WO2007144997A1 - アーク溶接制御方法 - Google Patents

アーク溶接制御方法 Download PDF

Info

Publication number
WO2007144997A1
WO2007144997A1 PCT/JP2007/052314 JP2007052314W WO2007144997A1 WO 2007144997 A1 WO2007144997 A1 WO 2007144997A1 JP 2007052314 W JP2007052314 W JP 2007052314W WO 2007144997 A1 WO2007144997 A1 WO 2007144997A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
speed
arc
command
torch
Prior art date
Application number
PCT/JP2007/052314
Other languages
English (en)
French (fr)
Inventor
Kazumasa Yoshima
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US11/917,267 priority Critical patent/US8742291B2/en
Priority to EP07713971A priority patent/EP1900467B1/en
Priority to CA002611243A priority patent/CA2611243C/en
Priority to JP2007542172A priority patent/JP4844564B2/ja
Priority to CN2007800005766A priority patent/CN101326029B/zh
Publication of WO2007144997A1 publication Critical patent/WO2007144997A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • B23K9/1735Arc welding or cutting making use of shielding gas and of a consumable electrode making use of several electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/067Starting the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/121Devices for the automatic supply of at least two electrodes one after the other

Definitions

  • the present invention relates to a welding control method of an arc welding apparatus mounted on an apparatus such as a welding robot manipulator.
  • tandem arc welding is also employed as one of the means for speeding up the application of the above-described technology of the feeding device capable of high-speed feeding.
  • a two-electrode integrated welding torch and two single-electrode welding torches with a predetermined inter-electrode distance are mounted on the tip of a welding robot or the like.
  • a predetermined operation is performed at a predetermined speed, and welding is performed by executing a predetermined welding control.
  • the operation program assumes a positional relationship in which in the welding section, two electrodes and two welding wires fed through each of the welding sections are approximately aligned on the welding line.
  • Figure 1 shows a simplified diagram of the tandem arc welding system using a two-electrode integrated welding torch.
  • the two-electrode integrated welding torch 150 is mounted on a device that performs operations such as a welding robot manipulator (not shown), and moves along a predetermined welding portion of the workpiece 160 to be welded.
  • a device that performs operations such as a welding robot manipulator is connected to the control device 120.
  • the control device 120 is connected to the two welders 130 and the welder 140.
  • a welder feeder is connected to each of the welding machine 130 and the welding machine 140.
  • the welding wire feeding device supplies two welding wires, one for each welding wire, to the welding torch 150 (not shown). Within the welding torch 150, two welding Wires are provided through the two electrode tips, not shown. Each electrode tip is connected to the welding machine 130 and the output terminal of the welding machine 140 through the power cable 131 and the power cable 142, and the electric power from the welding machine 130 and the welding machine 140 is supplied to each welding wire.
  • the workpiece 160 to be welded is connected to the ground terminals of the welding machine 130 and the welding machine 140 via the ground cable 132 and the ground cable 141. The generation of an arc between the welding wire and the workpiece 160 forms a circuit through which the welding current flows.
  • Control device 120 holds an operation program and welding conditions.
  • the control device 120 controls the operation of a device that performs operations such as a welding robot manipulator according to an operation program. And, according to the operation, control device 120 transfers commands and parameters to welder 130 and welder 140 via control line 133 and control line 143 as appropriate.
  • the welding machine 130 and the welding machine 140 supply the respective welding wires with the wire feeding amount corresponding to the parameters commanded from the control device 120 by controlling the welding wire feeding device connected thereto. .
  • tandem arc welding system performs predetermined welding on a predetermined portion of the workpiece 160 to be welded.
  • FIG. Figure 2 shows tandem arc welding in the right direction in Figure 2 with the two-electrode integrated welding torch in the left direction.
  • the following description will be given with the words “preceding” in the front with respect to the welding direction and “rearing” in the rear.
  • Two electrode tips that is, a leading electrode tip 201 and a trailing electrode tip 202, are disposed with a predetermined inter-electrode distance in the nozzle 210 of the two-electrode integrated type welding torch 150 (see FIG. 1). .
  • the leading wire 203 is supplied to the leading electrode tip 201 and the trailing wire 204 is supplied to the trailing electrode tip 202.
  • the lead wire 203 receives power supply from a welder 130 (see FIG. 1) having a welding power source for the lead electrode (not shown) via the lead electrode tip 201, and the lead wire 203 and the workpiece 160 to be welded In the meantime, a leading arc 205 is generated. The arc heat melts the leading wire 203 and the workpiece 160 to be welded and supplies molten metal to the molten pool 207.
  • the trailing wire 204 is for the trailing electrode not shown via the trailing electrode tip 202. Electric power is supplied from a welding machine 140 (see FIG. 1) having a welding power source, and a trailing arc 206 is generated between the trailing wire 204 and the workpiece 160 to be welded.
  • the arc heat causes the trailing wire 204 and the workpiece 160 to be welded to melt and supply molten metal to the molten pool 207.
  • the leading wire 203 and the trailing wire 204 are fed continuously, and the molten pool 207 is moved by moving the two-electrode integrated welding torch 150 (see FIG. 1) at a predetermined speed.
  • the welding process is carried out by forming a weld bead 270 behind it
  • one arc affects the other arc in order to generate two arcs in close proximity.
  • a transient arc occurs, causing the two arcs to interfere with each other.
  • the arc is likely to be unstable, so appropriate control must be performed.
  • the molten pool 207 is a major cause of arc instability.
  • the trailing arc 206 has a positional relationship generating an arc toward the melting pool 207, the disturbance of the melting pool 207 tends to make the arc unstable.
  • the molten pool 207 tries to flow backward due to the arc force of the leading arc 205 generated from the leading wire 203.
  • the arcing force of the trailing arc 206 which also generates trailing wire 204 forces, pushes it back forward. Therefore, in order to form a stable molten pool 207, these balances are necessary. And, the molten pool 207 and the arc are in a relation of mutual influence.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-113373
  • the arc welding control method continuously and smoothly changes the operating speed in a tandem arc welding system. By doing this, it is possible to alleviate the rapid change in wire feeding speed in response to a rapid change in operating speed, and as a result, stable welding control is possible.
  • the arc welding control method is a tandem arc welding system that operates according to an operation program and welds an object under welding conditions set in the operation program!
  • the welding torch starts moving at the initial speed after starting the arc of the leading electrode at the welding start position, and the welding torch travels the first time and the first distance and the first step.
  • the arc welding control method is a tandem arc welding system that operates according to an operation program and welds a workpiece under the welding conditions set in the operation program! /, The point where the welding torch reaches the position before the specified time with respect to the welding end position and when it reaches the position before the specified distance and the specified point before the welding end position The step of terminating the arc of the leading electrode at least at any point when the position is reached, and the speed of the welding torch at a specified speed continuously while advancing the welding torch toward the welding end position.
  • the arc welding control method operates the welding torch according to an operation program, and the arc welding system for welding a workpiece under the welding conditions of the operation program, the welding torch is designated from a designated position.
  • the arc welding control method operates according to an operation program, and in a tandem arc welding system for welding a workpiece under the welding conditions of the operation program, a time for which a welding torch is designated from a designated position Continuously changing the speed of the welding torch while moving forward and / or during a specified distance and / or to a specified position;
  • the welding current command and the wire sent to the welding machine of the trailing electrode and / or the welding current command and the wire feeding speed command and the welding voltage command sent to the welding machine of the leading electrode in synchronization with the continuous speed change to Continuously changing at least one of a feed speed command and a welding voltage command.
  • FIG. 1 is a view showing a schematic configuration of a tandem arc welding system.
  • FIG. 2 is a schematic view showing a welding state by a two-electrode integrated welding torch.
  • FIG. 3 is an operation explanatory view of the vicinity of the welding start portion in the embodiment of the present invention.
  • FIG. 4 is an operation explanatory view of the vicinity of the welding end portion in the embodiment of the present invention.
  • FIG. 5 is an explanatory view of a welding operation in the embodiment of the present invention.
  • FIG. 3 shows the order and contents of the operation in the embodiment 1 in the tandem arc welding system using the two-electrode integrated welding torch 150 (see FIG. 1) shown in FIG.
  • the operation of the welding system proceeds in the order of states 391, 392, 393 and 394 in FIG.
  • the two-electrode integral type welding torch 150 is at the welding start position 381.
  • the movement operation is started in the welding direction (the left force in FIG. 3 is also the direction to the right).
