WO2007142061A1 - マイクロチップ検査装置 - Google Patents
マイクロチップ検査装置 Download PDFInfo
- Publication number
- WO2007142061A1 WO2007142061A1 PCT/JP2007/060795 JP2007060795W WO2007142061A1 WO 2007142061 A1 WO2007142061 A1 WO 2007142061A1 JP 2007060795 W JP2007060795 W JP 2007060795W WO 2007142061 A1 WO2007142061 A1 WO 2007142061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microchip
- control unit
- temperature control
- temperature
- unit
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
- G01N2035/00099—Characterised by type of test elements
- G01N2035/00158—Elements containing microarrays, i.e. "biochip"
Definitions
- the present invention relates to a microchip inspection apparatus.
- Micro Total Analysis System that performs analysis by detecting a reaction state by mixing a plurality of solutions on a microchip on which microchannels are integrated and processed.
- Analysis System TAS
- ⁇ TAS has advantages such as a small amount of sample, a short reaction time, and a small amount of waste!
- the burden on the patient can be reduced by reducing the amount of specimen (blood, urine, wiping fluid, etc.), and the cost of testing can be reduced by reducing the amount of reagent.
- the reaction time is greatly shortened and the efficiency of the test can be improved.
- the device since the device is small, it can be installed in a small medical institution, and inspection can be performed quickly regardless of location.
- the temperature of the microchip is adjusted (hereinafter also referred to as temperature control) in order to cool the reagent and to heat the sample to promote the reaction between the reagent and the like. There are many cases.
- Patent Document 1 describes a microphone tip temperature controller that adjusts the temperature of each of a plurality of regions in a microchip.
- Patent Document 2 discloses detection of a reaction state of a reaction detection channel by irradiating light to a reaction detection channel (a portion to be detected) on a microchip and receiving light from the reaction detection channel. A microphone mouth chip inspection device to perform is described.
- Patent Document 1 Japanese Patent Laid-Open No. 2005-214782
- Patent Document 2 Japanese Patent Laid-Open No. 2003-4752
- the present invention has been made based on these requirements, and an object of the present invention is to provide a microchip inspection apparatus capable of performing accurate detection in a microchip inspection apparatus having a temperature control function. !
- An inspection apparatus using a microchip includes a microchip housing portion in which a microphone mouth chip having a detected portion and a temperature-controlled portion is housed, and a microchip housing in the microchip housing portion.
- a detection unit provided corresponding to the detection unit; a temperature adjustment unit provided corresponding to the temperature adjustment unit of the microchip accommodated in the microchip accommodation unit; and the microchip by the detection unit And a control unit that reduces the work rate of the temperature control unit when detecting the detection target portion of the microchip stored in the storage unit.
- the inspection apparatus using the microchip according to the present invention includes a microchip housing portion in which a microchip having a detected portion and a temperature controlled portion is housed, and a microchip housed in the microchip housing portion.
- a detection portion provided corresponding to the detected portion, a temperature adjustment portion provided corresponding to the temperature adjustment portion of the microchip accommodated in the microphone port chip accommodation portion, and the microchip accommodation portion The microchip housed in the microchip is provided on the same side as the temperature control section, corresponding to the temperature control section, and detects the temperature of one surface of the microchip housed in the microchip housing section.
- the first temperature sensor the control unit for controlling the temperature of the temperature control unit based on the output of the first temperature sensor, and the microchip stored in the microchip storage unit
- Temperature control section A second temperature sensor provided on the opposite side, corresponding to the temperature control unit, for detecting the temperature of the other surface different from the one surface of the microchip housed in the microchip housing portion; At least before Based on the output value of the second temperature sensor, a control unit for outputting a signal indicating whether or not the detection of the detected portion of the microchip housed in the microchip storage portion by the detecting portion is abnormal It is characterized by having.
- the present invention at the time of detection, by reducing the temperature control output level, electrical noise that increases as the temperature control level increases, and fluctuation noise due to convection of the liquid in the microchannel , Etc. can be suppressed, and accurate detection can be performed.
- a normal reaction can be detected and a case can be detected. Therefore, even if an abnormal detection value is output, normal detection remains without being noticed. This eliminates the risk of determining the value and enables accurate detection.
- FIG. 1 is an external view of an inspection apparatus using a microchip according to the present embodiment.
- FIG. 2 is a configuration diagram of an inspection apparatus using a microchip according to the present embodiment.
- FIG. 3 is a configuration diagram of a microchip according to the present embodiment.
- FIG. 4 is a diagram showing a main part of a control configuration of an inspection apparatus using a microchip according to the present embodiment.
- FIG. 5 is a flowchart of temperature control according to the present embodiment.
- FIG. 1 is an external view of an inspection apparatus 80 using a microchip according to this embodiment.
- the detection device 80 is a device that automatically reacts a sample and a reagent previously injected into the microchip 1 and automatically outputs a reaction result.
- the casing 82 of the inspection apparatus 80 has a spout 83 for inserting the microchip 1 into the apparatus, a display section 84, a memory card slot 85, a print output port 86, an operation panel 87, an external input / output terminal. 88 is provided.
- the person inspecting inserts the microchip 1 in the direction of the arrow in FIG. 1, operates the operation panel 87, and starts the inspection. Inside the inspection device 80, the reaction in the microchip 1 is automatically inspected, and the result is displayed on the display unit 84 when the inspection is completed.
- the inspection result can be output from the print output port 86 or stored in a memory card inserted in the memory card slot 85 by operating the operation panel 87. You can also save data to a personal computer using an external input / output terminal. After the inspection is completed, the person in charge of inspection takes out the microchip 1 from the insertion slot 83.
- FIG. 2 is a configuration diagram of an inspection apparatus 80 using the microchip according to the present embodiment.
- FIG. 2 shows a state in which the microchip is inserted from the throat inlet 83 shown in FIG. 1 and the setting is completed.
- the inspection apparatus 80 is used to send a sample and a reagent previously injected into the microchip 1.
- the drive fluid tank 10 for storing the drive fluid 11, the pump 5 for supplying the drive fluid 11 to the microchip 1, the pump 5 and the microchip 1 are connected so that the drive fluid 11 does not leak! Assemble the chip pressing plate 2 and the chip pressing plate 2 so as to contact the temperature adjusting unit 3 and the packing 6 so that the temperature adjustment unit 3 and the micro chip 1 are not displaced.
- a pressure plate drive unit 21 for controlling the microchip 1 with respect to the pump 5, a regulating member 22 for accurately positioning the microchip 1 and a light detection unit 4 for detecting a reaction state between the sample and the reagent in the microchip 1 and the like. ing.
- the chip pressing plate 2 is retracted upward from the position shown in FIG. 2 in the initial state.
- the microchip 1 can be inserted and removed in the direction of the arrow X, and the person inspecting inserts the microchip 1 from the insertion port 83 (see FIG. 1) until it comes into contact with the regulating member 22.
- the chip pressing plate 2 is lowered by the pressing plate driving unit 21 and comes into contact with the microchip 1, and the lower surface of the microphone port chip 1 is in close contact with the temperature control unit 3 and the packing 6.
- the temperature control unit 3 includes a Peltier element 31 and a heater 32 on the surface facing the microchip 1.
- the Peltier element 31 and the heater 32 are microchips. It comes in close contact with 1.
