WO2011093387A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2011093387A1
WO2011093387A1 PCT/JP2011/051622 JP2011051622W WO2011093387A1 WO 2011093387 A1 WO2011093387 A1 WO 2011093387A1 JP 2011051622 W JP2011051622 W JP 2011051622W WO 2011093387 A1 WO2011093387 A1 WO 2011093387A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
pixels
liquid crystal
subpixel
display device
Prior art date
Application number
PCT/JP2011/051622
Other languages
English (en)
French (fr)
Inventor
貢祥 平田
雅江 北山
賢一 兵頭
郁未 逸見
祐樹 山下
茜 杉坂
下敷領 文一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/575,696 priority Critical patent/US8885131B2/en
Publication of WO2011093387A1 publication Critical patent/WO2011093387A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/207Display of intermediate tones by domain size control
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2077Display of intermediate tones by a combination of two or more gradation control methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device including color display pixels in which a plurality of pixels are arranged in a matrix.
  • the liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight and low power consumption.
  • the display performance has been improved, the production capacity has been improved, and the price competitiveness with respect to other display devices has been improved.
  • the market scale is expanding rapidly.
  • a conventional twisted nematic mode (TN mode) liquid crystal display device the major axis of liquid crystal molecules having positive dielectric anisotropy is substantially parallel to the substrate surface, and the liquid crystal layer The alignment treatment is performed so that the substrate is twisted approximately 90 degrees between the upper and lower substrates along the thickness direction.
  • a voltage is applied to the liquid crystal layer, the liquid crystal molecules rise in parallel with the electric field, and the twist alignment (twist alignment) is eliminated.
  • the amount of transmitted light is controlled by utilizing a change in optical rotation accompanying a change in the orientation of liquid crystal molecules due to a voltage.
  • Such a TN mode liquid crystal display device has a wide production margin and excellent productivity, but has a problem in display performance, particularly viewing angle characteristics. Specifically, when the display surface of a TN mode liquid crystal display device is observed from an oblique direction, the contrast ratio of the display is significantly reduced, and a plurality of gradations from black to white are clearly observed when observed from the front. When the image is observed from an oblique direction, the problem is that the luminance difference between gradations becomes extremely unclear. Furthermore, the phenomenon that the gradation characteristics of the display are reversed and a darker portion when observed from the front is observed brighter when observed from an oblique direction (so-called gradation inversion phenomenon) is also a problem.
  • liquid crystal display devices with improved viewing angle characteristics in TN mode liquid crystal display devices include in-plane switching mode (IPS mode), multi-domain vertical alignment mode (MVA mode), and axially symmetric alignment mode (ASM). Mode) and the like have been developed.
  • IPS mode in-plane switching mode
  • MVA mode multi-domain vertical alignment mode
  • ASM axially symmetric alignment mode
  • the above-mentioned specific problems related to viewing angle characteristics that is, a significant reduction in display contrast ratio when the display surface is observed obliquely, and Problems such as display gradation inversion have been solved.
  • the problem of viewing angle characteristics is that the ⁇ characteristics during frontal observation and the ⁇ characteristics during oblique observation differ, that is, the dependence of ⁇ characteristics on the viewing angle.
  • sexual problems are newly emerging.
  • the ⁇ characteristic is the gradation dependency of the display luminance.
  • the fact that the ⁇ characteristic is different between the front direction and the diagonal direction means that the gradation display state differs depending on the observation direction. This is particularly a problem when displaying, or when displaying TV broadcasts and the like.
  • two or more subpixels are provided in one pixel, and the luminance of one subpixel is different from the other in the intermediate luminance display.
  • a method for improving the viewing angle dependency is known (for example, see Patent Document 1).
  • FIG. 18 shows a schematic diagram of a liquid crystal display device 800 disclosed in Patent Document 1.
  • the subpixel electrodes 824s1 and 824s2 are connected to the common source line Ls via the corresponding TFTs 830s1 and 830s2, and form capacitive coupling with the corresponding auxiliary capacitance lines CSa and CSb.
  • the potentials of the sub-pixel electrodes 824s1 and 824s2 change due to the different voltages of the auxiliary capacitance lines CSa and CSb.
  • the luminance of each of the sub-pixels S1 and S2 is different, and the viewing angle characteristics are different. Improvements are being made.
  • FIG. 19 shows a schematic diagram of another liquid crystal display device 900 disclosed in Patent Document 1.
  • the sub-pixel electrodes 924s1 and 924s2 are connected to different source lines Lsa and Lsb via different TFTs 930s1 and 930s2.
  • the luminance of the subpixels S1 and S2 is different by changing the potentials of the subpixel electrodes 924s1 and 924s2, and the viewing angle characteristics are improved.
  • one color display pixel is configured by three pixels that display red, green, and blue which are the three primary colors of light, but recently, different colors are displayed.
  • a display device having a color display pixel composed of four or more pixels has been proposed.
  • Such a display device is also called a multi-primary color display device.
  • different colors are added to the three colors of red, green, and blue, and display can be performed in a wide color reproduction range (see, for example, Patent Document 2).
  • Patent Document 2 discloses a liquid crystal display device including color display pixels including red, green, blue, and yellow pixels.
  • red, green, blue, and yellow pixels are arranged in 2 rows and 2 columns, and the pixels of the red and blue pixels are larger than the areas of the green and yellow pixels. The design is done.
  • the present invention has been made in view of the above problems, and an object of the present invention is to reduce display quality in a liquid crystal display device including color display pixels in which a plurality of pixels each provided with a subpixel are arranged in a matrix. It is to suppress.
  • the liquid crystal display device is a liquid crystal display device including color display pixels in which a plurality of pixels are arranged in a matrix of a plurality of rows and a plurality of columns, wherein the plurality of pixels include the first pixel, A second pixel adjacent to the first pixel in the row direction; a third pixel adjacent to the first pixel in the column direction; adjacent to the second pixel in the column direction; and adjacent to the third pixel in the row direction.
  • Each of the plurality of pixels includes a plurality of subpixels including a first subpixel and a second subpixel, and at least in a certain intermediate gray level,
  • the luminance of the second subpixel is higher than the luminance of the first subpixel
  • the plurality of subpixels belonging to the plurality of pixels are arranged in a matrix of a plurality of rows and columns,
  • the second subpixel is in front of the second pixel. Adjacent to the second sub-pixel in the row direction, adjacent to each other in the column direction and the second sub-pixel of the third pixel, adjacent to the second sub-pixel and the oblique direction of the fourth pixel.
  • the first subpixel of the first pixel and the first subpixel of the second pixel are adjacent to each other in a row direction, and the first subpixel and the fourth pixel of the third pixel are adjacent to each other.
  • the first subpixels are adjacent to each other in the row direction.
  • the plurality of pixels further include a fifth pixel adjacent to the second pixel in the row direction and a sixth pixel adjacent to the fourth pixel in the row direction.
  • the first subpixel of the first pixel and the first subpixel of the third pixel are adjacent to each other in the column direction, and the first subpixel and the fourth pixel of the second pixel are adjacent to each other.
  • the first subpixels are adjacent to each other in the column direction.
  • the plurality of pixels further include a fifth pixel adjacent to the third pixel in the column direction, and a sixth pixel adjacent to the fourth pixel in the column direction.
  • the plurality of pixels display different colors.
  • the plurality of pixels include a red pixel, a green pixel, a blue pixel, and a yellow pixel as the first, second, third, and fourth pixels.
  • the areas of the red pixel and the blue pixel are larger than the areas of the green pixel and the yellow pixel, respectively.
  • the area of the first subpixel is larger than the area of the second subpixel.
  • a liquid crystal display device including color display pixels in which a plurality of pixels each provided with a subpixel are arranged in a matrix.
  • FIG. 2 is a schematic diagram of one color display pixel in the liquid crystal display device shown in FIG. 1. It is a schematic diagram of one color display pixel in the liquid crystal display device of a comparative example.
  • (A) is a schematic diagram of the display screen of the liquid crystal display device of a comparative example
  • (b) is a schematic diagram of the display screen of the liquid crystal display device shown in FIG.
  • FIG. 2 is a schematic diagram illustrating an example of a subpixel electrode in the liquid crystal display device illustrated in FIG. 1.
  • FIG. 8 is an equivalent circuit diagram of the liquid crystal display device shown in FIG. 7.
  • FIG. 8 is a waveform diagram of a gate signal in the liquid crystal display device shown in FIG. 7 and a schematic diagram showing polarities of color display pixels.
  • FIG. 8 is a waveform diagram of a source signal and a gate signal in the liquid crystal display device shown in FIG. 7.
  • It is a schematic diagram of further another embodiment of the liquid crystal display device by this invention.
  • FIG. 1A shows a schematic diagram of an embodiment of a liquid crystal display device 100 according to the present invention.
  • the liquid crystal display device 100 includes a rear substrate 120, a front substrate 140, and a liquid crystal layer 160 provided between the rear substrate 120 and the front substrate 140.
  • the rear substrate 120 is provided with source wiring, insulating layers, gate wiring, thin film transistors and pixel electrodes, an alignment film, and the like, and is opposed to the front substrate 140.
  • An electrode, a color filter layer, an alignment film, and the like are provided.
  • a polarizing plate is provided outside the back substrate 120 and the front substrate 140.
  • the alignment film is a vertical alignment film
  • the liquid crystal layer 160 is a vertical alignment type liquid crystal layer.
  • the “vertical alignment type liquid crystal layer” refers to a liquid crystal layer in which a liquid crystal molecular axis (also referred to as “axis orientation”) is aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film.
  • the liquid crystal layer 160 includes a nematic liquid crystal material having negative dielectric anisotropy, and display is performed in a normally black mode in combination with a polarizing plate arranged in a crossed Nicol arrangement.
  • the liquid crystal display device 100 further includes a backlight.
  • the liquid crystal display device 100 is provided with a plurality of color display pixels arranged in a matrix of a plurality of rows and a plurality of columns.
  • the color display pixel functions as a display unit of an arbitrary color.
  • the color display pixel has four or more pixels. For example, when red, green, blue, and yellow are used as primary colors, the color display pixel has a red pixel, a green pixel, a blue pixel, and a yellow pixel.
  • Each pixel is defined by a pixel electrode.
  • the counter electrode is typically provided so as to face all the pixel electrodes, but may be divided into a plurality of blocks.
  • FIG. 1B is a schematic diagram of the color display pixel D in the liquid crystal display device 100.
  • the liquid crystal display device 100 has a plurality of color display pixels arranged in a matrix of a plurality of rows and a plurality of columns. In FIG. The neighborhood is shown.
  • the color display pixel D has a pixel PA, a pixel PB, a pixel PC, and a pixel PD.
  • the pixels PA to PD display different colors.
  • Pixels PA to PD belonging to the same color display pixel D are arranged in a matrix of a plurality of rows and a plurality of columns.
  • the pixel PB is adjacent to the pixel PA in the row direction (x direction)
  • the pixel PC is adjacent to the pixel PA in the column direction (y direction).
  • the pixel PD is adjacent to the pixel PB in the column direction and adjacent to the pixel PC in the row direction.
  • the pixel PD is adjacent to the pixel PA in the oblique direction
  • the pixel PC is adjacent to the pixel PB in the oblique direction.
  • the pixels PA to PD are arranged in 2 rows and 2 columns, and the color display pixel D having a smaller aspect ratio than the case where four pixels are arranged in one row or one column. Design can be performed easily and good viewing angle characteristics can be realized.
  • FIG. 1B shows one color display pixel D and its vicinity, in the liquid crystal display device 100, the pixel arrangement of the color display pixels D arranged in a matrix is equal to each other. Specifically, when viewed in the row direction, pixels PA, PB, PA, PB... Are arranged in a row with pixels, and pixels PC, PD, PC, PD. And is arranged. When viewed in the column direction, pixels PA, PC, PA, PC,... Are arranged in a column with pixels, and pixels PB, PD, PB, PD,. ing.
  • the pixel PA, the pixel PB, the pixel PC, and the pixel PD may be referred to as a first pixel PA, a second pixel PB, a third pixel PC, and a fourth pixel PD, respectively.
  • the areas of the pixel PA and the pixel PC are larger than the areas of the pixel PB and the pixel PD.
  • the length along the column direction of the pixels PA and PC is substantially equal to the length along the column direction of the pixels PB and PD, but the length along the row direction of the pixels PA and PC is the pixel PB, It is larger than the length along the row direction of the PD.
  • Each of the plurality of pixels P has a plurality of sub-pixels S.
  • the pixel P has two sub-pixels S (that is, the sub-pixel S1 and the sub-pixel S2), and the sub-pixel S1 and the sub-pixel S2 belonging to the pixel P are arranged in the column direction.
  • the sub-pixels S included in one color display pixel D are arranged in a matrix of a plurality of rows and a plurality of columns. Specifically, the sub-pixels S belonging to the color display pixel D are arranged in four rows and two columns.
  • the subpixel S1 and the subpixel S2 may be referred to as a first subpixel S1 and a second subpixel S2, respectively.
  • sub-pixels S1 of the pixels PA, PB, PC, and PD may be denoted as sub-pixels SA1, SB1, SC1, and SD1, respectively, and the sub-pixels S2 of the pixels PA, PB, PC, and PD are denoted as sub-pixels S1, SB1, SC1, and SD1, respectively. These may be denoted as sub-pixels SA2, SB2, SC2, and SD2, respectively.
  • the area of the sub-pixel S1 is larger than that of the sub-pixel S2.
  • the length along the row direction of the subpixels SA1 to SD1 is substantially equal to the length along the row direction of the subpixels SA2 to SD2, respectively.
  • the length along the column direction is larger than the length along the column direction of the sub-pixels SA2 to SD2.
  • the luminance of the subpixel S2 in each of the plurality of pixels P is higher than the luminance of the subpixel S1.
  • the luminance of the subpixel S2 is greater than or equal to the luminance of the subpixel S1 in an arbitrary frame or an arbitrary field.
  • the first subpixel S1 is also called a dark subpixel
  • the second subpixel S2 is also called a bright subpixel.
  • the viewing angle dependency of the ⁇ characteristic can be improved. Further, by making the area of the low-luminance subpixel S1 larger than that of the high-luminance subpixel S2, the viewing angle characteristics can be improved efficiently.
  • the subpixel SA2 is adjacent to the subpixel SB2 in the row direction, and is adjacent to the subpixel SC2 in the column direction.
  • the subpixel SD2 is adjacent to the subpixel SB2 in the column direction, and is adjacent to the subpixel SC2 in the row direction.
  • the subpixel SA2 is adjacent to the subpixel SD2 in an oblique direction.
  • the sub-pixel SB2 is adjacent to the sub-pixel SC2 in an oblique direction.
  • the sub-pixels SA2 to SD2 are arranged at the center of the color display pixel D in the column direction. Focusing on the dark subpixel S1, the subpixel SB1 is adjacent to the subpixel SA1 in the row direction, and the subpixel SD1 is adjacent to the subpixel SC1 in the row direction.
  • FIG. 2 is a schematic diagram of the color display pixel D in the liquid crystal display device 100.
  • the pixels PA, PB, PC, and PD are a red pixel R, a yellow pixel Y, a blue pixel B, and a green pixel G, respectively.
  • a red color filter that transmits red light a green color filter that transmits green light
  • a blue color filter that transmits light and a yellow color filter that transmits yellow light are provided.
  • the blue pixel B is adjacent to the red pixel R in the column direction
  • the yellow pixel Y is adjacent to the blue pixel B in the oblique direction.
  • the subpixel S1 is shown as subpixels R1, Y1, B1, and G1
  • the subpixel S2 is subpixels R2, Y2, B2, and G2. It is shown.
  • the sub-pixels R2, Y2, B2, and G2 are arranged so as to be adjacent to each other in the row direction, the column direction, or the oblique direction.
  • the areas of the red pixel R and the blue pixel B are larger than the areas of the green pixel G and the yellow pixel Y. Since the area of the red pixel R is relatively large, the liquid crystal display device 100 can sufficiently reproduce red with high brightness. Further, since the area of the blue pixel B is relatively large, the blue component transmitted through the color filter layer is increased, and the red component and the green component are decreased. In this case, in order to realize a constant color temperature, it is necessary to reduce the blue component of the light emitted from the backlight and increase the red component and the green component. Since the light emission efficiency of the blue component is relatively low and the light emission efficiency of the green component is relatively high, the light emission efficiency of the backlight can be improved by increasing the area of the blue pixel B.
  • FIG. 3 shows a schematic diagram of the color display pixel D in the liquid crystal display device 700 of the comparative example.
  • the blue pixel B is adjacent to the red pixel R in the column direction
  • the yellow pixel Y is adjacent to the blue pixel B in the oblique direction.
  • the first sub-pixels R1, Y1, B1, and G1 are provided on the ⁇ y direction side, respectively, and the + y direction side Are provided with second sub-pixels R2, Y2, B2 and G2.
  • a video signal indicating that the central area in the display screen is black and the surrounding area is gray is input to each of the liquid crystal display device 700 of the comparative example and the liquid crystal display device 100 of the present embodiment. .
  • a black window is displayed on the liquid crystal display devices 100 and 700.
  • FIG. 4A shows a display screen of the liquid crystal display device 700 of the comparative example.
  • the upper edge E1 and the lower edge E2 of the black window appear colored. Specifically, the upper edge E1 looks blue-green and the lower edge E2 looks orange.
  • the upper edge E1 appears colored in blue and green displayed by the blue and green pixels located below among the color display pixels that display gray near the upper portion of the window. This is because the color is not sufficiently mixed.
  • the lower edge E2 appears colored by the red and yellow pixels located above among the color display pixels that display gray near the lower portion of the window in the liquid crystal display device 700. This is because red and yellow are not mixed sufficiently.
  • the color may appear blurred.
  • FIG. 4B shows a display screen of the liquid crystal display device 100 of the present embodiment.
  • the upper and lower edges of the black window are not colored.
  • the high luminance subpixels B2 and G2 of the blue pixel B and the green pixel G are the high luminance subpixels R2 and Y2 of the red pixel R and the yellow pixel Y on the upper side of the black window. Because of being adjacent to each other, coloring is suppressed.
  • the high luminance subpixels R2 and Y2 of the red pixel R and the yellow pixel Y are the high luminance subpixels B2 and G2 of the blue pixel B and the green pixel G, respectively. Adjacent and coloration is suppressed.
  • the sub-pixels R2, Y2, B2, and G2 exhibiting high luminance are arranged so as to be adjacent to each other, and as a result, color blur is suppressed.
  • FIG. 5 shows a schematic diagram of the color display pixel D in the liquid crystal display device 100.
  • FIG. 5 is a schematic diagram corresponding to one color display pixel D.
  • the counter electrode and the like of the front substrate 140 are omitted. .
  • the pixel electrode 124 has sub-pixel electrodes 124s1 and 124s2.
  • the pixel P is defined by the pixel electrode 124