  • Welding torch 150 starts moving operation at initial speed V0 at welding start position 381.
  • the leading electrode 303 generally refers to the leading electrode tip 201 and the leading wire 203 in FIG.
  • a state 392 shows a state in which the welding torch 150 has reached a first position 382 at the welding start portion.
  • the welding start portion first position 382 is designated as a position or a radius specified by the distance L1 from the welding start position 381 or a moving time T1 from the welding start position 381.
  • the controller 120 corresponds to the initial velocity V0 at the welding start position 381 at the welding start position 381.
  • the welding conditions of the leading electrode 303 to be sent are sent to the welding machine 130 (see FIG.
  • the welding conditions are at least one of a welding current command, a wire feed speed command, and a welding voltage command.
  • the controller 120 sends the welding conditions of the leading electrode 303 corresponding to the first velocity VI to the welding machine 130 of the leading electrode 303.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command.
  • control device 120 adjusts the corresponding welding current command and wire feed rate command according to the changing speed of welding torch 150. At least one of the welding voltage commands is sent to the welding machine 130 of the leading electrode 303.
  • a trailing arc 206 is generated between the trailing electrode 304 and the weld object 160 at the first position 382 of the welding start portion.
  • the trailing electrode 304 generally refers to the trailing electrode tip 202 and the trailing wire 204 in FIG.
  • the weld start second position 383 is designated as a position or a force specified by the distance L2 from the weld start first position 382 or from the weld start first position 382 Travel time T2 More specified.
  • the controller 120 moves to the welding start first position 382 to the first velocity VI.
  • the welding conditions of the corresponding leading electrode 303 are sent to the welding machine 130 of the leading electrode 303.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command.
  • the controller 120 sends the welding conditions of the trailing electrode 304 corresponding to the first velocity VI to the welding machine 140 (see FIG. 1) of the trailing electrode 304.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command.
  • the controller 120 sends the welding conditions of the leading electrode 303 corresponding to the second velocity V 2 to the welding machine 130 of the leading electrode 303.
  • the welding conditions are at least one of welding current command, wire feeding speed command and welding voltage command.
  • the controller 120 sends welding conditions for the trailing electrode 304 corresponding to the second velocity V2 to the welding machine 140 for the trailing electrode 304.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command.
  • the controller 120 adjusts the corresponding welding current command and wire feeding speed command according to the changing speed of the welding torch 150.
  • at least one of the welding voltage command is sent to the welding machine 130 of the leading electrode 303 and the welding machine 140 of the trailing electrode 304.
  • the arc welding control method in the arc welding system according to the first embodiment changes the operating speed gradually and continuously. By doing this, it is possible to mitigate the rapid change in wire feeding speed in response to the rapid change in operating speed. Also, welding can be performed by sending at least one of the welding current command, the wire feeding speed command, and the welding voltage command in accordance with the operating speed. As a result, tandem arc welding of the welding start portion that enables stable welding becomes possible.
  • At least one of the welding current command, the wire feeding speed command and the welding voltage command at the second position 383 of the welding start portion is intended to command steady welding conditions, that is, conditions for originally performing welding.
  • Embodiment 2 the same parts as in Embodiment 1 are assigned the same reference numerals and detailed explanations thereof will be omitted.
  • the second embodiment relates to the end of welding.
  • FIG. 4 shows the order and contents of operations in a tandem welding system using the two-electrode integrated welding torch 150 (see FIG. 1) shown in FIG.
  • the operation in the second embodiment is advanced in order of state 491, state 492 and state 493 in FIG. 4.
  • the welding operation has been advanced at a velocity V in the welding direction (direction from left to right in FIG. 4).
  • the two-electrode integral type welding torch 150 is in front of the welding end position 482
  • a certain welding end first position 481 is reached, the leading arc 205 is ended.
  • the trailing 206 is continuing.
  • the weld end first position 481 is designated as a position or by a force designated by the distance LE from the weld end position 482 or by a movement time TE from the weld end position 482.
  • the welding direction of the welding torch 150 is changed from the speed V of the welding torch 150 at the first position 481 at the welding end to the final speed VE when the welding end position 482 is reached.
  • the operation is continued.
  • welding conditions for the trailing electrode 304 corresponding to the velocity V are sent to the welding machine 140 (see FIG. 1) for the trailing electrode 304.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command.
  • welding conditions for the trailing electrode 304 corresponding to the final velocity VE are sent to the welding machine 140 for the trailing electrode 304.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command. Then, between the first position 481 at the end of welding and the position 482 at the end of welding, the corresponding welding condition of the trailing electrode 304 is sent to the welding machine 140 of the trailing electrode 304 in accordance with the changing speed.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command.
  • the arc welding control method in the arc welding system according to the second embodiment changes the operating speed gradually and continuously. By doing this, you can It is possible to alleviate the rapid change of wire feeding speed according to In addition, since welding can be performed by sending at least one of the welding current command, the wire feed speed command, and the welding voltage command in accordance with the operating speed, tandem arc welding at the welding end enables stable welding as a result. Is possible.
  • FIG. 5 shows the contents of the operation of the present invention not only in a tandem arc welding system but also in a general welding system.
  • FIG. 5 shows an example of a welding torch 550 having one electrode instead of two electrodes.
  • Welding torch 550 corresponds to welding torch 150 in FIG.
  • the welding machine 140, the ground cable 141, the power cable 142 and the control line 143 of FIG. 1 are not necessary.
  • the welding torch 550 operating in the welding direction (direction to the left in FIG. 5 and to the right in FIG. 5) with the arc generated has a second velocity at the first position 581. Operate while gradually changing the speed so that the speed becomes Vb at position 582.
  • the second position 582 is designated as a position or a force designated by the distance L5 from the first position 581 or a time T5 from the first position 581.
  • the controller 120 has the welding condition corresponding to the velocity Va at the first position 581 in the welding machine 130 (FIG.
  • Send to The welding conditions are at least one of welding current command, wire feeding speed command and welding voltage command.
  • the controller 120 sends welding conditions corresponding to the velocity Vb to the welder 130.
  • the welding conditions are at least one of a welding current command, a wire feeding speed command, and a welding voltage command. Also, while welding torch 150 moves from the first position 581 to the second position 582, controller 120 controls the welding current command and the wire feed speed command as the corresponding welding conditions in accordance with the changing speed. Send at least one of the voltage commands to welder 130.
  • the arc welding control method in the arc welding system of the present embodiment changes the operating speed continuously and gently. By doing this, it is possible to mitigate the rapid change in wire feeding speed in response to the rapid change in operating speed.
  • at least welding current command, wire feeding speed command and welding voltage command Since either can be fed and welded, stable welding can be achieved as a result.
  • the power explained using the welding torch 550 having one electrode as an example is described using a two-electrode integral type welding torch or two single-electrode welding torches closely arranged. The same operation can be performed for arc welding.
  • the speed before the change is made while advancing from the specified position for the specified time, for the specified distance, or for moving to the specified position.
  • the operating speed is continuously changed to the speed after the force change, and in synchronization with the speed change, the same effect as described above can be obtained by executing the following. That is, the welding current command sent to the welding machine of the electrode that precedes the welding progress direction of the two electrodes, the wire feeding speed command and / or the welding voltage command, and the welding sent to the welding machine of the trailing electrode The same effect can be obtained by continuously changing the current command, the wire feed speed command, and / or the welding voltage command.
  • the arc welding control method of the present invention changes the operating speed gradually and continuously. By doing this, it is possible to mitigate that the wire feeding speed is rapidly changed in accordance with a sudden change in operating speed. Also, welding can be performed by sending at least one of a welding current command, a wire feeding speed command, and a welding voltage command according to the operating speed. As a result, stable welding control can be achieved.
  • the arc welding control method of the present invention enables stable welding control, and is industrially useful as, for example, an arc welding control method when welding is performed at high speed, such as a tandem arc welding method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

 アーク溶接制御方法は、溶接の動作速度を連続的になだらかに変化させる。こうすることにより、急激な動作速度変化に合わせて急激にワイヤ送給速度を変化させることを緩和することができ、安定した溶接制御を可能にできる。

Description

明 細 書
アーク溶接制御方法
技術分野
[0001] 本発明は溶接ロボットマ-ュピレータ等の装置に搭載されるアーク溶接装置の溶接 制御方法に関する。
背景技術
[0002] 生産現場の溶接工程においては、高速溶接を行うことにより作業能率の向上が図 られている。近年その傾向はさらに強まっており、高速度の溶接も試みられるようにな つている。このため、高速度溶接に見合った溶着金属量を確保するため、溶接ワイヤ の高速送給が可能な送給装置も実用化されてきて 、る。
[0003] 一方で、前述のような高速送給が可能な送給装置の技術を応用した高速化手段の ひとつとして、タンデムアーク溶接法も採用されている。タンデムアーク溶接を行う溶 接システムでは、 2電極一体型の溶接トーチや、所定の電極間距離を有した 2つの単 電極溶接トーチが溶接ロボットなどの先端に搭載されている。そうして、動作プロダラ ムに従って、所定の速度で所定の動作が行なわれ、所定の溶接制御を実行すること により溶接が行われる。動作プログラムは、溶接区間では 2つの電極および各々を貫 通して送給される 2本の溶接ワイヤが概ね溶接線上に前後して並ぶような位置関係 を前提としている。
[0004] ここで、図 1を用いて、タンデムアーク溶接装置の概略構成および動作について説 明する。図 1は、 2電極一体型の溶接トーチを使ったタンデムアーク溶接システムの 機器構成を簡略ィ匕して示している。 2電極一体型の溶接トーチ 150は、図示しない溶 接ロボットマ-ュピレータ等の動作を行う装置に搭載されており、溶接対象ワーク 160 の所定溶接部に沿って移動動作を行う。溶接ロボットマ-ュピレータ等の動作を行う 装置は、制御装置 120に接続されている。制御装置 120は、 2台の溶接機 130と溶 接機 140に接続されている。溶接機 130と溶接機 140には各々に図示しない溶接ヮ ィャ送給装置が接続されて ヽる。溶接ワイヤ送給装置は図示しな 、溶接ワイヤの各 々1本ずつ計 2本を溶接トーチ 150に供給する。溶接トーチ 150内では、 2本の溶接 ワイヤは図示しな 、2つの電極チップを貫通して供給されて 、る。各電極チップはパ ヮーケーブル 131とパワーケーブル 142を介して溶接機 130と溶接機 140の出力端 子に接続されており、溶接機 130と溶接機 140からの電力は各溶接ワイヤに供給さ れる。溶接対象ワーク 160は、アースケーブル 132とアースケーブル 141を介して溶 接機 130と溶接機 140のアース端子に接続されている。溶接ワイヤと溶接対象ワーク 160の間にアークが発生することにより溶接電流の流れる回路が形成される。
[0005] 制御装置 120は、動作プログラムおよび溶接条件を保持している。制御装置 120は 、溶接ロボットマニュピレータ等の動作を行う装置を動作プログラムに従って動作制 御する。かつ、制御装置 120は、その動作に合わせて、適時、制御線 133と制御線 1 43を介して溶接機 130と溶接機 140に対して指令やパラメータの転送を行う。溶接 機 130と溶接機 140は、各々に接続された溶接ワイヤ送給装置を制御することによつ て、制御装置 120から指令されたパラメータに見合ったワイヤ送給量で各溶接ワイヤ を供給する。
[0006] このようにして、タンデムアーク溶接システムは、溶接対象ワーク 160の所定箇所に 所定の溶接を行う。
[0007] 次に、図 2を用いて、タンデムアーク溶接を行っている様子について説明する。図 2 は、 2電極一体型の溶接トーチにより、図 2の右力も左の方向にタンデムアーク溶接 を行っている様子を示している。以下、溶接方向に対して前方にあるものには「先行」 、後方にあるものには「後行」という言葉をつけて説明する。 2電極一体型の溶接トー チ 150 (図 1参照)のノズル 210内に、 2つの電極チップすなわち先行電極チップ 201 と後行電極チップ 202が所定の電極間距離を有して配置されて 、る。先行電極チッ プ 201には先行ワイヤ 203が、後行電極チップ 202には後行ワイヤ 204が供給され ている。
[0008] 先行ワイヤ 203は、先行電極チップ 201を介して図示しない先行電極用の溶接用 電源がある溶接機 130 (図 1参照)から電力供給を受け、先行ワイヤ 203と溶接対象 ワーク 160との間に先行アーク 205を発生させる。そのアーク熱により先行ワイヤ 203 および溶接対象ワーク 160が溶融されて溶融プール 207に溶融金属が供給される。 同時に、後行ワイヤ 204は、後行電極チップ 202を介して図示しない後行電極用の 溶接用電源がある溶接機 140 (図 1参照)から電力供給を受け、後行ワイヤ 204と溶 接対象ワーク 160の間に後行アーク 206を発生させる。そのアーク熱により後行ワイ ャ 204および溶接対象ワーク 160が溶融して溶融プール 207に溶融金属が供給さ れる。先行ワイヤ 203と後行ワイヤ 204は連続的に送給され、かつ、 2電極一体型の 溶接トーチ 150 (図 1参照)が所定の速度で移動していくことにより、溶融プール 207 を移動させ、その後ろに溶接ビード 270を形成することで溶接プロセスが実施される
[0009] このように、タンデムアーク溶接においては近接して 2つのアークを発生させるため 、一方のアークが他方のアークに影響を与える。特に、溶接開始部のアーク発生時 や溶接終了部のアーク停止時には、過渡的なアーク状態となり、 2つのアークが互い に干渉する。これによつてアークが不安定になりやすいので、適正な制御を行う必要 がある。
[0010] 溶接開始部では、融合不良、アーク切れや乱れに伴うチップの損傷、スパッタの発 生などが起きる可能性がある。溶接終了部では、融合不良だけでなく溶接ビード 270 外観を損なう可能性がある。これらに対処するために、例えば、溶接開始および終了 の制御シーケンスの提案もある。このような提案は、例えば、特許文献 1に開示されて いる。
[0011] ところで、高速での溶接に対しては、 2つのアークが互いに干渉するのを防ぐ従来 の方法ではアークを安定させるには十分ではない。溶融プール 207がアーク不安定 になる大きな要因となっている。例えば、後行アーク 206は溶融プール 207に向かつ てアークを発生する位置関係になるため、溶融プール 207の乱れによってアークが 不安定になりやすい。一方、溶融プール 207は先行ワイヤ 203から発生している先 行アーク 205のアーク力によって後方へ流れていこうとする。しかし、後行ワイヤ 204 力も発生している後行アーク 206のアーク力がこれを前方に押し返す。そのため、安 定した溶融プール 207を形成するためにはこれらのバランスが必要である。そして、 溶融プール 207とアークとは互い影響しあう関係にある。
[0012] また、高速溶接においては、溶接速度を変化させると溶融プール 207の状態が変 化するので、溶融プール 207が安定しない。そのためアークが安定せず、結果として 適正な溶接が出来ない場合が多々ある。特に、高速溶接を開始する際、および、終 了する際に、この現象が顕著に現われる。溶接を開始する際に、溶接しながら急激 に速度を上げることに伴い溶融プール 207が高速で引っ張られることが、その現象が 顕著に現われ原因である。また、高速動作に見合ったワイヤ供給が必要なので、急 激にワイヤ送給量を増加することで、ワイヤの供給と溶融のバランスが崩れたることも その原因である。高速での溶接を終了する際には、溶接開始時とは逆に、高速動作 を急激に停止させることに伴う溶融プールの乱れがある。高速溶接を行うためにはこ のような課題を解決する必要がある。
特許文献 1:特開 2001— 113373号公報
発明の開示
[0013] アーク溶接制御方法は、タンデムアーク溶接システムにお 、て、動作速度を連続的 になだらかに変化させる。こうすることにより、急激な動作速度変化に合わせて急激 にワイヤ送給速度を変化させることを緩和することができ、その結果安定した溶接制 御を可能にする。
[0014] アーク溶接制御方法は、動作プログラムによって動作し、動作プログラムに設定さ れた溶接条件で被溶接物を溶接するタンデムアーク溶接システムにお!/、て、溶接開 始位置で先行電極のアークを開始した後に溶接トーチが初速度で移動動作を開始 するステップと、溶接トーチが第一の時間進む間と第一の距離進む間と第一の位置 まで進む間の少なくとも何れかの間に、溶接トーチの速度を初速度から第一の速度 に連続的に動作速度を変化させるステップと、初速度から第一の速度への連続的な 動作速度の変化と同期して、先行電極の溶接機に送る溶接電流指令とワイヤ送給速 度指令と溶接電圧指令の少なくとも何れかを連続的に変化させるステップと、第一の 時間の動作が完了した時点と第一の距離の動作が完了した時点と第一の位置まで の動作が完了した時点との少なくとも何れかの時点で、後行電極のアークを開始する ステップと、溶接トーチが第二の時間進む間と第二の距離進む間と第二の位置まで 進む間の少なくとも何れかの間で、前記溶接トーチの速度を第二の速度に連続的に 変化させるステップと、第二の速度への連続的な速度の変化と同期して、先行電極 の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何 れかと、後行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指 令の少なくとも何れかを連続的に変化させるステップとを備える。
[0015] アーク溶接制御方法は、動作プログラムによって動作し、動作プログラムに設定さ れた溶接条件で被溶接物を溶接するタンデムアーク溶接システムにお!/、て、溶接ト ーチが、溶接終了位置に対して指定された時間手前の位置に到達した時点と指定さ れた距離手前の位置に到達した時点と溶接終了位置より手前の指定された位置に 到達した時点との少なくとも何れかの時点で、先行電極のアークを終了するステップ と、溶接トーチが溶接終了位置に向かって進む間に、溶接トーチの速度を指定され た速度に連続的に速度を変化させるステップと、連続的な速度の変化と同期して、後 行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少な くとも何れかを連続的に変化させるステップと、溶接トーチが溶接終了位置に到達し た際に、後行電極のアークを終了し、溶接を終了するステップとを備える。
[0016] アーク溶接制御方法は、溶接トーチを動作プログラムによって動作し、動作プロダラ ムの溶接条件で被溶接物を溶接するアーク溶接システムにお 、て、溶接トーチが指 定された位置から指定された時間進む間と指定された距離進む間と指定された位置 まで進む間の少なくとも何れかの間に、溶接トーチの速度を連続的に変化させるステ ップと、溶接トーチの変化前の速度力 変化後の速度への連続的な速度変化と同期 して、溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも 何れかを連続的に変化させるステップとを備える。
[0017] アーク溶接制御方法は、動作プログラムによって動作し、動作プログラムの溶接条 件で被溶接物を溶接するタンデムアーク溶接システムにお 、て、溶接トーチが指定さ れた位置から指定された時間進む間と指定された距離進む間と指定された位置まで 進む間の少なくとも何れかの間に、溶接トーチの速度を連続的に変化させるステップ と、溶接トーチの変化前の速度力 変化後の速度への連続的な速度変化と同期して 、先行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の 少なくとも何れかと、後行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と 溶接電圧指令の少なくとも何れ力とを連続的に変化させるステップとを備える。
図面の簡単な説明 [図 1]図 1はタンデムアーク溶接システムの概略構成を示す図である。
圆 2]図 2は 2電極一体型の溶接トーチによる溶接状態を示す模式図である。 圆 3]図 3は本発明の実施の形態における溶接開始部近辺の動作説明図である。 圆 4]図 4は本発明の実施の形態における溶接終了部近辺の動作説明図である。 圆 5]図 5は本発明の実施の形態における溶接動作説明図である。
符号の説明
120 制御装置
130 溶接機
131 パワーケーブル
132 アースケーブル
133 制御線
140 溶接機
141 アースケーブル
142 パワーケーブル
143 制御線
150, 550 溶接トーチ
160 溶接対象ワーク
201 先行電極チップ
202 後行電極チップ
203 先行ワイヤ
204 後行ワイヤ
205 先行アーク
206 後行アーク
207 溶融金属
210 ノズル
270 溶接ビード
303 先行電極
304 後行電極 381 溶接開始位置
382 溶接開始部第一の位置
383 溶接開始部第二の位置
482 溶接終了位置
481 溶接終了部第一の位置
581 第一の位置
582 第二の位置
L1 溶接開始位置から溶接開始部第一の位置までの距離
L2 溶接開始部第一の位置から溶接開始部第二の位置までの距離
L5 第一の位置から第二の位置までの距離
LE 溶接終了部第一の位置からの溶接終了位置までの距離
V0 初速度
VI 第一の速度
V2 第二の速度
Va 第一の位置での速度
Vb 第二の位置での速度
T1 溶接開始位置力 溶接開始部第一の位置までの時間
T2 溶接開始部第一の位置力 溶接開始部第二の位置までの時間
TE 溶接終了部第一の位置からの溶接終了位置までの時間
T5 第一の位置力 第二の位置までの時間
発明を実施するための最良の形態
[0020] 以下、本発明を実施するための最良の形態について、図 1から図 5を用いて説明す る。
[0021] (実施の形態 1)
図 3は、図 1に示した 2電極一体型の溶接トーチ 150 (図 1参照)を使つたタンデムァ ーク溶接システムにおける実施の形態 1での動作の順序と内容を示す。本溶接シス テムの動作は、図 3の状態 391、状態 392、状態 393、状態 394の順に進められる。
[0022] 図 3の状態 391において、 2電極一体型の溶接トーチ 150が溶接開始位置 381に 到達したところで、先行電極 303と溶接対象ワーク 160との間に先行アーク 205を発 生させた後、溶接方向(図 3の左力も右への方向)に移動動作を始める。溶接トーチ 1 50は溶接開始位置 381で、初速度 V0で移動動作を始める。なお、先行電極 303は 図 2の先行電極チップ 201と先行ワイヤ 203を総称している。
[0023] 状態 392は、溶接トーチ 150が溶接開始部第一の位置 382に到達した状態を示し ている。溶接トーチ 150が溶接開始部第一の位置 382に到達したところで、溶接トー チ 150の移動速度が第一の速度 VIになるように、速度を変更しながらその溶接動作 が行われる。溶接開始部第一の位置 382は、位置として指定されるか、または、溶接 開始位置 381からの距離 L1により指定されるカゝ、または、溶接開始位置 381からの 移動時間 T1により指定される。溶接トーチ 150が溶接開始位置 381から溶接開始部 第一の位置 382へ移動を開始する際、制御装置 120 (図 1参照)は溶接開始位置 38 1では溶接開始位置 381での初速度 V0に対応する先行電極 303の溶接条件を先 行電極 303の溶接機 130 (図 1参照)に送る。この溶接条件は、溶接電流指令とワイ ャ送給速度指令と溶接電圧指令の少なくとも何れかである。溶接トーチ 150が溶接 開始部第一の位置 382に到達したところで、制御装置 120は第一の速度 VIに対応 する先行電極 303の溶接条件を先行電極 303の溶接機 130に送る。この溶接条件 は、溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何れかである。 溶接トーチ 150が溶接開始位置 381と溶接開始部第一の位置 382の間では、制御 装置 120は溶接トーチ 150の変化する速度に合わせて、対応する溶接電流指令とヮ ィャ送給速度指令と溶接電圧指令の少なくとも何れかを先行電極 303の溶接機 130 に送る。
[0024] 状態 393において、溶接開始部第一の位置 382で、後行電極 304と溶接対象ヮー ク 160の間に後行アーク 206が発生する。後行電極 304は図 2の後行電極チップ 20 2と後行ワイヤ 204を総称して 、る。
[0025] 状態 394において、溶接トーチ 150が、溶接開始部第二の位置 383に到達したとこ ろで速度が第二の速度 V2となるように、移動速度が変更される。溶接開始部第二の 位置 383は、位置として指定されるか、または、溶接開始部第一の位置 382からの距 離 L2により指定される力、または、溶接開始部第一の位置 382からの移動時間 T2に より指定される。
[0026] 溶接トーチ 150が溶接開始部第一の位置 382から溶接開始部第二の位置 383へ の動作の際、制御装置 120は、溶接開始部第一の位置 382では第一の速度 VIに 対応する先行電極 303の溶接条件を先行電極 303の溶接機 130に送る。この溶接 条件は、溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何れかで ある。同時に、制御装置 120は、第一の速度 VIに対応する後行電極 304の溶接条 件を後行電極 304の溶接機 140 (図 1参照)に送る。この溶接条件は、溶接電流指令 とワイヤ送給速度指令と溶接電圧指令の少なくとも何れかである。溶接トーチ 150が 溶接開始部第二の位置 383に到達したところでは、制御装置 120は、第二の速度 V 2に対応する先行電極 303の溶接条件を先行電極 303の溶接機 130に送る。この溶 接条件は、溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何れカゝ である。同時に、制御装置 120は、第二の速度 V2に対応する後行電極 304の溶接 条件を後行電極 304の溶接機 140に送る。この溶接条件は、溶接電流指令とワイヤ 送給速度指令と溶接電圧指令の少なくとも何れかである。溶接開始部第一の位置 3 82と溶接開始部第二の位置 383の間では、制御装置 120は、変化する溶接トーチ 1 50の速度に合わせて、対応する溶接電流指令とワイヤ送給速度指令と溶接電圧指 令の少なくとも何れかを先行電極 303の溶接機 130および後行電極 304の溶接機 1 40に送る。
[0027] 以上のように、実施の形態 1のアーク溶接システムにおけるアーク溶接制御方法は 、動作速度を連続的になだらかに変化させる。こうすることにより、急激な動作速度変 化に合わせて急激にワイヤ送給速度を変化させることを緩和することができる。また、 動作速度に合わせて溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくと も何れかを送って溶接することができる。その結果、安定した溶接を可能とする溶接 開始部のタンデムアーク溶接が可能になる。
[0028] なお、溶接開始部第二の位置 383における溶接電流指令とワイヤ送給速度指令と 溶接電圧指令の少なくとも何れかは、定常溶接条件、すなわち、本来溶接を行う条 件を指令するものとしてもよ 、。
[0029] (実施の形態 2) 次に、実施の形態 2について説明する。実施の形態 2において、実施の形態 1と同 様の箇所については同一の符号を付して詳細な説明を省略する。実施の形態 2は、 溶接終了に関する。
[0030] 図 4は、図 1に示した 2電極一体型の溶接トーチ 150 (図 1参照)を使ったタンデムァ ーク溶接システムにおける動作の順序と内容を示して 、る。実施の形態 2での動作は 、図 4での状態 491、状態 492、状態 493の順に進められる。
[0031] 図 4の状態 491において、溶接方向(図 4の左から右への方向)に速度 Vで溶接動 作を進めてきた 2電極一体型の溶接トーチ 150が溶接終了位置 482の手前にある溶 接終了部第一の位置 481に到達したところで、先行アーク 205が終了する。後行ァ ーク 206は継続している。溶接終了部第一の位置 481は、位置として指定されるか、 または、溶接終了位置 482からの距離 LEにより指定される力、または、溶接終了位 置 482からの移動時間 TEにより指定される。
[0032] 状態 492において、溶接終了部第一の位置 481における溶接トーチ 150の速度 V から、溶接終了位置 482に到達したところで速度が最終の速度 VEとなるように、速度 を変更しながら溶接方向に動作が継続される。この際、接終了部第一の位置 481で は速度 Vに対応する後行電極 304の溶接条件が後行電極 304の溶接機 140 (図 1 参照)に送られる。この溶接条件は、溶接電流指令とワイヤ送給速度指令と溶接電圧 指令の少なくとも何れかである。溶接トーチ 150が溶接終了位置 482に到達したとこ ろで、最終の速度 VEに対応する後行電極 304の溶接条件が後行電極 304の溶接 機 140に送られる。この溶接条件は、溶接電流指令とワイヤ送給速度指令と溶接電 圧指令の少なくとも何れかである。そして、溶接終了部第一の位置 481から溶接終了 位置 482の間では、変化する速度に合わせて対応する後行電極 304の溶接条件が 後行電極 304の溶接機 140に送られる。この溶接条件は、溶接電流指令とワイヤ送 給速度指令と溶接電圧指令の少なくとも何れかである。
[0033] 状態 493において、溶接トーチ 150が溶接終了位置 482に到達したところで、後行 アーク 206も終了し、溶接は終了する。
[0034] 以上のように、実施の形態 2のアーク溶接システムにおけるアーク溶接制御方法は 、動作速度を連続的になだらかに変化させる。こうすることにより、急激な動作速度変 化に合わせて急激にワイヤ送給速度を変化させることを緩和できる。また、動作速度 に合わせて溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何れか を送って溶接することができるので、その結果安定した溶接を可能とする溶接終了部 のタンデムアーク溶接が可能となる。
[0035] (実施の形態 3)
次に、実施の形態 3について説明する。図 5は、タンデムアーク溶接システムに限ら ず一般の溶接システムにおける本発明の動作の内容を示す。図 5は、 2電極ではなく 、電極が 1つである溶接トーチ 550を例にして示している。溶接トーチ 550は図 1の溶 接トーチ 150に対応する。但し、実施の形態 3では、図 1の溶接機 140とアースケー ブル 141とパワーケーブル 142と制御線 143は不要である。
[0036] 図 5において、アークが発生した状態で溶接方向(図 5の左力 右への方向)に動 作してきた溶接トーチ 550は、第一の位置 581での速度 Vaに、第二の位置 582で速 度 Vbになるように、徐々に速度を変化させながら動作する。なお、第二の位置 582 は、位置として指定されるか、または、第一の位置 581からの距離 L5により指定され る力、または、第一の位置 581からの時間 T5により指定される。溶接トーチ 550が第 一の位置 581から第二の位置 582までの動作の際、制御装置 120 (図 1参照)は第 一の位置 581では速度 Vaに対応する溶接条件を溶接機 130 (図 1参照)に送る。こ の溶接条件は、溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何 れかである。溶接トーチ 550が第二の位置 582に到達したところで、制御装置 120は 速度 Vbに対応する溶接条件を溶接機 130に送る。この溶接条件は、溶接電流指令 とワイヤ送給速度指令と溶接電圧指令の少なくとも何れかである。また、溶接トーチ 1 50が第一の位置 581から第二の位置 582に移動する間では、制御装置 120は変化 する速度に合わせて対応する溶接条件としての溶接電流指令とワイヤ送給速度指令 溶接電圧指令の少なくとも何れかを溶接機 130に送る。
[0037] 以上のように、本実施の形態のアーク溶接システムにおけるアーク溶接制御方法は 、動作速度を連続的になだらかに変化させる。こうすることにより、急激な動作速度変 化に合わせて急激にワイヤ送給速度を変化させることを緩和することができる。また、 動作速度に合わせて溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくと も何れかを送って溶接することができるので、その結果安定した溶接が可能となる。
[0038] なお、実施の形態 3では、電極が 1つである溶接トーチ 550を例にして説明した力 2電極一体型の溶接トーチや近接して配置した 2つの単電極溶接トーチを使用する タンデムアーク溶接にぉ 、ても同様の動作をさせることが可能である。
[0039] また、溶接動作の速度を変化させる際に、指定された位置から指定された時間進 む間、または指定された距離進む間、または指定された位置まで進む間に、変化前 の速度力 変化後の速度に連続的に動作速度を変化させ、この速度変化と同期して 、以下を実行しても上述と同様の効果を得ることができる。すなわち、 2つの電極のう ち溶接進行方向に対して先行となる電極の溶接機に送る溶接電流指令とワイヤ送給 速度指令と溶接電圧指令の少なくとも何れかと、後行電極の溶接機に送る溶接電流 指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何れかとを連続的に変化し ても同様の効果を得ることができる。
[0040] 以上の実施の形態 1から実施の形態 3で説明したように、本発明のアーク溶接制御 方法は、動作速度を連続的になだらかに変化させる。こうすることにより、急激な動作 速度変化に合わせて急激にワイヤ送給速度を変化させることを緩和することができる 。また、動作速度に合わせて溶接電流指令とワイヤ送給速度指令と溶接電圧指令の 少なくとも何れかを送って溶接することができる。その結果、安定した溶接制御を可 會 こできる。
産業上の利用可能性
[0041] 本発明のアーク溶接制御方法は、安定した溶接制御が可能にでき、例えば、タン デムアーク溶接工法など高速で溶接を行う際のアーク溶接制御方法等として産業上 有用である。

Claims

請求の範囲
[1] 動作プログラムによって動作し、前記動作プログラムに設定された溶接条件で被 溶接物を溶接するタンデムアーク溶接システムのアーク溶接制御方法において、 溶接開始位置で先行電極のアークを開始した後に溶接トーチが初速度で移動 動作を開始するステップと、
前記溶接トーチが第一の時間進む間と第一の距離進む間と第一の位置まで進 む間の少なくとも何れかの間に、前記溶接トーチの速度を前記初速度力 第一の速 度に連続的に動作速度を変化させるステップと、
前記初速度から前記第一の速度への連続的な動作速度の変化と同期して、前 記先行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の 少なくとも何れかを連続的に変化させるステップと、
前記第一の時間の動作が完了した時点と前記第一の距離の動作が完了した時 点と前記第一の位置までの動作が完了した時点との少なくとも何れかの時点で、後 行電極のアークを開始するステップと、
前記溶接トーチが第二の時間進む間と第二の距離進む間と第二の位置まで進 む間の少なくとも何れかの間で、前記溶接トーチの速度を第二の速度に連続的に変 化させるステップと、
前記第二の速度への連続的な速度の変化と同期して、前記先行電極の溶接機に送 る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なくとも何れかと、前記後 行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少な くとも何れかを連続的に変化させるステップと
を備えるアーク溶接制御方法。
[2] 前記溶接条件は、前記第二の時間の動作が完了した時点と前記第二の距離の 動作が完了した時点と前記第二の位置までの動作が完了した時点の少なくとも何れ かの時点で、
前記先行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接 電圧指令の少なくとも何れかと、
前記後行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接 電圧指令の少なくとも何れか
を含み、これらの指令は定常溶接条件である請求項 1記載のアーク溶接制御方法。
[3] 動作プログラムによって動作し、前記動作プログラムに設定された溶接条件で被 溶接物を溶接するタンデムアーク溶接システムのアーク溶接制御方法において、 溶接トーチが、溶接終了位置に対して指定された時間手前の位置に到達した 時点と指定された距離手前の位置に到達した時点と前記溶接終了位置より手前の 指定された位置に到達した時点との少なくとも何れかの時点で、先行電極のアークを 終了するステップと、
前記溶接トーチが前記溶接終了位置に向かって進む間に、前記溶接トーチの 速度を指定された速度に連続的に速度を変化させるステップと、
前記連続的な速度の変化と同期して、後行電極の溶接機に送る溶接電流指令 とワイヤ送給速度指令と溶接電圧指令の少なくとも何れかを連続的に変化させるステ ップと、
前記溶接トーチが前記溶接終了位置に到達した際に、前記後行電極のアーク を終了し、溶接を終了するステップと
を備えるアーク溶接制御方法。
[4] 溶接トーチを動作プログラムによって動作し、前記動作プログラムの溶接条件で 被溶接物を溶接するアーク溶接システムのアーク溶接制御方法において、
溶接トーチが指定された位置から指定された時間進む間と指定された距離進む 間と指定された位置まで進む間の少なくとも何れかの間に、前記溶接トーチの速度を 連続的に変化させるステップと、
前記溶接トーチの変化前の速度から変化後の速度への連続的な速度変化と同 期して、溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指令の少なく とも何れかを連続的に変化させるステップと
を備えるアーク溶接制御方法。
[5] 動作プログラムによって動作し、前記動作プログラムの溶接条件で被溶接物を 溶接するタンデムアーク溶接システムのアーク溶接制御方法において、
溶接トーチが指定された位置から指定された時間進む間と指定された距離進む 間と指定された位置まで進む間の少なくとも何れかの間に、前記溶接トーチの速度を 連続的に変化させるステップと、
前記溶接トーチの変化前の速度から変化後の速度への連続的な速度変化と同 期して、先行電極の溶接機に送る溶接電流指令とワイヤ送給速度指令と溶接電圧指 令の少なくとも何れかと、後行電極の溶接機に送る溶接電流指令とワイヤ送給速度 指令と溶接電圧指令の少なくとも何れかとを連続的に変化させるステップと を備えるアーク溶接制御方法。
PCT/JP2007/052314 2006-06-14 2007-02-09 アーク溶接制御方法 WO2007144997A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/917,267 US8742291B2 (en) 2006-06-14 2007-02-09 Method of controlling arc welding in a tandem arc welding system
EP07713971A EP1900467B1 (en) 2006-06-14 2007-02-09 Method of controlling arc welding
CA002611243A CA2611243C (en) 2006-06-14 2007-02-09 Method of controlling arc welding
JP2007542172A JP4844564B2 (ja) 2006-06-14 2007-02-09 アーク溶接制御方法
CN2007800005766A CN101326029B (zh) 2006-06-14 2007-02-09 电弧焊接控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006164304 2006-06-14
JP2006-164304 2006-06-14

Publications (1)

Publication Number Publication Date
WO2007144997A1 true WO2007144997A1 (ja) 2007-12-21

Family

ID=38831520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052314 WO2007144997A1 (ja) 2006-06-14 2007-02-09 アーク溶接制御方法

Country Status (7)

Country Link
US (1) US8742291B2 (ja)
EP (1) EP1900467B1 (ja)
JP (2) JP4844564B2 (ja)
KR (1) KR100959097B1 (ja)
CN (1) CN101326029B (ja)
CA (1) CA2611243C (ja)
WO (1) WO2007144997A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206821A (ja) * 2010-03-30 2011-10-20 Mitsubishi Electric Corp 加工制御装置およびレーザ加工装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004602B4 (de) * 2008-01-16 2022-01-05 Daimler Ag Innen-Lichtbogendrahtbrenner
US20110301733A1 (en) * 2009-02-25 2011-12-08 Panasonic Corporation Welding method and welding system
US20130068745A1 (en) * 2011-09-15 2013-03-21 Lincoln Global Gas shielding device for a welding system
JP5843683B2 (ja) * 2012-03-28 2016-01-13 株式会社神戸製鋼所 タンデム溶接トーチ
AT512836B1 (de) * 2012-03-29 2014-02-15 Fronius Int Gmbh Schweißvorrichtung mit zwei Schweißbrennern und Schweißverfahren mit zwei Schweißprozessen
US9676051B2 (en) 2012-10-18 2017-06-13 Lincoln Global, Inc. System and methods providing modulation schemes for achieving a weld bead appearance
US9511440B2 (en) * 2013-05-15 2016-12-06 Lincoln Global, Inc. Methods and systems for multi-wire surfacing
JP5859065B2 (ja) * 2014-06-04 2016-02-10 株式会社神戸製鋼所 溶接条件導出装置
RU2609592C2 (ru) * 2015-03-31 2017-02-02 Фонд "Головной Аттестационный Центр по сварочному производству Средне-Волжского Региона" (Фонд "ГАЦ СВР") Способ механизированной наплавки дугой косвенного действия
RU2598715C1 (ru) * 2015-04-07 2016-09-27 Автономная Некоммерческая Организация "Головной Аттестационный Центр по сварочному производству Средне-Волжского региона" Способ сварки комбинацией дуг
RU2653027C1 (ru) * 2017-06-01 2018-05-04 Владимир Петрович Сидоров Способ дуговой сварки двумя электродами
US10549481B1 (en) * 2018-12-21 2020-02-04 Dukane Ias, Llc Systems and methods for low initial weld speed in ultrasonic welding
EP3722036A1 (de) * 2019-04-10 2020-10-14 FRONIUS INTERNATIONAL GmbH Mehrfach-schweissverfahren

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868956A (en) 1956-04-04 1959-01-13 Union Carbide Corp Multi-arc welding
GB1579607A (en) 1977-02-23 1980-11-19 Mannesmann Ag Method for avoiding end defects in the multi-wire longitudinal seam welding of tubes
JPH06179077A (ja) * 1992-12-11 1994-06-28 Fanuc Ltd 溶接ロボットにおけるアーク溶接制御方法
JPH08243751A (ja) * 1995-03-10 1996-09-24 Nippon Steel Corp 角継手1パスサブマージアーク溶接方法
JPH106005A (ja) * 1996-06-24 1998-01-13 Fanuc Ltd アーク溶接方法
JP2002361414A (ja) * 2001-06-13 2002-12-18 Daihen Corp 消耗2電極アーク溶接終了方法及び溶接終了制御方法及び溶接ロボット
JP2003062669A (ja) 2001-08-29 2003-03-05 Daihen Corp 消耗2電極アーク溶接終了方法及び終了制御方法
JP2003145270A (ja) * 2001-11-14 2003-05-20 Daihen Corp 消耗2電極アーク溶接終了方法
JP2004042121A (ja) 2002-07-15 2004-02-12 Daihen Corp 消耗電極ガスシールドアーク溶接方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852561A (en) * 1972-04-17 1974-12-03 D Brubaker Constant speed control for an automatic welder
US4236302A (en) * 1978-08-25 1980-12-02 Bunker Ramo Corporation Electrical contact feeding and attachment apparatus
JPS5549876U (ja) * 1978-09-29 1980-04-01
JPS5768277A (en) * 1980-10-09 1982-04-26 Nippon Steel Weld Prod & Eng Co Ltd Automatic narrow groove welding method
US4724302A (en) * 1987-03-30 1988-02-09 General Electric Company Bead process control with profiler
US5155330A (en) * 1991-08-02 1992-10-13 The Lincoln Electric Company Method and apparatus for GMAW welding
JP2899733B2 (ja) * 1991-08-27 1999-06-02 石川島播磨重工業株式会社 消耗電極溶接の始終端処理方法
TW277013B (ja) * 1994-07-29 1996-06-01 Hitachi Shipbuilding Eng Co
US6172333B1 (en) * 1999-08-18 2001-01-09 Lincoln Global, Inc. Electric welding apparatus and method
JP2001113373A (ja) * 1999-10-21 2001-04-24 Hitachi Ltd タンデムアーク溶接の制御方法
JP4864232B2 (ja) * 2001-06-12 2012-02-01 株式会社ダイヘン 消耗2電極アーク溶接終了方法及び溶接終了制御方法及び溶接ロボット

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2868956A (en) 1956-04-04 1959-01-13 Union Carbide Corp Multi-arc welding
GB1579607A (en) 1977-02-23 1980-11-19 Mannesmann Ag Method for avoiding end defects in the multi-wire longitudinal seam welding of tubes
JPH06179077A (ja) * 1992-12-11 1994-06-28 Fanuc Ltd 溶接ロボットにおけるアーク溶接制御方法
JPH08243751A (ja) * 1995-03-10 1996-09-24 Nippon Steel Corp 角継手1パスサブマージアーク溶接方法
JPH106005A (ja) * 1996-06-24 1998-01-13 Fanuc Ltd アーク溶接方法
JP2002361414A (ja) * 2001-06-13 2002-12-18 Daihen Corp 消耗2電極アーク溶接終了方法及び溶接終了制御方法及び溶接ロボット
JP2003062669A (ja) 2001-08-29 2003-03-05 Daihen Corp 消耗2電極アーク溶接終了方法及び終了制御方法
JP2003145270A (ja) * 2001-11-14 2003-05-20 Daihen Corp 消耗2電極アーク溶接終了方法
JP2004042121A (ja) 2002-07-15 2004-02-12 Daihen Corp 消耗電極ガスシールドアーク溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1900467A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206821A (ja) * 2010-03-30 2011-10-20 Mitsubishi Electric Corp 加工制御装置およびレーザ加工装置

Also Published As

Publication number Publication date
JP2011131277A (ja) 2011-07-07
KR100959097B1 (ko) 2010-05-25
EP1900467A1 (en) 2008-03-19
CA2611243C (en) 2010-02-02
JPWO2007144997A1 (ja) 2009-10-29
CN101326029A (zh) 2008-12-17
JP5206831B2 (ja) 2013-06-12
EP1900467B1 (en) 2012-06-13
EP1900467A4 (en) 2010-05-26
US20090294428A1 (en) 2009-12-03
JP4844564B2 (ja) 2011-12-28
KR20080015932A (ko) 2008-02-20
US8742291B2 (en) 2014-06-03
CN101326029B (zh) 2013-03-13
CA2611243A1 (en) 2007-12-21

Similar Documents

Publication Publication Date Title
JP5206831B2 (ja) アーク溶接制御方法
JP3204227U (ja) 溶接終了プロセス及びシステム
CA2963967C (en) Short circuit arc welding method
JP2015536829A (ja) ダビングパルス溶接システムおよび方法
JP2009208137A (ja) プラズマミグ溶接方法
JPWO2009051107A1 (ja) アークスタート制御方法
JP4089755B2 (ja) タンデムアーク溶接装置
JP5410220B2 (ja) アーク溶接方法およびアーク溶接システム
JP4045713B2 (ja) 自動機用溶接機
JP6395644B2 (ja) アーク溶接方法、アーク溶接装置およびアーク溶接用制御装置
JP4058099B2 (ja) 2電極アーク溶接終了方法
KR101138659B1 (ko) 소모 전극 아크 용접 방법
JP2009233680A (ja) 溶接装置
JP4864232B2 (ja) 消耗2電極アーク溶接終了方法及び溶接終了制御方法及び溶接ロボット
CN101992335B (zh) 电弧焊接方法以及电弧焊接系统
JP4864233B2 (ja) 消耗2電極アーク溶接終了方法及び溶接終了制御方法及び溶接ロボット
WO2022035821A3 (en) Arc welding, cladding, and additive manufacturing method and apparatus
JPH11347732A (ja) 溶接ロボットの溶接開始点制御方法
CN113677471B (zh) 用于实施多重焊接工艺的方法和焊接设备
JP6180259B2 (ja) アーク溶接開始方法および溶接装置
JP2004042121A (ja) 消耗電極ガスシールドアーク溶接方法
JP6425588B2 (ja) 2ワイヤ溶接のクレータ制御方法
JP2016187817A (ja) 2ワイヤ溶接のクレータ制御方法
JP2004050228A (ja) アークスポット溶接方法および装置
JP2023162631A (ja) プラズマアークハイブリッド溶接装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000576.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007542172

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007713971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11917267

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2611243

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087000771

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07713971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE