WO2007139142A1 - プラズマcvd方法、窒化珪素膜の形成方法、半導体装置の製造方法およびプラズマcvd装置 - Google Patents

プラズマcvd方法、窒化珪素膜の形成方法、半導体装置の製造方法およびプラズマcvd装置 Download PDF

Info

Publication number
WO2007139142A1
WO2007139142A1 PCT/JP2007/060976 JP2007060976W WO2007139142A1 WO 2007139142 A1 WO2007139142 A1 WO 2007139142A1 JP 2007060976 W JP2007060976 W JP 2007060976W WO 2007139142 A1 WO2007139142 A1 WO 2007139142A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
nitride film
plasma
gas
processing chamber
Prior art date
Application number
PCT/JP2007/060976
Other languages
English (en)
French (fr)
Inventor
Masayuki Kohno
Tatsuo Nishita
Toshio Nakanishi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US12/302,614 priority Critical patent/US8114790B2/en
Priority to KR1020087029276A priority patent/KR101063083B1/ko
Priority to JP2008517961A priority patent/JP5341510B2/ja
Priority to CN2007800191810A priority patent/CN101454880B/zh
Publication of WO2007139142A1 publication Critical patent/WO2007139142A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • Plasma CVD method silicon nitride film formation method, semiconductor device manufacturing method, and plasma CVD device
  • the present invention relates to a CVD (Chemical Vapor Deposition) method using plasma, a method of forming a silicon nitride film and a method of manufacturing a semiconductor device using the method, and a plasma CVD device used in these processes.
  • CVD Chemical Vapor Deposition
  • a silicon nitride film is used as an insulating film or a protective film in various semiconductor devices.
  • Such a silicon nitride film for example, contains silicon such as silane (SiH) as a source gas.
  • An object of the present invention is to provide a plasma CVD method capable of imparting high stress to a silicon nitride film to be formed and having less plasma damage.
  • Another object of the present invention is to provide a method of forming a silicon nitride film that can introduce a desired stress using such plasma CVD.
  • Still another object of the present invention is to provide a method of manufacturing a semiconductor device using such a silicon nitride film.
  • Still another object of the present invention is to provide a plasma CVD apparatus capable of performing the plasma CVD method as described above.
  • a processing chamber capable of being evacuated, a mounting table for mounting a processing object in the processing chamber, a microwave generation source for generating microwaves, and a plurality of A planar antenna for introducing a microwave generated by the microwave generation source into the processing chamber through the slot; a gas supply mechanism for supplying a film forming source gas into the processing chamber; Preparing a plasma processing apparatus including a high-frequency power source for supplying high-frequency power to the table, placing a substrate to be processed on the table, and introducing a nitrogen-containing gas and a silicon-containing gas into the processing chamber Then, these gases are turned into plasma by the microwave, and when the silicon nitride film is deposited on the surface of the substrate to be processed by the plasma, and the silicon nitride film is deposited, the high frequency electric power is applied to the mounting table. And a supplying a plasma CVD method is provided.
  • a processing chamber capable of being evacuated, a mounting table on which a target object is mounted in the processing chamber, a microwave generation source for generating microwaves, and a plurality of A planar antenna for introducing a microwave generated by the microwave generation source into the processing chamber through the slot; a gas supply mechanism for supplying a film forming source gas into the processing chamber;
  • a plasma processing apparatus having a high frequency power source for supplying high frequency power to a table Preparing a substrate to be processed on the mounting table, introducing a nitrogen-containing gas and a silicon-containing gas into the processing chamber, converting the gas into plasma by the microwave, and processing the plasma with the plasma
  • a method for forming a silicon nitride film comprising: depositing a silicon nitride film on a surface of a substrate; and supplying high frequency power to the mounting table when depositing the silicon nitride film.
  • the power density of the high-frequency power is 0.
  • the frequency can be selected from 400 kHz to 27 MHz.
  • a silicon nitride film having a compressive stress of lOOOMPa or more can be formed. In this case, it is preferable to deposit the silicon nitride film at a processing pressure of 0.1 lPa or more and 53 Pa or less. Furthermore, a silicon nitride film having a compressive stress of 2000 MPa or more can be formed. In this case, it is preferable to deposit the silicon nitride film at a processing pressure of 0.1 to 40 Pa. Furthermore, a silicon nitride film having a compressive stress of 3000 MPa or more can be formed.
  • the silicon nitride film it is preferable to deposit the silicon nitride film at a processing pressure of 5 Pa or more and 25 Pa or less. It is preferable that the power density of 0. 016 ⁇ 0. 127 WZcm 2. Furthermore, a silicon nitride film having a compressive stress of 3500 MPa or more can be formed. In this case, it is preferable to deposit the silicon nitride film at a processing pressure of 7 Pa or more and 16 Pa or less. The power density is preferably 0.032 to 0.095 WZcm 2 .
  • ammonia gas or nitrogen gas can be used as the nitrogen-containing gas.
  • disilane (Si H) can be used as the silicon-containing gas.
  • the processing temperature for depositing the silicon nitride film can be 300 ° C. to 800 ° C.
  • a gate electrode is formed on a main surface of a semiconductor substrate via an insulating film, and a source and a drain are formed in main surface regions on both sides thereof.
  • the silicon nitride film comprises a process chamber capable of being evacuated to the vacuum,
  • a mounting table for mounting an object to be processed in a processing chamber, a microwave generation source for generating microwaves, and a plurality of slots, and the microwaves generated in the microwave generation source through the slots Planar antenna to be introduced indoors and front
  • Preparing a plasma processing apparatus having a gas supply mechanism for supplying a film forming raw material gas into the processing chamber; placing a substrate to be processed on the mounting table; and containing a nitrogen-containing gas and silicon in the processing chamber.
  • a method for manufacturing a semiconductor device is provided, which is formed by a method including supplying high-frequency power.
  • a processing chamber that operates on a computer and can be evacuated, a mounting table on which an object to be processed is mounted in the processing chamber, and a microwave that generates microwaves A generation source, a planar antenna that has a plurality of slots and introduces microwaves generated by the microwave generation source into the processing chamber through the slots, and a gas that supplies a film forming raw material gas into the processing chamber
  • a storage medium storing a program for controlling a plasma processing apparatus having a supply mechanism and a high-frequency power source for supplying high-frequency power to the mounting table, wherein the program is processed on the mounting table at the time of execution.
  • a processing chamber capable of being evacuated, a mounting table for mounting a processing object in the processing chamber, a microwave generation source for generating microwaves, and a plurality of A planar antenna that has a slot and introduces the microwave generated by the microwave generation source into the processing chamber through the slot; a gas supply mechanism that supplies a film forming source gas into the processing chamber; A high-frequency power source for supplying high-frequency power to the mounting table; placing the substrate to be processed on the mounting table; introducing a nitrogen-containing gas and a silicon-containing gas into the processing chamber; And a plasma CVD method comprising: depositing a silicon nitride film on the surface of the substrate to be processed by the plasma; and supplying high-frequency power to the mounting table when the silicon nitride film is being deposited.
  • a plasma processing apparatus provided with a control unit that controls so as to be performed.
  • a processing chamber capable of vacuum evacuation for processing a substrate to be processed using plasma
  • a mounting table for mounting the substrate to be processed in the processing chamber
  • a planar antenna having a plurality of slots for introducing microwaves into the processing chamber
  • a gas supply mechanism for supplying a film forming raw material gas into the processing chamber
  • a high-frequency power source for supplying high-frequency power to the mounting table
  • a plasma CVD apparatus is provided.
  • a processing chamber capable of being evacuated, a mounting table for mounting the object to be processed in the processing chamber, a microwave generation source for generating microwaves, and a plurality of slots.
  • a planar antenna that introduces microwaves generated by the microwave generation source into the processing chamber through the slot, a gas supply mechanism that supplies a film forming source gas into the processing chamber, and high-frequency power to the mounting table
  • a plasma processing apparatus equipped with a high-frequency power supply to supply high-frequency power to the mounting table and depositing a silicon nitride film
  • a high compression stress for example, lOOOMPa or higher, preferably 2000 MPa or higher, more preferably 3000 MPa
  • a silicon nitride film having a compressive stress of 3500 MPa or more can be desirably formed. This effect can also be obtained regardless of the type of film forming gas.
  • a plasma processing apparatus that generates a plasma by introducing a microwave into a processing chamber using a planar antenna having a plurality of slots can perform plasma processing at a low electron temperature and high density. Plasma damage in CVD can be reduced as much as possible. Therefore, by using the plasma processing apparatus, the range of selection of plasma CVD conditions such as the type of nitrogen-containing gas and processing pressure can be widened, and the controllability of stress on the silicon nitride film can be enhanced.
  • the plasma CVD method of the present invention is a method capable of applying high compressive stress to the silicon nitride film and suppressing plasma damage. Therefore, the silicon nitride film having stress in the manufacturing process of various semiconductor devices. Can be advantageously used in forming a film.
  • FIG. 1 is a schematic sectional view showing an example of a plasma processing apparatus suitable for carrying out the method of the present invention.
  • FIG. 2 is a plan view showing a planar antenna member of the plasma processing apparatus of FIG.
  • FIG. 3 A diagram showing typical current-voltage characteristics when a Langmuir probe is inserted into plasma and the applied voltage is swept. (4) Current-voltage characteristics when the bias power is changed.
  • FIG. 5 is a graph showing the relationship between the noise power density and the electron temperature of plasma.
  • FIG. 6 A diagram schematically showing a cross-sectional structure of a MOS transistor using a stressed silicon nitride film as a coating film.
  • FIG. 7A is a process cross-sectional view illustrating a process of the method for manufacturing a semiconductor device to which the plasma CVD method according to an embodiment of the present invention is applied, and shows a state before the formation of the silicon nitride film.
  • FIG. 7B is a process cross-sectional view illustrating a process of the method for manufacturing a semiconductor device to which the plasma CVD method according to one embodiment of the present invention is applied, and shows a state where the plasma CVD process is performed.
  • FIG. 7C is a process cross-sectional view illustrating a process of the method for manufacturing a semiconductor device to which the plasma CVD method according to one embodiment of the present invention is applied, and shows a state where the plasma CVD process is performed.
  • FIG. 7C is a process cross-sectional view showing a process of a semiconductor device manufacturing method to which the plasma CVD method according to an embodiment of the present invention is applied, and shows a state after forming a silicon nitride film having stress due to plasma CVD Figure.
  • FIG. 8 A diagram schematically showing a cross-sectional structure of a CMOS transistor using a stressed silicon nitride film as a coating film.
  • FIG. 9 A diagram schematically showing a cross-sectional structure of a nonvolatile memory using a stressed silicon nitride film as a coating film.
  • FIG. 11 is a graph showing the relationship between the stress of the silicon nitride film and the RF power condition in plasma CVD.
  • the graph which shows the relationship with RF power condition according to processing pressure in ma CVD.
  • the graph which shows the relationship with RF power condition according to processing pressure in Zuma CVD.
  • FIG. 15 is a graph showing the relationship between the stress of a silicon nitride film and the number RF power condition in plasma CVD, comparing the case of frequency power 00 kHz and 13.56 MHz.
  • FIG. 1 is a cross-sectional view schematically showing an example of a plasma processing apparatus that can be used for forming a silicon nitride film in the method of the present invention.
  • the plasma processing apparatus 100 has a high density and high density by generating plasma by introducing microwaves into a processing chamber using a planar antenna having a plurality of slots, particularly an RLSA (Radial Line Slot Antenna). It is configured as an RLSA microwave plasma processing device that can generate microwave-excited plasma with a low electron temperature, and it has a plasma density of 1 X 10 1G to 5 X 10 12 Zcm 3 and is powerfully low at 0.7 to 2 eV. Processing with plasma at electron temperature is possible. Therefore, it can be suitably used for the purpose of forming a silicon nitride film by plasma CVD in the manufacturing process of various semiconductor devices.
  • the plasma processing apparatus 100 has a substantially cylindrical chamber 11 that is airtight and grounded.
  • the chamber 11 may have a rectangular tube shape.
  • a circular opening 10 is formed in a substantially central portion of the bottom wall la of the chamber 11, and an exhaust chamber 11 that communicates with the opening 10 and protrudes downward is provided on the bottom wall la. Yes.
  • the exhaust chamber 11 is connected to an exhaust device 24 via an exhaust pipe 23.
  • a silicon wafer (hereinafter simply referred to as a "wafer") W which is a substrate to be processed, is provided in the chamber 1 in order to horizontally support the W, and a mounting table 2 made of ceramics such as A1N having high thermal conductivity is provided. It has been.
  • the mounting table 2 is supported by a support member 3 having a ceramic force such as a cylindrical A1N extending upward in the center of the bottom of the exhaust chamber 11.
  • the mounting table 2 is provided with a cover ring 4 for covering the outer edge and guiding the wafer W.
  • This cover ring 4 is made of, for example, quartz, A1N, Al O
  • a member made of SiN or other material A member made of SiN or other material.
  • a resistance heating type heater 5 is embedded in the mounting table 2, and the heater 5 is heated by the heater power source 5a to heat the mounting table 2, and the heat is a substrate to be processed. Heat wafer W uniformly.
  • the mounting table 2 is provided with a thermocouple 6 so that the heating temperature of the wafer W can be controlled, for example, in the range from room temperature to 900 ° C.
  • the mounting table 2 has wafer support pins (not shown) for supporting the wafer W and raising and lowering it. It is provided so as to be able to project and retract with respect to the surface of the mounting table 2.
  • a high frequency power supply 61 for bias is connected to the mounting table 2 via a matching circuit 60.
  • the high frequency power supply 61 is configured to supply high frequency power of 1 to 500 W to the electrode 62 embedded in the mounting table 2 at a predetermined frequency such as 400 kHz to 27 MHz, specifically 400 kHz and 13.56 MHz. ing.
  • the electrode 62 is formed, for example, in a mesh shape from a conductive material such as molybdenum or tungsten.
  • a silicon nitride film having a strong compressive stress can be formed by supplying high-frequency power to the mounting table 2 with a predetermined output.
  • annular gas introduction portions 15a and 15b are provided in two upper and lower stages, and each gas introduction portion 15a and 15b has a film forming source gas and A gas supply system 16 for supplying plasma excitation gas is connected.
  • the gas introduction parts 15a and 15b may be arranged in a nozzle shape or a shower shape.
  • the gas supply system 16 includes, for example, a nitrogen-containing gas supply source 17, a Si-containing gas supply source 18, and an inert gas supply source 19.
  • the nitrogen-containing gas supply source 17 is connected to the upper gas introduction part 15a, and the Si-containing gas supply source 18 and the inert gas supply source 19 are connected to the lower gas introduction part 15b.
  • Examples of the nitrogen-containing gas that is a film forming source gas include N, ammonia, and MMH (monomers).
  • Tilhydrazine and the like can be used.
  • Si-containing gas includes, for example, silane (SiH 2), disilane
  • inert gas for example, N gas or rare gas can be used.
  • Ar gas Kr gas, Xe gas, He gas, and the like can be used as the rare gas, which is a horra excitation gas.
  • Ar gas is preferred.
  • the nitrogen-containing gas reaches the gas introduction part 15a through the gas line 20, and is introduced into the chamber 11 from the gas introduction part 15a.
  • the Si-containing gas and the inert gas reach the gas introduction part 15b through the gas lines 20, respectively, and are introduced into the chamber 11 from the gas introduction part 15b.
  • Each gas line 20 connected to each gas supply source has a mass flow controller.
  • An open / close valve 22 is provided at the front and rear of the valve 21 so that the gas supplied can be switched and the flow rate can be controlled.
  • a rare gas for plasma excitation such as Ar is an arbitrary gas, and it is not always necessary to supply it simultaneously with the film forming source gas.
  • An exhaust pipe 23 is connected to the side surface of the exhaust chamber 11, and the exhaust apparatus 24 including the high-speed vacuum pump is connected to the exhaust pipe 23. Then, by operating the exhaust device 24, the gas force in the chamber 11 is uniformly discharged into the space 11 a of the exhaust chamber 11 along the lower periphery of the mounting table 2 and exhausted through the exhaust pipe 23. As a result, the inside of the chamber 11 can be depressurized at a high speed to a predetermined degree of vacuum, for example, 0.133 Pa.
  • a loading / unloading port 25 for loading / unloading the wafer W to / from a transfer chamber (not shown) adjacent to the plasma processing apparatus 100 and the loading / unloading port 25 are opened and closed.
  • a gate valve 26 is provided!
  • the upper portion of the chamber 11 is an opening, and an annular upper plate 27 is joined to the opening.
  • An annular support portion 27a is formed at the inner peripheral lower portion of the upper plate 27 so as to project toward the inner space of the chamber.
  • a dielectric such as quartz or Al 2 O 3 is formed on the support 27a.
  • a microphone mouth wave transmitting plate 28 that is made of a ceramic such as A1N and transmits microwaves is airtightly provided via a seal member 29. Therefore, the inside of the chamber 1 is kept airtight.
  • a disc-shaped planar antenna member 31 is provided above the transmission plate 28 so as to face the mounting table 2.
  • the shape of the planar antenna member is not limited to a disk shape, and may be a square plate shape, for example.
  • the planar antenna member 31 is locked to the upper end of the side wall of the chamber 11.
  • the planar antenna member 31 is formed of, for example, a copper plate or aluminum plate force with a surface plated with gold or silver, and a plurality of slot-like microwave radiation holes 32 that radiate microwaves are formed in a predetermined pattern. It has been configured.
  • the microwave radiation holes 32 form a pair, and the pair of microwave radiation holes 32 are typically arranged in a "T" shape, A plurality of these pairs are arranged concentrically.
  • the length and arrangement interval of the microwave radiation holes 32 are determined according to the wavelength ( ⁇ g) of the microwaves in the waveguide 37.
  • the microwave radiation holes 32 The spacing is arranged to be gZ4, gZ2 or g.
  • the interval between adjacent microwave radiation holes 32 formed concentrically is indicated by Ar.
  • the microwave radiation hole 32 may have another shape such as a circular shape or an arc shape.
  • the arrangement form of the microwave radiation holes 32 is not particularly limited, and the microwave radiation holes 32 may be arranged concentrically, for example, spirally or radially.
  • a slow wave member 33 having a dielectric constant larger than that of vacuum is provided on the upper surface of the planar antenna member 31.
  • the slow wave material 33 has a function of adjusting the plasma by shortening the wavelength of the microwave because the wavelength of the microwave becomes longer in vacuum. It should be noted that the planar antenna member 31 and the transmission plate 28 and the slow wave member 33 and the planar antenna member 31 may be in close contact with each other or may be separated from each other. .
  • a shield lid 34 made of a metal material such as aluminum or stainless steel is provided on the upper surface of the chamber 11 so as to cover the planar antenna member 31 and the slow wave member 33.
  • the upper surface of the chamber 11 and the shield lid 34 are sealed by a seal member 35.
  • a cooling water flow path 34a is formed in the shield lid 34, and cooling water is allowed to flow therethrough to cool the shield lid 34, the slow wave material 33, the planar antenna member 31, and the transmission plate 28. It has become.
  • the shield lid 34 is grounded.
  • An opening 36 is formed at the center of the upper wall of the shield lid 34, and a waveguide 37 is connected to the opening.
  • a microwave generator 39 for generating microwaves is connected to the end of the waveguide 37 via a matching circuit 38. Thereby, for example, a microwave having a frequency of 2.45 GHz generated by the microwave generator 39 is propagated to the planar antenna member 31 through the waveguide 37.
  • the microwave frequency 8.35 GHz, 1.98 GHz, or the like can be used.
  • the waveguide 37 includes a coaxial waveguide 37a having a circular cross section extending upward from the opening 36 of the shield lid 34, and a mode converter 40 at the upper end of the coaxial waveguide 37a. And a rectangular waveguide 37b extending in the horizontal direction.
  • the mode change 40 between the rectangular waveguide 37b and the coaxial waveguide 37a has a function of converting the microphone mouth wave propagating in the TE mode in the rectangular waveguide 37b into the TEM mode.
  • An inner conductor 41 extends in the center of the coaxial waveguide 37a, and the inner conductor 41 is formed at the lower end of the planar antenna member 31. The connection is fixed at the center. Thereby, the microwave is efficiently and uniformly propagated radially and uniformly to the planar antenna member 31 through the inner conductor 41 of the coaxial waveguide 37a.
  • Each component of the plasma processing apparatus 100 is connected to and controlled by a process controller 50 having a CPU.
  • the process controller 50 has a user interface that also includes a keyboard for an operator to input commands for managing the plasma processing apparatus 100, a display for visualizing and displaying the operating status of the plasma processing apparatus 100, and the like. 51 is connected!
  • the process controller 50 stores a control program (software) for realizing various processes executed by the plasma processing apparatus 100 under the control of the process controller 50, and a recipe in which processing condition data is recorded.
  • the stored storage unit 52 is connected.
  • the plasma processing is performed under the control of the process controller 50 by calling an arbitrary recipe from the storage unit 52 according to an instruction from the user interface 51 and causing the process controller 50 to execute it.
  • the desired processing in apparatus 100 is performed.
  • recipes such as the control program and processing condition data may be stored in a computer-readable storage medium such as a CD-ROM, a hard disk, a flexible disk, or a flash memory. For example, it is possible to transmit the data from time to time through a dedicated line and use it online.
  • the plasma processing apparatus 100 configured in this way is capable of proceeding with damage-free plasma processing on the underlayer film, etc. at a low temperature of 800 ° C or lower, and is excellent in plasma uniformity. Uniformity can be realized.
  • a silicon nitride film can be deposited on the surface of the wafer W by the plasma CV D method according to the following procedure.
  • the gate valve 26 is opened, and the wafer W is loaded into the chamber 11 from the loading / unloading port 25 and mounted on the mounting table 2. Then, nitrogen-containing gas and silicon-containing gas from the nitrogen-containing gas supply source 17 and Si-containing gas supply source 18 of the gas supply system 16 are respectively supplied to the chamber 1 through the gas introduction portions 15a and 15b at predetermined flow rates. To introduce.
  • the microwave from the microwave generator 39 is guided to the waveguide 37 through the matching circuit 38, and sequentially passes through the rectangular waveguide 37b, the mode converter 40, and the coaxial waveguide 37a. Then, the power is supplied to the planar antenna member 31 through the inner conductor 41, and the slot (microwave radiation hole 32) force of the planar antenna member 31 is also radiated to the space above the wafer W in the chamber 11 through the transmission plate 28.
  • the microwave propagates in the TE mode in the rectangular waveguide 37b.
  • the TE mode microwave is converted to the TEM mode by the mode change ⁇ 40, and the coaxial waveguide 37a is directed to the planar antenna member 31. Will be propagated.
  • the microwave output at this time can be set to, for example, about 500 to 3000 kW.
  • An electromagnetic field is formed in the chamber 11 by the microwaves radiated from the planar antenna member 31 through the transmission plate 28 to the chamber 11, and the nitrogen-containing gas and the silicon-containing gas are turned into plasma, respectively.
  • the microwave-excited plasma has a high density of about 1 ⁇ 10 1G to 5 ⁇ 10 12 Zcm 3 by radiating microwaves from a number of slots (microwave radiation holes 32) of the planar antenna member 31.
  • the low electron temperature plasma is about 1.5 eV or less. Since the microwave-excited plasma formed in this way has a high density with little plasma damage caused by ions etc.
  • the source gas is in a highly dissociated state in the plasma, and SiH, NH, N, H, etc. Active species are generated, and a thin film of silicon nitride SixNy (where x and y are not necessarily stoichiometrically determined and take different values depending on conditions) is deposited by reaction between the active species. .
  • a high frequency power of a predetermined frequency for example, 13.56 MHz, is supplied from the high frequency power supply 61 to the mounting table 2.
  • activated species containing nitrogen such as NH and N + are easily drawn toward the wafer W.
  • a silicon nitride film having extremely high compressive stress can be formed by changing the composition ratio of Si, N, and H and the density of these in the silicon nitride film.
  • the plasma processing apparatus 100 has the advantage that it can maintain the low electron temperature of the plasma even when a bias is applied to the WENO and W by supplying high frequency power from the high frequency power supply 61 to the susceptor 2. Have it.
  • the electron temperature of the plasma can be obtained from the voltage-current characteristics shown in Fig. 3 obtained by inserting a Langmuir probe into the plasma and sweeping the applied voltage. Specifically, the current value II is taken at an arbitrary position in the exponential function region of Fig. 3, and the current is multiplied by e (about 2. 7 times the voltage change ⁇ is the electron temperature (Te). Therefore, the electron temperature is the same if the slope of the exponential function region is the same.
  • the voltage-current characteristic when plasma was generated by changing the high frequency bias applied to the susceptor was measured with a Langmuir probe.
  • a 200 mm wafer was used, Ar gas was supplied at a flow rate of 250 mLZmin (sccm), the pressure was set to 7.3 Pa, the microwave power was set to 1000 W, and the bias power was changed to 0, 10, 30, and 50 W.
  • the area of the electrode placed on the susceptor is 706.5 cm 2 .
  • the results are shown in Fig. 4.
  • the slope of the exponential region is almost constant regardless of the bias power, so the electron temperature also depends on the bias power (Figure 5 shows the bias power density) as shown in Figure 5. It was almost constant. That is, even if a high frequency bias is applied to the wafer W with a power density of 0.015 to lWZcm 2 , the low electron temperature characteristics of the plasma can be maintained.
  • a silicon nitride film having a strong compressive stress without causing damage due to ions or the like. can be formed.
  • the stress of the formed silicon nitride film is shifted to the compressive stress side by supplying high-frequency power to the mounting table 2. It becomes possible to make it.
  • the stress shift width that is, the absolute value of the stress that changes due to the supply of high-frequency power, reaches 2000 MPa or more, for example, 3000 to 4500 MPa when the film forming conditions other than the application of high-frequency power are set to be the same.
  • a silicon nitride film having a compressive stress can be formed regardless of the type of film forming material gas.
  • NH gas when used as a nitrogen-containing gas, it is usually tensile stress A silicon nitride film is formed.
  • a silicon nitride film having a strong compressive stress can be formed by performing film formation under RF bias conditions (that is, supplying high-frequency power to the mounting table 2). Therefore, it is effective to apply high-frequency power as one of the factors that control the strength and direction of stress (tension or compression).
  • the power density (power per unit area) of the high-frequency power supplied to the mounting table 2 is 0.0043 to l to 500 WZcm 2 (for example, when the electrode area is 314 cm 2 ) regardless of the type of processing gas. 1 to 500 W) is preferable.
  • the range of the high-frequency output for maximizing the compressive stress of the silicon nitride film varies depending on the processing pressure.
  • NH gas as nitrogen-containing gas Si as silicon-containing gas
  • the flow rate of NH gas is preferably 100 to 3000 mLZmin (sccm).
  • Si H gas flow rate is l ⁇ 30mL / min (sccm)
  • N as a nitrogen-containing gas
  • N gas flow rate is
  • the volume is set to 1-30 mLZmin (sccm), preferably 4-15 mLZmin (sccm).
  • sccm mLZmin
  • sccm mLZmin
  • Si H gas Si-containing gas
  • the processing pressure is set to, for example, not less than 0.1 Pa and not more than 53 Pa.
  • the processing pressure In order to form a silicon nitride film having a compressive stress of 2000 MPa or more, it is preferable to set the processing pressure to, for example, 0.1 Pa or more and 40 Pa or less.
  • the processing pressure in order to form a silicon nitride film having a compressive stress of 3000 MPa or more, it is preferable to set the processing pressure to, for example, 5 Pa or more and 25 Pa or less. 016-0. 127 WZcm 2 is preferable. For example, when the electrode area is 314 cm 2 , the high frequency power is 5 to 40W.
  • the processing pressure in order to form a silicon nitride film having a compressive stress of 3500 MPa or more, it is preferable to set the processing pressure to, for example, 7 Pa or more and 16 Pa or less. It is preferable to set to 0.032 to 0.096 WZcm 2 . For example, when the electrode area is 314 cm 2 , the high frequency power is 10-30W.
  • the mounting table 2 is set to 300 ° C or higher, preferably 400 to 800. Heating to ° C is preferred.
  • the gap in the plasma processing apparatus 100 (the bottom surface force of the transmission plate 28 is also the distance to the top surface of the mounting table 2).
  • a strong compressive stress can be applied to the silicon nitride film by using the plasma processing apparatus 100 and selecting the plasma C VD conditions while supplying the RF bias.
  • the magnitude of stress can be controlled by changing the processing pressure.
  • FIG. 6 is a schematic cross-sectional view showing a schematic configuration of a transistor 200 having a MOS (Meta-Oxide-silicon) structure.
  • a gate electrode 103 made of, for example, polysilicon is formed on a P-type or N-type Si layer 101 with a gate insulating film 102 interposed therebetween.
  • a source 104 and a drain 105 are formed on both sides below the gate electrode 103, and a channel region 106 (shaded portion in FIG. 6) is formed between them.
  • a covering film (liner) 107 made of an insulating film is formed so as to cover the gate electrode 103.
  • the coating film 107 can be formed by plasma CVD using the plasma processing apparatus 100. At that time, by controlling the plasma CVD conditions, as described above, tensile stress or compressive stress can be applied to the coating film 107. In particular, it is possible to form a silicon nitride film having a strong compressive stress by selecting the RF bias condition and the processing pressure.
  • the coating film 107 is subjected to stress in the direction indicated by the black arrow 108 in FIG. Then, tensile stress in the same direction as the black arrow 108 is applied to the silicon constituting the source 104 and the drain 105 in contact with the coating film 107. As a result, tensile stress in the same direction as the black arrow 108 is also applied to the channel region 106, and tensile strain occurs in the channel region 106.
  • the transistor 200 When the transistor 200 is an NMOS transistor using electrons as carriers, the mobility increases when tensile strain is applied to the channel region 106, but the mobility decreases when compressive strain is applied. On the other hand, when the transistor 200 is a PMOS transistor using holes as carriers, the mobility increases when compressive strain is applied to the channel region 106, and the mobility decreases when tensile strain is applied.
  • the transistor 200 when the transistor 200 is an NMOS transistor, a saturation driving current value or linearity is obtained by using a silicon nitride film having a tensile stress as the covering film 107 and generating a tensile strain in the channel region 106.
  • the drive current value can be increased.
  • a silicon nitride film having a compressive stress is used as the covering film 107, and a compressive strain is generated in the channel region 106, so that a saturation driving current value or a linear driving current value can be obtained.
  • the driving performance of the transistor 200 can be improved by using a silicon nitride film having a tensile stress or a compressive stress as the coating film 107.
  • a silicon nitride film having stress is applied to the coating film 107, but other than this, for example, silicon nitride having stress is used as a sidewall formed on both sides of the gate electrode 103.
  • a membrane can be used.
  • the transistor 200 can be manufactured, for example, by using the plasma processing apparatus 100 to form the coating film 107 that covers the gate electrode 103 under the condition that a tensile stress or a compressive stress can be applied.
  • 7A-7B illustrate the plasma of the present invention as part of the manufacturing process of transistor 200. It is drawing explaining the example which applied the CVD method.
  • the transistor structure shown in FIG. 7A can be formed by the following procedure. First, a well (not shown) is formed on the P-type or N-type Si layer 101, and an element isolation layer (not shown) is formed by, for example, the LOCOS method or STI (Shallow Trench Isolation). Next, a gate insulating film 102 such as a silicon nitride film or a silicon oxide film is formed on the surface of the Si layer 101 by a method such as plasma treatment or heat treatment. A polysilicon layer is formed on the gate insulating film 102 by CVD, for example, and then etched based on a mask pattern formed by a photolithography technique to form a gate electrode 103.
  • a well is formed on the P-type or N-type Si layer 101
  • an element isolation layer is formed by, for example, the LOCOS method or STI (Shallow Trench Isolation).
  • a gate insulating film 102 such as a silicon nitride film or a silicon oxide film is formed
  • the gate electrode structure is not limited to a single polysilicon layer, and for the purpose of reducing the specific resistance of the gate electrode and increasing the speed, for example, tungsten, molybdenum, tantalum, titanium, conoretol, nickel, their silicides, A laminated structure including a nitride, an alloy, or the like can also be used.
  • ion implantation and active ion treatment are performed to form the source 104 and the drain 105.
  • a silicon nitride film is formed using plasma processing apparatus 100 so as to cover the surface of Si layer 101 and gate electrode 103.
  • a silicon nitride film having a strong compressive stress can be formed by causing a film forming reaction while supplying high-frequency power to the mounting table 2.
  • a MOS structure transistor 200 can be manufactured as shown in FIG. 7C. it can.
  • annealing can be performed as necessary.
  • the CMOS transistor 300 shown in FIG. 8 When the CMOS transistor 300 shown in FIG. 8 is manufactured, film formation, patterning by photolithography, etching, and the like are sequentially performed to form the NMOS region 201 and the PMOS region 202, and further, By forming and etching the silicon nitride film under the film forming conditions that can apply the tensile stress or compressive stress of the invention, the coating films 203 and 204 can be formed in the NMOS region 201 and the PMOS region 202, respectively. .
  • a p-type well 211 that becomes the NMOS region 201 and an n-type well 212 that becomes the PMOS region 202 are formed on the silicon substrate 210.
  • a gate electrode 214 which is also poly-S, is formed on the main surface of the p-type well 211 via a gate insulating film 213, and a source 215 and a drain 216 are formed on both sides of the gate electrode 214.
  • the sidewall of the gate electrode 214 is Form all 217.
  • a gate electrode 224 made of poly-Si is formed on the main surface of the n-type well 212 via a gate insulating film 213, and a source 225 and a drain 226 are formed on both sides of the gate electrode 224.
  • a side wall 227 is formed on the side wall of the gate electrode 224.
  • Reference numeral 230 denotes an element isolation region. The procedure at this time is in accordance with FIGS. 7A to 7C.
  • a tensile stress silicon nitride film is deposited on the entire surface using the plasma processing apparatus 100, and the tensile stress is applied from the PMOS region 202 by etching.
  • the silicon nitride film is removed, and only the NMOS region 201 is left with a covering film 203 made of a tensile stressed silicon nitride film.
  • a compressive stress silicon nitride film is deposited on wafer W using plasma processing apparatus 100. Then, the compressive stress silicon nitride film is removed from the NMOS region 201 by etching, and the coating film 204 made of the compressive stress silicon nitride film is left only in the PMOS region. In this manner, in each of the NMOS region 201 and the PMOS region 202, the stress of the silicon nitride film is used to cause tensile strain in the channel region 218 of the NMOS region 201, and in the channel region 228 of the PMOS region 202. It is possible to manufacture a CMOS transistor with improved performance by generating compressive strain.
  • the silicon nitride film formed by plasma CVD using the plasma processing apparatus 100 can also be applied to the nonvolatile memory 400 as shown in FIG.
  • a tunnel oxide film 302 is formed on the main surface of the Si substrate 301, and a floating gate (FG) 304 force made of polysilicon is formed thereon.
  • FG floating gate
  • CG control gate
  • An insulating layer 307 is formed on 306, sidewall oxide films 308 are formed on the sidewalls of the floating gate 304 and the control gate 306 by oxidation treatment, and the source is formed on both sides of the floating gate 304 on the main surface of the Si substrate 301. 309 and drain 310 are formed, and stress is applied to cover the floating gate 304, the control gate 306, the source 309, and the drain 310.
  • Coating film 311 is made form consisting of. [0074] By forming a stressed silicon nitride film as the abdominal membrane 311 in this way, it is possible to give an appropriate strain to the floating gate 304.
  • the charge of the floating gate 304 is lost by tunneling to the Si substrate through the tunnel oxide film (tunnel current), but the memory is lost.
  • tunnel current tunnel current
  • the average electron mass and the barrier width of the SiO that composes the tunnel oxide film 302 increase, so the tunnel current is reduced and the flow is reduced.
  • the single gate 304 can hold the charge more stably.
  • FIG. 10 is a graph showing the relationship between the stress level of the silicon nitride film and the processing pressure in the plasma C VD in the plasma processing apparatus 1.
  • film formation is performed without supplying high-frequency power to the mounting table 2 in order to investigate the effects of the gas type and pressure.
  • the vertical axis in FIG. 10 indicates the magnitude of stress in the silicon nitride film, the positive (plus) side is tensile stress, and the negative (minus) side is compressive stress (the same applies to FIGS. 11 to 15). is there).
  • the silicon nitride film was formed under the following plasma CVD conditions.
  • the silicon nitride film formed by using NH as the nitrogen-containing gas is
  • a silicon nitride film formed using N as the nitrogen-containing gas has a compressive stress.
  • the compressive stress of the silicon nitride film formed using N is low in processing pressure.
  • Microwave power 2000W RF frequency: 400kHz
  • the base film should have tensile stress under normal film formation conditions, it was confirmed that the film had a large compressive stress when it was formed under the prescribed RF bias conditions.
  • N / Si H-based gas is used as the film forming source gas, and the compression gas is used even under normal film forming conditions.
  • the compressive stress is enhanced by forming the film under a predetermined RF bias condition.
  • the silicon nitride film is used regardless of whether the source material is N H / Si H type gas or N / Si H type gas.
  • a silicon nitride film having a compressive stress of lOOOMPa or more is formed.
  • the electrode area is 314 cm 2
  • a silicon nitride film with a strong compressive stress of 2000 MPa or more is formed when the RF power is in the range of 20 to 40W. Therefore, the RF bus Iasu conditions, RF power density is 0.032 to 0. Range 637WZcm 2 is preferred, 0. 064-0. 127WZcm 2 (but it was confirmed more preferred.
  • a compressive-stressed silicon nitride film can be formed regardless of the type of film source gas.
  • the RF noise condition under which the compressive stress was greatest was about 0.095 WZcm 2 (electrode area: 314 cm 2 , RF power: about 30 W) in terms of power density. Therefore, it is considered that the high frequency power supplied to the mounting table 2 is preferably 0.1 to L00W, more preferably 0.1 to 40W. In other words, it is preferable to set the power range so that the power density is such that a large compressive stress can be obtained according to the electrode area.
  • Processing pressure 2. 67Pa (20mTorr), 13.3Pa (100mTorr) and 66.6Pa (500mTorr)
  • RF power 0 W (not supplied), 10 W (power density: 0. 032WZcm 2), 20W (power density: 0. 064WZcm 2), 30W (power density: 0. 095WZcm 2), 50W (power density: 0. 159W / cm 2 )
  • Si H gas flow rate 3 or 5mLZmin (sccm)
  • Processing pressure 2. 67Pa (20mTorr), 13.3Pa (100mTorr) and 66.6Pa (500mTorr)
  • RF power 0 W (not supplied), 10 W (power density: 0. 032WZcm 2), 20W (power density: 0. 064WZcm 2), 30W (power density: 0. 095WZcm 2), 50W (power density: 0. 159W / cm 2 )
  • Figures 12 and 13 show the results for the N / Si H system
  • Fig. 14 shows the results for the NH / Si H system.
  • the processing pressure may be set to, for example, 0.1 Pa or more and 53 Pa or less. Further, it can be seen that the processing pressure may be set to, for example, 0.1 Pa or more and 40 Pa or less in order to form a silicon nitride film having a compressive stress of 2000 MPa or more. Furthermore, it can be seen that in order to form a silicon nitride film having a compressive stress of 3000 MPa or more, the processing pressure may be set to 5 Pa or more and 25 Pa or less, for example.
  • the high frequency power may be 5 to 40 W.
  • the processing pressure should be set to, for example, 7 Pa or more and 16 Pa or less, and the high frequency power in this case may be 10 to 30 W.
  • the power density of high frequency for bias, 0. 016-0. 127WZcm 2 is preferred tool 0. 032 ⁇ 0. 095W / cm 2 preferred than force! / ⁇
  • the processing pressure is 13.3 Pa (100 mTorr)
  • the RF power density is as strong as 3500 MPa at about 0.032 to 0.095 W / cm 2 (RF power: 10 to 30 W).
  • a compressive stress silicon nitride film could be formed.
  • the processing pressure is 2.67 Pa (20 mTorr)
  • a silicon nitride film with a compressive stress exceeding 2000 MPa with an RF power density of about 0.095 to 0.127 WZcm 2 (RF power: 30 to 40 W) is used. I was able to form.
  • the processing pressure was 66.6 Pa (500 mTorr)
  • compressive stress could not be applied to the silicon nitride film even when high-frequency power was supplied.
  • the influence of the frequency of the high frequency power supplied to the mounting table 2 was examined.
  • the RF pressure density is changed when the processing pressure is 13.3 Pa (100 mTorr) and the frequency of the high-frequency power supplied to the mounting table 2 is 400 kHz and 13.56 MHz.
  • the stress of the silicon nitride film was measured. The results are shown in Fig. 15. From this figure, it was confirmed that the compression stress was greater at 13.56 MHz.
  • the film forming conditions and annealing conditions are as follows.
  • Processing time 10 minutes, 20 minutes or 30 minutes
  • FIG. 16 shows the relationship between the stress of the silicon nitride film and the annealing time. From Fig. 16, it is shown that nitridation with compressive stress formed under the above conditions using Si H and N as source gases.
  • the silicon film is a silicon nitride film with compressive stress formed using Si H and NH under the above conditions.
  • the fluctuation range of stress before and after annealing was remarkably small, and it was confirmed that the film was excellent in heat resistance. From this result, Si H and N are used as source gases in plasma CVD.
  • the silicon nitride film has excellent resistance while maintaining high stress against repeated heat treatment in the manufacturing process of various semiconductor devices It became clear that
  • a silicon nitride film having a tensile stress or a compressive stress is applied to a covering film (liner) of a transistor to improve driving characteristics
  • the present invention is not limited thereto. It can also be applied to the manufacture of various semiconductor devices that can improve device characteristics using stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 真空排気可能な処理室と、処理室内で被処理体を載置する載置台と、マイクロ波を発生するマイクロ波発生源と、複数のスロットを有し、マイクロ波発生源で発生したマイクロ波を前記スロットを介して前記処理室内に導入する平面アンテナと、処理室内に成膜原料ガスを供給するガス供給機構と、載置台に高周波電力を供給する高周波電源とを備えたプラズマ処理装置を用い、処理室内に導入した窒素含有ガスとシリコン含有ガスをマイクロ波によりプラズマ化し、このプラズマにより被処理基板の表面に窒化珪素膜を堆積させる際に、載置台に高周波電力を供給する。

Description

明 細 書
プラズマ CVD方法、窒化珪素膜の形成方法、半導体装置の製造方法お よびプラズマ CVD装置
技術分野
[0001] 本発明は、プラズマによる CVD (Chemical Vapor Deposition)方法、これを利用した 窒化珪素膜の形成方法および半導体装置の製造方法、ならびにこれらのプロセスに 用 ヽるプラズマ CVD装置に関する。
背景技術
[0002] 窒化珪素膜は、各種半導体装置における絶縁膜や保護膜等として使用されている 。このような窒化珪素膜は、例えば、原料ガスとしてシラン (SiH )などのシリコン含有
4
化合物のガスと、窒素やアンモニアのような窒素含有ィ匕合物のガスを使用するプラズ マ CVD法により形成できることが知られている(例えば、特開 2000— 260767号公 報)。
[0003] 従来のプラズマ CVD法により形成される窒化珪素膜においては、デバイス特性に 悪影響を及ぼす膜の応力、すなわち引張り(Tensile)ストレスおよび圧縮 (Compressiv e)ストレスを抑制することが重要な課題であった。例えば窒化珪素膜の圧縮ストレス が大きい場合には、膜直下の金属配線がストレスにより断線を引き起こすストレスマイ グレーシヨンが発生することが知られており、これを防止するためには圧縮ストレスを 小さく抑える必要がある。窒化珪素膜のストレスの方向(引張りストレスであるか圧縮ス トレスである力 や大きさは、プラズマ CVD法の場合、圧力、温度、成膜ガス種などの 成膜条件に左右されることから、従来は窒化珪素膜に強いストレスが生じない条件を 選定してプラズマ CVD法による成膜が行なわれてきた(例えば、前田和夫「VLSIと じ 0」稹書店, 1997年 7月 31日発行)
[0004] 近年ある種のデバイスにおいて、窒化珪素膜のストレスを積極的に利用してデバイ ス特性を改善しようする試みがなされている。しかし、例えば平行平板方式や誘導結 合型のプラズマ CVD装置では、比較的高い電子温度のプラズマを用いるため、高い ストレスを導入する目的で高周波出力、圧力、温度などの条件を変えようとすると、成 膜された窒化珪素膜にプラズマダメージが入りやす 、成膜条件となるので、良質な 窒化珪素膜を得ることが難しいという問題がある。このため、高ストレスの膜を成膜す ることが困難である。また、プラズマ処理条件の選択範囲が限られるため、ストレスを 高精度に制御することも困難になる。
発明の開示
[0005] 本発明の目的は、成膜される窒化珪素膜に高いストレスを持たせることができ、力 つプラズマダメージが少ないプラズマ CVD方法を提供することにある。
本発明の他の目的は、このようなプラズマ CVDを用いて所望のストレスを導入する ことができる窒化珪素膜の形成方法を提供することにある。
本発明のさらに他の目的は、このような窒化珪素膜を用いた半導体装置の製造方 法を提供することにある。
本発明のさらに他の目的は、上記のようなプラズマ CVD方法を実施することができ るプラズマ CVD装置を提供することにある。
[0006] 本発明の第 1の観点によれば、真空排気可能な処理室と、前記処理室内で被処理 体を載置する載置台と、マイクロ波を発生するマイクロ波発生源と、複数のスロットを 有し、前記マイクロ波発生源で発生したマイクロ波を前記スロットを介して前記処理室 内に導入する平面アンテナと、前記処理室内に成膜原料ガスを供給するガス供給機 構と、前記載置台に高周波電力を供給する高周波電源とを備えたプラズマ処理装置 を準備することと、前記載置台に被処理基板を載置することと、前記処理室内に窒素 含有ガスとシリコン含有ガスを導入し、これらガスを前記マイクロ波によりプラズマ化し 、このプラズマにより被処理基板の表面に窒化珪素膜を堆積させることと、前記窒化 珪素膜を堆積させている際に、前記載置台に高周波電力を供給することとを含む、 プラズマ CVD方法が提供される。
[0007] 本発明の第 2の観点によれば、真空排気可能な処理室と、前記処理室内で被処理 体を載置する載置台と、マイクロ波を発生するマイクロ波発生源と、複数のスロットを 有し、前記マイクロ波発生源で発生したマイクロ波を前記スロットを介して前記処理室 内に導入する平面アンテナと、前記処理室内に成膜原料ガスを供給するガス供給機 構と、前記載置台に高周波電力を供給する高周波電源とを備えたプラズマ処理装置 を準備することと、前記載置台に被処理基板を載置することと、前記処理室内に窒素 含有ガスとシリコン含有ガスを導入し、これらガスを前記マイクロ波によりプラズマ化し 、このプラズマにより被処理基板の表面に窒化珪素膜を堆積させることと、前記窒化 珪素膜を堆積させている際に、前記載置台に高周波電力を供給することとを含む、 窒化珪素膜の形成方法が提供される。
[0008] 上記第 1の観点および第 2の観点において、前記高周波電力のパワー密度は、 0.
0032〜1. 59WZcm2、周波数は、 400kHz〜27MHzから選択することができる。 また、 lOOOMPa以上の圧縮ストレスを持つ窒化珪素膜を形成することができ、この 場合には、 0. lPa以上 53Pa以下の処理圧力で前記窒化珪素膜を堆積させることが 好ましい。さらに、 2000MPa以上の圧縮ストレスを持つ窒化珪素膜を形成することが でき、この場合には、 0. lPa以上 40Pa以下の処理圧力で前記窒化珪素膜を堆積さ せることが好ましい。さらにまた、 3000MPa以上の圧縮ストレスを持つ窒化珪素膜を 形成することができ、この場合には、 5Pa以上 25Pa以下の処理圧力で前記窒化珪 素膜を堆積させることが好ましぐ前記高周波電力のパワー密度を 0. 016〜0. 127 WZcm2とすることが好ましい。 さらにまた、 3500MPa以上の圧縮ストレスを持つ窒 化珪素膜を形成することができ、この場合には、 7Pa以上 16Pa以下の処理圧力で前 記窒化珪素膜を堆積させることが好ましぐ前記高周波電力のパワー密度を 0. 032 〜0. 095WZcm2とすることが好ましい。
[0009] また、前記窒素含有ガスとしてアンモニアガスまたは窒素ガスを用いることできる。さ らに、前記シリコン含有ガスとしてジシラン (Si H )を用いることができる。さらにまた、
2 6
前記窒化珪素膜を堆積させる際の処理温度は 300°C〜800°Cとすることができる。
[0010] 本発明の第 3の観点によれば、半導体基板の主面に絶縁膜を介してゲート電極が 形成され、その両側の主面領域にソースおよびドレインが形成された構造体を準備 することと、前記ゲート電極ならびにソースおよびドレインを被覆するように窒化珪素 膜を形成することとを含む半導体装置の製造方法であって、前記窒化珪素膜は、真 空排気可能な処理室と、前記処理室内で被処理体を載置する載置台と、マイクロ波 を発生するマイクロ波発生源と、複数のスロットを有し、前記マイクロ波発生源で発生 したマイクロ波を前記スロットを介して前記処理室内に導入する平面アンテナと、前 記処理室内に成膜原料ガスを供給するガス供給機構とを備えたプラズマ処理装置を 準備することと、前記載置台に被処理基板を載置することと、前記処理室内に窒素 含有ガスとシリコン含有ガスを導入し、これらガスを前記マイクロ波によりプラズマ化し 、このプラズマにより被処理基板の表面に窒化珪素膜を堆積させることと、前記窒化 珪素膜を堆積させている際に、前記載置台に高周波電力を供給することと を含む方法によって形成される、半導体装置の製造方法が提供される。
[0011] 本発明の第 4の観点によれば、コンピュータ上で動作し、真空排気可能な処理室と 、前記処理室内で被処理体を載置する載置台と、マイクロ波を発生するマイクロ波発 生源と、複数のスロットを有し、前記マイクロ波発生源で発生したマイクロ波を前記ス ロットを介して前記処理室内に導入する平面アンテナと、前記処理室内に成膜原料 ガスを供給するガス供給機構と、前記載置台に高周波電力を供給する高周波電源と を備えたプラズマ処理装置を制御するプログラムが記憶された記憶媒体であって、前 記プログラムは、実行時に、前記載置台に被処理基板を載置することと、前記処理室 内に窒素含有ガスとシリコン含有ガスを導入し、これらガスを前記マイクロ波によりプ ラズマ化し、このプラズマにより被処理基板の表面に窒化珪素膜を堆積させることと 前記窒化珪素膜を堆積させている際に、前記載置台に高周波電力を供給することと を含む、プラズマ CVD方法が行われるように、コンピュータに前記プラズマ処理装置 を制御させる記憶媒体が提供される。
[0012] 本発明の第 5の観点によれば、真空排気可能な処理室と、前記処理室内で被処理 体を載置する載置台と、マイクロ波を発生するマイクロ波発生源と、複数のスロットを 有し、前記マイクロ波発生源で発生したマイクロ波を前記スロットを介して前記処理室 内に導入する平面アンテナと、 前記処理室内に成膜原料ガスを供給するガス供給 機構と、前記載置台に高周波電力を供給する高周波電源と、前記載置台に被処理 基板を載置することと、前記処理室内に窒素含有ガスとシリコン含有ガスを導入し、こ れらガスを前記マイクロ波によりプラズマ化し、このプラズマにより被処理基板の表面 に窒化珪素膜を堆積させることと、前記窒化珪素膜を堆積させている際に、前記載 置台に高周波電力を供給することとを含む、プラズマ CVD方法が行われるように制 御する制御部とを備えた、プラズマ処理装置が提供される。 [0013] 本発明の第 6の観点によれば、プラズマを用いて被処理基板を処理するための真 空排気可能な処理室と、前記処理室内で被処理基板を載置する載置台と、前記処 理室内にマイクロ波を導入する複数のスロットを有する平面アンテナと、前記処理室 内に成膜原料ガスを供給するガス供給機構と、前記載置台に高周波電力を供給す る高周波電源とを備えた、プラズマ CVD装置が提供される。
[0014] 本発明によれば、真空排気可能な処理室と、前記処理室内で被処理体を載置する 載置台と、マイクロ波を発生するマイクロ波発生源と、複数のスロットを有し、前記マイ クロ波発生源で発生したマイクロ波を前記スロットを介して前記処理室内に導入する 平面アンテナと、前記処理室内に成膜原料ガスを供給するガス供給機構と、前記載 置台に高周波電力を供給する高周波電源とを備えたプラズマ処理装置を用い、前 記載置台に高周波電力を供給して窒化珪素膜を堆積させることにより、高い圧縮スト レス例えば lOOOMPa以上、好ましくは 2000MPa以上、より好ましくは 3000MPa以 上、望ましくは 3500MPa以上の圧縮ストレスを有する窒化珪素膜を形成することが できる。し力も、この効果は、成膜ガスの種類に関わらず得ることができる。
[0015] また、複数のスロットを有する平面アンテナにて処理室内にマイクロ波を導入してプ ラズマを発生させるプラズマ処理装置は、低電子温度かつ高密度のプラズマ処理が 可能であることから、プラズマ CVDにおけるプラズマダメージを極力低減できる。その ため、前記プラズマ処理装置を用いることにより、窒素含有ガスの種類、処理圧力な どのプラズマ CVD条件の選択の幅が広くなり、窒化珪素膜のストレスの制御性を高 めることができる。
[0016] このように本発明のプラズマ CVD方法は、窒化珪素膜に高い圧縮ストレスを付与で きるとともに、プラズマダメージを抑制できる方法であるため、各種半導体装置の製造 過程でストレスを有する窒化珪素膜を成膜する際に有利に利用することができる。 図面の簡単な説明
[0017] [図 1]本発明方法の実施に適したプラズマ処理装置の一例を示す概略断面図。
[図 2]図 1のプラズマ処理装置の平面アンテナ部材を示す平面図。
[図 3]プラズマにラングミュアプローブを挿入して印加電圧を掃引した場合の一般的 な電流 電圧特性を示す図。 圆 4]バイアスパワーを変化させた場合の電流一電圧特性を示す図。
[図 5]ノィァスパワー密度とプラズマの電子温度との関係を示す図。
圆 6]ストレスを有する窒化珪素膜を被覆膜として使用した MOSトランジスタの断面 構造を模式的に示す図。
[図 7A]本発明の一実施形態に係るプラズマ CVD方法を適用した半導体装置の製造 方法の工程を示す工程断面図であり、窒化珪素膜の形成前の状態を示す図。 圆 7B]本発明の一実施形態に係るプラズマ CVD方法を適用した半導体装置の製造 方法の工程を示す工程断面図であり、プラズマ CVD処理をして ヽる状態を示す図。 圆 7C]本発明の一実施形態に係るプラズマ CVD方法を適用した半導体装置の製造 方法の工程を示す工程断面図であり、プラズマ CVDによるストレスを有する窒化珪 素膜を成膜後の状態を示す図。
圆 8]ストレスを有する窒化珪素膜を被覆膜として使用した CMOSトランジスタの断面 構造を模式的に示す図。
圆 9]ストレスを有する窒化珪素膜を被覆膜として使用した不揮発性メモリの断面構 造を模式的に示す図。
[図 10]窒化珪素膜のストレスとプラズマ CVDにおける圧力条件との関係を示すグラフ
[図 11]窒化珪素膜のストレスとプラズマ CVDにおける RFパワー条件との関係を示す グラフ。
[図 12]N /Si H系の処理ガスを用いた場合における窒化珪素膜のストレスとプラズ
2 2 6
マ CVDにおける処理圧力との関係を示すグラフ。
[図 13]N /Si H系の処理ガスを用いた場合における窒化珪素膜のストレスとプラズ
2 2 6
マ CVDにおける処理圧力別の RFパワー条件との関係を示すグラフ。
[図 14]NH /Si H系の処理ガスを用いた場合における窒化珪素膜のストレスとブラ
3 2 6
ズマ CVDにおける処理圧力別の RFパワー条件との関係を示すグラフ。
[図 15]窒化珪素膜のストレスとプラズマ CVDにおける数 RFパワー条件との関係を周 波数力 00kHzの場合と 13. 56MHzの場合とを比較して示すグラフ。
圆 16]窒化珪素膜のストレスとァニール時間との関係を示すグラフ。 発明を実施するための最良の形態
[0018] 以下、適宜添付図面を参照して本発明の実施の形態について具体的に説明する 。図 1は、本発明方法における窒化珪素膜の形成に利用可能なプラズマ処理装置の 一例を模式的に示す断面図である。このプラズマ処理装置 100は、複数のスロットを 有する平面アンテナ、特に RLSA (Radial Line Slot Antenna;ラジアルラインスロットァ ンテナ)にて処理室内にマイクロ波を導入してプラズマを発生させることにより、高密 度かつ低電子温度のマイクロ波励起プラズマを発生させ得る RLSAマイクロ波プラズ マ処理装置として構成されており、 1 X 101G〜5 X 1012Zcm3のプラズマ密度で、力 つ 0. 7〜2eVの低電子温度のプラズマによる処理が可能である。従って、各種半導 体装置の製造過程においてプラズマ CVDによる窒化珪素膜の成膜処理などの目的 で好適に利用可能なものである。
[0019] 上記プラズマ処理装置 100は、気密に構成され、接地された略円筒状のチャンバ 一 1を有している。なお、チャンバ一 1は角筒形状でもよい。チャンバ一 1の底壁 laの 略中央部には円形の開口部 10が形成されており、底壁 laにはこの開口部 10と連通 し、下方に向けて突出する排気室 11が設けられている。この排気室 11は、排気管 2 3を介して排気装置 24に接続されて 、る。
[0020] チャンバ一 1内には被処理基板であるシリコンウェハ(以下、単に「ウェハ」と記す) Wを水平に支持するため、熱伝導性の高い A1N等のセラミックス力 なる載置台 2が 設けられている。この載置台 2は、排気室 11の底部中央力も上方に延びる円筒状の A1N等のセラミックス力 なる支持部材 3により支持されている。載置台 2には、その 外縁部をカバーし、ウェハ Wをガイドするためのカバーリング 4が設けられている。こ のカバーリング 4は、例えば石英、 A1N、 Al O
2 3、 SiN等の材質で構成された部材で ある。
[0021] 載置台 2には抵抗加熱型のヒータ 5が埋め込まれており、このヒータ 5はヒータ電源 5 aから給電されることにより載置台 2を加熱して、その熱で被処理基板であるウェハ W を均一に加熱する。また、載置台 2には、熱電対 6が配備されており、ウェハ Wの加 熱温度を、例えば室温から 900°Cまでの範囲で温度制御可能となっている。さらに、 載置台 2には、ウェハ Wを支持して昇降させるためのウェハ支持ピン(図示せず)が 載置台 2の表面に対して突没可能に設けられて 、る。
[0022] また、載置台 2には、マッチング回路 60を介してバイアス用の高周波電源 61が接 続されている。この高周波電源 61から所定の周波数例えば 400kHz〜27MHz、具 体的には 400kHz、 13. 56MHzなどの周波数で 1〜500Wの高周波電力を載置台 2に埋設された電極 62に供給出来るように構成されている。この電極 62は、例えば モリブデン、タングステンなどの導電性材料により、例えば網目状に形成されている。 なお、本発明では、後述するように載置台 2に所定の出力で高周波電力を供給する ことにより、強い圧縮ストレスを持つ窒化珪素膜を形成できる。
[0023] 後述するアッパープレート 27およびチャンバ一 1の側壁には、環状をなすガス導入 部 15aおよび 15bが上下 2段に設けられており、各ガス導入部 15aおよび 15bには成 膜原料ガスやプラズマ励起用ガスを供給するガス供給系 16が接続されて ヽる。なお 、ガス導入部 15aおよび 15bはノズル状またはシャワー状に配置してもよい。
[0024] ガス供給系 16は、例えば窒素含有ガス供給源 17、 Si含有ガス供給源 18および不 活性ガス供給源 19を有して 、る。窒素含有ガス供給源 17は、上部のガス導入部 15 aに接続され、 Si含有ガス供給源 18および不活性ガス供給源 19は、下部のガス導入 部 15bに接続されている。
[0025] 成膜原料ガスである窒素含有ガスとしては、例えば N、アンモニア、 MMH (モノメ
2
チルヒドラジン)などを用いることができる。
また、他の成膜原料ガスである Si含有ガスとしては、例えばシラン(SiH )、ジシラン
4
(Si H )、トリシリルアミン [ (SiH ) N]などを用いることができる力 特にジシラン(Si
2 6 3 3 2
H )が好ましい。
6
[0026] さらに、不活性ガスとしては、例えば Nガスや希ガスなどを用いることができる。ブラ
2
ズマ励起用ガスである希ガスとしては、例えば Arガス、 Krガス、 Xeガス、 Heガスなど を用いることができる力 特に Arガスが好まし 、。
[0027] 窒素含有ガスは、ガスライン 20を介してガス導入部 15aに至り、ガス導入部 15aか らチャンバ一 1内に導入される。一方、 Si含有ガスおよび不活性ガスは、それぞれガ スライン 20を介してガス導入部 15bに至り、ガス導入部 15bからチャンバ一 1内に導 入される。各ガス供給源に接続する各々のガスライン 20には、マスフローコントローラ 21およびその前後に開閉バルブ 22が設けられており、供給されるガスの切替えや流 量等の制御が出来るように構成されている。なお、 Arなどのプラズマ励起用の希ガス は任意のガスであり、必ずしも成膜原料ガスと同時に供給しなくてもよい。
[0028] 上記排気室 11の側面には排気管 23が接続されており、この排気管 23には高速真 空ポンプを含む前述の排気装置 24が接続されて 、る。そしてこの排気装置 24を作 動させることによりチャンバ一 1内のガス力 載置台 2の外周下方に沿って排気室 11 の空間 11a内へ均一に排出され、排気管 23を介して排気される。これによりチャンバ 一 1内は所定の真空度、例えば 0. 133Paまで高速に減圧することが可能となってい る。
[0029] チャンバ一 1の側壁には、プラズマ処理装置 100に隣接する搬送室(図示せず)と の間でウェハ Wの搬入出を行うための搬入出口 25と、この搬入出口 25を開閉するゲ ートバルブ 26とが設けられて!/、る。
[0030] チャンバ一 1の上部は開口部となっており、この開口部には環状のアッパープレー ト 27が接合される。アッパープレート 27の内周下部には、内側のチャンバ一内空間 へ向けて突出する環状の支持部 27aが形成されている。この支持部 27a上に、誘電 体、例えば石英や Al O
2 3、 A1N等のセラミックスカゝらなり、マイクロ波を透過するマイク 口波透過板 28がシール部材 29を介して気密に設けられている。したがって、チャン バー 1内は気密に保持される。
[0031] 透過板 28の上方には、載置台 2と対向するように、円板状の平面アンテナ部材 31 が設けられている。なお、平面アンテナ部材の形状は、円板状に限らず、例えば四 角板状でもよい。この平面アンテナ部材 31はチャンバ一 1の側壁上端に係止されて いる。平面アンテナ部材 31は、例えば表面が金または銀メツキされた銅板またはァ ルミ-ゥム板力 なり、マイクロ波を放射する多数のスロット状のマイクロ波放射孔 32 が所定のパターンで貫通して形成された構成となっている。
[0032] マイクロ波放射孔 32は、例えば図 2に示すように長い形状をなすものが対をなし、 典型的には対をなすマイクロ波放射孔 32同士が「T」字状に配置され、これらの対が 複数、同心円状に配置されている。マイクロ波放射孔 32の長さや配列間隔は、導波 管 37内のマイクロ波の波長( λ g)に応じて決定され、例えばマイクロ波放射孔 32の 間隔は、 gZ4、 gZ2またはえ gとなるように配置される。なお、図 2において、同 心円状に形成された隣接するマイクロ波放射孔 32同士の間隔を Arで示している。ま た、マイクロ波放射孔 32は、円形状、円弧状等の他の形状であってもよい。さらに、 マイクロ波放射孔 32の配置形態は特に限定されず、同心円状のほか、例えば、螺旋 状、放射状に配置することもできる。
[0033] この平面アンテナ部材 31の上面には、真空よりも大きい誘電率を有する遅波材 33 が設けられている。この遅波材 33は、真空中ではマイクロ波の波長が長くなることか ら、マイクロ波の波長を短くしてプラズマを調整する機能を有している。なお、平面ァ ンテナ部材 31と透過板 28との間、また、遅波材 33と平面アンテナ部材 31との間は、 それぞれ密着させても離間させてもょ 、が、密着させることが好ま 、。
[0034] チャンバ一 1の上面には、これら平面アンテナ部材 31および遅波材 33を覆うように 、例えばアルミニウムやステンレス鋼等の金属材料力 なるシールド蓋体 34が設けら れている。チャンバ一 1の上面とシールド蓋体 34とはシール部材 35によりシールされ ている。シールド蓋体 34には、冷却水流路 34aが形成されており、そこに冷却水を通 流させることにより、シールド蓋体 34、遅波材 33、平面アンテナ部材 31、透過板 28 を冷却するようになっている。なお、シールド蓋体 34は接地されている。
[0035] シールド蓋体 34の上壁の中央には、開口部 36が形成されており、この開口部には 導波管 37が接続されている。この導波管 37の端部には、マッチング回路 38を介して マイクロ波を発生するマイクロ波発生装置 39が接続されている。これにより、マイクロ 波発生装置 39で発生した、例えば周波数 2. 45GHzのマイクロ波が導波管 37を介 して上記平面アンテナ部材 31へ伝搬されるようになっている。なお、マイクロ波の周 波数としては、 8. 35GHz, 1. 98GHz等を用いることもできる。
[0036] 導波管 37は、上記シールド蓋体 34の開口部 36から上方へ延出する断面円形状 の同軸導波管 37aと、この同軸導波管 37aの上端部にモード変換器 40を介して接続 された水平方向に延びる矩形導波管 37bとを有している。矩形導波管 37bと同軸導 波管 37aとの間のモード変翻 40は、矩形導波管 37b内を TEモードで伝播するマ イク口波を TEMモードに変換する機能を有している。同軸導波管 37aの中心には内 導体 41が延在しており、内導体 41は、その下端部において平面アンテナ部材 31の 中心に接続固定されている。これにより、マイクロ波は、同軸導波管 37aの内導体 41 を介して平面アンテナ部材 31へ放射状に効率よく均一に伝播される。
[0037] プラズマ処理装置 100の各構成部は、 CPUを備えたプロセスコントローラ 50に接 続されて制御される構成となっている。プロセスコントローラ 50には、オペレータがプ ラズマ処理装置 100を管理するためにコマンドの入力操作等を行うキーボードや、プ ラズマ処理装置 100の稼働状況を可視化して表示するディスプレイ等力もなるユー ザ一インターフェース 51が接続されて!、る。
[0038] また、プロセスコントローラ 50には、プラズマ処理装置 100で実行される各種処理を プロセスコントローラ 50の制御にて実現するための制御プログラム(ソフトウェア)や 処理条件データ等が記録されたレシピが格納された記憶部 52が接続されている。
[0039] そして、必要に応じて、ユーザーインターフェース 51からの指示等にて任意のレシ ピを記憶部 52から呼び出してプロセスコントローラ 50に実行させることで、プロセスコ ントローラ 50の制御下で、プラズマ処理装置 100での所望の処理が行われる。また、 前記制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記 憶媒体、例えば CD— ROM、ハードディスク、フレキシブルディスク、フラッシュメモリ などに格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回 線を介して随時伝送させてオンラインで利用したりすることも可能である。
[0040] このように構成されたプラズマ処理装置 100は、 800°C以下の低温で下地膜等へ のダメージフリーなプラズマ処理を進めることができるとともに、プラズマ均一性に優 れており、プロセスの均一性を実現できる。
[0041] RLSA方式のプラズマ処理装置 100においては、以下のような手順でプラズマ CV D法によりウェハ W表面に窒化珪素膜を堆積させる処理を行うことができる。
[0042] まず、ゲートバルブ 26を開にして搬入出口 25からウェハ Wをチャンバ一 1内に搬 入し、載置台 2上に載置する。そして、ガス供給系 16の窒素含有ガス供給源 17およ び Si含有ガス供給源 18から、窒素含有ガスおよびシリコン含有ガスを所定の流量で それぞれガス導入部 15a, 15bを介してチャンバ一 1内に導入する。
[0043] 次に、マイクロ波発生装置 39からのマイクロ波を、マッチング回路 38を経て導波管 37に導き、矩形導波管 37b、モード変換器 40、および同軸導波管 37aを順次通過さ せて内導体 41を介して平面アンテナ部材 31に供給し、平面アンテナ部材 31のスロ ット(マイクロ波放射孔 32)力も透過板 28を介してチャンバ一 1内におけるウェハ Wの 上方空間に放射させる。マイクロ波は、矩形導波管 37b内では TEモードで伝搬し、 この TEモードのマイクロ波はモード変^ ^40で TEMモードに変換されて、同軸導 波管 37a内を平面アンテナ部材 31に向けて伝搬されていく。この際のマイクロ波出 力は、例えば 500〜3000kW程度とすることができる。
[0044] 平面アンテナ部材 31から透過板 28を経てチャンバ一 1に放射されたマイクロ波に よりチャンバ一 1内で電磁界が形成され、窒素含有ガス、シリコン含有ガスがそれぞ れプラズマ化する。このマイクロ波励起プラズマは、マイクロ波が平面アンテナ部材 3 1の多数のスロット(マイクロ波放射孔 32)から放射されることにより、略 1 X 101G〜5 X 1012Zcm3の高密度で、かつウェハ W近傍では、略 1. 5eV以下の低電子温度プラ ズマとなる。このようにして形成されるマイクロ波励起プラズマは、下地膜へのイオン 等によるプラズマダメージが少なぐ高密度であるのでプラズマ中で原料ガスが高い 解離状態となり、 SiH、 NH、 N、 Hなどの活性種が生成され、活性種間の反応によつ て、窒化珪素 SixNy (ここで、 x、 yは必ずしも化学量論的に決定されず、条件により 異なる値をとる)の薄膜が堆積される。また、窒化珪素薄膜の堆積を行なう間、載置 台 2に高周波電源 61から所定の周波数例えば 13. 56MHzの高周波電力を供給す る。これにより、ウェハ Wに向けて NH、 N+などの窒素を含む活性種が引き込まれや すくなる。その結果、窒化珪素膜中の Si, N, Hの組成比およびこれらの密度が変化 することにより極めて高い圧縮 (compressive)ストレスを有する窒化珪素膜を形成でき るものと考えられる。
[0045] そして、プラズマ処理装置 100は、サセプタ 2に高周波電源 61から高周波電力を供 給することによってウエノ、 Wにバイアスを印加しても、プラズマの低電子温度を維持 できると ヽぅ特長を有して 、る。
[0046] このことをデータに基づいて説明する。
プラズマの電子温度はプラズマにラングミュアプローブを挿入し、印加電圧を掃引 することにより得られる図 3に示す電圧 電流特性から求めることができる。具体的に は、図 3の指数関数領域の任意の位置において電流値 IIをとり、その電流が e倍 (約 2. 7倍)となる電圧の変化 Δνが電子温度 (Te)となる。したがって、指数関数領域の 傾きが同じであれば電子温度は同じである。
[0047] そこで、図 1のプラズマ処理装置 100において、サセプタに印加する高周波バイァ スを変化させてプラズマを生成した際の電圧 電流特性をラングミュアプローブによ り測定した。ここでは、 200mmウェハを用い、 Arガスを 250mLZmin (sccm)の流 量で供給し、圧力: 7. 3Pa、マイクロ波パワー: 1000Wとし、バイアスパワーを 0、 10 、 30、 50Wと変化させた。なお、サセプタに配置された電極の面積は 706. 5cm2で ある。その結果を図 4に示す。この図に示すように、指数関数領域の傾きはバイアス パワーにかかわらずほぼ一定であり、したがって電子温度も図 5に示すようにバイアス パワー(図 5はバイアスパワー密度で示している)に依存せずにほぼ一定の値となつ た。すなわち、ウェハ Wに 0. 015〜lWZcm2のパワー密度で高周波バイアスを印 カロしてもプラズマの低電子温度特性を維持することができる。
[0048] したがって、本実施形態のようにマイクロ波プラズマを生成する場合には、ウェハ W への高周波バイアスを印加しても、プラズマの電子温度が低いので、イオン等による ダメージが実質的に存在しな!、。
[0049] なお、平行平板型プラズマでは、プラズマシース電位が大き 、ので、ノィァスパヮ 一が増加するとともに電子温度が高くなる(ベースの電子温度は、数十 eVと高い)。
[0050] このように本発明においては、プラズマ CVDの際に載置台 2に高周波電力を供給 することにより、イオン等によるダメージを生じさせずに、強い圧縮 (compressive)スト レスを有する窒化珪素膜を成膜することができる。特に、通常の引張り (tensile)ストレ スを有する窒化珪素膜を形成する成膜条件でも、載置台 2に高周波電力を供給する ことにより、成膜される窒化珪素膜のストレスを圧縮ストレス側にシフトさせることが可 能になる。このストレスのシフト幅すなわち、高周波電力の供給により変化するストレス の絶対値は、高周波電力の印加以外の成膜条件を同じに設定した場合で、 2000M Pa以上例えば 3000〜4500MPaに達する。
[0051] 前記のように、本発明のプラズマ CVD方法では、載置台 2に高周波電力を供給す ることにより、成膜原料ガスの種類に関わらず圧縮ストレスを有する窒化珪素膜を形 成できる。例えば、窒素含有ガスとして NHガスを使用すると、通常は引張りストレス を有する窒化珪素膜が成膜される。しかし、 RFバイアス条件で (つまり載置台 2に高 周波電力を供給して)成膜を行なうことにより強い圧縮ストレスを持つ窒化珪素膜を 形成できる。従って、ストレスの強さと方向(引張りまたは圧縮)を制御する要因の一 つとして、高周波電力を印加することが有効である。この場合、載置台 2に供給する 高周波電力のパワー密度(単位面積当たりのパワー)は、処理ガスの種類に拘わら ず、 0. 0032〜l〜500WZcm2 (例えば、電極面積が 314cm2の場合で 1〜500W )とすることが好ましい。
[0052] また、窒化珪素膜の圧縮ストレスを最大化するための高周波出力の範囲は、処理 圧力によって異なる。例えば窒素含有ガスとして NHガス、シリコン含有ガスとして Si
3
Hガスを使用する場合、 NHガスの流量を 100〜3000mLZmin (sccm)、好まし
2 6 3
くは 400〜1000mL/min (sccm) Si Hガスの流量を l〜30mL/min (sccm)
2 6
好ましくは 4〜15mLZmin (sccm)に設定する。また、例えば窒素含有ガスとして N
2 ガス、シリコン含有ガスとして例えば Si Hガスを使用する場合、 Nガス流量を 500〜
2 6 2
3000mL/min(sccm)、好ましくは 1000〜2000mL/min (sccm) Si Hガス流
2 6 量を l〜30mLZmin (sccm)、好ましくは 4〜15mLZmin (sccm)に設定する。な お、これらガス系のうち、窒素含有ガスとして Nガス、シリコン含有ガスとして Si Hガ
2 2 6 スを使用する場合には、水素を低く抑えることができるので、各種半導体装置の製造 過程で熱処理が繰り返された場合に、 NHガスおよび Si Hガスを用いる場合よりも
3 2 6
、ストレスの変動を小さくすることができる。
[0053] そして、上記 NHまたは Nを用いたガス系において lOOOMPa以上の圧縮ストレス
3 2
を有する窒化珪素膜を成膜するためには、処理圧力を例えば 0. lPa以上 53Pa以 下に設定することが好ましい。
[0054] また、 2000MPa以上の圧縮ストレスを有する窒化珪素膜を成膜するためには、処 理圧力を例えば 0. lPa以上 40Pa以下に設定することが好ましい。
[0055] さらに、 3000MPa以上の圧縮ストレスを有する窒化珪素膜を成膜するためには、 処理圧力を例えば 5Pa以上 25Pa以下に設定することが好ましぐこの場合の高周波 パワーは、パワー密度で 0. 016-0. 127WZcm2とすることが好ましい。例えば、電 極面積が 314cm2の場合は、高周波パワーは 5〜40Wとなる。 [0056] またさらに、 3500MPa以上の圧縮ストレスを有する窒化珪素膜を成膜するために は、処理圧力を例えば 7Pa以上 16Pa以下に設定することが好ましぐこの場合の高 周波パワーは、パワー密度で 0. 032〜0. 096WZcm2とすることが好ましい。例え ば、電極面積が 314cm2の場合は、高周波パワーは 10〜30Wとなる。
[0057] また、処理圧力が同じ場合には、プラズマ CVDの処理温度が高いほど窒化珪素膜 の圧縮ストレスが強くなる傾向があることから、載置台 2を 300°C以上、好ましくは 400 〜800°Cに加熱することが好ましい。
[0058] さらに、プラズマ処理装置 100におけるギャップ (透過板 28の下面力も載置台 2の 上面までの間隔) Gが広い程、圧縮ストレスが強くなる傾向があるため、ギャップ Gを 例えば 100〜350mm程度に設定することが好ましい。
[0059] 以上のように、プラズマ処理装置 100を用い、 RFバイアスを供給しつつプラズマ C VD条件を選択して成膜を行なうことにより、窒化珪素膜に強い圧縮ストレスを付与す ることができる。また、例えば処理圧力を変えることにより、ストレスの大きさを制御する ことができる。
[0060] 次に、プラズマ処理装置 100を使用したプラズマ CVDにより成膜される窒化珪素 膜の適用例について図 6および図 7A〜7Cを参照しながら説明する。図 6は、 MOS ( Meta卜 Oxide-silicon)構造のトランジスタ 200の概略構成を示す模式的な断面図であ る。このトランジスタ 200は、 P型もしくは N型の Si層 101上に、ゲート絶縁膜 102を介 して例えばポリシリコンからなるゲート電極 103が形成されている。ゲート電極 103の 下方両側には、ソース 104およびドレイン 105が形成され、これらの間には、チャンネ ル領域 106 (図 6中の網掛け部分)が形成されている。そして、ゲート電極 103を覆う ようにして絶縁膜からなる被覆膜 (ライナー) 107が形成されている。本適用例では、 この被覆膜 107を、プラズマ処理装置 100を使用したプラズマ CVDにより成膜するこ とができる。その際、プラズマ CVDの条件を制御することにより、前記のとおり、被覆 膜 107に引張りストレスまたは圧縮ストレスを付与することができる。特に RFバイアス 条件と処理圧力を選択することにより、強い圧縮ストレスを持つ窒化珪素膜を成膜す ることがでさる。
[0061] 例えば被覆膜 107として引張りストレスを持つ窒化珪素膜を使用した場合、被覆膜 107には、図 6中に黒矢印 108で示すような方向のストレスが加わる。そして、被覆膜 107に接するソース 104およびドレイン 105を構成するシリコンには、前記黒矢印 10 8と同方向の引張りストレスが加わる。その結果、チャンネル領域 106にも黒矢印 108 と同方向の引張りストレスが加わり、チャンネル領域 106に引張り歪みが生じる。
[0062] 逆に、被覆膜 107が圧縮ストレスを有する場合、被覆膜 107には、図6中に白矢印 109で示すような方向のストレスが加わる。そして、被覆膜 107に接するソース 104お よびドレイン 105を構成するシリコンには、前記白矢印 109と同方向の圧縮ストレスが 加わる。その結果、チャンネル領域 106にも、白矢印 109と同方向の圧縮ストレスが 加わり、チャンネル領域 106に圧縮歪みが生じる。
[0063] トランジスタ 200が電子をキャリアとする NMOSトランジスタである場合には、チャン ネル領域 106に引っ張り歪を与えると移動度が増すが、圧縮歪を与えると移動度が 下がる。一方、トランジスタ 200が正孔をキャリアとする PMOSトランジスタである場合 には、チャンネル領域 106に圧縮歪を与えた時に移動度が増し、引張り歪を与えると 移動度がかえって下がる。
[0064] 従って、トランジスタ 200が NMOSトランジスタである場合には、被覆膜 107として 引張りストレスを持つ窒化珪素膜を用い、チャンネル領域 106に引張り歪みを生じさ せることにより、飽和駆動電流値や線形駆動電流値を増加させることができる。また、 トランジスタ 200が PMOSトランジスタである場合には、被覆膜 107として圧縮ストレス を持つ窒化珪素膜を用い、チャンネル領域 106に圧縮歪みを生じさせることにより、 飽和駆動電流値や線形駆動電流値を増加させることができる。このように、被覆膜 10 7に引張りストレスまたは圧縮ストレスを持つ窒化珪素膜を用いることにより、トランジス タ 200の駆動性能を改善することができる。
[0065] なお、図 6では、ストレスを持つ窒化珪素膜を被覆膜 107に適用したが、これ以外 にも例えばゲート電極 103の両側部に形成されるサイドウォールとして、ストレスを有 する窒化珪素膜を用いることができる。
[0066] トランジスタ 200は、例えばプラズマ処理装置 100を用いて引張りストレスまたは圧 縮ストレスを付与できる条件でゲート電極 103を覆う被覆膜 107を形成することにより 製造できる。図 7A〜7Bは、トランジスタ 200の製造工程の一部に本発明のプラズマ CVD方法を適用した例を説明する図面である。
[0067] 図 7Aに示すトランジスタ構造は、以下の手順で形成できる。まず、 P型もしくは N型 の Si層 101に、ゥエル(図示せず)を形成し、例えば LOCOS法や STI (Shallow Tren ch Isolation)により素子分離層(図示せず)を形成する。次いで、プラズマ処理や熱 処理などの手法で Si層 101の表面に窒化珪素膜や酸ィ匕珪素膜などのゲート絶縁膜 102を形成する。このゲート絶縁膜 102上に、例えば CVDによりポリシリコン層を成 膜した後、フォトリソグラフィー技術により形成されたマスクパターンに基づきエツチン グしてゲート電極 103を形成する。なお、ゲート電極構造は、ポリシリコン層の単層に 限らず、ゲート電極の比抵抗を下げ、高速化する目的で、例えばタングステン、モリ ブデン、タンタル、チタン、コノ レト、ニッケル、それらのシリサイド、ナイトライド、合金 等を含む積層構造にすることもできる。このようにゲート電極 103を形成した後は、ィ オン注入および活性ィ匕処理を行なってソース 104、ドレイン 105を形成する。
[0068] 次に、図 7Bに示すように、プラズマ処理装置 100を用い Si層 101の表面とゲート電 極 103を覆うように窒化珪素膜を成膜する。この際、載置台 2に高周波電力を供給し ながら成膜反応を起こさせることにより、強い圧縮ストレスの窒化珪素膜を形成できる 。そして、フォトリソグラフィ技術により形成されたマスクパターンに基づき不要な領域 の窒化珪素膜を除去して被覆膜 107を形成することにより、図 7Cに示すように MOS 構造のトランジスタ 200を製造することができる。なお、被覆膜 107を形成した後は、 必要に応じてァニールをすることもできる。
[0069] また、図 8に示す CMOSトランジスタ 300を製造する場合には、成膜、フォトリソダラ フィによるパター-ング、エッチング等を順次行い、 NMOS領域 201と PMOS領域 2 02を形成し、さらに本発明の引張りストレスまたは圧縮ストレスを付与できる成膜条件 で窒化珪素膜の成膜とエッチングを行うことにより、 NMOS領域 201と PMOS領域 2 02のそれぞれに被覆膜 203および 204を形成することができる。
[0070] 具体的には、シリコン基板 210に NMOS領域 201となる p型ゥエル 211および PM OS領域 202となる n型ゥエル 212を形成する。 p型ゥエル 211の主面にゲート絶縁膜 213を介して poly— S もなるゲート電極 214を形成し、ゲート電極 214の両側にソ ース 215およびドレイン 216を形成する。そして、ゲート電極 214の側壁にはサイドウ オール 217を形成する。一方、 n型ゥエル 212の主面にゲート絶縁膜 213を介して po ly— Siからなるゲート電極 224を形成し、ゲート電極 224の両側にソース 225および ドレイン 226を形成する。そして、ゲート電極 224の側壁にはサイドウォール 227を形 成する。なお、符号 230は素子分離領域である。この際の手順は、上記図 7A〜7C に準じたものとなる。
[0071] このようにして NMOS領域 201および PMOS領域 202が形成された状態で、プラ ズマ処理装置 100を用い、全面に引張りストレスの窒化珪素膜を堆積させ、エツチン グにより PMOS領域 202から引張りストレスの窒化珪素膜を取り除き、 NMOS領域 2 01にのみ引張りストレスの窒化珪素膜からなる被覆膜 203を残す。
[0072] 次に、プラズマ処理装置 100を用い、ウェハ W上に圧縮ストレスの窒化珪素膜を堆 積させる。そしてエッチングにより NMOS領域 201から圧縮ストレスの窒化珪素膜を 取り除き、 PMOS領域にのみ圧縮ストレスの窒化珪素膜からなる被覆膜 204を残す 。このようにして、 NMOS領域 201および PMOS領域 202のそれぞれにおいて、窒 化珪素膜のストレスを利用し、 NMOS領域 201のチャンネル領域 218には引張り歪 を生じさせ、 PMOS領域 202のチャンネル領域 228には圧縮歪を生じさせて性能を 向上させた CMOSトランジスタを製造することができる。
[0073] さらに、プラズマ処理装置 100を使用したプラズマ CVDにより成膜される窒化珪素 膜は、図 9に示すような不揮発性メモリ 400にも適用可能である。この不揮発性メモリ 400は、 Si基板 301の主面上にトンネル酸化膜 302が形成され、その上にポリシリコ ンからなるフローティングゲート(FG) 304力形成され、このフローティングゲート 304 の上に、例えば酸ィ匕膜、窒化膜、酸ィ匕膜からなる ONO構造の誘電体膜 305が形成 され、さらにこの誘電体膜 305の上にポリシリコンからなるコントロールゲート(CG) 30 6が形成され、コントロールゲート 306の上には絶縁層 307が形成され、フローテイン グゲート 304とコントロールゲート 306の側壁には酸化処理により側壁酸化膜 308が 形成され、 Si基板 301の主面のフローティングゲート 304の両側にはソース 309およ びドレイン 310が形成され、フローティングゲート 304、コントロールゲート 306、ソー ス 309、ドレイン 310を覆うようにストレスを持つ窒化珪素膜からなる被覆膜 311が形 成されている。 [0074] このようにストレスを持つ窒化珪素膜を被腹膜 311として形成することにより、フロー ティングゲート 304に適切な歪を与えることができる。すなわち、このような不揮発性メ モリ 400においては、フローティングゲート 304の電荷がトンネル酸化膜を通って Si 基板へトンネリングして失われる(トンネル電流)ことにより、メモリが消失してしまうが、 フローティングゲート 304に適切な歪を与えることにより、平均電子質量とトンネル酸 化膜 302を構成する SiOの障壁幅が増加するため、トンネル電流を減少させてフロ
2
一ティングゲート 304が電荷をより安定的に保持することができるようになる。
[0075] 次に、本発明の基礎となった試験結果について説明する。
まず、図 10は、窒化珪素膜のストレスの大きさとプラズマ処理装置 1でのプラズマ C VDにおける処理圧力との関係を示すグラフである。ここでは、ガス種と圧力の影響を 調べるため載置台 2に高周波電力を供給せずに成膜を行なっている。なお、図 10の 縦軸は窒化珪素膜のストレスの大きさを示しており、正 (プラス)側は引張りストレス、 負(マイナス)側は圧縮ストレスである(図 11〜図 15においても同様である)。
[0076] 本試験にお ヽて、窒化珪素膜は、以下のプラズマ CVD条件で成膜した。
<プラズマ CVD成膜条件 > (NH /Si H系)
3 2 6
NHガス流量; 500mLZmin (sccm)
3
Si H 7ス流直; 5mL, min (sccm)
2 6
処理圧力; 2. 7Pa (20mTorr)ゝ 6. 7Pa (50mTorr)、 40. 0Pa (300mTorr)およ び 133. 3Pa (lTorr)
載置台 2の温度; 400°C
マイクロ波パワー; 2000W
くプラズマ CVD成膜条件〉(N /Si H系)
2 2 6
Nガス流量; 1 lOOmLZmin (sccm)
2
Si H 7ス流直; lmL, min (sccm)
2 6
Arガス流量; lOOmL/min (sccm)
処理圧力; 4. OPa (30mTorr)ゝ 6. 7Pa (50mTorr)ゝ 13. 3Pa (100mTorr)およ び 66. 6Pa (500mTorr)
載置台 2の温度; 500°C マイクロ波パワー; 3000W
[0077] 図 10より、窒素含有ガスとして NHを使用して成膜した窒化珪素膜は、引張りストレ
3
スを有していることがわかる。また、 NHを使用して成膜した窒化珪素膜の引張りスト
3
レスは、処理圧力が高くなるほど大きくなる傾向があることがわかる。一方、窒素含有 ガスとして、 Nを使用して成膜した窒化珪素膜は、圧縮ストレスを有していることがわ
2
かる。また、 Nを使用して成膜した窒化珪素膜の圧縮ストレスは、処理圧力が小さく
2
なるほど大きくなる傾向があることがわかる。
[0078] 次に、載置台 2に高周波電力を供給しながら、以下のプラズマ CVD条件で成膜し た。その結果を図 11に示した。
くプラズマ CVD成膜条件 1 > (NH /Si H系)
3 2 6
NHガス流量; 400mLZmin (sccm)
3
Si H 7ス流直; 5mL, min (sccm)
2 6
Arガス流量; 200mLZmin (sccm)
処理圧力; 133. 3Pa (1000mTorr)
載置台 2の温度; 500°C
マイクロ波パワー; 1000W
RF周波数; 400kHz
RFパワー; OW (供給せず)、 10W (パワー密度: 0. 032WZcm2)、 20W (パワー 密度: 0. 064WZcm2)、 30W (パワー密度: 0. 095WZcm2)、 50W (パワー密度: 0. 159W/cm2)、 70W (パワー密度: 0. 223W/cm2)、 100W (パワー密度: 0. 3 18WZcm2)、 200W (パワー密度: 0. 637W/cm2)
[0079] くプラズマ CVD成膜条件 2 > (N /Si H系)
2 2 6
Nガス流量(ガス導入部 15a) ; 1100mLZmin (sccm)
2
Si H 7ス流直; 5mL, min (sccm)
2 6
Nガス流量(ガス導入部 15b) ; 100mLZmin (sccm)
2
処理圧力; 2. 7Pa (20mTorr)
載置台 2の温度; 500°C
マイクロ波パワー; 2000W RF周波数; 400kHz
RFパワー; OW (供給せず)、 10W (パワー密度: 0. 032WZcm2)、 20W (パワー 密度: 0. 064WZcm2)、 30W (パワー密度: 0. 095WZcm2)、 50W (パワー密度: 0. 159W/cm2)、 70W (パワー密度: 0. 223W/cm2)、 100W (パワー密度: 0. 3 18WZcm2)、 200W (パワー密度: 0. 637W/cm2)
[0080] 図 10と図 11の比較から、成膜原料ガスとして NH /Si H系ガスを用いた窒化珪
3 2 6
素膜は、通常の成膜条件では引張りストレスを持つはずであるが、所定の RFバイァ ス条件で成膜することにとより、大きな圧縮ストレスを持つようになったことが確認され た。一方、成膜原料ガスとして N /Si H系ガスを用い、通常の成膜条件でも圧縮ス
2 2 6
トレスを持つようになるはずの窒化珪素膜においても、所定の RFバイアス条件で成 膜することにより、圧縮ストレスが増強されていることがわかる。そして、図 11では、 N H /Si H系ガス、 N /Si H系ガスのいずれを原料とする場合でも、窒化珪素膜
3 2 6 2 2 6
のストレスと高周波出力との関係はほぼ同じように推移している。
[0081] すなわち、バイアス電極の電極面積が 314cm2で RFパワーが 10〜200Wの範囲 の場合に、 lOOOMPa以上の圧縮ストレスを持つ窒化珪素膜が形成されており、特 に、電極面積が 314cm2で RFパワーが 20〜40Wの範囲では、 2000MPa以上の強 い圧縮ストレスを持つ窒化珪素膜が形成されていることがわかる。このことから、 RFバ ィァス条件としては、 RFパワー密度が 0. 032〜0. 637WZcm2の範囲が好ましく、 0. 064-0. 127WZcm2 (がより好ましいことが確認された。これにより、成膜原料ガ スの種類に関わらず、圧縮ストレスの窒化珪素膜が成膜できる。
[0082] また、圧縮ストレスが最も大きくなつた RFノィァス条件は、パワー密度で約 0. 095 WZcm2 (電極面積: 314cm2、 RFパワー:約 30W)であった。従って、載置台 2に供 給する高周波電力は 0. 1〜: L00Wが好ましぐ 0. 1〜40Wがより好ましいと考えられ る。つまり、この電極面積に応じて大きな圧縮ストレスが得られるパワー密度になるよ うにパワー範囲を設定することが好ま 、。
[0083] 次に、以下の条件で窒化珪素膜を成膜し、 RFバイアス条件で圧力がストレスに与 える影響を調べた。ここでは、以下の N /Si H系と NH /Si H系について行った <プラズマ CVD条件 >
(1) N /Si H系
2 2 6
Nガス流量(ガス導入部 15a) ; 1100mLZmin (sccm)
2
Si Hガス流量; 3mL/min (sccm)
2 6
Nガス流量(ガス導入部 15b) ; 100mLZmin (sccm)
2
処理圧力; 2. 67Pa (20mTorr)、 13. 3Pa (100mTorr)および 66. 6Pa (500mT orr)
載置台 2の温度; 500°C
マイクロ波パワー; 3000W
RF周波数; 13. 56Hz
RFパワー; 0W (供給せず)、 10W (パワー密度: 0. 032WZcm2)、 20W (パワー 密度: 0. 064WZcm2)、 30W (パワー密度: 0. 095WZcm2)、 50W (パワー密度: 0. 159W/cm2)
[0084] (2) NH /Si H系
3 2 6
NHガス流量; 400mLZmin (sccm)
3
Si Hガス流量; 3または 5mLZmin (sccm)
2 6
Arガス流量; 200mLZmin (sccm)
処理圧力; 2. 67Pa (20mTorr)、 13. 3Pa (100mTorr)および 66. 6Pa (500mT orr)
載置台 2の温度; 400°C
マイクロ波パワー; 3000W
RF周波数; 400Hz
RFパワー; 0W (供給せず)、 10W (パワー密度: 0. 032WZcm2)、 20W (パワー 密度: 0. 064WZcm2)、 30W (パワー密度: 0. 095WZcm2)、 50W (パワー密度: 0. 159W/cm2)
[0085] 図 12および図 13に N /Si H系における結果を示し、図 14に NH /Si H系の
2 2 6 3 2 6 結果を示す。
[0086] 図 12より、 Nを用いたガス系において、 lOOOMPa以上の圧縮ストレスを有する窒 化珪素膜を成膜するためには、処理圧力を例えば 0. lPa以上 53Pa以下に設定す ればよいことがわ力る。また、 2000MPa以上の圧縮ストレスを有する窒化珪素膜を 成膜するためには、処理圧力を例えば 0. lPa以上 40Pa以下に設定すればよいこと がわかる。さらに、 3000MPa以上の圧縮ストレスを有する窒化珪素膜を成膜するた めには、処理圧力を例えば 5Pa以上 25Pa以下に設定すればよいことがわかる。なお 、この場合の高周波のパワーは 5〜40Wとすればよい。また、 3500MPa以上の圧 縮ストレスを有する窒化珪素膜を成膜するためには、処理圧力を例えば 7Pa以上 16 Pa以下に設定すればよぐこの場合の高周波のパワーは 10〜30Wとすればよい。 つまり、バイアス用の高周波のパワー密度は、 0. 016-0. 127WZcm2が好ましぐ 0. 032〜0. 095W/cm2力より好まし!/ヽ
[0087] また、図 13より、処理圧力が 13. 3Pa (100mTorr)の場合には、 RFパワー密度が 0. 032〜0. 095W/cm2 (RFパワー: 10〜30W)程度で 3500MPaという強い圧 縮ストレスの窒化珪素膜を形成することができた。また、処理圧力が 2. 67Pa (20mT orr)の場合には、 RFパワー密度が 0. 095〜0. 127WZcm2 (RFパワー: 30〜40 W)程度で 2000MPaを超える圧縮ストレスの窒化珪素膜を形成できた。一方、処理 圧力が 66. 6Pa (500mTorr)の場合には、高周波電力を供給しても窒化珪素膜に 圧縮ストレスを付与することはできな力つた。
[0088] NH /Si H系については図 14に示すように、処理圧力によって、最大の圧縮スト
3 2 6
レスが得られる高周波のパワー密度が異なり、処理圧力が高いほど最大の圧縮ストレ スを得るためのパワー密度が大きくなる傾向であることが確認された。
[0089] 次に、載置台 2に供給する高周波電力の周波数の影響について検討した。ここで は、処理圧力を 13. 3Pa (100mTorr)とし、載置台 2に供給する高周波電力の周波 数を 400kHzにした場合と 13. 56MHzにした場合につ!、て RFパヮ一密度を変化さ せて窒化珪素膜のストレスを測定した。その結果を図 15に示す。この図から 13. 56 MHzのほうが圧縮ストレスが大きくなることが確認された。
[0090] 次に、本発明の効果を確認した試験結果について説明する。
(1)耐熱性評価:
プラズマ処理装置 100を用い、引張りストレスおよび圧縮ストレスを持つ窒化珪素膜 を成膜した後、ァニールを実施し、熱処理が窒化珪素膜のストレスに与える影響につ いて調べた。成膜条件およびァニール条件は、以下のとおりである。
<プラズマ CVD条件(NH /Si H系) >
3 2 6
NHガス流量; 400mLZmin (sccm)
3
Si H 7ス流直; 5mL, min (sccm)
2 6
処理圧力; 133. 3Pa (1000mTorr)
載置台 2の温度; 500°C
マイクロ波パワー; lkW
<プラズマ CVD条件(N /Si H系) >
2 2 6
Nガス流量(ガス導入部 15a) ; 1100mLZmin (sccm)
2
Si H 7ス流直; 5mL, min (sccm)
2 6
Nガス流量(ガス導入部 15b) ; 100mLZmin (sccm)
2
処理圧力; 2. 7Pa (20mTorr)
載置台 2の温度; 500°C
マイクロ波パワー; lkW
<ァニール条件 >
処理温度; 800°C
処理圧力; 101308Pa
処理時間; 10分、 20分または 30分
[0091] 図 16は、窒化珪素膜のストレスとァニール時間との関係を示している。この図 16よ り、原料ガスとして Si Hと Nを用いて上記条件で成膜した圧縮ストレスを持つ窒化
2 6 2
珪素膜は、 Si Hと NHを用いて上記条件で成膜した圧縮ストレスを持つ窒化珪素
2 6 3
膜に比べて、ァニール前後のストレスの変動幅が格段に小さぐ耐熱性に優れている ことが確認できた。この結果から、プラズマ CVDに際し、原料ガスとして Si Hと Nを
2 6 2 用い、 RFバイアスを印加して膜中の水素を低く抑えることにより、各種半導体装置の 製造過程で繰り返される熱処理に対して高ストレスを維持しつつ優れた耐性を有す る窒化珪素膜が得られることが明らかとなった。
[0092] なお、本発明は上記実施形態に限定されることはなぐ本発明の思想の範囲内で 種々の変形が可能である。
例えば、上記実施形態では、引張りストレスまたは圧縮ストレスを有する窒化珪素膜 を、トランジスタの被覆膜 (ライナー)へ適用して駆動特性を向上させる例を挙げたが 、これに限らず、本発明はストレスを利用してデバイス特性を改善できる種々の半導 体装置の製造においても適用可能である。

Claims

請求の範囲
[1] 真空排気可能な処理室と、前記処理室内で被処理体を載置する載置台と、マイク 口波を発生するマイクロ波発生源と、複数のスロットを有し、前記マイクロ波発生源で 発生したマイクロ波を前記スロットを介して前記処理室内に導入する平面アンテナと 、前記処理室内に成膜原料ガスを供給するガス供給機構と、前記載置台に高周波 電力を供給する高周波電源とを備えたプラズマ処理装置を準備することと、
前記載置台に被処理基板を載置することと、
前記処理室内に窒素含有ガスとシリコン含有ガスを導入し、これらガスを前記マイク 口波によりプラズマ化し、このプラズマにより被処理基板の表面に窒化珪素膜を堆積 させることと、
前記窒化珪素膜を堆積させている際に、前記載置台に高周波電力を供給すること と
を含む、プラズマ CVD方法。
[2] 前記高周波電力のパワー密度は、 0. 0032-1. 59WZcm2である、請求項 1に記 載のプラズマ CVD方法。
[3] 前記高周波電力の周波数は、 400kHz〜27MHzである、請求項 1に記載のプラ ズマ CVD方法。
[4] lOOOMPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 1に記載の プラズマ CVD方法。
[5] 0. lPa以上 53Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 4に記 載のプラズマ CVD方法。
[6] 2000MPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 1に記載の プラズマ CVD方法。
[7] 0. lPa以上 40Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 6に記 載のプラズマ CVD方法。
[8] 3000MPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 1に記載の プラズマ CVD方法。
[9] 5Pa以上 25Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 8に記載 のプラズマ CVD方法。
[10] 前記高周波電力のパワー密度は、 0. 016-0. 127WZcm2である、請求項 8に記 載のプラズマ CVD方法。
[11] 3500MPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 1に記載の プラズマ CVD方法。
[12] 7Pa以上 16Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 11に記 載のプラズマ CVD方法。
[13] 前記高周波電力のパワー密度は、 0. 032-0. 095WZcm2である、請求項 11に 記載のプラズマ CVD方法。
[14] 前記窒素含有ガスとしてアンモニアガスを用いる、請求項 1に記載のプラズマ CVD 方法。
[15] 前記窒素含有ガスとして窒素ガスを用いる、請求項 1に記載のプラズマ CVD方法。
[16] 前記シリコン含有ガス力 ジシラン(Si H )である、請求項 1に記載のプラズマ CVD
2 6
方法。
[17] 前記窒化珪素膜を堆積させる際の処理温度が、 300°C〜800°Cである、請求項 1 に記載のプラズマ CVD方法。
[18] 真空排気可能な処理室と、前記処理室内で被処理体を載置する載置台と、マイク 口波を発生するマイクロ波発生源と、複数のスロットを有し、前記マイクロ波発生源で 発生したマイクロ波を前記スロットを介して前記処理室内に導入する平面アンテナと 、前記処理室内に成膜原料ガスを供給するガス供給機構と、前記載置台に高周波 電力を供給する高周波電源とを備えたプラズマ処理装置を準備することと、
前記載置台に被処理基板を載置することと、
前記処理室内に窒素含有ガスとシリコン含有ガスを導入し、これらガスを前記マイク 口波によりプラズマ化し、このプラズマにより被処理基板の表面に窒化珪素膜を堆積 させることと、
前記窒化珪素膜を堆積させている際に、前記載置台に高周波電力を供給すること と
を含む、窒化珪素膜の形成方法。
[19] 前記高周波電力のパワー密度は、 0. 0032-1. 59WZcm2である、請求項 18に 記載の窒化珪素膜の形成方法。
[20] 前記高周波電力の周波数は、 400kHz〜27MHzである、請求項 18に記載の窒 化珪素膜の形成方法。
[21] lOOOMPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 18に記載の 窒化珪素膜の形成方法。
[22] 0. lPa以上 53Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 21に 記載の窒化珪素膜の形成方法。
[23] 2000MPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 18に記載の 窒化珪素膜の形成方法。
[24] 0. lPa以上 40Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 23に 記載の窒化珪素膜の形成方法。
[25] 3000MPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 18に記載の 窒化珪素膜の形成方法。
[26] 5Pa以上 25Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 25に記 載の窒化珪素膜の形成方法。
[27] 前記高周波電力のパワー密度は、 0. 016-0. 127WZcm2である、請求項 25に 記載の窒化珪素膜の形成方法。
[28] 3500MPa以上の圧縮ストレスを持つ窒化珪素膜を形成する、請求項 18に記載の 窒化珪素膜の形成方法。
[29] 7Pa以上 16Pa以下の処理圧力で前記窒化珪素膜を堆積させる、請求項 28に記 載の窒化珪素膜の形成方法。
[30] 前記高周波電力のパワー密度は、 0. 032〜0. 095WZcm2である、請求項 28に 記載の窒化珪素膜の形成方法。
[31] 前記窒素含有ガスとしてアンモニアガスを用いる、請求項 18に記載の窒化珪素膜 の形成方法。
[32] 前記窒素含有ガスとして窒素ガスを用いる、請求項 18に記載の窒化珪素膜の形成 方法。
[33] 前記シリコン含有ガス力 ジシラン (Si H )である、請求項 18に記載の窒化珪素膜
2 6
の形成方法。
[34] 前記窒化珪素膜を堆積させる際の処理温度力 300°C〜800°Cである、請求項 18 に記載の窒化珪素膜の形成方法。
[35] 半導体基板の主面に絶縁膜を介してゲート電極が形成され、その両側の主面領域 にソースおよびドレインが形成された構造体を準備することと、
前記ゲート電極ならびにソースおよびドレインを被覆するように窒化珪素膜を形成 することと
を含む半導体装置の製造方法であって、
前記窒化珪素膜は、
真空排気可能な処理室と、前記処理室内で被処理体を載置する載置台と、マイク 口波を発生するマイクロ波発生源と、複数のスロットを有し、前記マイクロ波発生源で 発生したマイクロ波を前記スロットを介して前記処理室内に導入する平面アンテナと 、前記処理室内に成膜原料ガスを供給するガス供給機構とを備えたプラズマ処理装 置を準備することと、
前記載置台に被処理基板を載置することと、
前記処理室内に窒素含有ガスとシリコン含有ガスを導入し、これらガスを前記マイク 口波によりプラズマ化し、このプラズマにより被処理基板の表面に窒化珪素膜を堆積 させることと、
前記窒化珪素膜を堆積させている際に、前記載置台に高周波電力を供給すること と
を含む方法によって形成される、半導体装置の製造方法。
[36] コンピュータ上で動作し、真空排気可能な処理室と、前記処理室内で被処理体を 載置する載置台と、マイクロ波を発生するマイクロ波発生源と、複数のスロットを有し、 前記マイクロ波発生源で発生したマイクロ波を前記スロットを介して前記処理室内に 導入する平面アンテナと、前記処理室内に成膜原料ガスを供給するガス供給機構と 、前記載置台に高周波電力を供給する高周波電源とを備えたプラズマ処理装置を 制御するプログラムが記憶された記憶媒体であって、 前記プログラムは、実行時に、
前記載置台に被処理基板を載置することと、
前記処理室内に窒素含有ガスとシリコン含有ガスを導入し、これらガスを前記マイク 口波によりプラズマ化し、このプラズマにより被処理基板の表面に窒化珪素膜を堆積 させることと
前記窒化珪素膜を堆積させている際に、前記載置台に高周波電力を供給すること と
を含む、プラズマ CVD方法が行われるように、コンピュータに前記プラズマ処理装置 を制御させる記憶媒体。
[37] 真空排気可能な処理室と、
前記処理室内で被処理体を載置する載置台と、
マイクロ波を発生するマイクロ波発生源と、
複数のスロットを有し、前記マイクロ波発生源で発生したマイクロ波を前記スロットを 介して前記処理室内に導入する平面アンテナと、
前記処理室内に成膜原料ガスを供給するガス供給機構と、
前記載置台に高周波電力を供給する高周波電源と、
前記載置台に被処理基板を載置することと、前記処理室内に窒素含有ガスとシリコ ン含有ガスを導入し、これらガスを前記マイクロ波によりプラズマ化し、このプラズマに より被処理基板の表面に窒化珪素膜を堆積させることと、前記窒化珪素膜を堆積さ せている際に、前記載置台に高周波電力を供給することとを含む、プラズマ CVD方 法が行われるように制御する制御部と
を備えた、プラズマ処理装置。
[38] プラズマを用いて被処理基板を処理するための真空排気可能な処理室と、
前記処理室内で被処理基板を載置する載置台と、
前記処理室内にマイクロ波を導入する複数のスロットを有する平面アンテナと、 前記処理室内に成膜原料ガスを供給するガス供給機構と、
前記載置台に高周波電力を供給する高周波電源と、
を備えた、プラズマ CVD装置。
PCT/JP2007/060976 2006-05-31 2007-05-30 プラズマcvd方法、窒化珪素膜の形成方法、半導体装置の製造方法およびプラズマcvd装置 WO2007139142A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/302,614 US8114790B2 (en) 2006-05-31 2007-05-30 Plasma CVD method, silicon nitride film formation method, semiconductor device manufacturing method, and plasma CVD apparatus
KR1020087029276A KR101063083B1 (ko) 2006-05-31 2007-05-30 플라즈마 cvd 방법, 질화 규소막의 형성 방법, 반도체 장치의 제조 방법 및 플라즈마 cvd 장치
JP2008517961A JP5341510B2 (ja) 2006-05-31 2007-05-30 窒化珪素膜の形成方法、半導体装置の製造方法およびプラズマcvd装置
CN2007800191810A CN101454880B (zh) 2006-05-31 2007-05-30 等离子体cvd方法、氮化硅膜的形成方法、半导体装置的制造方法和等离子体cvd装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006152434 2006-05-31
JP2006-152434 2006-05-31

Publications (1)

Publication Number Publication Date
WO2007139142A1 true WO2007139142A1 (ja) 2007-12-06

Family

ID=38778660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060976 WO2007139142A1 (ja) 2006-05-31 2007-05-30 プラズマcvd方法、窒化珪素膜の形成方法、半導体装置の製造方法およびプラズマcvd装置

Country Status (6)

Country Link
US (1) US8114790B2 (ja)
JP (1) JP5341510B2 (ja)
KR (1) KR101063083B1 (ja)
CN (1) CN101454880B (ja)
TW (1) TW200807511A (ja)
WO (1) WO2007139142A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123325A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 窒化珪素膜の製造方法、窒化珪素膜積層体の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
WO2009123331A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Mos型半導体メモリ装置およびその製造方法
WO2009123335A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Mos型半導体メモリ装置の製造方法およびプラズマcvd装置
JP2009246210A (ja) * 2008-03-31 2009-10-22 Tokyo Electron Ltd 窒化珪素膜の製造方法、窒化珪素膜積層体の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
WO2010038886A1 (ja) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 窒化珪素膜の成膜方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
US8119545B2 (en) 2008-03-31 2012-02-21 Tokyo Electron Limited Forming a silicon nitride film by plasma CVD
JP2012510712A (ja) * 2008-08-29 2012-05-10 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 同一の能動領域内に形成されるトランジスタにおいて能動領域内に局所的に埋め込み歪誘起半導体材質を設けることによる駆動電流調節
JP2015012021A (ja) * 2013-06-26 2015-01-19 東京エレクトロン株式会社 成膜方法、記憶媒体及び成膜装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200511430A (en) * 2003-05-29 2005-03-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
WO2011042949A1 (ja) * 2009-10-05 2011-04-14 株式会社島津製作所 表面波プラズマcvd装置および成膜方法
KR101675106B1 (ko) * 2010-05-26 2016-11-11 주식회사 탑 엔지니어링 화학 기상 증착 장치 및 방법
US20120083127A1 (en) * 2010-09-30 2012-04-05 Tokyo Electron Limited Method for forming a pattern and a semiconductor device manufacturing method
CN102800709B (zh) * 2012-09-11 2015-07-01 深圳市华星光电技术有限公司 薄膜晶体管主动装置
GB201300799D0 (en) * 2013-01-16 2013-02-27 Uni I Olso Langmuir Probe
EP3428959B1 (en) * 2016-03-11 2023-03-01 Taiyo Nippon Sanso Corporation Method for producing silicon nitride film, and silicon nitride film
DE102017204257A1 (de) * 2017-03-14 2018-09-20 Schunk Kohlenstofftechnik Gmbh Beschichtetes Produkt und Verfahren zur Herstellung
KR102217171B1 (ko) * 2018-07-30 2021-02-17 도쿄엘렉트론가부시키가이샤 성막 방법 및 성막 장치
US11217443B2 (en) * 2018-11-30 2022-01-04 Applied Materials, Inc. Sequential deposition and high frequency plasma treatment of deposited film on patterned and un-patterned substrates
TW202229613A (zh) * 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340221A (ja) * 1998-05-21 1999-12-10 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
JP2005093737A (ja) * 2003-09-17 2005-04-07 Tadahiro Omi プラズマ成膜装置,プラズマ成膜方法,半導体装置の製造方法,液晶表示装置の製造方法及び有機el素子の製造方法
JP2006080161A (ja) * 2004-09-07 2006-03-23 Fujitsu Ltd 半導体装置およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632256B2 (ja) * 1994-09-30 2005-03-23 株式会社デンソー 窒化シリコン膜を有する半導体装置の製造方法
KR100745495B1 (ko) * 1999-03-10 2007-08-03 동경 엘렉트론 주식회사 반도체 제조방법 및 반도체 제조장치
JP4119029B2 (ja) 1999-03-10 2008-07-16 東京エレクトロン株式会社 半導体装置の製造方法
JP4334225B2 (ja) * 2001-01-25 2009-09-30 東京エレクトロン株式会社 電子デバイス材料の製造方法
JP2005339828A (ja) * 2004-05-24 2005-12-08 Shimadzu Corp 有機エレクトロルミネッセンス素子およびその製造方法
US8216684B2 (en) * 2005-02-01 2012-07-10 Mitsu Chemicals, Inc. Method for bonding members, composite film and use thereof
CN101194345B (zh) * 2005-06-08 2010-05-19 国立大学法人东北大学 等离子体氮化处理方法和处理装置、半导体装置制造方法
US7504289B2 (en) * 2005-10-26 2009-03-17 Freescale Semiconductor, Inc. Process for forming an electronic device including transistor structures with sidewall spacers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340221A (ja) * 1998-05-21 1999-12-10 Hitachi Ltd 半導体集積回路装置の製造方法および半導体集積回路装置
JP2005093737A (ja) * 2003-09-17 2005-04-07 Tadahiro Omi プラズマ成膜装置,プラズマ成膜方法,半導体装置の製造方法,液晶表示装置の製造方法及び有機el素子の製造方法
JP2006080161A (ja) * 2004-09-07 2006-03-23 Fujitsu Ltd 半導体装置およびその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123325A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 窒化珪素膜の製造方法、窒化珪素膜積層体の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
WO2009123331A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Mos型半導体メモリ装置およびその製造方法
WO2009123335A1 (ja) * 2008-03-31 2009-10-08 東京エレクトロン株式会社 Mos型半導体メモリ装置の製造方法およびプラズマcvd装置
JP2009246211A (ja) * 2008-03-31 2009-10-22 Tokyo Electron Ltd Mos型半導体メモリ装置の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
JP2009246210A (ja) * 2008-03-31 2009-10-22 Tokyo Electron Ltd 窒化珪素膜の製造方法、窒化珪素膜積層体の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
US8119545B2 (en) 2008-03-31 2012-02-21 Tokyo Electron Limited Forming a silicon nitride film by plasma CVD
US8124484B2 (en) 2008-03-31 2012-02-28 Tohoku University Forming a MOS memory device having a dielectric film laminate as a charge accumulation region
JP2012510712A (ja) * 2008-08-29 2012-05-10 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド 同一の能動領域内に形成されるトランジスタにおいて能動領域内に局所的に埋め込み歪誘起半導体材質を設けることによる駆動電流調節
WO2010038886A1 (ja) * 2008-09-30 2010-04-08 東京エレクトロン株式会社 窒化珪素膜の成膜方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
JP2010087186A (ja) * 2008-09-30 2010-04-15 Tokyo Electron Ltd 窒化珪素膜の成膜方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
JP2015012021A (ja) * 2013-06-26 2015-01-19 東京エレクトロン株式会社 成膜方法、記憶媒体及び成膜装置

Also Published As

Publication number Publication date
CN101454880A (zh) 2009-06-10
KR20090005405A (ko) 2009-01-13
TW200807511A (en) 2008-02-01
CN101454880B (zh) 2012-05-02
KR101063083B1 (ko) 2011-09-07
US20090203228A1 (en) 2009-08-13
JP5341510B2 (ja) 2013-11-13
US8114790B2 (en) 2012-02-14
JPWO2007139142A1 (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5341510B2 (ja) 窒化珪素膜の形成方法、半導体装置の製造方法およびプラズマcvd装置
JP5276437B2 (ja) 窒化珪素膜の形成方法、半導体装置の製造方法、およびプラズマcvd装置
JP5138261B2 (ja) シリコン酸化膜の形成方法、プラズマ処理装置および記憶媒体
JP5078617B2 (ja) 選択的プラズマ処理方法およびプラズマ処理装置
JP4509864B2 (ja) プラズマ処理方法およびプラズマ処理装置
JP5231233B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
WO2011040455A1 (ja) 選択的プラズマ窒化処理方法及びプラズマ窒化処理装置
TW200836262A (en) Method for forming insulating film and method for manufacturing semiconductor device
JP2006310736A (ja) ゲート絶縁膜の製造方法および半導体装置の製造方法
JPWO2008117798A1 (ja) 窒化珪素膜の形成方法、不揮発性半導体メモリ装置の製造方法、不揮発性半導体メモリ装置およびプラズマ処理装置
WO2006070685A1 (ja) トンネル酸化膜の窒化処理方法、不揮発性メモリ素子の製造方法および不揮発性メモリ素子、ならびに制御プログラムおよびコンピュータ読取可能な記憶媒体
WO2008038787A1 (fr) Procédé de formation d&#39;un film d&#39;oxyde de silicium, appareil de traitement au plasma et support de stockage
WO2006106665A1 (ja) 基板の窒化処理方法および絶縁膜の形成方法
JP4906659B2 (ja) シリコン酸化膜の形成方法
JP5231232B2 (ja) プラズマ酸化処理方法、プラズマ処理装置、及び、記憶媒体
WO2010038654A1 (ja) シリコン酸化膜の形成方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780019181.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008517961

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12302614

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07744390

Country of ref document: EP

Kind code of ref document: A1