- the part containing the reagent is cooled by the Peltier element 31 so that the reagent is not denatured, or the part where the sample and the reagent react is heated by the heater 32 to promote the reaction.
- Feedback temperature sensors 33 and 34 are provided in the vicinity of the Peltier element 31 and the heater 32, respectively, and the temperature control of the Peltier element 31 and the heater 32 is performed based on the feedback temperature sensors 33 and 34. Control is made.
- the feedback temperature sensor corresponds to the first temperature sensor according to the present invention.
- monitoring is performed to measure the temperature of the surface opposite to the surface measured by the feedback temperature sensors 33 and 34 of the microphone mouth chip 1
- the temperature sensors 35 and 36 are provided integrally inside the chip pressing plate 2, respectively.
- the monitoring temperature sensor corresponds to the second temperature sensor according to the present invention.
- the light detection unit 4 includes a light emitting unit 4a and a light receiving unit 4b.
- the light detecting unit 4 irradiates the microphone chip 1 with light from the light emitting unit 4a, and the light receiving unit 4b detects light transmitted through the microchip 1.
- the light receiving portion 4b is integrally provided inside the chip pressing plate 2. Light emitting part 4a and light receiving part 4b are provided so as to face each of the detected parts 11 la to L 1 Id of the microchip 1 described later.
- the pump 5 includes a pump chamber 52, a piezoelectric element 51 that changes the volume of the pump chamber 52, a first throttle channel 53 that is located on the microchip 1 side of the pump chamber 52, and a driving fluid tank 10 side of the pump chamber
- the second throttle channel 54, etc. located in The first throttle channel 53 and the second throttle channel 54 are narrow and narrow channels, and the first throttle channel 53 is longer than the second throttle channel 54.
- the piezoelectric element 51 is driven so as to rapidly reduce the volume of the pump chamber 52. Then, a turbulent flow is generated in the second throttle channel 54, which is a short throttle channel, and the flow resistance in the second throttle channel 54 is relatively long compared to the first throttle channel 53, which is a throttle channel. growing. As a result, the driving liquid 11 in the pump chamber 52 is predominantly pushed out toward the first throttle channel 53 and fed. Next, gradually increase the volume of the pump chamber 52! The piezoelectric element 51 is driven so that Then, the driving liquid 11 flows from the first throttle channel 53 and the second throttle channel 54 as the volume in the pump chamber 52 increases.
- the second throttle channel 54 since the second throttle channel 54 is shorter in length than the first throttle channel 53, the second throttle channel 54 has a smaller channel resistance than the first throttle channel 53. As a result, the driving liquid 11 flows into the pump chamber 52 predominantly also in the direction of the second throttle channel 54. As the piezoelectric element 51 repeats the above operation, the driving liquid 11 is fed in the forward direction.
- the piezoelectric element 51 is driven so as to gently reduce the volume of the pump chamber 52.
- the second throttle channel 54 is shorter in length than the first throttle channel 53, so the second throttle channel 54 is in comparison with the first throttle channel 53. Resistance becomes smaller.
- the driving liquid 11 in the pump chamber 52 is predominantly pushed out toward the second throttle channel 54 and fed.
- the piezoelectric element 51 is driven. Then, the driving liquid 11 flows from the first throttle channel 53 and the second throttle channel 54 as the volume in the pump chamber 52 increases.
- FIG. 3 is a configuration diagram of the microchip 1 according to the present embodiment.
- the present invention is not limited to this example.
- FIG. 3 (a) an arrow indicates an insertion direction in which the microchip 1 is inserted into the inspection apparatus 80, and Fig. 3 (a) illustrates a surface serving as a lower surface of the microchip 1 at the time of insertion.
- Figure 3 (b) is a side view of the microphone tip 1.
- the microchip 1 includes a groove forming substrate 108 and a covering substrate 109 that covers the groove forming substrate 108.
- the microchip 1 according to the present embodiment is provided with a fine channel and a channel element for mixing and reacting the specimen and the reagent on the microchip 1.
- a fine channel and a channel element for mixing and reacting the specimen and the reagent on the microchip 1.
- FIG. 3 (c) schematically shows the flow path element and its joined state with the coated substrate 109 removed in FIG. 3 (a).
- a sample storage unit 121 that stores a sample liquid
- a reagent storage unit 120 that stores a reagent
- a positive control storage unit 122 that stores a reagent for positive control
- a reagent for negative control A negative control accommodating portion 123 and the like are provided.
- Reagents, positive controls, and negative controls are stored in advance in each storage unit.
- the positive control reacts with the reagent and shows positive
- the negative control reacts with the reagent and shows negative, and is used to confirm whether or not an accurate test has been performed.
- Fig. 3 (c) is schematically shown for the sake of simplicity. Actually, a plurality of reagents, diluting solutions, and the like are accommodated in the chip, and reagent preparation in the chip is performed. May be performed.
- the sample injection unit 113 is an injection unit for injecting a sample into the microchip 1
- the driving liquid injection units 110a to 110d are injection units for injecting the driving liquid 11 into the microchip 1.
- the microchip 1 into which the specimen has been injected is inserted into the insertion port 83 of the inspection apparatus 80 shown in FIG. 1 by the person in charge of the inspection, and set as shown in FIG.
- the pump 5 shown in FIG. 2 is driven in the forward direction according to a predetermined procedure instructed to the CPU 90 described later, and the driving liquid 11 is injected from the driving liquid injection units 110a to 110d.
- the driving liquid 11 injected from the driving liquid injection unit 110a pushes out the sample stored in the sample storage unit 121 through the communicating fine flow path, and sends the sample to the reaction unit 124.
- the driving liquid 11 injected from the driving liquid injection section 110b pushes out the positive control reagent stored in the positive control storage section 122 through the communicating fine flow path, and sends the positive control to the reaction section 125.
- the driving liquid 11 injected from the driving liquid injection section 110c pushes out the negative control reagent stored in the negative control storage section 123 through the communicating fine flow path, and puts a negative control port in the reaction section 126. Send it in.
- the driving liquid 11 injected from the driving liquid injection section lOd is stored in the reagent storage section 120 through a communicating fine channel, pushes out the reagent, and sends the reagent to the reaction sections 124 to 126 described above.
- the reagent storage unit 120, the sample storage unit 121, the positive control storage unit 122, and the negative control storage unit 123 are positioned facing the Peltier element 31 of the test apparatus 80 so as not to be denatured. To be cooled.
- the reaction units 124 to 126 are positioned to face the heater 32 of the inspection device 80 and are heated so that the reaction is promoted.
- a part of the mixed liquid of the specimen and the reagent merged in the reaction unit 124 is sent to the detected unit 111a.
- Part of the mixture of the sample and reagent that merged in the reaction unit 124 and part of the mixture of the positive control and reagent that merged in the reaction unit 125 are placed in 11 lb of the detected part.
- the liquid is sent.
- a part of the mixed solution of the positive control and the reagent merged in the reaction unit 125 is sent to the detected unit 111c.
- the liquid mixture of the negative control and the reagent merged in the reaction unit 126 is sent to the detected portion 11 Id.
- the window 1 l ie of the detected part and the detected part 11 la ⁇ : L id are provided for optically detecting the reaction of each liquid mixture, such as transparent glass resin Consists of materials.
- FIG. 4 is a diagram showing a main part of the control configuration of the inspection apparatus using the microchip according to the present embodiment. Focusing on the CPU 90 that controls the inspection device 80 according to the program, the ROM 91, ROM 93, nonvolatile memory 94, photodetection unit 4, feedback temperature sensors 33, 34, monitoring temperature sensors 35, 36, Peltier element 31, heater 32, operation panel 87, display unit 84, etc. are connected to each other. It should be noted that apparatus components that are not directly related to the control of the present invention are omitted.
- the ROM 92 stores various control programs executed by the CPU 90, data, and the like.
- the RAM 93 is used as a work area by the CPU 90, and temporarily stores programs and data required when the CPU 90 executes control.
- the non-volatile memory 94 stores a target range value for comparison with the detection result by the light detection unit 4 and the output result of the monitoring temperature sensors 35 and 36.
- FIG. 5 is a flowchart of temperature control according to the present embodiment.
- Feedback temperature sensor
- the temperature control is performed by the CPU 90 executing processing based on the temperature control program stored in the ROM 92.
- the CPU 90 determines whether or not the force has passed for a predetermined time (step SI 1).
- the predetermined time is slightly shorter than the time required for the specimen and various reagents to reach the reaction parts 124 to 126.
- step S11 If it is determined that the predetermined time has elapsed (step S11; Yes), the CPU 90 starts output control of the heater 32 so as to reach the set temperature based on the output of the feedback temperature sensor 34 (step S12). For example, the output current of the heater 32 is controlled by PWM modulation. As a result, the reaction parts 124 to 126 of the microchip 1 are maintained at the set temperature.
- step Sl 1 If it is determined that the predetermined time has not elapsed (step Sl 1; No), the CPU 90 waits until the predetermined time elapses.
- the reason for waiting is that various reagents are easily denatured when heated, so they are not heated until they reach the reaction section as much as possible, and are heated immediately before.
- the microchip 1 is generally refrigerated so that the reagent is not denatured.
- the CPU 90 determines whether or not the output value of the monitoring temperature sensor 36 is within the range of the target range value stored in advance in the nonvolatile memory 94 (step S 13).
- the heater 32 and the microchip 1 are sufficiently in close contact with each other and the heat transfer to the reaction parts 124 to 126 is sufficiently performed. In other words, it means that a normal reaction is performed in the reaction parts 124 to 126.
- the heater 32 and the microchip 1 cause poor adhesion and heat transfer is not performed sufficiently, and the temperature of the reaction parts 124 to 126 Deviates from the target value, which means that normal reaction is not taking place.
- the adhesion failure is caused by warping of the microchip 1 and adhesion of dust or dirt to the microchip 1. In order to prevent poor adhesion, it is preferable that the flatness of the microchip 1 is high.
- step S13 When it is determined that the output value of the monitoring temperature sensor 36 is within the target range (step S13; Yes), the CPU 90 determines whether or not it is time to perform light detection (step S1 4 ). If it is determined that the output value of the monitoring temperature sensor 36 is not within the target range (step S13; No), the process proceeds to step S17, and the CPU 90 turns off the output of the heater 32. At this time, the CPU 90 outputs an error signal and displays a message indicating an abnormality on the display unit 84 (step S18). As a result, when normal reactions are not performed in the reaction units 124 to 126, it is possible to interrupt the inspection and inform the person in charge of the abnormality.
- step S14 If it is determined in step S14 that the detection timing is reached (step S14; Yes), the CPU 90 limits (reduces) the output current value of the heater 32 to a predetermined value or less (step S15). This includes the case where the heater 32 output is turned off. That is, the work rate of the heater 32 is reduced or made zero. As a result, noise such as electrical noise and fluctuation noise due to convection of liquid in the micro flow path, which increase with an increase in the output current of the heater 32, can be suppressed, and accurate detection can be performed. Is possible.
- step S14 If it is determined that it is not time to perform detection (step S14; No), the process returns to step S13.
- step S16 the CPU 90 determines whether or not the force has been detected. If it is determined that the detection has ended (step S16; Yes), the CPU 90 turns off the output of the heater 32 (step S17), and ends the flow. If it is determined that the detection is not completed (step S16; No), the CPU 90 returns to step S16 and waits until the detection is completed.
- the output current value of the heater 32 is limited (reduced) to a predetermined value or less, thereby increasing with an increase in the output current of the heater 32.
- Noise such as electrical noise and fluctuation noise due to convection of the liquid in the microchannel can be suppressed, and accurate detection can be performed.
- the inspection can be interrupted and the abnormality can be notified to the person in charge of the inspection.
- the abnormality is determined as a normal detection value without being noticed, and accurate detection can be performed.
- Anomaly detection In this case, it is possible to reduce the loss of valuable specimens and detect failures early by re-examination by wiping off the dirt on the microchip 1.
- the temperature control (heating) of the heater 32 is described based on the feedback temperature sensor 34.
- the temperature control (cooling) is performed using the Peltier element 31 based on the force feedback temperature sensor 33. This is basically the same when performing the above. The differences are described below.
- the specimen and various reagents are easily denatured when heated, they are preferably cooled except when necessary. Therefore, it is preferable to start the temperature control of the Peltier element 31 when the power to the inspection device 80 is turned on or when the inspection is started. In particular, when a plurality of microchips are inspected continuously, it is preferable to continue cooling so that the reagents and the like are not denatured. Therefore, temperature control of the Peltier element 31 can be started when the power is turned on. More preferred ,.
- the above temperature control is applied to the heater 32 to reduce the temperature control at the time of detection, and the normal temperature control is continued at the time of detection for the Peltier element 31 to denature reagents and the like. Prevention may be given priority.
- a heater is used when heating various reagents as the temperature control unit, and a Peltier element is used when cooling, but the various reagents are sufficiently cooled until immediately before the test. If it is, only the heater may be used as the temperature control unit. Of course, a Peltier element may be used as both the temperature control unit for heating and cooling various reagents.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
本発明は、温調機能を備えたマイクロチップ検査装置において、精度良い検出を行うことのできるマイクロチップ検査装置を提供する。
被検出部及び被温調部を有するマイクロチップが収容されるマイクロチップ収容部と、前記マイクロチップ収容部に収容されたマイクロチップの被検出部に対応して設けられた検出部と、前記マイクロチップ収容部に収容されたマイクロチップの前記被温調部に対応して設けられた温調部と、前記検出部により前記マイクロチップ収容部に収容されたマイクロチップの被検出部の検出を行う際に、前記温調部の仕事率を低減させる制御部と、を有する。
Description
明 細 書
マイクロチップ検査装置
技術分野
[0001] 本発明は、マイクロチップ検査装置に関する。
背景技術
[0002] 近年、微細流路が集積加工されたマイクロチップ上にぉ ヽて、複数の溶液を混合し て反応させ、当該反応の状態を検出して分析を行うマイクロ総合分析システム(Micr o Total Analysis System; TAS)が注目されている。
[0003] μ TASでは、試料の量が少な 、、反応時間が短!、、廃棄物が少な!/、等のメリットが ある。医療分野に使用した場合、検体 (血液、尿、拭い液等)の量を少なくすることで 患者への負担を軽減でき、試薬の量を少なくすることで検査のコストを下げることがで きる。また、検体、試薬の量が少ないことから、反応時間が大幅に短縮され、検査の 効率ィ匕が図れる。さらに、装置が小型であるため小さな医療機関にも設置することが でき、場所を選ばず迅速に検査を行うことができる。
[0004] マイクロチップを用いる検査では、試薬の冷却、検体と試薬との反応促進のための 加熱等を行うために、マイクロチップの温度調節(以下、温調と称することもある)を行 うことが多い。
[0005] 特許文献 1には、マイクロチップにおける複数の領域のそれぞれを温度調節するマ イク口チップ用温度調節器が記載されて 、る。
[0006] また、マイクロチップ上の反応を検出する方法として、マイクロチップの反応部に光 を照射し、その透過光や反射光を検出する方法が知られて 、る。
[0007] 特許文献 2には、マイクロチップ上の反応検出流路 (被検出部)に光を照射し、反応 検出流路からの光を受光することにより反応検出流路の反応状態の検出を行うマイク 口チップ検査装置が記載されて 、る。
特許文献 1:特開 2005— 214782号公報
特許文献 2 :特開 2003— 4752号公報
発明の開示
発明が解決しょうとする課題
[0008] 温調機能を備えたマイクロチップ検査装置において精度良い検出を行うためには、 温調に起因して発生する電気ノイズ等のノイズが検出に影響を及ぼさないようにする 必要がある。また、マイクロチップ上の試薬の保管箇所、検体と試薬との反応箇所、 等を精度良く温調し、試薬の混合、検体と試薬との反応、等を正常に行わせる必要 がある。
[0009] 本発明は、これらの要請に基づいてなされたものであり、温調機能を備えたマイクロ チップ検査装置において、精度良い検出を行うことのできるマイクロチップ検査装置 を提供することを目的として!ヽる。
課題を解決するための手段
[0010] 本発明のマイクロチップを用いる検査装置は、被検出部及び被温調部を有するマ イク口チップが収容されるマイクロチップ収容部と、前記マイクロチップ収容部に収容 されたマイクロチップの被検出部に対応して設けられた検出部と、前記マイクロチップ 収容部に収容されたマイクロチップの前記被温調部に対応して設けられた温調部と 、前記検出部により前記マイクロチップ収容部に収容されたマイクロチップの被検出 部の検出を行う際に、前記温調部の仕事率を低減させる制御部と、を有することを特 徴としている。
[0011] また、本発明のマイクロチップを用いる検査装置は、被検出部及び被温調部を有 するマイクロチップが収容されるマイクロチップ収容部と、前記マイクロチップ収容部 に収容されたマイクロチップの被検出部に対応して設けられた検出部と、前記マイク 口チップ収容部に収容されたマイクロチップの前記被温調部に対応して設けられた 温調部と、前記マイクロチップ収容部に収容されたマイクロチップに対して前記温調 部と同じ側に、前記温調部に対応して設けられ、前記マイクロチップ収容部に収容さ れたマイクロチップの一方の面の温度を検出する第 1の温度センサと、前記第 1の温 度センサの出力に基づ 、て前記温調部の温度を制御する制御部と、前記マイクロチ ップ収容部に収容されたマイクロチップに対して前記温調部と反対側に、前記温調 部に対応して設けられ、前記マイクロチップ収容部に収容されたマイクロチップの前 記一方の面とは異なる他方の面の温度を検出する第 2の温度センサと、少なくとも前
記第 2の温度センサの出力値に基づいて、前記検出部による前記マイクロチップ収 容部に収容されたマイクロチップの被検出部の検出が異常である力否かの信号を出 力する制御部と、を有することを特徴としている。
発明の効果
[0012] 本発明によれば、検出時に、温調出力レベルを低減させることにより、温調出カレ ベルの増加に伴って増加する電気ノイズ、微小流路内での液の対流によるゆらぎノィ ズ、等のノイズを抑制することができ、精度良い検出を行うことが可能となる。
[0013] また、本発明によれば、正常な反応が行われて ヽな 、場合を検知することができる ので、異常な検出値が出力されても異常とは気づ力ないまま正常な検出値と判断し てしまうといったおそれが無くなり、精度良い検出を行うことが可能となる。
図面の簡単な説明
[0014] [図 1]本実施形態に係るマイクロチップを用いる検査装置の外観図である。
[図 2]本実施形態に係るマイクロチップを用いる検査装置の構成図である。
[図 3]本実施形態に係るマイクロチップの構成図である。
[図 4]本実施形態に係るマイクロチップを用いる検査装置の制御構成の要部を示す 図である。
[図 5]本実施形態に係る温調制御のフロー図である。
符号の説明
[0015] 1 マイクロチップ
4 光検出部
31 ペルチェ素子
32 ヒータ
33, 34 フィードバック用温度センサ
35, 36 監視用温度センサ
80 検査装置
90 CPU
94 不揮発性メモリ
111 被検出部
120 試薬収容部
121 検体収容部
122 ポジティブコントロール収容部
123 ネガティブコントロール収容部
124, 125, 126 反応部
発明を実施するための最良の形態
[0016] 本実施形態では、一例として、特定 DNAの反応を検出する DNAチップのように、 検体と試薬とをマイクロチップ上で反応させる場合について示すが、これに限られず
、少なくとも 2種類の流体をマイクロチップ上で混合させる場合に適用することができ る。
[0017] (装置構成)
図 1は、本実施形態に係るマイクロチップを用いる検査装置 80の外観図である。検 查装置 80は、マイクロチップ 1に予め注入された検体と試薬とを自動的に反応させ、 反応結果を自動的に出力する装置である。
[0018] 検査装置 80の筐体 82には、マイクロチップ 1を装置内部に挿入するための揷入口 83、表示部 84、メモリカードスロット 85、プリント出力口 86、操作パネル 87、外部入 出力端子 88が設けられている。
[0019] 検査担当者は、図 1の矢印方向にマイクロチップ 1を挿入し、操作パネル 87を操作 して検査を開始させる。検査装置 80の内部では、マイクロチップ 1内の反応の検査が 自動的に行われ、検査が終了すると表示部 84に結果が表示される。検査結果は操 作パネル 87の操作により、プリント出力口 86よりプリントを出力したり、メモリカードス ロット 85に挿入されたメモリカードに記憶することができる。また、外部入出力端子 88 力 例えば LANケーブルを使って、パソコンなどにデータを保存することができる。 検査終了後、検査担当者はマイクロチップ 1を挿入口 83から取り出す。
[0020] 図 2は、本実施形態に係るマイクロチップを用いる検査装置 80の構成図である。図 2においては、マイクロチップが図 1に示す揷入口 83から挿入され、セットが完了して いる状態を示している。
[0021] 検査装置 80は、マイクロチップ 1に予め注入された検体及び試薬を送液するため
の駆動液 11を貯留する駆動液タンク 10、マイクロチップ 1に駆動液 11を供給するた めのポンプ 5、ポンプ 5とマイクロチップ 1とを駆動液 11が漏れな!/、ように接続するパッ キン 6、マイクロチップ 1の必要部分を温調する温度調節ユニット 3、マイクロチップ 1を ずれな 、ように温度調節ユニット 3及びパッキン 6に密着させるためのチップ押圧板 2 、チップ押圧板 2を昇降させるための押圧板駆動部 21、マイクロチップ 1をポンプ 5に 対して精度良く位置決めする規制部材 22、マイクロチップ 1内の検体と試薬との反応 状態等を検出する光検出部 4、等を備えている。
[0022] チップ押圧板 2は、初期状態においては、図 2に示す位置より上方に退避している 。これにより、マイクロチップ 1は矢印 X方向に挿抜可能であり、検査担当者は挿入口 83 (図 1参照)から規制部材 22に当接するまでマイクロチップ 1を挿入する。その後、 チップ押圧板 2は、押圧板駆動部 21により下降してマイクロチップ 1に当接し、マイク 口チップ 1の下面が温度調節ユニット 3及びパッキン 6に密着される。
[0023] 温度調節ユニット 3は、マイクロチップ 1と対向する面にペルチェ素子 31及びヒータ 32を備え、マイクロチップ 1が検査装置 80にセットされたときに、ペルチェ素子 31及 びヒータ 32がマイクロチップ 1に密着するようになって 、る。試薬が収容されて 、る部 分をペルチェ素子 31で冷却して試薬が変性しな 、ようにしたり、検体と試薬とが反応 する部分をヒータ 32で加熱して反応を促進させたりする。
[0024] ペルチェ素子 31及びヒータ 32のそれぞれの近傍には、フィードバック用温度セン サ 33, 34が設けられ、これらのフィードバック用温度センサ 33, 34に基づいてペル チェ素子 31及びヒータ 32の温調制御がなされる。フィードバック用温度センサは、本 発明に係る第 1の温度センサに該当する。
[0025] マイクロチップ 1を挟んでフィードバック用温度センサ 33, 34と反対側には、マイク 口チップ 1のフィードバック用温度センサ 33, 34で測定する面とは反対側の面の温度 を測定する監視用温度センサ 35, 36がそれぞれチップ押圧板 2の内部に一体的に 設けられている。監視用温度センサは、本発明に係る第 2の温度センサに該当する。
[0026] 光検出部 4は、発光部 4a及び受光部 4bから構成され、発光部 4aからの光をマイク 口チップ 1に照射し、マイクロチップ 1を透過した光を受光部 4bにより検出する。受光 部 4bはチップ押圧板 2の内部に一体的に設けられて 、る。発光部 4a及び受光部 4b
は、後述のマイクロチップ 1の被検出部 11 la〜: L 1 Idのそれぞれに対向するように複 数設けられている。
[0027] ポンプ 5は、ポンプ室 52、ポンプ室 52の容積を変化させる圧電素子 51、ポンプ室 5 2のマイクロチップ 1側に位置する第 1絞り流路 53、ポンプ室の駆動液タンク 10側に 位置する第 2絞り流路 54、等から構成されている。第 1絞り流路 53及び第 2絞り流路 54は絞られた狭い流路となっており、また、第 1絞り流路 53は第 2絞り流路 54よりも 長い流路となっている。
[0028] 駆動液 11を順方向(マイクロチップ 1に向力 方向)に送液する場合には、まず、ポ ンプ室 52の容積を急激に減少させるように圧電素子 51を駆動する。そうすると、短い 絞り流路である第 2絞り流路 54において乱流が発生し、第 2絞り流路 54における流 路抵抗が長い絞り流路である第 1絞り流路 53に比べて相対的に大きくなる。これによ り、ポンプ室 52内の駆動液 11は、第 1絞り流路 53の方に支配的に押し出され送液さ れる。次に、ポンプ室 52の容積を緩やかに増力!]させるように圧電素子 51を駆動する 。そうすると、ポンプ室 52内の容積増加に伴って駆動液 11が第 1絞り流路 53及び第 2絞り流路 54から流れ込む。このとき、第 2絞り流路 54の方が第 1絞り流路 53と比べ て長さが短いので、第 2絞り流路 54の方が第 1絞り流路 53と比べて流路抵抗が小さ くなり、ポンプ室 52内には第 2絞り流路 54の方力も支配的に駆動液 11が流入する。 以上の動作を圧電素子 51が繰り返すことにより、駆動液 11が順方向に送液されるこ とになる。
[0029] 一方、駆動液 11を逆方向(駆動液タンク 10に向力う方向)に送液する場合には、ま ず、ポンプ室 52の容積を緩やかに減少させるように圧電素子 51を駆動する。そうす ると、第 2絞り流路 54の方が第 1絞り流路 53と比べて長さが短いので、第 2絞り流路 5 4の方が第 1絞り流路 53と比べて流路抵抗が小さくなる。これにより、ポンプ室 52内 の駆動液 11は、第 2絞り流路 54の方に支配的に押し出され送液される。次に、ボン プ室 52の容積を急激に増力!]させるように圧電素子 51を駆動する。そうすると、ポンプ 室 52内の容積増加に伴って駆動液 11が第 1絞り流路 53及び第 2絞り流路 54から流 れ込む。このとき、短い絞り流路である第 2絞り流路 54において乱流が発生し、第 2 絞り流路 54における流路抵抗が長い絞り流路である第 1絞り流路 53に比べて相対
的に大きくなる。これにより、ポンプ室 52内には第 1絞り流路 53の方力も支配的に駆 動液 11が流入する。以上の動作を圧電素子 51が繰り返すことにより、駆動液 11が 逆方向に送液されることになる。
[0030] (マイクロチップの構成)
図 3は、本実施形態に係るマイクロチップ 1の構成図である。一例の構成を示すもの であり、これに限定されない。
[0031] 図 3 (a)において矢印は、検査装置 80にマイクロチップ 1を挿入する挿入方向であ り、図 3 (a)は挿入時にマイクロチップ 1の下面となる面を図示している。図 3 (b)はマ イク口チップ 1の側面図である。
[0032] 図 3 (b)に示すように、マイクロチップ 1は溝形成基板 108と、溝形成基板 108を覆う 被覆基板 109から構成されて 、る。
[0033] 本実施形態に係るマイクロチップ 1には、検体と試薬とをマイクロチップ 1上で混合' 反応させるための微細流路及び流路エレメントが配設されて 、る。これらの微細流路 および流路エレメントによってマイクロチップ 1内で行われる処理の一例を図 3 (c)を 用いて説明する。図 3 (c)は、図 3 (a)において被覆基板 109が取り外された状態で 流路エレメントとその接合状態を模式的に示している。
[0034] 微細流路には、検体液を収容する検体収容部 121、試薬を収容する試薬収容部 1 20、ポジティブコントロール用の試薬を収容するポジティブコントロール収容部 122、 ネガティブコントロール用の試薬を収容するネガティブコントロール収容部 123等が 設けられている。試薬、ポジティブコントロール及びネガティブコントロールは、予め各 収容部に収容されている。ポジティブコントロールは試薬と反応して陽性を示すもの で、ネガティブコントロールは試薬と反応して陰性を示すものであり、正確な検査が実 施された力否かを確認するためのものである。
[0035] なお、図 3 (c)は、説明を簡単にするため模式的に示しており、実際は、複数の試 薬や希釈用溶液などをチップに収容し、チップ内での試薬の調合などを行わせても よい。
[0036] 検体注入部 113はマイクロチップ 1に検体を注入するための注入部であり、駆動液 注入部 110a〜l 10dはマイクロチップ 1に駆動液 11を注入するための注入部である
[0037] まず、マイクロチップ 1による検査を行うに先立って、検査担当者は検体を検体注入 部 113から注射器等を用いて注入する。図 3 (c)に示すように、検体注入部 113から 注入された検体は、連通する微細流路を通って検体収容部 121に収容される。
[0038] 次に、検体の注入されたマイクロチップ 1は、検査担当者により図 1に示す検査装置 80の挿入口 83に挿入され、図 2に示すようにセットされる。
[0039] 次に、図 2に示すポンプ 5が、後述する CPU90に指令される所定の手順に従い順 方向に駆動され、駆動液注入部 110a〜110dから駆動液 11が注入される。駆動液 注入部 110aから注入された駆動液 11は、連通する微細流路を通って検体収容部 1 21に収容されている検体を押し出し、反応部 124に検体を送り込む。駆動液注入部 110bから注入された駆動液 11は、連通する微細流路を通ってポジティブコントロー ル収容部 122に収容されているポジティブコントロール用の試薬を押し出し、反応部 125にポジティブコントロールを送り込む。駆動液注入部 110cから注入された駆動 液 11は、連通する微細流路を通ってネガティブコントロール収容部 123に収容され ているネガティブコントロール用の試薬を押し出し、反応部 126にネガティブコント口 ールを送り込む。駆動液注入部 l lOdから注入された駆動液 11は、連通する微細流 路を通って試薬収容部 120に収容されて 、る試薬を押し出し、上記の反応部 124〜 126に試薬を送り込む。
[0040] このようにして、反応部 124では検体と試薬とが合流し、反応部 125ではポジティブ コントロールと試薬とが合流し、反応部 126ではネガティブコントロールと試薬とが合 流する。
[0041] ここで、試薬収容部 120、検体収容部 121、ポジティブコントロール収容部 122及 びネガティブコントロール収容部 123は、検査装置 80のペルチェ素子 31に対向して 位置し、変性することのないように冷却される。また、反応部 124〜126は、検査装置 80のヒータ 32に対向して位置し、反応が促進されるよう加熱される。
[0042] その後、反応部 124で合流した検体と試薬との混合液の一部は、被検出部 111a に送液される。反応部 124で合流した検体と試薬との混合液の一部並びに反応部 1 25で合流したポジティブコントロールと試薬との混合液の一部は、被検出部 11 lbに
送液される。反応部 125で合流したポジティブコントロールと試薬との混合液の一部 は、被検出部 111cに送液される。反応部 126で合流したネガティブコントロールと試 薬との混合液は、被検出部 11 Idに送液される。
[0043] 被検出部の窓 1 l ie及び被検出部 11 la〜: L l idは、各混合液の反応を光学的に 検出するために設けられており、透明なガラスゃ榭脂等の材料で構成されている。
[0044] (制御構成)
図 4は、本実施形態に係るマイクロチップを用いる検査装置の制御構成の要部を示 す図である。プログラムに従って検査装置 80の制御を実行する CPU90を中心に、 ノ ス 91により、 ROM92、 RAM93、不揮発性メモリ 94、光検出部 4、フィードバック 用温度センサ 33, 34、監視用温度センサ 35, 36、ペルチェ素子 31、ヒータ 32、操 作パネル 87、表示部 84等が相互に接続されている。なお、本発明の制御に直接関 係しな 、装置構成要素につ 、ては省略して 、る。
[0045] ROM92は、 CPU90によって実行される各種制御プログラムやデータ等を記憶す る。
[0046] RAM93は、 CPU90によってワークエリアとして利用され、 CPU90が制御を実行 する際に必要なプログラムやデータを一時的に記憶する。
[0047] 不揮発性メモリ 94は、光検出部 4による検出結果や監視用温度センサ 35, 36の出 力結果と比較するための目標範囲値等を記憶する。
[0048] 光検出部 4、フィードバック用温度センサ 33, 34、監視用温度センサ 35, 36、ペル チェ素子 31、ヒータ 32、操作パネル 87及び表示部 84についての説明は、前述した ので省略する。
[0049] (温調制御フロー)
図 5は、本実施形態に係る温調制御のフロー図である。フィードバック用温度センサ
34に基づ 、てヒータ 32の温調制御を行う場合の一例にっ 、て説明する。温調制御 は、 ROM92に記憶されている温調制御プログラムに基づいて CPU90が処理を実 行することにより行われる。
[0050] 操作パネル 87により検査開始の入力がされると、フローは開始する。これと同じくし て、 CPU90によりポンプ 5が駆動され、駆動液 11の送液が開始される。マイクロチッ
プ 1内に収容されている検体及び各種試薬は、駆動液 11により押し出され、移動を 開始する。
[0051] まず、 CPU90は、所定時間経過した力否かを判断する (ステップ SI 1)。所定時間 は、検体及び各種試薬が反応部 124〜 126に到達するまでの時間よりも少し短 、時 間である。
[0052] 所定時間経過したと判断すると (ステップ S11; Yes)、 CPU90は、フィードバック用 温度センサ 34の出力に基づいて、設定温度になるようにヒータ 32の出力制御を開始 させる (ステップ S12)。例えば、 PWM変調によりヒータ 32の出力電流を制御する。こ れにより、マイクロチップ 1の反応部 124〜126は、設定温度に維持されることになる
[0053] 所定時間経過していないと判断すると (ステップ Sl l ;No)、 CPU90は、所定時間 経過するまで待機する。待機させる理由は、各種試薬は加熱されると変性しやすい ので、なるべく反応部に到達するまでは加熱せず、直前になって加熱したいからであ る。通常、保管状態では、試薬が変性しないようにマイクロチップ 1は冷蔵されている ことが一般的である。
[0054] 次に、 CPU90は、監視用温度センサ 36の出力値が不揮発性メモリ 94に予め記憶 されている目標範囲値の範囲内に入っている力否かを判断する (ステップ S 13)。監 視用温度センサ 36の出力値が目標範囲内に入っていることは、ヒータ 32とマイクロ チップ 1とが十分に密着し反応部 124〜 126への伝熱が十分に行われて 、ること、つ まり、反応部 124〜 126において正常な反応が行われていることを意味している。逆 に、監視用温度センサ 36の出力値が目標範囲内に入っていないことは、ヒータ 32と マイクロチップ 1とが密着不良を起こして伝熱が十分に行われず、反応部 124〜 126 の温度が目標値から乖離し、正常な反応が行われていないことを意味している。密着 不良は、マイクロチップ 1の反り、マイクロチップ 1へのゴミゃ汚れの付着、等により発 生する。密着不良を防ぐため、マイクロチップ 1の平面性は高い方が好ましい。
[0055] 監視用温度センサ 36の出力値が目標範囲内に入っていると判断すると (ステップ S 13 ;Yes)、 CPU90は、光検出を行うタイミングであるか否かを判断する(ステップ S1 4)。
[0056] 監視用温度センサ 36の出力値が目標範囲内に入っていないと判断すると (ステツ プ S13 ;No)、ステップ S17に進み、 CPU90は、ヒータ 32の出力をオフする。また、こ のとき、 CPU90は、エラー信号を出力し、表示部 84に異常である旨を表示する (ステ ップ S18)。これにより、反応部 124〜126において、正常な反応が行われていない 場合には、検査を中断させ、検査担当者に異常を知らせることができる。この結果、 異常な検出値が出力されても異常とは気づ力ないまま正常な検出値と判断してしまう といったおそれが無くなり、精度良い検出を行うことが可能となる。また、マイクロチッ プ 1の汚れを拭き取るなどして検査をやり直すことにより、貴重な検体のロスの低減や 失敗の早期発見を行うことが可能となる。
[0057] ステップ S14において、検出を行うタイミングであると判断すると (ステップ S 14 ; Yes )、 CPU90は、ヒータ 32の出力電流値を所定値以下に制限 (低減)する (ステップ S1 5)。ヒータ 32の出力をオフする場合も含まれる。すなわち、ヒータ 32の仕事率を低減 若しくは 0にする。これにより、ヒータ 32の出力電流の増加に伴って増加する、電気ノ ィズ、微小流路内での液の対流によるゆらぎノイズ、等のノイズを抑制することができ 、精度良い検出を行うことが可能となる。
[0058] 検出を行うタイミングでないと判断すると (ステップ S14 ;No)、ステップ S13に戻る。
[0059] ステップ S16において、 CPU90は、検出が終了した力否かを判断する。検出が終 了したと判断すると (ステップ S16 ;Yes)、 CPU90は、ヒータ 32の出力をオフし (ステ ップ S17)、フローを終了する。検出が終了していないと判断すると (ステップ S16 ;N o)、 CPU90は、ステップ S16に戻り、検出が終了するまで待機する。
[0060] 以上のように、本実施形態によれば、検出時に、ヒータ 32の出力電流値を所定値 以下に制限 (低減)することにより、ヒータ 32の出力電流の増加に伴って増加する、 電気ノイズ、微小流路内での液の対流によるゆらぎノイズ、等のノイズを抑制すること ができ、精度良い検出を行うことが可能となる。
[0061] また、本実施形態によれば、反応部 124〜126において、正常な反応が行われて いない場合には、検査を中断させ、検査担当者に異常を知らせることができる。この 結果、異常な検出値が出力されても異常とは気づ力ないまま正常な検出値と判断し てしまうといったおそれが無くなり、精度良い検出を行うことが可能となる。異常検出
の際には、マイクロチップ 1の汚れを拭き取るなどして検査をやり直すことにより、貴重 な検体のロスの低減や失敗の早期発見を行うことが可能となる。
[0062] 上記では、フィードバック用温度センサ 34に基づいてヒータ 32の温調制御 (加熱) を行う場合について説明した力 フィードバック用温度センサ 33に基づいてペルチェ 素子 31を用いて温調制御 (冷却)を行う場合も基本的には同様である。異なる点に ついて以下に説明する。
[0063] 前述したが、検体及び各種試薬は加熱されると変性しやす!/ヽので、必要時以外は 冷却しておくことが好ましい。そのため、ペルチェ素子 31の温調は、検査装置 80へ の電源投入時あるいは検査開始時に開始することが好ましい。特に、連続して複数 のマイクロチップの検査を行う場合は、冷却を継続して、より試薬等が変性しないよう にすることが好ましいので、電源投入時にペルチェ素子 31の温調を開始することが より好まし 、。
[0064] 本実施形態のように、複数の温調部を有する場合にお!ヽて、必ずしも全ての温調 部に対して上記制御を適用する必要はない。本実施形態でいえば、ヒータ 32につい ては上記温調制御を適用し検出時に温調を低減し、ペルチェ素子 31については検 出時も通常の温調制御を継続して、試薬等の変性防止を優先的に考慮するようにし てもよい。
[0065] 以上の実施形態では、温調部として各種試薬を加熱する場合はヒータを使用し、冷 却する場合はペルチヱ素子を使用した例を示したが、検査直前まで各種試薬が十分 に冷却されている場合には温調部としてヒータのみでもよい。また、温調部として各種 試薬を加熱する場合及び冷却する場合の双方にペルチェ素子を使用してもよいこと は勿論である。
Claims
[1] 被検出部及び被温調部を有するマイクロチップが収容されるマイクロチップ収容部と 前記マイクロチップ収容部に収容されたマイクロチップの被検出部に対応して設けら れた検出部と、
前記マイクロチップ収容部に収容されたマイクロチップの前記被温調部に対応して設 けられた温調部と、
前記検出部により前記マイクロチップ収容部に収容されたマイクロチップの被検出部 の検出を行う際に、前記温調部の仕事率を低減させる制御部と、
を有することを特徴とするマイクロチップ検査装置。
[2] 前記温調部を複数有し、
前記制御部は、少なくとも 1つの温調部に対して、前記検出部により前記マイクロチッ プ収容部に収容されたマイクロチップの被検出部の検出を行う際に、前記温調部の 仕事率を低減させることを特徴とする請求の範囲第 1項に記載のマイクロチップ検査 装置。
[3] 複数の前記温調部は、加熱のための温調部及び冷却のための温調部を含み、 前記制御部は、加熱のための温調部に対してのみ、前記検出部により前記マイクロ チップ収容部に収容されたマイクロチップの被検出部の検出を行う際に、前記温調 部の仕事率を低減させることを特徴とする請求の範囲第 2項に記載のマイクロチップ 検査装置。
[4] 前記温調部の仕事率の低減は、前記温調部の仕事率を 0にすることを特徴とする請 求の範囲第 1項〜第 3項の何れか一項に記載のマイクロチップ検査装置。
[5] 被検出部及び被温調部を有するマイクロチップが収容されるマイクロチップ収容部と 前記マイクロチップ収容部に収容されたマイクロチップの被検出部に対応して設けら れた検出部と、
前記マイクロチップ収容部に収容されたマイクロチップの前記被温調部に対応して設 けられた温調部と、
前記マイクロチップ収容部に収容されたマイクロチップに対して前記温調部と同じ側 に、前記温調部に対応して設けられ、前記マイクロチップ収容部に収容されたマイク 口チップの一方の面の温度を検出する第 1の温度センサと、
前記第 1の温度センサの出力に基づいて前記温調部の温度を制御する制御部と、 前記マイクロチップ収容部に収容されたマイクロチップに対して前記温調部と反対側 に、前記温調部に対応して設けられ、前記マイクロチップ収容部に収容されたマイク 口チップの前記一方の面とは異なる他方の面の温度を検出する第 2の温度センサと、 少なくとも前記第 2の温度センサの出力値に基づいて、前記検出部による前記マイク 口チップ収容部に収容されたマイクロチップの被検出部の検出が異常である力否か の信号を出力する制御部と、
を有することを特徴とするマイクロチップ検査装置。
[6] 前記信号を出力する制御部は、前記第 2の温度センサの出力値が予め設定された 目標範囲に含まれて 、な 、場合にエラー信号を出力することを特徴とする請求の範 囲第 5項に記載のマイクロチップ検査装置。
[7] 前記温調部は、ペルチヱ素子により構成されることを特徴とする請求の範囲第 1項〜 第 6項のいずれか一項に記載のマイクロチップ検査装置。
[8] 前記温調部は、ヒータにより構成されることを特徴とする請求の範囲第 1項〜第 6項の
V、ずれか一項に記載のマイクロチップ検査装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008520498A JPWO2007142061A1 (ja) | 2006-06-06 | 2007-05-28 | マイクロチップ検査装置 |
US12/303,352 US20090196795A1 (en) | 2006-06-06 | 2007-05-28 | Microchip inspection device |
EP07744229A EP2026075A4 (en) | 2006-06-06 | 2007-05-28 | DEVICE FOR CONTROLLING MICROPUCES |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006157001 | 2006-06-06 | ||
JP2006-157001 | 2006-06-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007142061A1 true WO2007142061A1 (ja) | 2007-12-13 |
Family
ID=38801321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/060795 WO2007142061A1 (ja) | 2006-06-06 | 2007-05-28 | マイクロチップ検査装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090196795A1 (ja) |
EP (1) | EP2026075A4 (ja) |
JP (1) | JPWO2007142061A1 (ja) |
WO (1) | WO2007142061A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134527A (ja) * | 1989-10-19 | 1991-06-07 | Osaka Gas Co Ltd | 極微小量の試料の温度測定装置 |
JPH0994086A (ja) * | 1995-09-29 | 1997-04-08 | Olympus Optical Co Ltd | Dna増幅装置 |
JPH1019865A (ja) * | 1996-07-02 | 1998-01-23 | Suzuki Motor Corp | 呼気分析装置 |
JP2003004752A (ja) | 2001-06-15 | 2003-01-08 | Minolta Co Ltd | マイクロチップおよび該マイクロチップを用いる検査装置 |
WO2004083823A1 (ja) * | 2003-03-19 | 2004-09-30 | Nec Corporation | マイクロチップならびに試料抽出方法、試料分離方法、試料分析方法、および試料回収方法 |
JP2004532003A (ja) * | 2001-01-29 | 2004-10-21 | ジェンセット ソシエテ アノニム | マイクロリアクター内の連続流において生化学的プロトコルを実施する方法 |
JP2005214782A (ja) | 2004-01-29 | 2005-08-11 | Kubota Corp | マイクロ流体デバイス反応用温度調節器 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5856174A (en) * | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
JP3896447B2 (ja) * | 1997-06-12 | 2007-03-22 | アークレイ株式会社 | 臨床検査装置 |
EP1106244A3 (en) * | 1999-03-03 | 2001-11-21 | Symyx Technologies, Inc. | Chemical processing microsystems and controlling reaction conditions in same |
US20040053290A1 (en) * | 2000-01-11 | 2004-03-18 | Terbrueggen Robert Henry | Devices and methods for biochip multiplexing |
JP2001041916A (ja) * | 1999-05-21 | 2001-02-16 | Daikin Ind Ltd | ガス検出装置 |
AU782726B2 (en) * | 1999-07-28 | 2005-08-25 | Commissariat A L'energie Atomique | Integration of biochemical protocols in a continuous flow microfluidic device |
US20030166259A1 (en) * | 2001-12-04 | 2003-09-04 | Dave Smith | Method for accurately mixing sample and buffer solutions |
JP2004028694A (ja) * | 2002-06-24 | 2004-01-29 | Canon Inc | 核酸プローブ・アレイ基板の温度制御装置、及び、これを用いた遺伝子検出方法 |
JP2005293480A (ja) * | 2004-04-05 | 2005-10-20 | Nippon Dennetsu Co Ltd | 熱板の温度制御装置 |
JP4551123B2 (ja) * | 2004-05-28 | 2010-09-22 | 株式会社日立プラントテクノロジー | マイクロ流体システム及びそれを用いる処理方法 |
US8003049B2 (en) * | 2004-09-30 | 2011-08-23 | Arkray, Inc. | Analyzer |
-
2007
- 2007-05-28 JP JP2008520498A patent/JPWO2007142061A1/ja active Pending
- 2007-05-28 EP EP07744229A patent/EP2026075A4/en not_active Withdrawn
- 2007-05-28 US US12/303,352 patent/US20090196795A1/en not_active Abandoned
- 2007-05-28 WO PCT/JP2007/060795 patent/WO2007142061A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03134527A (ja) * | 1989-10-19 | 1991-06-07 | Osaka Gas Co Ltd | 極微小量の試料の温度測定装置 |
JPH0994086A (ja) * | 1995-09-29 | 1997-04-08 | Olympus Optical Co Ltd | Dna増幅装置 |
JPH1019865A (ja) * | 1996-07-02 | 1998-01-23 | Suzuki Motor Corp | 呼気分析装置 |
JP2004532003A (ja) * | 2001-01-29 | 2004-10-21 | ジェンセット ソシエテ アノニム | マイクロリアクター内の連続流において生化学的プロトコルを実施する方法 |
JP2003004752A (ja) | 2001-06-15 | 2003-01-08 | Minolta Co Ltd | マイクロチップおよび該マイクロチップを用いる検査装置 |
WO2004083823A1 (ja) * | 2003-03-19 | 2004-09-30 | Nec Corporation | マイクロチップならびに試料抽出方法、試料分離方法、試料分析方法、および試料回収方法 |
JP2005214782A (ja) | 2004-01-29 | 2005-08-11 | Kubota Corp | マイクロ流体デバイス反応用温度調節器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2026075A4 |
Also Published As
Publication number | Publication date |
---|---|
EP2026075A1 (en) | 2009-02-18 |
JPWO2007142061A1 (ja) | 2009-10-22 |
US20090196795A1 (en) | 2009-08-06 |
EP2026075A4 (en) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3296718B1 (en) | Station for use with a test apparatus having integrated reaction and detection means | |
JP5802361B2 (ja) | ヘマトクリット/容量の修正及び帰還調節を伴う分析物検出装置及び方法 | |
EP1986000A2 (en) | Base sequence detection apparatus and base sequence automatic analyzing apparatus | |
US9016936B2 (en) | Method of calibrating a temperature sensor of a chemical microreactor and analyzer for biochemical analyses | |
US10871474B2 (en) | System and method for analyzing biological fluid in multiple cuvettes | |
US20220258159A1 (en) | Systems and modules for nucleic acid amplification testing | |
CN109957506B (zh) | 通过试剂容器以热对流进行定量聚合酶链式反应的装置 | |
EP1950555A2 (en) | Microchip inspection system, microchip inspection apparatus and a computer readable medium | |
WO2007142061A1 (ja) | マイクロチップ検査装置 | |
WO2007097257A1 (ja) | マイクロチップを用いる検査装置 | |
EP3942064B1 (en) | Biological sample analyzer with cold consumable detection | |
JP2009150809A (ja) | マイクロチップ | |
US20120040856A1 (en) | Method for detecting the presence of liquids in a microfluidic device, detecting apparatus and corresponding microfluidic device | |
JP5176952B2 (ja) | マイクロチップを用いる検査装置及びマイクロチップを用いる検査システム | |
KR101853882B1 (ko) | 생체물질 검사장치 및 그 제어방법 | |
JP5176951B2 (ja) | マイクロチップを用いた検査装置および検査システム | |
WO2008047533A1 (fr) | Système de détection de réaction de puce, et procédé de réaction de puce dans un trajet d'écoulement | |
JP2007240356A (ja) | マイクロチップを用いた検査装置および検査システム | |
JP2009265057A (ja) | 検査装置 | |
JP2006267038A (ja) | マイクロ総合分析システム | |
JP2009103641A (ja) | 検査装置 | |
JP2007225419A (ja) | マイクロチップを用いる検査装置及びマイクロチップを用いる検査システム | |
WO2008065911A1 (fr) | Micropuce | |
JPWO2008053641A1 (ja) | マイクロチップ及びマイクロチップ検査システム | |
JPWO2008047525A1 (ja) | マイクロチップ内での試薬混合方法及びマイクロチップ検査システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07744229 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008520498 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007744229 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12303352 Country of ref document: US |