  • the subpixels S1 and S2 are defined by the subpixel electrodes 124s1 and 124s2.
  • the subpixel electrodes 124s1 and 124s2 may be referred to as a first subpixel electrode 124s1 and a second subpixel electrode 124s2, respectively.
  • the length along the row direction of the subpixel electrode 124s1 is substantially equal to the length along the row direction of the subpixel electrode 124s2, but the length along the column direction of the subpixel electrode 124s1. The length is larger than the length along the column direction of the sub-pixel electrode 124s2.
  • TFTs 130s1 and 130s2 are provided corresponding to the sub-pixel electrodes 124s1 and 124s2.
  • the TFTs 130s1 and 130s2 may be referred to as a first TFT 130s1 and a second TFT 130s2, respectively.
  • the auxiliary capacitance line CS is provided so as to be shared between the subpixels S1 adjacent in the column direction or the subpixel S2 among the two pixels P adjacent in the column direction.
  • the voltage applied to the adjacent subpixel electrode 124s1 is held by the storage capacitor line CS extending in the row direction between the adjacent subpixel electrodes 124s1, and similarly, the voltage applied to the adjacent subpixel electrode 124s2 is adjacent.
  • the sub-capacitor wiring CS extends between the sub-pixel electrodes 124s2 in the row direction.
  • the storage capacitor line CS is formed in the same process as the gate line G, and is formed from the same material as the gate line G.
  • the pixel electrodes 124 defining the pixels PA to PD are shown as pixel electrodes 124A to 124D.
  • the subpixel electrodes 124s that define the subpixels SA1 to SD1 and SA2 to SD2 are shown as subpixel electrodes 124A1 to 124D1 and 124A2 to 124D2, respectively.
  • the TFTs 130s1 of the subpixels SA1 to SD1 may be represented as TFTs 130A1 to 130D1
  • the TFTs 130s2 of the subpixels SA2 to SD2 may be represented as TFTs 130A2 to 130D2.
  • the gates of the TFTs 130A1, 130A2, 130B1, and 130B2 are electrically connected to the gate wiring Gn, and the gates of the TFTs 130C1, 130C2, 130D1, and 130D2 are electrically connected to the gate wiring Gn + 1.
  • Two source lines Ls are provided for each pixel column.
  • attention is focused on a pixel column including the pixel PA and the pixel PC.
  • the source lines Lsa and Lsb corresponding to this pixel column are arranged so as to sandwich the subpixel electrodes 124A1, 124A2, 124C2, and 124C1.
  • the sources of the TFTs 130A1 and 130C2 are electrically connected to the source wiring Lsa, and the sources of the TFTs 130A2 and TFTC1 are electrically connected to the source wiring Lsb.
  • the TFTs 130A1 and 130A2 are turned on, the source signal is supplied from the source wiring Lsa to the subpixel electrode 124A1, and the subpixel electrode 124A2 is supplied from the source wiring Lsb. Is supplied with a source signal.
  • the effective voltage of the subpixel SA2 is larger than the effective voltage of the subpixel SA1.
  • the polarity of the subpixel SA2 may be the same as or different from the polarity of the subpixel SA1.
  • the polarity represents the direction (polarity) of the electric field applied to the liquid crystal layer. For example, “+” indicates that the potential of the counter electrode is higher than that of the subpixel electrode, and “ ⁇ ” indicates that the potential of the subpixel electrode is higher than that of the counter electrode.
  • the TFTs 130C1 and 130C2 are turned on, the source signal is supplied from the source wiring Lsa to the subpixel electrode 124C2, and the subpixel electrode 124C1 is supplied from the source wiring Lsb. Is supplied with a source signal.
  • the effective voltage of the subpixel SP2 is larger than the effective voltage of the subpixel SP1.
  • the polarity of the subpixel SC2 may be the same as or different from the polarity of the subpixel SC1.
  • the polarities of the subpixels SA1, SA2, SC1, and SC2 may be any combination.
  • the polarity of the source signal voltage supplied from the source wiring Lsa does not change over a predetermined period (preferably one vertical scanning period)
  • power consumption of the source driver can be suppressed.
  • the polarity of the source signal voltage supplied from the source line Lsb does not change over a predetermined period (preferably one vertical scanning period)
  • the power consumption of the source driver can be suppressed.
  • writing to each pixel P is performed by the two source lines Ls. Note that when two source lines Ls are provided for each pixel column, the interval between the pixel electrodes 124 adjacent in the row direction is relatively wide.
  • the pixels PA to PD are arranged in two rows and two columns, and a higher aperture ratio can be realized as compared with a case where four pixels are arranged linearly in the row direction.
  • the “vertical scanning period” means a period from when a certain gate wiring is selected until the next gate wiring is selected.
  • one vertical scanning period corresponds to one frame period of a video signal when the video signal is a signal for non-interlace driving, and when the video signal is a signal for interlace driving.
  • one vertical scanning period of the liquid crystal display device is 16.7 msec which is the reciprocal of the field frequency (60 Hz) of the NTSC signal. Since the liquid crystal display device does not perform interlace driving and writes a signal voltage to all pixels in both the odd field and the even field, the reciprocal of the field frequency of the NTSC signal is the vertical scanning period.
  • the auxiliary capacitance line CS is arranged corresponding to the interval between adjacent subpixel electrodes included in two pixels adjacent in the column direction, but each subpixel electrode 124 s is connected to the auxiliary capacitance line CS. You may arrange
  • each sub-pixel has four liquid crystal domains that differ from each other by almost an integral multiple of 90 ° in order to realize a wide viewing angle characteristic.
  • a pair of polarizing plates has one polarization axis in the 0 ° -180 ° direction and the other polarization
  • each subpixel or each pixel has a plurality of liquid crystal domains (typically a director orientation when at least a voltage is applied to the liquid crystal layer)
  • four liquid crystal domains having angles of 45 °, 135 °, 225 °, and 315 ° are formed.
  • a liquid crystal display device in which four liquid crystal domains are formed in each subpixel is disclosed in Japanese Patent Application Laid-Open No. 2004-62146 (US Pat. No. 6,958,791) by the present applicant.
  • the entire disclosure of Japanese Patent Application Laid-Open No. 2004-62146 (US Pat. No. 6,958,791) is incorporated herein by reference.
  • the liquid crystal display device 100 may be in a so-called MVA mode.
  • the MVA mode liquid crystal display device has a linear slit formed on the electrode and a linear dielectric protrusion (rib) formed on the liquid crystal layer side of the electrode on a pair of substrates opposed via the liquid crystal layer.
  • rib linear dielectric protrusion
  • the directors of the liquid crystal domain formed at the time of voltage application are regulated by arranging them in parallel and alternately.
  • the direction of the liquid crystal domain is a direction orthogonal to the direction in which the linear slits or dielectric protrusions (collectively referred to as “linear structures”) extend.
  • the liquid crystal display device 100 may be in the PSA mode.
  • PSA technology Polymer Sustained Alignment Technology (hereinafter referred to as “PSA technology”) is disclosed in, for example, JP 2002-357830 A, JP 2003-177418 A, JP 2006-78968 A, K.A. Hanaoka et al. "A New MVA-LCD by Polymer Sustained Alignment Technology", SID 04 DIGEST 1200-1203 (2004). The entire disclosure of these four documents is hereby incorporated by reference.
  • a small amount of a polymerizable compound for example, a photopolymerizable monomer or oligomer
  • a liquid crystal panel is assembled, and a predetermined voltage is applied to the liquid crystal layer.
  • This is a technique for controlling the pretilt direction of liquid crystal molecules by irradiating active energy rays (for example, ultraviolet rays) to form a polymer.
  • active energy rays for example, ultraviolet rays
  • the alignment state of the liquid crystal molecules when the polymer is generated is maintained (stored) even after the voltage is removed (a state where no voltage is applied).
  • a layer formed of a polymer is referred to as an orientation maintaining layer.
  • the alignment maintaining layer is formed on the surface of the alignment film (on the liquid crystal layer side), but does not necessarily have a shape covering the surface of the alignment film, and may be discrete polymer particles.
  • the PSA technology has the advantage that the pretilt azimuth and pretilt angle of liquid crystal molecules can be adjusted by controlling the electric field formed in the liquid crystal layer.
  • the alignment maintaining layer exhibits an alignment regulating force on almost all surfaces in contact with the liquid crystal layer, the response characteristics are excellent.
  • a PSA mode liquid crystal display device can be obtained, for example, by applying the above-described PSA technique using the subpixel electrode 124s shown in FIG.
  • the sub-pixel electrode 124s includes cross-shaped trunk portions 124t1 and 124t2 arranged so as to overlap with the polarization axes of the pair of polarizing plates, and a plurality of branch portions 124u1 and 124u2 extending from the cross-shaped trunk portions 124t1 and 124t2 in a substantially 45 ° direction. , 124u3 and 124u4.
  • the trunk 124t1 extends in the row direction (x direction), and the trunk 124t2 extends in the column direction (y direction).
  • the branch portion 124u1 extends in the 45 ° azimuth direction from the trunk portions 124t1 and 124t2
  • the branch portion 124u2 extends in the 135 ° azimuth direction from the trunk portions 124t1 and 124t2
  • the branch portion 124u3 is in the trunk portion.
  • 124t1 and 124t2 extend in the direction of 225 °
  • the branch portion 124u4 extends from the trunk portions 124t1 and 124t2 in the direction of 315 °.
  • the liquid crystal molecules (with negative dielectric anisotropy) in the vertical alignment type liquid crystal layer are inclined in the direction in which each branch extends by an oblique electric field from the trunk and branches. This is because the oblique electric field from the branches extending in parallel to each other acts to incline the liquid crystal molecules in the direction perpendicular to the direction in which the branches extend, and the oblique electric field from the trunk portion causes the liquid crystal molecules in the direction in which each branch extends. This is because it acts so as to be inclined.
  • the PSA technique the above-described alignment of the liquid crystal molecules formed when a voltage is applied to the liquid crystal layer can be stabilized.
  • the vertical alignment type liquid crystal display device may use a photo-alignment film as the alignment film.
  • a photo-alignment film having different regions subjected to alignment treatment in anti-parallel in the sub-pixel is provided on both the back substrate 120 and the front substrate 140, and a pair of alignment films is provided for each region facing each other. It arrange
  • the liquid crystal molecules in the vicinity of the photo-alignment film are slightly inclined with respect to the normal direction of the main surface of the photo-alignment film.
  • the photo-alignment film may be provided on only one of the back substrate 120 and the front substrate 140.
  • the liquid crystal display device is a vertical alignment type, but the present invention is not limited to this.
  • the liquid crystal display device may be in other modes.
  • each pixel P is provided with two TFTs, and source signals are supplied from different source lines Ls to the sub-pixel electrodes 124s1 and 124s2 of each pixel P.
  • the present invention is not limited to this. Not.
  • FIG. 7 shows a schematic diagram of the liquid crystal display device 100A.
  • the liquid crystal display device 100A has the same configuration as that of the liquid crystal display device 100 described above except that writing to one pixel P is performed by one source wiring and that each pixel P is provided with three TFTs. In order to avoid redundancy, redundant description is omitted.
  • a pair of source lines Ls is provided for each pixel column. Writing to the pixel P in a certain row is performed by one source line Ls, and writing to the pixel P in an adjacent row is performed by the other source line Ls.
  • each pixel P is provided with three TFTs.
  • TFTs 130A1 to 130A3 are provided in the pixel PA, and similarly, TFTs 130B1 to 130B3, 130C1 to 130C3, and 130D1 to 130D3 are provided to the pixels PB to PD, respectively.
  • the drains of the TFTs 130A3 to 130D3 are electrically connected to the auxiliary capacitance electrodes 132A to 132D, respectively.
  • the auxiliary capacitance electrodes 132A to 132D overlap with the subpixel electrodes 124A1 to 124D1, respectively, and are arranged between the subpixel electrodes 124A1 to 124D1 and the auxiliary capacitance wiring CS as viewed from the thickness direction of the back substrate 120.
  • the auxiliary capacitance electrodes 132A to 132D are formed in the same process as the source line Ls, and are formed of the same material as the source line Ls.
  • the gate wiring Gn is branched into two gate wirings Gna and Gnb.
  • the gates of the TFTs 130A1, 130A2, 130B1, and 130B2 are electrically connected to the gate wiring Gna.
  • the gates of the TFTs 130C1, 130C2, 130D1, and 130D2 are electrically connected to the gate wiring Gnb.
  • An equivalent gate signal is supplied to the gate lines Gna and Gnb, and all the pixels PA to PD belonging to the same color display pixel D are selected simultaneously. Since the pixels PA to PD arranged in a plurality of rows are simultaneously selected in this way, the writing time to each pixel PA to PD can be made relatively long.
  • the gates of the TFTs 130A3 and 130B3 are electrically connected to the gate wiring Gn + 1, and the gates of the TFTs 130C3 and 130D3 are electrically connected to the gate wiring Gn + 2.
  • the TFTs 130A3 to 130D3 are selected, and the absolute value of the voltage applied to the subpixel electrodes 124A2 to 124D2 is determined. descend.
  • the TFTs 130A3 to 130D3 may be referred to as third TFTs 130s3.
  • the gates of the TFTs 130A1 and 130A2 are electrically connected to the gate wiring Gna, and the sources of the TFTs 130A1 and 130A2 are electrically connected to the source wiring Lsa.
  • the drains of the TFTs 130A1 and 130A2 are electrically connected to the subpixel electrodes 124A1 and 124A2, respectively.
  • the gate of the TFT 130A3 is electrically connected to the gate wiring Gn + 1.
  • the source of the TFT 130A3 is electrically connected to the subpixel electrode 124A1.
  • the drain of the TFT 130A3 is electrically connected to the auxiliary capacitance electrode 132A, and the auxiliary capacitance electrode 132A forms a capacitive coupling with the auxiliary capacitance line CS.
  • the gates of the TFTs 130C1 and 130C2 are electrically connected to the gate wiring Gnb, and the sources of the TFTs 130C1 and 130C2 are electrically connected to the source wiring Lsb.
  • the drains of the TFTs 130C1 and 130C2 are electrically connected to the subpixel electrodes 124C1 and 124C2, respectively.
  • the gate of the TFT 130C3 is electrically connected to the gate wiring Gn + 2.
  • the source of the TFT 130C3 is electrically connected to the subpixel electrode 124C1.
  • the drain of the TFT 130C3 is electrically connected to the auxiliary capacitance electrode 132C, and the auxiliary capacitance electrode 132C forms a capacitive coupling with the auxiliary capacitance line CS.
  • the gate wirings Gna and Gnb that are branched from each other to select the color display pixel D in the nth row are shown as the gate wiring Gn.
  • the gate wiring Gn includes the n-2th row and the n ⁇ 1th row.
  • An extension line electrically connected to the gates of the third TFTs 130A3 to 130D3 of the color display pixels D in the row may be further included.
  • the TFTs 130A3 and 130B3 are electrically connected to the gate wiring Gn + 1, and the gates of the TFTs 130C3 and 130D3 are electrically connected to the gate wiring Gn + 2.
  • the color display pixels D in the nth row and the (n + 1) th row are denoted as Dn and Dn + 1.
  • the TFTs 130C3 and 130A3 All the gates are electrically connected to the gate wiring Gn + 2.
  • the third TFTs 130s3 of the pixels adjacent to each other among the color display pixels D adjacent in the column direction share the gate wiring, thereby suppressing the decrease in the aperture ratio.
  • FIG. 8 shows an equivalent circuit diagram of the liquid crystal display device 100A.
  • FIG. 8 shows an equivalent circuit of the pixel PA and the pixel PC.
  • the sub-pixel SA1 has a liquid crystal capacitor CLA1, an auxiliary capacitor CCSA1, and an auxiliary capacitor CCSA3.
  • the liquid crystal capacitor CLA1 includes a sub-pixel electrode 124A1, a counter electrode, and a liquid crystal layer 160 positioned therebetween.
  • a common voltage COM is supplied to the counter electrode.
  • the auxiliary capacitor CCSA1 is composed of the sub-pixel electrode 124A1, the auxiliary capacitor line CS, and an insulating layer positioned therebetween
  • the auxiliary capacitor CCSA3 is the auxiliary capacitor electrode 132A and the auxiliary capacitor line CS. And an insulating layer located between the two.
  • the sub-pixel SA2 has a liquid crystal capacitor CLA2 and an auxiliary capacitor CCSA2.
  • the liquid crystal capacitor CLA2 includes a subpixel electrode 124A2, a counter electrode, and a liquid crystal layer 160 positioned therebetween.
  • the auxiliary capacitor CCSA2 includes the sub-pixel electrode 124A2, the auxiliary capacitor line CS, and an insulating layer positioned between the two.
  • the subpixel SC1 has a liquid crystal capacitor CLC1, an auxiliary capacitor CCSC1, and an auxiliary capacitor CCSC3, and the subpixel SC2 has a liquid crystal capacitor CLC2. And an auxiliary capacitor CCSC2.
  • Such a liquid crystal display device 100A is driven as follows.
  • the gate signal voltage supplied to the gate wiring Gn changes from the off voltage to the on voltage
  • the TFTs 130A1, 130A2, 130C1, and 130C2 are turned on, and source signals are supplied from the source wiring Lsa to the sub-pixel electrodes 124A1 and 124A2.
  • a source signal is supplied from the source line Lsb to the subpixel electrodes 124C1 and 124C2.
  • the gate signal voltage supplied to the gate wiring Gn changes from the on voltage to the off voltage, and the TFTs 130A1, 130A2, 130C1, and 130C2 are turned off.
  • the TFT 130A3 is turned on, and the voltage of the subpixel electrode 124A1 corresponds to the voltage charged in the auxiliary capacitor CCSA3. Change.
  • the TFT 130C3 is turned on, and the voltage of the subpixel electrode 124C1 depends on the voltage charged in the auxiliary capacitor CCSC3. Change.
  • the polarity of the voltage applied to the subpixel electrodes 124s1 and 124s2 is inverted every predetermined period (typically, one vertical scanning period (for example, a frame period or a field period)).
  • the auxiliary capacitor CCSA3 is charged to a voltage having a polarity before one vertical scanning period, and the polarity is different from the polarity of the voltage supplied from the source line Lsa to the subpixel electrode 124A1 via the TFT 130A1. For this reason, when the TFT 130A3 is selected, the potential of the subpixel electrode 124A1 decreases. After that, the gate signal voltage supplied to the gate wiring Gn + 1 changes from the on voltage to the off voltage. Thus, by providing the TFT 130A3, the absolute value of the voltage applied to the liquid crystal layer 160 in the subpixel SA1 is lower than the absolute value of the voltage applied to the liquid crystal layer 160 in the subpixel SA2.
  • the auxiliary capacitor CCSC3 is charged to a voltage having a polarity before one vertical scanning period, and the polarity is different from the polarity of the voltage supplied from the source line Lsb to the sub-pixel electrode 124C1 via the TFT 130C1. For this reason, when the TFT 130C3 is selected, the potential of the sub-pixel electrode 124C1 is lowered. Thereafter, the gate signal voltage supplied to the gate wiring Gn + 2 changes from the on state to the off state. Thus, by providing the TFT 130C3, the absolute value of the voltage applied to the liquid crystal layer 160 in the sub-pixel SC1 is lower than the absolute value of the voltage applied to the liquid crystal layer 160 in the sub-pixel SC2.
  • the luminance of the subpixels SA1 and SC1 can be made lower than the luminance of the subpixels SA2 and SC2.
  • the description has been given focusing on the pixels PA and PC.
  • the pixels PB and PD have the same configuration as that of the pixels PA and PC, so that the sub-pixel SB1.
  • the brightness of SD1 can be made lower than the brightness of subpixels SB2 and SD2. Therefore, it is possible to improve the viewing angle dependency of the ⁇ characteristic by utilizing this.
  • each pixel included in the color display pixel D regardless of whether the source signal voltage applied to the plurality of source lines Ls in any vertical scanning period is + polarity or ⁇ polarity. Can be adjacent to each other. However, it is preferable that the polarities of the source signal voltages applied to the two source lines Ls provided for each column of pixels in any horizontal scanning period are different. Further, when the color display pixels D include pixels arranged in 2 rows and 2 columns and the pixel arrays of the color display pixels D adjacent in the row direction are equal to each other, the polarity of the same pixel in the two adjacent color display pixels is It is preferable that it is reversed.
  • FIG. 9 shows the waveform of the gate signal supplied to the gate line G and the color display pixel D in 4 rows and 2 columns in the liquid crystal display device 100A.
  • the gate signal voltages supplied to the gate wirings Gn, Gn + 1, Gn + 2,... Sequentially change from the off state to the on state every horizontal scanning period.
  • the area of the subpixel S1 is shown to be equal to the subpixel S2.
  • the color display pixels D arranged in a matrix form have the same pixel arrangement.
  • + indicates that the polarity of the source signal supplied to the source line Ls is + polarity
  • indicates the source signal supplied to the source line Ls. Indicates that the polarity is negative.
  • the subpixels SA1 to SD1 and SA2 to SD2 having positive polarity are shown as subpixels SA1 + to SD1 + and SA2 + to SD2 +, and the subpixels SA1 to SD1 and SA2 to SD2 having negative polarity are subpixels SA1.
  • the subpixels SA2 +, SA2-, SB2 +, SB2-, SC2 +, SC2-, SD2 +, SD2- are subpixels SA1 +, SA1 respectively.
  • a pair of source lines Ls is provided for each column of pixels.
  • a source signal whose polarity is inverted is supplied to a pair of adjacent source lines Ls.
  • a pixel column including the pixel PA specified by the gate line Gn and the source line Lsa corresponds to the source lines Lsa and Lsb.
  • the pixel line is supplied to the source line Lsb. Is supplied with a negative polarity source signal.
  • the polarities of the source signals supplied to the two source lines Ls provided between the adjacent pixel columns are inverted from each other.
  • the four pixels PA to PD belonging to the color display pixel D correspond to different source lines Ls.
  • the sources of the TFTs 130A1 and 130A2 are electrically connected to the source line Lsa
  • the sources of the TFTs 130C1 and 130C2 are the source. It is electrically connected to the wiring Lsb.
  • the sources of the TFTs 130D1 and 130D2 are electrically connected to the source line Lsc
  • the sources of the TFTs 130B1 and 130B2 are electrically connected to the source line Lsd.
  • the polarities of adjacent pixels in the column direction in the same color display pixel D are different.
  • the polarities of the pixels PA and PC adjacent in the column direction in the color display pixel D are inverted.
  • the sources of the TFTs 130A1 and 130A2 are electrically connected to the source wiring Lsa supplied with a positive polarity source signal
  • the sources of the TFTs 130C1 and 130C2 are supplied with a source wiring Lsb supplied with a negative polarity source signal. And are electrically connected.
  • each of the source lines Ls corresponds to a different pixel among the color display pixels D adjacent in the column direction.
  • the source line Lsa is electrically connected to the sources of the TFTs 130A1 and 130A2 of the color display pixel Dn, and the color display pixel Dn + 1.
  • the TFTs 130C1 and 130C2 are electrically connected to the sources.
  • the source line Lsb is electrically connected to the sources of the TFTs 130C1 and 130C2 of the color display pixel Dn, and is electrically connected to the sources of the TFTs 130A1 and 130A2 of the color display pixel Dn + 1.
  • the source signal Lsa is supplied with a positive polarity source signal over a certain vertical scanning period
  • the source wiring Lsb is supplied with a negative polarity source signal over the vertical scanning period. For this reason, the power consumption of the source driver can be reduced.
  • the polarities of the same pixels in the color display pixels D adjacent in the column direction are inverted from each other.
  • the polarities of the pixels PA are inverted from each other.
  • the polarities of the same pixels in the color display pixels D adjacent in the column direction are inverted from each other, and thus flicker in the column direction is suppressed.
  • the polarities of the pixels PA and PB adjacent in the row direction in the color display pixel D are inverted. Yes. Specifically, the sources of the TFTs 130A1 and 130A2 are electrically connected to the source wiring Lsa to which a positive polarity source signal is supplied, and the sources of the TFTs 130B1 and 130B2 are source wiring Lsd to which a negative polarity source signal is supplied. And are electrically connected.
  • one polarity of the same pixel of the two color display pixels D adjacent to each other in the row direction is inverted from the polarity of the other pixel.
  • one pixel PA has + polarity from the source wiring Lsa.
  • Source signal is supplied, and a negative polarity source signal is supplied from the source line Lsf to the other pixel PA.
  • the pixel PA of the color display pixel D including the pixel PA specified by the gate line Gn and the source line Lsa, and the pixel of the color display pixel D adjacent to the color display pixel D in the row direction, the column direction, and the diagonal direction Paying attention to PA, when the pixel PA of the color display pixel D including the pixel PA specified by the gate line Gn and the source line Lsa is + polarity, the pixel PA of the color display pixel D adjacent in the row direction is ⁇ polarity.
  • the pixel PA of the color display pixel D adjacent in the column direction has a negative polarity, and the pixel PA of the color display pixel D adjacent in the diagonal direction has a positive polarity.
  • Vsa shows a waveform diagram of the source signal supplied to the source wiring Lsa
  • VGn shows a waveform diagram of the gate signal supplied to the gate wiring Gn
  • VGn + 1 shows the gate signal supplied to the gate wiring Gn + 1.
  • a waveform diagram is shown.
  • the horizontal direction represents time
  • the vertical direction represents voltage level.
  • the gradation levels of all the pixels are made constant over a plurality of vertical scanning periods.
  • the sum of the liquid crystal capacitor CLA1 and the auxiliary capacitor CCSA1 of the sub-pixel SA1 is indicated as a capacitor C1
  • the auxiliary capacitor CCSA3 is indicated as a capacitor C2.
  • the capacitance C1 , C2 are substantially equal to each other.
  • the TFTs 130A1 and 130A2 are turned off.
  • the TFT 130A3 is turned on.
  • charges are redistributed so that the voltage of the capacitor C1 and the voltage of the capacitor C2 of the subpixel SA1 are equal.
  • the voltage of the liquid crystal capacitor CLA2 of the sub-pixel SA2 remains V2.
  • a difference occurs between the voltage V2 of the liquid crystal capacitor CLA2 of the subpixel SA2 and the voltage V3 of the liquid crystal capacitor CLA1 of the subpixel SA1.
  • the gate signal voltage supplied to the gate wiring Gn + 1 becomes an off voltage.
  • the gate signal voltages supplied to the gate wirings Gn and Gn + 1 are both off voltages (state 1 in FIG.
  • the gates of the TFTs 130A3 to 130D3 corresponding to the gate wiring G in the nth row are electrically connected to the gate wirings Gn + 1 and Gn + 2, respectively, but the present invention is not limited to this.
  • the gates of the TFTs 130A3 to 130D3 corresponding to the gate wiring Gn respectively pass the TFTs 130A1 to 130D1, 130A2 to 130A2 to 130A2 to 130D2 after one vertical scanning period has elapsed since the selection of the TFTs 130A1 to 130D1 and 130A2 to 130D2 selected by the gate wiring Gn. It is only necessary to be electrically connected to an arbitrary wiring that is turned on until 130D2 is selected.
  • the wiring for selecting the third TFT 130s3 of the color display pixel D in one row is electrically connected to the gate wiring G for selecting the first and second TFTs 130s1 and 130s2 of the color display pixel D in another row.
  • the wiring for selecting the third TFT 130s3 is not necessarily electrically connected to the gate wiring G.
  • a signal equivalent to the gate signal supplied to the gate wiring G is individually supplied to the wiring for selecting the third TFT 130s3. May be.
  • the polarities of adjacent pixels in the row direction in the same color display pixel D are different, but the present invention is not limited to this.
  • the polarities of pixels adjacent in the row direction in the same color display pixel D may be equal.
  • the polarities of the source signals supplied to the two source lines Ls provided between the adjacent pixel columns are inverted from each other, but the present invention is not limited to this.
  • the polarities of the source signals supplied to the two source lines Ls provided between adjacent pixel columns may be equal.
  • the red pixels R and blue pixels B having a large area are arranged in the column direction, but the present invention is not limited to this.
  • the red pixel R and the blue pixel B may be arranged in the row direction.
  • FIG. 11 shows a schematic diagram of the color display pixel D in the liquid crystal display device 100B.
  • red pixels R and blue pixels B having large areas are arranged in the row direction
  • the sub-pixel B2 is adjacent to the sub-pixel R2 in the row direction
  • the sub-pixel Y2 is aligned with the sub-pixel R2 in the column direction. Adjacent.
  • the areas of the red pixel R and the blue pixel B are larger than the areas of the green pixel G and the yellow pixel Y, but the present invention is not limited to this.
  • FIG. 12 is a schematic diagram of the color display pixel D in the liquid crystal display device 100C.
  • the areas of the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y are substantially equal to each other.
  • the lengths of the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y along the column direction are substantially equal to each other, and the red pixel R, the green pixel G, the blue pixel B, and the yellow pixel Y are in the row direction.
  • the area of the subpixel S1 is larger than the area of the subpixel S2, but the present invention is not limited to this.
  • FIG. 13 shows a schematic diagram of the color display pixel D in the liquid crystal display device 100D.
  • the areas of the subpixels SA1 to SD1 are substantially equal to the areas of the subpixels SA2 to SD2, respectively.
  • the length along the row direction of the sub-pixel SA1 is substantially equal to the length along the row direction of the sub-pixel SA2
  • the length along the column direction of the sub-pixel SA1 is equal to the sub-pixel SA1. It is substantially equal to the length along the column direction of the pixel SA2.
  • the lengths of the subpixels SB1 to SD1 in the row direction are substantially equal to the lengths of the subpixels SB2 to SD2 in the row direction, respectively, and the subpixels SB1 to SD1
  • the length along the column direction is substantially equal to the length along the column direction of the sub-pixels SB2 to SD2.
  • the areas of the subpixels SA1 to SD1 may be smaller than the areas of the subpixels SA2 to SD2, respectively.
  • all areas of the subpixels SA1 to SD1 and SA2 to SD2 may be substantially equal to each other.
  • the red pixel is adjacent to the blue pixel in the row direction or the column direction, is adjacent to the yellow pixel in the column direction or the row direction, and is adjacent to the green pixel in the oblique direction.
  • the present invention is not limited to this. Red, green, blue and yellow pixels may be arranged in any combination.
  • the areas of the red and blue pixels are equal to or larger than the areas of the green and yellow pixels, but the present invention is not limited to this.
  • the areas of the red and blue pixels may be smaller than the areas of the green and yellow pixels.
  • the areas of the red pixel, the green pixel, the blue pixel, and the yellow pixel may be arbitrarily related to each other.
  • the liquid crystal display device uses red, green, blue, and yellow as primary colors, but the present invention is not limited to this.
  • the liquid crystal display device may use cyan or magenta as primary colors in addition to red, green, and blue.
  • the color display pixel D may include a white pixel in addition to a red pixel, a green pixel, and a blue pixel.
  • the liquid crystal display device may use a different combination of primary colors.
  • the color display pixel D has a plurality of pixels displaying different colors, but the present invention is not limited to this. At least two of the plurality of pixels belonging to the color display pixel D may display substantially the same color. For example, the color display pixel D may have two red pixels and one green pixel and one blue pixel.
  • the color display pixel D has four pixels PA to PD, but the present invention is not limited to this.
  • the color display pixel D may have six subpixels.
  • FIG. 14 is a schematic diagram of the color display pixel D in the liquid crystal display device 100E.
  • the liquid crystal display device 100E has the same configuration as the above-described liquid crystal display device except that the color display pixel D further includes pixels PE and PF in addition to the pixels PA to PD, and is redundant. In order to avoid this, redundant description is omitted.
  • the color display pixel D has pixels PE and PF in addition to the pixels PA to PD.
  • the pixels PA to PD are arranged in the same manner as the liquid crystal display device described above.
  • the pixel PE is adjacent to the pixel PB in the row direction, and the pixels PA, PB, and PE are arranged linearly in the row direction.
  • the pixel PF is adjacent to the pixel PD in the row direction, and the pixels PC, PD, and PF are arranged linearly in the row direction.
  • the pixel PE is adjacent to the diagonal direction of the pixel PD, and the pixel PF is adjacent to the diagonal direction of the pixel PB.
  • the pixels PA to PF constituting the color display pixel D are arranged in 2 rows and 3 columns.
  • the pixel PE and the pixel PF may be referred to as a fifth pixel PE and a sixth pixel PF, respectively.
  • the pixel PE has sub-pixels SE1 and SE2, and the pixel PF has sub-pixels SF1 and SF2.
  • the sub pixel SE2 is adjacent to the sub pixel SB2 in the row direction
  • the sub pixel SF2 is adjacent to the sub pixel SD2 in the row direction.
  • the subpixel SE2 is adjacent to the subpixel SD2 in the oblique direction
  • the subpixel SF2 is adjacent to the subpixel SB2 in the oblique direction.
  • the subpixels SA2, SB2, and SE2 are arranged linearly in the row direction
  • the subpixels SC2, SD2, and SF2 are arranged linearly in the row direction.
  • the sub-pixels S belonging to the color display pixel D are arranged in 4 rows and 3 columns.
  • the luminance of the sub-pixels SA2 to SF2 is higher than the luminance of the sub-pixels SA1 to SF1 at least in a certain intermediate gray level. Since the sub-pixels SA2 to SF2 exhibiting high luminance are provided close to each other in the color display pixel D, coloring can be suppressed.
  • the pixels PA to PF are any combination of red, green, blue, yellow, cyan, and magenta.
  • the subpixels S1 and S2 belonging to each pixel P are arranged in the column direction (y direction), and the subpixels belonging to the same color display pixel D are arranged in four rows.
  • the invention is not limited to this.
  • the subpixels S1 and S2 belonging to each pixel P may be arranged in the row direction (x direction), and the subpixels S belonging to the same color display pixel D may be arranged in four columns.
  • FIG. 15 shows a schematic diagram of the color display pixel D in the liquid crystal display device 100F.
  • the color display pixel D includes pixels PA to PD.
  • Each of the pixels PA to PD has a sub pixel S1 and a sub pixel S2.
  • the sub pixel S1 and the sub pixel S2 are arranged in the row direction, and the sub pixels SA1 to SD1, SA2 are arranged.
  • SD2 is arranged in 2 rows and 4 columns.
  • the subpixel SB2 is adjacent to the subpixel SA2 in the row direction
  • the subpixel SC2 is adjacent to the subpixel SA2 in the column direction.
  • the subpixel SD2 is adjacent to the subpixel SB2 in the column direction, and is adjacent to the subpixel SC2 in the row direction. For this reason, the subpixel SD2 is adjacent to the subpixel SA2 in an oblique direction.
  • the subpixel SC1 is adjacent to the subpixel SA1 in the column direction
  • the subpixel SD1 is adjacent to the subpixel SB1 in the column direction.
  • the pixels PA to PD are a red pixel R, a yellow pixel Y, a blue pixel B, and a green pixel G, respectively.
  • the areas of the red pixel R and the blue pixel B are larger than the areas of the green pixel G and the yellow pixel Y.
  • the length along the column direction of the red and blue pixels R and B is substantially equal to the length along the column direction of the yellow and green pixels Y and G, but the row direction of the red and blue pixels R and B. Is longer than the lengths of the yellow and green pixels Y and G in the row direction.
  • the areas of the pixels PA and PC are larger than the areas of the pixels PB and PD, but the areas of the pixels PA to PD may be substantially equal, or the areas of the pixels PA and PC The area may be smaller than the pixels PB and PD.
  • the area of the subpixel S1 in each pixel P, is larger than the area of the subpixel S2, but the area of the subpixel S1 may be substantially equal to the area of the subpixel S2.
  • the area of the subpixel S1 may be smaller than that of the subpixel S2.
  • the areas of the subpixels SA1 to SD1 and SA2 to SD2 may be substantially equal to each other.
  • the color display pixel D has four pixels PA to PD, but the present invention is not limited to this.
  • the color display pixel D may have six pixels.
  • FIG. 16 shows a schematic diagram of the color display pixel D in the liquid crystal display device 100G.
  • the liquid crystal display device 100G has the same configuration as the liquid crystal display device 100F except that the color display pixel D includes the pixels PE and PF in addition to the pixels PA to PD, and avoids redundancy. Therefore, the overlapping description is omitted.
  • the color display pixel D has pixels PE and PF in addition to the pixels PA to PD.
  • the pixels PA to PD are arranged in the same manner as the liquid crystal display device 100F described above.
  • the pixel PE is adjacent to the pixel PC in the column direction, and the pixels PA, PC, and PE are arranged linearly in the column direction.
  • the pixel PF is adjacent to the pixel PD in the column direction, and the pixels PB, PD, and PF are linearly arranged in the column direction. Therefore, the pixel PE is adjacent to the pixel PD in the oblique direction, the pixel PF is adjacent to the pixel PC in the oblique direction, and the pixels PA to PF are arranged in 3 rows and 2 columns.
  • the pixel PE has sub-pixels SE1 and SE2, and the pixel PF has sub-pixels SF1 and SF2.
  • the subpixel SE2 is adjacent to the subpixel SC2 in the column direction, and the subpixel SF2 is adjacent to the subpixel SD2 in the column direction.
  • the subpixels SA2, SC2, and SE2 are arranged linearly in the column direction, and the subpixels SB2, SD2, and SF2 are arranged linearly in the column direction.
  • the subpixel SE2 is adjacent to the subpixel SD2 in the oblique direction, and the subpixel SF2 is adjacent to the subpixel SC2 in the oblique direction.
  • the sub-pixels S belonging to the color display pixel D are arranged in 3 rows and 4 columns.
  • the sub-pixels S in each pixel P are arranged in the row direction, but the sub-pixels SA2 to SF2 are arranged linearly in the column direction in two adjacent rows. .
  • the luminance of the subpixels SA2 to SF2 is higher than the luminance of the subpixels SA1 to SF1 at least in a certain intermediate gradation. Since the sub-pixels SA2 to SF2 exhibiting high luminance are provided close to each other in the color display pixel D, coloring can be suppressed.
  • the subpixels S1 and S2 are both rectangular, and at least one of the lengths of the subpixels S1 and S2 along the row direction and the column direction is substantially equal to each other. Is not limited to this.
  • the subpixels S1 and S2 do not have to be rectangular, and the subpixels S1 and S2 may have different lengths along the row direction and the column direction.
  • FIG. 17 shows a schematic diagram of the color display pixel D in the liquid crystal display device 100H.
  • the subpixel electrodes 124A2 to 124D2 each have a rectangular shape.
  • the subpixel electrodes 124A2 to 124D2 are arranged in the center of the color display pixel D, and the subpixel electrodes 124A1 to 124D1 are provided so as to surround the subpixel electrodes 124A2 to 124D2.
  • the maximum length along the row direction of the subpixel electrode 124s1 is larger than the length along the row direction of the subpixel electrode 124s2, and the maximum length along the column direction of the subpixel electrode 124s1 is the column direction of the subpixel electrode 124s2. Greater than the length along.
  • the subpixel electrode 124s2 has a rectangular shape, and four liquid crystal domains can be easily formed in the subpixel S2 defined by the subpixel electrode 124s2. Although the subpixel electrode 124s1 is not rectangular, the subpixel electrode 124s1 has a plurality of rectangular unit regions (here, three), and the subpixel S1 defined by the subpixel electrode 124s1 includes Four liquid crystal domains can be formed for each unit region.
  • each pixel P has two sub-pixels S, but the present invention is not limited to this.
  • the pixel P may have three or more subpixels S. In this case, the highest luminance subpixel S among the three or more subpixels belonging to the pixel P only needs to be adjacent to the highest luminance subpixel S belonging to another pixel P.
  • the pixel arrays of the color display pixels D arranged in a matrix are equal to each other, but the present invention is not limited to this.
  • the pixel arrays of the color display pixels D that are adjacent in only one of the row direction and the column direction may be equal to each other.
  • the pixel arrangements of the color display pixels D adjacent in the row direction and the column direction may be different.
  • the liquid crystal display device can display with good viewing angle characteristics without degrading the display quality.

Abstract

 本発明による液晶表示装置(100)は、画素PA~PDがマトリクス状に配列されたカラー表示画素Dを備える。画素PA~PDは、それぞれ、副画素SA1~SD1および副画素SA2~SD2を有しており、少なくともある中間階調において、副画素SA2~SD2の輝度は副画素SA1~SD1の輝度よりも高い。画素PA~PDに属する複数の副画素Sはマトリクス状に配列されており、副画素SA2は、副画素SB2と行方向に隣接し、副画素SC2と列方向に隣接し、副画素SD2と斜め方向に隣接する。

Description

液晶表示装置
 本発明は、液晶表示装置に関し、より詳細には、複数の画素がマトリクス状に配列されたカラー表示画素を備える液晶表示装置に関する。
 液晶表示装置は、高精細、薄型、軽量および低消費電力等の優れた特長を有する平面表示装置であり、近年、表示性能の向上、生産能力の向上および他の表示装置に対する価格競争力の向上に伴い、市場規模が急速に拡大している。従来一般的であったツイステッド・ネマティク・モード(TNモード)の液晶表示装置では、正の誘電率異方性を持つ液晶分子の長軸が、基板表面に対して略平行で、且つ、液晶層の厚さ方向に沿って上下の基板間で略90度捻れるように配向処理が施されている。この液晶層に電圧を印加すると、液晶分子が電界に平行に立ち上がり、捻れ配向(ツイスト配向)が解消される。TNモードの液晶表示装置では、電圧による液晶分子の配向変化に伴う旋光性の変化を利用することにより、透過光量が制御される。
 このようなTNモードの液晶表示装置は、生産マージンが広く生産性に優れている一方、表示性能とりわけ視野角特性の点で問題があった。具体的には、TNモードの液晶表示装置の表示面を斜め方向から観測すると、表示のコントラスト比が著しく低下し、正面からの観測で黒から白までの複数の階調が明瞭に観測される画像を斜め方向から観測すると階調間の輝度差が著しく不明瞭となる点が問題であった。さらに、表示の階調特性が反転し、正面からの観測でより暗い部分が斜め方向からの観測ではより明るく観測される現象(いわゆる、階調反転現象)も問題であった。
 近年、TNモードの液晶表示装置における視野角特性を改善した液晶表示装置として、インプレイン・スイッチング・モード(IPSモード)、マルチドメイン・バーティカル・アライメント・モード(MVAモード)、軸対称配向モード(ASMモード)等の液晶表示装置が開発されている。これらの新規なモード(広視野角モード)の液晶表示装置では、視野角特性に関する上記の具体的な問題点、すなわち、表示面を斜め方向から観測した場合における表示コントラスト比の著しい低下、および、表示階調の反転といった問題点が解決されている。
 しかしながら、液晶表示装置の表示品位の改善が進む状況下において、今日では視野角特性の問題点として、正面観測時のγ特性と斜め観測時のγ特性が異なる点、すなわちγ特性の視野角依存性の問題が新たに顕在化してきた。ここで、γ特性とは表示輝度の階調依存性であり、γ特性が正面方向と斜め方向で異なるということは、階調表示状態が観測方向によって異なることとなるため、写真等の画像を表示する場合や、またTV放送等を表示する場合に特に問題となる。
 γ特性の視野角依存性を改善するための方法として、1つの画素に2つ以上の副画素を設け、中間輝度表示において一方の副画素の輝度を他方とは異ならせることにより、γ特性の視野角依存性を改善する方法が知られている(例えば、特許文献1参照)。
 図18に、特許文献1に開示されている液晶表示装置800の模式図を示す。液晶表示装置800では、副画素電極824s1、824s2は、対応するTFT830s1、830s2を介して共通のソース配線Lsに接続されており、対応する補助容量配線CSa、CSbと容量結合を形成している。液晶表示装置800では、補助容量配線CSa、CSbの電圧が異なることにより、副画素電極824s1、824s2の電位が変化し、その結果として、各副画素S1、S2の輝度が異なり、視野角特性の改善が図られている。
 また、図19に、特許文献1に開示されている別の液晶表示装置900の模式図を示す。液晶表示装置900では、各副画素電極924s1、924s2は、異なるTFT930s1、930s2を介して異なるソース配線Lsa、Lsbに接続されている。液晶表示装置900でも、副画素電極924s1、924s2の電位を異ならせることにより、副画素S1、S2の輝度が異なり、視野角特性の改善が図られている。
 また、従来の一般的な液晶表示装置では、光の3原色である赤、緑、青を表示する3つの画素によって1つのカラー表示画素が構成されていたが、近年、互いに異なる色を表示する4以上の画素から構成されたカラー表示画素を備える表示装置が提案されている。このような表示装置は多原色表示装置とも呼ばれる。多原色表示装置では、赤、緑および青という3つの色に別の色が追加されており、広い色再現範囲で表示を行うことができる(例えば、特許文献2参照)。
 特許文献2には、赤、緑、青および黄画素を含むカラー表示画素を備えた液晶表示装置が開示されている。特許文献2の液晶表示装置では、赤、緑、青および黄画素が2行2列に配列されており、赤画素および青画素の面積が緑画素および黄画素の面積よりも大きくなるように画素設計が行われている。
特開2004-62146号公報 国際公開第2007/148519号
 本願発明者は、それぞれに複数の副画素が設けられた複数の画素をマトリクス状に配列したカラー表示画素を単純に作製した場合、特に、階調の異なる境界領域が色づいて見えることがあり、表示品位が低下することを見出した。
 本発明は、上記課題を鑑みてなされたものであり、その目的は、それぞれに副画素の設けられた複数の画素がマトリクス状に配列されたカラー表示画素を備える液晶表示装置における表示品位の低下を抑制することにある。
 本発明による液晶表示装置は、複数の画素が複数の行および複数の列のマトリクス状に配列されたカラー表示画素を備える液晶表示装置であって、前記複数の画素は、第1画素と、前記第1画素と行方向に隣接する第2画素と、前記第1画素と列方向に隣接する第3画素と、前記第2画素と列方向に隣接し、前記第3画素と行方向に隣接する第4画素とを含み、前記複数の画素は、それぞれ、第1副画素および第2副画素を含む複数の副画素を有しており、少なくともある中間階調において、前記複数の画素のそれぞれにおける前記第2副画素の輝度は前記第1副画素の輝度よりも高く、前記複数の画素に属する前記複数の副画素は複数の行および複数の列のマトリクス状に配列され、前記第1画素の前記第2副画素は、前記第2画素の前記第2副画素と行方向に隣接し、前記第3画素の前記第2副画素と列方向に隣接し、前記第4画素の前記第2副画素と斜め方向に隣接する。
 ある実施形態において、前記第1画素の前記第1副画素および前記第2画素の前記第1副画素は行方向に互いに隣接し、前記第3画素の前記第1副画素および前記第4画素の前記第1副画素は行方向に互いに隣接する。
 ある実施形態において、前記複数の画素は、前記第2画素と行方向に隣接する第5画素と、前記第4画素と行方向に隣接する第6画素とをさらに含む。
 ある実施形態において、前記第1画素の前記第1副画素および前記第3画素の前記第1副画素は列方向に互いに隣接し、前記第2画素の前記第1副画素および前記第4画素の前記第1副画素は列方向に互いに隣接する。
 ある実施形態において、前記複数の画素は、前記第3画素と列方向に隣接する第5画素と、前記第4画素と列方向に隣接する第6画素とをさらに含む。
 ある実施形態において、前記複数の画素は互いに異なる色を表示する。
 ある実施形態において、前記複数の画素は、前記第1、第2、第3および第4画素として、赤画素、緑画素、青画素および黄画素を含む。
 ある実施形態において、前記赤画素および前記青画素の面積は、それぞれ、前記緑画素および前記黄画素の面積よりも大きい。
 ある実施形態において、前記複数の画素のそれぞれにおいて、前記第1副画素の面積は前記第2副画素の面積よりも大きい。
 本発明によれば、それぞれに副画素の設けられた複数の画素がマトリクス状に配列されたカラー表示画素を備える液晶表示装置における表示品位の低下を抑制できる。
(a)は本発明による液晶表示装置の実施形態の模式図であり、(b)は液晶表示装置における1つのカラー表示画素およびその近傍の模式図である。 図1に示した液晶表示装置における1つのカラー表示画素の模式図である。 比較例の液晶表示装置における1つのカラー表示画素の模式図である。 (a)は比較例の液晶表示装置の表示画面の模式図であり、(b)は図2に示した液晶表示装置の表示画面の模式図である。 図1に示した液晶表示装置の模式図である。 図1に示した液晶表示装置における副画素電極の一例の模式図である。 本発明による液晶表示装置の別の実施形態の模式図である。 図7に示した液晶表示装置の等価回路図である。 図7に示した液晶表示装置におけるゲート信号の波形図、および、カラー表示画素の極性を示す模式図である。 図7に示した液晶表示装置におけるソース信号およびゲート信号の波形図である。 本発明による液晶表示装置のさらに別の実施形態の模式図である。 本発明による液晶表示装置のさらに別の実施形態の模式図である。 本発明による液晶表示装置のさらに別の実施形態の模式図である。 本発明による液晶表示装置のさらに別の実施形態の模式図である。 本発明による液晶表示装置のさらに別の実施形態の模式図である。 本発明による液晶表示装置のさらに別の実施形態の模式図である。 本発明による液晶表示装置のさらに別の実施形態の模式図である。 従来の液晶表示装置の模式図である。 別の従来の液晶表示装置の模式図である。
 以下、図面を参照して、本発明による液晶表示装置の実施形態を説明する。ただし、本発明は、以下の実施形態に限定されるものではない。
 図1(a)に、本発明による液晶表示装置100の実施形態の模式図を示す。本実施形態の液晶表示装置100は、背面基板120と、前面基板140と、背面基板120と前面基板140との間に設けられた液晶層160とを備えている。なお、ここでは図示していないが、典型的には、背面基板120には、ソース配線、絶縁層、ゲート配線、薄膜トランジスタおよび画素電極、配向膜等が設けられており、前面基板140には対向電極、カラーフィルタ層、配向膜等が設けられている。また、背面基板120および前面基板140の外側には偏光板が設けられている。
 例えば、配向膜は垂直配向膜であり、液晶層160は垂直配向型の液晶層である。ここで、「垂直配向型液晶層」とは、垂直配向膜の表面に対して、液晶分子軸(「軸方位」ともいう。)が約85°以上の角度で配向した液晶層をいう。液晶層160は負の誘電異方性を有するネマチック液晶材料を含んでおり、クロスニコル配置された偏光板と組み合わせて、ノーマリーブラックモードで表示が行われる。なお、透過型または透過反射両用型の場合、液晶表示装置100はバックライトをさらに備えている。
 液晶表示装置100には、複数の行および複数の列のマトリクス状に配列された複数のカラー表示画素が設けられている。カラー表示画素は任意の色の表示単位として機能する。カラー表示画素は4つ以上の画素を有している。例えば、原色として、赤、緑、青および黄を用いる場合、カラー表示画素は、赤画素、緑画素、青画素および黄画素を有している。各画素は画素電極によって規定される。対向電極は、典型的には、全ての画素電極に対向するように設けられているが、複数のブロックに分割して設けられていてもよい。
 図1(b)に、液晶表示装置100におけるカラー表示画素Dの模式図を示す。上述したように、液晶表示装置100には、複数のカラー表示画素が複数の行および複数の列のマトリクス状に配列されているが、図1(b)では、1つのカラー表示画素Dおよびその近傍を示している。
 カラー表示画素Dは、画素PAと、画素PBと、画素PCと、画素PDとを有している。ここでは、画素PA~PDは互いに異なる色を表示する。同一のカラー表示画素Dに属する画素PA~PDは複数の行および複数の列のマトリクス状に配列されている。画素PBは画素PAと行方向(x方向)に隣接しており、画素PCは画素PAと列方向(y方向)に隣接している。また、画素PDは、画素PBと列方向に隣接し、画素PCと行方向に隣接している。このため、画素PDは画素PAと斜め方向に隣接しており、画素PCは画素PBと斜め方向に隣接している。このように、液晶表示装置100では、画素PA~PDは2行2列に配列されており、4つの画素を1行または1列に配列した場合と比べてアスペクト比の小さいカラー表示画素Dの設計を容易に行うことができ、良好な視野角特性を実現することができる。
 なお、図1(b)では、1つのカラー表示画素Dおよびその近傍を示したが、液晶表示装置100では、マトリクス状に配列されたカラー表示画素Dの画素配列は互いに等しい。具体的には、行方向に見ると、画素のある行において、画素PA、PB、PA、PB・・・と配列されており、次の行において、画素PC、PD、PC、PD・・・と配列されている。また、列方向に見ると、画素のある列において、画素PA、PC、PA、PC・・・と配列されており、次の列において、画素PB、PD、PB、PD・・・と配列されている。なお、本明細書において、画素PA、画素PB、画素PCおよび画素PDをそれぞれ、第1画素PA、第2画素PB、第3画素PCおよび第4画素PDと呼ぶことがある。
 ここでは、画素PAおよび画素PCの面積は画素PBおよび画素PDの面積よりも大きい。具体的には、画素PA、PCの列方向に沿った長さは画素PB、PDの列方向に沿った長さと略等しいが、画素PA、PCの行方向に沿った長さは画素PB、PDの行方向に沿った長さよりも大きい。
 複数の画素Pのそれぞれは複数の副画素Sを有している。ここでは、画素Pは2つの副画素S(すなわち、副画素S1および副画素S2)を有しており、画素Pに属する副画素S1および副画素S2は列方向に配列されている。1つのカラー表示画素Dに含まれる副画素Sは複数の行および複数の列のマトリクス状に配列されており、具体的には、カラー表示画素Dに属する副画素Sは4行2列に配列されている。なお、本明細書において、副画素S1および副画素S2をそれぞれ、第1副画素S1および第2副画素S2と呼ぶことがある。また、以下の説明において、画素PA、PB、PCおよびPDの副画素S1をそれぞれ、副画素SA1、SB1、SC1、SD1と示すことがあり、画素PA、PB、PCおよびPDの副画素S2をそれぞれ、副画素SA2、SB2、SC2、SD2と示すことがある。
 また、ここでは、画素PA~PDのそれぞれにおいて、副画素S1の面積は副画素S2よりも大きい。具体的には、画素PA~PDのそれぞれにおいて、副画素SA1~SD1の行方向に沿った長さはそれぞれ副画素SA2~SD2の行方向に沿った長さと略等しいが、副画素SA1~SD1の列方向に沿った長さは副画素SA2~SD2の列方向に沿った長さよりも大きい。
 少なくともある中間階調において、複数の画素Pのそれぞれにおける副画素S2の輝度は副画素S1の輝度よりも高い。典型的には、任意のフレームまたは任意のフィールドにおいて副画素S2の輝度は副画素S1の輝度以上である。第1副画素S1は暗副画素とも呼ばれ、第2副画素S2は明副画素とも呼ばれる。
 このように、1つの画素P内に輝度の異なる副画素S1、S2を設けることにより、γ特性の視野角依存性を改善することができる。また、低輝度の副画素S1の面積を高輝度の副画素S2よりも大きくすることにより、視野角特性の改善を効率的に行うことができる。
 本実施形態の液晶表示装置100では、副画素SA2は、副画素SB2と行方向に隣接し、かつ、副画素SC2と列方向に隣接している。また、副画素SD2は、副画素SB2と列方向に隣接し、かつ、副画素SC2と行方向に隣接している。このため、副画素SA2は副画素SD2と斜め方向に隣接している。また、副画素SB2は副画素SC2と斜め方向に隣接している。このように、液晶表示装置100では、副画素SA2~SD2はカラー表示画素Dの列方向の中心に配置されている。なお、暗副画素S1に着目すると、副画素SB1は副画素SA1と行方向に隣接しており、副画素SD1は副画素SC1と行方向に隣接している。
 図2に、液晶表示装置100におけるカラー表示画素Dの模式図を示す。ここでは、画素PA、PB、PCおよびPDはそれぞれ赤画素R、黄画素Y、青画素Bおよび緑画素Gである。例えば、赤画素R、緑画素G、青画素Bおよび黄画素Yに対応するように、カラーフィルタ層に、赤色の光を透過する赤カラーフィルタ、緑色の光を透過する緑カラーフィルタ、青色の光を透過する青カラーフィルタおよび黄色の光を透過する黄カラーフィルタが設けられる。青画素Bは赤画素Rと列方向に隣接しており、黄画素Yは青画素Bの斜め方向に隣接している。
 赤画素R、黄画素Y、青画素Bおよび緑画素Gのそれぞれについて、副画素S1を副画素R1、Y1、B1およびG1と示しており、副画素S2を副画素R2、Y2、B2およびG2と示している。液晶表示装置100では、副画素R2、Y2、B2およびG2が互いに行方向、列方向および斜め方向のいずれかに隣接するように配列されている。
 なお、液晶表示装置100では、赤画素Rおよび青画素Bの面積は緑画素Gおよび黄画素Yの面積よりも大きい。赤画素Rの面積が比較的大きいことにより、液晶表示装置100は明度の高い赤を充分に再現することができる。また、青画素Bの面積が比較的大きいことにより、カラーフィルタ層を透過する青成分が増大し、赤成分および緑成分が減少する。この場合、一定の色温度を実現するためには、バックライトから出射される光の青成分を減少させ、赤成分および緑成分を増大させる必要がある。青成分の発光効率は比較的低く、緑成分の発光効率は比較的高いため、青画素Bの面積の増大によってバックライトの発光効率を改善できる。
 以下、比較例の液晶表示装置700と比較した本実施形態の液晶表示装置100の利点を説明する。まず、図3に、比較例の液晶表示装置700におけるカラー表示画素Dの模式図を示す。液晶表示装置700において、青画素Bは赤画素Rと列方向に隣接しており、黄画素Yは青画素Bの斜め方向に隣接している。液晶表示装置700では、赤、黄、青、緑画素R、Y、BおよびGにおいて、それぞれ、-y方向側に第1副画素R1、Y1、B1およびG1が設けられており、+y方向側に第2副画素R2、Y2、B2およびG2が設けられている。
 ここで、比較例の液晶表示装置700および本実施形態の液晶表示装置100のそれぞれに、表示画面内の中央領域が黒であり、その周囲の領域がグレーであることを表す映像信号を入力する。この場合、液晶表示装置100、700に黒のウィンドウが表示される。
 図4(a)に、比較例の液晶表示装置700の表示画面を示す。液晶表示装置700では、黒のウィンドウの上側のエッジE1および下側E2のエッジが色づいて見える。具体的には、上側のエッジE1は青緑色に見え、下側のエッジE2はオレンジ色に見える。上側のエッジE1が色づいて見えるのは、液晶表示装置700において、ウィンドウの上側部分の近傍でグレーを表示するカラー表示画素のうち、下方に位置する青画素および緑画素によって表示される青および緑が充分に混色されないためである。同様に、下側のエッジE2が色づいて見えるのは、液晶表示装置700において、ウィンドウの下側部分の近傍でグレーを表示するカラー表示画素のうち、上方に位置する赤画素および黄画素によって表示される赤および黄が充分に混色されないためである。このように、比較例の液晶表示装置700では色がにじんで見えることがある。
 図4(b)に、本実施形態の液晶表示装置100の表示画面を示す。液晶表示装置100では、液晶表示装置700とは異なり、黒のウィンドウの上側および下側のエッジは色づいて見えない。液晶表示装置100では、黒のウィンドウの上側において、青画素Bおよび緑画素Gのうちの高輝度の副画素B2、G2が赤画素Rおよび黄画素Yのうちの高輝度の副画素R2、Y2と隣接しているため、色づきが抑制される。同様に、黒のウィンドウの下側部分において、赤画素Rおよび黄画素Yのうちの高輝度の副画素R2、Y2が青画素Bおよび緑画素Gのうちの高輝度の副画素B2、G2と隣接しており、色づきが抑制される。このように、液晶表示装置100では、高輝度を呈する副画素R2、Y2、B2およびG2が互いに隣接するように配列されており、その結果、色にじみが抑制される。
 図5に、液晶表示装置100におけるカラー表示画素Dの模式図を示す。なお、図5は、1つのカラー表示画素Dに対応する模式図であり、ここでは、図面が過度に複雑になることを避けるために、前面基板140の対向電極等を省略して示している。
 画素電極124は副画素電極124s1、124s2を有している。画素Pは画素電極124によって規定され、副画素S1、S2は副画素電極124s1、124s2によって規定される。なお、本明細書において、副画素電極124s1および124s2をそれぞれ、第1副画素電極124s1および第2副画素電極124s2と呼ぶことがある。ここでは、画素電極124のそれぞれについて、副画素電極124s1の行方向に沿った長さは副画素電極124s2の行方向に沿った長さと略等しいが、副画素電極124s1の列方向に沿った長さは副画素電極124s2の列方向に沿った長さよりも大きい。
 液晶表示装置100では、各副画素電極124s1、124s2に対応して薄膜トランジスタ(Thin Film Transistor:TFT)130s1、130s2が設けられている。なお、本明細書において、TFT130s1および130s2をそれぞれ、第1TFT130s1および第2TFT130s2と呼ぶことがある。
 補助容量配線CSは、列方向に隣接する2つの画素Pのうちの列方向に隣接する副画素S1の間または副画素S2の間に共有されるように設けられている。隣接する副画素電極124s1に印加された電圧は隣接する副画素電極124s1の間を行方向に延びる補助容量配線CSによって保持され、同様に、隣接する副画素電極124s2に印加された電圧は隣接する副画素電極124s2の間を行方向に延びる補助容量配線CSによって保持される。典型的には、補助容量配線CSは、ゲート配線Gと同様の工程で形成され、ゲート配線Gと同じ材料から形成される。
 図5では、画素PA~PDを規定する画素電極124を画素電極124A~124Dと示している。また、副画素SA1~SD1、SA2~SD2を規定する副画素電極124sをそれぞれ副画素電極124A1~124D1、124A2~124D2と示している。また、以下の説明において、副画素SA1~SD1のTFT130s1をTFT130A1~130D1と表し、副画素SA2~SD2のTFT130s2をTFT130A2~130D2と表すことがある。液晶表示装置100では、TFT130A1、130A2、130B1、130B2のゲートはゲート配線Gnと電気的に接続されており、TFT130C1、130C2、130D1、130D2のゲートはゲート配線Gn+1と電気的に接続されている。
 画素列ごとに2つのソース配線Lsが設けられている。ここでは、画素PAおよび画素PCを含む画素列に着目する。この画素列に対応するソース配線Lsa、Lsbは、副画素電極124A1、124A2、124C2、124C1を挟むように配置されている。TFT130A1およびTFT130C2のソースはソース配線Lsaと電気的に接続されており、TFT130A2およびTFT130C1のソースはソース配線Lsbと電気的に接続されている。
 ゲート配線Gnに供給されるゲート信号電圧がオフ電圧からオン電圧になると、TFT130A1、130A2がオン状態となり、ソース配線Lsaから副画素電極124A1にソース信号が供給され、ソース配線Lsbから副画素電極124A2にソース信号が供給される。このとき、副画素SA2の実効電圧は副画素SA1の実効電圧よりも大きい。なお、副画素SA2の極性は副画素SA1の極性と等しくてもよく、異なってもよい。ここで、極性は、液晶層に印加される電界の向き(極性)を表している。例えば、「+」は対向電極の電位が副画素電極よりも高いことを示し、「-」は副画素電極の電位が対向電極よりも高いことを示す。
 次に、ゲート配線Gn+1に供給されるゲート信号電圧がオン電圧になると、TFT130C1、130C2がオン状態となり、ソース配線Lsaから副画素電極124C2にソース信号が供給され、ソース配線Lsbから副画素電極124C1にソース信号が供給される。このとき、副画素SP2の実効電圧は副画素SP1の実効電圧よりも大きい。なお、副画素SC2の極性は副画素SC1の極性と等しくてもよく、異なってもよい。また、副画素SA1、SA2、SC1、SC2の極性は任意の組み合わせであってもよい。ただし、ソース配線Lsaから供給されるソース信号電圧の極性が所定の期間(好ましくは1垂直走査期間)にわたって変化しないと、ソースドライバ(図示せず)の消費電力を抑制することができる。同様に、ソース配線Lsbから供給されるソース信号電圧の極性が所定の期間(好ましくは1垂直走査期間)にわたって変化しないと、ソースドライバ(図示せず)の消費電力を抑制することができる。このように、液晶表示装置100では、各画素Pへの書き込みは2本のソース配線Lsで行われる。なお、画素列ごとに2本のソース配線Lsを設ける場合、行方向に隣接する画素電極124間の間隔は比較的広くなる。液晶表示装置100では、画素PA~PDが2行2列に配列されており、4つの画素を直線状に行方向に配列した場合と比べて、高開口率を実現できる。
 なお、ここで、「垂直走査期間」とは、あるゲート配線が選択されてから、次にそのゲート配線が選択されるまでの期間を意味する。従来の倍速駆動を行わない液晶表示装置における1垂直走査期間は、映像信号がノンインターレース駆動用の信号の場合には映像信号の1フレーム期間に対応し、映像信号がインターレース駆動用の信号の場合には、映像信号の1フィールド期間に対応する。例えば、NTSC信号の場合、液晶表示装置の1垂直走査期間は、NTSC信号のフィールド周波数(60Hz)の逆数である16.7msecである。液晶表示装置はインターレース駆動を行わず、奇数フィールドおよび偶数フィールドのいずれにおいても全ての画素に信号電圧を書き込むため、NTSC信号のフィールド周波数の逆数が垂直走査期間となる。
 なお、図5では、列方向に隣接する2つの画素に含まれる隣接する副画素電極の間隔に対応して補助容量配線CSが配置されているが、各副画素電極124sが補助容量配線CSを跨ぐように配置されてもよい。
 なお、液晶表示装置100が垂直配向型である場合、広い視野角特性を実現するために、各副画素が互いに90°のほぼ整数倍異なる4つの液晶ドメインを有することが好ましい。例えば、時計の文字盤の3時方向を0°とし、反時計回りを正となるように表記する場合、一対の偏光板が、一方の偏光軸を0°-180°方向に、他方の偏光軸を90°-270°方向に延びるようにクロスニコルに配置されると、各副画素または各画素に複数の液晶ドメイン(典型的には少なくとも液晶層に電圧を印加したときに、ディレクタの方位角が、45°、135°、225°、315°となる4つの液晶ドメインを含む)が形成されることが好ましい。
 なお、各副画素に4つの液晶ドメインを形成した液晶表示装置は、本出願人による特開2004-62146号公報(米国特許第6958791号)に開示されている。特開2004-62146号公報(米国特許第6958791号)の開示内容の全てを参考のために本明細書に援用する。
 液晶表示装置100はいわゆるMVAモードであってもよい。MVAモードの液晶表示装置は、電極に形成された直線状のスリットや電極の液晶層側に形成された直線状の誘電体突起(リブ)を、液晶層を介して対向する一対の基板に、基板の法線方向から見たときに、平行且つ交互になるように配置することによって、電圧印加時に形成される液晶ドメインのディレクタの方位を規制する。液晶ドメインの方位は、直線状のスリット又は誘電体突起(これらを総称して「直線状構造体」ということにする。)の延びる方位に直交する方向になる。
 また、液晶表示装置100はPSAモードであってもよい。Polymer Sustained Alignment Technology(以下、「PSA技術」という)は、例えば、特開2002-357830号公報、特開2003-177418号公報、特開2006-78968号公報、K. Hanaoka et al. “A New MVA-LCD by Polymer Sustained Alignment Technology”、 SID 04 DIGEST 1200-1203(2004)に開示されている。これら4つの文献の開示内容の全てを参考のために本明細書に援用する。
 PSA技術は、液晶材料中に少量の重合性化合物(例えば光重合性モノマまたはオリゴマ)を混入しておき、液晶パネルを組み立てた後、液晶層に所定の電圧を印加した状態で重合性化合物に活性エネルギー線(例えば紫外線)を照射して重合体を生成することによって、液晶分子のプレチルト方向を制御する技術である。重合体が生成されるときの液晶分子の配向状態が、電圧を取り去った後(電圧を印加しない状態)においても維持(記憶)される。ここでは、重合体で形成された層を配向維持層ということにする。配向維持層は、配向膜の表面(液晶層側)に形成されるが、必ずしも配向膜の表面を覆う形状でなくてもよく、離散的に存在する重合体粒子であってもよい。
 PSA技術は、液晶層に形成される電界等を制御することによって、液晶分子のプレチルト方位およびプレチルト角度を調整することができるという利点を有している。また、配向維持層によって、液晶層に接するほぼ全ての面で配向規制力を発現するので、応答特性に優れている。
 PSAモードの液晶表示装置は、例えば、図6に示した副画素電極124sを用い、上述のPSA技術を適用することによって得られる。
 副画素電極124sは、一対の偏光板の偏光軸と重なるように配置された十字形状の幹部124t1、124t2と、十字形状の幹部124t1、124t2から略45°方向に延びる複数の枝部124u1、124u2、124u3および124u4とを有している。
 幹部124t1は行方向(x方向)に延びており、幹部124t2は列方向(y方向)に延びている。+x方向の方位角を0°とすると、枝部124u1は幹部124t1、124t2から45°方位に延びており、枝部124u2は幹部124t1、124t2から135°方位に延びており、枝部124u3は幹部124t1、124t2から225°方位に延びており、枝部124u4は幹部124t1、124t2から315°方位に延びている。垂直配向型の液晶層の液晶分子(誘電異方性が負)は、幹部および枝部からの斜め電界により、それぞれの枝部が延びる方位に傾斜する。これは、互いに平行に延びる枝部からの斜め電界は枝部が延びる方向と垂直な方位に液晶分子を傾斜させるように作用し、幹部からの斜め電界はそれぞれの枝部の延びる方位に液晶分子を傾斜させるように作用するからである。PSA技術を用いると、液晶層に電圧を印加した際に形成される、液晶分子の上記の配向を安定化させることができる。
 あるいは、垂直配向型の液晶表示装置は、配向膜として光配向膜を用いていてもよい。典型的には、副画素内に反平行に配向処理の行われた異なる領域を有する光配向膜が背面基板120および前面基板140の両方に設けられ、一対の配向膜は互いに対向する各領域の配向処理方向が直交するように配置される。光配向膜近傍における液晶分子は、光配向膜の主面の法線方向に対してわずかに傾いている。なお、光配向膜は背面基板120および前面基板140のいずれか一方のみに設けられてもよい。
 なお、上述した説明では、液晶表示装置は垂直配向型であったが、本発明はこれに限定されない。液晶表示装置は他のモードであってもよい。
 また、上述した説明では、各画素Pに2つのTFTが設けられており、各画素Pの副画素電極124s1、124s2に異なるソース配線Lsからソース信号が供給されたが、本発明はこれに限定されない。
 以下、図7~図10を参照して、本発明による液晶表示装置の別の実施形態を説明する。
 図7に、液晶表示装置100Aの模式図を示す。液晶表示装置100Aは、1つの画素Pへの書き込みは1本のソース配線で行われ、各画素Pに3つのTFTが設けられている点を除いて、上述した液晶表示装置100と同様の構成を有しており、冗長を避けるために、重複する説明を省略する。
 液晶表示装置100Aでは、画素列ごとに一対のソース配線Lsが設けられている。ある行の画素Pへの書き込みは一方のソース配線Lsで行われ、隣接する行の画素Pへの書き込みは他方のソース配線Lsで行われる。
 液晶表示装置100Aでは各画素Pに3つのTFTが設けられている。具体的には、画素PAにTFT130A1~130A3が設けられており、同様に、画素PB~PDに、それぞれ、TFT130B1~130B3、130C1~130C3、130D1~130D3が設けられている。TFT130A3~130D3のドレインは、それぞれ、補助容量電極132A~132Dと電気的に接続されている。補助容量電極132A~132Dは、副画素電極124A1~124D1とそれぞれ重なっており、背面基板120の厚さ方向からみて、副画素電極124A1~124D1と補助容量配線CSとの間に配置されている。典型的には、補助容量電極132A~132Dは、ソース配線Lsと同様の工程で形成され、ソース配線Lsと同じ材料から形成される。
 ゲート配線Gnは2本のゲート配線Gna、Gnbに分岐されている。TFT130A1、130A2、130B1、130B2のゲートはゲート配線Gnaと電気的に接続されている。同様に、TFT130C1、130C2、130D1、130D2のゲートはゲート配線Gnbと電気的に接続されている。ゲート配線Gna、Gnbには等価なゲート信号が供給され、同一のカラー表示画素Dに属する画素PA~PDはすべて同時に選択される。このように複数の行に配列された画素PA~PDが同時に選択されるため、各画素PA~PDへの書き込み時間を比較的長くすることができる。
 TFT130A3、130B3のゲートは、ゲート配線Gn+1と電気的に接続されており、TFT130C3、130D3のゲートはゲート配線Gn+2と電気的に接続されている。液晶表示装置100Aでは、副画素電極124A2~124D2にソース配線Lsa、Lsbからソース信号が供給された後に、TFT130A3~130D3が選択されて、副画素電極124A2~124D2に印加された電圧の絶対値が低下する。なお、本明細書においてTFT130A3~130D3を第3TFT130s3と呼ぶことがある。
 ここでは、TFT130A1~A3、130C1~C3に着目する。TFT130A1、130A2のゲートはゲート配線Gnaと電気的に接続されており、TFT130A1、130A2のソースはソース配線Lsaと電気的に接続されている。TFT130A1、130A2のドレインはそれぞれ副画素電極124A1、124A2と電気的に接続されている。TFT130A3のゲートはゲート配線Gn+1と電気的に接続されている。TFT130A3のソースは副画素電極124A1と電気的に接続されている。TFT130A3のドレインは補助容量電極132Aと電気的に接続されており、補助容量電極132Aは補助容量配線CSと容量結合を形成している。
 同様に、TFT130C1、130C2のゲートはゲート配線Gnbと電気的に接続されており、TFT130C1、130C2のソースはソース配線Lsbと電気的に接続されている。TFT130C1、130C2のドレインはそれぞれ副画素電極124C1、124C2と電気的に接続されている。TFT130C3のゲートはゲート配線Gn+2と電気的に接続されている。TFT130C3のソースは副画素電極124C1と電気的に接続されている。TFT130C3のドレインは補助容量電極132Cと電気的に接続されており、補助容量電極132Cは補助容量配線CSと容量結合を形成している。
 なお、ここでは、ゲート配線Gnとして、第n行のカラー表示画素Dを選択する互いに分岐されたゲート配線Gna、Gnbを示したが、ゲート配線Gnは、第n-2行および第n-1行のカラー表示画素Dの第3TFT130A3~130D3のゲートと電気的に接続された延長配線をさらに有してもよい。
 また、上述したように、TFT130A3、130B3は、ゲート配線Gn+1と電気的に接続されており、TFT130C3、130D3のゲートはゲート配線Gn+2と電気的に接続されている。ここで、第n行、第n+1行のカラー表示画素DをDn、Dn+1と示し、カラー表示画素Dnの画素SCのTFT130C3、カラー表示画素Dn+1の画素SAのTFT130A3に着目すると、このTFT130C3、130A3のゲートはいずれもゲート配線Gn+2と電気的に接続されている。このように、列方向に隣接するカラー表示画素Dのうちの互いに隣接する画素の第3TFT130s3はゲート配線を共有しており、これにより、開口率の低下が抑制される。
 図8に、液晶表示装置100Aの等価回路図を示す。図8は、画素PAおよび画素PCの等価回路を示している。
 まず、副画素SA1、SA2に着目する。副画素SA1は、液晶容量CLA1と、補助容量CCSA1と、補助容量CCSA3とを有している。液晶容量CLA1は、副画素電極124A1と、対向電極と、それらの間に位置する液晶層160とから構成される。対向電極には共通電圧COMが供給されている。また、ここでは、補助容量CCSA1は、副画素電極124A1と、補助容量配線CSと、両者の間に位置する絶縁層とから構成され、補助容量CCSA3は、補助容量電極132Aと、補助容量配線CSと、両者の間に位置する絶縁層とから構成される。
 また、副画素SA2は、液晶容量CLA2と、補助容量CCSA2とを有している。液晶容量CLA2は、副画素電極124A2と、対向電極と、それらの間に位置する液晶層160とから構成される。ここでは、補助容量CCSA2は、副画素電極124A2と、補助容量配線CSと、両者の間に位置する絶縁層とから構成される。
 次に、副画素SC1、SC2に着目すると、同様に、副画素SC1は、液晶容量CLC1と、補助容量CCSC1と、補助容量CCSC3とを有しており、また、副画素SC2は、液晶容量CLC2と、補助容量CCSC2とを有している。
 このような液晶表示装置100Aは以下のように駆動される。ゲート配線Gnに供給されるゲート信号電圧がオフ電圧からオン電圧に変化すると、TFT130A1、130A2、130C1、130C2がオン状態になり、ソース配線Lsaから副画素電極124A1、124A2にソース信号が供給され、ソース配線Lsbから副画素電極124C1、124C2にソース信号が供給される。その後、ゲート配線Gnに供給されるゲート信号電圧がオン電圧からオフ電圧に変化し、TFT130A1、130A2、130C1、130C2がオフ状態になる。
 次に、ゲート配線Gn+1に供給されるゲート信号電圧がオフ状態からオン状態に変化することにより、TFT130A3がオン状態になり、副画素電極124A1の電圧は補助容量CCSA3に充電されていた電圧に応じて変化する。同様に、ゲート配線Gn+2に供給されるゲート信号電圧がオフ状態からオン状態に変化することにより、TFT130C3がオン状態になり、副画素電極124C1の電圧は補助容量CCSC3に充電されていた電圧に応じて変化する。
 なお、一般に、副画素電極124s1、124s2に印加される電圧の極性は所定の期間(典型的には、1垂直走査期間(例えば、フレーム期間またはフィールド期間))ごとに反転する。
 補助容量CCSA3は1垂直走査期間前の極性の電圧に充電されており、その極性は、ソース配線LsaからTFT130A1を介して副画素電極124A1に供給された電圧の極性とは異なる。このため、TFT130A3が選択されることにより、副画素電極124A1の電位が低下することになる。その後、ゲート配線Gn+1に供給されるゲート信号電圧がオン電圧からオフ電圧に変化する。このように、TFT130A3が設けられていることにより、副画素SA1において液晶層160に印加される電圧の絶対値が副画素SA2において液晶層160に印加される電圧の絶対値と比べて低下する。
 同様に、補助容量CCSC3は1垂直走査期間前の極性の電圧に充電されており、その極性は、ソース配線LsbからTFT130C1を介して副画素電極124C1に供給された電圧の極性とは異なる。このため、TFT130C3が選択されることにより、副画素電極124C1の電位が低下することになる。その後、ゲート配線Gn+2に供給されるゲート信号電圧がオン状態からオフ状態に変化する。このように、TFT130C3が設けられていることにより、副画素SC1において液晶層160に印加される電圧の絶対値が副画素SC2において液晶層160に印加される電圧の絶対値と比べて低下する。
 以上のように、副画素SA1、SC1の輝度を副画素SA2、SC2の輝度よりも低くすることができる。なお、ここでは、画素PAおよびPCに着目して説明したが、上述の説明から理解できるように、画素PBおよびPDが画素PAおよびPCと同様の構成を有していることにより、副画素SB1、SD1の輝度を副画素SB2、SD2の輝度よりも低くすることができる。したがって、これを利用してγ特性の視野角依存性を改善することができる。
 このように、液晶表示装置100Aでは、任意の垂直走査期間における複数のソース配線Lsに印加されるソース信号電圧が+極性および-極性のいずれであっても、カラー表示画素Dに含まれる各画素の明副画素を互いに隣接させることができる。ただし、任意の水平走査期間において画素の列ごとに設けられた2本のソース配線Lsに印加されるソース信号電圧の極性は異なることが好ましい。また、カラー表示画素Dが2行2列に配列された画素を含み、行方向に隣接するカラー表示画素Dの画素配列が互いに等しい場合、隣接する2つのカラー表示画素内の同一画素の極性は反転していることが好ましい。
 ここで、図9を参照して液晶表示装置100Aにおける画素の極性を説明する。
 図9に、液晶表示装置100Aにおいてゲート配線Gに供給されるゲート信号の波形、および、4行2列のカラー表示画素Dを示す。ゲート配線Gn、Gn+1、Gn+2・・・に供給されるゲート信号電圧は、それぞれ、水平走査期間ごとに順番にオフ状態からオン状態に変化する。なお、図9では、図面を簡略化する目的で、副画素S1の面積が副画素S2と等しくなるように示している。
 液晶表示装置100Aでは、マトリクス状に配列されたカラー表示画素Dは互いに等しい画素配列を有している。なお、マトリクス状に配列されたカラー表示画素Dにおいて、+は、ソース配線Lsに供給されるソース信号の極性が+極性であることを示しており、-はソース配線Lsに供給されるソース信号の極性が-極性であることを示している。また、ここでは、+極性である副画素SA1~SD1、SA2~SD2を副画素SA1+~SD1+、SA2+~SD2+と示しており、-極性である副画素SA1~SD1、SA2~SD2を副画素SA1-~SD1-、SA2-~SD2-と示している。なお、上述したように、液晶表示装置100Aでは、第3TFT130A3~130D3を設けることにより、副画素SA2+、SA2-、SB2+、SB2-、SC2+、SC2-、SD2+、SD2-はそれぞれ副画素SA1+、SA1-、SB1+、SB1-、SC1+、SC1-、SD1+、SD1-よりも高い輝度を呈している。
 液晶表示装置100Aでは、画素の列ごとに一対のソース配線Lsが設けられている。ここでは、任意の時刻において、隣接する一対のソース配線Lsには、極性の反転したソース信号が供給される。例えば、ゲート配線Gnおよびソース配線Lsaで特定される画素PAを含む画素列はソース配線Lsa、Lsbに対応しており、ソース配線Lsaに+極性のソース信号が供給される場合、ソース配線Lsbには-極性のソース信号が供給される。また、ここでは、隣接する画素列の間に設けられた2本のソース配線Lsに供給されるソース信号の極性は互いに反転している。
 液晶表示装置100Aでは、カラー表示画素Dに属する4つの画素PA~PDは異なるソース配線Lsに対応している。例えば、ゲート配線Gnおよびソース配線Lsaで特定される画素PAを含むカラー表示画素Dに着目すると、TFT130A1、130A2のソースがソース配線Lsaと電気的に接続されており、TFT130C1、130C2のソースがソース配線Lsbと電気的に接続されている。また、TFT130D1、130D2のソースがソース配線Lscと電気的に接続されており、TFT130B1、130B2のソースがソース配線Lsdと電気的に接続されている。
 ここでは、同一カラー表示画素D内で列方向に隣接する画素の極性は異なる。例えば、ゲート配線Gnおよびソース配線Lsaで特定される画素PAを含むカラー表示画素Dに着目すると、そのカラー表示画素D内で列方向に隣接する画素PAおよびPCの極性は反転している。具体的には、TFT130A1、130A2のソースはプラス極性のソース信号が供給されるソース配線Lsaと電気的に接続されており、TFT130C1、130C2のソースはマイナス極性のソース信号が供給されるソース配線Lsbと電気的に接続されている。
 また、ここでは、ソース配線Lsのそれぞれは、列方向に隣接するカラー表示画素Dのうちの異なる画素に対応している。例えば、第n行、第n+1行のカラー表示画素DをDn、Dn+1と示すと、ソース配線Lsaは、カラー表示画素DnのTFT130A1、130A2のソースと電気的に接続されており、カラー表示画素Dn+1のTFT130C1、130C2のソースと電気的に接続されている。また、ソース配線Lsbは、カラー表示画素DnのTFT130C1、130C2のソースと電気的に接続されており、カラー表示画素Dn+1のTFT130A1、130A2のソースと電気的に接続されている。このように、ソース配線Lsaには、ある垂直走査期間にわたって+極性のソース信号が供給され、ソース配線Lsbには、この垂直走査期間にわたって-極性のソース信号が供給される。このため、ソースドライバの消費電力を低減させることができる。
 ここでは、列方向に隣接するカラー表示画素D内の同一画素の極性は互いに反転している。例えば、ゲート配線Gnおよびソース配線Lsaで特定される画素PA、および、その画素PAを含むカラー表示画素Dの列方向に隣接するカラー表示画素Dの画素PAに着目すると、それらの画素PAの極性は互いに反転している。このように、列方向に隣接するカラー表示画素D内の同一画素の極性は互いに反転しているため、列方向のフリッカが抑制される。
 また、ここでは、ゲート配線Gnおよびソース配線Lsaで特定される画素PAを含むカラー表示画素Dに着目すると、そのカラー表示画素D内で行方向に隣接する画素PAおよびPBの極性は反転している。具体的には、TFT130A1、130A2のソースはプラス極性のソース信号が供給されるソース配線Lsaと電気的に接続されており、TFT130B1、130B2のソースはマイナス極性のソース信号が供給されるソース配線Lsdと電気的に接続されている。
 液晶表示装置100Aでは、行方向に互いに隣接する2つのカラー表示画素Dの同一画素の一方の極性は、他方の画素の極性と反転している。例えば、ゲート配線Gnおよびソース配線Lsaで特定される画素PAを含むカラー表示画素Dおよび行方向に隣接するカラー表示画素Dの画素PAに着目すると、一方の画素PAにはソース配線Lsaから+極性のソース信号が供給され、他方の画素PAにはソース配線Lsfから-極性のソース信号が供給されている。このように、行方向に隣接するカラー表示画素D内の同一画素の極性は互いに反転しているため、行方向のフリッカが抑制される。
 また、行方向、列方向および斜め方向に隣接するカラー表示画素Dの同一画素に着目すると、行方向および列方向に隣接する画素の極性は反転しており、斜め方向に隣接する画素の極性は等しい。例えば、ゲート配線Gnおよびソース配線Lsaで特定される画素PAを含むカラー表示画素Dの画素PA、および、そのカラー表示画素Dの行方向、列方向および斜め方向に隣接するカラー表示画素Dの画素PAに着目すると、ゲート配線Gnおよびソース配線Lsaで特定される画素PAを含むカラー表示画素Dの画素PAは+極性の場合、行方向に隣接するカラー表示画素Dの画素PAは-極性であり、列方向に隣接するカラー表示画素Dの画素PAは-極性であり、斜め方向に隣接するカラー表示画素Dの画素PAは+極性である。
 以下、図10を参照して、ソース信号の極性の複数の垂直走査期間にわたる変化を説明する。ここでは、画素PAに着目する。Vsaはソース配線Lsaに供給されるソース信号の波形図を示しており、VGnはゲート配線Gnに供給されるゲート信号の波形図を示しており、VGn+1はゲート配線Gn+1に供給されるゲート信号の波形図を示している。図10では、横方向は時間を表し、縦方向は電圧レベルを表している。なお、ここでは、説明が過度に複雑になることを防ぐために、全ての画素の階調レベルを複数の垂直走査期間にわたって一定にしている。また、以下の説明において、副画素SA1の液晶容量CLA1と補助容量CCSA1との和を容量C1と示し、補助容量CCSA3を容量C2と示している。
 後述するように、ゲート配線Gn、Gn+1に供給されるゲート信号電圧がいずれもオフ電圧である場合(図10における状態1)、すなわち、TFT130A1、130A2、130A3がいずれもオフ状態の場合、容量C1、C2の電圧は互いに略等しい。このとき、容量C1に蓄えられている電荷Q1はQ1=C1×V1であり、容量C2に蓄えられている電荷Qb1はQb1=C2×V1である。
 ゲート配線Gnに供給されるゲート信号電圧がオン電圧になる場合(図10における状態2)、TFT130A1、130A2がオン状態となる。この結果、容量C1の電圧はV2になる(例えばV2≠V1)。このとき、容量C1に蓄えられる電荷Q2はQ2=C1×V2である。TFT130A3はオフ状態なので容量C2の電圧はV1のままであり、容量C2に蓄えられている電荷はQb1のままである。なお、副画素SA2の液晶容量CLA2および補助容量CCSA2の電圧も容量C1と同様にV2となる。
 次に、ゲート配線Gnに供給されるゲート信号電圧がオフ電圧となり、ゲート配線Gn+1に供給されるゲート信号電圧がオン電圧となる場合(図10における状態3)、TFT130A1、130A2がオフ状態となり、TFT130A3がオン状態となる。TFT130A3がオン状態になると、副画素SA1の容量C1の電圧と容量C2の電圧とが等しくなるように電荷が再配分される。状態3で容量C1、C2に蓄えられる電荷の和Q3+Qb2は、状態2で容量C1、C2に蓄えられていた電荷の和Q2+Qb1に等しい(Q3+Qb2=Q2+Qb1)。印加電圧の極性が1フレーム毎に反転される通常の駆動では、容量C2に蓄えられていた電荷Q2の極性は新たに流入する電荷の極性と逆であるため、全体の電荷量は減少し電圧が低下することになる。容量C1、C2の電圧V3は、
  V3=Q3/C1=Qb2/C2
となる。ここでC2/C1=αとすると、
  V3=1/(1+α)×V2+α/(1+α)×V1
となる。
 なお、副画素SA2ではこの現象が起きないため、副画素SA2の液晶容量CLA2の電圧はV2のままである。これにより、副画素SA2の液晶容量CLA2の電圧V2と、副画素SA1の液晶容量CLA1の電圧V3との間に差が生じることになる。状態3で容量C1、C2の電圧が共にV3となった後、ゲート配線Gn+1に供給されるゲート信号電圧はオフ電圧となる。このように、ゲート配線Gn、Gn+1に供給されるゲート信号電圧がいずれもオフ電圧となる場合(図10における状態1)、すなわち、TFT130A1、130A2、130A3がいずれもオフ状態である場合、容量C1、C2の電圧は互いに略等しい。これ以降、垂直走査期間毎に状態1→状態2→状態3→状態1を繰り返すことになる。
 なお、上述した説明では、第n行のゲート配線Gに対応するTFT130A3~130D3のゲートはそれぞれゲート配線Gn+1、Gn+2と電気的に接続されていたが、本発明はこれに限定されない。ゲート配線Gnに対応するTFT130A3~130D3のゲートは、それぞれ、ゲート配線Gnで選択されるTFT130A1~130D1、130A2~130D2が選択されてから1垂直走査期間以上経過して次にTFT130A1~130D1、130A2~130D2が選択されるまでの間にオン電圧となる任意の配線と電気的に接続されていればよい。
 また、上述した説明では、ある行のカラー表示画素Dの第3TFT130s3を選択する配線は、別の行のカラー表示画素Dの第1、第2TFT130s1、130s2を選択するゲート配線Gと電気的に接続されていたが、本発明はこれに限定されない。第3TFT130s3を選択する配線は、必ずしもゲート配線Gと電気的に接続されていなくてもよく、例えば、ゲート配線Gに供給されるゲート信号と等価な信号が第3TFT130s3を選択する配線に個別に供給されてもよい。
 また、上述した説明では、同一カラー表示画素D内で行方向に隣接する画素の極性は異なっていたが、本発明はこれに限定されない。同一カラー表示画素D内で行方向に隣接する画素の極性は等しくてもよい。
 また、上述した説明では、隣接する画素列の間に設けられた2本のソース配線Lsに供給されるソース信号の極性は互いに反転していたが、本発明はこれに限定されない。隣接する画素列の間に設けられた2本のソース配線Lsに供給されるソース信号の極性は等しくてもよい。
 なお、上述した説明では、面積の大きい赤画素Rおよび青画素Bは列方向に配列されていたが、本発明はこれに限定されない。赤画素Rおよび青画素Bは行方向に配列されてもよい。
 図11に、液晶表示装置100Bにおけるカラー表示画素Dの模式図を示す。液晶表示装置100Bでは、面積の大きい赤画素Rおよび青画素Bが行方向に配列されており、副画素B2は副画素R2と行方向に隣接し、副画素Y2は副画素R2と列方向に隣接している。
 また、上述した説明では、赤画素Rおよび青画素Bの面積は緑画素Gおよび黄画素Yの面積よりも大きかったが、本発明はこれに限定されない。
 図12に、液晶表示装置100Cにおけるカラー表示画素Dの模式図を示す。液晶表示装置100Cでは、赤画素R、緑画素G、青画素Bおよび黄画素Yの面積は互いにほぼ等しい。例えば、赤画素R、緑画素G、青画素Bおよび黄画素Yの列方向に沿った長さは互いに略等しく、また、赤画素R、緑画素G、青画素Bおよび黄画素Yの行方向に沿った長さは互いに略等しい。
 また、上述した説明では、各画素Pにおいて、副画素S1の面積は副画素S2の面積よりも大きかったが、本発明はこれに限定されない。
 図13に、液晶表示装置100Dにおけるカラー表示画素Dの模式図を示す。液晶表示装置100Dでは、副画素SA1~SD1の面積は、それぞれ、副画素SA2~SD2の面積と略等しい。具体的には、画素PAにおいて、副画素SA1の行方向に沿った長さは副画素SA2の行方向に沿った長さと略等しく、また、副画素SA1の列方向に沿った長さは副画素SA2の列方向に沿った長さと略等しい。同様に、画素PB~PDにおいて、副画素SB1~SD1の行方向に沿った長さは、それぞれ、副画素SB2~SD2の行方向に沿った長さと略等しく、また、副画素SB1~SD1の列方向に沿った長さは、それぞれ、副画素SB2~SD2の列方向に沿った長さと略等しい。
 なお、副画素SA1~SD1の面積は、それぞれ、副画素SA2~SD2の面積よりも小さくてもよい。あるいは、副画素SA1~SD1およびSA2~SD2の全ての面積が互いに略等しくてもよい。
 また、上述した説明では、赤画素は、青画素と行方向または列方向に隣接し、かつ、黄画素と列方向または行方向に隣接し、かつ、緑画素と斜め方向に隣接していたが、本発明はこれに限定されない。赤、緑、青および黄画素は任意の組み合わせで配列されてもよい。
 また、上述した説明では、赤画素および青画素の面積は、緑画素および黄画素の面積と等しいか、または、緑画素および黄画素の面積よりも大きかったが、本発明はこれに限定されない。赤画素および青画素の面積は、緑画素および黄画素の面積よりも小さくてもよい。あるいは、赤画素、緑画素、青画素および黄画素の面積は互いに任意の関係であってもよい。
 なお、上述した説明では、液晶表示装置は、原色として赤、緑、青および黄を用いたが、本発明はこれに限定されない。液晶表示装置は、原色として、赤、緑、青に加えてシアンまたはマゼンタを用いてもよい。あるいは、カラー表示画素Dは、赤画素、緑画素、青画素に加えて白画素を有していてもよい。あるいは、液晶表示装置は、別の組み合わせの原色を用いてもよい。
 また、上述した説明では、カラー表示画素Dは互いに異なる色を表示する複数の画素を有していたが、本発明はこれに限定されない。カラー表示画素Dに属する複数の画素のうちの少なくとも2つの画素は略同様の色を表示するものであってもよい。例えば、カラー表示画素Dは、2つの赤画素と、1つずつの緑画素および青画素を有していてもよい。
 また、上述した説明では、カラー表示画素Dは4つの画素PA~PDを有していたが、本発明はこれに限定されない。例えば、カラー表示画素Dは6つの副画素を有していてもよい。
 図14に、液晶表示装置100Eにおけるカラー表示画素Dの模式図を示す。液晶表示装置100Eは、カラー表示画素Dが画素PA~PDに加えて画素PEおよびPFをさらに有している点を除いて、上述した液晶表示装置と同様の構成を有しており、冗長を避けるために、重複する説明を省略する。
 液晶表示装置100Eにおいて、カラー表示画素Dは画素PA~PDに加えて画素PEおよびPFを有している。画素PA~PDは上述した液晶表示装置と同様に配列されている。画素PEは画素PBと行方向に隣接しており、画素PA、PB、PEは行方向に直線状に配列されている。また、画素PFは画素PDと行方向に隣接しており、画素PC、PD、PFは行方向に直線状に配列されている。このため、画素PEは画素PDの斜め方向に隣接しており、画素PFは画素PBの斜め方向に隣接している。このように、カラー表示画素Dを構成する画素PA~PFは2行3列に配列されている。なお、本明細書において、画素PEおよび画素PFをそれぞれ、第5画素PEおよび第6画素PFと呼ぶことがある。
 画素PEは副画素SE1、SE2を有しており、画素PFは副画素SF1、SF2を有している。液晶表示装置100Eでは、副画素SE2は副画素SB2と行方向に隣接し、副画素SF2は副画素SD2と行方向に隣接する。また、副画素SE2は副画素SD2と斜め方向に隣接し、副画素SF2は副画素SB2と斜め方向に隣接する。このため、副画素SA2、SB2、SE2は行方向に直線状に配列されており、副画素SC2、SD2、SF2は行方向に直線状に配列されている。このため、カラー表示画素Dに属する副画素Sは4行3列に配列されている。
 なお、液晶表示装置100Eでも、少なくともある中間階調において、副画素SA2~SF2の輝度は、それぞれ、副画素SA1~SF1の輝度よりも高い。このように高輝度を呈する副画素SA2~SF2がカラー表示画素D内で互いに近くに設けられていることにより、色づきを抑制することができる。例えば、画素PA~PFは、赤、緑、青、黄、シアンおよびマゼンタの任意の組み合わせである。
 なお、上述した説明では、各画素Pに属する副画素S1、S2は列方向(y方向)に配列されており、同一のカラー表示画素Dに属する副画素は4行に配列されたが、本発明はこれに限定されない。各画素Pに属する副画素S1、S2は行方向(x方向)に配列され、同一のカラー表示画素Dに属する副画素Sは4列に配列されてもよい。
 図15に、液晶表示装置100Fにおけるカラー表示画素Dの模式図を示す。液晶表示装置100Fでは、カラー表示画素Dは画素PA~PDを有している。画素PA~PDのそれぞれは副画素S1および副画素S2を有しており、画素PA~PDのそれぞれにおいて副画素S1および副画素S2は行方向に配列されており、副画素SA1~SD1、SA2~SD2は2行4列に配列されている。
 副画素S2に着目すると、副画素SB2は副画素SA2と行方向に隣接しており、副画素SC2は副画素SA2と列方向に隣接している。また、副画素SD2は、副画素SB2と列方向に隣接し、かつ、副画素SC2と行方向に隣接している。このため、副画素SD2は副画素SA2と斜め方向に隣接している。液晶表示装置100Fでは、副画素SA2~SD2はカラー表示画素Dの行方向の中心で互いに隣接するように配置されているため、色づきが抑制される。なお、副画素S1に着目すると、副画素SC1は副画素SA1と列方向に隣接しており、副画素SD1は副画素SB1と列方向に隣接している。
 例えば、画素PA~PDは、それぞれ、赤画素R、黄画素Y、青画素Bおよび緑画素Gである。赤画素Rおよび青画素Bの面積は緑画素Gおよび黄画素Yの面積よりも大きい。具体的には、赤、青画素R、Bの列方向に沿った長さは黄、緑画素Y、Gの列方向に沿った長さと略等しいが、赤、青画素R、Bの行方向に沿った長さは黄、緑画素Y、Gの行方向に沿った長さよりも大きい。
 なお、図15に示した液晶表示装置100Fでは画素PA、PCの面積は画素PB、PDの面積よりも大きいが、画素PA~PDの面積は略等しくてもよく、あるいは、画素PA、PCの面積は画素PB、PDよりも小さくてもよい。また、図15に示した液晶表示装置100Fでは各画素Pにおいて副画素S1の面積は副画素S2の面積よりも大きいが、副画素S1の面積は副画素S2の面積と略等しくてもよい。あるいは、副画素S1の面積は副画素S2よりも小さくてもよい。あるいは、各副画素SA1~SD1、SA2~SD2の面積のそれぞれが互いに略等しくてもよい。
 また、図15を参照して説明した液晶表示装置100Fでは、カラー表示画素Dは4つの画素PA~PDを有していたが、本発明はこれに限定されない。例えば、カラー表示画素Dは6つの画素を有してもよい。
 図16に、液晶表示装置100Gにおけるカラー表示画素Dの模式図を示す。液晶表示装置100Gは、カラー表示画素Dが、画素PA~PDに加えて画素PEおよびPFを有している点を除いて、液晶表示装置100Fと同様の構成を有しており、冗長を避けるために、重複する説明を省略する。
 液晶表示装置100Gにおいて、カラー表示画素Dは画素PA~PDに加えて画素PEおよびPFを有している。画素PA~PDは上述した液晶表示装置100Fと同様に配列されている。画素PEは画素PCと列方向に隣接しており、画素PA、PC、PEは列方向に直線状に配列されている。また、画素PFは画素PDと列方向に隣接しており、画素PB、PD、PFは列方向に直線状に配列されている。このため、画素PEは画素PDの斜め方向に隣接しており、画素PFは画素PCの斜め方向に隣接しており、画素PA~PFは3行2列に配列されている。
 画素PEは副画素SE1、SE2を有しており、画素PFは副画素SF1、SF2を有している。副画素SE2は副画素SC2と列方向に隣接し、副画素SF2は副画素SD2と列方向に隣接する。このため、副画素SA2、SC2、SE2は列方向に直線状に配列されており、副画素SB2、SD2、SF2は列方向に直線状に配列されている。また、副画素SE2は副画素SD2と斜め方向に隣接し、副画素SF2は副画素SC2と斜め方向に隣接する。このため、カラー表示画素Dに属する副画素Sは3行4列に配列されている。このように、液晶表示装置100Gでは、各画素P内の副画素Sが行方向に配列されているが、副画素SA2~SF2が隣接する2つの行で列方向に直線状に配列されている。
 なお、液晶表示装置100Gでも、少なくともある中間階調において、副画素SA2~SF2の輝度は、それぞれ、副画素SA1~SF1の輝度よりも高い。このように高輝度を呈する副画素SA2~SF2がカラー表示画素D内で互いに近くに設けられていることにより、色づきを抑制することができる。
 また、上述した説明では、副画素S1、S2はいずれも矩形状であり、副画素S1、S2の行方向および列方向に沿った長さのうちの少なくとも一方は互いに略等しかったが、本発明はこれに限定されない。副画素S1、S2は矩形状でなくてもよく、副画素S1、S2の行方向および列方向に沿った長さはいずれも異なっていてもよい。
 図17に、液晶表示装置100Hにおけるカラー表示画素Dの模式図を示す。液晶表示装置100Hでは、副画素電極124A2~124D2はそれぞれ矩形状である。副画素電極124A2~124D2はカラー表示画素Dの中央に配列されており、副画素電極124A1~124D1は副画素電極124A2~124D2の周囲を囲むように設けられている。
 副画素電極124s1の行方向に沿った最大長さは副画素電極124s2の行方向に沿った長さよりも大きく、副画素電極124s1の列方向に沿った最大長さは副画素電極124s2の列方向に沿った長さよりも大きい。なお、副画素電極124s2は矩形状であり、副画素電極124s2に規定される副画素S2には4つの液晶ドメインを簡便に形成することができる。また、副画素電極124s1は矩形状ではないが、副画素電極124s1は矩形状の単位領域を複数(ここでは、3つ)有しており、副画素電極124s1に規定される副画素S1には単位領域ごとに4つの液晶ドメインを形成することができる。
 なお、上述した説明では、各画素Pは2つの副画素Sを有していたが、本発明はこれに限定されない。画素Pは3以上の副画素Sを有してもよい。この場合、画素Pに属する3以上の副画素のうち最も輝度の高い副画素Sが他の画素Pに属する最も輝度の高い副画素Sと隣接していればよい。
 また、上述した説明では、マトリクス状に配列されたカラー表示画素Dの画素配列が互いに等しかったが、本発明はこれに限定されない。行方向および列方向の一方のみに隣接するカラー表示画素Dの画素配列が互いに等しくてもよい。あるいは、行方向および列方向に隣接するカラー表示画素Dの画素配列はいずれも異なってもよい。
 本発明によれば、液晶表示装置は表示品位を低下させることなく良好な視野角特性で表示を行うことができる。
 100 液晶表示装置
 120 背面基板
 124 画素電極
 140 前面基板
 160 液晶層

Claims (9)

  1.  複数の画素が複数の行および複数の列のマトリクス状に配列されたカラー表示画素を備える液晶表示装置であって、
     前記複数の画素は、
      第1画素と、
      前記第1画素と行方向に隣接する第2画素と、
      前記第1画素と列方向に隣接する第3画素と、
      前記第2画素と列方向に隣接し、前記第3画素と行方向に隣接する第4画素と
    を含み、
     前記複数の画素は、それぞれ、第1副画素および第2副画素を含む複数の副画素を有しており、
     少なくともある中間階調において、前記複数の画素のそれぞれにおける前記第2副画素の輝度は前記第1副画素の輝度よりも高く、
     前記複数の画素に属する前記複数の副画素は複数の行および複数の列のマトリクス状に配列され、
     前記第1画素の前記第2副画素は、前記第2画素の前記第2副画素と行方向に隣接し、前記第3画素の前記第2副画素と列方向に隣接し、前記第4画素の前記第2副画素と斜め方向に隣接する、液晶表示装置。
  2.  前記第1画素の前記第1副画素および前記第2画素の前記第1副画素は行方向に互いに隣接し、
     前記第3画素の前記第1副画素および前記第4画素の前記第1副画素は行方向に互いに隣接する、請求項1に記載の液晶表示装置。
  3.  前記複数の画素は、
     前記第2画素と行方向に隣接する第5画素と、
     前記第4画素と行方向に隣接する第6画素と
    をさらに含む、請求項1または2に記載の液晶表示装置。
  4.  前記第1画素の前記第1副画素および前記第3画素の前記第1副画素は列方向に互いに隣接し、
     前記第2画素の前記第1副画素および前記第4画素の前記第1副画素は列方向に互いに隣接する、請求項1に記載の液晶表示装置。
  5.  前記複数の画素は、
     前記第3画素と列方向に隣接する第5画素と、
     前記第4画素と列方向に隣接する第6画素と
    をさらに含む、請求項1または4に記載の液晶表示装置。
  6.  前記複数の画素は互いに異なる色を表示する、請求項1から5のいずれかに記載の液晶表示装置。
  7.  前記複数の画素は、前記第1、第2、第3および第4画素として、赤画素、緑画素、青画素および黄画素を含む、請求項6に記載の液晶表示装置。
  8.  前記赤画素および前記青画素の面積は、それぞれ、前記緑画素および前記黄画素の面積よりも大きい、請求項7に記載の液晶表示装置。
  9.  前記複数の画素のそれぞれにおいて、前記第1副画素の面積は前記第2副画素の面積よりも大きい、請求項1から8のいずれかに記載の液晶表示装置。
PCT/JP2011/051622 2010-01-29 2011-01-27 液晶表示装置 WO2011093387A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/575,696 US8885131B2 (en) 2010-01-29 2011-01-27 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010019259 2010-01-29
JP2010-019259 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093387A1 true WO2011093387A1 (ja) 2011-08-04

Family

ID=44319370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051622 WO2011093387A1 (ja) 2010-01-29 2011-01-27 液晶表示装置

Country Status (2)

Country Link
US (1) US8885131B2 (ja)
WO (1) WO2011093387A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031610A1 (ja) * 2011-08-26 2013-03-07 シャープ株式会社 液晶表示装置、液晶パネルの駆動方法
WO2013070927A1 (en) * 2011-11-11 2013-05-16 Qualcomm Mems Technologies, Inc. Systems and methods for driving multiple lines of display elements simultaneously
US20140009448A1 (en) * 2012-07-05 2014-01-09 Au Optronics Corporation Display panel and driving method thereof
JP2015141326A (ja) * 2014-01-29 2015-08-03 株式会社ジャパンディスプレイ 表示装置及び反射型液晶表示装置
CN106873264A (zh) * 2017-04-27 2017-06-20 厦门天马微电子有限公司 阵列基板、液晶显示面板、显示装置和像素充电方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183088B1 (ko) 2014-02-10 2020-11-26 삼성디스플레이 주식회사 액정 표시 장치
JP6318006B2 (ja) * 2014-05-29 2018-04-25 株式会社ジャパンディスプレイ 液晶表示装置
TWI665800B (zh) * 2015-06-16 2019-07-11 友達光電股份有限公司 發光二極體顯示器及其製造方法
CN106019749B (zh) * 2016-08-03 2019-06-28 上海中航光电子有限公司 阵列基板及显示面板
CN106647061B (zh) * 2017-01-23 2018-11-23 武汉华星光电技术有限公司 像素结构及液晶显示面板
CN108231031B (zh) * 2018-01-30 2020-06-05 厦门天马微电子有限公司 显示面板及其驱动方法、显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148519A1 (ja) * 2006-06-19 2007-12-27 Sharp Kabushiki Kaisha 表示装置
WO2009130826A1 (ja) * 2008-04-25 2009-10-29 シャープ株式会社 液晶表示装置、テレビジョン受像機

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800375A (en) 1986-10-24 1989-01-24 Honeywell Inc. Four color repetitive sequence matrix array for flat panel displays
JP3362758B2 (ja) 1996-03-15 2003-01-07 富士ゼロックス株式会社 反射型カラー表示装置
JP4034022B2 (ja) 2000-01-25 2008-01-16 シャープ株式会社 液晶表示装置
JP2001306023A (ja) 2000-04-18 2001-11-02 Seiko Epson Corp 画像表示装置
US6977704B2 (en) 2001-03-30 2005-12-20 Fujitsu Display Technologies Corporation Liquid crystal display
EP2273480A3 (en) 2001-06-11 2012-02-22 Genoa Color Technologies Ltd. Device, system and method for color display
JP4237977B2 (ja) 2001-10-02 2009-03-11 シャープ株式会社 液晶表示装置
US6952252B2 (en) 2001-10-02 2005-10-04 Fujitsu Display Technologies Corporation Substrate for liquid crystal display and liquid crystal display utilizing the same
JP4799823B2 (ja) 2002-04-11 2011-10-26 ジェノア・カラー・テクノロジーズ・リミテッド 属性を向上させるカラー表示装置および方法
JP4342200B2 (ja) 2002-06-06 2009-10-14 シャープ株式会社 液晶表示装置
JP4372648B2 (ja) 2004-09-13 2009-11-25 シャープ株式会社 液晶表示装置およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148519A1 (ja) * 2006-06-19 2007-12-27 Sharp Kabushiki Kaisha 表示装置
WO2009130826A1 (ja) * 2008-04-25 2009-10-29 シャープ株式会社 液晶表示装置、テレビジョン受像機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031610A1 (ja) * 2011-08-26 2013-03-07 シャープ株式会社 液晶表示装置、液晶パネルの駆動方法
WO2013070927A1 (en) * 2011-11-11 2013-05-16 Qualcomm Mems Technologies, Inc. Systems and methods for driving multiple lines of display elements simultaneously
US20140009448A1 (en) * 2012-07-05 2014-01-09 Au Optronics Corporation Display panel and driving method thereof
US9129865B2 (en) * 2012-07-05 2015-09-08 Au Optronics Corporation Display panel and driving method thereof
JP2015141326A (ja) * 2014-01-29 2015-08-03 株式会社ジャパンディスプレイ 表示装置及び反射型液晶表示装置
US9753337B2 (en) 2014-01-29 2017-09-05 Japan Display Inc. Display device and reflective liquid crystal display device comprising first to fourth pixels respectively connected to first to fourth signal lines
CN106873264A (zh) * 2017-04-27 2017-06-20 厦门天马微电子有限公司 阵列基板、液晶显示面板、显示装置和像素充电方法

Also Published As

Publication number Publication date
US20130002992A1 (en) 2013-01-03
US8885131B2 (en) 2014-11-11

Similar Documents

Publication Publication Date Title
WO2011093387A1 (ja) 液晶表示装置
US8319926B2 (en) Liquid crystal display device
KR100546258B1 (ko) 수평 전계 인가형 액정 표시 패널
KR101072375B1 (ko) 화소별 개구율 자동제어가 가능한 액정표시장치
JP5369446B2 (ja) 液晶ディスプレイパネルとその製造方法
JP5540020B2 (ja) 液晶表示装置
JP5290419B2 (ja) アクティブマトリクス基板、液晶パネル、液晶表示装置、液晶表示ユニット、テレビジョン受像機
JP5342004B2 (ja) 液晶表示装置
WO2011093243A1 (ja) 液晶表示装置
JP2008015512A (ja) 液晶表示パネルとその駆動方法および液晶表示装置
WO2010041418A1 (ja) 液晶表示装置
US8319918B2 (en) Multi-domain display using fringe fields
WO2011115194A1 (ja) 液晶表示装置
US7999900B2 (en) Display unit with interleaved pixels
WO2011024966A1 (ja) 液晶表示装置
US7956958B2 (en) Large-pixel multi-domain vertical alignment liquid crystal display using fringe fields
US8605239B2 (en) Display unit with interleaved pixels
JP5355775B2 (ja) 液晶表示装置
WO2012093630A1 (ja) 液晶表示装置
JP2009069765A (ja) 液晶表示装置
WO2012118069A1 (ja) 液晶表示装置
KR20120044777A (ko) 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13575696

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11737098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP