WO2007139235A1 - 車両用制動装置及びそのリザーバ - Google Patents

車両用制動装置及びそのリザーバ Download PDF

Info

Publication number
WO2007139235A1
WO2007139235A1 PCT/JP2007/061498 JP2007061498W WO2007139235A1 WO 2007139235 A1 WO2007139235 A1 WO 2007139235A1 JP 2007061498 W JP2007061498 W JP 2007061498W WO 2007139235 A1 WO2007139235 A1 WO 2007139235A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
reservoir
pressure
piston
control valve
Prior art date
Application number
PCT/JP2007/061498
Other languages
English (en)
French (fr)
Inventor
Hiroshi Isono
Yasuji Mizutani
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN200780020380.3A priority Critical patent/CN101460344B/zh
Priority to US12/302,970 priority patent/US8733848B2/en
Priority to EP07744837.1A priority patent/EP2022690B1/en
Publication of WO2007139235A1 publication Critical patent/WO2007139235A1/ja
Priority to US14/178,585 priority patent/US20140159471A1/en
Priority to US14/178,621 priority patent/US20140159472A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems

Definitions

  • the present invention relates to a vehicle braking device, and more particularly to a vehicle braking device that increases or decreases a pressure in a wheel cylinder and a reservoir thereof.
  • a shut-off valve that shuts off the flow of oil as the working fluid reaching the wheel cylinder master cylinder and a pressure increase / decrease control that increases or decreases the pressure of the wheel cylinder as needed.
  • a reservoir that receives oil from the wheel cylinder into the reservoir chamber and stores it when the valve and the pressure increase / reduction control valve are in the pressure reduction position, and the oil pressure from the reservoir chamber is sucked and pressurized to increase the increase pressure reduction control valve.
  • a vehicle having a pump as a pressurizing supply means for supplying oil to the wheel cylinder through an increase / decrease control valve when in the pressure position, and a communication control valve for controlling communication between the master cylinder and the reservoir chamber For example, Japanese Patent Laid-Open Nos. 5-1 1 6 6 0 7 and 1 2-6 4 8 0 1 disclose brake devices for use.
  • the pressure in the master cylinder is introduced into the wheel cylinder through the shut-off valve, so that the pressure in the wheel cylinder is increased or decreased by the pressure in the master cylinder.
  • the shutoff valve shuts off the oil flow from the wheel cylinder to the master cylinder, and the pump is driven.
  • the supplied high-pressure oil is supplied to and discharged from the wheel cylinder by the increased pressure reducing control valve, thereby controlling the pressure in the wheel cylinder to a desired pressure.
  • the communication control valve automatically opens and closes according to the pressure in the master cylinder and the suction pressure of the pump. Since it functions as a pressure regulating valve that automatically regulates the pressure in the chamber, the communication control valve is an electromagnetic valve, and the electromagnetic valve is controlled based on the detection results of various sensors. The cost of the braking device can be reduced, and the control of the braking device can be simplified by reducing the control target of the braking device.
  • the communication control valve is provided to the driver.
  • This is a normally-open check valve in which the valve element is detached from the valve seat during non-braking when no braking operation is performed. Therefore, the master cylinder and the reserve chamber are in communication with each other during non-braking. .
  • the check valve is caused by the oil flow due to the differential pressure between the pressure in the master cylinder ⁇ and the pressure in the reservoir chamber. The valve element is seated on the valve seat, thereby closing the check valve and disconnecting the communication between the master cylinder and the reservoir chamber.
  • the check valve as the communication control valve is a normally open check valve, even if the braking operation is started by the driver, the amount of oil in the reservoir chamber increases and the reservoir piston closes the check valve.
  • the check valve does not close until the differential pressure between the pressure in the master cylinder ⁇ and the pressure in the reservoir chamber reaches a predetermined value. It is inevitable that a part of the fluid flows through the check valve to the reservoir chamber. Therefore, the pressure increase in the wheel cylinder is delayed compared to the case where all of the oil flowing out from the master cylinder is supplied to the wheel cylinder through the shut-off valve, and therefore the pressure in the wheel cylinder with respect to the braking operation is increased.
  • the pin (2 4) that engages with the ball (2 3 b) of the check valve (2 3) is provided.
  • the checker valve (2 3) can be displaced relative to the piston (16 b) of the reservoir in the opening and closing direction of the check valve.
  • the check valve (2 3) is normally open and may be moved manually during maintenance.
  • the pin (2 4) is not displaced relative to the piston (1 6 b) and does not automatically move relative to the piston (1 6 b) in the valve opening direction due to the suction pressure of the pump. Therefore, even the braking device described in the above Japanese Patent Laid-Open No. 10-2 6 4 8 0 1 has the above problem. Disclosure of the invention
  • the present invention has been made in view of the above-described problems in the conventional vehicle braking device in which the communication control valve for controlling the communication between the master cylinder and the reservoir chamber is a normally open check valve.
  • the main problem of the present invention is that the communication control valve automatically opens and closes according to the pressure in the master cylinder and the suction pressure of the pressurizing supply means, while ensuring the function of regulating the pressure in the reservoir chamber, By the person During non-braking when the braking operation is not performed, the communication control valve blocks the communication between the master cylinder and the reservoir chamber, thereby delaying the pressure increase in the wheel cylinder when the driver starts the braking operation. This eliminates the delay in the increase in the wheel cylinder pressure with respect to the braking operation and the deterioration of the feeling caused by the actual braking action delay, and improves the braking response at the start of the braking operation. It is.
  • the shut-off valve that shuts off the flow of the working liquid from the wheel cylinder to the master cylinder as necessary, and the pressure increase / decrease that increases or decreases the pressure in the wheel cylinder.
  • a pressure supply means for supplying the working fluid to the wheel cylinder through the pressure increasing / decreasing control valve when the pressure increasing / decreasing control valve is in the pressure increasing position; a communication control valve for controlling communication between the master cylinder and the reservoir chamber;
  • the communication control valve is a normally closed valve, and the vehicular braking apparatus is opened by the suction pressure of the pressurizing supply means.
  • the shut-off valve that shuts off the flow of the working fluid from the wheel cylinder to the master cylinder as necessary, and the increased or decreased pressure that increases or decreases the pressure in the wheel cylinder.
  • a vehicle brake device having a control valve and pressurizing supply means for pressurizing the working fluid and supplying the working fluid to the wheel cylinder via the pressure increasing / decreasing control valve when the increasing / decreasing control valve is at the pressure increasing position.
  • the communication control valve since the communication control valve is a normally closed valve, the braking operation is started by the driver as compared with the case of the conventional braking device in which the communication control valve is a normally open valve.
  • the working fluid can be prevented from reaching the reservoir from the master cylinder via the communication control valve, and the pressure in the wheel cylinder can be reliably increased from the beginning of the braking operation.
  • the communication control valve is opened by the suction pressure of the pressurization supply means, but the operation of the pressurization supply means starts when the communication control valve is closed, so the communication control valve is normally open.
  • the suction pressure of the pressurizing supply means can be efficiently applied to the communication control valve, so that the pressure control action of the communication control valve with respect to the pressure in the reservoir chamber can be exhibited early. it can.
  • the working liquid can flow from the reservoir to the pressure supply means in a state where the communication control valve is kept closed until the suction pressure of the pressure supply means reaches a predetermined value or more. Good.
  • the pressurized supply means can suck in the working liquid from the reservoir and supply the high-pressure working liquid from the beginning of its operation, thereby preventing the working liquid from flowing into the reservoir from the master cylinder. In this way, the working liquid supply performance by the pressure supply means at the start of the operation of the pressure supply means can be reliably improved.
  • the communication control valve has a normally closed on-off valve and a valve-opening means for opening the on-off valve by being driven by the suction pressure of the pressurizing supply means.
  • the valve means includes a reciprocating member that is disposed in the reservoir so as to be able to reciprocate in the direction to open and close the on-off valve, and is driven in a direction to open the on-off valve by the suction pressure of the pressure supply means, and opens the on-off valve
  • the direction may be a direction that reduces the volume of the reservoir chamber.
  • the normally open on-off valve is opened when the valve opening means is driven by the suction pressure of the pressurizing supply means. Therefore, when the pressurizing supply means is driven, The on-off valve can be opened, and the opening timing of the on-off valve can be adjusted by setting the relationship between the on-off valve and the valve opening means.
  • the valve opening means includes the reciprocating member, and the reciprocating member is disposed in the reservoir so as to be able to reciprocate in the direction of opening and closing the on-off valve, and is opened and closed by the suction pressure of the pressurizing supply means. Since the reciprocating member is linearly displaced in the valve opening direction by the suction pressure of the pressure supply means, the valve can be opened. Since the valve opening direction is a direction in which the volume of the reservoir chamber is reduced, the working liquid can be reliably supplied from the reservoir chamber to the pressurizing supply unit from the beginning of the driving of the pressurizing supply unit.
  • the valve opening means opens the on-off valve when the amount of movement of the reciprocating member in the direction of opening the on-off valve from the non-braking position is equal to or less than a preset amount of idle movement. Do not speak It may be like this.
  • the reservoir bapiston is in a position where the volume of the reservoir chamber is minimized during non-braking, so even if driving of the pump is started.
  • the reservoir bapiston cannot move in the direction in which the volume of the reservoir chamber decreases, so that the pump sucks in oil that flows into the reservoir chamber through the narrow passage of the communication control valve from the master cylinder. Therefore, the oil supply performance by the pump at the start of pump operation is not always good.
  • the reciprocating member even if the reciprocating member moves in the direction to open the on-off valve by the suction pressure of the pressurizing supply means, the reciprocating member is opened when the moving amount is equal to or less than the preset amount of movement. Since the valve means does not open the on-off valve and maintains it in the closed state, it operates reliably to the reservoir pressure supply means with the on-off valve closed from the beginning of the operation of the pressure supply means The liquid can be supplied, so that the working liquid does not need to flow into the reservoir chamber through the narrow passage of the master cylinder communication control valve, and the pressure supply at the start of the operation of the pressure supply means The hydraulic fluid supply performance by the means can be improved reliably.
  • the reservoir is disposed so as to be reciprocally movable in the housing and cooperates with the housing to define the reservoir chamber, and the reservoir chamber has a volume.
  • a piston urging means for urging the reservoir piston in a decreasing direction, and the reservoir chamber is always in communication with the suction side of the pressure supply means, and is in communication with the master cylinder via the communication control valve. It's okay.
  • the reservoir chamber is always in communication with the suction side of the pressurizing supply means, and the communication with the master cylinder is controlled by the communication control valve, so that the pressurizing supply means is driven.
  • the suction pressure of the pressure supply means can be applied to the communication control valve via the reservoir chamber, so that the pressure control action of the communication control valve with respect to the pressure in the reservoir chamber can be started. .
  • the reciprocating member includes a piston portion supported by the reservoir bapiston so that the reciprocating member can be displaced relative to the reservoir bapiston in the reciprocating direction of the reservoir bapiston, and the piston.
  • a stem part that is integrally connected to the ton part and extends in the reciprocating direction of the reservoir piston through the reservoir bistons, and opens and closes the on-off valve at the stem part. Is a pressure that works as part of the reservoir chamber in constant communication with the reservoir piston.
  • a force chamber may be defined.
  • the viston portion is automatically driven in accordance with the pressure in the pressure chamber equal to the pressure in the reservoir chamber, and the stem portion is integrally connected to the piston portion.
  • the on-off valve can be opened and closed automatically according to the pressure in the room, and since the working fluid is supplied from the pressure chamber to the reservoir chamber at the start of braking, the reservoir piston moves relative to the housing. Even if it does not move in the direction of reducing the volume of the chamber, the working liquid can be supplied from the reservoir chamber to the pressurized supply means. The high-pressure working liquid can be reliably supplied by the means.
  • the plunger is disposed on the master cylinder side with respect to the reservoir piston, and is supported by the housing so as to be able to displace relative to the reservoir piston in the reciprocating direction of the reservoir papiston.
  • a stem portion that is integrally connected to the piston portion and extends in the reciprocating direction of the reservoir piston. The stem portion opens the on-off valve.
  • the reservoir chamber may be defined in cooperation with the reservoir piston.
  • the on-off valve can be opened and closed automatically according to the pressure in the reservoir chamber, and the stem portion does not need to extend through the reservoir piston.
  • the structure of the reservoir and the communication control valve can be simplified as compared with the case.
  • the pressure supply means is not supplied to the reservoir chamber.
  • the reciprocating member may be displaced in the direction to open the on-off valve, thereby reducing the working liquid storage volume in the reservoir even if the reservoir piston does not move.
  • the suction pressure of the pressure supply means acts on the reservoir chamber in a situation where the on-off valve is in the closed state and the reservoir piston is at a position where the volume of the reservoir chamber is minimized.
  • the on-off valve can be opened by the suction pressure of the stage.
  • the reservoir bapiston may function as a reciprocating member.
  • the reservoir bapiston functions as a reciprocating member, it is not necessary to provide a reciprocating member as a member different from the reservoir bapiston, and therefore, a part separate from the reservoir piston is not required.
  • a reciprocating member is provided as a material, the structure of the valve opening means is simplified, which makes it easy to assemble the reservoir and the valve opening means and reduces the number of parts. This can reduce the cost.
  • the on-off valve has a valve element and valve element urging means for urging the valve element against the valve seat, and the valve element is closed by contacting the valve element.
  • it may be a check valve that opens when the valve element is disengaged from the valve seat.
  • the valve element can be brought into contact with the valve seat during non-braking to maintain the on-off valve in the closed state, and during braking, the valve is opened by the valve opening means driven by the suction pressure of the pressure supply means.
  • the on-off valve can be opened by removing the element from the valve seat.
  • the valve element has a poppet shape having a head portion and a spool portion having a smaller diameter than the head portion. It may be supported so as to be able to reciprocate, and may be closed when the head portion comes into contact with the valve seat and opened when the head portion is detached from the valve seat.
  • the valve element moves only slightly in the valve opening direction, and the head part separates from the valve seat to open the valve, so that the valve is opened compared to when the valve is a spool valve.
  • the on-off valve can be efficiently opened and closed by the suction pressure of the pressurizing supply means, and the spool is supported by the valve housing so that it can reciprocate.
  • the valve element can be moved stably in the opening and closing direction, so that the opening and closing valve can be opened and closed stably by the suction pressure of the pressurized supply means.
  • the on-off valve may be a spool valve that opens and closes when a spool as a valve element is reciprocally displaced relative to the valve housing.
  • the on-off valve can be opened and closed by driving the spool valve by the valve opening means driven by the suction pressure of the pressurizing supply means, and the pressure in the master cylinder is used as the valve element. Therefore, it is possible to reliably avoid the pressure in the master cylinder from affecting the opening and closing of the on-off valve.
  • valve element cooperates with the valve housing to increase or decrease the volume due to the reciprocation of the valve element, and to define a variable volume chamber that allows the valve element to reciprocate.
  • An internal passage that always connects the variable chamber and the reservoir chamber may be provided.
  • the volume can be increased or decreased by the reciprocating motion of the valve element, and the reciprocating motion of the valve element is allowed. Since the variable chamber is defined and the variable volume chamber and the reservoir chamber are always connected to each other, the pressure in the variable volume chamber can always be the same as the pressure in the reservoir chamber.
  • the valve element can be opened and closed without excessive force acting on the valve element, and the internal passage is provided in the valve element.
  • the structure of the communication control valve can be simplified as compared to the case where a valve housing or the like is provided with a passage that opens the variable volume chamber to the atmosphere, and what is the valve chamber that communicates the variable volume chamber with the master cylinder? Since the chamber can be a separate chamber, it is possible to prevent the pressure in the valve chamber from acting on the valve element in the opening / closing direction of the opening / closing valve.
  • the spool may be integral with the stem portion of the plunger. According to this configuration, the number of parts is reduced, the structure of the on-off valve and the valve opening means is simplified, and the assembly of the communication control valve is facilitated as compared with the case where the spool is separate from the plunger stem. can do.
  • the reservoir has a housing, a reservoir piston arranged to reciprocate in the housing and working together with the housing to define the reservoir chamber, and a volume of the reservoir chamber.
  • the reservoir piston has an internal passage that is always in communication with the reservoir chamber at one end.
  • the reservoir piston has a valve closing position in which the other end of the internal passage is blocked by communication with the master cylinder, and a reservoir piston.
  • the second piston urging means may set the position of the reservoir bistons relative to the housing so that the communication control valve takes the closed position when the brake is not applied.
  • the reservoir piston also functions as a spool for the communication control valve, so the structure of the communication control valve is simplified compared to a structure in which a communication control valve is provided separately from the reservoir piston.
  • the reservoir and the communication control valve can be made into one compact unit, the assembly of the braking device can be facilitated, and the pressure in the master cylinder can be used as the spool of the communication control valve. Therefore, it is possible to reliably avoid the pressure in the master cylinder from affecting the opening / closing of the communication control valve.
  • an urging restriction means may be provided for restricting a range in which the second bistone urging means urges the reservoir bapiston by looking at a range of reciprocation of the reservoir piston. .
  • the range in which the second piston urging means urges the reservoir piston is restricted by the urging restriction means, so that the position of the reservoir piston during non-braking is set to a predetermined position.
  • the reciprocating motion of the reservoir piston can be stably performed as compared with the case where the biasing limiting means is not provided.
  • the on-off valve has a valve element and valve element urging means for urging the valve element against the valve seat, and the valve element is closed by contacting the valve element.
  • the checker valve is opened when the valve element is disengaged from the valve seat, and the reservoir piston has a portion that functions as a valve opening means.
  • bias limiting means for limiting a range in which the biasing means biases the reservoir piston to a range in which the portion functioning as the valve opening means does not open the on-off valve.
  • the on-off valve is a check valve
  • the reservoir piston has a portion that functions as the valve opening means. Therefore, the reservoir valve is a reservoir that is independent of the reservoir piston.
  • the structure of the control valve and the communication control valve can be simplified, the assembly of the communication control valve can be facilitated, and the range in which the piston urging means urges the reservoir is restricted by the urging restriction means.
  • the position of the reservoir piston during non-braking can be set to a predetermined position, and the reciprocating movement of the reservoir piston can be performed more stably than when no bias limiting means is provided. be able to.
  • the reservoir chamber is closed in a situation where the on-off valve is in a closed state and the urging restriction means restricts the urging of the piston urging means to the reservoir piston. Even when the suction pressure of the pressurizing and supplying means is applied, the reservoir piston may be displaced in the direction of opening the on-off valve to reduce the volume of the reservoir chamber.
  • the on-off valve has a valve element and valve element urging means for urging the valve element against the valve seat, and the valve element is closed by contacting the valve element.
  • the reservoir piston has a portion that functions as a valve opening means, the valve element abuts on the valve seat, and the portion is connected to the valve element.
  • the force by which the valve element urging means urges the valve element may be larger than the force by which the piston urging means urges the reservoir piston.
  • the on-off valve is a check valve
  • the reservoir piston has a portion that functions as a valve opening means
  • the portion that has the on-off valve in a closed state and functions as the valve opening means corresponds to a valve element.
  • the force by which the valve element urging means urges the valve element is greater than the force by which the piston urging means urges the reservoir vapour, so that the valve opening means is independent of the reservoir piston.
  • the structure of the reservoir and the valve opening means can be simplified compared to the case of a member, the assembly of the reservoir and the communication control valve can be facilitated, and the check valve is reliably kept closed during non-braking. can do.
  • the shut-off valve when the braking operation is started by the driver and the pressure in the master cylinder becomes equal to or higher than a predetermined value, the shut-off valve causes the master cylinder wheel to move.
  • the flow of the working liquid reaching one cylinder may be interrupted, the pressurization supply means may be driven, and a differential pressure may be ensured between the supply side of the pressurization supply means and the master cylinder by the shutoff valve.
  • the valve opening means includes reciprocating member urging means for urging the reciprocating member in a direction permitting the closing of the on-off valve. May be.
  • the valve opening means includes reciprocating member urging means for urging the reciprocating member in a direction in which the volume of the pressure chamber increases.
  • the urging force of the moving member urging means may be larger than the urging force of the biston urging means.
  • a reservoir papiston restricting means for restricting the movement of the reservoir in the direction in which the volume of the reservoir chamber is reduced. It may be done.
  • valve opening means may be spaced apart from the valve element of the on-off valve when not braked.
  • the valve opening means abuts on the valve element of the on-off valve via the inertia material, and opens the valve element of the on-off valve via the elastic material. Move it to the valve position. It ’s okay.
  • the on-off valve may be a ball check valve.
  • the effective sectional area of the spool portion is defined by a contact portion between the head portion and the valve seat when the on-off valve is in the closed position. It may be smaller than the specified communication blocking area.
  • valve element cooperates with the valve housing to define a valve chamber that is always in communication with the master cylinder, and the valve chamber is a valve element.
  • the valve When the valve is detached from the valve seat, it may communicate with the reservoir chamber.
  • the valve opening means opens by communicating the spool side passage and the valve housing side passage.
  • the spool-side passage and the valve housing-side passage may be spaced apart from each other in the direction of reciprocal displacement of the spool when not braked.
  • the on-off valve may include a spool biasing means for biasing the spool toward the valve closing position of the spool valve.
  • the valve opening means includes a reciprocating member urging means, and the reciprocating member urging means is reciprocating due to the suction pressure of the pressurizing supply means.
  • the spool may be biased in the direction opposite to the moving direction of the member.
  • the urging force of the reciprocating member urging means may be greater than the urging force of the biston urging means.
  • the braking operation is performed, but the anti-skid control is not performed.
  • the control valve With the control valve closed, the pressure in the master cylinder may be introduced into the wheel cylinder via the shut-off valve.
  • the pressure supply means is driven during braking in which the anti-skid control is performed, but the communication control valve is kept closed.
  • the wheel cylinder is configured to increase the pressure in the wheel cylinder by supplying the high-pressure working liquid supplied by the pressurized supply means to the wheel cylinder and to discharge the working liquid in the wheel cylinder to the reservoir chamber.
  • the internal pressure is reduced by the control of the pressure increasing / reducing control valve.
  • the pressure in the first cylinder may be a value corresponding to the pressure in the master cylinder, and may be controlled to a value necessary to suppress the braking slip of the wheel.
  • the pressurizing supply means when dynamic braking is performed, the pressurizing supply means is driven, and the communication control valve is driven by the suction pressure of the pressurizing supply means.
  • the pressure in the master cylinder and the pressurizing supply means After the valve is opened and the working liquid in the master cylinder is supplied to the suction side of the pressurizing supply means through the communication control valve and the reservoir chamber, the pressure in the master cylinder and the pressurizing supply means The opening and closing of the communication control valve is controlled by the suction pressure, and the pressure in the wheel cylinder is increased by the supply of the high-pressure working liquid supplied by the pressure supply means to the wheel cylinder, and the working liquid in the wheel cylinder is reserved.
  • the pressure reduction in the wheel cylinder due to the discharge into the chamber can be achieved by the control of the pressure increase / decrease control valve so that the pressure in the wheel cylinder is controlled to the target pressure.Brief Description of Drawings
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle braking apparatus according to the present invention having a ball type check valve type communication control valve and a reservoir.
  • FIG. 2 is a cross-sectional view showing a ball type check valve type communication control valve and reservoir of a second embodiment of the braking device for a vehicle according to the present invention.
  • FIG. 3 is a cross-sectional view showing a spool valve type communication control valve and a reservoir of a third embodiment of the vehicle braking device according to the present invention.
  • FIG. 4 is a cross-sectional view showing a spool valve type communication control valve and a reservoir of a fourth embodiment of the vehicle braking apparatus according to the present invention.
  • FIG. 5 is a sectional view showing a spool valve type communication control valve and a reservoir integrated with each other in the fifth embodiment of the braking device for a vehicle according to the present invention.
  • FIG. 6 is a cross-sectional view showing a ball type check valve type communication control valve and a reservoir of a sixth embodiment of the vehicle braking system according to the present invention.
  • FIG. 7 is a cross-sectional view showing a ball check valve type communication control valve and a reservoir of a seventh embodiment of the vehicle braking device according to the present invention.
  • FIG. 8 is a graph showing the relationship between the control current I s for the linear solenoid valve and the differential pressure ⁇ P across the linear solenoid valve in the first embodiment.
  • FIG. 9 is a graph showing an example of the change in the pressure P wc in the wheel cylinder accompanying the change in the effective braking operation amount Se of the driver for the vehicle braking device according to the first embodiment and the conventional vehicle braking device. is there.
  • FIG. 10 is a cross-sectional view showing a spool-type communication control valve and a reservoir of an eighth embodiment of a vehicle braking apparatus according to the present invention, which is configured as a modification of the sixth embodiment.
  • FIG. 11 shows a poppet type non-return type communication control valve and a reservoir of a ninth embodiment of a vehicular braking system according to the present invention configured as a modification of the sixth and eighth embodiments. It is sectional drawing shown.
  • FIG. 12 is an enlarged cross-sectional view of the communication control valve shown in FIG.
  • FIG. 13 is a bottom view showing the end face on the reservoir chamber side of the head portion of the valve element shown in FIGS. 11 and 12 further enlarged.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a vehicle braking apparatus according to the present invention having a ball type check valve type communication control valve and a reservoir.
  • a braking device 10 includes a master cylinder 14 having a master cylinder chamber 12 inside.
  • the piston 14 of the master cylinder 14 is connected to the brake pedal 16 and the hydraulic pressure (master cylinder pressure P) in response to the pedal pressure applied to the brake pedal in response to the driver's depression of the brake pedal 16 m) is generated in the master cylinder chamber 12.
  • the master cylinder 14 may be provided with a well-known booster that increases the pressure in the master cylinder chamber 12 as compared with the depression force applied to the brake pedal.
  • the communication control valve 20 of this embodiment is a ball type normally closed check valve having a ball 2 2 as a valve element.
  • the housing of the communication control valve 20 is integral with the housing 28 of the reservoir 26, so that the communication control valve 20 and the reservoir 26 can be assembled to the braking device 10 as a unit. It has become.
  • a valve seat member 30 is disposed in the housing 28 in a state where it is fixed by press-fitting, for example, and the valve seat member 30 is a conical valve seat 3 aligned with the axis 3 2 of the communication control valve 20.
  • valve chamber 3 4 A and 3 4 B are provided.
  • the other end of the master conduit 18 is connected to the valve chamber 3 4 A on the master conduit 18 side with respect to the valve seat member 30, and the ball 22 is disposed in the valve chamber 3 4 A.
  • the ball 2 2 is urged against the valve seat 3 OA by a compression coil spring 3 6 elastically mounted between it and the end wall of the valve chamber 3 4 A, so that the communication control valve 20 is normally in the ball 2 2 comes into contact with valve seat 3 OA and closes, and communication between valve chamber 3 4 A and valve chamber 3 4 B is cut off.
  • Cylinder bore 2 8 A is formed in the housing 2 8 of the reservoir 2 6, and the cylinder bore
  • a reservoir piston 3 8 is disposed in 2 8 A so as to be capable of reciprocating along the axis 3 2.
  • the reservoir piston 3 8 cooperates with the housing 28 to define a variable volume reservoir chamber 40, and the reservoir chamber 40 is always in communication with the valve chamber 3 4B.
  • the end surface of the reservoir piston 3 8 is provided with a plurality of land portions 3 8 A, and the land portions 3 8 A are in contact with the end surfaces of the cylinder bores 2 8 A.
  • the reservoir chamber 40 has a minimum volume when it is in a state.
  • An end cap 42 is fixed to the end of the cylinder bore 28 A opposite to the reservoir chamber 40 with respect to the reservoir piston 38 by, for example, press fitting or screwing.
  • a compression coil spring 4 4 is elastically mounted between the reservoir 3 8 and the end cap 4 2, and the land 3 8 A of the reservoir 3 8 contacts the end face of the cylinder bore 2 8 A.
  • a compression coil spring 44 serving as a biasing means for biasing is biased along the axis 32 in a direction in which the volume of the reservoir chamber 40 decreases.
  • the reservoir piston 3 8 and the end cap 4 2 cooperate with the housing 2 8 to define a variable volume air chamber 46, and the air chamber 46 is opened to the atmosphere through a communication hole not shown in the figure. ing.
  • Reservoir bapiston 3 8 is integrated with disk portion 3 8 B located on the reservoir chamber 40 side and disk portion 3 8 B, and air chamber 4 6 is connected to disk portion 3 8 B. And a cylindrical portion 3 8 C extending along the axis 3 2 on the side. In the cylindrical part 3 8 C, a piston part 4 8 A of a plunger 48 as a reciprocating member is arranged. The piston part 4 8 A is a reservoir piston along the axis 3 2.
  • a compression coil spring 50 is elastically placed between 4 8 A, and the piston part 4 8 A is pressed by the compression coil spring 50 so that it abuts on the C ring 52 fixed to the cylindrical part 3 8 B. It is urged along the axis 3 2 toward the end cap 4 2.
  • Plunger 4 8 has a stem portion 4 8 B that is integral with piston portion 4 8 A and extends through disk portion 3 8 B along axis 3 2. Stem 4 8 B is reserved Working together with the piston 3 8, the pressure chamber 5 4 is defined between them. Pressure chamber 5 4 is disc 3 8
  • the communication hole 5 4 A provided in B is connected to the reservoir chamber 40 so that the pressure in the pressure chamber 54 is always maintained at the same pressure as the pressure in the reservoir chamber 40. It is connected.
  • the length of the stem portion 4 8 B is such that the land portion 3 8 A of the reservoir piston 3 8 is in contact with the inner surface of the housing 28 and the piston portion 48 8 A is in contact with the C ring 52.
  • the tip of the stem portion 48B is fitted into the communication hole 30B of the valve seat member 30 in a loosely fitted state, and the end surface of the stem portion 48B is from the ball 22 of the communication control valve 20
  • the length is set to be slightly spaced.
  • the length of the stem portion 4 8 B is such that the land portion 3 8 A of the reservoir piston 3 8 is in contact with the inner surface of the housing 28 and the piston portion 48 8 A is in contact with the C-ring 52.
  • the ball 22 may be set to a length that contacts the ball 22 without substantially pressing it.
  • the magnitude relationship of the spring force of the compression coil springs 44 and 50 in this first embodiment may be any relationship, but any spring force will affect the frictional sliding resistance when the corresponding member moves.
  • the spring force is set to overcome. Therefore, when not braked, the reservoir piston 3 8 and the plunger 4 8 are in the standard position shown in FIG. 1, that is, the land portion 3 8 A of the reservoir piston 3 8 is in contact with the inner surface of the housing 2 8 and the biston portion 4 8 A is It is positioned at a position where it abuts against the C-ring 52, and the end surface of the tip portion of the stem portion 48 B is slightly spaced from the ball 22 of the communication control valve 20.
  • the piston portion 4 8 A When the pressure in the reservoir chamber 40 and the pressure chamber 54 is reduced in the situation where the reservoir 3 8 and the plunger 48 are in the standard position, the piston portion 4 8 A has a spring force of the compression coil spring 50.
  • the plunger 4 8 is displaced along the axis 3 2 relative to the reservoir piston 3 8 so as to approach the disc portion 3 8 B against the resistance, and the stem portion 4 8 B compresses the ball 2 2 at its tip. Since the coil spring 3 6 is piled on the spring force of the coil spring 3 and separated from the valve seat 3 OA, the plunger 4 8 is driven by the pressure drop in the reservoir chamber 40 and the pressure chamber 54, thereby causing the communication control valve 20 to It functions as a valve opening means that opens the valve.
  • valve chambers 3 4 A and 3 4 B, the reservoir chamber 40, and the pressure chamber 54 are filled with oil as a working liquid.
  • reference numerals 56 to 60 denote seal rings for preventing the leakage of the oil between the corresponding members.
  • reference numeral 62 denotes a master cylinder reservoir that supplies oil to the master cylinder chamber 12 as needed.
  • One end of the oil supply / discharge conduit 6 4 is connected to the reservoir chamber 40, and the other end of the oil supply / discharge conduit 6 4 is connected to the reservoir chamber 40. It is connected to the suction side of an oil pump 66 driven by an electric motor not shown in the figure.
  • the oil pump 66 is controlled by controlling the drive current to the motor by an electronic control device (not shown).
  • An oil supply conduit 68 is connected to the discharge side of the oil pump 66, and one end of an oil supply / discharge conduit 70 is connected to the oil supply conduit 68. The other end of the oil supply / discharge conduit 70 is connected to a wheel cylinder 72.
  • the oil supply / discharge conduit 70 is normally opened as a pressure increase control valve for controlling the oil supply to the wheel cylinder 72.
  • a type electromagnetic on-off valve 74 is provided. Connected to the oil supply / discharge conduits 70 on both sides of the electromagnetic on-off valve 7 4 are check bypass conduits 7 6 that permit only the flow of oil from the wheel cylinder 7 2 toward the oil supply conduit 6 8.
  • an oil discharge conduit 7 8 is connected to the oil supply / discharge conduit 70 between the solenoid open / close valve 7 4 and the wheel cylinder 72, and the other end of the oil discharge conduit 7 8 is connected to the reservoir 2 6 and the oil pump 6 6 is connected to the oil supply / discharge conduit 6 4.
  • a normally closed electromagnetic on-off valve 80 is provided as a pressure reducing control valve for controlling oil discharge from the wheel cylinder 72.
  • the opening / closing of the electromagnetic on / off valves 74 and 80 is achieved by controlling the control currents for the respective solenoids (not shown) by the electronic control unit.
  • connection conduit 8 2 is connected to the oil supply conduit 68, and the other end of the connection conduit 8 2 is connected to the master conduit 18.
  • a linear solenoid valve 8 4 having a well-known configuration is provided in the middle of the connecting conduit 8 2.
  • the linear solenoid valve 8 4 normally allows only the flow of oil from the oil supply conduit 68 to the master conduit 18, and the control current Is for that solenoid (not shown) is controlled by the electronic control unit.
  • the differential pressure ⁇ P across the linear solenoid valve 84 (the pressure difference between the oil supply pipe 68 and the connection pipe 82 is higher) is controlled (see FIG. 8).
  • the linear solenoid valve 8 4 Connected to the connecting conduits 8 2 on both sides of the linear solenoid valve 8 4 are check bypass conduits 8 6 that allow only the flow of oil from the master conduit 18 to the oil supply conduit 6 8 side.
  • the pressure sensor 8 8 is connected to the connecting conduit 8 2 between the linear solenoid valve 8 4 and the master conduit 1 8, and the pressure sensor 8 8 uses the pressure P in the connecting conduit 8 2 as the master cylinder pressure P It is detected as m.
  • the linear solenoid valve 8 4 and the non-return bypass conduit 8 6 block the flow of oil from the wheel cylinder 7 2 to the master cylinder 1 4 as necessary, and the difference across the linear solenoid valve 8 4 as necessary. It functions as a shut-off valve that controls the pressure ⁇ P.
  • the cylinder 7 2, the solenoid valve 7 4 and 80, the check bypass conduit 7 6, etc. are provided for each wheel.
  • the linear solenoid valve 8 4 and the check bypass conduit 8 6 may also be provided corresponding to each wheel, but the braking device 10 includes a front wheel system corresponding to the left and right front wheels and a rear wheel system corresponding to the left and right rear wheels.
  • a linear solenoid valve 8 4 and a check bypass conduit 8 6 for the front wheel system and the rear wheel system are provided, and the braking device 10 is connected to the left front wheel and the right rear wheel.
  • ABS control is performed to reduce the braking slip of the wheel.
  • ABS control Hoiichi Since the pressure in the cylinder 7 2 needs to be controlled independently of the pressure in the master cylinder chamber 12, the well-known ABS control start condition is satisfied when the well-known ABS control start condition is satisfied.
  • the braking slip ratio or braking slip of the wheel As a result, the pressure in the wheel cylinder 72 is a value corresponding to the master cylinder pressure Pm, which is necessary to suppress the braking slip of the wheel.
  • the braking slip of the wheel is reduced.
  • the ABS control is started by first reducing the pressure in the wheel cylinder 72.
  • the oil in the wheel cylinder 72 flows into the reservoir chamber 40 through the solenoid valve 80, and the reservoir chamber 4
  • the amount of oil of 0kg increases temporarily.
  • the pressure in the wheel cylinder 72 is increased, the oil is sucked from the reservoir chamber 40 by the oil pump 66, so that the amount of oil in the reservoir chamber 40 is reduced.
  • the amount of oil in the reservoir chamber 40 is not less than the amount during normal braking when ABS control is not performed, so the amount of oil in the reservoir chamber 40 and the pressure chamber 54 Therefore, the communication control valve 20 is not opened by the plunger 48, and the closed state is maintained.
  • the pressure in the wheel cylinder 7 within 2 is energized the control current I s to Sorenoi de 8 4 a of Riniasorenoi de valve 8 4 so that the target Hui one Rushirinda pressure based on the master cylinder pressure P m of the oil pump 6 6 Riniasorenoi It is driven in accordance with the differential pressure control by the control valve 84, and this is the same in other embodiments described later.
  • the drive current is applied to the motor of the oil pump 6 6 and crosses the linear solenoid valve 8 4
  • the control current Is is applied to the solenoid 8 4 A of the linear solenoid valve 8 4 A so that the differential pressure ⁇ P becomes a predetermined value based on the target pressure in the wheel cylinder 72 required by automatic braking, for example.
  • the electromagnetic on-off valve 7 4 8 0 is opened and closed so that the pressure in the wheel cylinder 72 becomes the target pressure, and automatic braking is achieved.
  • the oil in the reservoir chamber 40 flows out to the oil pump 66 through the oil supply / discharge conduit 64, and the oil in the master cylinder chamber 12 passes through the master conduit 18 and the communication control valve 20.
  • the pressure regulating action is exerted by the communication control valve 20 so that the pressure flows into the chamber 40 and the pressure in the reservoir chamber 40 and the pressure chamber 54 becomes a predetermined pressure.
  • surplus oil in the braking device 10 is returned to the master cylinder reservoir 62 via the connection conduit 822 by opening the linear solenoid valve 84, which will be described later.
  • the communication control valve 20 is a ball-type normally closed check valve and is kept closed when not controlled, so that the braking operation is started by the driver.
  • a part of the oil in the master cylinder chamber 12 is prevented from flowing into the reservoir chamber 40 through the communication control valve 20, and from the master cylinder chamber 12 to the master conduit 18. All the oil that flows out can be supplied to the wheel cylinder 7 2 via the linear solenoid valve 8 4 and the solenoid valve 7 4. Therefore, the pressure in the wheel cylinder 72 can be effectively increased from the beginning when the braking operation by the driver is started, and thereby the delay in the increase in the wheel cylinder pressure with respect to the braking operation and the actual braking action are prevented. In addition to effectively eliminating the deterioration of the feeling caused by the delay, the braking response at the start of the braking operation can be improved reliably.
  • the effective braking operation amount S e (the braking operation amount excluding brake pedal play, etc.) of the driver starts to increase from 0 at time t 1, and at time t 3
  • the effective braking operation amount S e reaches a certain value S ec, and then the effective braking operation amount S e is maintained at the value S ec.
  • the communication control valve is a normally open valve
  • the driver's effective braking operation amount S e (excluding brake pedal play, etc.) Even if the braking operation amount) rises above 0, a part of the oil in the master cylinder chamber flows into the reservoir chamber via the communication control valve, so that the pressure P wc in the wheel cylinder is later than the time t 1 It begins to rise at t2, and at time t4 later than time t3, the pressure Pwcc corresponding to the value S ec is reached and a delay in the pressure rise in the wheel cylinder is avoided.
  • the communication control valve 20 is a normally closed check valve, and a part of the oil in the master cylinder chamber 12 passes through the communication control valve 20 to the reservoir chamber.
  • the pressure P wc in the wheel cylinder is substantially increased from time t 1 in response to the increase in the effective braking operation amount S e of the driver, and is later than time t 4 At time t 3 4, the pressure P wcc corresponding to the value S ec can be reached.
  • the pump 66 is driven, and the communication control valve 20 is opened via the plunger 48 by the suction pressure of the pump 66 as a pressurizing supply means. Is started with the communication control valve 20 closed, so that the pressure in the reservoir chamber 40 is increased by the suction action of the pump 66 compared to when the communication control valve is a normally open valve. As a result, the suction pressure of the pump 6 6 can be efficiently applied to the communication control valve 20 via the plunger 48, and the communication control for the pressure in the reservoir chamber 40 can be achieved.
  • the pressure regulating action of the valve 20 can be exerted at an early stage.
  • the pressure in the reservoir chamber 40 and the pressure chamber 54 becomes the predetermined value.
  • the valve opening driving force of the plunger 4 8 against the ball 2 2 acts in the valve closing direction against the ball 2 2 and the spring force of the spring 3 6 and the valve chamber 3 4 A and the valve chamber 3 4 B
  • the communication control valve 20 is kept closed until the sum of the forces due to the differential pressure is overcome. Therefore, even if the pump 6 6 is driven during the ABS control, a part of the oil in the master cylinder chamber 12 is prevented from flowing into the reservoir chamber 40 through the communication control valve 20. Can supply high-pressure oil.
  • the stem portion 4 8 B of the plunger 48 as the valve opening means for opening the communication control valve 20 is independent of the ball 22 which is the valve element of the communication control valve 20. Therefore, it is possible to increase the degree of freedom in setting the relationship between the communication control valve 20 and the plunger 48, and the communication control valve 20 is closed. Therefore, the spring force of the compression coil springs 4 4 and 50 does not affect the spring force necessary to maintain the communication control valve 20 in the closed state, so that the ball 22 is attached to the closed position.
  • the energizing compression coil spring 36 can maintain the communication control valve 20 in the closed state during non-braking regardless of the spring force of the compression coil springs 44 and 50.
  • the tip of the stem portion 48 B of the plunger 48 is separated from the ball 22 of the communication control valve 20 when not braked, and the plunger 48 is pulled by the suction pressure of the pump 66. Even if the control valve 2 0 is driven in the valve closing direction, until the tip of the stem 4 8 B comes into contact with the ball 22 Therefore, the oil in the pressure chamber 5 4 is reduced due to the decrease in the volume of the pressure chamber 5 4 due to the movement of the plunger 4 8 while the communication control valve 20 is kept closed.
  • the communication hole 5 4 A is supplied to the suction side of the pump 6 6 through the reservoir chamber 4 0 and the oil supply / discharge conduit 6 4, so that the pump 6 6 can reliably supply high-pressure oil from the beginning of its operation, Good oil supply performance at the start of pump operation can be secured.
  • FIG. 2 is a cross-sectional view showing a ball type check valve type communication control valve and reservoir of a second embodiment of the braking device for a vehicle according to the present invention.
  • the same members as those shown in FIG. 1 are given the same reference numerals as those shown in FIG. 1, and this also applies to other embodiments described later. It is.
  • the reservoir piston 3 8 is not provided with a land portion corresponding to the land portion 3 8 A of the first embodiment described above.
  • a hole 3 8 D is provided in the center of the disk portion 3 8 B of the reservoir 3 8 B, and the cylindrical portion 3 8 C is large at the end opposite to the disk portion 3 8 B.
  • a diameter 3 8 E is provided.
  • Reservoir 2 6 Housing 2 8 Cylinder bore 2 8 A shoulder
  • the piston part 4 8 A of the plunger 4 8 is connected to the disk part 3 8 B of the reservoir bar piston 3 8 B on the side of the communication control valve 20 and into the cylinder bore 2 8 A of the housing 2 8 of the reservoir 2 6 It is arranged.
  • the viston 48 A is fitted to the cylinder bore 28 A so that it can be displaced relative to the housing 28 and the reserve piston 38.
  • a variable reservoir chamber 40 is defined. In particular, when the volume of the reservoir chamber 40 is larger than the volume shown in FIG. 2, the plunger 48 is integrally displaced relative to the housing 28 together with the reservoir piston 38, whereby the piston part 4 8 A functions as part of the reservoir piston 3 8.
  • a compression coil spring 50 is fitted between the piston part 4 8 A and the end wall of the cylinder bore 28 A, and the piston part 4 8 A is a disk part 3 8 B of the reservoir piston 3 8 B. It is urged along the axis 3 2 toward the reservoir bapiston 3 8 by the compression coil spring 50 so as to abut against it.
  • the biasing force of the compression coil springs 4 4 and 5 0 causes the large diameter part 3 8 E of the reservoir piston 3 8 to move to the shoulder part 2 8 B.
  • 0 may be omitted.
  • the stem portion 4 8 B of the plunger 48 is fitted to the housing 28 so as to be able to reciprocate, and has a large diameter portion that defines the valve chamber 3 4 B in cooperation with the housing 28 and the valve seat member 30.
  • a plurality of grooves 48 C extending along the axis 32 and always connecting the valve chamber 34 B and the reservoir chamber 40 are provided.
  • the length in the direction along the axis 3 2 of the large diameter portion of the stem portion 4 8 B is displaced toward the end cap 4 2 together with the plunger 4 8 until the reservoir piston 3 8 comes into contact with the end cap 42.
  • the length of the stem portion 48B is set so as not to come out of the hole defining the valve chamber 34B of the housing 28.
  • Other points of the second embodiment are the same as those of the first embodiment described above.
  • the communication control valve 20 can regulate the pressure in the reservoir chamber 40.
  • the supply of high-pressure oil by the pump 66 can be reliably achieved from the beginning of the driving of the pump 66 while maintaining the communication control valve 20 in the closed state.
  • the piston portion 4 8 A of the plunger 48 is fitted to the cylinder bore 28 A of the housing 28, so that it is not as compared with the case of the first embodiment described above.
  • the pressure receiving area of the plunger 48 with respect to the suction pressure of the pump 66 can be increased, whereby the response of the plunger 48 with respect to the suction pressure of the pump 66 can be increased.
  • FIG. 3 is a cross-sectional view showing a spool valve type communication control valve and a reservoir of a third embodiment of the vehicle braking apparatus according to the present invention.
  • the communication control valve 20 is a spool valve having a spool 90 as a valve element.
  • a valve housing member 92 is disposed in a portion of the housing 28 that accommodates the communication control valve 20, and is fixed to the housing 28 by press-fitting, for example.
  • Valve housing member 9 2 has a bore 9 4 that extends along the axis 3 2 and supports the spool 90 so that it can reciprocate along the axis 3 2, and its volume is variable in cooperation with the housing 28 and the spool 90.
  • the air chamber 96 is defined.
  • the air chamber 96 is provided in an internal passage 9 8 provided in the valve housing member 92, an annular passage 100 defined between the housing 28 and the valve housing member 92, and provided in the housing 28.
  • the internal passage 10 0 2 is always connected to the air chamber 46.
  • the spool 90 has a large-diameter portion 9 OA at the end opposite to the side of the reservoir 3 8, and is mounted between the end face of the bore 2 8 A of the housing 2 8 and the spool 90.
  • the compressed coil spring 10 04 is attached along the axis 3 2 toward the reservoir piston 3 8 and the plunger 48 so that the large diameter portion 9 OA contacts the shoulder portion 9 2 A of the valve housing member 92. It is energized.
  • Spool 9 0 is Liza
  • the valve housing member 9 2 has a plurality of radial passages 10 8 that open to the inner surface of the valve housing member 92 2 at the inner end, and the outer ends of the radial passages 10 8 and 8 are the housing 28 and the valve housing. It is connected to the master conduit 18 through an annular passage 110 defined between the member 9 2 and a passage 1 12 provided in the housing 28.
  • the spool 9 0 blocks communication with the annular passage 1 0 6.
  • the spool 90 When the spool 90 is piled on the spring force of the compression coil spring 10 4 and displaced more than a predetermined amount in a direction away from the reservoir piston 38 and the plunger 48, the spool 90 communicates with the annular passage 106.
  • a plurality of lands 9 2 B are provided on the end surface of the valve housing member 9 2 on the side of the reservoir piston 3 8, so that the reservoir bar piston 3 8 is driven by the urging force of the compression coil spring 4 4.
  • One reservoir Ichibashitsu 4 0 during even those when being brought into contact with the valve housing member 9 2 are summer as KakuJo.
  • the stem portion 48B of the plunger 48 has a small diameter portion, and an annular passage 48C is defined by the small diameter portion.
  • the annular passage 48 C communicates with the reservoir chamber 40, and the reservoir chamber 40 is communicated with the pressure chamber 54 through a communication hole 54 A provided in the reservoir papillon 38.
  • the length of the stem portion 4 8 B of the plunger 4 8 is such that the land portion 3 8 A of the reservoir piston 3 8 contacts the land portion 9 2 B of the valve housing member 9 2 and the piston portion 4 8 A of the plunger 4 8 But
  • the lower end of the spool 90 ie, the plunger 48
  • the length is set so as to be slightly spaced from the end on the side or to contact the spool 90 without pressing it.
  • the effective diameter of the spool 90 (the diameter of the large diameter portion 9 OA and the small diameter portion) is set to a value smaller than the effective diameter of the piston portion 48 8 A of the plunger 48.
  • the compression coil spring 4 4 urges the plunger 4 8 toward the communication control valve 20, and thereby, the reservoir bapiston 3 8 is controlled to communicate with the plunger 48 and the compression coil spring 50. Energizing towards valve 20.
  • the spring force of the compression coil spring 104 is set to a value smaller than the product of the effective pressure receiving area of the piston portion 48 8 A of the plunger 48 and the maximum suction pressure of the pump 66.
  • reference numerals 110 to 116 denote seal rings for preventing oil leakage between corresponding members.
  • the other points of the third embodiment are the same as those of the first embodiment.
  • the spool 9 which is the valve element of the communication control valve 20. Since the pressure in the master cylinder chamber 12 does not act in the opening / closing direction of the communication control valve 20 at 0, the compression coil springs 44, 50 are not compared with those in the first and second embodiments described above. Effective diameters such as spring force and biston 48 A can be easily set to required values.
  • the axial length of the unit comprising the communication control valve 20 and the reservoir 26 is made smaller than those in the first and second embodiments described above, The mountability to the vehicle can be improved.
  • FIG. 4 is a cross-sectional view showing a spool valve type communication control valve and a reservoir of a fourth embodiment of the vehicle braking apparatus according to the present invention.
  • the communication control valve 20 is a spool valve having a spool 90 as a valve element, but the compression coil spring 10 4 in the third embodiment described above There is no corresponding compression coil spring.
  • the spool 90 is integrated with the stem portion 48B of the plunger 48, and the air chamber 96 is axially connected to the spool 90 and the stem portion 48B of the plunger 48.
  • the compression coil spring corresponding to the compression coil spring 10 4 in the third embodiment described above is not provided, and the pool 9 0 is the stem portion of the plunger 48. Since it is integrated with 48 B, the number of parts can be reduced compared to the case of the third embodiment described above, and the assembly of the communication control valve 20 and the reservoir 26 is easy. Can be done.
  • the air chamber 96 is always connected to the air chamber 46, so that the two air chambers are not connected to each other.
  • the communication control valve 20 can be opened and closed smoothly and stably.
  • the air chamber is formed by the internal passage 1 1 8 provided in the stem portion 4 8 B of the plunger 48. Since 4 6 and 96 are connected to each other, a passage for connecting the two air chambers 4 6 and 96 to each other is provided in the housing 28 or the like as in the third embodiment described above, for example. Compared with this, the structure of the communication control valve 20 and the reservoir 26 can be simplified.
  • the air chambers 46 and 96 may be opened to the atmosphere without being connected to each other by the internal passages 10 2 or the like.
  • FIG. 5 is a sectional view showing a spool valve type communication control valve and a reservoir integrated with each other in the fifth embodiment of the braking device for a vehicle according to the present invention.
  • the reservoir piston 3 8 is fitted in the cylinder bore 28 of the housing 28 so as to be able to reciprocate along the axis 32, and the reservoir piston 38 is It also functions as the plunger 48 and the spool 90 in the third and fourth embodiments.
  • the reservoir piston 38 cooperates with the housing 28 to define a variable volume reservoir chamber 40 on the opposite side of the air chamber 46.
  • a compression coil spring 10 04 that urges the reservoir piston 3 8 toward the end cap 4 2 against the spring force of the compression coil spring 44. .
  • An urging restriction device 120 that restricts the urging of the compression coil spring 104 against the reservoir bapiston 38 is disposed in the reservoir chamber 40.
  • Energization limiting device in the illustrated fifth embodiment 1 20 is composed of a cup-shaped member 1 2 2, a slide member 1 2 4, and a base member 1 2 6.
  • the force-shaped member 1 2 2 includes a cylindrical portion 1 2 2 A, a rim portion 1 2 2 B provided at one end of the cylindrical portion, and an end wall portion 1 2 2 C provided at the other end of the cylindrical portion.
  • the rim portion 1 2 2 B is in contact with the end face on the reservoir chamber 40 side of the reservoir bapiston 3 8.
  • the cup-shaped member 1 2 2 is provided with a plurality of holes 1 2 2 D for connecting the inside and outside thereof.
  • the slide member 1 2 4 is a bolt having a head portion 1 2 4 A and a shaft portion 1 2 4 B.
  • Head 1 2 4 A contacts end wall 1 2 2 C in cup-shaped member 1 2 2;
  • Shaft 1 2 4 B is end wall 1 2 2 of cup-shaped member 1 2 2 It extends through the hole 1 2 2 D provided in C and extends outside the cup-shaped member 1 2 2.
  • the shaft 1 2 4 B has a tip that extends through the raised portion 1 2 6 A of the base member 1 2 6 disposed in contact with the end wall of the cylinder bore 2 8 A. Nut 1 2 8 is fixed to the base member 1 2 6.
  • the base member 1 2 6 is a cylindrical collar 1 3 0 and a cylinder bore 2 8 A which fits into the cylinder bore 2 8 A defining the reservoir chamber 40 and abuts the peripheral edge of the base member 1 2 6 at one end.
  • C-ring 1 3 2 fixed to the inner wall of cylinder bore 28 A is fixed in contact with the end wall of cylinder bore 28 A.
  • the compression coil spring 104 is elastically mounted between the rim portion 1 2 2 B of the force-up type member 1 2 2 and the base portion 1 2 6 B of the base member 1 2 6.
  • the spring force of the compression coil spring 104 is greater than that of the compression coil spring 44. Therefore, the head 1 2 4 A is normally engaged with the end wall 1 2 2 C of the cup-shaped member 1 2 2. Accordingly, the position of the reservoir piston 3 8 with respect to the housing 28 is set to the predetermined standard position shown in FIG.
  • the reservoir piston 38 moves in a direction that reduces the volume of the reservoir chamber 40, which causes the shaft portion 1 2 4 B to enter the cup-shaped member 1 2 2. enter in.
  • Reservoir bapiston 3 8 has an open end in reservoir chamber 40 at one end and a reservoir bapiston at the other end.
  • the reservoir piston 38 moves by a predetermined amount in the direction in which the volume of the reservoir chamber 40 decreases, and the end of the reservoir piston 38 contacts the shoulder 28 B provided on the housing 28. Then, it aligns with the opening of the passage 1 1 2 and the internal passage 1 3 4 communicates with the passage 1 1 2.
  • the reservoir piston 3 8 and the housing 2 8 are compressed coil springs 1
  • the communication between the master conduit 18 and the reservoir chamber 40 is controlled by controlling the communication between the internal passage 1 3 4 and the passage 1 1 2 by the pressure in the reservoir chamber 40 in cooperation with 0 4 etc.
  • a spool valve type normally closed communication control valve 20 is controlled.
  • the other points of the fifth embodiment are the same as those of the fourth embodiment described above.
  • the cylinder bore 28 of the housing 28 has a reservoir. Since only one piston 3 8 is fitted, and the reservoir piston 3 8 also functions as the plunger 48 and spool 90 in the third and fourth embodiments described above, the third and fourth described above. Compared to the case of this embodiment, the unit structure comprising the communication control valve 20 and the reservoir 26 can be simplified.
  • the reservoir chamber 40 is provided with an urging restriction device 120 that restricts the urging of the compression coil spring 104 with respect to the reservoir piston 38.
  • the reservoir piston 3 8 can be surely positioned at the standard position, and the communication control valve 2 0 by the movement of the reservoir piston 3 8 Can be opened and closed stably.
  • FIG. 6 is a cross-sectional view showing a ball type check valve type communication control valve and a reservoir of a sixth embodiment of the vehicle braking system according to the present invention.
  • the reservoir piston 3 8 is integrally formed with the disk portion 3 8 B, and the stem portion 4 8 B extending along the axis 3 2 toward the communication control valve 20. Accordingly, the reservoir piston 38 can also function as the plunger 48 in the first and second embodiments described above.
  • An urging restriction device 120 that restricts the urging of the compression coil spring 44 against the reservoir bapiston 38 is disposed between the reservoir bapiston 38 and the end cap 42.
  • the bias limiting device 1 2 0 has the same structure as that of the bias limiting device in the fifth embodiment described above, but the rim portion 1 2 2 B of the cup-shaped member 1 2 2 is the reservoir 1.
  • the disc part 3 8 of the baptiston 3 8 is in contact with the inner surface of the B 8 and the tip part of the shaft part 1 2 4 B extends through the raised part 4 2 A of the end cap 4 2, and the nut 1 2 8 It is fixed to the end cap 4 2.
  • Compression coil spring 4 4 is a force-up type member
  • the tip of the stem portion 4 8 B is loosely fitted in the communication hole 30 B of the valve seat member 30
  • the end face of the tip part of the stem part 48 B is slightly spaced from the ball 22 of the communication control valve 20 or is set to a length and a distance that abuts on the ball 22 without pressing the ball 22. Yes.
  • the reservoir piston 3 8 moves relative to the housing 2 8 toward the communication control valve 20 along the axis 3 2.
  • the disc part 2 8 B disengages from the rim part 1 2 2 B of the force-up-shaped member 1 2 2, and the stem part 4 8 B pushes the ball 2 2 at the tip of the compression coil spring 3 6
  • the stem 4 8 B is driven by the pressure drop in the reservoir chamber 40 to open the communication control valve 20, because it is piled on the spring force and separated from the valve seat 30 A. It functions as a valve means.
  • the other points of the sixth embodiment are the same as those of the first and second embodiments described above.
  • the reservoir piston 3 8 is provided with the stem portion 48 8 B. Since it is integrated and functions as the plunger 48 in the first and second embodiments described above, the communication control valve 20 and the reservoir are compared with those in the first and second embodiments described above. It is possible to simplify the structure of the unit consisting of 26 parts.
  • an urging restriction device 1 2 for restricting the urging of the compression coil spring 4 4 against the reservoir bapiston 3 8 is provided between the reservoir piston 3 8 and the end cap 4 2. Since 0 is arranged, as in the case of the fifth embodiment described above, the reservoir piston 3 8 can be reliably positioned at the standard position as compared with the case where the bias limiting device is not provided. Further, the communication control valve 20 can be opened and closed stably by the movement of the reservoir piston 38. Seventh embodiment
  • FIG. 7 is a cross-sectional view showing a ball check valve type communication control valve and a reservoir of a seventh embodiment of the vehicle braking device according to the present invention.
  • the reservoir bapiston 38 is formed integrally with the disc portion 3 8 B, and the axis 3 2 toward the communication control valve 20.
  • Stem part 4 extending along
  • a compression coil spring 44 is mounted between the disc portion 3 8 B and the end cap 4 2.
  • an inertia material such as rubber 1 3 4 is attached to the tip of the stem portion 4 8 B, and the tip of the stem portion 4 8 B comes into contact with the valve element of the check valve via the inertia material 1 3 4. ing. .Stem part 4 8
  • the length of B and the inertial material 1 3 4 is the same as the length of the inertial material 1 3 3 with the disc part 3 8 B of the reservoir piston 3 8 spaced from the end face of the cylinder bore 2 8 A to the end cap 4 2 side. 4 is set to a length in contact with the ball 2 2 of the communication control valve 2 0.
  • the ball 2 In the standard state shown in FIG. 7 in which the communication control valve 20 is in the closed state and the tip of the stem portion 4 8 B is in contact with the ball 22, the ball 2
  • the spring force of each compression coil spring and elastic material is set to be higher than the sum of the urging force of 4 4 and the inertial material 1 3 4.
  • the other points of the seventh embodiment are the same as those of the first, second, and sixth embodiments described above.
  • the same operational effects as those of the first, second, and sixth embodiments described above can be obtained, and the parts can be obtained as compared with the case of these embodiments.
  • the number of points can be greatly reduced, and the unit structure comprising the communication control valve 20 and the reservoir 26 can be greatly simplified.
  • the elastic material 1 3 4 enables the reservoir bistons 3 8 to move freely, even if the driving of the pump 6 6 is started as in the case of the other embodiments described above, the inside of the reservoir chamber 40
  • the communication control valve 2 0 is kept closed until the pressure reaches the predetermined value, which enables the master cylinder chamber 1 during ABS control.
  • the pump 66 can reliably supply high-pressure oil while preventing a part of the oil in the tank 2 from flowing into the reservoir chamber 40 via the communication control valve 20.
  • the stem portion 48 8B can be moved at the start of the pump operation as compared with the case where the tip of the stem portion 48B is separated from the valve element such as the ball 22. The sound generated when the tip hits the valve element. It is possible to reliably reduce the risk of life.
  • FIG. 10 is a cross-sectional view showing a spool-type communication control valve and a reservoir of an eighth embodiment of a vehicle braking apparatus according to the present invention, which is configured as a modification of the sixth embodiment.
  • an urging restriction device 120 is provided, but the communication control valve 20 is not a ball check valve.
  • the spool valve has a spool 90 as a valve element as in the third embodiment.
  • the reservoir piston 3 8 is formed integrally with the disc portion 3 8 B and extends along the axis 3 2 toward the communication control valve 20 in the same manner as the stem portion 4 8 B in the sixth embodiment.
  • a protrusion 3 8 F extending.
  • the protrusion 3 8 F is slightly spaced from the lower end surface of the spool 90 or is in contact with the lower end surface without pressing the lower end surface during non-braking.
  • the protrusion 3 8 F moves in a direction in which the volume of the reservoir 38 is reduced.
  • the spool 90 is driven upward as viewed in FIG. 10, thereby opening the communication control valve 20.
  • the reservoir bistons 38 are used in the first to third embodiments described above.
  • the housing 28 and the valve housing member 92 are provided with the air chamber 46 and the valve chamber 6 6 in the third embodiment. 9 There is no passage corresponding to the passages 9 8, 10 2, etc. connecting the 6 6 to each other.
  • the spool 90 has A plurality of internal passages 1 3 6 extending along the axis 3 2 are provided.
  • the spool 90 cooperates with the housing 28 and the valve housing member 92 to define the variable volume chamber 1 3 8 on the opposite side of the reservoir chamber 40, and the variable volume chamber 1 3 8
  • the internal passage 1 3 6 is always connected to the reservoir chamber 40 so that it is filled with oil having the same pressure as the oil in the reservoir chamber 40.
  • the other points of the eighth embodiment are the same as those of the third or sixth embodiment described above.
  • variable volume chamber 1 3 8 is connected to the reservoir chamber by the internal passage 1 3 6.
  • the same oil pressure always acts on both sides of the spool 90 along the axis 3 2, and therefore the spool 90 is driven by the difference in pressure acting on both sides of the spool 90.
  • the air chamber 96 is connected to the air chamber 46 by passages 98, 102, etc., and the pressure in the air chamber 96 is atmospheric pressure. Atmospheric pressure acts on the upper end of spool 90 as seen in FIG.
  • the effective diameters of the plunger 48 and spool 90 are 2 Rp and 2 Rs
  • the pressure in the reservoir chamber 40 pressure chamber 54
  • Pr negative pressure
  • the atmospheric pressure is Pair
  • the oil pump 6 The driving force F when the plunger 4 8 drives the spool 90 in the valve opening direction of the communication control valve 20 due to the pressure in the reservoir chamber 40 being reduced by 6 is expressed by the following formula 1, and the plunger 4 Of the cross-sectional area corresponding to the effective diameter 2 Rp of 8, the portion of the cross-sectional area corresponding to the effective diameter 2 Rs of the spool 90 does not contribute to the generation of the driving force F.
  • the pressure in the variable volume chamber 1 3 8 is not atmospheric pressure, and is always maintained at the same pressure as the pressure in the reservoir chamber 40 by the internal passage 1 3 6. Therefore, if the effective diameter of the reservoir piston 3 8 is 2 Rr, the driving force F when the reservoir piston 3 8 drives the spool 90 in the valve opening direction via the projection 3 8 F is expressed by the following equation 2. All the cross-sectional areas corresponding to the effective diameter 2 Rr of the reservoir bapiston 3 8 contribute to the generation of the driving force F.
  • the reservoir vapor 38 drives the spool 90 in the valve opening direction.
  • the driving force F at the time of operation can be increased, whereby the oil pump 66 can reliably drive the spool 90 by reducing the pressure in the reservoir chamber 40, and The effective diameter 2 Rr of the reservoir piston 38 required to generate the required force for driving the spool 90 can be reduced, and the reservoir 26 can be downsized.
  • the eighth embodiment shown in the figure two chambers on both sides in the direction along the axis 32 of the spool 90, that is, the reservoir chamber 40 and the variable volume chamber 13 8 are provided in the spool 90. Since the passages 1 3 6 are always in communication with each other, the two chambers are always in communication with each other by an internal passage provided in the housing 28, etc. Compared to the case of the third embodiment described above. Simple structure In addition, the processing cost of the housing 28 can be reduced.
  • FIG. 11 is a cross-sectional view showing a poppet check type communication control valve and a reservoir of a ninth embodiment of a braking apparatus for a vehicle according to the present invention configured as a modification of the sixth and eighth embodiments.
  • Fig. 12 is an enlarged cross-sectional view of the communication control valve shown in Fig. 11.
  • Fig. 13 is a diagram of the reservoir chamber side of the valve element head shown in Figs. 11 and 12. It is a bottom view which expands and shows an end surface further.
  • the urging restriction device 1 2 0 is provided, but the communication control valve 2 0 is a ball type check valve.
  • This is a poppet type check valve having a poppet type valve element 140, not a spool valve.
  • the reservoir piston 3 8 is a projection 3 8 F that is formed integrally with the disc portion 3 8 B and extends along the axis 3 2 toward the communication control valve 20, as in the eighth embodiment.
  • the reservoir piston 38 also functions as a plunger 48 that opens and closes the communication control valve 20 in the first to third embodiments described above.
  • the valve element 1 4 0 has a large-diameter head portion 1 4 0 A and a small-diameter spool portion 1 4 0 B which are integrated with each other, and the head portion 1 4 OA with respect to the spool portion 1 4 0 B Is disposed in the housing 28 so as to be positioned on the reservoir chamber 40 side. Further, the valve element 140 extends along the axis 3 2 in a state of loosely fitting with the valve housing member 92 fixed by, for example, press-fitting to the housing 28, and the valve housing member 92 is The valve chamber 3 4 A is defined in cooperation with the housing 28.
  • valve housing member 92 has a substantially cylindrical shape with a small inner diameter at the lower end, a conical valve seat 3 OA aligned with the axis 3 2 of the communication control valve 20, and the valve chamber 3. 4 A and a reservoir hole 40 B for connecting the reservoir chamber 40 to each other.
  • the valve element 140 is urged against the valve seat 30A by a compression coil spring 36 that is elastically mounted between the head portion 140A and the end face of the housing 28.
  • the communication control valve 20 normally closes when the ball 22 abuts against the valve seat 3 OA and closes the communication between the valve chamber 3 4 A and the reservoir chamber 40.
  • the valve chamber 3 4 A is an internal passage composed of a plurality of radial passages formed in the cylindrical portion of the valve housing member 92 and an annular groove formed on the outer periphery of the cylindrical portion and communicating with the plurality of radial passages. Accordingly, the other end of the master conduit 1 8 is always connected to the other end via an internal passage 1 1 2 formed in the housing 2 8.
  • the spool portion 1 4 0 B of the valve element 1 4 0 is supported by the housing 2 8 so as to be capable of reciprocating along the axis 3 2, and cooperates with the housing 2 8 to define the variable volume chamber 1 4 4. is doing.
  • the variable volume chamber 1 4 4 is always connected to the reservoir chamber 40 through a single internal passage 1 3 6 provided in the valve element 1 4 0 and extending in the longitudinal direction thereof.
  • Head part 1 4 OA is substantially hemispherical and always communicates with internal passage 1 3 6 and extends perpendicularly to internal passage 1 3 6 as shown in detail in FIGS. There are existing grooves 1 4 6.
  • variable volume chamber 14 4 and the reservoir chamber 40 are connected by the internal passage 13 36 and the groove 14 46. Maintained in a state.
  • the ends of the grooves 1 4 6 are located on the inner side in the radial direction from the circle 1 4 8 where the head 1 4 OA contacts the valve seat 3 OA, and the communication control valve 20 is thereby closed.
  • the internal passage 1 3 6 and the valve chamber 3 4 A do not communicate with each other.
  • the diameter of the circle at position 1 4 8 is D 1 and the effective diameter of the spool 1 4 0 B is D 2
  • the diameter D 1 is equal to or greater than the effective diameter D 2 and the difference between them is 0 or a small positive It is set to be a value.
  • reference numerals 14 8 and 15 50 denote seal rings for preventing oil leakage between corresponding members. Further, the other points of the ninth embodiment are the same as those of the third, sixth or eighth embodiment described above.
  • the communication control valve 20 is a ball type.
  • the communication control valve 20 opens when the valve element 140 moves slightly in the valve opening direction. Therefore, compared with the above-described third to fifth and eighth embodiments where the communication control valve 20 is a spool valve, the communication with respect to the pressure drop in the reservoir chamber 40 by the oil pump 66 is achieved.
  • the valve opening response of the control valve 20 can be increased, and the structure of the communication control valve 20 can be simplified.
  • the on-off valve is the first, second, Compared to the ball type check valve as in the sixth and seventh embodiments, the valve element can be stably moved in the opening and closing direction, and thereby an oil pump as a pressure supply means 6 It is possible to stably open and close the communication control valve 20 with the suction pressure of 6.
  • the circular diameter D 1 of the position 1 4 8 where the head portion 14 OA contacts the valve seat 3 OA is equal to or larger than the effective diameter D 2 of the spool portion 140 0 B.
  • the difference between them is 0 or small positive Therefore, the pressure in the variable volume chamber 1 4 4 ⁇ does not apply valve opening urging force to the valve element 1 4 0 or excessive valve closing urging force. Therefore, by reducing the pressure in the reservoir chamber 40 by the oil pump 66, the valve element 140 can be smoothly driven to the valve open position.
  • the communication control valve 20 is a ball type check valve, but the check valve is, for example, as in the ninth embodiment.
  • a poppet type check valve may be used.
  • the communication control valve 20 may be a spool valve such as the spool valve in the third embodiment. .
  • the bias limiting device 1 2 0 includes the cup-shaped member 1 2 2, the slide member 1 2 4, and the base member 1 2 6.
  • the urging of the corresponding urging means can be limited, it may be of any configuration known in the art, and the urging limiting device 1 2 0 It may be omitted.
  • the tip of the stem portion 4 8 B is in contact with the ball 2 2 of the communication control valve 20 through the inertia material 1 3 4, but the stem portion 4 8 B
  • the tip of the valve may be modified so that it directly makes rigid contact with the ball 22 of the communication control valve 20.
  • the length of the stem portion 4 8 B is the disc portion of the reservoir bapiston 3 8 3 8 B is the cylinder bore 2 8 A End cap from the end face of A 4
  • the length of the stem portion 48 B is in contact with the ball 22 of the communication control valve 20 in a state of being separated to the side 2.
  • the biasing force of the compression coil spring 36 against the ball 22 is It is set to be higher than the urging force of the compression coil spring 4 4 against 3 8.
  • the tip end of the stem portion 48B is spaced from the ball 22 of the communication control valve 20 in the standard state, and
  • the annular passage 10 6 and the radial passage 10 8 are axially spaced from each other.
  • the stem portion 4 8 The tip of B may be modified so that it abuts against the valve element of the check valve directly or via inertia, and in each of the latter embodiments, the annular passage 106 and the radial passage It may be modified so that 1 0 8 are adjacent to each other without communicating in the standard state.
  • the protrusion 3 8 F is slightly spaced from the lower end surface of the spool 90 or the head portion 14 OA or presses the lower end surface during non-braking. Even if the tip of the protrusion 3 8 F is corrected so as to contact the lower end surface of the spool 90 or the head portion 14 OA via the elastic material such as the elastic material 1 3 4.
  • the shut-off valve normally allows only the oil flow from the oil supply conduit 68 to the master conduit 18, and the differential pressure ⁇ P is controlled by controlling the control current Is.
  • the linear solenoid valve 8 4 and the check bypass conduit 8 6 are used to control the master cylinder and the wheel cylinder when the pump 6 6 is driven. As long as the oil can be moved from the wheel cylinder side to the master cylinder side, any configuration known in the art may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

本発明の課題は、制動操作に対するホイールシリンダ内圧力の上昇の遅れ及び実際の制動作用の遅れに起因するフィーリングの悪化を解消し、制動操作開始時の制動の応答性を向上させることである。本発明の車両用制動装置は、必要に応じてホイールシリンダ(72)よりマスタシリンダ(14)へ至るオイルの流れを遮断する遮断弁(84、86)と、ホイールシリンダ内の圧力を増減する増減圧制御弁(74、80)と、増減圧制御弁が減圧位置にあるときにホイールシリンダよりのオイルをリザーバ室(40)に受け入れて貯留するリザーバ(26)と、リザーバ室よりオイルを吸引して加圧し増減圧制御弁が増圧位置にあるときに増減圧制御弁を経てオイルをホイールシリンダへ供給するポンプ(66)と、マスタシリンダとリザーバ室との連通を制御する連通制御弁(20)とを有し、連通制御弁は常閉弁であり、ポンプの吸入圧力により開弁される。

Description

明 細 書
車両用制動装置及びそのリザ—バ
技術分野
本発明は、 車両用制動装置に係り、 更に詳細にはホイ一ルシリンダ内の圧力を増減する車 両用制動装置及びそのリザ一バに係る。 背景技術
自動車等の車両の制動装置の一つとして、必要に応じてホイ一ルシリンダょりマスタシリ ンダへ至る作動液体としてのオイルの流れを遮断する遮断弁と、 ホイールシリンダ內の圧力 を増減する増減圧制御弁と、増減圧制御弁が減圧位置にあるときにホイールシリンダよりの オイルをリザーバ室に受け入れて貯留するリザ一バと、 リザ一バ室よりオイルを吸引して加 圧し增減圧制御弁が増圧位置にあるときに增減圧制御弁を経てオイルをホイ一ルシリンダ へ供給する加圧供給手段としてのポンプと、 マスタシリンダとリザ一バ室との連通を制御す る連通制御弁とを有する車両用制動装置は既に知られており、 例えば特開平 5— 1 1 6 6 0 7号公報及び特開平 1 0— 2 6 4 8 0 1号公報に記載されている。
この種の制動装置に於いては、通常の制動モード時にはマスタシリンダ内の圧力が遮断弁 を経てホイ一ルシリンダに導入されることにより、 ホイールシリンダ内の圧力がマスタシリ ンダ内の圧力により増減され、 ホイ一ルシリンダ内の圧力をマスタシリンダ内の圧力よりも 高くする必要がある制動モ一ド時には、遮断弁によりホイールシリンダよりマスタシリンダ へ至るオイルの流れが遮断されると共にポンプが駆動され、 ポンプより供給される高圧のォ ィルが增減圧制御弁によってホイールシリンダに対し給排され、 これによりホイールシリン ダ内の圧力が所望の圧力に制御される。
またこの種の制動装置によれば、連通制御弁はマスタシリンダ内の圧力及びポンプの吸入 圧力に応じて自動的に開閉し、 これによりマスタシリンダ内の圧力及びポンプの吸入圧力に 応じてリザ一バ室内の圧力を自動的に調圧する調圧弁として機能するので、連通制御弁が電 磁弁であり、 種々のセンサの検出結果に基づいて電磁弁が制御される構成の場合に比して、 制動装置のコス トを低減することができると共に、制動装置の制御対象を低減して制動装置 の制御を簡略化することができる。
上記各公開公報に記載されている如き従来の制動装置に於いては、連通制御弁は運転者に よる制動操作が行われていない非制動時に弁要素が弁座より離脱した状態にある常開の逆 止弁であり、従って非制動時にはマスタシリンダとリザーパ室とが相互に連通した状態にあ る。 そして運転者により制動操作が開始されることによりマスタシリンダ内の圧力が高くさ れると、マスタシリンダ內の圧力とリザ一バ室内の圧力との間の差圧によるオイルの流動に より逆止弁の弁要素が弁座に着座せしめられ、 これにより逆止弁が閉弁し、 マスタシリンダ とリザ一バ室との間の連通が遮断される。
しかし連通制御弁としての逆止弁は常開の逆止弁であるため、運転者により制動操作が開 始されても、 リザーバ室内のオイルの量が増大しリザ一バピストンが逆止弁の閉弁を許容す る位置まで移動すると共に、 マスタシリンダ內の圧力とリザーバ室内の圧力どの間の差圧が 所定の値になるまでの間逆止弁は閉弁しないので、 マスタシリンダ内のオイルの一部が逆止 弁を経てリザーバ室へ流動することが避けられない。 そのためマスタシリンダより流出する オイルの全てが遮断弁を経てホイ一ルシリンダへ供給される場合に比してホイールシリン ダ内の圧力の上昇に遅れが生じ、従って制動操作に対するホイールシリンダ内の圧力の上昇 の遅れや実際の制動作用の遅れに起因するフィ一リングの悪化が避けられないという問題 があり、 また運転者により制動操作が開始される際の制動の応答性を向上させる上で改善の 余地がある。
尚上記特開平 1 0— 2 6 4 8 0 1号公報に記載された制動装置に於いては、 逆止弁 (2 3 ) のボール (2 3 b) に係合するピン (2 4 ) がリザ一バのピストン (1 6 b) に対し逆止 弁の開閉方向に相対変位可能であるが、 逆止弁 (2 3 ) は常開弁であり、 またメンテナンス 時に手動によって移動される場合を除きピン (2 4 ) はピス トン ( 1 6 b) に対し相対変位 せず、 ポンプの吸入圧力によって自動的にピストン (1 6 b) に対し相対的に開弁方向へ移 動する訳ではないので、上記特開平 1 0— 2 6 4 8 0 1号公報に記載された制動装置に於い ても上記不具合が存在する。 発明の開示
本発明は、マスタシリンダとリザ一バ室との連通を制御する連通制御弁が常開の逆止弁で ある従来の車両用制動装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の 主要な課題は、連通制御弁がマスタシリンダ内の圧力及び加圧供給手段の吸入圧力に応じて 自動的に開閉することにより リザーバ室内の圧力を調圧する機能を確保しつつ、運転者によ る制動操作が行われていない非制動時には連通制御弁によりマスタシリンダとリザーバ室 との連通を遮断することにより、運転者により制動操作が開始される際のホイ一ルシリンダ 内の圧力の上昇が遅れることを防止し、 これにより制動操作に対するホイールシリンダ内圧 力の上昇の遅れ及び実際の制動作用の遅れに起因するフィーリングの悪化を解消し、制動操 作開始時の制動の応答性を向上させることである。
本発明によれば、 上述の主要な課題を達成すべく、 必要に応じてホイ一ルシリンダよりマ スタシリンダへ至る作動液体の流れを遮断する遮断弁と、 ホイールシリンダ内の圧力を増減 する増減圧制御弁と、增減圧制御弁が減圧位置にあるときにホイールシリンダょりの作動液 体をリザ一バ室に受け入れて貯留するリザーバと、 リザ一バ室より作動液体を吸引して加圧 し增減圧制御弁が増圧位置にあるときに増減圧制御弁を経て作動液体をホイ一ルシリンダ へ供給する加圧供給手段と、 マスタシリンダとリザ一バ室との連通を制御する連通制御弁と を有する車両用制動装置に於いて、 連通制御弁は常閉弁であり、 加圧供給手段の吸入圧力に より開弁されることを特徴とする車両用制動装置が提供される。
また本発明によれば、 上述の主要な課題を達成すべく、 必要に応じてホイールシリンダよ りマスタシリンダへ至る作動液体の流れを遮断する遮断弁と、 ホイールシリンダ内の圧力を 増減する增減圧制御弁と、作動液体を加圧し增減圧制御弁が増圧位置にあるときに増減圧制 御弁を経て作動液体をホイールシリンダへ供給する加圧供給手段とを有する車両用制動装 置に設けられ、增減圧制御弁が減圧位置にあるときにホイールシリンダょりの作動液体をリ ザーバ室に受け入れて貯留し、 リザ一バ室は加圧供給手段の吸入側に連通するリザ一バに於 いて、 マスタシリンダとリザーパ室との連通を制御する連通制御弁を有し、 連通制御弁は常 閉弁であり、加圧供給手段の吸入圧力により開弁されることを特徴とするリザ一バが提供さ れる。 これらの構成によれば、 連通制御弁は常閉弁であるので、 連通制御弁が常開弁である従来 の制動装置の場合に比して、運転者により制動操作が開始された状況に於いて作動液体がマ スタシリンダより連通制御弁を経てリザーバへ至ることを阻止することができ、 これにより 制動操作の開始当初よりホイールシリンダ内の圧力を確実に上昇させることができる。従つ て制動操作に対するホイールシリンダ内圧力の上昇の遅れ及び実際の制動作用の遅れに起 因するフィーリングの悪化を効果的に解消すると共に、制動操作開始時の制動の応答性を確 実に向上させることができる。 また連通制御弁は加圧供給手段の吸入圧力により開弁されるが、加圧供給手段は連通制御 弁が閉弁された状態にて作動が開始されるので、 連通制御弁が常開弁である場合に比して、 加圧供給手段の吸入圧力を効率的に連通制御弁に作用させることができ、 これにより リザー バ室内の圧力に対する連通制御弁の調圧作用を早期に発揮させることができる。
上記車両用制動装置に於いて、加圧供給手段の吸入圧力が所定値以上になるまで連通制御 弁が閉弁状態を維持した状態で作動液体がリザーバより加圧供給手段へ流動可能であって よい。
この構成によれば、加圧供給手段の作動が開始されてもその吸入圧力が所定値以上になる まで連通制御弁が閉弁状態を維持した状態で作動液体がリザ一バより加圧供給手段へ流動 するので、加圧供給手段はその作動開始当初より作動液体をリザーバより吸入して高圧の作 動液体を供給することができ、 これによりマスタシリンダより リザ一バへの作動液体の流入 を防止しつつ加圧供給手段の作動開始時に於ける加圧供給手段による作動液体供給性能を 確実に向上させることができる。
また上記車両用制動装置に於いて、 連通制御弁は常閉の開閉弁と、 加圧供給手段の吸入圧 力によって駆動されることにより開閉弁を開弁する開弁手段とを有し、開弁手段は開閉弁を 開閉する方向に往復動可能にリザーバ内に配置され加圧供給手段の吸入圧力によって開閉 弁を開弁する方向へ駆動される往復動部材を含み、 開閉弁を開弁する方向はリザ一バ室の容 積を低減する方向であってよい。
この構成によれば、 開弁手段が加圧供給手段の吸入圧力によって駆動されることにより常 閉の開閉弁が開弁されるので、加圧供給手段が駆動されると開弁手段を介して開閉弁を開弁 させることができ、開閉弁と開弁手段との関係の設定によって開閉弁の開弁のタイミングを 調節することができる。 またこの構成によれば、 開弁手段は往復動部材を含み、 往復動部材 は開閉弁を開閉する方向に往復動可能にリザ一バ内に配置され加圧供給手段の吸入圧力に よって開閉弁を開弁する方向へ駆動されるので、加圧供給手段の吸入圧力によって往復動部 材を開閉弁の開弁方向へ直線変位させることにより開閉弁を開弁することができ、 また開閉 弁を開弁する方向はリザーバ室の容積を低減する方向であるので、加圧供給手段の駆動開始 当初より リザ一バ室より加圧供給手段へ確実に作動液体を供給することができる。
また上記車両用制動装置に於いて、開弁手段は非制動時の位置より開閉弁を開弁する方向 への往復動部材の移動量が予め設定された遊動量以下であるときには開閉弁を開弁しない ようになっていてよい。
また前述の各公開公報に記載されている如き従来の制動装置に於いては、 リザ一バピスト ンは非制動時にはリザーバ室の容積が最小になる位置にあるので、 ポンプの駆動が開始され てもリザ一バピス トンはリザーバ室の容積が小さくなる方向へ移動することができず、 その ためポンプはマスタシリンダより連通制御弁の狭い通路を経てリザ一バ室へ流入するオイ ルを吸入することになり、 ポンプの駆動開始時に於けるポンプによるオイル供給性能が必ず しも良好ではない。
これに対し上記構成によれば、往復動部材が加圧供給手段の吸入圧力によって開閉弁を開 弁する方向へ移動しても、 その移動量が予め設定された遊動量以下であるときには、 開弁手 段は開閉弁を開弁せず、 閉弁状態に維持するので、 加圧供給手段の作動開始当初より開閉弁 を閉弁させた状態にてリザーバょり加圧供給手段へ確実に作動液体を供給することができ、 これにより作動液体がマスタシリンダょり連通制御弁の狭い通路を経てリザ一バ室へ流入 することを要することなく加圧供給手段の作動開始時に於ける加圧供給手段による作動液 体供給性能を確実に向上させることができる。
また上記車両用制動装置に於いて、 リザーバはハウジングと、 ハウジング内に往復働可能 に配置されハウジングと共働してリザ一バ室を郭定するリザ一バピストンと、 リザ一バ室の 容積が減少する方向へリザーバピス トンを付勢するビス トン付勢手段とを有し、 リザーバ室 は加圧供給手段の吸入側と常時連通し、連通制御弁を介してマスタシリンダと連通するよう になっていてよい。
この構成によれば、 リザーバ室が加圧供給手段の吸入側と常時連通された状況が確保され ると共に、 連通制御弁によりマスタシリンダとの連通が制御されるので、 加圧供給手段の駆 動開始時より リザ一バ室を介して連通制御弁に加圧供給手段の吸入圧力を作用させること ができ、 これにより リザ一バ室内の圧力に対する連通制御弁の調圧作用を開始させることが できる。
また上記車両用制動装置に於いて、往復動部材はリザ一バピス トンの往復動方向にリザ一 バピス トンに対し相対的に変位可能にリザ一バピス トンにより支持されたビス トン部と、 ピ ス トン部と一体的に連結されリザ一バピス トンを貫通してリザーバピス トンの往復動方向 に延在するステム部とを有し、 該ステム部にて開閉弁を開弁し、 ビストン部及びステム部は リザーバピストンと共働してリザーバ室と常時連通しリザーバ室の一部として機能する圧 力室を郭定していてよい。
この構成によれば、 ビストン部はリザーバ室内の圧力と同圧の圧力室内の圧力に応じて自 動的に駆動され、 ステム部はピス トン部と一体的に連結されているので、 リザ一バ室内の圧 力に応じて自動的に開閉弁を開閉することができ、 また制動開始時に圧力室より リザーバ室 へ作動液体が供給されるので、 リザ一パピストンがハウジングに対し相対的にリザ一バ室の 容積を低減する方向へ移動しなくてもリザーバ室より加圧供給手段へ作動液体を供給する ことができ、従って圧力室が設けられていない場合に比して制動開始当初より加圧供給手段 による高圧の作動液体の供給を確実に行わせることができる。
また上記車両用制動装置に於いて、 プランジャはリザ一バピストンに対しマスタシリンダ の側に配置され、 リザ一パピス トンの往復動方向にリザ一パピス トンに対し相対的に変位可 能にハウジングにより支持されたビストン部と、 ビス トン部と一体的に連結されリザーバピ ストンの往復動方向に延在するステム部とを有し、 該ステム部にて開閉弁を開弁し、 ビスト ン部はハウジング及びリザ一バピストンと共働してリザーバ室を郭定していてよい。
この構成によれば、 リザ一バ室内の圧力に応じて自動的に開閉弁を開閉することができる と共に、 ステム部はリザーバピス トンを貫通して延在する必要がないので、 前述の構成の場 合に比してリザ一バ及び連通制御弁の構造を簡素化することができる。
また上記車両用制動装置に於いて、 開閉弁が閉弁状態にあり且つリザ一バピストンがリザ —バ室の容積が最小になる位置にある状況に於いてリザ一バ室に加圧供給手段の吸入圧力 が作用すると、 往復動部材は開閉弁を開弁する方向へ変位することにより、 リザーバピス ト ンが移動しなくてもリザ一バ内の作動液体貯留容積を減少させるようになっていてよい。 この構成によれば、 開閉弁が閉弁状態にあり且つリザーバピス トンがリザ一バ室の容積が 最小になる位置にある状況に於いてリザーバ室に加圧供給手段の吸入圧力が作用しても、 リ ザ一バピストンが移動することなく リザーバ内の作動液体貯留容積が減少するので、制動開 始当初より加圧供給手段により高圧の作動液体が供給される状況を確保しつつ、加圧供給手 段の吸入圧力により開閉弁を開弁させることができる。
また上記車両用制動装置に於いて、 リザ一バピス トンは往復動部材として機能するように なっていてよい。
この構成によれば、 リザ一バピス トンは往復動部材として機能するので、 リザ一バピス ト ンとは別の部材として往復動部材を設ける必要がなく、従ってリザーバピストンとは別の部 材として往復動部材が設けられる構成の場合に比して、 開弁手段の構造を簡略化し、.これに より リザ一バ及び開弁手段の組み立てを容易にすることができると共に、部品点数を低減し てコス トを低減することができる。
また上記車両用制動装置に於いて、 開閉弁は弁要素と、 弁要素を弁座に対し付勢する弁要 素付勢手段とを有し、 弁要素が弁座に当接することより閉弁し、 弁要素が弁座より離脱する ことにより開弁する逆止弁であってよい。
この構成によれば、非制動時には弁要素を弁座に当接させて開閉弁を閉弁状態に維持する ことができ、制動時には加圧供給手段の吸入圧力によって駆動される開弁手段により弁要素 を弁座より離脱させて開閉弁を開弁することができる。
また上記車両用制動装置に於いて、 弁要素は、 へッ ド部と該へッ ド部よりも小径のスプ一 ル部とを有するポぺット形をなし、 スプール部にて弁ハウジングにより往復動可能に支持さ れ、 へッド部が弁座に当接することにより閉弁し、 へッド部が弁座より離脱することにより 開弁するようになっていてよい。
この構成によれば弁要素が開弁方向へ僅かに移動するだけで、へッド部が弁座より離脱し て開閉弁が開弁するので、 開閉弁がスプール弁である場合に比して、 加圧供給手段の吸入圧 力による開閉弁の開閉を効率的に行わせることができ、 またスプール部にて弁ハウジングに より往復動可能に支持されているので、 開閉弁がポール式の逆止弁である場合に比して、 弁 要素の開閉方向への移動を安定的に行わせ、 これにより加圧供給手段の吸入圧力による開閉 弁の開閉を安定的に行わせることができる。
また上記車两用制動装置に於いて、 開閉弁は弁要素としてのスプールが弁ハウジングに対 し相対的に往復変位することにより開閉するスプール弁であってよい。
この構成によれば、加圧供給手段の吸入圧力によって駆動される開弁手段によりスプール 弁を駆動することにより開閉弁を開閉することができ、 またマスタシリンダ内の圧力が弁要 素としてのスプールの移動方向に作用することがないので、 マスタシリンダ内の圧力が開閉 弁の開閉に影響を与えることを確実に回避することができる。
また上記車両用制動装置に於いて、 弁要素は弁ハウジングと共働して弁要素の往復動によ り容積が増減し弁要素の往復動を許容する容積可変室を郭定すると共に、容積可変室とリザ ーバ室とを常時連通接続する内部通路を有するようになっていてよい。
この構成によれば、弁要素の往復動により容積が増減し弁要素の往復動を許容する容積可 変室が郭定され、 容積可変室及びリザーバ室は相互に常時連通接続されているので、 容積可 変室内の圧力を常にリザ一バ室内の圧力と同一にすることができ、 これにより弁要素に余分 な力が作用することなく弁要素を開閉駆動することができ、 また内部通路は弁要素に設けら れているので、例えば容積可変室及びリザ一バ室を相互に常時連通接続通路や容積可変室を 大気に開放する通路が弁ハウジング等に設けられる場合に比して、連通制御弁の構造を簡略 化することができ、 更には容積可変室をマスタシリンダと連通する弁室とは別の室とするこ とができるので、弁室内の圧力が弁要素に対し開閉弁の開閉方向に作用することを防止する ことができる。
また上記車両用制動装置に於いて、 スプールはプランジャのステム部と一体であってよい。 この構成によれば、 スプールがプランジャのステム部と別体である場合に比して、 部品点 数を低減し、 開閉弁及び開弁手段の構造を簡素化し、 連通制御弁の組み立てを容易にするこ とができる。
また上記車両用制動装置に於いて、 リザ一バはハウジングと、 ハウジング内に往復働可能 に配置されハウジングと共働してリザ一バ室を郭定するリザ一バピストンと、 リザーバ室の 容積が減少する方向へリザ一バピス トンを付勢する第一のビス トン付勢手段と、 リザ一バ室 の容積が増大する方向へリザ一バピス トンを付勢する第二のビス トン付勢手段とを有し、 リ ザ一バピス トンはリザーバ室と一端にて常時連通する内部通路を有し、 リザーバピス トンは 内部通路の他端がマスタシリンダとの連通より遮断される閉弁位置と、 リザーバピストンが 開弁位置より リザーバ室の容積が減少する方向へ移動することにより内部通路の他端がマ スタシリンダと連通する開弁位置とに移動可能な連通制御弁のスプールとして機能し、 第一 及び第二のビス トン付勢手段は非制動诗には連通制御弁が閉弁位置をとるようハウジング に対するリザ一バピス トンの位置を設定するようになっていてよい。
この構成によれば、 リザーバピス トンが連通制御弁のスプールとしても機能するので、 リ ザ一バピス トンとは別に連通制御弁が設けられた構造の場合に比して連通制御弁の構造を 簡素化すると共に、 リザ一バ及び連通制御弁を一つのコンパク トなユニッ トにすることがで き、 制動装置の組み立てを容易にすることができ、 またマスタシリンダ内の圧力が連通制御 弁のスプールとしても機能するリザ一バピストンの移動方向に作用することがないので、 マ スタシリンダ内の圧力が連通制御弁の開閉に影響を与えることを確実に回避することがで さる。 また上記車両用制動装置に於いて、 リザーバピストンの往復動の範囲について見て第二の ビストン付勢手段がリザ一バピス トンを付勢する範囲を制限する付勢制限手段が設けられ ていてよい。
この構成によれば、付勢制限手段により第二のビストン付勢手段がリザーバピストンを付 勢する範囲が制限されるので、非制動時に於けるリザーバピストンの位置を所定の位置に設 定することができ、 また付勢制限手段が設けられていない場合に比してリザーバピス トンの 往復動を安定的に行わせることができる。
また上記車両用制動装置に於いて、 開閉弁は弁要素と、 弁要素を弁座に対し付勢する弁要 素付勢手段とを有し、 弁要素が弁座に当接することより閉弁し、 弁要素が弁座より離脱する ことにより開弁する逆止弁であり、 リザ一バピストンは開弁手段として機能する部分を有し、 リザ一バピス トンの往復動の範囲について見てビストン付勢手段がリザ一バピストンを付 勢する範囲を開弁手段として機能する部分が開閉弁を開弁しない範囲に制限する付勢制限 手段が設けられていてよい。
この構成によれば、 開閉弁は逆止弁であり、 リザーバピス トンは開弁手段として機能する 部分を有するので、開弁手段がリザ一バピストンとは独立の部材である場合に比してリザ一 バ及び連通制御弁の構造を簡素化し、 連通制御弁の組み立てを容易にすることができ、 また ビス トン付勢手段がリザ一バピス トンを付勢する範囲が付勢制限手段により制限されるの で、 非制動時に於けるリザーバピス トンの位置を所定の位置に設定することができ、 また付 勢制限手段が設けられていない場合に比してリザ一バピストンの往復動を安定的に行わせ ることができる。
また上記車両用制動装置に於いて、 開閉弁が閉弁状態にあり且つ付勢制限手段がリザーバ ビス トンに対するビス トン付勢手段の付勢を制限している状況に於いてリザ一バ室に加圧 供給手段の吸入圧力が作用しても、 リザ一バピストンは開閉弁を開弁する方向へ変位するこ とにより リザ一バ室の容積を減少させるようになっていてよい。
この構成によれば、 開閉弁が閉弁状態にあり且つ付勢制限手段がリザ一バピストンに対す るビストン付勢手段の付勢を制限している状況に於いてリザ一バ室に加圧供給手段の吸入 圧力が作用しても、 リザ一バピス トンが開閉弁を開弁する方向へ変位し、 リザーバ室の容積 が減少するので、制動開始当初より加圧供給手段により高圧の作動液体が供給される状況を 確保しつつ、 加圧供給手段の吸入圧力により開閉弁を開弁させることができる。 また上記車両用制動装置に於いて、 開閉弁は弁要素と、 弁要素を弁座に対し付勢する弁要 素付勢手段とを有し、 弁要素が弁座に当接することより閉弁し、 弁要素が弁座より離脱する ことにより開弁する逆止弁であり、 リザーバピストンは開弁手段として機能する部分を有し、 弁要素が弁座に当接し且つ前記部分が弁要素に当接する状況に於いて、弁要素付勢手段が弁 要素を付勢する力はビス トン付勢手段がリザ一バピストンを付勢する力よりも大きくてよ い。
この構成によれば、 開閉弁は逆止弁であり、 リザーバピス トンは開弁手段として機能する 部分を有し、 開閉弁が閉弁状態にあり且つ開弁手段として機能する部分が弁要素に当接する 状況に於いて、弁要素付勢手段が弁要素を付勢する力はビス トン付勢手段がリザ一バピスト ンを付勢する力よりも大きいので、 開弁手段がリザーバピストンとは独立の部材である場合 に比してリザーバ及び開弁手段の構造を簡素化し、 リザーバ及び連通制御弁の組み立てを容 易にすることができ、 また非制動時に逆止弁を確実に閉弁状態に維持することができる。 本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 運転者により制動操作が開 始されマスタシリンダ内の圧力が所定値以上になると、遮断弁によりマスタシリンダょりホ ィ一ルシリンダへ至る作動液体の流れが遮断され、 加圧供給手段が駆動され、 遮断弁により 加圧供給手段の供給側とマスタシリンダとの間に差圧が確保されるようになっていてよい。 本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開弁手段は開閉弁の閉弁を 許容する方向へ往復動部材を付勢する往復動部材付勢手段を含んでいてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開弁手段は圧力室の容積が 増大する方向へ往復動部材を付勢する往復動部材付勢手段を含み、往復動部材付勢手段の付 勢力はビストン付勢手段の付勢力よりも大きくてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 リザ一バ室の容積が減少す る方向へのリザ一バピス トンの移動を規制するリザ一パピス トン規制手段が設けられてい てよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開弁手段は非制動時に開閉 弁の弁要素より隔置されるようになっていてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開弁手段は弹性材を介して 開閉弁の弁要素に当接し、 弾性材を介して開閉弁の弁要素を開弁位置へ移動させるようにな つていてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開閉弁はボール式の逆止弁 であってよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 スプール部の有効断面積は 開閉弁が閉弁位置にあるときにへッ ド部と弁座との接触部により郭定される連通遮断面積 よりも小さくてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 弁要素は弁ハウジングと共 働してマスタシリンダと常時連通する弁室を郭定しており、弁室は弁要素が弁座より離脱す るとリザーバ室と連通するようになっていてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開弁手段はスプールが開弁 位置へ移動すると、 スプール側の通路と弁ハウジング側の通路とを連通させることにより開 弁し、 スプール側の通路及び弁ハウジング側の通路は非制動時にはスプールの往復変位の方 向に互いに隔置されるようになつていてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開閉弁はスプール弁の閉弁 位置へ向けてスプールを付勢するスプール付勢手段を含んでいてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 開弁手段は往復動部材付勢 手段を含み、往復動部材付勢手段は加圧供給手段の吸入圧力による往復動部材の移動方向と は逆方向へ向けてスプールを付勢するようになっていてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 往復動部材付勢手段の付勢 力はビス トン付勢手段の付勢力よりも大きくてよい。
本発明の他の一つの詳細な特徴によれば、上記構成に於いて、制動操作が行われているが、 アンチスキッド制御は行われない通常の制動時には、加圧供給手段は駆動されず連通制御弁 が閉弁された状態で、マスタシリンダ内の圧力が遮断弁を経てホイールシリンダへ導入され るようになっていてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 アンチスキッ ド制御が行わ れる制動時には、 加圧供給手段が駆動されるが、 連通制御弁が閉弁された状態に維持され、 加圧供給手段により供給される高圧の作動液体のホイ一ルシリンダへの供給によるホイ一 ルシリンダ内の圧力の増圧及びホイ一ルシリンダ内の作動液体のリザーバ室への排出によ るホイールシリンダ内の圧力の減圧が増減圧制御弁の制御によって達成され、 これによりホ ィ一ルシリンダ内の圧力がマスタシリンダ内の圧力に対応する値であって車輪の制動スリ ップを抑制するに必要な値に制御されるようになっていてよい。
本発明の他の一つの詳細な特徴によれば、 上記構成に於いて、 き動制動が行われるときに は、 加圧供給手段が駆動され、 加圧供給手段の吸入圧力により連通制御弁が開弁され、 マス タシリンダ内の作動液体が連通制御弁及ぴリザ一バ室を経て加圧供給手段の吸入側へ供給 される状態になった後、マスタシリンダ内の圧力及び加圧供給手段の吸入圧力により連通制 御弁の開閉が制御され、加圧供給手段により供給される高圧の作動液体のホイールシリンダ への供給によるホイールシリンダ内の圧力の増圧及びホイールシリンダ内の作動液体のリ ザ一バ室への排出によるホイールシリンダ内の圧力の減圧が増減圧制御弁の制御によって 達成され、 これによりホイールシリンダ内の圧力がその目標圧力に制御されるようになって いてよい。 図面の簡単な説明
図 1はボール型逆止弁式の連通制御弁及びリザーバを有する本発明による車両用制動装 置の第一の実施例を示す概略構成図である。
図 2は本発明による車両用制動装置の第二の実施例のボール型逆止弁式の連通制御弁及 びリザーバを示す断面図である。
図 3は本発明による車両用制動装置の第三の実施例のスプール弁式の連通制御弁及びリ ザ一バを示す断面図である。
図 4は本発明による車両用制動装置の第四の実施例のスプール弁式の連通制御弁及びリ ザ一バを示す断面図である。
図 5は本発明による車両用制動装置の第五の実施例の互いに一体化されたスプール弁式 の連通制御弁及びリザ一バを示す断面図である。
図 6は本発明による車両用制動装置の第六の実施例のボール型逆止弁式の連通制御弁及 びリザ一バを示す断面図である。
図 7は本発明による車両用制動装置の第七の実施例のボール型逆止弁式の連通制御弁及 びリザ一バを示す断面図である。
図 8は第一の実施例に於けるリニアソレノィ ド弁に対する制御電流 I s とリニアソレノィ ド弁を横切る差圧 Δ Pとの間の関係示すグラフである。 図 9は第一の実施例による車両用制動装置及び従来の車両用制動装置について、運転者の 有効制動操作量 S eの変化に伴うホイールシリンダ内の圧力 P wcの変化の例を示すグラフで ある。
図 1 0は第六の実施例の修正例として構成された本発明による車両用制動装置の第八の 実施例のスプール式の連通制御弁及びリザ一バを示す断面図である。
図 1 1は第六及び第八の実施例の修正例として構成された本発明による車両用制動装置 の第九の実施例のポぺット型逆止式の連通制御弁及びリザ一バを示す断面図である。
図 1 2は図 1 1に示された連通制御弁の拡大断面図である。
図 1 3は図 1 1及び図 1 2に示された弁要素のへッ ド部のリザ一バ室側の端面を更に拡 大して示す底面図である。 発明を実施するための最良の形態
以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施例について詳細に説明する。 第一の実施例
図 1はボール型逆止弁式の連通制御弁及びリザーバを有する本発明による車両用制動装 置の第一の実施例を示す概略構成図である。
図 1に於いて、制動装置 1 0は内部にマスタシリンダ室 1 2を有するマスタシリンダ 1 4 を含んでいる。 マスタシリンダ 1 4のピス トン 1 4 Aはブレーキペダル 1 6に連結されてお り、運転者によるブレーキペダル 1 6の踏み込み操作に応答してブレーキペダルに対する踏 力に応じた油圧 (マスタシリンダ圧力 P m) がマスタシリンダ室 1 2内に発生するようにな つている。 尚マスタシリンダ 1 4はブレーキペダルに対する踏力に比してマスタシリンダ室 1 2内の圧力を増圧する周知のブースタを備えていてよい。
マスタシリンダ室 1 2にはマスタ導管 1 8の一端が接続され、 マスタ導管 1 8の他端は連 通制御弁 2 0に接続されている。 この実施例の連通制御弁 2 0は弁要素としてのボール 2 2 を有するボール式の常閉の逆止弁である。連通制御弁 2 0のハウジングはリザ一バ 2 6のハ ウジング 2 8と一体であり、 これにより連通制御弁 2 0及びリザ一バ 2 6は一つのュニッ ト として制動装置 1 0に組み付け得るようになっている。ハウジング 2 8内には弁座部材 3 0 が例えば圧入により固定された状態にて配置されており、弁座部材 3 0は連通制御弁 2 0の 軸線 3 2に整合する円錐形の弁座 3 O Aと、弁座部材 3 0の両側の弁室 3 4 A及び 3 4 Bを 相互に連通接続する連通孔 3 0 Bとを有している。 マスタ導管 1 8の他端は弁座部材 3 0に対しマスタ導管 1 8の側の弁室 3 4 Aに接続さ れており、 ボール 2 2は弁室 3 4 A内に配置されている。 ボール 2 2はそれと弁室 3 4 Aの 端壁との間に弾装された圧縮コイルばね 3 6により弁座 3 O Aに対し付勢されており、 これ により連通制御弁 2 0は通常時にはボール 2 2が弁座 3 O Aに当接して閉弁し、弁室 3 4 A と弁室 3 4 Bとの連通を遮断するようになっている。
リザ一バ 2 6のハウジング 2 8にはシリンダボア 2 8 Aが形成されており、 シリンダボア
2 8 A内にはリザーバピス トン 3 8が軸線 3 2に沿って往復動可能に配置されている。 リザ 一バピストン 3 8はハウジング 2 8と共働して容積可変のリザーバ室 4 0を郭定しており、 リザ一バ室 4 0は弁室 3 4 Bと常時連通している。 特に図示の実施例に於いては、 リザ一パ ピストン 3 8の端面には複数のランド部 3 8 Aが設けられており、 ランド部 3 8 Aがシリン ダボア 2 8 Aの端面に当接した状態にあるときにリザ一バ室 4 0の容積が最小になるよう になっている。
リザーバピス トン 3 8に対しリザーバ室 4 0とは反対の側のシリンダボア 2 8 Aの端部 にはエンドキャップ 4 2が例えば圧入又はねじ込みにより固定されている。 リザ一バピスト ン 3 8とェンドキャップ 4 2との間には圧縮コイルばね 4 4が弾装されており、 リザ一パピ ス トン 3 8はそのランド部 3 8 Aがシリンダボア 2 8 Aの端面に当接するようビス トン付 勢手段としての圧縮コイルばね 4 4により リザーバ室 4 0の容積が減少する方向へ軸線 3 2に沿って付勢されている。 リザーバピストン 3 8及びェンドキャップ 4 2はハウジング 2 8と共働して容積可変のエアチャンバ 4 6を郭定しており、エアチャンバ 4 6は図には示さ れていない連通孔により大気に開放されている。
リザ一バピス トン 3 8はリザ一バ室 4 0の側に位置する円板部 3 8 Bと、 円板部 3 8 Bと 一体をなし且つ円板部 3 8 Bに対しエアチャンバ 4 6の側にて軸線 3 2に沿って延在する 円筒部 3 8 Cとを有している。 円筒部 3 8 C内には往復動部材としてのプランジャ 4 8のピ ストン部 4 8 Aが配置されており、 ビストン部 4 8 Aは軸線 3 2に沿ってリザ一バピストン
3 8に対し相対変位可能に円筒部 3 8 Cにより支持されている。 円板部 3 8 Bとピス トン部
4 8 Aとの間には圧縮コイルばね 5 0が弾装されており、 ビス トン部 4 8 Aは円筒部 3 8 B に固定された Cリング 5 2に当接するよう圧縮コイルばね 5 0によりエンドキャップ 4 2 へ向けて軸線 3 2に沿って付勢されている。
プランジャ 4 8はピス トン部 4 8 Aと一体をなし且つ円板部 3 8 Bを貫通して軸線 3 2 に沿って延在するステム部 4 8 Bを有し、 ビス トン部 4 8 A及びステム部 4 8 Bはリザ一バ ピス トン 3 8と共働してそれらの間に圧力室 5 4を郭定している。圧力室 5 4は円板部 3 8
Bに設けられた連通孔 5 4 Aにより リザーバ室 4 0と連通接続されており、 これにより圧力 室 5 4内の圧力は常にリザーバ室 4 0内の圧力と同一の圧力に維持されるようになつてい る。
ステム部 4 8 Bの長さは、 リザ一バピストン 3 8のランド部 3 8 Aがハウジング 2 8の内 面に当接し且つビストン部 4 8 Aが Cリング 5 2に当接する状況に於いて、 ステム部 4 8 B の先端部が弁座部材 3 0の連通孔 3 0 Bに遊嵌状態にて嵌入し、 ステム部 4 8 Bの先端部の 端面が連通制御弁 2 0のボール 2 2より僅かに隔置される長さに設定されている。 尚ステム 部 4 8 Bの長さは、 リザーバピストン 3 8のランド部 3 8 Aがハウジング 2 8の内面に当接 し且つビストン部 4 8 Aが Cリング 5 2に当接する状況に於いて、 ボール 2 2を実質的に押 圧することなくこれに当接する長さに設定されてもよレ、。
この第一の実施例に於ける圧縮コイルばね 4 4及び 5 0のばね力の大小関係は如何なる 関係であってもよいが、何れのばね力も対応する部材が移動する際の摩擦摺動抵抗に打ち勝 つばね力に設定されている。 従って非制動時にはリザ一バピストン 3 8及びプランジャ 4 8 が図 1に示された標準位置、即ちリザーバピストン 3 8のランド部 3 8 Aがハウジング 2 8 の内面に当接し且つビストン部 4 8 Aが Cリング 5 2に当接する位置に位置決めされ、 ステ ム部 4 8 Bの先端部の端面が連通制御弁 2 0のボール 2 2より僅かに隔置されるようにな つている。
リザ一パピス トン 3 8及びプランジャ 4 8が標準位置にある状況に於いてリザーバ室 4 0及び圧力室 5 4内の圧力が低下すると、 ビス トン部 4 8 Aが圧縮コイルばね 5 0のばね力 に抗して円板部 3 8 Bに近づくようプランジャ 4 8がリザーバピストン 3 8に対し相対的 に軸線 3 2に沿って変位し、 ステム部 4 8 Bがその先端にてボール 2 2を圧縮コイルばね 3 6のばね力に杭して弁座 3 O Aより離脱させるので、 プランジャ 4 8はリザーバ室 4 0及び 圧力室 5 4内の圧力の低下によって駆動されることにより連通制御弁 2 0を開弁する開弁 手段として機能する。
尚弁室 3 4 A及び 3 4 B、 リザーバ室 4 0、 圧力室 5 4内には作動液体としてのオイルが 充填されている。 また図 1に於いて、 符号 5 6〜6 0はそれぞれ対応する部材間に於けるォ ィルの漏洩を防止するシ一ルリングを示している。 更に図 1に於いて、 符号 6 2は必要に応 じてマスタシリンダ室 1 2にオイルを補充供給するマスタシリンダリザ一バを示している。 リザーバ室 4 0にはオイル給排導管 6 4の一端が接続され、 オイル給排導管 6 4の他端は 図には示されていない電動機により駆動されるオイルポンプ 6 6の吸入側に接続されてい る。 オイルポンプ 6 6は図には示されていない電子制御装置により電動機に対する駆動電流 が制御されることにより制御されるようになっている。
オイルポンプ 6 6の吐出側にはオイル供給導管 6 8が接続され、 オイル供給導管 6 8には オイル給排導管 7 0の一端が接続されている。 オイル給排導管 7 0の他端はホイールシリン ダ 7 2に接続され、 オイル給排導管 7 0の途中にはホイ一ルシリンダ 7 2へのオイルの供給 を制御する增圧制御弁としての常開型の電磁開閉弁 7 4が設けられている。電磁開閉弁 7 4 の両側のオイル給排導管 7 0にはホイ一ルシリンダ 7 2よりオイル供給導管 6 8 向かう オイルの流れのみを許す逆止バイパス導管 7 6が接続されている。
電磁開閉弁 7 4とホイールシリンダ 7 2との間のオイル給排導管 7 0にはオイル排出導 管 7 8の一端が接続され、 オイル排出導管 7 8の他端はリザーバ 2 6とオイルポンプ 6 6と の間のオイル給排導管 6 4に接続されている。 オイル排出導管 7 8の途中にはホイールシリ ンダ 7 2よりのオイルの排出を制御する減圧制御弁としての常閉型の電磁開閉弁 8 0が設 けられている。電磁開閉弁 7 4及び 8 0の開閉は電子制御装置によりそれぞれのソレノィ ド (図示せず) に対する制御電流が制御されることにより達成される。
またオイル供給導管 6 8には接続導管 8 2の一端が接続され、接続導管 8 2の他端はマス タ導管 1 8に接続されている。接続導管 8 2の途中には周知の構成のリニアソレノィ ド弁 8 4が設けられている。 リニアソレノィ ド弁 8 4は通常時にはオイル供給導管 6 8の側よりマ スタ導管 1 8の側へ向かうオイルの流れのみを許し、 そのソレノィ ド (図示せず) に対する 制御電流 I sが電子制御装置によって制御されることにより リニアソレノイ ド弁 8 4を横切 る差圧 Δ P (オイル供給導管 6 8の側が接続導管 8 2の側よりも高圧の差圧)を制御する(図 8参照)。
リニアソレノィ ド弁 8 4の両側の接続導管 8 2にはマスタ導管 1 8の側よりオイル供給 導管 6 8の側へ向かうオイルの流れのみを許す逆止バイパス導管 8 6が接続されている。 ま たリニアソレノィ ド弁 8 4とマスタ導管 1 8との間の接続導管 8 2には圧力センサ 8 8が 接続されており、 圧力センサ 8 8は接続導管 8 2内の圧力 Pをマスタシリンダ圧力 P mとし て検出するようになっている。 かく してリニアソレノィ ド弁 8 4及び逆止バイパス導管 8 6 は必要に応じてホイールシリンダ 7 2よりマスタシリンダ 1 4 至るオイルの流れを遮断 すると共に、必要に応じてリニアソレノィ ド弁 8 4を横切る差圧 Δ Pを制御する遮断弁とし て機能する。 尚図 1に於いては図示されていないが、 オイル給排導管 7 0、 オイル排出導管 7 8、 ホイ
—ルシリンダ 7 2、 電磁開閉弁 7 4及び 8 0、 逆止バイパス導管 7 6等は各車輪に対応して 設けられている。 リニアソレノィ ド弁 8 4及び逆止バイパス導管 8 6も各車輪に対応して設 けられてもよいが、制動装置 1 0が左右前輪に対応する前輪系統と左右後輪に対応する後輪 系統とよりなる二系統の制動装置である場合には、前輪系統用及び後輪系統用のリニアソレ ノイ ド弁 8 4及び逆止バイパス導管 8 6が設けられ、制動装置 1 0が左前輪及び右後輪に対 応する第一系統と右前輪及び左後輪に対応する第二系統とよりなる二系統の制動装置であ る場合には、第一系統用及び第二系統用のリニアソレノィ ド弁 8 4及び逆止バイパス導管 8
6が設けられていてよい。
次に上述の如く構成された第一の実施例による制動装置 1 0の作動を制動開始時、通常の 制動時、 アンチスキッド制御 (本願に於いては A B S制御という) 時、 自動制動時の各場合 について説明する。
( 1 ) 制動開始時
運転者により制動操作が開始されても、オイルポンプ 6 6の電動機には駆動電流が通電さ れず、 電磁開閉弁 7 4、 8 0及びリニアソレノィ ド弁 8 4には制御電流が供給されない。 従 つてオイルポンプ 6 6は駆動されないので、 連通制御弁 2 0は閉弁状態に維持され、 電磁開 閉弁 7 4は開弁状態に維持され、 電磁開閉弁 8 0は閉弁状態に維持され、 これによりマスタ シリンダ室 1 2よりマスタ導管 1 8へ流出する全てのオイルがリニアソレノィ ド弁 8 4及 び電磁開閉弁 7 4を経てホイールシリンダ 7 2へ供給され、 ホイールシリンダ 7 2内の圧力 が効率的に上昇せしめられる。
( 2 ) 通常の制動時
運転者により制動操作が行われているが、 A B S制御は行われない通常の制動時にも、 ォ ィルポンプ 6 6の電動機には駆動電流が通電されず、 電磁開閉弁 7 4、 8 0及びリニアソレ ノィ ド弁 8 4には制御電流が供給されず、マスタシリンダ室 1 2とホイールシリンダ 7 2と がリニアソレノィ ド弁 8 4及び電磁開閉弁 7 4を介して相互に連通接続された状態に維持 される。 よってホイ一ルシリンダ 7 2内の圧力がマスタシリンダ室 1 2内の圧力によってそ の圧力と同一の圧力に制御される。
( 3 ) A B S制御時
運転者の制動操作量が過大であることに起因して車輪の制動スリップが過大になると、車 輪の制動スリ ップを低減するための A B S制御が行われる。 A B S制御に於いては、 ホイ一 ルシリンダ 7 2内の圧力がマスタシリンダ室 1 2内の圧力とは独立に制御される必要があ るので、周知の A B S制御の開始条件が成立すると同じく周知の A B S制御の開始条件が成 立するまで、 オイルポンプ 6 6の電動機に駆動電流が通電され、 リニアソレノィ ド弁 8 4の ソレノイ ド 8 4 Aに制御電流 I sが通電されることなく車輪の制動スリ ップ率又は制動スリ ップ量に応じて電磁開閉弁 7 4 8 0が開閉されることにより、 ホイ一ルシリンダ 7 2内の 圧力がマスタシリンダ圧力 P mに対応する値であって車輪の制動スリップを抑制するに必要 な値になるよう増減され、 これにより車輪の制動スリップが低減される。
この場合 A B S制御はまずホイ一ルシリンダ 7 2內の圧力を低減することより開始され、 ホイ一ルシリンダ 7 2内のオイルは電磁開閉弁 8 0を経てリザーバ室 4 0 流入し、 リザ一 バ室 4 0內のオイルの量が一時的に増大する。 またホイールシリンダ 7 2内の圧力を増大さ せる際には、 オイルポンプ 6 6によってリザ一バ室 4 0よりオイルが吸引されるので、 リザ —バ室 4 0内のオイルの量が減少する。 但しリザ一バ室 4 0内のオイルの量は A B S制御が 行われない通常の制動時の量よりも少なくなることはないので、 リザ一バ室 4 0及び圧力室 5 4内のオイルの量が通常の制動時の量より少なくなることはなく、従って連通制御弁 2 0 はプランジャ 4 8によって開弁されず、 閉弁状態を維持する。
尚ホイールシリンダ 7 2内の圧力をマスタシリンダ圧力 P mよりも高い圧力にすると共に マスタシリンダ圧力 P mの増減変化に対応して増減させるハイ ドロアシス トブレーキの制御 が行われる場合には、 各車輪のホイールシリンダ 7 2内の圧力がマスタシリンダ圧力 P mに 基づく 目標ホイ一ルシリンダ圧力になるようリニアソレノィ ド弁 8 4のソレノィ ド 8 4 A に制御電流 I sが通電され、 オイルポンプ 6 6はリニアソレノィ ド弁 8 4による差圧制御に 伴って駆動され、 このことは後述の他の実施例に於いても同様である。
( 4 ) 自動制動時
少なく とも制動力を制御することによる車両の挙動制御、 オートクルーズ制御、 車間距離 制御の如き自動制動が行われるときには、 オイルポンプ 6 6の電動機に駆動電流が通電され、 リニアソレノィ ド弁 8 4を横切る差圧 Δ Pが例えば自動制動により要求されるホイールシ リンダ 7 2内の目標圧力に基づく所定の値になるよう リニアソレノィ ド弁 8 4のソレノィ ド 8 4 Aに制御電流 I sが通電され、 必要に応じてホイ一ルシリンダ 7 2内の圧力がその目 標圧力になるよう電磁開閉弁 7 4 8 0が開閉され、 これにより自動制動が達成される。 この場合オイルポンプ 6 6により リザ一バ室 4 0より吸引されるオイルの量が多いので リザーバ室 4 0及び圧力室 5 4内の圧力が通常の制動時や A B S制御時よりも低くなると、 ビス トン部 4 8 Aが圧縮コイルばね 5 0のばね力に杭して円板部 3 8 Aに近づくようプラ ンジャ 4 8がリザ一バピス トン 3 8に対し相対的に軸線 3 2に沿って変位し、 ステム部 4 8
Bがその先端にてボール 2 2を圧縮コイルばね 3 6のばね力に抗して弁座 3 0 Aより離脱 させ、 これにより連通制御弁 2 0を開弁させる。
従ってリザ一バ室 4 0内のオイルがオイル給排導管 6 4を経てオイルポンプ 6 6へ流出 すると共に、マスタシリンダ室 1 2内のオイルがマスタ導管 1 8及び連通制御弁 2 0を経て リザ一バ室 4 0内に流入し、 リザ一バ室 4 0及び圧力室 5 4内の圧力が所定の圧力になるよ う連通制御弁 2 0により調圧作用が発揮される。
尚自動制動の終了時には、制動装置 1 0内の余剰のオイルはリニアソレノィ ド弁 8 4を開 放することにより、 接続導管 8 2を経てマスタシリンダリザーバ 6 2へ戻され、 このことは 後述の他の実施例に於いても同様である。
かく して第一の実施例によれば、 連通制御弁 2 0はボール式の常閉の逆止弁であり、 非制 動時には閉弁状態に維持されるので、運転者により制動操作が開始された場合にマスタシリ ンダ室 1 2内のオイルの一部が連通制御弁 2 0を経てリザ一バ室 4 0へ流入することを阻 止すると共に、 マスタシリンダ室 1 2よりマスタ導管 1 8へ流出する全てのオイルをリニア ソレノィ ド弁 8 4及び電磁開閉弁 7 4を経てホイ一ルシリンダ 7 2へ供給することができ る。 従って運転者による制動操作が開始された当初よりホイールシリンダ 7 2内の圧力を効 率的に上昇させることができ、 これにより制動操作に対するホイ一ルシリンダ内圧力の上昇 の遅れ及び実際の制動作用の遅れに起因するフィーリングの悪化を効果的に解消すると共 に、 制動操作開始時の制動の応答性を確実に向上させることができる。
例えば図 9に示されている如く、時点 t 1に於いて運転者の有効制動操作量 S e (ブレーキ ペダルの遊び等を除外した制動操作量) が 0より上昇され始め、 時点 t 3に於いて有効制動 操作量 S eがある値 S ecに到達し、その後有効制動操作量 S eが値 S ecに維持されたとする。 連通制御弁が常開弁である従来の制動装置の場合には、 図 9に於いて破線にて示されている 如く、 運転者の有効制動操作量 S e (ブレ一キペダルの遊び等を除外した制動操作量) が 0 より上昇しても、マスタシリンダ室内のオイルの一部が連通制御弁を経てリザーバ室へ流入 するため、 ホイ一ルシリンダ内の圧力 P wcは時点 t 1 よりも遅い時点 t 2に於いて上昇し始 め、 時点 t 3よりも遅い時点 t 4に於いて値 S ecに対応する圧力 P wccに到達し、 ホイール シリンダ内の圧力の上昇に遅れが生じることが避けられない。 これに対し第一の実施例によれば、 連通制御弁 2 0は常閉の逆止弁であり、 マスタシリン ダ室 1 2内のオイルの一部が連通制御弁 2 0を経てリザ一パ室 4 0へ流入することがない ので、 運転者の有効制動操作量 S e の上昇変化に即応して実質的に時点 t 1 よりホイールシ リンダ内の圧力 P wcを上昇させ、 時点 t 4よりも遅い時点 t 3 4に於いて値 S ecに対応する 圧力 P wccに到達させることができる。
また A B S制御時や自動制動時にはポンプ 6 6が駆動され、連通制御弁 2 0は加圧供給手 段としてのポンプ 6 6の吸入圧力によりプランジャ 4 8を介して開弁されるが、 ポンプ 6 6 の駆動は連通制御弁 2 0が閉弁された状態にて開始されるので、連通制御弁が常開弁である 場合に比してポンプ 6 6の吸入作用により リザーバ室 4 0内の圧力を効率よく低下させる ことができ、 これによりプランジャ 4 8を介してポンプ 6 6の吸入圧力を効率的に連通制御 弁 2 0に作用させることができ、 リザ一バ室 4 0内の圧力に対する連通制御弁 2 0の調圧作 用を早期に発揮させることができる。
この場合ポンプ 6 6の駆動が開始され、 リザ一バ室 4 0及び圧力室 5 4内の圧力が低下さ れ始めても、 リザ一バ室 4 0及び圧力室 5 4内の圧力が所定値になるまで、 即ちボール 2 2 に対するプランジャ 4 8の開弁駆動力がボール 2 2に対し閉弁方向に作用する圧縮コイル ばね 3 6のばね力及び弁室 3 4 Aと弁室 3 4 Bとの間の差圧による力の和に打ち勝つまで、 連通制御弁 2 0は閉弁状態を維持する。 従って A B S制御時にポンプ 6 6が駆動されても、 マスタシリンダ室 1 2内のオイルの一部が連通制御弁 2 0を経てリザ一バ室 4 0へ流入す ることを阻止しつつポンプ 6 6により高圧のオイルを供給することができる。
特に第一の実施例によれば、連通制御弁 2 0を開弁する開弁手段としてのプランジャ 4 8 のステム部 4 8 Bは連通制御弁 2 0の弁要素であるボール 2 2とは独立の部材であるので、 連通制御弁 2 0及びプランジャ 4 8がー体である場合に比してそれらの関係の設定の自由 度を高くすることができ、 また連通制御弁 2 0が閉弁状態にある限り圧縮コイルばね 4 4及 び 5 0のばね力は連通制御弁 2 0を閉弁状態に維持するために必要なばね力に影響せず、従 つてボール 2 2を閉弁位置へ付勢する圧縮コイルばね 3 6は、圧縮コイルばね 4 4及び 5 0 のばね力の如何に関係なく、非制動時に連通制御弁 2 0を閉弁状態に維持することができる。 また第一の実施例によれば、 プランジャ 4 8のステム部 4 8 Bの先端は非制動時には連通 制御弁 2 0のボール 2 2より隔置され、 ポンプ 6 6の吸入圧力によりプランジャ 4 8が連通 制御弁 2 0の閉弁方向へ駆動されても、 ステム部 4 8 Bの先端がボール 2 2に当接するまで は開弁に寄与せずに遊動するので、 連通制御弁 2 0を閉弁状態に維持したまま、 プランジャ 4 8の移動による圧力室 5 4の容積の減少により、 圧力室 5 4内のオイルが連通孔 5 4 A リザーバ室 4 0、 オイル給排導管 6 4を経てポンプ 6 6の吸入側へ供給され、 従ってポンプ 6 6はその駆動開始当初より確実に高圧のオイルを供給することができ、 ポンプの駆動開始 時に於ける良好なオイル供給性能を確保することができる。 第二の実施例
図 2は本発明による車両用制動装置の第二の実施例のボール型逆止弁式の連通制御弁及 びリザーバを示す断面図である。 尚図 2に於いて図 1に示された部材と同一の部材には図 1 に於いて付された符号と同一の符号が付されており、 このことは後述の他の実施例について も同様である。
この第二の実施例に於いては、 リザ一バピストン 3 8には上述の第一の実施例のランド部 3 8 Aに対応するランド部は設けられていない。 リザ一バピス トン 3 8の円板部 3 8 Bの中 央には孔 3 8 Dが設けられており、 円筒部 3 8 Cには円板部 3 8 Bとは反対側の端部に大径 部 3 8 Eが設けられている。 リザーバ 2 6のハウジング 2 8のシリンダボア 2 8 Aには肩部
2 8 Bが設けられており、 リザ一バピス トン 3 8はその大径部 3 8 Eが肩部 2 8 Bに当接す るようビス トン付勢手段としての圧縮コイルばね 4 4により連通制御弁 2 0へ向けて軸線
3 2に沿って付勢されている。
またプランジャ 4 8のピス トン部 4 8 Aはリザ一バピス トン 3 8の円板部 3 8 Bに対し 連通制御弁 2 0の側にてリザーバ 2 6のハウジング 2 8のシリンダボア 2 8 A内に配置さ れている。 ビストン部 4 8 Aはハウジング 2 8及びリザーパピストン 3 8に対し相対変位可 能にシリンダボア 2 8 Aに嵌合しており、 これによりハウジング 2 8及びリザ一バピストン 3 8と共働して容積可変のリザーバ室 4 0を郭定している。 特にリザ一バ室 4 0の容積が図 2に示された容積よりも大きいときには、 プランジャ 4 8はリザ一バピストン 3 8と共に一 体的にハウジング 2 8に対し相対変位し、 これによりビストン部 4 8 Aはリザ一バピストン 3 8の一部として機能する。
ビス トン部 4 8 Aとシリンダボア 2 8 Aの端壁との間には圧縮コイルばね 5 0が弹装さ れており、 ビス トン部 4 8 Aはリザーバピス トン 3 8の円板部 3 8 Bに当接するよう圧縮コ ィルばね 5 0により リザ一バピス トン 3 8 向けて軸線 3 2に沿って付勢されている。圧縮 コイルばね 4 4及び 5 0の付勢力は、 リザーバピストン 3 8の大径部 3 8 Eが肩部 2 8 Bに 当接し且つビス トン部 4 8 Aがリザーパピストン 3 8の円板部 3 8 Bに当接する状況に於 いて、 リザ一パピストン 3 8に対する圧縮コイルばね 4 4の付勢力がビストン部 4 8 Aに対 する圧縮コイルばね 5 0の付勢力よりも高くなるよう設定されている。 尚圧縮コイルばね 5
0は省略されてもよい。
プランジャ 4 8のステム部 4 8 Bはハウジング 2 8に往復動可能に嵌合しハウジング 2 8及び弁座部材 3 0と共働して弁室 3 4 Bを郭定する大径部を有し、該大径部の外面には軸 線 3 2に沿って延在し弁室 3 4 Bとリザーバ室 4 0とを常時連通接続する複数個の溝 4 8 Cが設けられている。 ステム部 4 8 Bの大径部の軸線 3 2に沿う方向の長さは、 リザーバピ ス トン 3 8がエンドキャップ 4 2に当接する位置までプランジャ 4 8と共にェンドキヤッ プ 4 2の側へ変位しても、 ステム部 4 8 Bがハウジング 2 8の弁室 3 4 Bを郭定する孔ょり 抜け出すことがない長さに設定されている。 この第二の実施例の他の点は上述の第一の実施 例と同様に構成されている。
かく してこの第二の実施例によれば、 上述の第一の実施例の場合と同様、 制動操作に対す るホイールシリンダ内圧力の上昇の遅れ及び実際の制動作用の遅れに起因するフィ一リン グの悪化を効果的に解消すると共に、制動操作開始時の制動の応答性を確実に向上させるこ とができ、 リザ一バ室 4 0内の圧力に対する連通制御弁 2 0の調圧作用を早期に発揮させる ことができ、連通制御弁 2 0を閉弁状態に維持しつつポンプ 6 6の駆動開始当初よりポンプ 6 6による高圧のオイルの供給を確実に達成することができる。
特に第二の実施例によれば、 プランジャ 4 8のピス トン部 4 8 Aはハウジング 2 8のシリ ンダボア 2 8 Aに嵌合しているので、 上述の第一の実施例の場合に比してポンプ 6 6の吸入 圧力に対するプランジャ 4 8の受圧面積を高くすることができ、 これによりポンプ 6 6の吸 入圧力に対するプランジャ 4 8の応答性を高くすることができる。 第三の実施例
図 3は本発明による車両用制動装置の第三の実施例のスプール弁式の連通制御弁及びリ ザーバを示す断面図である。
この第三の実施例に於いては、連通制御弁 2 0は弁要素としてのスプール 9 0を有するス プール弁である。 ハウジング 2 8の連通制御弁 2 0を収容する部分には弁ハウジング部材 9 2が配置され、 例えば圧入によりハウジング 2 8に対し固定されている。 弁ハウジング部材 9 2は軸線 3 2に沿って延在しスプール 9 0を軸線 3 2に沿って往復動可能に支持するボ ァ 9 4を有し、ハウジング 2 8及びスプール 9 0と共働して容積可変のエアチャンバ 9 6を 郭定している。 エアチャンバ 9 6は弁ハウジング部材 9 2に設けられた内部通路 9 8、 ハウ ジング 2 8と弁ハウジング部材 9 2との間に郭定された環状通路 1 0 0、ハウジング 2 8に 設けられた内部通路 1 0 2によりエアチャンバ 4 6と常時連通接続されている。
スプール 9 0はリザ一パピス トン 3 8の側とは反対側の端部に大径部 9 O Aを有し、ハウ ジング 2 8のボア 2 8 Aの端面とスプール 9 0との間に弾装された圧縮コイルばね 1 0 4 により、大径部 9 O Aが弁ハウジング部材 9 2の肩部 9 2 Aに当接するようリザーバピスト ン 3 8及びプランジャ 4 8へ向けて軸線 3 2に沿って付勢されている。 スプール 9 0はリザ
—バビストン 3 8及びプランジャ 4 8の側の端部に小径部を有し、該小径部は弁ハウジング 部材 9 2と共働して環状通路 1 0 6を郭定し、環状通路 1 0 6はリザーバ室 4 0と連通して いる。
弁ハウジング部材 9 2は内端にて弁ハウジング部材 9 2の内面に開口する複数個の径方 向通路 1 0 8を有し、径方向通路 1 0 8の外端はハウジング 2 8と弁ハウジング部材 9 2と の間に郭定された環状通路 1 1 0及びハウジング 2 8に設けられた通路 1 1 2を介してマ スタ導管 1 8に接続されている。径方向通路 1 0 8はスプール 9 0の大径部 9 O Aが弁ハウ ジング部材 9 2の肩部 9 2 Aに当接しているときにはスプール 9 0によって環状通路 1 0 6との連通が遮断され、 スプール 9 0が圧縮コイルばね 1 0 4のばね力に杭してリザーバピ ストン 3 8及びプランジャ 4 8より離れる方向へ所定量以上変位すると、環状通路 1 0 6と 連通するようになっている。
弁ハウジング部材 9 2のリザ一バピストン 3 8の側の端面には複数個のランド部 9 2 B が設けられており、 これにより リザ一バピス トン 3 8が圧縮コイルばね 4 4の付勢力によつ て弁ハウジング部材 9 2に当接せしめられているときにもそれらの間にリザ一バ室 4 0が 郭定されるようになつている。 プランジャ 4 8のステム部 4 8 Bは小径部を有し、 該小径部 により環状通路 4 8 Cが郭定されている。環状通路 4 8 Cはリザーバ室 4 0と連通しており、 リザーバ室 4 0はリザ一パピス トン 3 8に設けられた連通孔 5 4 Aにより圧力室 5 4と連 通接続されている。
プランジャ 4 8のステム部 4 8 Bの長さは、 リザーバピス トン 3 8のランド部 3 8 Aが弁 ハウジング部材 9 2のランド部 9 2 Bに当接し且つプランジャ 4 8のビス トン部 4 8 Aが
Cリング 5 2に当接する状況に於いて、 スプール 9 0の図にて下端、 即ちプランジャ 4 8の 側の端部より僅かに隔置され又はスプール 9 0を押圧することなくこれに当接する長さに 設定されている。
図 3に示されている如く、 スプール 9 0の有効径 (大径部 9 O Aと小径部との部分の直 径) はプランジャ 4 8のピストン部 4 8 Aの有効径よりも小さい値に設定されている。 また 圧縮コイルばね 4 4はプランジャ 4 8を連通制御弁 2 0へ向けて付勢しており、 これにより プランジャ 4 8及び圧縮コイルばね 5 0と共働してリザ一バピス トン 3 8を連通制御弁 2 0へ向けて付勢している。
また圧縮コイルばね 1 0 4のばね力はプランジャ 4 8のピス トン部 4 8 Aの有効受圧面 積とポンプ 6 6の最大吸入圧力との積よりも小さい値に設定されている。 尚図 3に於いて、 符号 1 1 0〜 1 1 6はそれぞれ対応する部材間に於けるオイルの漏洩を防止するシールリ ングを示している。 またこの第三の実施例の他の点は上述の第一の実施例と同様に構成され ている。
かく してこの第三の実施例によれば、 上述の第一及び第二の実施例の場合と同様の作用効 果を得ることができると共に、連通制御弁 2 0の弁要素であるスプール 9 0にはマスタシリ ンダ室 1 2内の圧力が連通制御弁 2 0の開閉方向に作用しないので、上述の第一及び第二の 実施例の場合に比して圧縮コイルばね 4 4、 5 0のばね力やビストン部 4 8 A等の有効径を 必要な値に容易に設定することができる。
また第三の実施例によれば、上述の第一及び第二の実施例の場合に比して連通制御弁 2 0 及びリザーバ 2 6よりなるュニッ トの軸線方向長さを小さく し、 それらの車両に対する登載 性を向上させることができる。 第四の実施例
図 4は本発明による車両用制動装置の第四の実施例のスプール弁式の連通制御弁及びリ ザーバを示す断面図である。
この第四の実施例に於いても、連通制御弁 2 0は弁要素としてのスプール 9 0を有するス プール弁であるが、上述の第三の実施例に於ける圧縮コイルばね 1 0 4に対応する圧縮コィ ルばねは設けられていない。 またスプール 9 0はプランジャ 4 8のステム部 4 8 Bと一体を なしており、エアチャンバ 9 6はスプール 9 0及びプランジャ 4 8のステム部 4 8 Bに軸線
3 2に沿って延在するよう設けられた内部通路 1 1 8によりエアチャンバ 4 6と常時連通 接続されている。 この第四の実施例の他の点は上述の第三の実施例と同様に構成されている。 かく してこの第四の実施例によれば、上述の第三の実施例の場合に比して連通制御弁 2 0 及びリザ一バ 2 6よりなるュニッ 卜の軸線方向長さが若干大きくなる点を除き、上述の第三 の実施例の場合と同様の作用効果を得ることができる。
特に第四の実施例によれば、 上述の第三の実施例に於ける圧縮コイルばね 1 0 4に対応す る圧縮コイルばねは設けられておらず、 プール 9 0はプランジャ 4 8のステム部 4 8 Bと一 体をなしているので、 上述の第三の実施例の場合に比して部品点数を低減することができる と共に、 連通制御弁 2 0及びリザ一バ 2 6の組み立てを容易に行うことができる。
また上述の第三及び第四の実施例によれば、エアチャンバ 9 6はエアチャンバ 4 6と常時 連通接続されているので, 二つのエアチャンバが相互に連通接続されていない場合に比して 連通制御弁 2 0の開閉を円滑に且つ安定的に行わせることができ、特に第四の実施例によれ ばプランジャ 4 8のステム部 4 8 Bに設けられた内部通路 1 1 8によりエアチャンバ 4 6 及び 9 6が相互に連通接続されているので、 二つのエアチャンバ 4 6及び 9 6を相互に連通 接続する通路が例えば上述の第三の実施例の如くハウジング 2 8等に設けられる場合に比 して連通制御弁 2 0及びリザーバ 2 6の構造を簡略化することができる。 尚エアチャンバ 4 6及び 9 6は内部通路 1 0 2等により相互に連通接続されることなく大気に開放されてい てもよい。 第五の実施例
図 5は本発明による車両用制動装置の第五の実施例の互いに一体化されたスプール弁式 の連通制御弁及びリザ一バを示す断面図である。
この第五の実施例に於いては、ハウジング 2 8のシリンダボア 2 8にはリザーバピストン 3 8のみが軸線 3 2に沿って往復動可能に嵌合しており、 リザ一バピストン 3 8は上述の第 三及び第四の実施例に於けるプランジャ 4 8及びスプール 9 0としても機能するようにな つている。 リザ一バピストン 3 8はハウジング 2 8と共働してエアチャンバ 4 6とは反対の 側に容積可変のリザ一バ室 4 0を郭定している。 リザ一バ室 4 0内には圧縮コイルばね 4 4 のばね力に対抗してリザ一バピストン 3 8をエンドキャップ 4 2へ向けて付勢する圧縮コ ィルばね 1 0 4が配置されている。
リザーバ室 4 0內にはリザ一バピス トン 3 8に対する圧縮コイルばね 1 0 4の付勢を制 限する付勢制限装置 1 2 0が配置されている。 図示の第五の実施例に於ける付勢制限装置 1 2 0はカップ形部材 1 2 2とスライ ド部材 1 2 4とべ一ス部材 1 2 6とよりなっている。 力 ップ形部材 1 2 2は円筒部 1 2 2 Aと、 円筒部の一端に設けられたリム部 1 2 2 Bと、 円筒 部の他端に設けられた端壁部 1 2 2 Cとを有し、 リム部 1 2 2 Bにてリザ一バピス トン 3 8 のリザーバ室 4 0の側の端面に当接している。 カップ形部材 1 2 2にはその内外を接続する 複数個の孔 1 2 2 Dが設けられている。
スライ ド部材 1 2 4はへッ ド部 1 2 4 Aとシャフト部 1 2 4 Bとを有するボルトである。 へッド部 1 2 4 Aはカップ形部材 1 2 2内にて端壁部 1 2 2 Cに当接し、 シャフ ト部 1 2 4 Bはカップ形部材 1 2 2の端壁部 1 2 2 Cに設けられた孔 1 2 2 Dを貫通してカップ形部 材 1 2 2外へ延在している。 シャフト部 1 2 4 Bの先端部はシリンダボア 2 8 Aの端壁部に 当接して配置されたべ一ス部材 1 2 6の隆起部 1 2 6 Aを貫通して延在し、 ナッ ト 1 2 8に よりべ一ス部材 1 2 6に固定されている。 ベース部材 1 2 6は、 リザ一バ室 4 0を郭定する シリンダボア 2 8 Aに嵌合し一端にてべ一ス部材 1 2 6の周縁部に当接する円筒形のカラ 一 1 3 0及びシリンダボア 2 8 Aの内壁面に固定された Cリング 1 3 2によりシリンダボ ァ 2 8 Aの端壁部に当接した状態にて固定されている。
圧縮コイルばね 1 0 4は力ップ形部材 1 2 2のリム部 1 2 2 Bとべ一ス部材 1 2 6のべ —ス部 1 2 6 Bとの間に弾装されている。圧縮コイルばね 1 0 4のばね力は圧縮コイルばね 4 4のばね力よりも大きく、従って通常時にはへッド部 1 2 4 Aがカップ形部材 1 2 2の端 壁部 1 2 2 Cに係合し、 これによりハウジング 2 8に対するリザ一バピストン 3 8の位置が 図 5に示された所定の標準位置に設定されるようになっている。 リザーバ室 4 0の圧力が低 下すると、 リザーバピス トン 3 8がリザ一バ室 4 0の容積を減少させる方向へ移動し、 これ によりシャフ ト部 1 2 4 Bがカップ形部材 1 2 2内へ進入する。
リザ一バピス トン 3 8には一端にてリザ一バ室 4 0に開口し他端にてリザ一バピス トン
3 8の円筒形の外面に開口する内部通路 1 3 4が設けられている。 内部通路 1 3 4の円筒形 の外面側の開口部は、 リザ一バピス トン 3 8が図 5に示された所定の位置にあるときには、 ハウジング 2 8に設けられマスタ導管 1 8に接続された通路 1 1 2の開口部よりもエンド キャップ 4 2の側に位置する。 これに対しリザーバ室 4 0の容積が減少する方向へリザ一バ ピス トン 3 8が所定量移動し、 リザーバピストン 3 8の端部がハウジング 2 8に設けられた 肩部 2 8 Bに当接すると、 通路 1 1 2の開口部と整合し、 内部通路 1 3 4と通路 1 1 2とが 連通する。
以上の説明より解る如く、 リザーバピストン 3 8及びハウジング 2 8は圧縮コイルばね 1 0 4等と共働して、 リザ一バ室 4 0内の圧力により内部通路 1 3 4と通路 1 1 2との連通を 制御することにより、 マスタ導管 1 8とリザーバ室 4 0との連通を制御するスプール弁式の 常閉の連通制御弁 2 0を構成している。 この第五の実施例の他の点は上述の第四の実施例と 同様に構成されている。
かく してこの第五の実施例によれば、上述の第三及び第四の実施例の場合と同様の作用効 果を得ることができることに加えて、ハウジング 2 8のシリンダボア 2 8にはリザ一バピス トン 3 8のみが嵌合し、 リザーバピストン 3 8は上述の第三及び第四の実施例に於けるプラ ンジャ 4 8及びスプール 9 0としても機能するので、上述の第三及び第四の実施例の場合に 比して連通制御弁 2 0及びリザ一バ 2 6よりなるュニッ トの構造を簡素化することができ る。
特に図示の第五の実施例によれば、 リザーバ室 4 0内にはリザ一バピストン 3 8に対する 圧縮コイルばね 1 0 4の付勢を制限する付勢制限装置 1 2 0が配置されているので、付勢制 限装置が設けられていない場合に比してリザ一バピス トン 3 8を確実に標準位置に位置決 めすることができ、 またリザーパピストン 3 8の移動による連通制御弁 2 0の開閉を安定的 に行わせることができる。 第六の実施例
図 6は本発明による車両用制動装置の第六の実施例のボール型逆止弁式の連通制御弁及 びリザ一バを示す断面図である。
この第六の実施例に於いては、 リザーバピストン 3 8は円板部 3 8 Bと一体に形成され連 通制御弁 2 0へ向けて軸線 3 2に沿って延在するステム部 4 8 Bを有しており、 これにより リザーバピス トン 3 8は上述の第一及び第二の実施例に於けるプランジャ 4 8としても機 能するようになっている。
またリザ一バピス トン 3 8とエンドキャップ 4 2との間にはリザ一バピス トン 3 8に対 する圧縮コイルばね 4 4の付勢を制限する付勢制限装置 1 2 0が配置されている。付勢制限 装置 1 2 0は上述の第五の実施例に於ける付勢制限装置と同様の構造を有しているが、 カツ プ形部材 1 2 2のリム部 1 2 2 Bがリザ一バピス トン 3 8の円板部 3 8 Bの内面に当接し、 シャフト部 1 2 4 Bの先端部はェンドキャップ 4 2の隆起部 4 2 Aを貫通して延在し、 ナツ ト 1 2 8によりェンドキャップ 4 2に固定されている。圧縮コイルばね 4 4は力ップ形部材
1 2 2のリム部 1 2 2 Bとエンドキャップ 4 2のべ一ス部 4 2 Bとの間に弾装されている。 ステム部 4 8 Bの長さ及び力ップ形部材 1 2 2のリム部 1 2 2 Bとエンドキャップ 4 2 のベース部 4 2 Bとの間の距離は、 非制動時の状況に於いて、 即ちリム部 1 2 2 Bがリザ一 バピス トン 3 8の円板部 3 8 Bの内面に当接し且つスライ ド部材 1 2 4のへッ ド部 1 2 4
Aがカップ形部材 1 2 2の端壁部 1 2 2 Cに当接する状況に於いて、 ステム部 4 8 Bの先端 部が弁座部材 3 0の連通孔 3 0 Bに遊嵌状態にて嵌入し、 ステム部 4 8 Bの先端部の端面が 連通制御弁 2 0のボール 2 2より僅かに隔置され又はボール 2 2を押圧することなくこれ に当接する長さ及び距離に設定されている。
従って図 6に示された標準状態に於いてリザーバ室 4 0内の圧力が低下すると、 リザーバ ピス トン 3 8がハウジング 2 8に対し相対的に連通制御弁 2 0へ向けて軸線 3 2に沿って 変位し、 円板部 2 8 Bが力ップ形部材 1 2 2のリム部 1 2 2 Bより離脱し、 ステム部 4 8 B がその先端にてボール 2 2を圧縮コイルばね 3 6のばね力に杭して弁座 3 0 Aより離脱さ せるので、 ステム部 4 8 Bはリザ一バ室 4 0内の圧力の低下によって駆動されることにより 連通制御弁 2 0を開弁する開弁手段として機能する。 この第六の実施例の他の点は上述の第 一及び第二の実施例と同様に構成されている。
かく してこの第六の実施例によれば、上述の第一及び第二の実施例の場合と同様の作用効 果を得ることができると共に、 リザ一バピストン 3 8はステム部 4 8 Bを一体に有し、 上述 の第一及び第二の実施例に於けるプランジャ 4 8としても機能するので、上述の第一及び第 二の実施例の場合に比して連通制御弁 2 0及びリザ一バ 2 6よりなるュニッ トの構造を簡 素化することができる。
特に図示の第六の実施例によれば、 リザ一バピストン 3 8とェンドキヤップ 4 2との間に はリザ一バピス トン 3 8に対する圧縮コイルばね 4 4の付勢を制限する付勢制限装置 1 2 0が配置されているので、 上述の第五の実施例の場合と同様、 付勢制限装置が設けられてい ない場合に比してリザーバピス トン 3 8を確実に標準位置に位置決めすることができ、 また リザ一バピストン 3 8の移動による連通制御弁 2 0の開閉を安定的に行わせることができ る。 第七の実施例
図 7は本発明による車両用制動装置の第七の実施例のボール型逆止弁式の連通制御弁及 びリザ一バを示す断面図である。 この第七の実施例に於いても、 上述の第六の実施例と同様、 リザ一バピス トン 3 8は円板 部 3 8 Bと一体に形成され連通制御弁 2 0へ向けて軸線 3 2に沿って延在するステム部 4
8 Bを有しており、 これにより リザ一バピス トン 3 8は上述の第一及び第二の実施例に於け るプランジャ 4 8としても機能するようになっている。 しかし上述の第六の実施例に於ける 付勢制限装置 1 2 0に対応する付勢制限装置は設けられておらず、上述の第一及び第二の実 施例と同様、 リザーバピストン 3 8は円板部 3 8 Bとェンドキャップ 4 2との間には圧縮コ ィルばね 4 4が弾装されている。
またステム部 4 8 Bの先端にはゴムの如き弹性材 1 3 4が取り付けられ、 ステム部 4 8 B の先端が弹性材 1 3 4を介して逆止弁の弁要素に当接するようになっている。.ステム部 4 8
B及び弹性材 1 3 4の長さは、 リザ一バピストン 3 8の円板部 3 8 Bがシリンダボア 2 8 A の端面よりエンドキャップ 4 2の側へ隔置された状態にて弹性材 1 3 4が連通制御弁 2 0 のボール 2 2に当接する長さに設定されている。 また連通制御弁 2 0が閉弁状態にあり且つ ステム部 4 8 Bの先端がボール 2 2に当接する図 7に示された標準状態に於いて、 ボール 2
2に対する圧縮コイルばね 3 6の付勢力がリザ一バピス トン 3 8に対する圧縮コイルばね
4 4の付勢力と弹性材 1 3 4の付勢力との和よりも高くなるよう、各圧縮コイルばね及び弾 性材のばね力が設定されている。 この第七の実施例の他の点は上述の第一、 第二、 第六の実 施例と同様に構成されている。 かく してこの第七の実施例によれば、 上述の第一、 第二、 第六の実施例の場合と同様の作 用効果を得ることができると共に、 これらの実施例の場合よりも部品点数を大幅に低減し、 連通制御弁 2 0及びリザ一バ 2 6よりなるュニッ トの構造を遥かに簡素化することができ る。 また弾性材 1 3 4がリザ一バピス トン 3 8の遊動を可能にするので、 上述の他の実施例 の場合と同様、 ポンプ 6 6の駆動が開始されても、 リザ一バ室 4 0内の圧力が所定値になる まで、 連通制御弁 2 0を閉弁状態に維持し、 これにより A B S制御時にマスタシリンダ室 1
2内のオイルの一部が連通制御弁 2 0を経てリザ一バ室 4 0へ流入することを阻止しつつ ポンプ 6 6により確実に高圧のオイルを供給することができる。
特に図示の第七の実施例によれば、 ステム部 4 8 Bの先端が弾性材 1 3 4を介して連通制 御弁 2 0のボール 2 2に当接しているので、連通制御弁 2 0及びリザ一バ 2 6の標準状態に 於いてステム部 4 8 Bの先端がボール 2 2の如き弁要素より隔置されている場合に比して、 ポンプの駆動開始時にステム部 4 8 Bの先端が弁要素に衝当することに起因する打音の発 生の虞れを確実に低減することができる。 第八の実施例
図 1 0は第六の実施例の修正例として構成された本発明による車両用制動装置の第八の 実施例のスプール式の連通制御弁及びリザーバを示す断面図である。
この第八の実施例に於いても、 上述の第六の実施例と同様、 付勢制限装置 1 2 0が設けら れているが、 連通制御弁 2 0はボール式の逆止弁ではなく、 上述の第三の実施例と同様弁要 素としてのスプール 9 0を有するスプール弁である。 またリザ一バピストン 3 8は、 上述の 第六の実施例に於けるステム部 4 8 Bと同様、 円板部 3 8 Bと一体に形成され連通制御弁 2 0へ向けて軸線 3 2に沿って延在する突起 3 8 Fを有している。 突起 3 8 Fは非制動時には スプール 9 0の下端面より僅かに隔置され又は下端面を押圧することなくこれに当接して いる。
突起 3 8 Fはオイルポンプ 6 6の吸引圧力により リザ一バ室 4 0内の圧力が低下され、 リ ザ一バピス トン 3 8がリザ一バ室 4 0の容積を減少する方向へ移動すると、 スプール 9 0を 図 1 0で見て上方へ駆動し、 これにより連通制御弁 2 0を開弁させるようになつており、 従 つてリザ一バピス トン 3 8は上述の第一乃至第三の実施例に於いて連通制御弁 2 0を開閉 するプランジャ 4 8、 即ち開弁手段の往復動部材としても機能する。
図 1 0と図 3との比較より解る如く、 この第八の実施例に於いては、 ハウジング 2 8及び 弁ハウジング部材 9 2には上述の第三の実施例に於けるエアチャンバ 4 6及び 9 6を相互 に連通接続する通路 9 8、 1 0 2等に対応する通路は設けられておらず、 上述の第四の実施 例に於ける内部通路 1 1 8と同様にスプール 9 0には軸線 3 2に沿って延在する複数の内 部通路 1 3 6が設けられている。 スプール 9 0はハウジング 2 8及び弁ハウジング部材 9 2 と共働してリザ一バ室 4 0とは反対の側に容積可変室 1 3 8を郭定しており、容積可変室 1 3 8は内部通路 1 3 6により リザーバ室 4 0と常時連通接続されており、 これにより リザ一 バ室 4 0内のオイルと同圧のオイルにて充填されている。 この第八の実施例の他の点は上述 の第三又は第六の実施例と同様に構成されている。
かく してこの第八の実施例によれば、上述の第三及び第六の実施例の場合と同様の作用効 果を得ることができ、 また上述の第三の実施例の場合に比して連通制御弁 2 0及びリザ一バ
2 6の構造を簡単なものにし、部品点数及びコストを低減すると共に連通制御弁 2 0及びリ ザ一バ 2 6の組み立てを容易に行うことができる。 特に図示の第八の実施例によれば、容積可変室 1 3 8は内部通路 1 3 6により リザ一バ室
40と常時連通接続されているので、 スプール 9 0の軸線 3 2に沿う方向の両側には常に同 一のオイル圧力が作用し、従ってスプール 90の両側に作用する圧力の差によってスプール
9 0に対し連通制御弁 2 0の開閉方向に余分な力が作用すること及びこれによりスプール
90の開閉移動が悪影響を受けることを確実に回避することができる。
また上述の第三の実施例の場合には、 エアチャンバ 9 6は通路 9 8、 1 0 2等によりエア チャンバ 4 6と連通接続され、 エアチャンバ 9 6内の圧力は大気圧であり、 図 3で見てスプ ール 90の上端には大気圧が作用する。従ってプランジャ 4 8及びスプール 90の有効径を それぞれ 2 Rp、 2 Rs とし、 リザ一バ室 40 (圧力室 54) 内の圧力を Pr (負圧) とし、 大気圧を Pair とすると、 オイルポンプ 6 6によってリザーバ室 40内の圧力が低下される ことによりプランジャ 4 8が連通制御弁 2 0の開弁方向へスプール 9 0を駆動する際の駆 動力 Fは下記の式 1により表され、 プランジャ 4 8の有効径 2 Rpに対応する断面積のうち スプール 9 0の有効径 2 Rsに対応する断面積の部分は駆動力 Fの発生に寄与しない。
F = (Pair- Pr) · π (Rp2— Rs2) …… (1 )
これに対し第八の実施例によれば、 容積可変室 1 3 8内の圧力は大気圧ではなく、 内部通 路 1 3 6により常にリザーバ室 4 0内の圧力と同一の圧力に維持されるので、 リザーバピス トン 3 8の有効径を 2 Rr とすると、 リザーバピス トン 3 8が突起 3 8 Fを介してスプール 9 0を開弁方向へ駆動する際の駆動力 Fは下記の式 2により表され、 リザ一バピス トン 3 8 の有効径 2 Rrに対応する断面積の全てが駆動力 Fの発生に寄与する。
F = (Pair- Pr) · π Rr2 …… (2)
従ってスプール 9 0のリザ一バ室 4 0とは反対の側の端部に大気圧が作用する構成の場 合に比して、 リザ一バピス トン 3 8がスプール 9 0を開弁方向へ駆動する際の駆動力 Fを大 きくすることができ、 これによりオイルポンプ 6 6によってリザ一バ室 4 0内の圧力を低下 させることによるスプール 9 0の駆動を確実に行わせることができ、 またスプール 9 0を駆 動させる所要の力を発生させるに必要なリザーバピス トン 3 8の有効径 2 Rrを小さく し、 リザーバ 2 6を小型化することができる。
また図示の第八の実施例によれば、 スプール 9 0の軸線 3 2に沿う方向の両側の二つの室、 即ちリザーバ室 4 0及び容積可変室 1 3 8はスプール 9 0に設けられた内部通路 1 3 6に より互いに常時連通接続されているので、 二つの室がハウジング 2 8等に設けられた内部通 路により互いに常時連通接続される上述の第三の実施例の場合に比して構造を簡単なもの にし、 ハウジング 2 8等の加工コストを低減することができる。 第九の実施例
図 1 1は第六及び第八の実施例の修正例として構成された本発明による車両用制動装置 の第九の実施例のポぺッ ト型逆止式の連通制御弁及びリザーバを示す断面図、 図 1 2は図 1 1に示された連通制御弁の拡大断面図、 図 1 3は図 1 1及び図 1 2に示された弁要素のへッ ド部のリザ一バ室側の端面を更に拡大して示す底面図である。
この第九の実施例に於いても、 上述の第六及び第八の実施例と同様、 付勢制限装置 1 2 0 が設けられているが、 連通制御弁 2 0はボール式の逆止弁やスプール弁ではなく、 ポぺッ ト 形の弁要素 1 4 0を有するポぺッ ト式の逆止弁である。 またリザ一バピストン 3 8は、 上述 の第八の実施例と同様、 円板部 3 8 Bと一体に形成され連通制御弁 2 0へ向けて軸線 3 2に 沿って延在する突起 3 8 Fを有しており、 リザーバピストン 3 8は上述の第一乃至第三の実 施例に於いて連通制御弁 2 0を開閉するプランジャ 4 8としても機能するようになってい る。
弁要素 1 4 0は互いに一体をなす大径のへッ ド部 1 4 0 Aと小径のスプール部 1 4 0 B とを有し、 スプール部 1 4 0 Bに対しへッ ド部 1 4 O Aがリザ一バ室 4 0の側に位置するよ うハウジング 2 8内に配置されている。 また弁要素 1 4 0はハウジング 2 8に対し例えば圧 入により固定された弁ハウジング部材 9 2に遊嵌合する状態にて軸線 3 2に沿って延在し ており、 弁ハウジング部材 9 2はハウジング 2 8と共働して弁室 3 4 Aを郭定している。 こ の実施例の弁ハウジング部材 9 2は下端部の内径が小径の実質的に円筒状をなし、連通制御 弁 2 0の軸線 3 2に整合する円錐形の弁座 3 O Aと、弁室 3 4 A及びリザーバ室 4 0を相互 に連通接続する連通孔 3 0 Bとを有している。
弁要素 1 4 0はへッ ド部 1 4 0 Aとハウジング 2 8の端面との間に弾装された圧縮コィ ルばね 3 6により弁座 3 0 Aに対し付勢されており、 これにより連通制御弁 2 0は通常時に はボール 2 2が弁座 3 O Aに当接して閉弁し、弁室 3 4 Aとリザ一バ室 4 0との連通を遮断 するようになつている。 弁室 3 4 Aは弁ハウジング部材 9 2の円筒部に形成された複数の径 方向通路と円筒部の外周に形成され複数の径方向通路と連通する環状溝とよりなる内部通 路 1 4 2により、ハウジング 2 8に形成された内部通路 1 1 2を介してマスタ導管 1 8の他 端に常時連通接続されている。 弁要素 1 4 0のスプール部 1 4 0 Bは軸線 3 2に沿って往復動可能にハウジング 2 8に より支持されており、 ハウジング 2 8と共働して容積可変室 1 4 4を郭定している。 容積可 変室 1 4 4は弁要素 1 4 0に設けられその長手方向に延在する一つの内部通路 1 3 6によ り リザ一バ室 4 0と常時連通接続されている。 へッ ド部 1 4 O Aは実質的に半球状をなし、 図 1 2及び図 1 3に詳細に示されている如く内部通路 1 3 6と常時連通し内部通路 1 3 6 に対し垂直に延在する溝 1 4 6を有している。 従って突起 3 8 Fがへッド部 1 4 O Aに当接 しても、 内部通路 1 3 6及び溝 1 4 6により容積可変室 1 4 4及びリザ一バ室 4 0は連通接 続された状態に維持される。 また溝 1 4 6の両端はへッド部 1 4 O Aが弁座 3 O Aに当接す る位置 1 4 8の円よりも径方向内側に位置し、 これにより連通制御弁 2 0が閉弁状態にある ときには内部通路 1 3 6と弁室 3 4 Aとが連通しないようになつている。
尚位置 1 4 8の円の直径を D 1 とし、 スプール部 1 4 0 Bの有効径を D 2 とすると、 直径 D 1は有効径 D 2以上であり、それらの差が 0又は小さい正の値になるよう設定されている。 また図 1 1及び図 1 2に於いて、符号 1 4 8及び 1 5 0はそれぞれ対応する部材間に於ける オイルの漏洩を防止するシ一ルリングを示している。 更にこの第九の実施例の他の点は上述 の第三又は第六又は第八の実施例と同様に構成されている。
かく してこの第九の実施例によれば、 上述の第三、 第六、 第八の実施例の場合と同様の作 用効果を得ることができ、また連通制御弁 2 0がボール式の逆止弁である上述の第一、第二、 第六、 第七の実施例の場合と同様、 弁要素 1 4 0が僅かに開弁方向へ移動すれば連通制御弁 2 0が開弁するので、連通制御弁 2 0がスプール弁である上述の第三乃至第五及び第八の実 施例の場合に比して、 オイルポンプ 6 6によるリザ一バ室 4 0内の圧力低下に対する連通制 御弁 2 0の開弁応答性を高くすることができると共に、連通制御弁 2 0の構造を簡単なもの にすることができる。
またこの第九の実施例によれば、弁要素 1 4 0のスプール部 1 4 0 Bはハウジング 2 8に より往復動可能に支持されているので、 開閉弁が上述の第一、 第二、 第六、 第七の実施例の 如くボール式の逆止弁である場合に比して、 弁要素の開閉方向への移動を安定的に行わせ、 これにより加圧供給手段としてのオイルポンプ 6 6の吸入圧力による連通制御弁 2 0の開 閉を安定的に行わせることができる。
またこの第九の実施例によれば、へッ ド部 1 4 O Aが弁座 3 O Aに当接する位置 1 4 8の 円直径 D 1 はスプール部 1 4 0 Bの有効径 D 2以上であり、 それらの差が 0又は小さい正の 値になるよう設定されているので、容積可変室 1 4 4內の圧力が弁要素 1 4 0に対し開弁付 勢力を付与することもなければ過大な閉弁付勢力を付与することもなく、従ってオイルボン プ 6 6によってリザーバ室 4 0内の圧力を低下させることにより、弁要素 1 4 0を円滑に開 弁位置へ駆動することができる。
以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例 に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業 者にとって明らかであろう。
例えば上述の第一、 第二、 第六、 第七の実施例に於いては、 連通制御弁 2 0はボール式の 逆止弁であるが、 逆止弁は例えば第九の実施例の如きポぺッ ト式の逆止弁であってもよく、 またこれらの実施例に於いても連通制御弁 2 0は例えば第三の実施例に於けるスプール弁 の如きスプール弁であってもよい。
また上述の第五、 第六、 第八、 第九の実施例に於いては、 付勢制限装置 1 2 0はカップ形 部材 1 2 2とスライ ド部材 1 2 4とべ一ス部材 1 2 6とよりなっているが、対応する付勢手 段の付勢を制限し得る限り、 当技術分野に於いて公知の任意の構成のものであってよく、 ま た付勢制限装置 1 2 0が省略されてもよい。
また上述の第七の実施例に於いては、 ステム部 4 8 Bの先端が弹性材 1 3 4を介して連通 制御弁 2 0のボール 2 2に当接しているが、 ステム部 4 8 Bの先端が連通制御弁 2 0のボ一 ル 2 2に直接剛体接触するよう修正されてもよく、 その場合にはステム部 4 8 Bの長さは、 リザ一バピス トン 3 8の円板部 3 8 Bがシリンダボア 2 8 Aの端面よりェンドキヤップ 4
2の側へ隔置された状態にてステム部 4 8 Bの先端が連通制御弁 2 0のボール 2 2に当接 する長さに設定される。 また連通制御弁 2 0が閉弁状態にあり且つステム部 4 8 Bの先端が ボール 2 2に当接する標準状態に於いて、 ボール 2 2に対する圧縮コイルばね 3 6の付勢力 がリザ一バピス トン 3 8に対する圧縮コイルばね 4 4の付勢力よりも高くなるよう設定さ れる。 逆に上述の第一、 第二、 第六の実施例に於いては、 標準状態に於いてステム部 4 8 Bの先 端が連通制御弁 2 0のボール 2 2より隔置され、 上述の第三乃至第五の実施例に於いては、 例えば環状通路 1 0 6と径方向通路 1 0 8とが軸線方向に互いに隔置されているが、前者の 実施例に於いてはステム部 4 8 Bの先端が逆止弁の弁要素に直接又は弹性材を介して互い に当接するよう修正されてもよく、後者の各実施例に於いては環状通路 1 0 6と径方向通路 1 0 8とが標準状態に於いて連通することなく互いに隣接するよう修正されてもよい。 同様に上述の第八及び第九の実施例に於いては、突起 3 8 Fは非制動時にはスプール 9 0 又はへッ ド部 1 4 O Aの下端面より僅かに隔置され又は下端面を押圧することなく当接し ているが、突起 3 8 Fの先端が弾性材 1 3 4の如き弹性材を介してスプール 9 0又はへッド 部 1 4 O Aの下端面に当接するよう修正されてもよレ、。
更に上述の各実施例に於いては、遮断弁は通常時にはオイル供給導管 6 8の側よりマスタ 導管 1 8の側へ向かうオイルの流れのみを許し、 制御電流 I sの制御により差圧 Δ Pを制御 するリニアソレノィ ド弁 8 4と逆止バイパス導管 8 6とよりなっているが、 ポンプ 6 6が駆 動される状況に於いてマスタシリンダとホイールシリンダとの連通を遮断し、必要に応じて ホイールシリンダの側よりマスタシリンダの側へオイルを移動させることができる限り、 当 技術分野に於いて公知の任意の構成のものであってよい。

Claims

請求の範囲
1 . 必要に応じてホイールシリンダょりマスタシリンダへ至る作動液体の流れを遮断する 遮断弁と、 前記ホイ一ルシリンダ内の圧力を増減する増減圧制御弁と、 前記増減圧制御弁が 減圧位置にあるときに前記ホイールシリンダょりの作動液体をリザ一バ室に受け入れて貯 留するリザーバと、前記リザ一バ室より作動液体を吸引して加圧し前記増減圧制御弁が增圧 位置にあるときに前記増減圧制御弁を経て作動液体を前記ホイールシリンダへ供給する加 圧供給手段と、前記マスタシリンダと前記リザ一バ室との連通を制御する連通制御弁とを有 する車両用制動装置に於いて、 前記連通制御弁は常閉弁であり、 前記加圧供給手段の吸入圧 力により開弁されることを特徴とする車両用制動装置。
2 . 前記加圧供給手段の吸入圧力が所定値以上になるまで前記連通制御弁が閉弁状態を維 持した状態で作動液体が前記リザーバょり前記加圧供給手段へ流動可能であることを特徴 とする請求項 1に記載の車両用制動装置。
3 . 前記連通制御弁は常閉の開閉弁と、 前記加圧供給手段の吸入圧力によって駆動される ことにより前記開閉弁を開弁する開弁手段とを有し、 前記開弁手段は前記開閉弁を開閉する 方向に往復動可能に前記リザーバ内に配置され前記加圧供給手段の吸入圧力によって前記 開閉弁を開弁する方向へ駆動される往復動部材を含み、前記開閉弁を開弁する方向は前記リ ザ一バ室の容積を低減する方向であることを特徴とする請求項 1又は 2に記載の車両用制 動装置。
4 . 前記開弁手段は非制動時の位置より前記開閉弁を開弁する方向への前記往復動部材の 移動量が予め設定された遊動量以下であるときには前記開閉弁を開弁しないことを特徴と する請求項 3に記載の車両用制動装置。
5 . 前記リザ一バはハウジングと、 前記ハウジング内に往復働可能に配置され前記ハウジ ングと共働して前記リザ一バ室を郭定するリザ一バピストンと、 前記リザーバ室の容積が減 少する方向へ前記リザーバピス トンを付勢するビス トン付勢手段とを有し、前記リザ一バ室 は前記加圧供給手段の吸入側と常時連通し、前記連通制御弁を介して前記マスタシリンダと 連通することを特徴とする請求項 1乃至 4の何れかに記載の車両用制動装置。
6 . 前記往復動部材は前記リザ一バピス トンの往復動方向に前記リザ一バピス トンに対し 相対的に変位可能に前記リザ一バピス トンにより支持されたビス トン部と、前記ビス トン部 と一体的に連結され前記リザーパピス トンを貫通して前記リザーバピス トンの往復動方向 に延在するステム部とを有し、 該ステム部にて前記開閉弁を開弁し、 前記ビス トン部及び前 記ステム部は前記リザーバピス トンと共働して前記リザ一バ室と常時連通し前記リザ一バ 室の一部として機能する圧力室を郭定していることを特徴とする請求項 5に記載の車両用 制動装置。
7 . 前記往復動部材は前記リザ一バピス トンに対し前記マスタシリンダの側に配置され、 前記リザ一バピス トンの往復動方向に前記リザーバピス トンに対し相対的に変位可能に前 記ハウジングにより支持されたビストン部と、前記ビストン部と一体的に連結され前記リザ —パピストンの往復動方向に延在するステム部とを有し、該ステム部にて前記開閉弁を開弁 し、 前記ビストン部は前記ハウジング及び前記リザーバピストンと共働して前記リザーバ室 を郭定していることを特徴とする請求項 5に記載の車両用制動装置。
8 . 前記開閉弁が閉弁状態にあり且つ前記リザーバビストンが前記リザーバ室の容積が最 小になる位置にある状況に於いて前記リザーバ室に前記加圧供給手段の吸入圧力が作用す ると、 前記往復動部材は前記開閉弁を開弁する方向へ変位することにより、 前記リザ一パピ ス トンが移動しなくても前記リザ一バ内の作動液体貯留容積を減少させることを特徴とす る請求項 5乃至 7の何れかに記載の車両用制動装置。
9 . 前記リザ一バピス トンは前記往復動部材として機能することを特徴とする請求項 1乃 至 5の何れかに記載の車両用制動装置。
1 0 . 前記開閉弁は弁要素と、前記弁要素を弁座に対し付勢する弁要素付勢手段とを有し、 前記弁要素が前記弁座に当接することより閉弁し、前記弁要素が前記弁座より離脱すること により開弁する逆止弁であることを特徴とする請求項 3乃至 9の何れかに記載の車両用制 動装置。
1 1 . 前記弁要素は、 へッド部と該へッド部よりも小径のスプール部とを有するポぺッ ト 形をなし、 前記スプール部にて弁ハウジングにより往復動可能に支持され、 前記へッド部が 前記弁座に当接することにより閉弁し、前記へッド部が前記弁座より離脱することにより開 弁することを特徴とする請求項 1 0に記載の車两用制動装置。
1 2 . 前記開閉弁は前記弁要素としてのスプールが弁ハウジングに対し相対的に往復変位 することにより開閉するスプール弁であることを特徴とする請求項 3乃至 9の何れかに記 載の車両用制動装置。
1 3 . 前記弁要素は前記弁ハウジングと共働して前記弁要素の往復動により容積が増減し 前記弁要素の往復動を許容する容積可変室を郭定すると共に、前記容積可変室と前記リザー バ室とを常時連通接続する内部通路を有することを特徴とする請求項 1 1又は 1 2に記載 の車両用制動装置。
1 4 . 前記スプールは前記往復動部材の前記ステム部と一体であることを特徴とする請求 項 1 2に記載の車両用制動装置。
1 5 . 前記リザ一バはハウジングと、 前記ハウジング内に往復働可能に配置され前記ハウ ジングと共働して前記リザーバ室を郭定するリザ一バピス トンと、前記リザーバ室の容積が 減少する方向へ前記リザ一バピス トンを付勢する第一のビス トン付勢手段と、前記リザーバ 室の容積が増大する方向へ前記リザーバピストンを付勢する第二のビストン付勢手段とを 有し、 前記リザ一バピス トンは前記リザ一バ室と一端にて常時連通する内部通路を有し、 前 記リザーバピス トンは前記内部通路の他端が前記マスタシリンダとの連通より遮断される 閉弁位置と、前記リザーバピス トンが前記開弁位置より前記リザ一バ室の容積が減少する方 向へ移動することにより前記內部通路の他端が前記マスタシリンダと連通する開弁位置と に移動可能な前記連通制御弁のスプールとして機能し、 前記第一及び第二のビス トン付勢手 段は非制動時には前記連通制御弁が前記閉弁位置をとるよう前記ハウジングに対する前記 リザ一バビス トンの位置を設定することを特徴とする請求項 1又は 2に記載の車両用制動 装置。
1 6 . 前記リザ一バピストンの往復動の範囲について見て前記第二のビストン付勢手段が 前記リザ一バピス トンを付勢する範囲を制限する付勢制限手段が設けられていることを特 徴とする請求項 1 5に記載の車両用制動装置。
1 7 . 前記開閉弁は弁要素と、前記弁要素を弁座に対し付勢する弁要素付勢手段とを有し、 前記弁要素が前記弁座に当接することより閉弁し、前記弁要素が前記弁座より離脱すること により開弁する逆止弁であり、前記リザ一バピス トンは前記開弁手段として機能する部分を 有し、前記リザーバピス トンの往復動の範囲について見て前記ビス トン付勢手段が前記リザ 一パピス トンを付勢する範囲を前記開弁手段として機能する部分が前記開閉弁を開弁しな い範囲に制限する付勢制限手段が設けられていることを特徴とする請求項 5に記載の車両 用制動装置。
1 8 . 前記開閉弁が閉弁状態にあり且つ前記付勢制限手段が前記リザーバピス トンに対す る前記ビス トン付勢手段の付勢を制限している状況に於いて前記リザ一バ室に前記加圧供 給手段の吸入圧力が作用しても、前記リザーバピス トンは前記開閉弁を開弁する方向へ変位 することにより前記リザ一バ室の容積を減少させることを特徴とする請求項 1 7に記載の 車両用制動装置。
1 9 . 前記開閉弁は弁要素と、前記弁要素を弁座に对し付勢する弁要素付勢手段とを有し、 前記弁要素が前記弁座に当接することより閉弁し、前記弁要素が前記弁座より離脱すること により開弁する逆止弁であり、 前記リザ一バピス トンは前記開弁手段として機能する部分を 有し、 前記弁要素が弁座に当接し且つ前記部分が前記弁要素に当接する状況に於いて、 前記 弁要素付勢手段が前記弁要素を付勢する力は前記ビス トン付勢手段が前記リザーバピス ト ンを付勢する力よりも大きいことを特徴とする請求項 5に記載の車両用制動装置。
2 0 . 必要に応じてホイ一ルシリンダょりマスタシリンダへ至る作動液体の流れを遮断す る遮断弁と、 前記ホイ一ルシリンダ内の圧力を増減する増減圧制御弁と、 作動液体を加圧し 前記増減圧制御弁が増圧位置にあるときに前記增減圧制御弁を経て作動液体を前記ホイ一 ルシリンダへ供給する加圧供給手段とを有する車两用制動装置に設けられ、前記増減圧制御 弁が減圧位置にあるときに前記ホイールシリンダょりの作動液体をリザーバ室に受け入れ て貯留し、 前記リザーバ室は前記加圧供給手段の吸入側に連通するリザーバに於いて、 前記 マスタシリンダと前記リザ一バ室との連通を制御する連通制御弁を有し、前記連通制御弁は 常閉弁であり、 前記加圧供給手段の吸入圧力により開弁されることを特徴とするリザ一バ。
PCT/JP2007/061498 2006-05-31 2007-05-31 車両用制動装置及びそのリザーバ WO2007139235A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200780020380.3A CN101460344B (zh) 2006-05-31 2007-05-31 车辆制动设备及其储液器
US12/302,970 US8733848B2 (en) 2006-05-31 2007-05-31 Vehicle brake device and its reservoir
EP07744837.1A EP2022690B1 (en) 2006-05-31 2007-05-31 Vehicle brake device and its reservoir
US14/178,585 US20140159471A1 (en) 2006-05-31 2014-02-12 Vehicle brake device and its reservoir
US14/178,621 US20140159472A1 (en) 2006-05-31 2014-02-12 Vehicle brake device and its reservoir

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-152529 2006-05-31
JP2006152529 2006-05-31
JP2006187703A JP5070750B2 (ja) 2006-05-31 2006-07-07 車両用制動装置及びそのリザーバ
JP2006-187703 2006-07-07

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/302,970 A-371-Of-International US8733848B2 (en) 2006-05-31 2007-05-31 Vehicle brake device and its reservoir
US14/178,621 Division US20140159472A1 (en) 2006-05-31 2014-02-12 Vehicle brake device and its reservoir
US14/178,585 Division US20140159471A1 (en) 2006-05-31 2014-02-12 Vehicle brake device and its reservoir

Publications (1)

Publication Number Publication Date
WO2007139235A1 true WO2007139235A1 (ja) 2007-12-06

Family

ID=38778747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061498 WO2007139235A1 (ja) 2006-05-31 2007-05-31 車両用制動装置及びそのリザーバ

Country Status (5)

Country Link
US (3) US8733848B2 (ja)
EP (3) EP2022690B1 (ja)
JP (1) JP5070750B2 (ja)
CN (1) CN101460344B (ja)
WO (1) WO2007139235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015503478A (ja) * 2011-12-27 2015-02-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 液圧制御式貯留室弁
DE102009028912B4 (de) * 2008-08-28 2019-05-16 Advics Co., Ltd. Niederdruckspeicher

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027998A1 (de) * 2009-07-24 2011-01-27 Robert Bosch Gmbh Hydraulikspeichereinrichtung und Verfahren zum Betreiben einer Hydraulikspeichereinrichtung
JP5440403B2 (ja) * 2010-06-07 2014-03-12 トヨタ自動車株式会社 車両用制動装置
DE102011089951A1 (de) * 2011-12-27 2013-06-27 Robert Bosch Gmbh Hydraulisch gesteuertes Speicherkammerventil
JP2013169923A (ja) * 2012-02-22 2013-09-02 Nissin Kogyo Co Ltd 車両用ブレーキ液圧制御装置
DE102013212327A1 (de) * 2013-06-26 2014-12-31 Robert Bosch Gmbh Schlupfgeregelte hydraulische Fahrzeugbremsanlage
JP6111920B2 (ja) * 2013-07-25 2017-04-12 株式会社アドヴィックス 車両用液圧ブレーキ装置
KR101726142B1 (ko) * 2013-09-20 2017-04-11 히다치 오토모티브 시스템즈 가부시키가이샤 브레이크 장치
JP6278236B2 (ja) * 2014-01-29 2018-02-14 株式会社アドヴィックス 車両用制動装置
KR102264094B1 (ko) * 2014-11-03 2021-06-14 현대모비스 주식회사 차량 자세 제어장치 및 제어방법
KR102510642B1 (ko) * 2016-05-20 2023-03-16 에이치엘만도 주식회사 브레이크 시스템용 펌프의 피스톤 제조방법 및 이 제조방법에 의해 제조된 피스톤을 구비하는 브레이크 시스템용 펌프

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378861A (ja) * 1986-09-22 1988-04-08 Aisin Seiki Co Ltd アンチスキツド装置
JPH05116607A (ja) 1991-10-30 1993-05-14 Sumitomo Electric Ind Ltd ブレーキ液圧制御装置
DE19527805A1 (de) 1994-07-29 1996-03-14 Toyota Motor Co Ltd Brems-Steuervorrichtung, die in der Lage ist, eine Traktions-Kontrolle eines Fahrzeug-Antriebsrades durchzuführen und die eine Einrichtung zur Reduzierung des Zufuhrdruckes der Pumpe während der Traktions-Kontrolle aufweist
EP0706923A2 (en) 1994-10-12 1996-04-17 Sumitomo Electric Industries, Limited Brake fluid pressure controller
JPH08310369A (ja) * 1995-05-17 1996-11-26 Toyota Motor Corp 液圧制御装置
JPH10157598A (ja) * 1996-11-29 1998-06-16 Denso Corp ブレーキ液圧制御装置
JPH10264801A (ja) 1997-03-25 1998-10-06 Aisin Seiki Co Ltd 車両用液圧ブレーキ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4703979A (en) * 1984-08-14 1987-11-03 Toyota Jidosha Kabushiki Kaisha Anti-skid pressure control device in hydraulic braking system
JP2706483B2 (ja) * 1988-09-28 1998-01-28 日立建機株式会社 圧力制御弁
DE4000837B4 (de) * 1990-01-13 2005-03-03 Continental Teves Ag & Co. Ohg Hydraulische Bremsanlage mit einer Einrichtung zur Brems- und/oder Antriebsschlupfregelung
JPH0487086U (ja) 1990-11-30 1992-07-29
JPH0655909U (ja) * 1993-01-14 1994-08-02 住友電気工業株式会社 ブレーキ液圧制御装置
US6142581A (en) * 1995-12-26 2000-11-07 Denso Corporation Hydraulic circuit having a rotary type pump and brake apparatus for a vehicle provided with the same
JP3821325B2 (ja) * 1996-08-28 2006-09-13 ボッシュ株式会社 ブレーキ倍力システム
EP1146267B1 (en) * 1998-12-28 2007-02-07 Furukawa Co., Ltd. Pressure control valve
JP2001163208A (ja) * 1999-12-07 2001-06-19 Sumitomo Denko Brake Systems Kk 車両用ブレーキ液圧制御装置
JP4934937B2 (ja) * 2001-01-31 2012-05-23 株式会社デンソー 車両用ブレーキ装置
KR100482959B1 (ko) * 2002-02-05 2005-04-15 주식회사 만도 차량용 전자제어식 브레이크 시스템
JP2006151362A (ja) * 2004-11-04 2006-06-15 Advics:Kk 調圧リザーバおよびそれを用いた車両用ブレーキ装置
JP5116607B2 (ja) 2008-08-18 2013-01-09 株式会社日立製作所 ガス遮断器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378861A (ja) * 1986-09-22 1988-04-08 Aisin Seiki Co Ltd アンチスキツド装置
JPH05116607A (ja) 1991-10-30 1993-05-14 Sumitomo Electric Ind Ltd ブレーキ液圧制御装置
DE19527805A1 (de) 1994-07-29 1996-03-14 Toyota Motor Co Ltd Brems-Steuervorrichtung, die in der Lage ist, eine Traktions-Kontrolle eines Fahrzeug-Antriebsrades durchzuführen und die eine Einrichtung zur Reduzierung des Zufuhrdruckes der Pumpe während der Traktions-Kontrolle aufweist
EP0706923A2 (en) 1994-10-12 1996-04-17 Sumitomo Electric Industries, Limited Brake fluid pressure controller
JPH08310369A (ja) * 1995-05-17 1996-11-26 Toyota Motor Corp 液圧制御装置
JPH10157598A (ja) * 1996-11-29 1998-06-16 Denso Corp ブレーキ液圧制御装置
JPH10264801A (ja) 1997-03-25 1998-10-06 Aisin Seiki Co Ltd 車両用液圧ブレーキ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2022690A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028912B4 (de) * 2008-08-28 2019-05-16 Advics Co., Ltd. Niederdruckspeicher
JP2015503478A (ja) * 2011-12-27 2015-02-02 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 液圧制御式貯留室弁

Also Published As

Publication number Publication date
US8733848B2 (en) 2014-05-27
CN101460344B (zh) 2014-07-16
EP2407359A1 (en) 2012-01-18
EP2407360B1 (en) 2013-10-23
CN101460344A (zh) 2009-06-17
EP2022690B1 (en) 2013-05-29
US20090152941A1 (en) 2009-06-18
US20140159471A1 (en) 2014-06-12
US20140159472A1 (en) 2014-06-12
JP5070750B2 (ja) 2012-11-14
JP2008007080A (ja) 2008-01-17
EP2022690A4 (en) 2010-01-06
EP2407359B1 (en) 2013-08-07
EP2022690A1 (en) 2009-02-11
EP2407360A1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
WO2007139235A1 (ja) 車両用制動装置及びそのリザーバ
US8534773B2 (en) Hydraulic booster and hydraulic brake system using the same
US20080010985A1 (en) Brake system, stroke simulator disconnecting mechanism, and stroke simulator disconnecting method
JPH0127901B2 (ja)
JPH1081220A (ja) 液圧ブレーキ装置における液圧制御弁装置
JP5402296B2 (ja) ダンパ装置及びブレーキ液圧制御装置
JPH0356217B2 (ja)
US6402263B1 (en) Dual actuation master cylinder
CN113056401B (zh) 车辆用的制动系统的液压控制单元
KR100493784B1 (ko) 전자제어식 브레이크 시스템의 펌프
KR100536282B1 (ko) 전자제어식 브레이크 시스템의 펌프
JPH04131566U (ja) 液圧ブレーキシステム
JP5440403B2 (ja) 車両用制動装置
JPH04283156A (ja) 脈圧緩衝装置
JPH08104217A (ja) ブレーキシステム
JPH04163261A (ja) 制動液圧制御装置
JP5756418B2 (ja) 車両用ブレーキ液圧制御装置
JPH11198797A (ja) 電磁弁及びその電磁弁を備えたブレーキ制御装置
JPH10132130A (ja) 液圧制御装置および液圧制御用電磁弁
JP2010058715A (ja) ブレーキ液圧制御装置
JPH0643181B2 (ja) アンチスキツド用液圧制御装置
JP2002145043A (ja) 液圧ブレーキ装置
JPS6033159A (ja) 車両用アンチスキッドブレ−キ装置
JPH01289751A (ja) 車両用ブレーキ液圧制御装置
JPH0464903B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780020380.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007744837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12302970

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE