the present invention as long as it has a display surface constituted by pixels having the red, green, blue, and yellow sub-pixels as the other components, There is no particular limitation on whether or not it is present.
  • the pixels may have magenta sub-pixels in addition to the red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, the red, green, blue and yellow sub-pixels It is preferable to have only.
  • the ninth display device of the present invention is not particularly limited, and examples thereof include a liquid crystal display device (LCD), a brown tube (CRT), an organic electroluminescence display device (OELD), and a plasma display.
  • Examples include a panel (PDP) and a field emission display (FED) such as a surface conduction electron-emitting device display (SED).
  • the ninth display device of the present invention is a knocklight that is preferably one that displays using a light source device such as a backlight and / or a frontlight.
  • a transmissive liquid crystal display device that performs display using a reflective liquid crystal display device that performs display using a front light, a transmissive display using a backlight, and a reflective display using external light and / or a front light. It is more preferable to use a reflection / transmission liquid crystal display device.
  • the present invention is further a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels, and the sub-pixels are blue, It is also a display device in red, yellow, and green (hereinafter also referred to as “tenth display device”).
  • a tenth display device also has a large effect on the brightness of red display because the aperture area of the red sub-pixel is relatively large.
  • a light source with high luminous efficiency can be used to optimize the chromaticity of white display in which the aperture area of the yellow sub-pixel is relatively large and the aperture area of the yellow sub-pixel is relatively small. It is suitable for improving the brightness of red display with a small ratio of the opening area and suppressing the decrease of the brightness of white display.
  • the configuration of the tenth display device of the present invention is not limited as long as it has a display surface composed of pixels having the red, green, blue, and yellow sub-pixels as a component. It does not specifically limit whether it has an element or not.
  • the pixels may have magenta sub-pixels in addition to red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, the red, green, blue and yellow sub-pixels It is preferable to have only.
  • the tenth display device of the present invention is not particularly limited.
  • a liquid crystal display device (LCD), a brown tube (CRT), an organic electroluminescence display device (OELD), a plasma display panel (PDP), and And field emission displays (FED) such as surface conduction electron-emitting device displays (SED).
  • the tenth display device of the present invention preferably displays a backlight and a light source device such as Z or a frontlight for the same reason as the first display device of the present invention.
  • a transmissive liquid crystal display device that displays images using a liquid crystal display, a reflective liquid crystal display device that displays images using a front light, and a knock light It is more preferable to use a reflection / transmission type liquid crystal display device that performs transmissive display using, and performs reflective display using external light and / or front light.
  • the present invention is further a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels.
  • the sub-pixels are blue, It is also a display device that is green, red, and yellow (hereinafter also referred to as “11th display device”).
  • Such an eleventh display device can increase red light emission such as a backlight in which the aperture area of the yellow sub-pixel is particularly small, so that the effect of improving the brightness of red display is great.
  • a light source with high luminous efficiency can be used to optimize the white display chromaticity with a large aperture area of the blue sub-pixel and a small aperture area of the yellow sub-pixel.
  • the ratio of the small opening area is suitable for improving the brightness of red display and suppressing the decrease of the brightness of white display.
  • the configuration of the eleventh display device of the present invention is not limited as long as it has a display surface composed of pixels having the red, green, blue and yellow sub-pixels as a component. It does not specifically limit whether it has an element or not.
  • the pixels may have magenta sub-pixels in addition to red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, the red, green, blue and yellow sub-pixels It is preferable to have only.
  • the eleventh display device of the present invention is not particularly limited.
  • a liquid crystal display device LCD
  • CRT brown tube
  • OELD organic electroluminescence display device
  • PDP plasma display panel
  • FED field emission displays
  • the eleventh display device of the present invention preferably displays a light source device such as a backlight and / or a frontlight for the same reason as the first display device of the present invention.
  • a transmissive liquid crystal display device that performs display using a light
  • a reflective liquid crystal display device that performs display using a front light
  • the liquid crystal display device is a reflection / transmission type liquid crystal display device that performs reflection display using the above-mentioned.
  • the present invention is further a display device in which a display surface is configured by pixels having red, green, blue, and yellow sub-pixels.
  • the sub-pixels are arranged in order from the largest opening area to the blue and blue sub-pixels.
  • It is also a display device that is green, red, and yellow (hereinafter also referred to as “the twelfth display device”).
  • the twelfth display device Green, red, and yellow
  • “Open In order from the largest mouth area, blue, green, red and yellow are ⁇ blue and green sub-pixels having the same and the largest opening area, and yellow sub-pixels having the smallest opening area, It means that the aperture area of the red sub-pixel is between them.
  • Such a twelfth display device can also increase the light emission of red, such as a backlight, in which the aperture area of the yellow sub-pixel is particularly small, so the effect of improving the brightness of red display is great.
  • a light source with high luminous efficiency can be used to optimize the white display chromaticity with a large aperture area of the blue sub-pixel and a small aperture area of the yellow sub-pixel.
  • the ratio of the small opening area is suitable for improving the brightness of red display and suppressing the decrease of the brightness of white display.
  • the configuration of the twelfth display device of the present invention is not limited as long as it has a display surface constituted by pixels having the red, green, blue, and yellow sub-pixels as a component. It does not specifically limit whether it has an element or not.
  • the pixels may have magenta sub-pixels in addition to red, green, blue and yellow sub-pixels, but from the viewpoint of the transmittance of the white color filter, the red, green, blue and yellow sub-pixels It is preferable to have only.
  • the twelfth display device of the present invention is not particularly limited.
  • the twelfth display device of the present invention preferably performs display using a light source device such as a backlight and / or a frontlight for the same reason as the first display device of the present invention.
  • a transmissive liquid crystal display device that displays using a light
  • a reflective liquid crystal display device that displays using a front light
  • a transmissive display using a knocklight and external light and / or a front light It is more preferable to use a reflective / transmissive liquid crystal display device that performs reflective display.
  • the pixel has sub-pixels that display yellow in addition to sub-pixels that display red, green, and blue, and the number of primary colors used for display is three. Therefore, it is possible to perform display with a wider color reproduction range than a display device using three primary colors for display. In addition, since the aperture area of the sub-pixel that displays red is the largest, the brightness of red display is improved. You can make it S.
  • the configuration of the liquid crystal display device according to Embodiment 1 of the present invention will be described.
  • the configuration of the liquid crystal display device of the present invention is not limited to this.
  • FIG. 1 is a plan view showing a schematic configuration of a TFT substrate 200 in a transmissive liquid crystal display device according to Embodiment 1 of the present invention.
  • TFT thin film transistor
  • Each of the transparent electrodes 35 (35R, 35G, 35Y and 35B) made of a transparent conductive material such as indium tin oxide (ITO) is disposed in each of the regions surrounded by the matrix wiring.
  • the gate electrode of the TFT 8 is connected to the scanning line 4, the source electrode is connected to the signal line 6, and the drain electrode is connected to the transmissive electrode 35 via the drain lead wiring 9.
  • the transmissive electrodes 35R, 35G, 35Y, and 35B are provided to face the red, green, blue, and yellow color filters 10R, 10G, 10Y, and 10B provided on the color filter substrate 11 described later in the liquid crystal display device, respectively. It has been. In the present embodiment, as shown in FIG. 1, the transmissive electrodes 35R facing the red color filter 10R are large, and the transmissive electrodes 35G, 35Y and 35B facing the other color filters are similarly reduced. In this manner, the scanning line 4 and the signal line 6 are arranged.
  • auxiliary capacitance wiring 7 for holding the voltage applied to the transmissive electrode 35 is arranged in parallel with the scanning line 4.
  • the auxiliary capacitance line 7 constitutes the auxiliary capacitance 3 by facing the end of the drain lead-out line 9 through the insulating film.
  • FIG. 2 is a plan view showing a schematic configuration of a color filter substrate (counter substrate) 100 in the transmissive liquid crystal display device according to Embodiment 1 of the present invention.
  • the color filter substrate 100 has red, green, yellow, and blue color filters 10R, 10G, 10Y, and 10B arranged in stripes in this order, and a black filter is provided around each filter and between the filter.
  • Matrix 10BM is arranged.
  • Each of the color filters 10R, 10G, 10B, and 10Y selects the color of light that passes through itself.
  • the red, green and blue color filters 10R, 10G and 10B mainly transmit the red, green and blue components of the incident light, respectively.
  • the yellow color filter 10Y is the red and green components of the incident light.
  • the arrangement of the color filters 10R, 10B, 10G, and 10Y is the same for all pixels, but the pixel configuration of the present invention that may be different for each pixel is particularly It ’s not limited.
  • the color filters 10R, 10B, 10G, and 10Y are respectively provided to face the transmission electrodes 35R, 35G, 35Y, and 35B provided on the TFT substrate 200 described above in the liquid crystal display device.
  • the scanning line 4 and the signal line 6 are provided so as to face each other.
  • the area of the color filters 10B, 10G, and 10Y of the other colors in which the area of the red color filter 10R is large is reduced to the same extent. .
  • FIG. 3 is a schematic cross-sectional view showing a transmissive liquid crystal display device according to Embodiment 1 of the present invention.
  • a transmissive liquid crystal display device 500 has a configuration in which a liquid crystal layer 300 is sandwiched between the color filter substrate 100 and the TFT substrate 200 described above. Yes.
  • the color filter substrate 100 includes a phase difference plate 22 and a polarizing plate 23 on the outer side (observation surface side) of the glass substrate 21, and red, green, blue, and yellow on the inner side (rear side) of the glass substrate 21.
  • the color finoleta 10R, 10G, 10B, and 10Y, the black matrix 10 mm, the talent layer 25, the counter electrode 26, and the alignment film 27 are provided.
  • the phase difference plate 22 adjusts the polarization state of the light that passes through the phase difference plate 22.
  • the polarizing plate 23 transmits only light of a specific polarization component.
  • the retardation plate 22 and the polarizing plate 23 are set to function as a circularly polarizing plate by adjusting the arrangement and configuration of the retardation plate 22 and the polarizing plate 23.
  • the overcoat layer 25 is made of red, green, blue and yellow filters 10R, 10G, 10B and 10Y. This prevents contaminants from eluting into the liquid crystal layer 300 and also makes the surface of the color filter substrate 100 flat.
  • the counter electrode 26 is opposed to the transparent electrodes 35R, 35G, 35B, and 35Y provided on the TFT substrate 200 side through the liquid crystal layer 300, and drives the liquid crystal molecules by applying a voltage to the liquid crystal layer 300. Used to do.
  • the counter electrode 26 is made of a transparent conductive material such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the alignment film 27 controls the alignment of the liquid crystal molecules in the liquid crystal layer 300.
  • the TFT substrate 200 includes a phase difference plate 32 and a polarizing plate 33 on the outer side (back side) of the glass substrate 31, and a thin film transistor (TFT) on the inner side (observation surface side) of the glass substrate 31.
  • Interlayer insulating film 34, transparent electrode 35 (35R, 35G, 35B and 35Y), alignment film 38, and the like are provided.
  • the phase difference plate 32 adjusts the polarization state of the light transmitted therethrough, as with the phase difference plate 22, and the polarization plate 33, like the polarization plate 23, has a specific polarization component light. It is the one that only transmits.
  • the polarizing plate 33 is disposed so as to be optically orthogonal to the circular polarizing plate disposed on the color filter substrate 100 side.
  • the transparent electrode 35 (35R, 35G, 35B, and 35Y) is arranged for each color filter on the color filter substrate 100 side, and a voltage is applied to the liquid crystal layer 300 for each color filter region to apply liquid crystal molecules. Drive. Similar to the alignment film 27, the alignment film 38 controls the alignment of the liquid crystal molecules in the liquid crystal layer 300.
  • FIG. 4 is a diagram showing the spectral characteristics of the liquid crystal layer 300.
  • nematic liquid crystal having negative dielectric anisotropy is used as the material of the liquid crystal layer 300.
  • FIG. 5 is a schematic plan view showing a pixel configuration of the liquid crystal display device 500 according to Embodiment 1 of the present invention.
  • the red subpixel 5Ra has the largest opening area, and the green, blue, and yellow subpixels 5Ga.
  • the aperture area means the area of the area actually used for display, and is shielded by thin film transistors (TFT) 8, scanning lines 4, signal lines 6 and auxiliary capacitors 3, black matrix 10BM, etc. Does not include the area of the region.
  • TFT thin film transistors
  • the liquid crystal display device 500 includes a plurality of pixels 11a arranged in a matrix.
  • a dot portion in FIG. 5 corresponds to one pixel, and FIG. 5 shows four pixels among a plurality of pixels 11a constituting the display surface 500a of the liquid crystal display device 500.
  • the pixel 11a includes a plurality of sub-pixels.
  • the four sub-pixels constituting the pixel 11a are the sub-pixel 5Ra that displays red, the sub-pixel 5Ga that displays green, the sub-pixel 5Ba that displays blue, and the sub-pixel 5Ya that displays yellow.
  • FIG. 5 shows a configuration in which these four sub-pixels are arranged in one row and four columns in the pixel 11a.
  • FIG. 6 as another pixel configuration constituting the display surface 500b of the liquid crystal display device, four sub-pixels 5Rb, 5Gb, 5Bb, and 5Yb are arranged in 2 rows and 2 columns in the pixel l ib. The configuration is shown.
  • the arrangement method of red, green, blue, and yellow subpixels is not limited to FIGS. 5 and 6, and an effect is obtained by the ratio of the aperture areas of the subpixels.
  • liquid crystal display devices A1 to A6 shown in Table 3 were produced.
  • the aperture areas of the red sub-pixel and the other sub-pixels are different.
  • the red sub-pixel has the largest opening area
  • the green, blue, and yellow sub-pixels have the same small opening area.
  • the color filter having the light transmittance shown in FIG. 7 was used in any of the liquid crystal display devices A1 to A6.
  • the light source of the backlight 36 was a cold cathode fluorescent tube (CCFT), and the spectral characteristics of the light source were adjusted by changing the mixing ratio of the red, green and blue phosphor materials.
  • CCFT cold cathode fluorescent tube
  • Fig. 8 shows the spectral characteristics of the light source of the backlight 36 used in the liquid crystal display device A6 in Table 3.
  • Table 3 further shows that for the liquid crystal display devices A1 to A6, the aperture area ratio of each sub-pixel, the sub-pixel having the largest aperture area (red sub-pixel) and the sub-pixel having the smallest aperture (green, blue) Or the yellow sub-pixel), the brightness of the red display, the brightness of the white display, the average transmittance of the color filter, and the luminous efficiency of the knock light source.
  • the brightness of red display is a value when the brightness Y of white display of each liquid crystal display device is set to 100 (ratio to the brightness of white display).
  • the brightness of white display is based on the CCFT having the spectral transmittance shown in Fig. 38 and the spectral filter shown in Fig.
  • the average transmittance of the color filter is an average value of the transmittance of the color filter of each color when performing white display using the light source of the backlight 36 mounted on each liquid crystal display device.
  • the luminous efficiency of the light source of the backlight 36 is obtained as follows. First, the luminous efficiency of the red phosphor material used in CCFT (light source), the luminous efficiency of the green phosphor material, and the luminous efficiency of the blue phosphor material are individually measured.
  • the luminous efficiency of red, green and blue when the mixing ratio of each phosphor material of red, green and blue is changed is calculated.
  • the luminous efficiency of the light source of the backlight 36 is the ratio between the luminous efficiency of red, green and blue combined with the luminous efficiency of the mixture ratio of red, green and blue used in the conventional three primary color display devices.
  • FIG. 10 is a diagram showing the relationship between the lightness of red display and the lightness of white display of the liquid crystal display devices A1 to A6 manufactured in this embodiment.
  • the liquid crystal display devices A1 to A6 have a large aperture area for red sub-pixels, the brightness of red display is improved over the conventional four-primary-color liquid crystal display device shown in FIG. 36 (Table 1).
  • the power can be increased and bright red can be displayed. That is, it is possible to display red with good visibility. It should be noted that which type of liquid crystal display devices A1 to A6 is optimal may be appropriately selected according to the application.
  • a general CCFT is used as the light source of the backlight 36, and the chromaticity of the white display is adjusted by changing only the mixing ratio of the red, green, and blue phosphor materials.
  • the brightness of the white display of the liquid crystal display device also takes into consideration the change in luminous efficiency due to the change in the mixing ratio of the phosphor materials of each color of the light source of the backlight 36. That is, the brightness of the white display means the brightness of the liquid crystal display device including the light emission efficiency of the light source of the backlight 36 which is obtained only by the average transmittance (efficiency) of the color filter.
  • the chromaticity for white display is set to the above value. However, the present invention is not limited to this, and the same effect can be obtained when the chromaticity is appropriately adjusted to an appropriate value.
  • the pixel configuration of the liquid crystal display device of the present embodiment is not limited to that shown in FIGS. 5 and 6.
  • each of the pixels id forming the display surface 500d is divided into five sub-pixels, two red sub-pixels are arranged, and then two red sub-pixels are arranged.
  • the color characteristics may be different from each other.
  • the spectral characteristics of the color filter at this time are shown in FIG. At this time, the dominant wavelength of the red sub-pixel 5R d is 612 nm, and the dominant wavelength of the red sub-pixel 5R d is
  • red subpixels 5R d and 5R d green subpixel 5
  • red sub-pixels having different color characteristics By providing red sub-pixels having different color characteristics in this way, the color reproduction range can be further expanded.
  • these pixel configurations are merely examples, and the present embodiment is not limited to these pixel configurations.
  • the transmittance of each color filter installed in the red, green, blue and yellow sub-pixels and the transmittance of the white color filter (the average of the transmittance of the red, green, blue and yellow sub-pixels) Value) is yellow, green, white, red, blue in order from the highest transmittance.
  • the magnitude relationship between the transmittances of the red color filter and the blue color filter is interchanged, and may be yellow, green, white, blue, and red in order from the highest transmittance.
  • the aperture area of the red sub-pixel when the aperture area of the red sub-pixel is maximized and the aperture areas of the green, blue, and yellow sub-pixels are reduced to the same extent, a certain effect of increasing the brightness of red display is recognized.
  • the brightness of white display is somewhat reduced in any of the liquid crystal display devices A1 to A6 shown in Table 3. Therefore, it is preferable to the first embodiment if the decrease in brightness of white display can be reduced.
  • the aperture area of the red sub-pixel is increased, and the aperture area of any one of the green, blue, and yellow sub-pixels is decreased.
  • Table 4 shows the opening of each subpixel of the liquid crystal display devices B1 to B5 manufactured in this embodiment when the opening area of the red subpixel is increased and the opening area of the green subpixel is decreased.
  • the aperture area ratio, the aperture area ratio between the sub-pixel with the largest aperture area (red sub-pixel) and the sub-pixel with the smallest aperture size (green sub-pixel), the brightness of red display, the brightness of white display, and the flatness of the color filter The average transmittance and the light emission efficiency of the light source of the backlight are shown.
  • Table 5 shows the opening of each subpixel of the liquid crystal display devices C1 to C3 manufactured in this embodiment when the aperture area of the red subpixel is increased and the aperture area of the blue subpixel is decreased.
  • Table 6 shows the opening of each subpixel of the liquid crystal display devices D1 to D6 manufactured in this embodiment when the opening area of the red subpixel is increased and the opening area of the yellow subpixel is decreased. Mouth area ratio, aperture area ratio between the sub-pixel with the largest aperture area (red sub-pixel) and the sub-pixel with the smallest aperture size (yellow sub-pixel), brightness of red display, brightness of white display, flatness of color filter The average transmittance and the light emission efficiency of the light source of the backlight are shown.
  • FIG. 14 shows a configuration in which four sub-pixels 5Re, 5Ge, 5Be, and 5 Ye are arranged in a stripe shape in the pixel lie as a pixel configuration that constitutes the display surface 500e of the liquid crystal display device.
  • Figure 15 shows the liquid crystal display As a pixel configuration constituting the display surface 500f of the device, a configuration in which four sub-pixels 5Rf, 5Gf, 5Bf, and 5Yf are arranged in 2 rows and 2 columns in the pixel 1 If is shown.
  • FIG. 16 shows the relationship between the brightness of red display and the brightness of white display of each liquid crystal display device shown in Tables 4, 5, and 6.
  • corresponds to the liquid crystal display devices B1 to B5 in Table 4
  • corresponds to the liquid crystal display devices C1 to C3 in Table 5
  • corresponds to the liquid crystal display devices D1 to D6 in Table 6.
  • the mouth indicates the liquid crystal display devices A1 to A6 of Embodiment 1 as comparison objects.
  • the liquid crystal display device D6 in Table 6 can achieve a very high value of 19.5% for the brightness of red display.
  • Tables 4 and 6 when the aperture area of the green or yellow sub-pixel is reduced, the average transmittance of the color filter is lower than that of the liquid crystal display devices A1 to A6 of the first embodiment.
  • the liquid crystal display device A1 of Embodiment 1 It is possible to suppress a decrease in brightness of the white display including the luminous efficiency of the light source of the backlight as compared with ⁇ A6.
  • the liquid crystal display devices D1 to D6 in Table 6 when the sub-pixels that reduce the aperture area are yellow sub-pixels with the highest transmittance of the color filter, the average transmittance of the color filter is low.
  • the luminous efficiency of the light source of the backlight is increased, and as a result, the decrease in brightness of the white display including the luminous efficiency of the knock light source is becoming smaller.
  • the aperture area of the blue sub-pixel because the brightness of white display is greatly reduced.
  • the sub-pixel that reduces the aperture area is the one with the lowest color filter transmittance and the blue sub-pixel, the average transmittance of the color filter will be high, but the white display will have an appropriate chromaticity.
  • the light emission efficiency of the light source is lowered, and as a result, the brightness of white display including the light emission efficiency of the backlight light source is greatly reduced.
  • the sub-pixel for reducing the aperture area is a yellow sub-pixel, and green and blue are sequentially obtained.
  • the aperture area ratio between the sub-pixels is preferably as small as possible. From the viewpoint of the aperture area ratio, in the liquid crystal display device A 4 in Table 3 of Embodiment 1, the ratio between the aperture area of the red sub-pixel having the largest aperture area and the sub-pixels of the smallest green, blue, and yellow is shown. Was 1.61: 1, at which time the lightness of the red display was 14.2% and the lightness of the white display was 91.0%.
  • the same brightness as 14.2% of red display can be realized in the liquid crystal display device B5 of Table 4 of this embodiment, and the brightness of white display of this liquid crystal display device B5 is 94.7%. Therefore, the liquid crystal display device B5 is more advantageous in terms of brightness of white display than the liquid crystal display device A4. Moreover, the same level of brightness as 14.2% for red display can be achieved with the liquid crystal display device D3 in Table 6 of this embodiment. The brightness of white display of this liquid crystal display device D3 is 94.8%. For this reason, the liquid crystal display device D3 is also advantageous in terms of brightness of white display over the liquid crystal display device A4.
  • the ratio of the opening area is 3: 1 in the liquid crystal display device B5 in Table 4, and 1.86: 1 in the liquid crystal display device D3 in Table 6, both of which are the liquid crystal in Table 3 of Embodiment 1. Larger than display device A4. Therefore, as described above, it may be preferable to select the liquid crystal display device A4 shown in Table 3 of Embodiment 1 in terms of pixel design and drive circuit design. That is, the first embodiment may be preferable to the second embodiment.
  • the opening area of the red sub-pixel is made as large as the opening area of the red sub-pixel. A case where the opening area is reduced to the same extent will be described.
  • Table 7 shows the aperture area ratio of each of the sub-pixels of the liquid crystal display devices E1 to E6 manufactured in this embodiment, the sub-pixel having the maximum aperture area (red or blue sub-pixel) and the sub-pixel having the minimum size. Ratio of aperture area to (green or yellow subpixel), brightness of red display, brightness of white display, average transmittance of color filter, and backlight light The luminous efficiency of the source is shown.
  • FIGS. Figure 17 shows a liquid crystal display device.
  • a pixel configuration constituting the display surface 500g four sub-pixels 5Rg, 5Gg, 5Bg and 5Yg are shown in stripes in the pixel llg.
  • FIG. 18 shows a configuration in which four sub-pixels 5Rh, 5Gh, 5Bh, and 5Yh are arranged in 2 rows and 2 columns in the pixel 1lh as the pixel configuration constituting the display surface 500h of the liquid crystal display device.
  • FIG. 19 is a diagram showing the relationship between the lightness of red display and the lightness of white display of the liquid crystal display devices E1 to E6 shown in Table 7.
  • the mouth corresponds to the liquid crystal display devices E1 to E6 shown in Table 7
  • denotes the liquid crystal display devices D1 to D6 shown in Table 6 in which the decrease in brightness of white display was small in Embodiment 2 as a comparison object. Show.
  • the brightness of white display is more advantageous than the liquid crystal display devices D1 to D6 in Table 6 of Embodiment 2, and in particular, the four colors of the liquid crystal display devices E1 to E3 in Table 7 are four colors.
  • the aperture area of the sub-pixels is equal, and the brightness of white display is higher than the conventional four-primary-color liquid crystal display ( Figure 36).
  • the larger the aperture area of the blue sub-pixel the more yellow component of the knock light source needs to be increased. S can.
  • the brightness of the red display is 19% or more, specifically, in the comparison between the liquid crystal display device E6 in Table 7 of this embodiment and the liquid crystal display device D6 in Table 6 of Embodiment 2, This embodiment may be disadvantageous in terms of white display.
  • the pixel configuration of the liquid crystal display device according to the present embodiment is not limited to FIGS. 17 and 18.
  • FIG. 20 there are six pixels constituting the display surface 500i. It is also possible to divide into sub-pixels and place two red and blue sub-pixels 5R and 5B each.
  • the pixel l lj constituting the display surface 500j is divided into six sub-pixels, and two red and blue sub-pixels are arranged. You can change the color characteristics of the blue sub-pixels.
  • Fig. 22 shows the spectral characteristics of the color filter at this time. At this time, the main wavelength of the blue sub-pixel 5B j is 460 nm, and the blue sub-pixel 5B j
  • the dominant wavelength of elementary 5B j is 488 nm.
  • the pixel Ilk constituting the display surface 500k is divided into six sub-pixels, and two red and blue sub-pixels are arranged. You can change the color characteristics of the red sub-pixels.
  • Fig. 13 shows the spectral characteristics of the color filter at this time. At this time, the dominant wavelength of the red sub-pixel 5R k is 612 nm,
  • the dominant wavelength of elementary 5R k is 607 nm. Also in the case of FIG. 23, the red sub-pixels 5R k and 5
  • the color reproduction range can be further expanded.
  • the pixel 11m constituting the display surface 500m is divided into six sub-pixels, and two red and blue sub-pixels are arranged.
  • the color characteristics of the sub-pixel and the blue sub-pixel may be different from each other for both colors.
  • Figures 13 and 22 show the spectral characteristics of the color filter.
  • the red sub-pixels 5R m and 5R m, the green sub-pixel 5Gm, the blue sub-pixels 5B m and 5B m, and the yellow sub-pixel 5Ym have the same opening area size.
  • the case where the aperture areas of the red and blue sub-pixels are increased to the same level and the aperture area of the green and yellow sub-pixels is decreased to the same level has been described.
  • the case where the aperture areas of the green and yellow sub-pixels that reduce the size are reduced at different rates will be described.
  • Table 8 shows that the aperture areas of the red and blue sub-pixels are increased to the same extent, and the apertures of the green sub-pixels are increased.
  • the aperture area ratio of each of the sub-pixels of the liquid crystal display devices F1 to F4 manufactured in this embodiment, the sub-pixel (red or blue sub-pixel) having the largest aperture area and the sub-pixel having the smallest The ratio of the aperture area to the pixel (green subpixel), the brightness of red display, the brightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight are shown.
  • FIG. 25 and 26 schematically show liquid crystal display devices shown in Table 8.
  • FIG. 25 shows a configuration in which four sub-pixels 5Rn, 5Gn, 5Bn, and 5Yn are arranged in stripes in the pixel 1 In as a pixel configuration that constitutes the display surface 500 ⁇ of the liquid crystal display device.
  • Figure 26 shows the liquid crystal As a pixel configuration constituting the display surface 500p of the display device, a configuration is shown in which four sub-pixels 5Rp, 5Gp, 5Bp, and 5Yp are arranged in 2 rows and 2 columns within the pixel ip. Note that these pixel configurations are merely examples, and the present embodiment is not limited to these pixel configurations.
  • Table 9 shows the case of the liquid crystal display devices G1 to G3 manufactured in this embodiment when the aperture areas of the red and blue sub-pixels are increased to the same extent and the aperture area of the yellow sub-pixel is decreased.
  • the aperture area ratio of each sub-pixel the aperture area ratio between the sub-pixel (red or blue sub-pixel) having the largest aperture area and the sub-pixel (yellow sub-pixel) having the smallest aperture area, brightness of red display, white display It shows the brightness, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • Figure 27 shows the relationship between the brightness of red display and the brightness of white display of the liquid crystal display devices in Tables 8 and 9.
  • corresponds to the liquid crystal display devices in Table 8
  • corresponds to the liquid crystal display devices in Table 9.
  • the mouth has a substantially equal opening area for the red and blue sub-pixels as a comparison object.
  • the liquid crystal display devices E1 to E6 in Table 7 of Embodiment 3 in which the aperture areas of the green and yellow sub-pixels are reduced to the same extent are shown.
  • the liquid crystal display devices F1 to F4 in Table 8 of this embodiment have a lightness of white display, although the brightness of red display is smaller than the liquid crystal display devices E1 to E4 of Table 7 of Embodiment 3. Is advantageous.
  • the brightness of white display is high in the liquid crystal display device F3 in Table 8.
  • it does not have a significant effect on improving the brightness of red display, and cannot be increased to more than 14%.
  • the liquid crystal display device G3 in Table 9 does not have a high white display brightness, A great effect is obtained in improving the brightness of the display.
  • the liquid crystal display devices G :! to G3 in Table 9 of this embodiment are advantageous in that the brightness of white display is smaller than the liquid crystal display devices E1 to E3 of Table 7 in Embodiment 3, but the brightness of red display is high. It is.
  • Embodiments 1 and 4 when the aperture area of both the red and blue subpixels is increased, the color filter of the color filter is larger than when only the aperture area of the red subpixel is increased. Although the average transmittance is reduced, the transmission ratio of the blue component of the color filter increases, so the wavelength characteristics of the backlight used can reduce the blue component with low luminous efficiency. A light source with high luminous efficiency can be used. As a result, considering the average transmittance of the color filter and the luminous efficiency of the backlight light source, the backlight light source can be reduced even if the aperture area of the blue sub-pixel is increased and the transmittance of the color filter is lowered. The luminous efficiency of this is larger than to compensate for it. In the first to fourth embodiments, the case where the aperture area of at least the red sub-pixel is maximized has been described. In the present embodiment, the case where the blue sub-pixel is maximized will be described.
  • Table 10 shows the liquid crystal display devices H1 to H4 manufactured in the present embodiment when the aperture area of the blue subpixel is increased and the aperture areas of the green and yellow subpixels are reduced to the same extent.
  • FIG. 29 shows a configuration in which four subpixels 5Rr, 5Gr, 5Br, and 5Yr are arranged in two rows and two columns in the pixel llr as a pixel configuration that constitutes the display surface 500r of the liquid crystal display device. Note that these pixel configurations are merely examples, and the present embodiment is not limited to these pixel configurations.
  • Table 11 shows the liquid crystal display devices I:! To 14 manufactured in this embodiment when the aperture area of the blue subpixel is increased and the aperture area of the green subpixel is decreased.
  • Pixel aperture area ratio aperture area ratio between the largest sub-pixel (blue sub-pixel) and smallest sub-pixel (green sub-pixel), red display brightness, white display brightness, color Shows the average transmittance of the filter and the luminous efficiency of the light source of the backlight.
  • Table 12 shows the subpixels of the liquid crystal display devices jl to J4 manufactured in this embodiment when the aperture area of the blue subpixel is increased and the aperture area of the yellow subpixel is decreased.
  • FIG. 30 shows the relationship between the brightness of red display and the brightness of white display of the liquid crystal display devices in Tables 10 to 12:
  • corresponds to the liquid crystal display device shown in Table 10
  • the mouth corresponds to the liquid crystal display device shown in Table 11
  • corresponds to the liquid crystal display device shown in Table 12.
  • the liquid crystal display of Table 7 of Embodiment 3 in which the aperture areas of the red and blue sub-pixels are increased to the same level and the aperture areas of the green and yellow sub-pixels are decreased to the same level Devices E1-E6 are shown.
  • the pixel configuration of the liquid crystal display device of the present embodiment is not limited to FIGS. 28 and 29.
  • the pixels constituting the display surface 500s are divided into five sub-pixels. It may be divided into pixels and two blue sub-pixels 5B may be arranged.
  • the pixel l it constituting the display surface 500t is divided into five sub-pixels, two blue sub-pixels are arranged, and then two blue sub-pixels are arranged.
  • the color characteristics of the pixels may be different from each other.
  • the spectral characteristics of the color filter at this time are shown in FIG. At this time, the main wavelength of the blue sub-pixel 5B t is 460 nm, and the main wavelength of the blue sub-pixel 5B t is
  • the wavelength is 488 nm. Also in the case of FIG. 32, the size of the opening area of the red subpixel 5Rt, the green subpixel 5Gt, the blue subpixels 5Bt and 5Bt, and the yellow subpixel 5Yt is
  • Table 13 shows the subpixels of the liquid crystal display devices K1 to K5 manufactured in this embodiment when the aperture area of the yellow subpixel is reduced and the aperture area of the other subpixels is increased to the same extent.
  • FIG. 33 and 34 schematically show the liquid crystal display device of Table 13.
  • FIG. 33 shows a configuration in which four sub-pixels 5Ru, 5Gu, 5Bu, and 5Yu are arranged in stripes in the pixel llu as a pixel configuration that constitutes the display surface 500u of the liquid crystal display device.
  • Figure 34 shows the LCD As a pixel configuration constituting the display surface 500v of the display device, a configuration in which four sub-pixels 5Rv, 5Gv, 5Bv, and 5Yv are arranged in 2 rows and 2 columns in the pixel llv is shown. Note that these pixel configurations are merely examples, and the present embodiment is not limited to these pixel configurations.
  • Table 14 shows the case of the liquid crystal display devices L1 to L4 manufactured in this embodiment when the aperture area of the yellow sub-pixel is reduced and the aperture area of the red and green sub-pixels is increased to the same extent.
  • the ratio of the aperture area of each sub-pixel the ratio of the aperture area between the sub-pixel with the largest aperture area (red or green sub-pixel) and the sub-pixel with the smallest aperture area (yellow sub-pixel), brightness of red display, and white display Brightness, average transmittance of the color filter, and luminous efficiency of the light source of the backlight.
  • FIG. 35 shows the relationship between the red display brightness and the white display brightness of the liquid crystal display devices in Tables 13 and 14.
  • corresponds to the liquid crystal display devices K1 to K5 in Table 13
  • corresponds to the liquid crystal display device in Table 14.
  • indicates the aperture of the red and blue sub-pixels as a comparison target.
  • the liquid crystal display devices E1 to E6 in Table 7 of Embodiment 3 in which the areas are increased to the same extent and the aperture areas of the green and yellow sub-pixels are reduced to the same extent are shown.
  • the opening area of the sub-pixel is set to red, blue, green, and yellow in order from the largest.
  • Table 15 shows the aperture area ratio of each subpixel of the liquid crystal display devices M1 to M2 manufactured in this embodiment, the subpixel having the maximum aperture area (red subpixel) and the subpixel having the minimum aperture (yellow The aperture area ratio with respect to the sub-pixel), the lightness of red display, the lightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the red sub-pixel has a relatively large aperture area, so the effect of improving the brightness of red display is great. Also, the aperture area of the blue sub-pixel is relatively large, and the aperture area of the yellow sub-pixel is small. Since a high light source can be used, the brightness of red display can be improved with a relatively small ratio of the opening area, and the decrease in brightness of white display can be suppressed.
  • Table 16 shows the aperture area ratio of each subpixel of the liquid crystal display devices N1 to N3 manufactured in this embodiment, the subpixel having the maximum aperture area (red subpixel) and the subpixel having the minimum aperture (green The aperture area ratio with respect to the sub-pixel), the lightness of red display, the lightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the aperture area of the red sub-pixel is large, the effect of improving the brightness of red display is great. Also, in order to optimize the chromaticity of white display with a relatively small aperture area of yellow sub-pixels where the aperture area of blue sub-pixels is relatively small, Since a high light source can be used, the brightness of red display can be improved with a relatively small ratio of the opening area, and the decrease in brightness of white display can be suppressed.
  • the aperture area of the sub-pixel is set to red, green, blue, and yellow in order from the largest.
  • Table 17 shows the aperture area ratio of each of the sub-pixels of the liquid crystal display devices 0 to 6 manufactured in this embodiment, the sub-pixel (red sub-pixel) having the maximum aperture area and the sub-pixel (red sub-pixel) The aperture area ratio with respect to the yellow sub-pixel), the brightness of red display, the brightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the aperture area of the red sub-pixel is large, the effect of improving the brightness of red display is great.
  • a light source with high luminous efficiency can be used to optimize the chromaticity of white display in which the aperture area of the yellow sub-pixel is small.
  • the ratio of the open area can improve the brightness of red display and suppress the decrease of the brightness of white display.
  • the opening area of the sub-pixel is set to red, blue, yellow, and green in order from the largest.
  • Table 18 shows the ratio of the aperture areas of the subpixels of the liquid crystal display devices P1 to P3 manufactured in this embodiment, the subpixel having the largest aperture area (red subpixel) and the subpixel having the smallest aperture (yellow or green).
  • the aperture area ratio with respect to the sub-pixel) the brightness of red display, the brightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the aperture area of the red sub-pixel is large, the effect of improving the brightness of red display is great.
  • the yellow and green sub-pixels have a relatively small aperture area for the blue sub-pixel, and the aperture area for the white sub-pixel is small. Since a high light source can be used, the brightness of red display can be improved with a relatively small ratio of the opening area, and the decrease in brightness of white display can be suppressed.
  • Table 19 shows the aperture area ratio of each subpixel of the liquid crystal display devices Q1 to Q2 manufactured in this embodiment, the subpixel having the largest aperture area (blue subpixel) and the subpixel having the smallest subpixel (red The aperture area ratio with respect to the sub-pixel), the lightness of red display, the lightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the aperture area of the red sub-pixel is relatively large, the effect of improving the brightness of red display is great.
  • light with high luminous efficiency is used to optimize the chromaticity of white display in which the aperture area of the yellow sub-pixel is large and the aperture area of the blue sub-pixel is small. Since the light source can be used, the brightness of the red display can be improved by the ratio of the relatively small opening area, and the decrease in the brightness of the white display can be suppressed.
  • Table 20 shows the ratio of the aperture areas of the sub-pixels of the liquid crystal display devices R1 to R3 manufactured in this embodiment, the sub-pixel having the largest aperture area (red sub-pixel) and the sub-pixel having the smallest aperture (green sub-pixel).
  • the aperture area ratio with respect to the pixel) the brightness of red display, the brightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the aperture area of the red sub-pixel is relatively large, the effect of improving the brightness of red display is great.
  • the aperture area of the blue sub-pixel is large, and the aperture area of the yellow sub-pixel is relatively small. Since a high light source can be used, the brightness of red display can be improved with a relatively small ratio of the opening area, and the decrease in brightness of white display can be suppressed.
  • Table 21 shows the ratio of the aperture areas of the subpixels of the liquid crystal display devices S1 to S7 manufactured in this embodiment, the subpixel having the maximum aperture area (red subpixel) and the subpixel having the minimum aperture (yellow subpixel).
  • the aperture area ratio with respect to the pixel the brightness of red display, the brightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the aperture area of the yellow sub-pixel is particularly small, and the red light emission of the backlight can be increased, so the effect of improving the brightness of red display is great. Also, the chromaticity of white display in which the aperture area of the blue sub-pixel is large and the aperture area of the yellow sub-pixel is small Since a light source with high luminous efficiency can be used to optimize the brightness, it is possible to improve the brightness of red display with a relatively small aperture area ratio and to suppress the decrease in brightness of white display.
  • Table 22 shows the ratio of the aperture areas of the sub-pixels of the liquid crystal display devices T1 to T3 manufactured in this embodiment, the sub-pixel (blue or green sub-pixel) having the largest aperture area and the sub-pixel (yellow) having the smallest aperture area.
  • the aperture area ratio with respect to the sub-pixel the brightness of red display, the brightness of white display, the average transmittance of the color filter, and the luminous efficiency of the light source of the backlight.
  • the red light emission of the backlight having a particularly small opening area of the yellow sub-pixel can be increased, the effect of improving the brightness of the red display is great.
  • the chromaticity of white display in which the aperture area of the blue sub-pixel is large and the aperture area of the yellow sub-pixel is small Since a light source with high luminous efficiency can be used to optimize the brightness, it is possible to improve the brightness of red display with a relatively small aperture area ratio and to suppress the decrease in brightness of white display.
  • the main wavelength of the red sub-pixel is 595 nm to 650 nm or less
  • the main wavelength of the green sub-pixel is 490 nm to 555 nm or less
  • the main wavelength of the blue sub-pixel is 450 nm to 490 nm
  • the main wavelength of the yellow sub-pixel It is applicable to display devices with wavelengths between 565m and 580nm.
  • Embodiments 1 to 14 the description is given for the case where a pixel is configured by red, green, blue, and yellow sub-pixels.
  • the present invention is not limited to this.
  • red The same effect can be obtained when the pixel is composed of green, blue, yellow and magenta sub-pixels.
  • Embodiments 1 to 14 the explanation is about the case where a general CCFT is used for the light source of the nocrite.
  • the present invention is not limited to this.
  • Different types of backlights such as white light emitting diodes (a combination of blue light emitting LED and yellow fluorescent light emission), RGB—LED, hot cathode fluorescent tube (HCFT), organic EL, field emission display ( In the case of (FED), etc., there is an effect of improving the brightness of red display as described above.
  • the white display color of the liquid crystal display device is adjusted by adjusting the spectral characteristics of the light source by changing the mixing ratio of the red, green, and blue phosphor materials.
  • the present invention is not limited to this.
  • the liquid crystal layer or the optical design of the optical film or the applied voltage during white display can be changed.
  • the chromaticity of white display of the crystal display device may be optimized.
  • Embodiments 1 to 14 describe the transmissive liquid crystal display device that performs display using a backlight.
  • the present invention is not limited to the transmissive liquid crystal display device.
  • Other liquid crystal display devices such as reflective liquid crystal display devices, cathode ray tubes (CRT), organic electroluminescence display devices (OELD), plasma display panels (PDP), and surface conduction electron-emitting device displays ( It is suitably used for various display devices such as field emission displays (FED) such as SED).
  • FED field emission displays
  • FIG. 1 is a plan view schematically showing a TFT substrate in a liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 2 is a plan view schematically showing a counter substrate in the liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a spectral transmittance characteristic of a liquid crystal layer.
  • FIG. 5 is a plan view schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 6 is a plan view schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing spectral transmittance characteristics of a color filter.
  • FIG. 8 is a diagram showing spectral characteristics of a light source of a backlight used in a liquid crystal display device (liquid crystal display device A6 in Table 3) corresponding to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing spectral characteristics of a light source of a backlight used in a conventional liquid crystal display device of three primary colors.
  • FIG. 10 is a diagram showing the relationship between the brightness of red display and the brightness of white display of the liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram schematically showing a modification of the display surface of the liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 12 is a view schematically showing a modification of the display surface of the liquid crystal display device corresponding to Embodiment 1 of the present invention.
  • FIG. 13 is a diagram showing the spectral transmittance characteristics of the color filter.
  • FIG. 14 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 2 of the present invention.
  • FIG. 15 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 2 of the present invention.
  • FIG. 16 is a diagram showing the relationship between the brightness of red display and the brightness of white display of the liquid crystal display device corresponding to Embodiment 2 of the present invention.
  • FIG. 17 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 3 of the present invention.
  • FIG. 18 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 3 of the present invention.
  • FIG. 19 is a diagram showing the relationship between the brightness of red display and the brightness of white display of a liquid crystal display device corresponding to Embodiment 3 of the present invention.
  • FIG. 20 is a diagram schematically showing a modification of the display surface of the liquid crystal display device according to Embodiment 3 of the present invention.
  • FIG. 21 is a diagram schematically showing a modification of the display surface of the liquid crystal display device corresponding to Embodiment 3 of the present invention.
  • FIG. 22 is a graph showing spectral transmittance characteristics of a color filter used in the liquid crystal display device of FIG.
  • FIG. 23 is a diagram schematically showing a modification of the display surface of the liquid crystal display device corresponding to Embodiment 3 of the present invention.
  • FIG. 24 is a diagram schematically showing a modification of the display surface of the liquid crystal display device corresponding to Embodiment 3 of the present invention.
  • FIG. 25 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 4 of the present invention.
  • FIG. 26 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 4 of the present invention. is there.
  • FIG. 27 is a diagram showing the relationship between the brightness of red display and the brightness of white display of the liquid crystal display device corresponding to Embodiment 4 of the present invention.
  • FIG. 28 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 5 of the present invention.
  • FIG. 29 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 5 of the present invention.
  • FIG. 30 is a diagram showing a relationship between red display brightness and white display brightness of the liquid crystal display device according to Embodiment 5 of the present invention.
  • FIG. 31 is a diagram schematically showing a modification of the display surface of the liquid crystal display device corresponding to Embodiment 5 of the present invention.
  • FIG. 32 is a diagram schematically showing a modification of the display surface of the liquid crystal display device corresponding to Embodiment 5 of the present invention.
  • FIG. 33 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 6 of the present invention.
  • FIG. 34 is a diagram schematically showing a display surface of a liquid crystal display device corresponding to Embodiment 6 of the present invention.
  • FIG. 35 is a diagram showing a relationship between red display brightness and white display brightness of the liquid crystal display device according to Embodiment 6 of the present invention.
  • FIG. 36 is a diagram schematically showing a display surface of a conventional four-primary-color liquid crystal display device.
  • FIG. 37 is a diagram schematically showing a display surface of a conventional liquid crystal display device of three primary colors.
  • FIG. 38 is a diagram illustrating spectral characteristics of a light source of a backlight used in a conventional four-primary-color display device.
  • 5G, 5Ga-5Gx Green sub-pixel B, 5Ba ⁇ 5Bx, 5B j ⁇ 5B m: Blue sub-pixel
  • TFT Thin film transistor
  • 0BM Black matrix (blacked area) la ⁇ : 1 lx: Pixel (dotted area) 1, 31: Glass substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、色再現範囲の広い表示が可能であるとともに、明るい赤を表示することができる表示装置を提供する。本発明の表示装置は、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された液晶表示装置(LCD)、ブラウン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED)等の表示装置であって、上記赤のサブ画素は、開口面積が最大であるものである。

Description

明 細 書
表示装置
技術分野
[0001] 本発明は、表示装置に関する。より詳しくは、液晶表示装置等に好適に用いられる表 示装置に関するものである。
背景技術
[0002] 現在、種々の表示装置が様々な用途に利用されている。一般的な表示装置では、光 の三原色である赤、緑及び青を表示する 3色のサブ画素によって 1つの画素が構成 されており、カラー表示が可能になっている。このような液晶表示装置においては、 各サブ画素の色度を彩度が高くなるように調整することにより、表示可能な色の範囲 (色再現範囲)を拡大することができるが、この場合、各サブ画素に配置されるカラー フィルタの透過率が小さくなるため、光の利用効率が低下し、白表示の明度が不足 する。
[0003] これに対し、赤、緑及び青のサブ画素にカラーフィルタの透過率の高い黄のサブ画 素をカ卩えた多原色の表示装置が提案されている (例えば、特許文献 1参照。)。例え ば、図 36に示すように、赤、緑、青及び黄を表示する 4つのサブ画素 5Rw、 5Gw、 5 Bw及び 5Ywからなる画素 11 wによって表示面 500wが構成された液晶表示装置が 開示されている。また、赤、緑、青、シアン及び黄の 5色のサブ画素を有し、画素が、 赤、緑、青及び黄の 4色のサブ画素が配置された第 1の繰り返し配列と、赤、緑、シァ ン及び黄の 4色のサブ画素が配置された第 2の繰り返し配列とから構成されたカラー 表示装置が開示されている(例えば、特許文献 2参照。)。これらの液晶表示装置に よれば、カラーフィルタの透過率の高い黄のサブ画素が加えられていることから、白 表示の明度の低下を抑制することができるとともに、表示に用いる原色の数が増える こと力ら、色再現範囲を拡大することができる。
特許文献 1:特開 2001— 209047号公報
特許文献 2:米国特許出願公開第 2005/0134785号明細書
発明の開示 発明が解決しょうとする課題
[0004] しかしながら、本発明者らは、従来の 4原色の表示装置によれば、表示に用いる原色 の数を単に増やしただけであり、充分な表示品位が得られていないことに着目した。 そして、特許文献 1で開示されているように、それぞれの開口面積 (表示に用レ、られ る領域 (アクティブ領域、有効領域)の面積)が等しい赤、緑、青及び黄のサブ画素か らなる画素によって表示面が構成された表示装置では、色再現範囲の広い表示を実 現することができるものの、表示される赤がどす黒い赤すなわち暗い赤になってしま レ、、視認性が損なわれることを見レ、だした。
[0005] 本発明は、上記現状に鑑みてなされたものであり、色再現範囲の広い表示が可能で あるとともに、明るい赤を表示することができる表示装置を提供することを目的とする ものである。
課題を解決するための手段
[0006] 本発明者らは、赤、緑、青及び黄のサブ画素からなる画素によって表示面が構成さ れた透過型液晶表示装置について種々検討したところ、まず、表示される各色(表示
O
色)の明度に着目した。図 36に示すようにそれぞれの開口面積が等しい赤、緑、青
00
及び黄の 4つのサブ画素 5Rw、 5Gw、 5Bw及び 5Ywからなる画素 l lwによって表 示面 500wが構成された従来の 4原色の透過型液晶表示装置においては、各表示 色の明度は表 1に示すようになる。また、図 37に示すようにそれぞれの開口面積が等 しい赤、緑及び青の 3つのサブ画素 5Rx、 5Gx及び 5Bxからなる画素 l lxによって 表示面 500xが構成された従来の 3原色の透過型液晶表示装置においては、各表 示色の明度は表 2に示すようになる。
[0007] [表 1]
Figure imgf000004_0001
[0008] [表 2] 色 赤 綠 黄 シアン マゼンタ 白 明度 23. 8 66. 1 1 0. 0 89. 9 76. 1 1 00 [0009] 表 1及び 2にはそれぞれ、代表的な表示色として、赤、緑、青、黄、シアン及びマゼン タの 6色の明度について示している。また、各表示色の明度は、 CIE 1931 (標準) 表色系(XYZ表色系)における Y値に相当し、白表示の明度を 100としたときの値で ある。更に、透過型液晶表示装置の各サブ画素には、カラーフィルタが配置されてお り、いずれの透過型液晶表示装置においても、図 7に示す分光透過率を有するもの を用いている。そして、これらの透過型液晶表示装置は、バックライト(光源は、冷陰 極蛍光管(CCFT、 CCFL) )を用いて表示を行うものとし、この光源の分光特性は、 白表示の色度力 Sx = 0. 313、 y=0. 329となり、色温度力 S6500Kとなるように、適切 に調節されている。なお、表 1においては、黄表示の明度に幅があるが、これは、黄 のサブ画素 5Ywを点灯させ、赤及び緑のサブ画素 5Rw及び 5Gwを点灯させないで 黄表示を行う場合には、黄表示の明度は最も低い値 (48. 0)になり、黄のサブ画素 5 Ywに加え、赤及び緑のサブ画素 5Rw及び 5Gwを点灯させて黄表示を行う場合に は、黄表示の明度は最も高い値(92. 4)になり、赤、緑及び黄のサブ画素 5Rw、 5G w及び 5Ywをそれぞれ適切な割合で点灯させて黄表示を行う場合には、黄表示の 明度は中間の値となることを示している。
[0010] 表 1及び 2の結果より、本発明者らは、従来の 4原色の透過型液晶表示装置が、赤表 示、緑表示及び青表示の明度とも従来の 3原色の透過型液晶表示装置よりも低くな つていることを見いだした。これは、表示に用いる原色の数を増やすことにより、 1画 素当たりのサブ画素の数が増え、サブ画素 1つ当たりの面積が相対的に小さくなつて レ、ることに起因する。すなわち、表示に用いる原色の数を 3つ力 4つに増やすことに より、各サブ画素の面積は 3/4となっているからである。更に、このような各表示色の 明度の低下について検討したところ、緑表示や青表示については、明度が低下して も視認性が損なわれることはないが、赤表示については、明度が低下することにより、 どす黒い赤すなわち暗い赤となるため、視認性が損なわれやすいことを見いだした。
[0011] 次に、本発明者らは、従来の 4原色の透過型液晶表示装置の表示に用いられる光源 の分光特性に着目した。従来の 4原色の透過型液晶表示装置の表示に用いられる 光源の分光特性を図 38に示し、従来の 3原色の透過型液晶表示装置の表示に用い られる光源の分光特性を図 9に示す。従来の 4原色の透過型液晶表示装置では、画 素が赤、緑及び青のサブ画素に加えて、黄のサブ画素を有することから、図 9に示す ような通常の分光特性を有する光源を用いると、白表示が黄色づいてしまう。したが つて、白表示の色調を調節するために、図 38に示すように、青みが比較的強い色温 度の高い光源が用いられる。例えば、 CCFTを用いる場合には、青の発光を増やし、 緑及び赤の発光を減らすことにより、高色温度化を実現している。また、白の発光ダ ィオード (LED)を用いる場合には、青成分を増加させ、黄成分を減少させることによ り、高色温度化を行っている。更に、赤、緑及び青の LEDを用いる場合には、 CCFT と同様に、緑及び赤成分を減少させ、青成分を増加させることにより、高色温度化を 行っている。このように、従来の 4原色の透過型液晶表示装置では、白表示の色調を 調節するために、光源の色温度を高くしており、光源の黄成分や赤成分を減少させ る必要があるため、光源の赤成分の強度が低くなつている。
[0012] 以上の結果、従来の 4原色の透過型液晶表示装置においては、表示に用いる原色 の数を増やすことにより、特に赤色の明度の低下によって、視認性が損なわれている ことを見いだした。また、白表示の色調を調節するために、高色温度の光源が用いら れると、赤表示の明度は更に低下し、これに伴って、視認性は更に損なわれているこ とを見いだした。そこで、本発明者らは、鋭意検討したところ、赤、緑、青及び黄のサ ブ画素からなる画素のうち、赤のサブ画素の開口面積を最大とすることにより、明るい 赤を表示することができる結果、視認性を向上させることができることを見いだした。
[0013] そして、このような作用効果は、理論上、赤、緑、青及び黄のサブ画素からなる画素 によって表示面が構成された透過型表示装置のみならず、赤、緑、青及び黄以外に マゼンタのサブ画素を有する画素によって表示面が構成された透過型液晶表示装 置等においても同様に得られるものであること、及び、透過型の液晶表示装置のみな らず、反射型又は反射透過両用型等の他の表示方式の液晶表示装置、ブラウン管( Cathode -ray Tube: CRT)、有機エレクトロルミネセンス表示装置(Organic El ectro— luminescence Display : OELD)、プラズマティスプレイノくネノレ (Plasma Display Panel : PDP)、及び、表面伝導型電子放出素子ディスプレイ(Surface— conduction Electron- emitter Display : SED)等の電界放出ディスプレイ(Fi eld Emission Display : FED)等の種々の表示装置においても同様に得られるも のであることを見いだし、上記課題をみごとに解決することができることに想到し、本 発明に到達したものである。
[0014] すなわち、本発明は、赤、緑、青及び黄のサブ画素を有する画素によって表示面が 構成された表示装置であって、上記赤のサブ画素は、開口面積が最大である表示装 置 (以下「第 1表示装置」ともいう。)である。
[0015] 以下、本発明の第 1〜第 12表示装置について順に説明するが、本発明の第 1〜第 1 2表示装置は、共通する部分が、色再現範囲の広い表示が可能であるとともに明る い赤を表示することができることであり、当該部分は、先行技術を凌駕するものである ことから、単一の一般的発明概念を形成するように連関している。
[0016] 本発明の第 1表示装置は、赤、緑、青及び黄のサブ画素を有する画素によって表示 面が構成されたものである。本明細書で「画素」とは、表示画像において色又は輝度 が独立に割り当てられる、表示面の最小要素をいい、「サブ画素」とは、画素を構成 する単色の点をいう。画素を構成するサブ画素の組み合わせは、全ての画素で同じ でなくてもよぐ例えば、赤、緑、黄、及び、色特性が異なる 2つの青(「第 1の青」及び 「第 2の青」とする。)のサブ画素が設けられている場合には、赤、緑、第 1の青、及び 、黄のサブ画素を有する画素と、赤、緑、第 2の青、及び、黄のサブ画素を有する画 素とが表示面を構成していてもよい。画素は、複数色のサブ画素が集まって構成され たものであり、複数色の光の組み合わせで所望の色を表現する。本発明においては 、画素は、赤、緑及び青を表示するサブ画素に加え、黄を表示するサブ画素も含ん でいる。すなわち、本発明の第 1表示装置は、表示に用いる原色の数が 3つよりも多 レ、ことから、原色の数が 3つの表示装置よりも色再現範囲の広い表示を行うことができ る。なお、画素は、赤、緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有し ていてもよいが、白表示のカラーフィルタの透過率の観点から、赤、緑、青及び黄の サブ画素のみを有することが好ましレ、。マゼンタのサブ画素を含むと、マゼンタのサ ブ画素の透過率は低いため、カラーフィルタの光の利用効率を高めることができない おそれがある。また、マゼンタのサブ画素がなくても、赤及び青のサブ画素の色純度 を高めることにより、高色純度のマゼンタ表示が可能となる。画素構成(画素配列)は 特に限定されず、ストライプ配列、対角配列、田の字配列等が挙げられる。 [0017] 上記赤のサブ画素は、開口面積が最大である。上述したように、赤、緑、青及び黄の 開口面積が等しい場合には、赤色の明度の低下によって、表示装置の視認性が損 なわれるおそれがある。本発明によれば、赤のサブ画素が他の色のサブ画素よりも 開口面積が大きいことから、赤表示の明度を向上させることができ、その結果、表示 装置の視認性を向上させることができる。本明細書で「開口面積」とは、表示に用いら れる領域 (アクティブ領域、有効領域)の面積をいう。サブ画素の開口面積を相対的 に大きくする方法としては、(1)サブ画素の面積に対する開口面積の割合を全ての サブ画素間で一定とし、かつ当該サブ画素(開口面積を相対的に大きくしたいサブ 画素)の面積を他のサブ画素の面積よりも大きくする方法、(2)サブ画素の面積及び それに対する開口面積の割合を全てのサブ画素間で一定とし、かつ当該サブ画素( 開口面積を相対的に大きくしたいサブ画素)を他のサブ画素よりも数多く設ける方法 等が挙げられる。なお、構造を複雑化しないようにするためには、(1)の方法が好まし レ、。 (1)の方法によれば、各サブ画素を駆動する薄膜トランジスタ (TFT)等のスイツ チング素子の数の増加等を抑制することができるからである。なお、赤表示の明度は 、白表示の明度に対して 12%以上であることが好ましぐ 15%以上であることがより 好ましい。一方、赤表示の明度は、白表示の明度の 30%よりも大きい場合、白表示 の際に赤が発光しているように見え、不自然さを感じ、視認性を損なうおそれがある。 したがって、赤表示の明度は、白表示の明度の 30%以下であることが好ましぐ 25% 以下であることがより好ましい。
[0018] なお、各サブ画素の開口面積が大きく異なると、各サブ画素の画素容量が大きく異 なる。すなわち、各サブ画素の開口面積が大きく異なると、各サブ画素間で充電率、 ゲート信号による画素電位の引き込み量、及び、ソース信号による画素電位の変動 量が大きく異なり、その結果、フリッカー、焼き付き、クロストーク等の不良が発生する おそれがある。したがって、赤のサブ画素の開口面積は、開口面積が最小である他 のサブ画素の開口面積の 2倍以下であることが好ましい。ただし、画素容量の差分を 考慮して TFTサイズ、補助容量等を適切に設計することにより、上述の不良が緩和さ れる場合がある。このような場合には、赤のサブ画素の開口面積は、開口面積が最 小である他のサブ画素の開口面積の 3倍以下であれば好適である。 [0019] 本発明の第 1表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。また、本発明 の第 1表示装置においては、画素を構成するサブ画素の開口面積の大小関係は、 赤のサブ画素の開口面積が最大であり、赤以外のサブ画素の開口面積が赤のサブ 画素の開口面積よりも小さいものである限り、特に限定されない。
[0020] 本発明の第 1表示装置は、バックライト及び Z又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノ ックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、バックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。これによれば、赤のサブ画 素の開口面積を最大にしても、表示に用いる光源の分光特性を調整することにより、 第 1表示装置の白表示の色度を容易に適正化することができる。本明細書で、バック ライトのタイプは特に限定されず、直下型であってもよぐエッジライト型であってもよ レ、。光源は特に限定されず、例えば、白の発光ダイオード(LED)、 RGB— LED、冷 陰極蛍光管(CCFT)、熱陰極蛍光管(HCFT)、有機 EL等を用いることができる。
[0021] また、本明細書で、各サブ画素には、特定の波長域の光を選択的に透過するフィル タ(以下「カラーフィルタ」ともいう。)が設けられていることが好ましい。この場合、サブ 画素の色は、カラーフィルタの分光特性に基づいて規定される。カラーフィルタの材 質は特に限定されず、例えば、染料によって染色された樹脂、顔料が分散された樹 脂、顔料が分散された流動性材料 (インク)を固化させてなるものが挙げられる。また 、カラーフィルタの形成方法は特に限定されず、例えば、染色法、顔料分散法、電着 法、印刷法、インクジェット法、着色感材法(「転写法」、「ドライフィルムラミネート(DF
[0022] また、本明細書で、サブ画素の 5色は、次のように定義される。すなわち、「赤」とは、 XYZ表色系(CIE1931標準表色系)の xy色度図において、白色点を x = 0. 3333、 y=0. 3333としたときの主波長が 595nm以上 650nm以下の色をいレ、、好ましくは 、主波長が 600nm以上 640nm以下の色をいう。「赤」の色純度は、主観評価結果の 観点から、 75%以上 97%以下であることが好ましい。観察者に表示色の不自然さを 感じさせない色純度を評価した結果、色純度が 75%未満であると、単に色が薄ぐ 鮮ゃ力さが感じられないおそれがある。逆に、色純度が 97%を超えると、発光色のよ うなぎとぎと感があり、不自然さを感じさせるおそれがある。同様に、「緑」とは、主波長 力 490nm以上 555nm以下の色をいレ、、好ましくは、主波長が 510nm以上 550nm 以下の色をいう。 「緑」の色純度は、同様の観点から、 50%以上 80%以下であること が好ましレ、。 「青」とは、主波長が 450nm以上 490nm以下の色をいい、好ましくは、 主波長が 450nm以上 475nm以下の色をいう。 「青」の色純度は、同様の観点から、 50%以上 95%以下であることが好ましレ、。 「黄」とは、主波長が 565nm以上 580nm 以下の色をいい、好ましくは、主波長が 570nm以上 580nm以下の色をいう。 「黄」の 色純度は、同様の観点から、 90%以上 97%以下であることが好ましい。「マゼンタ」と は、補色主波長が 495nm以上 560nm以下の色をレ、い、好ましくは、補色主波長が 500nm以上 555nm以下の色をいう。 「マゼンタ」の色純度は、同様の観点から、 60 %以上 80%以下であることが好ましい。なお、主波長及び補色主波長は、色相を大 まかに表し、色純度は、彩度を大まかに表すものである。色純度の測定方法としては 、実際に表示装置に用いられている光源を光源として用いた場合の各フィルタの色 度座標を分光放射計等で測定し、白色点の色度座標(0. 3333、 0. 3333)、各フィ ルタの色度座標、及び、白色点とフィルタの色度点とを結ぶ直線がスペクトル軌跡と 交わる点の色度座標を用いて算出する方法が挙げられる。
[0023] 本発明の第 1表示装置における好ましい形態について以下に詳しく説明する。
上記緑、青及び黄のサブ画素は、開口面積が最小であることが好ましい。すなわち、 上記緑、青及び黄のサブ画素は、開口面積が互いに同一かつ最小であることが好ま しい。これによれば、緑、青及び黄のサブ画素の開口面積が同程度に小さいことから 、赤表示の明度を向上させることができる。
[0024] 上記画素は、青のサブ画素よりも開口面積が小さいサブ画素を有することが好ましい 。通常は、赤、緑、青及び黄のサブ画素に設置される各色のカラーフィルタの透過率 と、白表示のカラーフィルタの透過率(カラーフィルタの平均透過率)との大小関係は 、透過率の高いほうから順に、黄、緑、白、赤、青となる。なお、赤のカラーフィルタと 青のカラーフィルタとの透過率の大小関係は入れ変わり、透過率の高いほうから順に 、黄、緑、白、青、赤となることがある。この大小関係によれば、青のサブ画素の開口 面積を最小とすることにより、他のサブ画素の開口面積を大きくすることができること 力 、白表示のカラーフィルタの透過率を大きくすることができる。し力、しながら、この 場合、白表示の色度を適正化するためには、表示に用いる光源の色温度を高くする 必要があることから、光源の発光効率は小さくなり、結果的には、光源の発光効率を 含めた表示装置の白表示の明度は小さくなる。したがって、青のサブ画素の開口面 積を最小としないことにより、このような表示装置の白表示の明度の低下を抑制するこ とができる。
[0025] 上記緑のサブ画素は、開口面積が最小であることが好ましレ、。カラーフィルタの透過 率の大小関係から分かるように、緑のサブ画素の開口面積を最小にすると、白表示 のカラーフィルタの透過率は低下する。し力 ながら、この場合、白表示の色度を適 正化するためには、光源の色温度を低くする必要があり、光源の発光効率は大きくな ることから、光源の発光効率も含めた表示装置の白表示の明度を向上させることがで きる。
[0026] 上記黄のサブ画素は、開口面積が最小であることが好ましレ、。カラーフィルタの透過 率の大小関係から分かるように、黄のサブ画素の開口面積を最小にすると、白表示 のカラーフィルタの透過率は小さくなる。し力しながら、この場合、白表示の色度を適 正化するためには、光源の色温度をより低くする必要があることから、赤表示の明度 をより向上させることができる。また、光源の色温度をより低くすることにより、光源の発 光効率はより大きくなるため、光源の発光効率も含めた表示装置の白表示の明度を より向上させることができる。
[0027] 本発明はまた、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成さ れた表示装置であって、上記赤及び青のサブ画素は、開口面積が最大である表示 装置(以下「第 2表示装置」ともいう。)でもある。これによれば、カラーフィルタの透過 率が小さい赤及び青のサブ画素の開口面積を最大にするため、白表示のカラーフィ ルタの透過率が小さくなる。し力 ながら、この場合、白表示の色度を適正化するた めには、光源の発光効率を更に大きくする必要があることから、光源の発光効率も含 めた表示装置の白表示の明度を更に向上させることができる。
[0028] 本発明の第 2表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。また、本発明 の第 2表示装置においては、画素を構成するサブ画素の開口面積の大小関係は、 赤及び青のサブ画素の開口面積が互いに同一かつ最大であり、赤及び青以外のサ ブ画素の開口面積が赤及び青のサブ画素の開口面積よりも小さいものである限り、 特に限定されない。画素は、赤、緑、青及び黄のサブ画素以外に、マゼンタのサブ 画素を有していてもょレ、が、白表示のカラーフィルタの透過率の観点から、赤、緑、 青及び黄のサブ画素のみを有することが好ましレ、。
[0029] 本発明の第 2表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 2表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び/又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノくックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、ノ ックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0030] 本発明の第 2表示装置における好ましい形態について以下に詳しく説明する。
上記赤及び青のサブ画素の開口面積が最大である形態としては、(1A)赤及び青の サブ画素は、画素の中で数が最多である形態、(1B)上記(1A)において、画素は、 色特性が互いに異なる青のサブ画素を有する形態、(1C)上記(1A)において、画 素は、色特性が互いに異なる赤のサブ画素を有する形態、(1D)緑及び黄のサブ画 素は、開口面積が最小である形態、 (1E)緑のサブ画素は、開口面積が最小である 形態、(1F)黄のサブ画素は、開口面積が最小である形態が挙げられる。
[0031] 上記(1A)の形態によれば、各サブ画素の開口面積を変えなくてもよいため、従来の 画素設計及び回路設計を用いることができる。なお、本明細書で「赤及び青のサブ 画素は、画素の中で数が最多である」とは、画素を構成する赤及び青のサブ画素の 数が互いに同一かつ最多であり、赤及び青のサブ画素以外のサブ画素の個数が赤 及び青のサブ画素の個数よりも少ないことを意味する。上記(1B)及び(1C)の形態 によれば、更に、色再現範囲を拡大することができるとともに、表示色数を増加するこ とができる。なお、本明細書で「色特性が異なる」とは、色の三属性である色相、明度 及び彩度のうち、少なくとも一つが異なることを意味し、色再現範囲を効率よく拡大す る観点から、好ましくは、色相が異なることを意味する。上記(1D)の形態によれば、 白表示のカラーフィルタの透過率は減少するものの、カラーフィルタの青成分の透過 率が相対的に増加する。したがって、白表示の色度を適正化するベぐ発光効率の 低い光源の青成分を減少させることが可能となり、光源の発光効率が大きくなるため 、光源の発光効率も含めた表示装置の白表示の明度を効果的に向上させることがで きる。上記(1E)の形態によれば、白表示のカラーフィルタの透過率は減少するもの の、カラーフィルタの青成分の透過率が相対的に増加する。したがって、白表示の色 度を適正化するベぐ発光効率の低い光源の青成分を減少させることが可能となり、 光源の発光効率が大きくなるため、光源の発光効率も含めた表示装置の白表示の 明度の向上に更に好適である場合がある。上記(1F)の形態によれば、上記(1E)の 形態よりも、白表示のカラーフィルタの透過率は更に減少するものの、カラーフィルタ の青成分の透過率が相対的に増加する。したがって、白表示の色度を適正化するベ ぐ発光効率の低い光源の青成分を減少させることが可能となり、光源の発光効率が 大きくなるため、光源の発光効率も含めた表示装置の白表示の明度を特に向上させ ること力 Sできる。
本発明はまた、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成さ れた表示装置であって、上記青のサブ画素は、開口面積が最大である表示装置(以 下「第 3表示装置」ともいう。)でもある。これによれば、カラーフィルタの透過率が小さ い青のサブ画素の開口面積が最大であることから、白表示のカラーフィルタの透過率 は小さくなるものの、白表示の色度を適正化するためには、光源の色温度を低くする 必要があることから、赤表示の明度を向上させることができる。また、光源の色温度を 低くすることにより、光源の発光効率が大きくなることから、光源の発光効率を含めた 表示装置の白表示の明度を向上させることができる。
[0033] 本発明の第 3表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。また、本発明 の第 3表示装置においては、画素を構成するサブ画素の開口面積の大小関係は、 青のサブ画素の開口面積が最大であり、青以外のサブ画素の開口面積が青のサブ 画素の開口面積よりも小さいものである限り、特に限定されない。画素は、赤、緑、青 及び黄のサブ画素以外に、マゼンタのサブ画素を有していてもょレ、が、白表示のカラ 一フィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有することが好 ましい。
[0034] 本発明の第 3表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 3表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び/又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノくックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、ノ ックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0035] このような青のサブ画素の開口面積が最大である形態としては、 (2A)青のサブ画素 は、画素の中で最多である形態、 (2B)上記(2A)において、画素は、色特性が互い に異なる青のサブ画素を有する形態が挙げられる。上記(2A)の形態によれば、各 サブ画素の開口面積を変えなくてもよいため、従来の画素設計及び回路設計を用い ること力 Sできる。上記(2B)の形態によれば、色再現範囲を拡大することができるととも に、表示色数を増加することができる。
[0036] 本発明の第 3表示装置における他の好ましい形態について以下に詳しく説明する。
上記赤、緑及び黄のサブ画素は、開口面積が最小であることが好ましい。すなわち、 上記赤、緑、及び黄のサブ画素は、開口面積が互いに同一かつ最小であることが好 ましレ、。これによれば、赤、緑及び黄のサブ画素の開口面積が同程度に小さいことか ら、白表示のカラーフィルタの透過率は小さくなるものの、白表示の色度を適正化す るためには、光源の色温度を低くする必要があることから、赤表示の明度を効果的に 向上させることができる。また、光源の発光効率を高くすることができるため、結果的 に、光源の発光効率を含めた表示装置の白表示の明度を向上させることができる。
[0037] 上記画素は、赤のサブ画素よりも開口面積が小さいサブ画素を有することが好ましい 。赤のサブ画素の開口面積を最小にすると、赤表示の明度は小さくなるため、視認性 を損なうおそれがある。したがって、赤のサブ画素の開口面積を最小としないことによ り、赤表示の明度の低下を抑制することで、視認性を確保することができる。
[0038] 上記緑及び黄のサブ画素は、開口面積が最小であることが好ましい。すなわち、上 記緑、及び黄のサブ画素は、開口面積が互いに同一かつ最小であることが好ましレヽ 。これによれば、白表示のカラーフィルタの透過率は減少するものの、カラーフィルタ の青成分の透過率が相対的に増加する。したがって、白表示の色度を適正化すべく 、発光効率の低い光源の青成分を減少させることが可能となり、光源の発光効率が 大きくなるため、光源の発光効率を含めた表示装置の白表示の明度を向上させるこ とができる。
[0039] 上記緑のサブ画素は、開口面積が最小であることが好ましレ、。上述したカラーフィノレ タの透過率の大小関係から分かるように、緑のサブ画素の開口面積を最小にすると、 白表示のカラーフィルタの透過率は低下するものの、白表示の色度を適正化するた めには、光源の色温度を低くする必要があり、光源の発光効率が大きくなるため、光 源の発光効率を含めた表示装置の白表示の明度を向上させることができる。
[0040] 上記黄のサブ画素は、開口面積が最小であることが好ましレ、。カラーフィルタの透過 率の大小関係から分かるように、黄のサブ画素の開口面積を最小にすると、白表示 のカラーフィルタの透過率は小さくなるものの、白表示の色度を適正化するためには 、光源の色温度を低くする必要があることから、赤表示の明度を向上させることができ る。また、光源の色温度を低くすることにより、光源の発光効率がより大きくなるため、 白表示のカラーフィルタの透過率は小さくなるものの、光源の発光効率も含めた表示 装置の白表示の明度をより向上させることができる。 [0041] 本発明は更に、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成さ れた表示装置であって、上記黄のサブ画素は、開口面積が最小である表示装置(以 下「第 4表示装置」ともいう。)でもある。これによれば、カラーフィルタの透過率の大小 関係から分かるように、白表示のカラーフィルタの透過率は小さくなるものの、白表示 の色度を適正化するためには、光源の色温度を低くする必要があることから、赤表示 の明度を向上させることができる。また、光源の色温度を低くすることにより、光源の 発光効率が大きくなるため、光源の発光効率も含めた表示装置の白表示の明度をよ り向上させることができる。
[0042] 本発明の第 4表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。また、本発明 の第 4表示装置においては、画素を構成するサブ画素の開口面積の大小関係は、 黄のサブ画素の開口面積が最小であり、黄以外のサブ画素の開口面積が黄のサブ 画素の開口面積よりも大きいものである限り、特に限定されない。画素は、赤、緑、青 及び黄のサブ画素以外に、マゼンタのサブ画素を有していてもょレ、が、白表示のカラ 一フィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有することが好 ましい。
[0043] 本発明の第 4表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 4表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び Z又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノ ックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、バックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0044] 本発明の第 4表示装置における他の好ましい形態について以下に詳しく説明する。
上記赤、緑及び青のサブ画素は、開口面積が最大であることが好ましい。すなわち、 上記赤、緑及び青のサブ画素は、開口面積が互いに同一かつ最大であることが好ま しい。このように、赤のサブ画素の開口面積が大きぐ黄のサブ画素の開口面積が小 さいことにより、発光効率の高い光源が使用可能であるため、赤表示及び白表示の 明度を効果的に向上させることができる。このような赤、緑及び青のサブ画素の開口 面積が最大である形態としては、 (3A)赤、緑及び青のサブ画素は、画素の中で数 が最多である形態、(3B)画素は、色特性が互いに異なる青のサブ画素を有する形 態、(3C)画素は、色特性が互いに異なる赤のサブ画素を有する形態が挙げられる。 上記(3A)、(3B)及び(3C)のいずれの形態も、各サブ画素の開口面積を変えなく てもよいため、従来の画素設計及び回路設計を使うことができる。また、上記(3B)及 び(3C)の形態によれば、色再現範囲の拡大、及び、表示色数の増加を図ることがで きる。
[0045] 上記画素は、青のサブ画素よりも開口面積が大きいサブ画素を有することが好ましい 。本発明の第 3表示装置によれば、カラーフィルタの透過率が大きい黄のサブ画素 の面積が最小であることから、更に、カラーフィルタの透過率の小さい青のサブ画素 の開口面積を最大とすると、表示装置の白表示の明度が著しく低下するおそれがあ る。したがって、青のサブ画素の開口面積を最大としないことにより、このような表示 装置の白表示の明度の低下を抑制することができる。
[0046] 上記赤及び緑のサブ画素は、開口面積が最大であることが好ましい。すなわち、上 記赤及び緑のサブ画素は、開口面積が互いに同一かつ最大であることが好ましい。 これによれば、赤のサブ画素の開口面積が最大であることから、赤表示の明度を向 上させることができる。また、赤のサブ画素の開口面積が最大であることにより、白表 示の色度を適正化するためには、光源の色温度を高くする必要があり、光源の発光 効率が低下するものの、本発明によれば、カラーフィルタの透過率が大きい緑のサブ 画素の開口面積も最大であることから、表示装置の白表示の明度の低下を抑制する こと力 Sできる。このような赤、緑のサブ画素の開口面積が最大である形態としては、(4 A)赤及び緑のサブ画素は、画素の中で数が最多である形態、 (4B)画素は、色特性 が互いに異なる緑のサブ画素を有する形態が挙げられる。上記 (4A)及び (4B)のレ、 ずれの形態も、各サブ画素の開口面積を変えなくてもよいため、従来の画素設計及 び回路設計を使うことができる。また、 (4B)の形態によれば、色再現範囲の拡大、及 び、表示色数の増加を図ることができる。
[0047] 本発明はそして、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、赤、青 、緑、黄である表示装置 (以下「第 5表示装置」ともいう。)でもある。このような第 5表示 装置は、赤のサブ画素の開口面積が大きいため、赤表示の明度向上の効果が大き レ、。また、青のサブ画素の開口面積が比較的大きぐ黄のサブ画素の開口面積が小 さぐ白表示の色度を適正化するために発光効率の高い光源を使用することができる ため、比較的小さい開口面積の比率で赤表示の明度を向上させ、白表示の明度の 低下を抑制するのに好適である。
[0048] 本発明の第 5表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤、 緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0049] 本発明の第 5表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 5表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び/又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノ ックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、バックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0050] 本発明は更には、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、赤、青 、黄、緑である表示装置(以下「第 6表示装置」ともいう。)でもある。このような第 6表示 装置もまた、赤のサブ画素の開口面積が大きいため、赤表示の明度向上の効果が 大きい。また、青のサブ画素の開口面積が比較的大きぐ黄のサブ画素の開口面積 が比較的小さぐ白表示の色度を適正化するために発光効率の高い光源を使用す ることができるため、比較的小さい開口面積の比率で赤表示の明度を向上させ、白 表示の明度の低下を抑制するのに好適である。
[0051] 本発明の第 6表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤、 緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0052] 本発明の第 6表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 6表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び/又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノくックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、ノ ックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0053] 本発明は更には、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、赤、緑 、青、黄である表示装置 (以下「第 7表示装置」ともいう。)でもある。このような第 7表示 装置もまた、赤のサブ画素の開口面積が大きいため、赤表示の明度向上の効果が 大きい。また、黄のサブ画素の開口面積が小さぐ白表示の色度を適正化するため に発光効率の高い光源を使用することができるため、比較的小さい開口面積の比率 で赤表示の明度を向上させ、白表示の明度の低下を抑制するのに好適である。
[0054] 本発明の第 7表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤、 緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0055] 本発明の第 7表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 7表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び Z又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノ ックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、バックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0056] 本発明は更には、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、赤、青 、黄及び緑である表示装置 (以下「第 8表示装置」ともいう。)でもある。なお、「開口面 積の大きいものから順に、赤、青、黄及び緑である」とは、赤のサブ画素の開口面積 が最大であり、黄及び緑のサブ画素は、開口面積が互いに同一かつ最小であり、青 のサブ画素の開口面積がそれらの間であることを意味する。このような第 8表示装置 もまた、赤のサブ画素の開口面積が大きいため、赤表示の明度向上の効果が大きい 。また、青のサブ画素の開口面積が比較的大きぐ黄及び緑のサブ画素の開口面積 力 、さぐ白表示の色度を適正化するために発光効率の高い光源を使用することが できるため、比較的小さい開口面積の比率で赤表示の明度を向上させ、白表示の明 度の低下を抑制するのに好適である。
[0057] 本発明の第 8表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤、 緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0058] 本発明の第 8表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 8表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び Z又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノ ックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、バックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0059] 本発明は更には、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、青、赤 、緑、黄である表示装置 (以下「第 9表示装置」ともいう。)でもある。このような第 9表示 装置もまた、赤のサブ画素の開口面積が比較的大きいため、赤表示の明度向上の 効果が大きい。また、青のサブ画素の開口面積が大きぐ黄のサブ画素の開口面積 力 S小さぐ白表示の色度を適正化するために発光効率の高い光源を使用することが できるため、比較的小さい開口面積の比率で赤表示の明度を向上させ、白表示の明 度の低下を抑制するのに好適である。
[0060] 本発明の第 9表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有する 画素によって構成された表示面を構成要素として有するものである限り、その他の構 成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤、 緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0061] 本発明の第 9表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブラ ゥン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイ パネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出 ディスプレイ (FED)等が挙げられる。本発明の第 9表示装置は、本発明の第 1表示 装置と同様の理由により、バックライト及び/又はフロントライト等の光源装置を用い て表示を行うものであることが好ましぐノ ックライトを用いて表示を行う透過型の液晶 表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、バックライトを 用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示を行う反 射透過両用型の液晶表示装置であることがより好ましい。
[0062] 本発明は更には、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、青、赤 、黄、緑である表示装置(以下「第 10表示装置」ともいう。)でもある。このような第 10 表示装置もまた、赤のサブ画素の開口面積が比較的大きいため、赤表示の明度向 上の効果が大きい。また、青のサブ画素の開口面積が大きぐ黄のサブ画素の開口 面積が比較的小さぐ白表示の色度を適正化するために発光効率の高い光源を使 用することができるため、比較的小さい開口面積の比率で赤表示の明度を向上させ 、白表示の明度の低下を抑制するのに好適である。
[0063] 本発明の第 10表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有す る画素によって構成された表示面を構成要素として有するものである限り、その他の 構成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤 、緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0064] 本発明の第 10表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブ ラウン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレ ィパネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放 出ディスプレイ (FED)等が挙げられる。本発明の第 10表示装置は、本発明の第 1表 示装置と同様の理由により、バックライト及び Z又はフロントライト等の光源装置を用 いて表示を行うものであることが好ましぐバックライトを用いて表示を行う透過型の液 晶表示装置、フロントライトを用レ、て表示を行う反射型の液晶表示装置、ノ ックライト を用いて透過表示を行レ、、外部光及び/又はフロントライトを用いて反射表示を行う 反射透過両用型の液晶表示装置であることがより好ましい。
[0065] 本発明は更には、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、青、緑 、赤、黄である表示装置 (以下「第 11表示装置」ともいう。)でもある。このような第 11 表示装置は、黄のサブ画素の開口面積が特に小さぐバックライト等の赤の発光を増 やすことができるため、赤表示の明度向上の効果が大きい。また、青のサブ画素の開 口面積が大きぐ黄のサブ画素の開口面積が小さぐ白表示の色度を適正化するた めに発光効率の高い光源を使用することができるため、比較的小さい開口面積の比 率で赤表示の明度を向上させ、白表示の明度の低下を抑制するのに好適である。
[0066] 本発明の第 11表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有す る画素によって構成された表示面を構成要素として有するものである限り、その他の 構成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤 、緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0067] 本発明の第 11表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブ ラウン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレ ィパネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放 出ディスプレイ (FED)等が挙げられる。本発明の第 11表示装置は、本発明の第 1表 示装置と同様の理由により、バックライト及び/又はフロントライト等の光源装置を用 いて表示を行うものであることが好ましぐバックライトを用いて表示を行う透過型の液 晶表示装置、フロントライトを用レ、て表示を行う反射型の液晶表示装置、ノ ックライト を用いて透過表示を行レ、、外部光及び/又はフロントライトを用いて反射表示を行う 反射透過両用型の液晶表示装置であることがより好ましい。
[0068] 本発明は更には、赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成 された表示装置であって、上記サブ画素は、開口面積の大きいものから順に、青及 び緑、赤、黄である表示装置 (以下「第 12表示装置」ともいう。)でもある。なお、「開 口面積の大きいものから順に、青及び緑、赤、黄である」とは、青及び緑のサブ画素 の開口面積が互いに同一かつ最大であり、黄のサブ画素の開口面積が最小であり、 赤のサブ画素の開口面積がそれらの間であることを意味する。このような第 12表示 装置もまた、黄のサブ画素の開口面積が特に小さぐバックライト等の赤の発光を増 やすことができるため、赤表示の明度向上の効果が大きい。また、青のサブ画素の開 口面積が大きぐ黄のサブ画素の開口面積が小さぐ白表示の色度を適正化するた めに発光効率の高い光源を使用することができるため、比較的小さい開口面積の比 率で赤表示の明度を向上させ、白表示の明度の低下を抑制するのに好適である。
[0069] 本発明の第 12表示装置の構成としては、上記赤、緑、青及び黄のサブ画素を有す る画素によって構成された表示面を構成要素として有するものである限り、その他の 構成要素を有していても有さなくてもよぐ特に限定されるものではない。画素は、赤 、緑、青及び黄のサブ画素以外に、マゼンタのサブ画素を有してもよいが、白表示の カラーフィルタの透過率の観点から、赤、緑、青及び黄のサブ画素のみを有すること が好ましい。
[0070] 本発明の第 12表示装置としては特に限定されず、例えば液晶表示装置 (LCD)、ブ ラウン管(CRT)、有機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレ ィパネル (PDP)、及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放 出ディスプレイ (FED)等が挙げられる。本発明の第 12表示装置は、本発明の第 1表 示装置と同様の理由により、バックライト及び/又はフロントライト等の光源装置を用 いて表示を行うものであることが好ましぐバックライトを用いて表示を行う透過型の液 晶表示装置、フロントライトを用いて表示を行う反射型の液晶表示装置、ノ ックライト を用いて透過表示を行レ、、外部光及び/又はフロントライトを用いて反射表示を行う 反射透過両用型の液晶表示装置であることがより好ましい。
発明の効果
[0071] 本発明の表示装置によれば、画素は、赤、緑及び青を表示するサブ画素に加えて、 黄を表示するサブ画素を有しており、表示に用いる原色の数が 3つよりも多いことから 、 3原色を表示に用いる表示装置よりも色再現範囲の広い表示を行うことができる。ま た、赤を表示するサブ画素の開口面積が最大であることから、赤表示の明度を向上 させること力 Sできる。
発明を実施するための最良の形態
[0072] 以下に実施形態を掲げ、本発明を更に詳細に説明するが、本発明はこれらの実施 形態のみに限定されるものではない。以下の実施形態における構成及び測定値等 はすべて、コンピュータプログラムを用いて行ったシミュレーション (模擬実験)に基づ くものである。以下の実施形態では、透過型の液晶表示装置を例として本発明を説 明する。
[0073] (実施形態 1)
本発明の実施形態 1に係る液晶表示装置の構成について説明する。なお、本発明 の液晶表示装置の構成は、これに限定されるものではない。
図 1は、本発明の実施形態 1に係る透過型の液晶表示装置における TFT基板 200 の概略構成を示す平面図である。 TFT基板 200は、図 1に示すように、ガラス基板上 に、走査線 4と信号線 6とからなるマトリクス配線が配置されており、マトリクス配線の交 点にはそれぞれ、薄膜トランジスタ (TFT) 8が設けられており、マトリクス配線に囲ま れた領域にはそれぞれ、酸化インジウム錫 (ITO)等の透明な導電材料からなる透過 電極 35 (35R、 35G、 35Y及び 35B)が配置されている。 TFT8のゲート電極は、走 查線 4に接続されており、ソース電極は、信号線 6に接続されており、ドレイン電極は 、ドレイン引出し配線 9を介して透過電極 35に接続されている。透過電極 35R、 35G 、 35Y及び 35Bはそれぞれ、液晶表示装置において後述するカラーフィルタ基板 11 に設けられた赤、緑、青及び黄のカラーフィルタ 10R、 10G、 10Y及び 10Bと対向す るように設けられている。本実施形態では、図 1に示すように、赤のカラーフィルタ 10 Rと対向する透過電極 35Rが大きぐ他の色のカラーフィルタと対向する透過電極 35 G、 35Y及び 35Bが同程度に小さくなるように、走査線 4及び信号線 6が配置されて いる。また、透過電極 35に印加された電圧を保持するための補助容量配線 7が、走 查線 4と平行に配置されている。補助容量配線 7は、絶縁膜を介してドレイン引出し 配線 9の端部と対向することにより、補助容量 3を構成している。
[0074] 図 2は、本発明の実施形態 1に係る透過型の液晶表示装置におけるカラーフィルタ 基板(対向基板) 100の概略構成を示す平面図である。 カラーフィルタ基板 100は、図 2に示すように、赤、緑、黄及び青のカラーフィルタ 10 R、 10G、 10Y及び 10Bがこの順にストライプ配列され、各フィルタの周囲及びフィノレ タ間には、ブラックマトリクス 10BMが配置されている。なお、カラーフィルタ 10R、 10 G、 10B及び 10Yはそれぞれ、 自身を透過する光の色を選択するものである。赤、緑 及び青のカラーフィルタ 10R、 10G及び 10Bはそれぞれ、入射光の赤色成分、緑色 成分及び青色成分を主に透過させるものであり、黄のカラーフィルタ 10Yは、入射光 の赤色成分及び緑色成分の両方の色成分を主に透過させるものである。本実施形 態では、図 2に示すように、カラーフィルタ 10R、 10B、 10G及び 10Yの配列が全て の画素で同一であるが、画素ごとに異なっていてもよぐ本発明の画素構成は特に限 定されるものではなレ、。カラーフィルタ 10R、 10B、 10G及び 10Yはそれぞれ、液晶 表示装置において、前述した TFT基板 200に設けられた透過電極 35R、 35G、 35 Y及び 35Bと対向するように設けられており、ブラックマトリクス 10BMは、液晶表示装 置において、走査線 4及び信号線 6と対向するように設けられている。また、本実施形 態では、図 2に示すように、赤のカラーフィルタ 10Rの面積が大きぐ他の色のカラー フィルタ 10B、 10G及び 10Yの面積が同程度に小さくなるように形成されている。
[0075] 図 3は、本発明の実施形態 1に係る透過型の液晶表示装置を示す断面模式図であ る。
図 3に示すように、本発明の実施形態 1に係る透過型の液晶表示装置 500は、上述 したカラーフィルタ基板 100と TFT基板 200との間に、液晶層 300を挟んだ構成を有 している。カラーフィルタ基板 100は、ガラス基板 21の外側 (観察面側)には、位相差 板 22及び偏光板 23を備え、ガラス基板 21の内側 (背面側)には、赤、緑、青及び黄 のカラーフィノレタ 10R、 10G、 10B、 10Y、ブラックマトリクス 10ΒΜ、才ーノ 一コー卜 層 25、対向電極 26及び配向膜 27を備えている。
[0076] 位相差板 22は、 自身を透過する光の偏光状態を調整するものである。偏光板 23は 、特定の偏光成分の光だけを透過させるものである。本実施形態では、位相差板 22 及び偏光板 23の配置及び構成を調整することにより、位相差板 22及び偏光板 23が 、円偏光板として機能するように設定されている。
[0077] オーバーコート層 25は、赤、緑、青及び黄のフィルタ 10R、 10G、 10B及び 10Yから 液晶層 300内に汚染物が溶出するのを防ぎ、また、カラーフィルタ基板 100の表面を 平坦ィ匕するものである。対向電極 26は、液晶層 300を介して、 TFT基板 200側に設 けられた透明電極 35R、 35G、 35B及び 35Yに対向するものであり、液晶層 300に 電圧を印加して液晶分子を駆動するのに用いられる。なお、対向電極 26は、酸化ィ ンジゥム錫 (ITO)等の透明な導電材料からなる。配向膜 27は、液晶層 300内の液晶 分子の配向を制御するものである。
[0078] 一方、 TFT基板 200は、ガラス基板 31の外側(背面側)には、位相差板 32及び偏光 板 33を備え、ガラス基板 31の内側 (観察面側)には、薄膜トランジスタ (TFT) 8、層 間絶縁膜 34、透明電極 35 (35R、 35G、 35B及び 35Y)及び配向膜 38等を備えて いる。
[0079] 位相差板 32は、位相差板 22と同様に、 自身を透過する光の偏光状態を調整するも のであり、偏光板 33は、偏光板 23と同様に、特定の偏光成分の光だけを透過させる ものである。本実施形態では、この偏光板 33は、カラーフィルタ基板 100側に配置さ れた円偏光板と光学的に互いに直交するように配置されてレ、る。
[0080] 透明電極 35 (35R、 35G、 35B及び 35Y)は、カラーフィルタ基板 100側のカラーフ ィルタ毎に配置されており、カラーフィルタの領域毎に、液晶層 300に電圧を印加し て液晶分子を駆動する。配向膜 38は、配向膜 27と同様に、液晶層 300内の液晶分 子の配向を制御するものである。
[0081] なお、 TFT基板 200の裏面側(背面側)には、表示に用いられるバックライト 36が備 えられている。バックライト 36に用いる光源の分光特性等については、後述する。ま た、図 4は、液晶層 300の分光特性を示す図である。本実施形態では、液晶層 300 の材料として、負の誘電率異方性を有するネマチック液晶を用いている。
[0082] 図 5は、本発明の実施形態 1に係る液晶表示装置 500の画素構成を示す平面模式 図である。本実施形態では、液晶表示装置 500が上述したような構成を有することか ら、図 5に示すように、赤のサブ画素 5Raの開口面積が最大であり、緑、青及び黄の サブ画素 5Ga、 5Ba及び 5Yaの開口面積が同程度に小さい場合について説明する 。開口面積とは、実際に表示に利用している領域の面積を意味し、薄膜トランジスタ( TFT) 8、走査線 4、信号線 6及び補助容量 3、ブラックマトリクス 10BM等による遮光 領域の面積を含まない。本実施形態に係る液晶表示装置 500は、マトリクス状に配 歹 IJされた複数の画素 11aを有している。図 5中のドット部が 1画素に対応しており、図 5では、液晶表示装置 500の表示面 500aを構成する複数の画素 11aのうち、 4つの 画素が示されている。
[0083] 図 5に示すように、画素 11aは、複数のサブ画素によって構成される。本実施形態で は、画素 11aを構成する 4つのサブ画素は、赤を表示するサブ画素 5Ra、緑を表示 するサブ画素 5Ga、青を表示するサブ画素 5Ba、及び、黄を表示するサブ画素 5Ya である。図 5は、これら 4つのサブ画素が画素 11a内で 1行 4列に配置された構成を示 している。また、図 6には、液晶表示装置の表示面 500bを構成する別の画素構成と して、 4つのサブ画素 5Rb、 5Gb, 5Bb及び 5Ybが画素 l ib内で 2行 2列に配置され た構成を示している。なお、本実施形態においては、赤、緑、青及び黄のサブ画素 の配列方法は、図 5及び 6に限定されず、各サブ画素の開口面積の比により効果が 得られる。
[0084] 本実施形態では、表 3の 6種類の液晶表示装置 A1〜A6を作製した。これらの液晶 表示装置 A1〜A6のいずれにおいても、赤のサブ画素とその他のサブ画素との開口 面積が異なっている。具体的には、赤のサブ画素の開口面積が最大であり、緑、青 及び黄のサブ画素の開口面積が同程度に小さくなつている。
[0085] [表 3]
く開積比タ表赤表大積クイカ白最面卜開ラ示示面口ラののルフ口ィノッー 00 CJ) ∞ 00 00 00
光効率率発透度積(( 卜
開明) 卜 卜 卜
度過)明面%%□小赤青黄緑 ()取 j::: i
〇 〇 o 〇 o 〇
卜 卜 00 00
n 00 卜 CD LO 寸
CO CO CO CO CO CO 卜 〇 CO 〇 CD
卜 CO 00 CD
o σ» CO ∞
CO 寸
CM CO 寸 寸
CO σ> 寸 〇
< 寸 O ∞ 〇
CM
CO CO
σ> 0)· 00 00
00
CO CO
0) 00
ώ (3) 00 o i
σ> 00
CO CO
CO CO
cr» 00 00
ID
(NJ CO 寸 CD
< < < < < < なお、カラーフィルタは、液晶表示装置 A1〜A6のいずれにおいても、図 7に示す分 光透過率を有するものを用いた。ここで、各サブ画素の開口面積比が液晶表示装置 ごとに異なることから、カラーフィルタの白表示の色度も液晶表示装置ごとに異なる。 そこで、本実施形態では、所望の白表示の色度を得るために、ノくックライト 36の光源 のスペクトルを液晶表示装置ごとに調節した。具体的には、液晶表示装置の白表示 の色度力 χ=0· 313、 y=0. 329となり、色温度力 S6500Kとなるように、 夜晶表示装 置 A1〜A6に用いるバックライト 36の光源の分光特性を適切に調節した。なお、バッ クライト 36の光源には、冷陰極蛍光管(CCFT)を用い、赤、緑及び青の蛍光体材料 の混合比を変えることにより、光源の分光特性を調整した。一例として、表 3中の液晶 表示装置 A6で用いたバックライト 36の光源のスペクトル特性を図 8に示す。
[0087] 表 3には、更に、液晶表示装置 A1〜A6について、各サブ画素の開口面積比、開口 面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素(緑、青又は黄の サブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平均透 過率、及び、ノ ックライトの光源の発光効率を示している。ここで、赤表示の明度は、 各液晶表示装置の白表示の明度 Yを 100としたときの値(白表示の明度に対する割 合)である。また、白表示の明度は、各色のサブ画素の開口面積が等しぐ図 7に示 す分光透過率を有するものをカラーフィルタとして用レ、、かつ図 38に示すスペクトル 特性を有する CCFTをバックライト 36の光源として用いた従来の 4原色の液晶表示 装置(図 36)の白表示の明度を 100としたときの相対値である。更に、カラーフィルタ の平均透過率は、各液晶表示装置に搭載されたバックライト 36の光源を用いて、白 表示を行うときの各色のカラーフィルタの透過率の平均値である。そして、バックライト 36の光源の発光効率は、次のようにして求める。まず、 CCFT (光源)に用いられて いる赤の蛍光体材料の発光効率、緑の蛍光体材料の発光効率、及び、青の蛍光体 材料の発光効率を個々に測定する。次に、これらの測定値に基づいて、赤緑青の各 蛍光体材料の混合比を変えたときの赤緑青を合わせた発光効率を計算する。バック ライト 36の光源の発光効率は、赤緑青を合わせた発光効率と従来の 3原色の表示装 置に用いられる赤緑青の混合比での発光効率との比である。
[0088] 図 10は、本実施形態で作製された液晶表示装置 A1〜A6の赤表示の明度と白表示 の明度との関係を示す図である。
本実施形態に係る液晶表示装置 A1〜A6は、赤のサブ画素の開口面積が大きいの で、図 36に示す従来の 4原色の液晶表示装置 (表 1)よりも、赤表示の明度を向上さ せること力 Sでき、明るい赤表示ができる。すなわち、視認性の良い赤表示ができる。な お、液晶表示装置 A1〜A6のうち、どのタイプが最適であるかは、用途等に応じて適 宜選択すればよい。
[0089] 本実施形態では、バックライト 36の光源に一般的な CCFTを用いており、白表示の 色度の調整は、赤、緑及び青の蛍光体材料の混合比のみを変えて行った。当然、液 晶表示装置の白表示の明度は、バックライト 36の光源の各色の蛍光体材料の混合 比が変化したことによる発光効率の変化も考慮している。すなわち、白表示の明度は 、カラーフィルタの平均透過率 (効率)だけでなぐバックライト 36の光源の発光効率 を含んだ液晶表示装置の明度を意味している。また、本発明では、白表示の色度を 上記の値に設定したが、これに限らず、適宜最適な色度に調整する場合でも同様の 効果が得られる。
[0090] なお、本実施形態の液晶表示装置の画素構成としては、図 5及び 6に限定されるもの ではなぐ例えば、図 11に示すように、表示面 500cを構成する画素 11cをそれぞれ 5つのサブ画素に分割し、赤のサブ画素を 2つ配置してもよレ、。図 11の場合、各サブ 画素 5Rc、 5Gc、 5Bc及び 5Ycの開口面積比は、赤:緑:青:黄 = 2 : 1: 1: 1となる。こ のように赤のサブ画素を複数設けることにより、画素設計や駆動回路設計の変更を 最小限にすることができる。
[0091] また、図 12に示すように、表示面 500dを構成する画素 l idをそれぞれ 5つのサブ画 素に分割し、赤のサブ画素を 2つ配置した上で、 2つの赤のサブ画素の色特性を互 レ、に異ならせてもよい。このときのカラーフィルタの分光特性を図 13に示す。このとき 、赤のサブ画素 5R dの主波長は、 612nmであり、赤のサブ画素 5R dの主波長は、
1 2
607nmである。図 12の場合もまた、赤のサブ画素 5R d及び 5R d、緑のサブ画素 5
1 2
Gd、青のサブ画素 Bd、並びに、黄のサブ画素 5Ydの開口面積の大きさは同程度で あり、各サブ画素の開口面積比は、赤:緑:青:黄 = 2 : 1 : 1 : 1となる。このように色特 性が互いに異なる赤のサブ画素を設けることにより、色再現範囲を更に拡大すること ができる。なお、これらの画素構成は、一例にすぎず、本実施形態は、これらの画素 構成に限定されるものではなレ、。
[0092] (実施形態 2) 一般的に、赤、緑、青及び黄のサブ画素に設置される各カラーフィルタの透過率と、 白表示のカラーフィルタの透過率 (赤、緑、青及び黄のサブ画素の透過率の平均値) との大小関係は、透過率の高いほうから順に、黄、緑、白、赤、青となる。なお、赤の カラーフィルタと青のカラーフィルタとの透過率の大小関係は入れ変わり、透過率の 高いほうから順に、黄、緑、白、青、赤となることがある。
[0093] したがって、白表示のカラーフィルタの透過率よりもカラーフィルタの透過率の低い赤 のサブ画素の開口面積を増加させると、白表示のカラーフィルタの透過率は低下す る。また、白表示のカラーフィルタの透過率よりもカラーフィルタの透過率の高い緑及 び黄のサブ画素の開口面積を小さくすると、白表示のカラーフィルタの透過率は更に 低下する。逆に、カラーフィルタの透過率が最小である青のサブ画素の開口面積を 小さくすると、白表示のカラーフィルタの透過率の減少は抑制され、場合によっては 向上する。しかしながら、これらの関係は、カラーフィルタのみについてのことであり、 実際の液晶表示装置では、バックライトの光源の発光効率も考慮する必要がある。
[0094] 実施形態 1では、赤のサブ画素の開口面積を最大とし、緑、青及び黄のサブ画素の 開口面積を同程度に小さくした場合について、赤表示の明度が上がる一定の効果が 認められたことを説明した。し力 ながら、図 10に示すように、実施形態 1の場合には 、白表示の明度は表 3に示す液晶表示装置 A1〜A6のいずれにおいても、幾分減 少する。したがって、白表示の明度の減少を小さくすることができれば、実施形態 1よ りも好ましくなる。
本実施形態では、白表示の明度にも注意を払い、赤のサブ画素の開口面積を大きく し、緑、青及び黄のいずれか一つのサブ画素の開口面積を小さくした場合について 説明する。
[0095] 表 4は、赤のサブ画素の開口面積を大きくし、緑のサブ画素の開口面積を小さくした 場合について、本実施形態で作製された液晶表示装置 B1〜B5の各サブ画素の開 口面積比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素( 緑のサブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平 均透過率、及び、バックライトの光源の発光効率を示す。
[0096] [表 4] 積開タ赤クカ白表大積面パイ表最開ラ卜口示示面ラルのの Z口フィッー 〇 CO 寸 CD
00 00 00 O 00
光効率率発透度度開積過()明(最明)小面%口%赤青緑 (::: 〇 〇 〇 〇 〇
寸 CM 〇 00
G) 00 卜 CD 寸
00 CO CO CO 00 卜 CO CO O 卜
00 寸
0) o CD o
CO 00 CO 〇
CM ( CO 寸
〇 (D CO 〇
M LO 00 CO 〇
「 CM CO
〇 〇 〇 o 〇
〇 〇 O 〇 〇
00 CD
CVJ O 寸 ιο
CO 寸 ID
m CO m m 表 5は、赤のサブ画素の開口面積を大きくし、青のサブ画素の開口面積を小さくした 場合について、本実施形態で作製された液晶表示装置 C1〜C3の各サブ画素の開 口面積比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素( 青のサブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平 均透過率、及び、バックライトの光源の発光効率を示す。
[表 5]
Figure imgf000034_0001
[0099] 表 6は、赤のサブ画素の開口面積を大きくし、黄のサブ画素の開口面積を小さくした 場合について、本実施形態で作製された液晶表示装置 D1〜D6の各サブ画素の開 口面積比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素( 黄のサブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平 均透過率、及び、バックライトの光源の発光効率を示す。
[0100] [表 6]
Figure imgf000036_0001
なお、表 6の液晶表示装置の概略図を図 14及び 15に示す。図 14は、液晶表示装置 の表示面 500eを構成する画素構成として、 4つのサブ画素 5Re、 5Ge、 5Be及び 5 Yeが画素 l ie内でストライプ状に配置された構成を示している。図 15は、液晶表示 装置の表示面 500fを構成する画素構成として、 4つのサブ画素 5Rf、 5Gf、 5Bf及び 5Yfが画素 1 If内で 2行 2列に配置された構成を示している。
[0102] 図 16には、表 4、 5及び 6に示す各液晶表示装置の赤表示の明度と白表示の明度と の関係を示す。図 16中、◊は表 4の液晶表示装置 B1〜B5に対応し、△は表 5の液 晶表示装置 C1〜C3に対応し、〇は表 6の液晶表示装置 D1〜D6に対応する。また 、口は、比較対象として実施形態 1の液晶表示装置 A1〜A6を示している。
[0103] 図 16に示すように、表 4〜6の液晶表示装置によれば、図 36に示す従来の 4原色の 液晶表示装置 (表 1)に比べ、赤表示の明度向上の効果を認めることができた。特に 、表 6の液晶表示装置 D6では、赤表示の明度を 19. 5%と非常に高い値を実現する こと力 Sできる。また、表 4及び 6に示すように、緑又は黄のサブ画素の開口面積を小さ くしたものは、カラーフィルタの平均透過率が実施形態 1の液晶表示装置 A1〜A6よ りも低下するものの、白表示の色度を適正化するために、バックライトの光源の分光 特性を調整した結果、光源の発光効率が高くなることから、図 16に示すように、実施 形態 1の液晶表示装置 A1〜A6よりも、バックライトの光源の発光効率も含めた白表 示の明度の低下を抑制することができる。特に、表 6の液晶表示装置 D1〜D6のよう に、開口面積を小さくするサブ画素がカラーフィルタの透過率が最も高い黄のサブ画 素の場合、カラーフィルタの平均透過率は低くなるものの、バックライトの光源の発光 効率が高くなり、その結果、ノくックライトの光源の発光効率も含めた白表示の明度の 低下が小さくなつている。
[0104] 一方、表 5の液晶表示装置 C1〜C3のように、青のサブ画素の開口面積を小さくする ことは、白表示の明度の低下が大きく得策ではない。すなわち、開口面積を小さくす るサブ画素がカラーフィルタの透過率が最も低レ、青のサブ画素の場合、カラーフィル タの平均透過率は高くなるものの、白表示の色度を適正化するために、バックライト の光源の分光特性を調整した結果、光源の発光効率が低くなり、その結果、バックラ イトの光源の発光効率も含めた白表示の明度の低下が大きくなつている。
以上により、開口面積を小さくするサブ画素が黄のサブ画素のときが最も有効であり 、順に緑、青となる。
[0105] なお、開口面積を各サブ画素によって大きく変えることは、画素設計や駆動回路設 計を変更する必要があることから、サブ画素間の開口面積比は、なるべく小さいこと が好ましい。この開口面積比の観点から見ると、実施形態 1の表 3の液晶表示装置 A 4では、開口面積の最も大きい赤のサブ画素と最も小さい緑、青及び黄のサブ画素 の開口面積との比は 1. 61 : 1であり、このとき、赤表示の明度は 14. 2%であり、白表 示の明度は 91. 0%であった。赤表示の明度 14. 2%と同じ程度は、本実施形態の 表 4の液晶表示装置 B5において実現することができ、この液晶表示装置 B5の白表 示の明度は 94. 7%であることから、液晶表示装置 B5は、液晶表示装置 A4よりも白 表示の明度の点で有利である。また、赤表示の明度 14. 2%とほぼ同じ程度は、本 実施形態の表 6の液晶表示装置 D3でも実現することができ、この液晶表示装置 D3 の白表示の明度は 94. 8%であることから、液晶表示装置 D3もまた、液晶表示装置 A4よりも白表示の明度の点で有利である。
[0106] しかしながら、開口面積の比率は、表 4の液晶表示装置 B5では 3 : 1となり、表 6の液 晶表示装置 D3では 1. 86 : 1となり、いずれも実施形態 1の表 3の液晶表示装置 A4よ りも大きくなる。したがって、前述したように、画素設計や駆動回路設計上、実施形態 1の表 3の液晶表示装置 A4を選択することが好ましい場合がある。すなわち、実施形 態 2よりも実施形態 1が好ましい場合がある。
[0107] (実施形態 3)
実施形態 2では、赤のサブ画素の開口面積を最大とし、緑又は黄のサブ画素の開口 面積を最小とすることが、白表示の明度の低下が抑制される点で有利であることを説 明した。本実施形態では、更に好ましい実施形態として、赤のサブ画素の開口面積 に加え、青のサブ画素の開口面積も赤のサブ画素の開口面積と同程度に大きくし、 緑及び黄のサブ画素の開口面積を同程度に小さくした場合について説明する。
[0108] 本実施形態では、表 7の 6種類の液晶表示装置 E1〜E6を作製した。いずれの場合 も赤及び青のサブ画素の開口面積を同程度に大きくし、緑及び黄のサブ画素の開 口面積を同程度に小さくしたものである。表 7には、本実施形態で作製された液晶表 示装置 E1〜E6の各サブ画素の開口面積比、開口面積の最大であるサブ画素(赤 又は青のサブ画素)と最小であるサブ画素(緑又は黄のサブ画素)との開口面積比、 赤表示の明度、白表示の明度、カラーフィルタの平均透過率、及び、バックライトの光 源の発光効率を示す。
[表 7]
Figure imgf000039_0001
お、表 7の液晶表示装置の概略図を図 17及び 18に示す。図 17は、液晶表示装置 の表示面 500gを構成する画素構成として、 4つのサブ画素 5Rg、 5Gg、 5Bg及び 5 Ygが画素 l lg内でストライプ状に配置された構成を示している。図 18は、液晶表示 装置の表示面 500hを構成する画素構成として、 4つのサブ画素 5Rh、 5Gh、 5Bh及 び 5Yhが画素 1 lh内で 2行 2列に配置された構成を示している。
[0111] 図 19は、表 7の液晶表示装置 E1〜E6の赤表示の明度と白表示の明度との関係を 示す図である。図 19中、口は表 7の液晶表示装置 E1〜E6に対応し、◊は比較対象 として、実施形態 2の中で白表示の明度の低下が小さかった表 6の液晶表示装置 D1 〜D6を示している。
[0112] 本実施形態では、実施形態 2の表 6の液晶表示装置 D1〜D6に対して、白表示の明 度に関して更に有利であり、特に表 7の液晶表示装置 E1〜E3では、 4色のサブ画素 の開口面積が等しレ、従来の 4原色の液晶表示装置(図 36)よりも白表示の明度が高 レ、。また、白表示の色度を適正化するためには、青のサブ画素の開口面積が大きい ほど、ノくックライトの光源の黄色成分を多くする必要があることから、発光効率を向上 させること力 Sできる。なお、赤表示の明度が 19%以上となる場合、具体的には、本実 施形態の表 7の液晶表示装置 E6と実施形態 2の表 6の液晶表示装置 D6との比較に おいて、本実施形態が白表示の面で不利になることもある。
[0113] なお、本実施形態の液晶表示装置の画素構成としては、図 17及び 18に限定される ものではなく、例えば、図 20に示すように、表示面 500iを構成する画素をそれぞれ 6 つのサブ画素に分割し、赤及び青のサブ画素 5R及び 5Bをそれぞれ 2つずつ配置し てもよレ、。図 20の場合、各サブ画素 5Ri、 5Gi、 5Bi及び 5Yiの開口面積比は、赤:緑 :青:黄 = 2 : 1 : 2 : 1となる。このように赤及び青のサブ画素を複数設けることにより、 画素設計や駆動回路設計の変更を最小限にすることができる。
[0114] また、図 21に示すように、表示面 500jを構成する画素 l ljをそれぞれ 6つのサブ画 素に分割し、赤及び青のサブ画素をそれぞれ 2つずつ配置した上で、 2つの青のサ ブ画素の色特性を互いに異ならせてもよレ、。このときのカラーフィルタの分光特性を 図 22に示す。このとき、青のサブ画素 5B jの主波長は、 460nmであり、青のサブ画
1
素 5B jの主波長は、 488nmである。図 21の場合もまた、赤のサブ画素 5Rj、緑のサ
2
ブ画素 5Gj、青のサブ画素 5B j及び 5B j、並びに、黄のサブ画素 5Yjの開口面積の 大きさは同程度であり、各サブ画素の開口面積比は、赤:緑:青:黄 = 2: 1: 1: 2とな る。このように色特性が互いに異なる 2つの青のサブ画素を設けることにより、色再現 範囲を更に拡大することができる。
[0115] また、図 23に示すように、表示面 500kを構成する画素 I lkをそれぞれ 6つのサブ画 素に分割し、赤及び青のサブ画素をそれぞれ 2つずつ配置した上で、 2つの赤のサ ブ画素の色特性を互いに異ならせてもよレ、。このときのカラーフィルタの分光特性を 図 13に示す。このとき、赤のサブ画素 5R kの主波長は、 612nmであり、赤のサブ画
1
素 5R kの主波長は、 607nmである。図 23の場合もまた、赤のサブ画素 5R k及び 5
2 1
R k、緑のサブ画素 5Gk、青のサブ画素 5Bk、並びに、黄のサブ画素 5Ykの開口面
2
積の大きさは同程度であり、各サブ画素の開口面積比は、赤:緑:青:黄 = 2 : 1 : 1 : 2 となる。このように色特性が互いに異なる赤のサブ画素を設けることによつても、色再 現範囲を更に拡大することができる。
[0116] 更に、図 24に示すように、表示面 500mを構成する画素 11mをそれぞれ 6つのサブ 画素に分割し、赤及び青のサブ画素をそれぞれ 2つずつ配置した上で、 2つの赤の サブ画素及び青のサブ画素の色特性を、両色ともに互いに異ならせてもよい。このと きのカラーフィルタの分光特性を図 13及び 22に示す。図 24の場合もまた、赤のサブ 画素 5R m及び 5R m、緑のサブ画素 5Gm、青のサブ画素 5B m及び 5B m、並び に、黄のサブ画素 5Ymの開口面積の大きさは同程度であり、各サブ画素の開口面 積比は、赤:緑:青:黄 = 2: 1: 1: 2となる。このように色特性が互いに異なる赤及び青 のサブ画素を設けることによつても、色再現範囲を更に拡大することができる。なお、 これらの画素構成は、一例にすぎず、本実施形態は、これらの画素構成に限定され るものではない。
[0117] (実施形態 4)
実施形態 3では、赤及び青のサブ画素の開口面積を同程度に大きくし、緑及び黄の サブ画素の開口面積を同程度に小さくした場合について説明したが、本実施形態で は、開口面積を小さくする緑及び黄のサブ画素の開口面積を異なる割合で小さくし た場合について説明する。
[0118] 表 8は、赤及び青のサブ画素の開口面積を同程度に大きくし、緑のサブ画素の開口 面積を小さくした場合について、本実施形態で作製された液晶表示装置 F1〜F4の 各サブ画素の開口面積比、開口面積の最大であるサブ画素(赤又は青のサブ画素) と最小であるサブ画素(緑のサブ画素)との開口面積比、赤表示の明度、白表示の明 度、カラーフィルタの平均透過率、及び、バックライトの光源の発光効率を示す。
[表 8]
大積面比イカパラ卜開口示示ラル面のの zフ□ィン取一 寸 〇 CO
度過)明(¾明)】面%%ロ赤,緑青黄ゝ ()个取貝::: ό d ό
Figure imgf000043_0001
なお、図 25及び 26には、表 8の液晶表示装置を模式的に示す。図 25は、液晶表示 装置の表示面 500ηを構成する画素構成として、 4つのサブ画素 5Rn、 5Gn、 5Bn及 び 5Ynが画素 1 In内でストライプ状に配置された構成を示している。図 26は、液晶 表示装置の表示面 500pを構成する画素構成として、 4つのサブ画素 5Rp、 5Gp、 5 Bp及び 5Ypが画素 l ip内で 2行 2列に配置された構成を示している。なお、これらの 画素構成は、一例にすぎず、本実施形態は、これらの画素構成に限定されるもので はない。
[0121] 表 9は、赤及び青のサブ画素の開口面積を同程度に大きくし、黄のサブ画素の開口 面積を小さくした場合について、本実施形態で作製された液晶表示装置 G1〜G3の 各サブ画素の開口面積比、開口面積の最大であるサブ画素(赤又は青のサブ画素) と最小であるサブ画素(黄のサブ画素)との開口面積比、赤表示の明度、白表示の明 度、カラーフィルタの平均透過率、及び、バックライトの光源の発光効率を示す。
[0122] [表 9]
Figure imgf000045_0001
図 27は、表 8及び 9の液晶表示装置の赤表示の明度と白表示の明度との関係を示 す。図 27中、△は表 8の液晶表示装置に対応し、〇は表 9の液晶表示装置に対応 する。更に、口は、比較対象として、赤及び青のサブ画素の開口面積をほぼ同じ程 度に大きくし、緑及び黄のサブ画素の開口面積を同程度に小さくした実施形態 3の 表 7の液晶表示装置 E1〜E6を示している。
[0124] 図 27より、本実施形態の表 8の液晶表示装置 F1〜F4は、実施形態 3の表 7の液晶 表示装置 E1〜E4よりも、赤表示の明度が小さいものの、白表示の明度が高く有利で ある。し力 ながら、サブ画素の開口面積比が同じ表 8の液晶表示装置 F3と表 9の液 晶表示装置 G3とを比較した場合、表 8の液晶表示装置 F3では、白表示の明度は高 いものの、赤表示の明度向上に大きな効果は得られず、 14%以上に大きく上げるこ とはできないのに対し、表 9の液晶表示装置 G3では、白表示の明度がそれほど高く はないものの、赤表示の明度向上に大きな効果が得られる。この場合も、必要な赤表 示の明度に応じて適宜選択すればよい。また、本実施形態の表 9の液晶表示装置 G :!〜 G3は、実施形態 3の表 7の液晶表示装置 E1〜E3よりも、白表示の明度が小さい ものの、赤表示の明度が高く有利である。
[0125] (実施形態 5)
実施形態 1及び 4で明らかになったように、赤及び青のサブ画素の両方の開口面積 を大きくした場合は、赤のサブ画素の開口面積のみを大きくした場合に比べて、カラ 一フィルタの平均透過率を低下させるが、カラーフィルタの青成分の透過の割合が多 くなるため、使用するバックライトの波長特性は、発光効率の低い青成分を減少させ ること力 Sでき、ノくックライトの光源に発光効率が高いものを用いることができる。その結 果、カラーフィルタの平均透過率とバックライトの光源の発光効率とを勘案すると、青 のサブ画素の開口面積を大きくして、カラーフィルタの透過率を低下させても、バック ライトの光源の発光効率がそれを補う以上に大きくなる。実施形態 1〜4では、少なく とも赤のサブ画素の開口面積が最大となる場合についての説明であつたが、本実施 形態では、青のサブ画素を最大にした場合について説明する。
[0126] 表 10は、青のサブ画素の開口面積を大きくし、緑及び黄のサブ画素の開口面積を 同程度に小さくした場合について、本実施形態で作製された液晶表示装置 H1〜H 4の各サブ画素の開口面積比、開口面積の最大であるサブ画素(青のサブ画素)と 最小であるサブ画素(緑又は黄のサブ画素)との開口面積比、赤表示の明度、白表 示の明度、カラーフィルタの平均透過率、及び、バックライトの光源の発光効率を示
Figure imgf000047_0002
Figure imgf000047_0001
1- 装置の表示面 500qを構成する画素構成として、 4つのサブ画素 5Rq、 5Gq、 5Bq及 び 5Yqが画素 l lq内でストライプ状に配置された構成を示している。図 29は、液晶 表示装置の表示面 500rを構成する画素構成として、 4つのサブ画素 5Rr、 5Gr、 5B r及び 5Yrが画素 l lr内で 2行 2列に配置された構成を示している。なお、これらの画 素構成は、一例にすぎず、本実施形態は、これらの画素構成に限定されるものでは ない。
[0129] 表 11は、青のサブ画素の開口面積を大きくし、緑のサブ画素の開口面積を小さくし た場合について、本実施形態で作製された液晶表示装置 I:!〜 14の各サブ画素の開 口面積比、開口面積の最大であるサブ画素(青のサブ画素)と最小であるサブ画素( 緑のサブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平 均透過率、及び、バックライトの光源の発光効率を示す。
[0130] [表 11]
Figure imgf000049_0001
表 12は、青のサブ画素の開口面積を大きくし、黄のサブ画素の開口面積を小さくし た場合にっレ、て、本実施形態で作製された液晶表示装 jl〜J4の各サブ画素の開 口面積比、開口面積の最大であるサブ画素(青のサブ画素)と最小であるサブ画素( 黄のサブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平 均透過率、及び、バックライトの光源の発光効率を示す。
[表 12]
Figure imgf000050_0001
[0133] 図 30は、表 10〜: 12の液晶表示装置の赤表示の明度と白表示の明度との関係を示 す。図 30中、◊は表 10の液晶表示装置に対応し、口は表 11の液晶表示装置に対 応し、△は表 12の液晶表示装置に対応している。更に、〇は、比較対象として、赤及 び青のサブ画素の開口面積を同程度に大きくし、緑及び黄のサブ画素の開口面積 を同程度に小さくした実施形態 3の表 7の液晶表示装置 E1〜E6を示している。
[0134] 表 11の液晶表示装置 I:!〜 14では、白表示の明度を上げる効果はある力 赤表示の 明度を上げる効果はほとんどない。一方で、表 10の液晶表示装置 H2では、赤表示 の明度が 12. 6%のとき、白表示の明度は 106%、表 12の液晶表示装衝2では、赤 表示の明度が 12. 5%のとき、白表示の明度は 103%であり有利である。ただし、本 実施形態では、赤表示の明度をそれほど大きくすることはできず、赤表示の明度に ついて 15%程度以上が必要な場合には、実施形態 1〜4の液晶表示装置から選択 することが好ましい。
[0135] なお、本実施形態の液晶表示装置の画素構成としては、図 28及び 29に限定される ものではなく、例えば、図 31に示すように、表示面 500sを構成する画素を 5つのサブ 画素に分割し、青のサブ画素 5Bを 2つ配置してもよい。図 31の場合、各サブ画素 5 Rs、 5Gs、 5Bs及び 5Ysの開口面積比は、赤:緑:青:黄 = 1: 1: 2 : 1となる。このよう に青のサブ画素を複数設けることにより、画素設計や駆動回路設計の変更を最小限 にすることができる。
[0136] また、図 32に示すように、表示面 500tを構成する画素 l itをそれぞれ 5つのサブ画 素に分割し、青のサブ画素をそれぞれ 2つ配置した上で、 2つの青のサブ画素の色 特性を互いに異ならせてもよい。このときのカラーフィルタの分光特性を図 22に示す 。このとき、青のサブ画素 5B tの主波長は、 460nmであり、青のサブ画素 5B tの主
1 2 波長は、 488nmである。図 32の場合もまた、赤のサブ画素 5Rt、緑のサブ画素 5Gt 、青のサブ画素 5B t及び 5B t、並びに、黄のサブ画素 5Ytの開口面積の大きさは
1 2
同程度であり、各サブ画素の開口面積比は、赤:緑:青:黄 = 2 : 1 : 1 : 2となる。このよ うに色特性が互いに異なる 2つの青のサブ画素を設けることにより、色再現範囲を更 に拡大することができる。なお、これらの画素構成は、一例にすぎず、本実施形態は 、これらの画素構成に限定されるものではない。 [0137] (実施形態 6)
本実施形態は、黄のサブ画素の開口面積を最小にした場合について、説明する。 表 13は、黄のサブ画素の開口面積を小さくし、その他のサブ画素の開口面積を同程 度に大きくした場合について、本実施形態で作製された液晶表示装置 K1〜K5の各 サブ画素の開口面積比、開口面積の最大であるサブ画素(赤、緑又は青のサブ画素 )と最小であるサブ画素(黄のサブ画素)との開口面積比、赤表示の明度、白表示の 明度、カラーフィルタの平均透過率、及び、バックライトの光源の発光効率を示す。
[0138] [表 13]
Figure imgf000053_0001
なお、図 33及び 34は、表 13の液晶表示装置を模式的に示す。図 33は、液晶表示 装置の表示面 500uを構成する画素構成として、 4つのサブ画素 5Ru、 5Gu、 5Bu及 び 5Yuが画素 l lu内でストライプ状に配置された構成を示している。図 34は、液晶 表示装置の表示面 500vを構成する画素構成として、 4つのサブ画素 5Rv、 5Gv、 5 Bv及び 5Yvが画素 l lv内で 2行 2列に配置された構成を示している。なお、これらの 画素構成は、一例にすぎず、本実施形態は、これらの画素構成に限定されるもので はない。
[0140] 表 14は、黄のサブ画素の開口面積を小さくし、赤及び緑のサブ画素の開口面積を 同程度に大きくした場合について、本実施形態で作製された液晶表示装置 L1〜L4 の各サブ画素の開口面積比、開口面積の最大であるサブ画素(赤又は緑のサブ画 素)と最小であるサブ画素(黄のサブ画素)との開口面積比、赤表示の明度、白表示 の明度、カラーフィルタの平均透過率、及び、バックライトの光源の発光効率を示す。
[0141] [表 14]
Figure imgf000055_0001
図 35は、表 13及び 14の液晶表示装置の赤表示の明度と白表示の明度との関係を 示す。図 35中、△は表 13の液晶表示装置 K1〜K5に対応し、◊は表 14の液晶表 示装置に対応している。更に、〇は、比較対象として、赤及び青のサブ画素の開口 面積を同程度に大きくし、緑及び黄のサブ画素の開口面積を同程度に小さくした実 施形態 3の表 7の液晶表示装置 E1〜E6を示している。
[0143] 表 13及び 14の液晶表示装置によれば、開口面積比を大きくすることが求められるが
、バックライトの光源の発光効率が高くなることから、赤表示の明度を大きくする場合 には、有利である。
[0144] (実施形態 7)
本実施形態は、サブ画素の開口面積を大きいほうから順に、赤、青、緑、黄とした場 合について、説明する。
表 15は、本実施形態で作製された液晶表示装置 M1〜M2の各サブ画素の開口面 積比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素(黄の サブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平均透 過率、及び、バックライトの光源の発光効率を示す。
[0145] [表 15]
Figure imgf000057_0001
表 15の液晶表示装置によれば、赤のサブ画素の開口面積が比較的大きいため、赤 表示の明度向上の効果が大きい。また、青のサブ画素の開口面積が比較的大きぐ 黄のサブ画素の開口面積が小さぐ白表示の色度を適正化するために発光効率の 高い光源を使用することができるため、比較的小さい開口面積の比率で赤表示の明 度を向上させ、白表示の明度の低下を抑制することができる。
[0147] (実施形態 8)
本実施形態は、サブ画素の開口面積を大きいほうから順に、赤、青、黄、緑とした場 合について、説明する。
表 16は、本実施形態で作製された液晶表示装置 N1〜N3の各サブ画素の開口面 積比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素(緑の サブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平均透 過率、及び、バックライトの光源の発光効率を示す。
[0148] [表 16]
Figure imgf000059_0001
表 16の液晶表示装置によれば、赤のサブ画素の開口面積が大きいため、赤表示の 明度向上の効果が大きい。また、青のサブ画素の開口面積が比較的大きぐ黄のサ ブ画素の開口面積が比較的小さぐ白表示の色度を適正化するために発光効率の 高い光源を使用することができるため、比較的小さい開口面積の比率で赤表示の明 度を向上させ、白表示の明度の低下を抑制することができる。
[0150] (実施形態 9)
本実施形態は、サブ画素の開口面積を大きいほうから順に、赤、緑、青、黄とした場 合について、説明する。
表 17は、本実施形態で作製された液晶表示装置〇1〜〇6の各サブ画素の開口面 積比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素(黄の サブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平均透 過率、及び、バックライトの光源の発光効率を示す。
[0151] [表 17]
Figure imgf000061_0001
表 17の液晶表示装置によれば、赤のサブ画素の開口面積が大きいため、赤表示の 明度向上の効果が大きい。また、黄のサブ画素の開口面積が小さぐ白表示の色度 を適正化するために発光効率の高い光源を使用することができるため、比較的小さ い開口面積の比率で赤表示の明度を向上させ、白表示の明度の低下を抑制するこ とができる。
[0153] (実施形態 10)
本実施形態は、サブ画素の開口面積を大きいほうから順に、赤、青、黄及び緑とした 場合について、説明する。
表 18は、本実施形態で作製された液晶表示装置 P1〜P3の各サブ画素の開口面積 比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素(黄又は 緑のサブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平 均透過率、及び、バックライトの光源の発光効率を示す。
[0154] [表 18]
Figure imgf000063_0001
表 18の液晶表示装置によれば、赤のサブ画素の開口面積が大きいため、赤表示の 明度向上の効果が大きい。また、青のサブ画素の開口面積が比較的大きぐ黄及び 緑のサブ画素の開口面積が小さ 白表示の色度を適正化するために発光効率の 高い光源を使用することができるため、比較的小さい開口面積の比率で赤表示の明 度を向上させ、白表示の明度の低下を抑制することができる。
[0156] (実施形態 11)
本実施形態は、サブ画素の開口面積を大きいほうから順に、青、赤、緑、黄とした場 合について、説明する。
表 19は、本実施形態で作製された液晶表示装置 Q1〜Q2の各サブ画素の開口面 積比、開口面積の最大であるサブ画素(青のサブ画素)と最小であるサブ画素(赤の サブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平均透 過率、及び、バックライトの光源の発光効率を示す。
[0157] [表 19]
く開積クイタ表赤卜カ白表大積比面ラ示開口ラの示面ルのフ□ /ィッ/取ー 卜
00
効率発光透率度度積過()(明明)小面%%□赤青緑黄 ()a取:::
375 959.. 166 Ό0 1987L:::
CO
CM CO
CD
CD CM
csi lO
Figure imgf000065_0001
00
0)
CM
σ σ 表 19の液晶表示装置によれば、赤のサブ画素の開口面積が比較的大きいため、赤 表示の明度向上の効果が大きい。また、青のサブ画素の開口面積が大きぐ黄のサ ブ画素の開口面積が小さぐ白表示の色度を適正化するために発光効率の高い光 源を使用することができるため、比較的小さい開口面積の比率で赤表示の明度を向 上させ、白表示の明度の低下を抑制することができる。
[0159] (実施形態 12)
本実施形態は、サブ画素の開口面積を大きいほうから順に、青、赤、黄、緑とした場 合について、説明する。
表 20は、本実施形態で作製された液晶表示装置 R1〜R3の各サブ画素の開口面積 比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素(緑のサ ブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平均透過 率、及び、バックライトの光源の発光効率を示す。
[0160] [表 20]
Figure imgf000067_0001
表 20の液晶表示装置によれば、赤のサブ画素の開口面積が比較的大きいため、赤 表示の明度向上の効果が大きい。また、青のサブ画素の開口面積が大き 黄のサ ブ画素の開口面積が比較的小さく、白表示の色度を適正化するために発光効率の 高い光源を使用することができるため、比較的小さい開口面積の比率で赤表示の明 度を向上させ、白表示の明度の低下を抑制することができる。
[0162] (実施形態 13)
本実施形態は、サブ画素の開口面積を大きいほうから順に、青、緑、赤、黄とした場 合について、説明する。
表 21は、本実施形態で作製された液晶表示装置 S1〜S7の各サブ画素の開口面積 比、開口面積の最大であるサブ画素(赤のサブ画素)と最小であるサブ画素(黄のサ ブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平均透過 率、及び、バックライトの光源の発光効率を示す。
[0163] [表 21]
Figure imgf000069_0001
表 21の液晶表示装置によれば、黄のサブ画素の開口面積が特に小さ バックライト の赤の発光を増やすことができるため、赤表示の明度向上の効果が大きい。また、青 のサブ画素の開口面積が大きぐ黄のサブ画素の開口面積が小さぐ白表示の色度 を適正化するために発光効率の高い光源を使用することができるため、比較的小さ い開口面積の比率で赤表示の明度を向上させ、白表示の明度の低下を抑制するこ とができる。
[0165] (実施形態 14)
本実施形態は、サブ画素の開口面積を大きいほうから順に、青及び緑、赤、黄とした 場合について、説明する。
表 22は、本実施形態で作製された液晶表示装置 T1〜T3の各サブ画素の開口面積 比、開口面積の最大であるサブ画素(青又は緑のサブ画素)と最小であるサブ画素( 黄のサブ画素)との開口面積比、赤表示の明度、白表示の明度、カラーフィルタの平 均透過率、及び、バックライトの光源の発光効率を示す。
[0166] [表 22]
Figure imgf000071_0001
表 22の液晶表示装置によれば、黄のサブ画素の開口面積が特に小さぐバックライト の赤の発光を増やすことができるため、赤表示の明度向上の効果が大きい。また、青 のサブ画素の開口面積が大きぐ黄のサブ画素の開口面積が小さぐ白表示の色度 を適正化するために発光効率の高い光源を使用することができるため、比較的小さ い開口面積の比率で赤表示の明度を向上させ、白表示の明度の低下を抑制するこ とができる。
[0168] 以上の実施形態:!〜 14では、図 7、 13又は 22の分光特性を有するカラーフィルタを 用いた場合についての説明であつたが、これに限定されることはなぐこれらの実施 形態とは異なる色相や彩度を有するカラーフィルタであっても、赤表示の明度向上の 効果はある。具体的には、赤のサブ画素の主波長が 595nm以上 650nm以下、緑の サブ画素の主波長は 490nm以上 555nm以下、青のサブ画素の主波長は 450nm 以上 490nm以下、黄のサブ画素の主波長は 565m以上 580nm以下の表示装置に は、適用可能である。また、実施形態 1〜: 14では、赤、緑、青及び黄のサブ画素によ つて画素が構成されている場合についての説明であつたが、これに限定されることは なぐ例えば、赤、緑、青、黄及びマゼンタのサブ画素によって画素が構成されてい る場合にも、同様の効果を得ることができる。
[0169] また、実施形態 1〜: 14では、ノ^クライトの光源に一般的な CCFTを用いた場合につ いての説明であつたが、これに限定されることはなぐ実施形態で用いたものとは異な るタイプのバックライト、例えば、白の発光ダイオード(青発光 LEDと黄蛍光発光との 組み合わせ)や RGB— LEDや、熱陰極蛍光管(HCFT)や有機 EL、電界放出ディ スプレイ(FED)等の場合についてもこれまでに述べてきた赤表示の明度向上の効 果はある。
[0170] 更に、実施形態 1〜: 14では、赤、緑及び青の蛍光体材料の混合比を変えることによ り、光源の分光特性を調整することで、液晶表示装置の白表示の色度を適正化した 場合についての説明であつたが、これに限定されることはなぐ例えば、液晶層若しく は光学フィルムの光学設計、又は、白表示時の印加電圧を変更することによって、液 晶表示装置の白表示の色度を適正化してもよい。
[0171] 更には、実施形態 1〜: 14では、バックライトを用いて表示を行う透過型の液晶表示装 置についての説明であつたが、本発明は、透過型の液晶表示装置だけでなぐバッ クライトを用いて透過表示を行い、外部光及び/又はフロントライトを用いて反射表示 を行う反射透過両用型の液晶表示装置、フロントライト等の光源を用いて表示を行う 反射型の液晶表示装置等、他の表示方式の液晶表示装置、ブラウン管(CRT)、有 機エレクトロルミネセンス表示装置(OELD)、プラズマディスプレイパネル(PDP)、 及び、表面伝導型電子放出素子ディスプレイ(SED)等の電界放出ディスプレイ(FE D)等、種々の表示装置に好適に用いられるものである。
[0172] 本願明細書における「以上」及び「以下」は、当該数値 (境界値)を含むものである。
[0173] なお、本願は、 2006年 6月 19曰に出願された曰本国特許出願 2006— 169206号 を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するも のである。該出願の内容は、その全体が本願中に参照として組み込まれている。 図面の簡単な説明
[0174] [図 1]本発明の実施形態 1に対応する液晶表示装置における TFT基板を模式的に 示す平面図である。
[図 2]本発明の実施形態 1に対応する液晶表示装置における対向基板を模式的に示 す平面図である。
[図 3]本発明の実施形態 1に対応する液晶表示装置を模式的に示す断面図である。
[図 4]液晶層の分光透過率特性を示す図である。
[図 5]本発明の実施形態 1に対応する液晶表示装置の表示面を模式的に示す平面 図である。
[図 6]本発明の実施形態 1に対応する液晶表示装置の表示面を模式的に示す平面 図である。
[図 7]カラーフィルタの分光透過率特性を示す図である。
[図 8]本発明の実施形態 1に対応する液晶表示装置 (表 3中の液晶表示装置 A6)に 用いられるバックライトの光源の分光特性を示す図である。
[図 9]従来の 3原色の液晶表示装置に用いられるバックライトの光源の分光特性を示 す図である。
[図 10]本発明の実施形態 1に対応する液晶表示装置の赤表示の明度と白表示の明 度との関係を示す図である。
[図 11]本発明の実施形態 1に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。 [図 12]本発明の実施形態 1に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。
園 13]カラーフィルタの分光透過率特性を示す図である。
[図 14]本発明の実施形態 2に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 15]本発明の実施形態 2に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 16]本発明の実施形態 2に対応する液晶表示装置の赤表示の明度と白表示の明 度との関係を示す図である。
[図 17]本発明の実施形態 3に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 18]本発明の実施形態 3に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 19]本発明の実施形態 3に対応する液晶表示装置の赤表示の明度と白表示の明 度の関係を示す図である。
[図 20]本発明の実施形態 3に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。
[図 21]本発明の実施形態 3に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。
園 22]図 21の液晶表示装置に用いられるカラーフィルタの分光透過率特性を示す 図である。
[図 23]本発明の実施形態 3に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。
[図 24]本発明の実施形態 3に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。
[図 25]本発明の実施形態 4に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 26]本発明の実施形態 4に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 27]本発明の実施形態 4に対応する液晶表示装置の赤表示の明度と白表示の明 度の関係を示す図である。
[図 28]本発明の実施形態 5に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 29]本発明の実施形態 5に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 30]本発明の実施形態 5に対応する液晶表示装置の赤表示の明度と白表示の明 度の関係を示す図である。
[図 31]本発明の実施形態 5に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。
[図 32]本発明の実施形態 5に対応する液晶表示装置の表示面の変形例を模式的に 示す図である。
[図 33]本発明の実施形態 6に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 34]本発明の実施形態 6に対応する液晶表示装置の表示面を模式的に示す図で ある。
[図 35]本発明の実施形態 6に対応する液晶表示装置の赤表示の明度と白表示の明 度の関係を示す図である。
[図 36]従来の 4原色の液晶表示装置の表示面を模式的に示す図である。
[図 37]従来の 3原色の液晶表示装置の表示面を模式的に示す図である。
[図 38]従来の 4原色の表示装置に用いられるバックライトの光源の分光特性を示す 図である。
符号の説明
3 :補助容量
4 :走査線
5R、 5Ra〜5Rx、 5R (!〜 5R m、 5R d〜5R m :赤のサブ画素
1 1 2 2
5G、 5Ga〜5Gx:緑のサブ画素 B、 5Ba〜5Bx、 5B j〜5B m:青のサブ画素
1 1
Y、 5Ya〜5Yw:黄のサブ画素
:信号線
:補助容量 (Cs)配線
:薄膜トランジスタ (TFT)
:ドレイン引出し配線
0R:赤のカラーフィルタ
0G:緑のカラーフィルタ
0B:青のカラーフィルタ
0Y:黄のカラーフィルタ
0BM:ブラックマトリクス(黒塗りされた部分) la〜: 1 lx:画素(ドットが付された部分)1、 31:ガラス基板
2、 32:位相差板
3、 33:偏光板
5:オーバーコート層
6:対向電極
7、 38:配向膜
4:層間絶縁膜
5:透明電極
6:バックライト
7:コンタクトホール
00:カラーフィルタ基板(対向基板)00:薄膜トランジスタ(TFT)基板
00:液晶層
00:液晶表示装置
00a〜500x:表示面

Claims

請求の範囲
[I] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あって、
該赤のサブ画素は、開口面積が最大であることを特徴とする表示装置。
[2] 前記緑、青及び黄のサブ画素は、開口面積が最小であることを特徴とする請求項 1 記載の表示装置。
[3] 前記画素は、青のサブ画素よりも開口面積が小さいサブ画素を有することを特徴とす る請求項 1記載の表示装置。
[4] 前記緑のサブ画素は、開口面積が最小であることを特徴とする請求項 1記載の表示 装置。
[5] 前記黄のサブ画素は、開口面積が最小であることを特徴とする請求項 1記載の表示 装置。
[6] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あってヽ
該赤及び青のサブ画素は、開口面積が最大であることを特徴とする表示装置。
[7] 前記赤及び青のサブ画素は、画素の中で数が最多であることを特徴とする請求項 6 記載の表示装置。
[8] 前記画素は、色特性が互いに異なる青のサブ画素を有することを特徴とする請求項 7記載の表示装置。
[9] 前記画素は、色特性が互いに異なる赤のサブ画素を有することを特徴とする請求項 7記載の表示装置。
[10] 前記緑及び黄のサブ画素は、開口面積が最小であることを特徴とする請求項 6記載 の表示装置。
[II] 前記緑のサブ画素は、開口面積が最小であることを特徴とする請求項 6記載の表示 装置。
[12] 前記黄のサブ画素は、開口面積が最小であることを特徴とする請求項 6記載の表示 装置。
[13] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あってヽ
該青のサブ画素は、開口面積が最大であることを特徴とする表示装置。
[14] 前記青のサブ画素は、画素の中で数が最多であることを特徴とする請求項 13記載の 表示装置。
[15] 前記画素は、色特性が互いに異なる青のサブ画素を有することを特徴とする請求項 14記載の表示装置。
[16] 前記赤、緑及び黄のサブ画素は、開口面積が最小であることを特徴とする請求項 13 記載の表示装置。
[17] 前記画素は、赤のサブ画素よりも開口面積が小さいサブ画素を有することを特徴とす る請求項 13記載の表示装置。
[18] 前記緑及び黄のサブ画素は、開口面積が最小であることを特徴とする請求項 13記 載の表示装置。
[19] 前記緑のサブ画素は、開口面積が最小であることを特徴とする請求項 13記載の表 示装置。
[20] 前記黄のサブ画素は、開口面積が最小であることを特徴とする請求項 13記載の表 示装置。
[21] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あってヽ
該黄のサブ画素は、開口面積が最小であることを特徴とする表示装置。
[22] 前記赤、緑及び青のサブ画素は、開口面積が最大であることを特徴とする請求項 21 記載の表示装置。
[23] 前記赤、緑及び青のサブ画素は、画素の中で数が最多であることを特徴とする請求 項 22記載の表示装置。
[24] 前記画素は、色特性が互いに異なる青のサブ画素を有することを特徴とする請求項 23記載の表示装置。
[25] 前記画素は、色特性が互いに異なる赤のサブ画素を有することを特徴とする請求項 23記載の表示装置。
[26] 前記画素は、青のサブ画素よりも開口面積が大きいサブ画素を有することを特徴とす る請求項 21記載の表示装置。
[27] 前記赤及び緑のサブ画素は、開口面積が最大であることを特徴とする請求項 21記 載の表示装置。
[28] 前記赤及び緑のサブ画素は、画素の中で数が最多であることを特徴とする請求項 2 7記載の表示装置。
[29] 前記画素は、色特性が互いに異なる緑のサブ画素を有することを特徴とする請求項 28記載の表示装置。
[30] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あって、
該サブ画素は、開口面積の大きいものから順に、赤、青、緑、黄であることを特徴とす る表示装置。
[31] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あってヽ
該サブ画素は、開口面積の大きいものから順に、赤、青、黄、緑であることを特徴とす る表示装置。
[32] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あってヽ
該サブ画素は、開口面積の大きいものから順に、赤、緑、青、黄であることを特徴とす る表示装置。
[33] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あってヽ
該サブ画素は、開口面積の大きいものから順に、赤、青、黄及び緑であることを特徴 とする表示装置。
[34] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あって、
該サブ画素は、開口面積の大きいものから順に、青、赤、緑、黄であることを特徴とす る表示装置。
[35] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あってヽ
該サブ画素は、開口面積の大きいものから順に、青、赤、黄、緑であることを特徴とす る表示装置。
[36] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あって、
該サブ画素は、開口面積の大きいものから順に、青、緑、赤、黄であることを特徴とす る表示装置。
[37] 赤、緑、青及び黄のサブ画素を有する画素によって表示面が構成された表示装置で あって、
該サブ画素は、開口面積の大きいものから順に、青及び緑、赤、黄であることを特徴 とする表示装置。
PCT/JP2007/061119 2006-06-19 2007-05-31 表示装置 WO2007148519A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/303,383 US7864271B2 (en) 2006-06-19 2007-05-31 Display device
CN2007800184376A CN101449308B (zh) 2006-06-19 2007-05-31 显示装置
EP07744507.0A EP2040243B1 (en) 2006-06-19 2007-05-31 Display apparatus
JP2008522371A JP4528859B2 (ja) 2006-06-19 2007-05-31 表示装置
US12/835,052 US8497957B2 (en) 2006-06-19 2010-07-13 Display device
US13/928,550 US8994901B2 (en) 2006-06-19 2013-06-27 Display device
US14/639,146 US9812087B2 (en) 2006-06-19 2015-03-05 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-169206 2006-06-19
JP2006169206 2006-06-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/303,383 A-371-Of-International US7864271B2 (en) 2006-06-19 2007-05-31 Display device
US12/835,052 Continuation US8497957B2 (en) 2006-06-19 2010-07-13 Display device

Publications (1)

Publication Number Publication Date
WO2007148519A1 true WO2007148519A1 (ja) 2007-12-27

Family

ID=38833262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061119 WO2007148519A1 (ja) 2006-06-19 2007-05-31 表示装置

Country Status (5)

Country Link
US (4) US7864271B2 (ja)
EP (3) EP2040243B1 (ja)
JP (3) JP4528859B2 (ja)
CN (2) CN101449308B (ja)
WO (1) WO2007148519A1 (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256819A (ja) * 2007-04-03 2008-10-23 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2008268703A (ja) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2011002775A (ja) * 2009-06-22 2011-01-06 Hitachi Displays Ltd 液晶表示装置
WO2011013649A1 (ja) * 2009-07-28 2011-02-03 シャープ株式会社 液晶表示装置およびその製造方法
WO2011040370A1 (ja) 2009-09-30 2011-04-07 シャープ株式会社 液晶表示装置
WO2011052612A1 (ja) 2009-10-29 2011-05-05 シャープ株式会社 液晶表示装置
WO2011062165A1 (ja) 2009-11-19 2011-05-26 シャープ株式会社 液晶表示装置およびその製造方法
US20110128309A1 (en) * 2008-07-28 2011-06-02 Sharp Kabushiki Kaisha Multi-primary color display device
WO2011074285A1 (ja) * 2009-12-18 2011-06-23 シャープ株式会社 液晶表示装置および液晶表示装置の駆動方法
WO2011074353A1 (ja) * 2009-12-16 2011-06-23 シャープ株式会社 表示装置及びテレビ受信装置
WO2011074497A1 (ja) 2009-12-16 2011-06-23 シャープ株式会社 液晶表示装置
WO2011093243A1 (ja) 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置
WO2011093387A1 (ja) * 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置
WO2011105514A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 液晶表示装置
WO2011105145A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 表示装置及びテレビ受信装置
WO2011122122A1 (ja) * 2010-03-31 2011-10-06 シャープ株式会社 表示装置及びテレビ受信装置
JP2011221515A (ja) * 2010-03-23 2011-11-04 Fujifilm Corp カラーフィルタ及び電子表示装置
WO2011155300A1 (ja) * 2010-06-08 2011-12-15 シャープ株式会社 表示パネル、および、液晶表示装置
WO2011162141A1 (ja) * 2010-06-22 2011-12-29 シャープ株式会社 表示装置
JP2012008202A (ja) * 2010-06-22 2012-01-12 Sharp Corp 表示装置
JP2012008203A (ja) * 2010-06-22 2012-01-12 Sharp Corp 表示装置
WO2012005060A1 (ja) * 2010-07-06 2012-01-12 シャープ株式会社 表示パネル、および、液晶表示装置
WO2012077565A1 (ja) * 2010-12-08 2012-06-14 シャープ株式会社 液晶表示装置
WO2012093621A1 (ja) * 2011-01-06 2012-07-12 シャープ株式会社 液晶表示装置
WO2012169421A1 (ja) * 2011-06-07 2012-12-13 シャープ株式会社 表示装置
WO2014115367A1 (ja) 2013-01-25 2014-07-31 凸版印刷株式会社 カラーフィルタ基板、液晶表示装置、及びカラーフィルタ基板の製造方法
US8947476B2 (en) 2010-01-07 2015-02-03 Sharp Kabushiki Kaisha Liquid-crystal display and signal converting circuit
JP2015079207A (ja) * 2013-10-18 2015-04-23 株式会社ジャパンディスプレイ 表示装置
US9019184B2 (en) 2010-01-08 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display device including specific subpixel arrangement
US9880394B2 (en) 2011-03-25 2018-01-30 Japan Display Inc. Display apparatus with improved viewing angles
JP2018049292A (ja) * 2017-12-01 2018-03-29 株式会社ジャパンディスプレイ 表示装置
JP2018189945A (ja) * 2017-04-28 2018-11-29 株式会社ジャパンディスプレイ 表示装置
US11391981B2 (en) 2017-04-28 2022-07-19 Japan Display Inc. Display device with improved luminance and saturation

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8523684B2 (en) 2006-09-05 2013-09-03 Cfph, Llc Game apparatus for displaying information about a game
EP2077463A1 (en) * 2007-12-27 2009-07-08 TPO Displays Corp. LCD with improved contrast ratio and apparatus comprising such a LCD
US7942418B2 (en) 2008-01-10 2011-05-17 Cfph, Llc Card game with counting
US9928680B2 (en) 2008-07-08 2018-03-27 Cfph, Llc Gaming statistics
US10553067B2 (en) 2008-10-16 2020-02-04 Cfph, Llc Card selection and display and restoration
DE102009038469B4 (de) * 2009-08-21 2015-02-12 Advanced Display Technology Ag Anzeigeelement und Verfahren zum Ansteuern eines Anzeigeelementes
CN102483543A (zh) * 2009-08-31 2012-05-30 夏普株式会社 液晶显示装置
KR101634635B1 (ko) * 2009-10-19 2016-07-11 삼성디스플레이 주식회사 표시 장치
KR101664225B1 (ko) * 2009-12-21 2016-10-10 엘지디스플레이 주식회사 액정표시장치
US20120300131A1 (en) * 2010-02-17 2012-11-29 Sharp Kabushiki Kaisha Display device and television receiver
US20120313986A1 (en) * 2010-02-26 2012-12-13 Sharp Kabushiki Kaisha Image display device and image display method
JP5631968B2 (ja) 2010-02-26 2014-11-26 シャープ株式会社 液晶表示装置
JP4861523B2 (ja) * 2010-03-15 2012-01-25 シャープ株式会社 表示装置およびテレビ受信装置
CN102959462A (zh) * 2010-06-28 2013-03-06 夏普株式会社 显示面板和显示装置
JP5083467B2 (ja) 2010-07-29 2012-11-28 凸版印刷株式会社 液晶表示装置用カラーフィルタ基板および液晶表示装置
KR101241131B1 (ko) * 2010-08-03 2013-03-11 엘지디스플레이 주식회사 유기전계 발광소자
WO2012043620A1 (ja) 2010-09-30 2012-04-05 凸版印刷株式会社 カラーフィルタ基板および液晶表示装置
TWI437336B (zh) * 2010-10-28 2014-05-11 Au Optronics Corp 畫素單元
JP5649990B2 (ja) * 2010-12-09 2015-01-07 シャープ株式会社 カラーフィルタ、固体撮像素子、液晶表示装置および電子情報機器
JP5659768B2 (ja) * 2010-12-16 2015-01-28 凸版印刷株式会社 斜め電界液晶表示装置
WO2012111604A1 (ja) * 2011-02-17 2012-08-23 シャープ株式会社 線幅測定装置
US8749737B2 (en) * 2011-05-09 2014-06-10 Apple Inc. Display with color control
JP5927476B2 (ja) 2011-10-03 2016-06-01 株式会社Joled 表示装置および電子機器
DE102012100426A1 (de) * 2012-01-19 2013-07-25 Osram Opto Semiconductors Gmbh Anzeigevorrichtung und Verfahren zur Darstellung dreidimensionaler Bilder
US9655199B2 (en) * 2012-05-30 2017-05-16 Universal Display Corporation Four component phosphorescent OLED for cool white lighting application
JP6074587B2 (ja) * 2012-08-06 2017-02-08 株式会社Joled 表示パネル、表示装置ならびに電子機器
US10580832B2 (en) 2013-01-18 2020-03-03 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US20140204008A1 (en) 2013-01-24 2014-07-24 Au Optionics Corporation Pixel and sub-pixel arrangement in a display panel
TWI490614B (zh) 2013-01-24 2015-07-01 E Ink Holdings Inc 電泳顯示裝置
US9436056B2 (en) * 2013-02-06 2016-09-06 E Ink Corporation Color electro-optic displays
CN103149733B (zh) * 2013-03-29 2016-02-24 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置
CN103941461B (zh) * 2013-08-26 2016-12-28 上海中航光电子有限公司 一种平板显示器
WO2015041316A1 (ja) * 2013-09-20 2015-03-26 富士フイルム株式会社 液晶表示装置および光変換部材
JP6245957B2 (ja) * 2013-11-20 2017-12-13 株式会社ジャパンディスプレイ 表示素子
JP6486660B2 (ja) * 2013-11-27 2019-03-20 株式会社半導体エネルギー研究所 表示装置
KR102137079B1 (ko) * 2014-03-03 2020-07-24 삼성디스플레이 주식회사 유기 발광 표시 장치
CN103901682A (zh) * 2014-04-18 2014-07-02 深圳市华星光电技术有限公司 一种像素电极单元及显示面板
US10700134B2 (en) 2014-05-27 2020-06-30 Universal Display Corporation Low power consumption OLED display
KR102349722B1 (ko) * 2014-05-27 2022-01-10 유니버셜 디스플레이 코포레이션 연장된 수명을 갖는 고 해상도 저 전력 소비 oled 디스플레이
TWI525379B (zh) * 2014-06-04 2016-03-11 聯詠科技股份有限公司 顯示裝置及其驅動模組
US9552757B2 (en) 2014-08-21 2017-01-24 Vp Assets Limited Image device with improved chrominance quality
US20160055781A1 (en) 2014-08-21 2016-02-25 Vp Assets Limited Image device with imrpoved chrominance quality
US9613588B2 (en) 2014-08-21 2017-04-04 Vp Assets Limited Image device with improved chrominance quality
JP6539848B2 (ja) * 2014-10-20 2019-07-10 株式会社Joled 表示パネルの製造方法
CN104375315B (zh) * 2014-11-18 2017-06-16 深圳市华星光电技术有限公司 彩膜基板、彩色滤光片、显示面板及显示装置
JP6386891B2 (ja) * 2014-11-28 2018-09-05 株式会社ジャパンディスプレイ 表示装置
CN104483775A (zh) * 2014-12-22 2015-04-01 京东方科技集团股份有限公司 一种显示面板及显示装置
CN104465710B (zh) * 2014-12-26 2017-11-14 京东方科技集团股份有限公司 一种有机发光二极管显示面板及显示装置
US9881975B2 (en) * 2015-03-24 2018-01-30 Vp Assets Limited Image device with improved chrominance quality
KR102326806B1 (ko) * 2015-04-24 2021-11-15 엘지디스플레이 주식회사 서브 픽셀 배열 구조를 갖는 표시장치
TWI665800B (zh) * 2015-06-16 2019-07-11 友達光電股份有限公司 發光二極體顯示器及其製造方法
CN105185269B (zh) * 2015-08-28 2018-03-16 厦门天马微电子有限公司 显示面板、显示装置及显示方法
US10192495B2 (en) * 2015-10-15 2019-01-29 Canon Kabushiki Kaisha Display apparatus with lighting device, control method for display apparatus, and storage medium
KR102508727B1 (ko) * 2015-11-19 2023-03-14 삼성디스플레이 주식회사 표시장치
US10256222B2 (en) * 2016-01-05 2019-04-09 Innolux Corporation Light emitting diode substrate and display apparatus applying the same
CN107966863B (zh) * 2016-10-19 2020-08-07 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板、显示装置
KR20180052805A (ko) * 2016-11-10 2018-05-21 삼성디스플레이 주식회사 표시 장치
US10825839B2 (en) * 2016-12-02 2020-11-03 Innolux Corporation Touch display device
CN106940978B (zh) * 2017-05-15 2019-10-25 上海天马有机发光显示技术有限公司 有机发光显示面板及其驱动方法、有机发光显示装置
CN107463022B (zh) * 2017-09-12 2021-02-09 厦门天马微电子有限公司 显示面板及平视显示装置
JP6891797B2 (ja) * 2017-12-21 2021-06-18 日亜化学工業株式会社 ディスプレイ装置
KR102470901B1 (ko) * 2017-12-22 2022-11-24 엘지디스플레이 주식회사 액정표시장치
CN109065568B (zh) * 2018-07-06 2021-04-06 海信视像科技股份有限公司 一种woled面板和woled显示装置
US20210351264A1 (en) * 2018-09-26 2021-11-11 Sharp Kabushiki Kaisha Display device
KR20200039059A (ko) * 2018-10-04 2020-04-16 삼성디스플레이 주식회사 표시패널 및 그 제조방법
CN109343164A (zh) * 2018-10-30 2019-02-15 武汉华星光电技术有限公司 一种偏光板及液晶显示装置
DE102019106527A1 (de) * 2019-03-14 2020-09-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum betrieb einer optischen anzeigevorrichtung und optische anzeigevorrichtung
US20220328458A1 (en) * 2019-09-06 2022-10-13 Chongqing Konka Photoelectric Technology Research Institute Co., Ltd. Led module and led display device
CN112649984A (zh) * 2019-10-12 2021-04-13 北京小米移动软件有限公司 液晶显示面板及设置有该液晶显示面板的智能终端
CN112054047B (zh) * 2020-09-16 2022-10-21 昆山国显光电有限公司 像素排布结构及显示面板
CN112713175B (zh) * 2020-12-14 2022-11-22 合肥维信诺科技有限公司 一种显示面板及显示装置
CN114783388B (zh) * 2022-04-02 2023-08-22 深圳市华星光电半导体显示技术有限公司 一种显示装置的色度的调整方法及显示装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001209047A (ja) 2000-01-25 2001-08-03 Sharp Corp 液晶表示装置
JP2002523807A (ja) * 1998-08-19 2002-07-30 ケンブリッジ ディスプレイ テクノロジー リミテッド ディスプレイデバイス
JP2005062416A (ja) * 2003-08-11 2005-03-10 Seiko Epson Corp 画素構造、電気光学装置及び電子機器
JP2005091875A (ja) * 2003-09-18 2005-04-07 Nippon Hoso Kyokai <Nhk> 表示装置及び表示方法
JP2005156925A (ja) * 2003-11-26 2005-06-16 Hitachi Displays Ltd 表示装置
US20050134785A1 (en) 2003-12-15 2005-06-23 Shmuel Roth Multi-primary liquid crystal display
JP2005331841A (ja) * 2004-05-21 2005-12-02 Seiko Epson Corp 表示装置、画素配置方法および画素配置プログラム
JP2005352140A (ja) * 2004-06-10 2005-12-22 Seiko Epson Corp カラー画像表示装置および電子機器
JP2006058604A (ja) * 2004-08-20 2006-03-02 Seiko Epson Corp 電気光学装置、カラーフィルタ、及び電子機器
JP2006106659A (ja) * 2004-10-05 2006-04-20 Samsung Electronics Co Ltd 4色液晶表示装置
JP2006139058A (ja) * 2004-11-12 2006-06-01 Seiko Epson Corp 液晶表示装置および電子機器
JP2006169206A (ja) 2004-12-20 2006-06-29 Shiseido Co Ltd 固型粉末化粧料

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800375A (en) * 1986-10-24 1989-01-24 Honeywell Inc. Four color repetitive sequence matrix array for flat panel displays
US6992718B1 (en) * 1998-08-31 2006-01-31 Matsushita Electric Industrial Co., Ltd. Illuminating apparatus, display panel, view finder, video display apparatus, and video camera mounting the elements
JP4386989B2 (ja) * 1999-05-11 2009-12-16 パナソニック株式会社 液晶表示装置
US8289266B2 (en) * 2001-06-11 2012-10-16 Genoa Color Technologies Ltd. Method, device and system for multi-color sequential LCD panel
US7268757B2 (en) * 2001-06-11 2007-09-11 Genoa Color Technologies Ltd Device, system and method for color display
JP4799823B2 (ja) 2002-04-11 2011-10-26 ジェノア・カラー・テクノロジーズ・リミテッド 属性を向上させるカラー表示装置および方法
US6888604B2 (en) * 2002-08-14 2005-05-03 Samsung Electronics Co., Ltd. Liquid crystal display
TW200405082A (en) * 2002-09-11 2004-04-01 Samsung Electronics Co Ltd Four color liquid crystal display and driving device and method thereof
JP3900123B2 (ja) * 2003-07-30 2007-04-04 セイコーエプソン株式会社 液晶表示装置、及び電子機器
KR100554911B1 (ko) * 2003-12-26 2006-02-24 엘지.필립스 엘시디 주식회사 액정표시장치
JP4717506B2 (ja) * 2004-05-14 2011-07-06 キヤノン株式会社 カラー表示装置
WO2006019025A1 (ja) * 2004-08-19 2006-02-23 Sharp Kabushiki Kaisha 多原色表示装置及び液晶表示装置
JP4600098B2 (ja) * 2005-03-14 2010-12-15 ソニー株式会社 カラー液晶表示装置
JP4717533B2 (ja) * 2005-07-06 2011-07-06 株式会社 日立ディスプレイズ 表示装置
WO2007034770A1 (ja) * 2005-09-21 2007-03-29 Sharp Kabushiki Kaisha 表示装置およびカラーフィルタ基板
JP4432914B2 (ja) * 2006-02-20 2010-03-17 セイコーエプソン株式会社 液晶表示装置、電子機器
JP5016848B2 (ja) 2006-05-19 2012-09-05 キヤノン株式会社 多原色ディスプレイ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523807A (ja) * 1998-08-19 2002-07-30 ケンブリッジ ディスプレイ テクノロジー リミテッド ディスプレイデバイス
JP2001209047A (ja) 2000-01-25 2001-08-03 Sharp Corp 液晶表示装置
JP2005062416A (ja) * 2003-08-11 2005-03-10 Seiko Epson Corp 画素構造、電気光学装置及び電子機器
JP2005091875A (ja) * 2003-09-18 2005-04-07 Nippon Hoso Kyokai <Nhk> 表示装置及び表示方法
JP2005156925A (ja) * 2003-11-26 2005-06-16 Hitachi Displays Ltd 表示装置
US20050134785A1 (en) 2003-12-15 2005-06-23 Shmuel Roth Multi-primary liquid crystal display
JP2005331841A (ja) * 2004-05-21 2005-12-02 Seiko Epson Corp 表示装置、画素配置方法および画素配置プログラム
JP2005352140A (ja) * 2004-06-10 2005-12-22 Seiko Epson Corp カラー画像表示装置および電子機器
JP2006058604A (ja) * 2004-08-20 2006-03-02 Seiko Epson Corp 電気光学装置、カラーフィルタ、及び電子機器
JP2006106659A (ja) * 2004-10-05 2006-04-20 Samsung Electronics Co Ltd 4色液晶表示装置
JP2006139058A (ja) * 2004-11-12 2006-06-01 Seiko Epson Corp 液晶表示装置および電子機器
JP2006169206A (ja) 2004-12-20 2006-06-29 Shiseido Co Ltd 固型粉末化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2040243A4

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008256819A (ja) * 2007-04-03 2008-10-23 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
JP2008268703A (ja) * 2007-04-24 2008-11-06 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及び液晶表示装置
US8405687B2 (en) * 2008-07-28 2013-03-26 Sharp Kabushiki Kaisha Multi-primary color display device
US20110128309A1 (en) * 2008-07-28 2011-06-02 Sharp Kabushiki Kaisha Multi-primary color display device
JP2011002775A (ja) * 2009-06-22 2011-01-06 Hitachi Displays Ltd 液晶表示装置
WO2011013649A1 (ja) * 2009-07-28 2011-02-03 シャープ株式会社 液晶表示装置およびその製造方法
CN102576165A (zh) * 2009-09-30 2012-07-11 夏普株式会社 液晶显示装置
WO2011040370A1 (ja) 2009-09-30 2011-04-07 シャープ株式会社 液晶表示装置
JP5329671B2 (ja) * 2009-09-30 2013-10-30 シャープ株式会社 液晶表示装置
RU2499289C1 (ru) * 2009-09-30 2013-11-20 Шарп Кабусики Кайся Жидкокристаллическое устройство отображения
KR101344641B1 (ko) 2009-09-30 2013-12-26 샤프 가부시키가이샤 액정 표시 장치
US8692960B2 (en) 2009-09-30 2014-04-08 Sharp Kabushiki Kaisha Liquid crystal display device
CN102576165B (zh) * 2009-09-30 2014-11-12 夏普株式会社 液晶显示装置
WO2011052612A1 (ja) 2009-10-29 2011-05-05 シャープ株式会社 液晶表示装置
US8675031B2 (en) 2009-10-29 2014-03-18 Sharp Kabushiki Kaisha Liquid crystal display device
JP5329675B2 (ja) * 2009-10-29 2013-10-30 シャープ株式会社 液晶表示装置
JPWO2011062165A1 (ja) * 2009-11-19 2013-04-04 シャープ株式会社 液晶表示装置およびその製造方法
WO2011062165A1 (ja) 2009-11-19 2011-05-26 シャープ株式会社 液晶表示装置およびその製造方法
WO2011074497A1 (ja) 2009-12-16 2011-06-23 シャープ株式会社 液晶表示装置
WO2011074353A1 (ja) * 2009-12-16 2011-06-23 シャープ株式会社 表示装置及びテレビ受信装置
JP5173038B2 (ja) * 2009-12-16 2013-03-27 シャープ株式会社 液晶表示装置
WO2011074285A1 (ja) * 2009-12-18 2011-06-23 シャープ株式会社 液晶表示装置および液晶表示装置の駆動方法
US8947476B2 (en) 2010-01-07 2015-02-03 Sharp Kabushiki Kaisha Liquid-crystal display and signal converting circuit
US9019184B2 (en) 2010-01-08 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display device including specific subpixel arrangement
US8885131B2 (en) 2010-01-29 2014-11-11 Sharp Kabushiki Kaisha Liquid crystal display device
US9019186B2 (en) 2010-01-29 2015-04-28 Sharp Kabushiki Kaisha Liquid crystal display device
WO2011093243A1 (ja) 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置
WO2011093387A1 (ja) * 2010-01-29 2011-08-04 シャープ株式会社 液晶表示装置
US9129569B2 (en) 2010-02-26 2015-09-08 Sharp Kabushiki Kaisha Liquid crystal display device
WO2011105145A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 表示装置及びテレビ受信装置
JP5284535B2 (ja) * 2010-02-26 2013-09-11 シャープ株式会社 液晶表示装置
WO2011105514A1 (ja) * 2010-02-26 2011-09-01 シャープ株式会社 液晶表示装置
JP2011221515A (ja) * 2010-03-23 2011-11-04 Fujifilm Corp カラーフィルタ及び電子表示装置
WO2011122122A1 (ja) * 2010-03-31 2011-10-06 シャープ株式会社 表示装置及びテレビ受信装置
US8944623B2 (en) 2010-03-31 2015-02-03 Sharp Kabushiki Kaisha Display device and television receiver
WO2011155300A1 (ja) * 2010-06-08 2011-12-15 シャープ株式会社 表示パネル、および、液晶表示装置
JP2012008202A (ja) * 2010-06-22 2012-01-12 Sharp Corp 表示装置
JP2012008203A (ja) * 2010-06-22 2012-01-12 Sharp Corp 表示装置
WO2011162141A1 (ja) * 2010-06-22 2011-12-29 シャープ株式会社 表示装置
WO2012005060A1 (ja) * 2010-07-06 2012-01-12 シャープ株式会社 表示パネル、および、液晶表示装置
WO2012077565A1 (ja) * 2010-12-08 2012-06-14 シャープ株式会社 液晶表示装置
WO2012093621A1 (ja) * 2011-01-06 2012-07-12 シャープ株式会社 液晶表示装置
US9880394B2 (en) 2011-03-25 2018-01-30 Japan Display Inc. Display apparatus with improved viewing angles
WO2012169421A1 (ja) * 2011-06-07 2012-12-13 シャープ株式会社 表示装置
US9753323B2 (en) 2013-01-25 2017-09-05 Toppan Printing Co., Ltd. Color filter substrate, liquid crystal display device, and method for manufacturing color filter substrate
KR20150109342A (ko) 2013-01-25 2015-10-01 도판 인사츠 가부시키가이샤 컬러 필터 기판, 액정 표시 장치, 및 컬러 필터 기판의 제조 방법
WO2014115367A1 (ja) 2013-01-25 2014-07-31 凸版印刷株式会社 カラーフィルタ基板、液晶表示装置、及びカラーフィルタ基板の製造方法
US9733527B2 (en) 2013-10-18 2017-08-15 Japan Display Inc. Display device
JP2015079207A (ja) * 2013-10-18 2015-04-23 株式会社ジャパンディスプレイ 表示装置
US10268088B2 (en) 2013-10-18 2019-04-23 Japan Display Inc. Display device
JP2018189945A (ja) * 2017-04-28 2018-11-29 株式会社ジャパンディスプレイ 表示装置
US11391981B2 (en) 2017-04-28 2022-07-19 Japan Display Inc. Display device with improved luminance and saturation
JP7137934B2 (ja) 2017-04-28 2022-09-15 株式会社ジャパンディスプレイ 表示装置
JP2018049292A (ja) * 2017-12-01 2018-03-29 株式会社ジャパンディスプレイ 表示装置

Also Published As

Publication number Publication date
US7864271B2 (en) 2011-01-04
EP2040243A1 (en) 2009-03-25
CN101449308B (zh) 2013-03-27
JP2012190029A (ja) 2012-10-04
JP5284513B2 (ja) 2013-09-11
EP2654034B1 (en) 2016-09-07
US20090115952A1 (en) 2009-05-07
CN101449308A (zh) 2009-06-03
JPWO2007148519A1 (ja) 2009-11-19
JP5054084B2 (ja) 2012-10-24
EP2040243A4 (en) 2010-08-04
US8994901B2 (en) 2015-03-31
US20150179140A1 (en) 2015-06-25
CN101958098A (zh) 2011-01-26
JP2010009064A (ja) 2010-01-14
CN101958098B (zh) 2016-03-16
US9812087B2 (en) 2017-11-07
EP2346019B1 (en) 2015-04-29
EP2654034A1 (en) 2013-10-23
EP2346019A1 (en) 2011-07-20
US20100277677A1 (en) 2010-11-04
US20130286496A1 (en) 2013-10-31
US8497957B2 (en) 2013-07-30
JP4528859B2 (ja) 2010-08-25
EP2040243B1 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP5284513B2 (ja) 表示装置
EP1927969B1 (en) Color filter substrate and display device comprising such a substrate
US7948507B2 (en) Multi-primary color display device
US20070109468A1 (en) Systems with reduced color lines at edges of associated display devices
EP2128844A1 (en) Display device
CN108447400A (zh) 显示装置和电子设备
WO2006109577A1 (ja) カラーフィルタ基板及び表示装置
EP2495608A1 (en) Liquid crystal display device
WO2012169421A1 (ja) 表示装置
JP5329671B2 (ja) 液晶表示装置
US20110148747A1 (en) Multi-primary color display and the manufacturing method thereof
CN100547473C (zh) 液晶显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018437.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522371

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12303383

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007744507

Country of ref document: EP