WO2007138812A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2007138812A1
WO2007138812A1 PCT/JP2007/058942 JP2007058942W WO2007138812A1 WO 2007138812 A1 WO2007138812 A1 WO 2007138812A1 JP 2007058942 W JP2007058942 W JP 2007058942W WO 2007138812 A1 WO2007138812 A1 WO 2007138812A1
Authority
WO
WIPO (PCT)
Prior art keywords
window function
signal
frequency
sampling data
sampling
Prior art date
Application number
PCT/JP2007/058942
Other languages
English (en)
French (fr)
Inventor
Tetsu Nishimura
Motoi Nakanishi
Toru Ishii
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2007138812A1 publication Critical patent/WO2007138812A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • the present invention relates to a radar device that detects a target such as a vehicle or a person using radio waves in the millimeter wave band or the like.
  • the transmission signal of a continuous wave radar is frequency-modulated, and the reflected signal of the target force is received simultaneously with the transmission to detect the target.
  • sampling data arranged in a time series is generated by sampling beat signals of a transmission signal and a reception signal at a predetermined sampling timing.
  • the radar apparatus generates a frequency spectrum of the beat signal by performing a discrete Fourier transform process on the sampling data.
  • the radar apparatus detects the peak value of the beat signal as well as the peak value of the beat signal, and calculates the relative distance and relative velocity of the target from the peak frequency.
  • a DC component may exist in the frequency spectrum due to various offsets generated in signal processing and so-called truncation.
  • the radar of Patent Document 1 cuts the direct current component by performing a DC cut process for subtracting the average value of the sampling data from each of the sampling data before the FFT process.
  • the radar of Patent Document 1 reduces the influence of truncation by performing window function processing on the sampling data after DC cut processing.
  • the radar of Patent Document 2 performs a second DC cut process after sequentially performing a first DC cut process and a window function process.
  • the first DC cut processing the average value of the sampling data or a preset steady value is used as the DC component
  • the second cut processing the average value of the data after the DC cut processing and after the window function processing is calculated as DC. Used as an ingredient.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-50275
  • Patent Document 2 JP 2004-264234 A Disclosure of the invention
  • the radar of Patent Document 1 can remove the DC component by the DC cut process, but the window function process is performed after the DC cut process. A direct current component is generated and superimposed on the sampling data.
  • Fig. 10 is a diagram for explaining the problem of DC component generation when a Hayung window is used.
  • A is the waveform of the Hanning window
  • B and (D) are the waveforms of the original signal.
  • B) and (D) have different sampling start timings.
  • C is the output signal waveform when the original signal of (B) is windowed with the Hayung window of (A)
  • E is the window function of the original signal of (D) with the Hanning window of (A). It is an output signal waveform when processed.
  • an object of the present invention is to provide a radar capable of reliably removing a direct current component superimposed on sampling data with a simple arithmetic processing, and thus capable of reliably detecting a target in the vicinity of the own vehicle. To provide an apparatus.
  • the radar apparatus includes a transmission / reception means for transmitting a transmission signal as a detection radio wave and receiving a reception signal including a reflection signal of a target power, and a signal having a frequency difference between the transmission signal and the reception signal.
  • Sampling data sequence generating means for sampling a beat signal and AD-converting to generate a sampling data sequence of a predetermined number of data, and a predetermined window for sampling data in a predetermined sampling section of the sampling data sequence
  • a weighted analysis data generating means for performing weighting according to the function, calculating an average value of the weighted sampling data, and subtracting each data force average value of the sampling section to obtain the frequency analyzed data
  • the window function processing means for multiplying the frequency analysis data by the window function and the window function processed frequency analysis data as discrete Rie calculates the frequency components of the beat signal by calculating the frequency spectrum by conversion, the target detection unit performs detection of the target from the circumferential wave number components, as comprising the, Ru.
  • the radar apparatus of the present invention includes a transmission / reception means for transmitting a transmission signal that is a detection radio wave and receiving a reception signal including a reflection signal from a target, and a frequency difference between the transmission signal and the reception signal.
  • a sampling data string generating means for sampling a beat signal that is a signal of the signal and performing AD conversion to generate a sampling data string of a predetermined number of data
  • a window function processing means for multiplying the sampling data string by a window function
  • a window By subtracting the frequency spectrum of the window function weighted with the correction value determined according to the DC component of the frequency spectrum from the frequency spectrum obtained by the discrete Fourier transform of the function-processed frequency analysis data.
  • a radar apparatus comprising: target detection means for calculating a frequency component of a beat signal and detecting the frequency component force target.
  • the radar apparatus specifically uses the average value used for the calculation after the frequency spectrum calculation as the DC component of the frequency spectrum of the frequency analysis data subjected to the window function processing, and the window Let H be the DC component of the frequency spectrum of the function.
  • the average value of sampling data weighted by a window function can be expressed by a constant value (constant) in the frequency domain. More specifically, it is a simple value as shown in Equation 2.
  • the DC component superimposed on the frequency spectrum of the sampling data is completely removed by simply subtracting the simple value shown in Equation 2 from the frequency spectrum of the frequency analysis data.
  • the radio wave for detection in the transmission / reception means repeatedly changes in an upward modulation section in which the frequency gradually increases and a downlink modulation section in which the frequency gradually decreases in a triangular wave shape with respect to time.
  • the target is a frequency-modulated wave
  • the target detection means detects the relative distance and speed of the target based on the beat signal in the upstream modulation section and the beat signal in the downstream modulation section! /
  • V a so-called FMCW radar device! Removed.
  • the direct current component superimposed on the frequency analysis data is completely removed by window function processing or the like, so that a target at a short distance from the own vehicle can be reliably detected.
  • the DC component removal processing is performed in the frequency domain.
  • a frequency spectrum from which the DC component is removed can be obtained, and a target at a short distance from the own vehicle can be reliably detected.
  • a so-called FMCW radar device can reliably detect a target at a short distance from the own vehicle.
  • FIG. 1 is a block diagram showing a main part of a radar apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing a frequency spectrum for explaining the contents of the first embodiment.
  • FIG. 3 is a conceptual diagram showing the existence of pedestrians 101 and cars 102 and 103 in the detection area for the own vehicle.
  • FIG. 4 is a flowchart showing a processing flow of a detection signal processing unit 9 of the first embodiment.
  • FIG. 5 is a block diagram showing a main part of a radar apparatus according to a second embodiment.
  • FIG. 6 Waveform of original signal, waveform of signal obtained by processing window function of original signal of (A) in Hanning window of Fig. 7 (A), and frequency spectrum Vm by FFT processing of signal of (B) .
  • FIG. 7 is a diagram showing a waveform of a haung window and a frequency spectrum of the haung window.
  • FIG. 8 shows the frequency spectrum of the signal input to the peak detector 94.
  • FIG. 9 is a flowchart showing a processing flow of a detection signal processing unit 9 of the second embodiment.
  • FIG. 10 is a diagram for explaining problems when a Hanning window is used.
  • a radar apparatus according to the first embodiment will be described with reference to the drawings.
  • an FMCW radar device will be described.
  • FIG. 1 is a block diagram showing the main part of the radar apparatus of this embodiment.
  • the radar apparatus includes a transmission control unit 10, VC01, isolator 2, coupler 3, circulator 4, antenna 5, mixer 6, IF amplification circuit 7, AD converter 8, and detection signal processing unit 9.
  • Transmission control unit 10 generates a control signal for generating a transmission signal whose frequency changes in a triangular wave shape on the time axis, and provides the generated control signal to VCOl.
  • VCO Voltage Controlled Oscillator
  • the isolator 2 transmits the transmission signal from the VCOl to the coupler 3 side, and prevents the reflected signal from entering the VC Ol.
  • the force bra 3 transmits the transmission signal via the isolator 2 to the circulator 4 and supplies a part of the transmission signal to the mixer 6 as a local signal with a predetermined distribution ratio.
  • the circulator 4 transmits the transmission signal to the antenna 5 and transmits the reception signal from the antenna 5 to the mixer 6.
  • the antenna 5 radiates the transmission signal in a predetermined direction within the detection area, receives the reflected signal of the target 100 existing in the same direction, and outputs it to the circulator 4. Note that the radiation direction of the transmission signal is set so as to scan the detection area in units of a predetermined angle, and the entire detection area is detected by this scanning.
  • the circulator 4 transmits the received signal from the antenna 5 to the mixer 6 as described above.
  • the mixer 6 mixes the local signal from the coupler 3 and the reception signal input via the circulator 4, generates a beat signal that is an intermediate frequency signal, and outputs the beat signal to the IF amplifier circuit 7.
  • the IF amplifier circuit 7 amplifies the beat signal with a predetermined amplification degree corresponding to the distance.
  • the AD converter 8 sequentially samples the beat signal at a predetermined sampling timing and converts it into a sampling data string.
  • the detection signal processing unit 9 includes a weighted average difference processing unit 91, a window function processing unit 92, an FFT processing unit 93, a peak detection unit 94, and a distance / speed calculation unit 95, and is implemented by an arithmetic element such as a DSP. Appear. In other words, the operations performed in these units are realized by DSP arithmetic processing. Note that each of these units may be realized by using a dedicated integrated circuit or the like without using the DSP.
  • the weighted average difference processing unit 91 uses a window function used in the subsequent window function processing unit 92 for each sampling data in a predetermined sampling section to be subjected to FFT processing in the subsequent FFT processing unit 93. Weighting based on. The weighted average difference processing unit 91 calculates an average value of these weighted sampling data.
  • the number of samples in the sampling interval is N
  • the calculated average value is as shown in Equation 1 above.
  • the weighted average difference processing unit 91 subtracts the calculated weighted average value from each sampling data force and supplies the result to the window function processing unit 92.
  • the weighted average difference processing unit 91 gives this data y to the window function processing unit 92.
  • the window function processing unit 92 performs a filtering process using a window function on the data y.
  • the DC component generated by the window function processing is preliminarily subtracted from each sampling data by the weighted average difference processing unit 91, and the window function processing unit 92 subtracts this DC component from the previously subtracted data.
  • a DC component by the window function processing is superimposed.
  • the direct current component subtracted by the weighted average difference processing unit 91 and the direct current component superimposed by the window function processing unit 92 are canceled and canceled out.
  • the window function processing is performed, the DC component superimposed on the sampling data is completely removed.
  • the window function processing unit 92 gives the data from which the DC component has been completely removed to the FFT processing unit 93.
  • the FFT processing unit 93 performs FFT (Fast Fourier Transform) processing on the input data to calculate a frequency spectrum (data sequence in the frequency domain).
  • FFT Fast Fourier Transform
  • FIG. 2 is a diagram showing a frequency spectrum, and (A) shows the case where the configuration of the present embodiment is used.
  • FIG. 3 is a conceptual diagram showing the presence of pedestrians 101 and cars 102 and 103 in the detection area for the vehicle.
  • spectral peaks exceeding a predetermined threshold are detected in the vicinity of the 0 frequency bin and in two predetermined frequency bins.
  • the spectral peak near the 0 frequency bin corresponds to the pedestrian 101 near the own vehicle, and the spectral peaks of the two predetermined frequency bins are located far away. 102 and 103.
  • the peak detector 94 sets a predetermined threshold for the frequency spectrum from which the DC component has been removed, as described above, and detects a spectral peak that is equal to or greater than the predetermined threshold. At this time, by detecting the spectrum peak in the frequency spectrum from which the DC component is removed as shown in Fig. 2 (A), the spectrum peak of the pedestrian 101 near the own vehicle and the distant cars 102 and 103, especially Thus, it is possible to reliably detect the spectrum peak in the vicinity of the host vehicle.
  • the distance / velocity calculation unit 95 pairs the spectrum peaks obtained in the upstream modulation section and the downstream modulation section, and compares the relative distance of the target 100 from the frequency of the paired spectral peak. And detect relative speed.
  • FIG. 4 is a flowchart showing a processing flow of the detection signal processing unit 9.
  • the detection signal processing unit 9 When target detection is started, first, the detection signal processing unit 9 performs a predetermined sample in the uplink modulation section.
  • the sampling data of the pulling section is taken in and buffered (Sl).
  • the detection signal processing unit 9 weighted average difference processing unit 91 weights the acquired sampling data of the predetermined sampling section according to the window function used in the subsequent processing, and assigns these weights. The average value of the sampling data performed is calculated. Then, the detection signal processing unit 9 subtracts the weighted average value of each sampling data force (S2).
  • the detection signal processing unit 9 (window function processing unit 92) performs window function processing on the subtracted sampling data. That is, each sampling data is multiplied by the corresponding window function coefficient (S3).
  • the detection signal processing unit 9 performs FFT processing on the sampling data subjected to the window function processing, and calculates a frequency spectrum of the signal in the upstream modulation section (referred to as an upbeat signal) (S4). ).
  • the detection signal processing unit 9 takes in sampling data in a predetermined sampling section of the downlink modulation section and performs noffering (S5).
  • the detection signal processing unit 9 weighted average difference processing unit 91 weights the acquired sampling data of the predetermined sampling section according to the window function used in the subsequent processing, and assigns these weights. The average value of the sampling data performed is calculated. Then, the detection signal processing unit 9 subtracts the weighted average value of each sampling data force (S6).
  • the detection signal processing unit 9 (window function processing unit 92) performs window function processing on the subtracted sampling data. That is, each sampling data is multiplied by the corresponding window function coefficient (S7).
  • the detection signal processing unit 9 performs FFT processing on the sampling data subjected to the window function processing, and calculates a frequency spectrum of the signal in the downstream modulation section (referred to as a downbeat signal) (S8). ).
  • the detection signal processing unit 9 performs the peak frequency (spectrum peak) of the upbeat signal. As well as the peak frequency of the downbeat signal. Detect number (spectral peak). At this time, the force that causes the spectrum to be broadened by truncation by cutting out the periodic waveform with a finite time width.In such a case, the frequency position where the intensity reaches the maximum value in the range exceeding the threshold value is used as the peak frequency. Find it.
  • the detection signal processing unit 9 performs pairing between the peak frequency of the upbeat signal and the peak frequency of the downbeat signal using a known method (S9). That is, for the peak frequency appearing in the frequency spectrum of the upbeat signal and the peak frequency appearing in the frequency spectrum of the downbeat signal, a combination of peak frequencies generated due to the same target is determined.
  • the detection signal processing unit 9 calculates the distance from the radar device to the target based on the sum of the peak frequency of the paired upbeat signal and the peak frequency of the downbeat signal. (S10).
  • the detection signal processing unit 9 calculates the relative speed of the target with respect to the radar device based on the difference between the peak frequency of the upbeat signal and the peak frequency of the downbeat signal. Calculate (Sl l).
  • the DC component is not superimposed on the frequency spectrum, and the peak frequency (spectrum peak) near the 0 frequency bin can be reliably detected. Thereby, the target which exists in the vicinity of the own vehicle can be detected reliably.
  • (11) a process of calculating an average value by weighting sampling data according to the window function as a process in the previous stage of the FFT And (1 2)
  • the two processes of subtracting the average value from each sampling data are performed.
  • the processing of (1-1) consists of 513 operations, 512 times of product-sum operation and 1 division, and the processing of (1-2) Subtraction 51 2 times.
  • the processing of the previous stage of FFT is completed with 1025 operations as a whole.
  • product-sum operation, addition, and subtraction can be processed in one clock.
  • the total number of product-sum operations, additions, and subtractions is 1025 times.
  • the total number of product-sum operations, additions, and subtractions is 2050 times.
  • the radar apparatus of the present embodiment omits the weighted average difference processing unit 91 in the time domain from the radar apparatus shown in the first embodiment, and performs the weighted average difference process in the frequency domain immediately after the FFT processing unit 93.
  • the other parts are the same as those of the radar apparatus shown in the first embodiment.
  • FIG. 5 is a block diagram showing the main part of the radar apparatus of this embodiment.
  • the radar apparatus includes a transmission control unit 10, VC01, an isolator 2, a force bra 3, a circulator 4, an antenna 5, a mixer 6, an IF amplification circuit 7, an AD converter 8, and a detection signal processing unit 9. Since the configuration other than the detection signal processing unit 9 is the same as that of the radar apparatus of the first embodiment, description thereof is omitted.
  • the detection signal processor 9 includes a window function processor 92, an FFT processor 93, a weighted average difference processor 96, a peak detector 94, and a distance / speed calculator 95.
  • the window function processing unit 92 performs a filtering process by the window function on the sampling data cut out in the predetermined sampling section.
  • the FFT processing unit 93 performs FFT (Fast Fourier Transform) processing on the sampling data subjected to the window function processing, and calculates a frequency spectrum (data sequence in the frequency domain).
  • FFT Fast Fourier Transform
  • the weighted average difference processing unit 96 subtracts the frequency spectrum including the DC component resulting from the window function processing from the frequency spectrum of the sampling data subjected to the window function processing. By using the data on the axis, the frequency spectrum from which the DC component superimposed by the window function processing is removed is calculated.
  • the average value of the sampling data weighted by the window function is as shown in Equation (1).
  • Equation (6) ! /, X * H is the FFT function of the original sampling data processed by the window function m m
  • A is only a DC component because a is a constant.
  • H is the Fourier transform result of the window function h, so
  • the frequency spectrum input to the peak detector 94 is F [y], that is, the average value obtained by weighting the sampling function with the window function is subtracted from the sampling data, and the result is obtained. Is the same as the frequency spectrum obtained by FFT processing.
  • the DC component can be removed by the window function even if the difference between the frequency spectra is performed after the FFT processing.
  • the constant a may be calculated using the equation (4), but may be calculated by the following method.
  • V -aH 0
  • V is a direct current component after window function processing of the original sampling data, and FFT processing
  • H is the DC component of the window function, it must be calculated in advance.
  • the direct current component is already superimposed on the original signal, but the direct current component is also removed by the same processing when the direct current component is superimposed by the window function processing. it can.
  • Fig. 6 shows the waveform of the original signal
  • (B) shows the waveform of the signal obtained by processing the original signal of Fig. 6 (A) with the Hanning window of Fig. 7 (A)
  • (C ) Indicates the frequency spectrum by FFT processing of the signal in (B).
  • 07 (A) shows the waveform of the Hayung window
  • (B) shows the frequency spectrum of the Hayung window of (A).
  • FIG. 8 shows the frequency spectrum of the signal input to the peak detector 94.
  • a frequency spectrum including a DC component is generated.
  • the 0 frequency bin is 0, and the adjacent 1 frequency bin is FIG.
  • the DC component can be reliably removed.
  • FIG. 9 is a flowchart showing a processing flow of the detection signal processing unit 9.
  • the detection signal processing unit 9 takes in the sampling data of the predetermined sampling section in the uplink modulation section and buffers it (S21).
  • the detection signal processing unit 9 performs window function processing on the sampling data. That is, each sampling data is multiplied by a corresponding window function coefficient (
  • the detection signal processing unit 9 performs FFT processing on the sampling data subjected to the window function processing, and calculates a frequency spectrum of the signal in the upstream modulation section (referred to as an upbeat signal) (S23). ).
  • the detection signal processing unit 9 weighted average difference processing unit 96 multiplies the frequency spectrum of the window function calculated in advance by a constant corresponding to the DC component of the sampling data calculated by the FFT processing. Then, the frequency spectrum of the sampling data is also subtracted (S24).
  • the detection signal processing unit 9 takes in the sampling data of the predetermined sampling section of the downlink modulation section and performs noffering (S25).
  • the detection signal processing unit 9 performs window function processing on the sampling data. That is, each sampling data is multiplied by a corresponding window function coefficient (S26).
  • the detection signal processing unit 9 performs FFT processing on the sampling data subjected to the window function processing, and calculates a frequency spectrum of the signal in the downstream modulation section (referred to as a downbeat signal) (S27). ).
  • the detection signal processing unit 9 weighted average difference processing unit 96 multiplies the frequency spectrum of the window function calculated in advance by a constant corresponding to the DC component of the sampling data calculated by the FFT processing. Then, the frequency spectrum of the sampling data is also subtracted (S28).
  • the detection signal processing unit 9 (peak detection unit 94) It detects the peak frequency of the beat signal and the peak frequency of the downbeat signal. Then, the detection signal processing unit 9 (distance / speed calculation unit 95) performs pairing between the peak frequency of the upbeat signal and the peak frequency of the downbeat signal using a known method (S29).
  • the detection signal processing unit 9 calculates the distance from the radar device to the target based on the sum of the peak frequency of the paired upbeat signal and the peak frequency of the downbeat signal. (S30). The detection signal processing unit 9 (distance / velocity calculation unit 95) calculates the relative speed of the target with respect to the radar device based on the difference between the peak frequency of the upbeat signal and the peak frequency of the downbeat signal. Calculate (S31).
  • the processing in (3-1) consists of two operations, one division and one subtraction, and the processing in (3-2) is one substitution force. In other words, the processing before the peak detection is completed in three operations as a whole.
  • Patent Document 2 requires 2050 arithmetic processes as described above.
  • FFT Fast Fourier Transform

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 信号処理部(9)の重み付け平均差分処理部(91)で、窓関数に応じた重み付けを行ったサンプリングデータの平均値を算出し、各サンプリングデータから差分する。窓関数処理部(92)は、重み付け平均値が差分されたサンプリングデータに対して窓関数処理を行う。これにより、予め窓関数処理より発生する直流成分が差分された状態で窓関数処理が行われるので、重み付け平均差分処理部(91)で差分された直流成分と、窓関数処理により発生する直流成分とが相殺して、FFT処理前のサンプリングデータには、直流成分が全く含まれない。このサンプリングデータをFFT処理してピーク検出することで、周波数スペクトルに直流成分が無くなり、直流成分近傍のピーク周波数を確実に検出することができる。

Description

明 細 書
レーダ装置
技術分野
[0001] この発明は、ミリ波帯等の電波を用いて車両や人等の物標を検知するレーダ装置 に関するものである。
背景技術
[0002] 従来、自動車などの車両に搭載されるレーダ装置として、連続波レーダの送信信 号を周波数変調し、送信と同時に物標力 の反射信号を受信して、物標の検知を行 うものがある。このレーダ装置では、送信信号と受信信号とのビート信号を所定のサ ンプリングタイミングでサンプリングすることで、時系列に並ぶサンプリングデータを生 成する。そして、レーダ装置は、このサンプリングデータを離散フーリエ変換処理する ことで、ビート信号の周波数スペクトルを生成する。そして、レーダ装置は、このビート 信号の周波数スペクトルのピーク値力もビート信号のピーク周波数を検出し、このピ ーク周波数から物標の相対距離および相対速度を算出する。
[0003] このようなレーダ装置では、信号処理上発生する各種のオフセットやいわゆるトラン ケーシヨンにより、周波数スペクトルに直流成分が存在してしまう場合がある。
[0004] このため、特許文献 1のレーダは、 FFT処理前にサンプリングデータの平均値をサ ンプリングデータの各々から差分する DCカット処理を行うことで、直流成分をカットす るものである。また、特許文献 1のレーダは、 DCカット処理後のサンプリングデータに 窓関数処理を行うことにより、トランケーシヨンによる影響を低減している。
[0005] また、特許文献 2のレーダは、第 1の DCカット処理と窓関数処理とを順次行った後 に、第 2の DCカット処理を行うものである。この際、第 1の DCカット処理ではサンプリ ングデータの平均値または予め設定した定常値を DC成分として用い、第 2のカット 処理では DCカット処理後で窓関数処理後のデータの平均値を DC成分として用い ている。
特許文献 1:特開 2003 - 50275公報
特許文献 2:特開 2004 - 264234公報 発明の開示
発明が解決しょうとする課題
[0006] し力しながら、特許文献 1のレーダは、 DCカット処理により、ー且直流成分を除去 することができるが、 DCカット処理後に窓関数処理を行うため、この窓関数処理によ る直流成分が発生して、サンプリングデータに重畳してしまう。
[0007] 図 10は、ハユング窓を用いた場合の直流成分発生の問題点について説明する図 であり、 (A)がハニング窓の波形、(B) , (D)が原信号の波形であり、 (B)と (D)とで はサンプリング開始タイミングが異なる。また、(C)は (B)の原信号を (A)のハユング 窓で窓関数処理した場合の出力信号波形、 (E)は(D)の原信号を (A)のハニング窓 で窓関数処理した場合の出力信号波形である。
[0008] 図 10 (B)のように、ハニング窓の振幅が高いすなわちハニング窓により係数が大き い領域に、原信号のゼロクロス点に近い領域が存在し、ハユング窓の最大振幅位置 力 時間軸で前後方向に原信号が正負対称な波形である場合には、窓関数処理後 の出力信号は、図 10 (C)に示すように、振幅平均値が「0」となる。
[0009] し力しながら、図 10 (D)のように、ハユング窓の振幅が高い領域で原信号の振幅が 正方向に高ぐハニング窓の振幅が低!、領域で原信号の振幅が負方向に高 、場合 には、窓関数処理後の出力信号の平均値は、図 10 (E)に示すように、「0」から正方 向にオフセットする。
[0010] このように、サンプリング区間の開始タイミングによっては、原信号の平均値が 0であ つても、窓関数処理後の出力信号の平均値がオフセットして、直流成分が重畳した 状態となる。
[0011] このように、直流成分が重畳することで、スペクトルピークが 0周波数に近 、、自車 近傍の物標を確実に検出することができなくなってしまう。
[0012] また、特許文献 2のレーダは、特許文献 1のような処理で発生した窓関数処理によ る直流成分を再び平均値で減算して、サンプリングデータに重畳する直流成分を除 去するため、直流成分を完全に除去することができる。し力しながら、平均値演算お よび各サンプリングデータ力 の減算処理を二度繰り返すため、処理が煩雑になり、 処理負荷が大幅に増加してしまう。 [0013] したがって、本発明の目的は、簡素な演算処理でサンプリングデータに重畳する直 流成分を確実に除去することができ、ひいては自車近傍の物標を確実に検出するこ とができるレーダ装置を提供することにある。
課題を解決するための手段
[0014] この発明のレーダ装置は、探知用電波である送信信号を送信して物標力 の反射 信号を含む受信信号を受信する送受信手段と、送信信号と受信信号との周波数差 の信号であるビート信号をサンプリングするとともに、 AD変換して所定データ数のサ ンプリングデータ列を生成するサンプリングデータ列生成手段と、該サンプリングデ ータ列のうち所定サンプリング区間のサンプリングデータに対して所定の窓関数に準 じた重み付けを行って、該重み付けを行ったサンプリングデータの平均値を算出し、 当該サンプリング区間のそれぞれのデータ力 平均値を減じて被周波数分析データ を求める被周波数分析データ生成手段と、被周波数分析データに対して窓関数を 乗じる窓関数処理手段と、窓関数処理された被周波数分析データを離散フーリエ変 換により周波数スペクトルを算出することでビート信号の周波数成分を算出し、該周 波数成分から物標の探知を行う物標検知手段と、を備えたことを特徴として 、る。
[0015] そして、この発明のレーダ装置は、具体的に、窓関数処理前の演算に利用する平 均値を、所定サンプリング区間のサンプリングデータ Xのデータ数を N、サンプリング データ番号を n=0, 1, 2, · · · , N—1とし、各サンプリングデータ Xに対応する窓関 数を hとして、
[0016] [数 1]
Figure imgf000005_0001
[0017] で、算出することを特徴としている。
[0018] この構成では、所定サンプリング区間のサンプリングデータを窓関数処理する前に 、当該窓関数に準じた重み付けをサンプリングデータのそれぞれに行う。そして、窓 関数に準じた重み付けを行ったサンプリングデータの時間領域における平均値を式 (1)に示すような演算式を用いて算出して、該平均値を各サンプリングデータ力 差 分する。このような重み付け処理後の平均値による差分処理が行われたサンプリング データを窓関数処理すると、重み付け処理後の平均値と窓関数処理により発生する 直流成分とが相殺される。これにより、サンプリングデータの周波数スペクトルに重畳 される直流成分が完全に除去される。
[0019] また、この発明のレーダ装置は、探知用電波である送信信号を送信して物標からの 反射信号を含む受信信号を受信する送受信手段と、送信信号と受信信号との周波 数差の信号であるビート信号をサンプリングするとともに、 AD変換して所定データ数 のサンプリングデータ列を生成するサンプリングデータ列生成手段と、該サンプリング データ列に対して窓関数を乗じる窓関数処理手段と、窓関数処理された被周波数分 析データの離散フーリエ変換により得られる周波数スペクトルから、該周波数スぺタト ルの直流成分に応じて決まる補正値で重み付けしてなる窓関数の周波数スペクトル を差分することでビート信号の周波数成分を算出し、該周波数成分力 物標の探知 を行う物標検知手段と、を備えたことを特徴とするレーダ装置。
[0020] そして、この発明のレーダ装置は、具体的に、周波数スペクトル算出後の演算に利 用する平均値を、窓関数処理された被周波数分析データの周波数スペクトルの直流 成分を Vとし、窓関数の周波数スペクトルの直流成分を Hとして、
0 0
V /H (2)
0 0
で、算出することを特徴としている。
[0021] この構成では、窓関数によって重み付けされたサンプリングデータの平均値は、周 波数領域において一定値 (定数)で表せることを利用する。より具体的には、式 2に示 すような簡素な値となる。そして、この構成では、被周波数分析データの周波数スぺ タトルから、式 2に示す簡素な値を減算するだけで、サンプリングデータの周波数スぺ タトルに重畳される直流成分が完全に除去される。
[0022] また、この発明のレーダ装置は、送受信手段での探知用電波を、周波数が次第に 上昇する上り変調区間と、周波数が次第に下降する下り変調区間とが時間的に三角 波状に繰り返し変化する周波数変調波とし、物標検出手段で、上り変調区間のビート 信号と下り変調区間のビート信号とに基づいて、物標の相対距離および相対速度を 検出することを特徴として!/、る。
[0023] この構成では、 V、わゆる FMCW方式のレーダ装置にお!、て、直流成分が完全に 除去される。
発明の効果
[0024] この発明によれば、窓関数処理等により被周波数分析データに重畳する直流成分 が完全に除去されることで、自車から近距離の物標を確実に検出することができる。
[0025] さらに、この発明によれば、この直流成分除去処理を周波数領域で演算することで
、より一層簡素な処理で、直流成分を除去した周波数スペクトルが得られ、自車から 近距離の物標を確実に検出することができる。
[0026] また、この発明によれば、 、わゆる FMCW方式のレーダ装置で、自車から近距離 の物標を確実に検出することができる。
図面の簡単な説明
[0027] [図 1]第 1の実施形態のレーダ装置の主要部を示すブロック図である。
[図 2]第 1の実施形態の内容を説明するための周波数スペクトルを表す図である。
[図 3]自車に対する検知領域内の歩行者 101および自動車 102, 103の存在状況を 示す概念図である。
[図 4]第 1の実施形態の検出信号処理部 9の処理フローを示すフローチャートである
[図 5]第 2の実施形態のレーダ装置の主要部を示すブロック図である。
[図 6]原信号の波形、図 7 (A)のハニング窓で (A)の原信号を窓関数処理した信号 の波形、(B)の信号の FFT処理による周波数スペクトル Vmを示す図である。
[図 7]ハユング窓の波形、このハユング窓の周波数スペクトルを示す図である。
[図 8]ピーク検出部 94に入力される信号の周波数スペクトルを示す。
[図 9]第 2の実施形態の検出信号処理部 9の処理フローを示すフローチャートである
[図 10]ハニング窓を用いた場合の問題点について説明する図である。
符号の説明
[0028] 1— VCO、 2—アイソレータ、 3—力プラ、 4—サーキユレータ、 5—アンテナ、 6—ミ キサ、 7— IF増幅回路、 8— ADコンバータ、 9—信号処理部、 10—送信制御部、 91 一重み付け平均差分処理部(時間領域)、 92—窓関数処理部、 93— FFT処理部、 94—ピーク検出部、 95—距離'速度算出部、 96—重み付け平均差分処理部 (周波 数領域)、 100—物標、 101—歩行者、 102, 103—自動車
発明を実施するための最良の形態
[0029] 第 1の実施形態に係るレーダ装置について図を参照して説明する。なお、本実施 形態では、 FMCW方式のレーダ装置について説明する。
図 1は本実施形態のレーダ装置の主要部を示すブロック図である。
レーダ装置は、送信制御部 10、 VC01、アイソレータ 2、カプラ 3、サーキユレータ 4 、アンテナ 5、ミキサ 6、 IF増幅回路 7、 ADコンバータ 8、検出信号処理部 9を備える。
[0030] 送信制御部 10は、時間軸上で周波数が三角波状に変化する送信信号を生成する ための制御信号を生成して、 VCOlに与える。 VCO (電圧制御発振器) 1は、制御信 号に応じて、周波数が三角波状に徐々に変化する送信信号を生成して、アイソレー タ 2に出力する。アイソレータ 2は、 VCOlからの送信信号をカプラ 3側に伝送し、 VC Olへ反射信号が入射するのを阻止する。力ブラ 3は、アイソレータ 2を経由した送信 信号をサーキユレータ 4へ伝送するとともに、所定の分配比で送信信号の一部をロー カル信号としてミキサ 6に与える。サーキユレータ 4は、送信信号をアンテナ 5へ伝送 し、アンテナ 5からの受信信号をミキサ 6に伝送する。アンテナ 5は、送信信号を検知 領域内の所定方向へ放射し、同方向に存在する物標 100の反射信号を受信して、 サーキユレータ 4に出力する。なお、送信信号の放射方向は、所定角度単位で検知 領域内を走査するように設定されており、この走査により、検知領域内全体を検知す る。
[0031] サーキユレータ 4は、前述のようにアンテナ 5からの受信信号をミキサ 6に伝送する。
ミキサ 6は、カプラ 3からのローカル信号と、サーキユレータ 4を介して入力された受信 信号とをミキシングして、中間周波信号であるビート信号を生成し、 IF増幅回路 7に 出力する。 IF増幅回路 7は、ビート信号を距離に応じた所定の増幅度で増幅する。 A Dコンバータ 8は、ビート信号を所定のサンプリングタイミングで順次サンプリングして 、サンプリングデータ列に変換する。
[0032] 検出信号処理部 9は、重み付け平均差分処理部 91、窓関数処理部 92、 FFT処理 部 93、ピーク検出部 94、距離 ·速度算出部 95を備え、 DSP等の演算素子により実 現される。すなわち、これら各部で行われる演算は、 DSPの演算処理により実現され る。なお、これら各部を DSPで実現せず、それぞれ専用の集積回路等を用いて実現 しても良い。
[0033] 重み付け平均差分処理部 91は、後段の FFT処理部 93で FFT処理の対象となる 所定のサンプリング区間のサンプリングデータのそれぞれに対して、後段の窓関数処 理部 92で利用する窓関数に基づく重み付けを行う。重み付け平均差分処理部 91は 、これら重み付けされたサンプリングデータの平均値を算出する。
[0034] 具体的には、サンプリング区間のサンプル数を Nとし、時系列に並ぶサンプリングデ ータを X (n=0, 1, 2, · ' ·、Ν—1)とする。そして、各サンプリングデータに対応する 窓関数を h (n=0, 1, 2, · ' ·、Ν— 1)とする。これにより、算出する平均値は、前述 の式 1に示すように、
[0035] [数 1]
Figure imgf000009_0001
[0036] となる。
[0037] 重み付け平均差分処理部 91は、この算出した重み付け平均値を、各サンプリング データ力 減算して、窓関数処理部 92に与える。
[0038] 具体的には、窓関数処理部 92に与えるデータを yとすると、
[0039] [数 2]
Figure imgf000009_0002
[0040] となり、重み付け平均差分処理部 91は、このデータ yを窓関数処理部 92に与える。
[0041] 窓関数処理部 92は、このデータ yに対して窓関数によるフィルタリング処理を行う。
なお、窓関数としては、一般的なハユング窓やハミング窓、ブラックマン =ハリス窓等 を用いればよい。
このような処理を行うことにより、窓関数処理により発生する直流成分が、重み付け 平均差分処理部 91で各サンプリングデータから予め減算され、この直流成分が予め 減算されたデータに窓関数処理部 92で窓関数処理による直流成分が重畳される。 このため、重み付け平均差分処理部 91で減算される直流成分と、窓関数処理部 92 で重畳される直流成分とがー致し、相殺される。これにより、窓関数処理を行っても、 サンプリングデータに重畳する直流成分が完全に除去される。
[0042] 窓関数処理部 92は、この直流成分が完全に除去されたデータを FFT処理部 93に 与える。
[0043] FFT処理部 93は、入力されたデータを FFT (高速フーリエ変換)処理して、周波数 スペクトル (周波数領域でのデータ列)を算出する。
[0044] この処理により、図 2 (A)に示すような周波数スペクトルを得ることができる。
[0045] 図 2は周波数スペクトルを表す図であり、(A)は本実施形態の構成を用いた場合、
(B)は特許文献 1に示す構成を用いた場合、 (C)は DCカット処理を行って ヽな 、場 合をそれぞれ示す。なお、図 2は、図 3に示すように、自車近傍に歩行者 1人が存在 し、遠方に自動車 2台が存在する場合の周波数スペクトルを示す。図 3は自車に対す る検知領域内の歩行者 101および自動車 102, 103の存在状況を示す概念図であ る。
[0046] 図 2に示すように、 0周波数ビン付近と、 2箇所の所定周波数ビンとに、所定閾値を 超えるスペクトルピークが検出される。これらのスペクトルピークは、図 3の場合に対応 させると、 0周波数ビン付近のスペクトルピークが自車近傍の歩行者 101に対応し、 2 箇所の所定周波数ビンのスペクトルピークがそれぞれ遠方に位置する自動車 102, 103に対応するものである。
[0047] 図 2 (C)に示すように、 DCカット処理を行わな 、場合、直流成分に起因する 0周波 数ビンのスペクトルピークが高ぐこの 0周波数ビン近傍に現れる歩行者 101に起因 するスペクトルピークが 0周波数ビンのスペクトルピークよりも低くなる。このため、この 0周波数ビン近傍に現れるスペクトルピーク力 歩行者 101によるものなの力、前述の ように信号処理上重畳される直流成分による 0周波数ビンのスペクトルピークの裾野 部分であるのかを判断することができな 、。
[0048] また、図 2 (B)に示すように、特許文献 1の方法、すなわち、単にサンプリングデータ の平均値で DCカット処理をした後に、窓関数処理を行った場合、窓関数処理による 直流成分に起因する 0周波数ビンのスペクトルピークが現れる。これは、前述のように 、窓関数処理および FFT処理を行うサンプリング区間の切り出しにおいて、切り出さ れたサンプリングデータの変位と窓関数の変位との関係で、サンプリングデータの正 成分が強調され、負成分が抑圧されるようなことがあるからである。このように、正成分 が強調され、負成分が抑圧されると、このサンプリング区間でのサンプリングデータの 平均値が正側にシフトし、結果的に直流成分が重畳した状態となり、 0周波数ビンに スペクトルピークが現れる。
[0049] このように、特許文献 1の方法では、依然として 0周波数ビンのスペクトルピークが現 れ、 0周波数ビン近傍に現れる歩行者 101に起因するスペクトルピークが 0周波数ビ ンのスペクトルピークと略同等となる。この場合には、 DCカット処理を行わない場合と 同様に、 0周波数ビン近傍に現れるスペクトルピーク力 歩行者 101によるものなのか 、前述のように信号処理上重畳される直流成分による 0周波数ビンのスペクトルピー クの裾野部分であるのかを判断することができない。
[0050] これらに対して、本実施形態の構成を用いることで、図 2 (A)に示すように、直流成 分による 0周波数ビンのスペクトルピークが完全に無くなり、 0周波数ビン近傍に現れ るスペクトルピーク力 歩行者 101によるものであることを確実に判断することができる
[0051] ピーク検出部 94は、直流成分が除去された周波数スペクトルに対して、前述のよう に所定の閾値を設定し、所定閾値以上のスペクトルピークを検出する。この際、図 2 ( A)に示すような直流成分が除去された周波数スペクトルでスペクトルピークを検出す ることで、自車近傍の歩行者 101や遠方の自動車 102, 103のスペクトルピーク、特 に、自車近傍のスペクトルピークを確実に検出することができる。
[0052] 距離'速度算出部 95は、上り変調区間と下り変調区間とのそれぞれで得られたスぺ タトルピークをペアリングして、ペアリングされたスペクトルピークの周波数から物標 10 0の相対距離および相対速度を検出する。
[0053] このような検出信号処理部 9の処理の流れを、図 4に示すフローチャートを参照して 説明する。
図 4は、検出信号処理部 9の処理フローを示すフローチャートである。
物標検知が開始されると、まず、検出信号処理部 9は、上り変調区間内の所定サン プリング区間のサンプリングデータを取り込んで、バッファリングする(Sl)。
次に、検出信号処理部 9 (重み付け平均差分処理部 91)は、取り込んだ所定サン プリング区間のサンプリングデータに対して、後段の処理で用いる窓関数に応じた重 み付けを行い、これら重み付けを行ったサンプリングデータの平均値を算出する。そ して、検出信号処理部 9は、各サンプリングデータ力 この重み付け平均値を減算す る(S2)。
検出信号処理部 9 (窓関数処理部 92)は、減算処理されたサンプリングデータを窓 関数処理する。すなわち、各サンプリングデータに対して対応する窓関数の係数を 乗算する (S3)。
そして、検出信号処理部 9 (FFT処理部 93)は、この窓関数処理されたサンプリン グデータを FFT処理して、上り変調区間の信号 (アップビート信号と称する)の周波 数スペクトルを算出する(S4)。
また、検出信号処理部 9は、下り変調区間の所定サンプリング区間のサンプリング データを取り込んで、ノ ッファリングする(S5)。
次に、検出信号処理部 9 (重み付け平均差分処理部 91)は、取り込んだ所定サン プリング区間のサンプリングデータに対して、後段の処理で用いる窓関数に応じた重 み付けを行い、これら重み付けを行ったサンプリングデータの平均値を算出する。そ して、検出信号処理部 9は、各サンプリングデータ力 この重み付け平均値を減算す る(S6)。
検出信号処理部 9 (窓関数処理部 92)は、減算処理されたサンプリングデータを窓 関数処理する。すなわち、各サンプリングデータに対して対応する窓関数の係数を 乗算する (S7)。
そして、検出信号処理部 9 (FFT処理部 93)は、この窓関数処理されたサンプリン グデータを FFT処理して、下り変調区間の信号 (ダウンビート信号と称する)の周波 数スペクトルを算出する(S8)。
このようにアップビート信号の周波数スペクトルと、ダウンビート信号の周波数スぺク トルとが算出されると、検出信号処理部 9 (ピーク検出部 94)は、アップビート信号の ピーク周波数 (スペクトルピーク)を検出するとともに、ダウンビート信号のピーク周波 数 (スペクトルピーク)を検出する。この際、周期波形を有限の時間幅で切り出すこと により、トランケーシヨンによるスペクトルの広がりが生じる力 このような場合には、閾 値を超える範囲について強度が極大値をとる周波数位置をピーク周波数として求め ればよい。そして、検出信号処理部 9 (距離'速度算出部 95)は、アップビート信号の ピーク周波数とダウンビート信号のピーク周波数とのペアリングを既知の方法を用い て行う(S9)。すなわち、アップビート信号の周波数スペクトルに現れたピーク周波数 と、ダウンビート信号の周波数スペクトルに現れたピーク周波数とについて、同じ物標 に起因して生じたピーク周波数同士の組み合わせを判定する。
検出信号処理部 9 (距離'速度算出部 95)は、ペアとなるアップビート信号のピーク 周波数とダウンビート信号のピーク周波数との和に基づいて、レーダ装置から物標ま での距離を算出する (S10)。また、検出信号処理部 9 (距離'速度算出部 95)は、ぺ ァとなるアップビート信号のピーク周波数とダウンビート信号のピーク周波数との差に 基づいて、レーダ装置に対する物標の相対速度を算出する(Sl l)。
[0054] 以上のように、本実施形態の構成を用いることにより、周波数スペクトルに直流成分 が重畳せず、 0周波数ビン近傍のピーク周波数 (スペクトルピーク)を確実に検出する ことができる。これにより、自車近傍に存在する物標を確実に検出することができる。
[0055] なお、本実施形態の方法では、窓関数処理を除けば、 FFTの前段階の処理として 、(1 1)サンプリングデータに窓関数に応じた重み付けをして平均値を算出する処 理、および、(1 2)各サンプリングデータから平均値を減算する処理の 2つの処理 が行われる。ここで、サンプリングデータ数が 512であった場合、(1— 1)の処理は、 積和演算 512回と除算 1回との計 513回の演算からなり、(1— 2)の処理は、減算 51 2回からなる。すなわち、全体として 1025回の演算処理で FFTの前段階の処理が完 了する。
[0056] 一方、特許文献 2の方法では、窓関数処理を除けば、 FFTの前段階の処理として、
(2— 1)サンプリングデータの平均値を算出する処理、(2— 2)各サンプリングデータ から平均値を減算する処理、 (2- 3)窓関数処理後のサンプリングデータの平均値を 算出する処理、および、(2— 4)窓関数処理後のサンプリングデータから、窓関数処 理後の平均値を減算する処理の計 4つの処理が行われる。ここで、本実施形態の場 合と同様にサンプリングデータ数が 512であった場合、(2—1)の処理は、加算 512 回と除算 1回との計 513回の演算力もなり、(2— 2)の処理は、減算 512回からなり、 ( 2— 3)の処理は、加算 512回と除算 1回との計 513回の演算からなり、(2— 4)の処 理は、減算 512回からなる。すなわち、全体として 2050回の演算処理で FFTの前段 階の処理が完了する。
[0057] ここで、一般的な DSPでは、積和演算、加算、減算はいずれも 1クロックで処理する ことができる。本実施形態の方法では、積和演算、加算、減算の合計回数は 1025回 であり、特許文献 2の方法では、積和演算、加算、減算の合計回数は 2050回である 。このように、本実施形態の方法を用いることで、従来の特許文献 2の方法を用いる 場合の約半分の時間で、窓関数処理を除く FFTの前段階の処理を行うことができる 。これにより、従来よりも簡素な処理で高速に物標検知処理を行うことができる。
[0058] 次に、第 2の実施形態に係るレーダ装置について図を参照して説明する。
本実施形態のレーダ装置は、第 1の実施形態に示したレーダ装置に対して、時間 領域による重み付け平均差分処理部 91を省略し、 FFT処理部 93の直後に、周波数 領域による重み付け平均差分処理部 96を備えたものであり、他の構成は、第 1の実 施形態に示したレーダ装置と同じである。
図 5は、本実施形態のレーダ装置の主要部を示すブロック図である。
本実施形態のレーダ装置は、送信制御部 10、 VC01、アイソレータ 2、力ブラ 3、サ ーキユレータ 4、アンテナ 5、ミキサ 6、 IF増幅回路 7、 ADコンバータ 8、検出信号処理 部 9を備える。なお、検出信号処理部 9以外の構成は、第 1の実施形態のレーダ装置 と同じであるので、説明は省略する。
[0059] 検出信号処理部 9は、窓関数処理部 92、 FFT処理部 93、重み付け平均差分処理 部 96、ピーク検出部 94、距離 ·速度算出部 95を備える。
[0060] 窓関数処理部 92は、所定サンプリング区間で切り出されたサンプリングデータに対 して窓関数によるフィルタリング処理を行う。なお、窓関数としては、一般的なハニン グ窓ゃハミング窓、ブラックマン =ハリス窓等を用いればよい。
FFT処理部 93は、窓関数処理されたサンプリングデータを FFT (高速フーリエ変 換)処理して、周波数スペクトル (周波数領域でのデータ列)を算出する。 [0061] 重み付け平均差分処理部 96は、次に示す原理に基づいて、窓関数処理されたサ ンプリングデータの周波数スペクトルから、窓関数処理に起因する直流成分を含む 周波数スペクトルを減算する処理を周波数軸上のデータで行うことで、窓関数処理に より重畳される直流成分を除去した周波数スペクトルを算出する。
[0062] 第 1の実施形態に示したように、窓関数で重み付けされたサンプリングデータの平 均値は、式(1)の通りとなり、これを定数 aとおくと、
[0063] [数 3]
Figure imgf000015_0001
[0064] で表される。
[0065] また、窓関数処理された FFT処理前のデータ yは、式(3)で表される。
[0066] ここで、フーリエ変換を F[ ]で表すと、窓関数により重み付けされた平均値を差分 して、窓関数処理されたサンプリングデータのフーリエ変換結果は、 F[y ]となり、
F[y ] =F[ (x -a) h ] 一(5)
で表される。ここで、 Xは純粋な反射信号力 のサンプリングデータであり、 hは窓関 数である。そして、 Xのフーリエ変換結果を X、 aのフーリエ変換結果を A、 hのフー n m m n リエ変換結果を Hとし、畳み込み積分を「 *」で表すと、
m
F[ (x -a) h ]
= (X— A ) * H =X * H — A * H —(6)
m m m m m m m
で表される。
[0067] 式(6)にお!/、て、 X * Hは、元のサンプリングデータを窓関数処理して FFT処理 m m
したものに相当する。すなわち、直流成分除去を行うことなく FFT処理したものに相 当し、本実施形態の FFT処理部 93の出力データ (周波数スペクトル)に相当する。
[0068] 一方、 Aは、 aが定数であることから、直流成分のみとなり、 m=0であれば「a」とな m
り、 m≠0であれば「0」となる。
また、 Hは窓関数 hのフーリエ変換結果であるので、
m n
A 水 H =aH
m m m
で表される。 [0069] これは、直流成分 aが窓関数処理によって、周波数軸上で広げられた結果に相当 し、重み付け平均差分処理部 96で、入力スペクトル力も差分する周波数スペクトルに 相当する。
[0070] これにより、ピーク検出部 94に入力される周波数スペクトルは、 F[y ]、すなわち、サ ンプリングデータに対して窓関数の重み付けを行った平均値を、サンプリングデータ から差分し、その結果を窓関数処理してカゝら FFT処理して得られる周波数スペクトル と同じになる。
[0071] このように、 FFT処理後に周波数スペクトル同士の差分を行うようにしても、窓関数 による直流成分の除去を行うことができる。
[0072] ところで、定数 aは、式 (4)を用いて算出してもよいが、次の方法で算出してもよい。
[0073] aは、直流成分除去のための項であるので、式(5)の直流成分が「0」になるように設 定される。
[0074] したがって、
F[x h ] =X水 H =V
n n m m m
とすると、直流成分すなわち、 m=0のとき、
V -aH =0
o o
となり、
a=V /H 一(7)
o o
で算出することができる。
[0075] ここで、 Vは元のサンプリングデータの窓関数処理後の直流成分であり、 FFT処理
0
時に算出することができる。 Hは窓関数の直流成分であるので、予め算出しておくこ
0
とができる。これにより、 aも簡単に算出することができる。
[0076] 本実施形態のより具体的な処理例を、次に説明する。なお、以下の説明では、原信 号にすでに直流成分が重畳して 、る場合にっ 、て示すが、窓関数処理より直流成 分が重畳する場合も同様の処理で直流成分を除去することができる。
[0077] 図 6 (A)は原信号の波形を示し、 (B)は図 7 (A)のハニング窓で図 6 (A)の原信号 を窓関数処理した信号の波形を示し、 (C)は (B)の信号の FFT処理による周波数ス ぺクトノレを示す„ 07 (A)はハユング窓の波形を示し、 (B)は(A)のハユング窓の周波数スペクトルを 示す。
図 8はピーク検出部 94に入力される信号の周波数スペクトルを示す。
[0078] 図 6 (A)に示すような原信号が入力されると、図 6 (B)に示すような直流成分を含む 窓関数処理後信号が出力される。この信号を FFT処理すると、図 6 (C)に示すよう〖こ
、直流成分を含む周波数スペクトルが生成される。
[0079] 一方、図 7 (A)に示すような振幅「1」のハユング窓を FFTすると、フーリエ変換結果
Hは、
m
[0080] [数 4]
Figure imgf000017_0001
[0081] となり、 Hの絶対値の周波数スペクトルは図 7 (B)となる。
m
[0082] ところで、式(5)に示す
F[y ] =F[ (x -a) h ] =W
とすると、
W =V -aH =V - m m m m
となり、
[0083] [数 5]
Figure imgf000017_0002
[0084] となる。
[0085] すなわち、ピーク検出部 94に入力される直流成分除去処理後の信号 Wとしては、 m 元のサンプリングデータの窓関数処理後の周波数スペクトルに対して、 Wに「0」を代
0 入し、 Wに「V +V Z2」を代入するだけで、周波数スペクトルを得ることができ、図 8
1 1 0
に示すようなスペクトル図となる。
[0086] 図 8に示すように、信号 Wは、 0周波数ビンが 0となり、その隣の 1周波数ビンが図 6 (C)に示した原信号の周波数スペクトル 1周波数ビンから、図 7 (B)に示したハニング 窓の 1周波数ビンに定数 V ZHをかけたものを差分した値となり、 2周波数ビン以降
0 0
は、原信号と同じとなる。
このように、周波数領域で重み付け平均差分処理を行っても、確実に直流成分を 除去することができる。
[0087] 次に、本実施形態の検出信号処理部 9の処理の流れを、図 9に示すフローチャート を参照して説明する。
図 9は、検出信号処理部 9の処理フローを示すフローチャートである。
物標検知が開始されると、まず、検出信号処理部 9は、上り変調区間内の所定サン プリング区間のサンプリングデータを取り込んで、バッファリングする(S21)。
次に、検出信号処理部 9 (窓関数処理部 92)は、サンプリングデータを窓関数処理 する。すなわち、各サンプリングデータに対して対応する窓関数の係数を乗算する(
S22)。
そして、検出信号処理部 9 (FFT処理部 93)は、この窓関数処理されたサンプリン グデータを FFT処理して、上り変調区間の信号 (アップビート信号と称する)の周波 数スペクトルを算出する(S23)。
周波数スペクトルを得ると、検出信号処理部 9 (重み付け平均差分処理部 96)は、 予め算出されている窓関数の周波数スペクトルに、 FFT処理で算出されたサンプリン グデータの直流成分に対応する定数を乗算して、サンプリングデータの周波数スぺ クトルカも減算する(S24)。
[0088] また、検出信号処理部 9は、下り変調区間の所定サンプリング区間のサンプリング データを取り込んで、ノ ッファリングする(S25)。
次に、検出信号処理部 9 (窓関数処理部 92)は、サンプリングデータを窓関数処理 する。すなわち、各サンプリングデータに対して対応する窓関数の係数を乗算する( S26)。
そして、検出信号処理部 9 (FFT処理部 93)は、この窓関数処理されたサンプリン グデータを FFT処理して、下り変調区間の信号 (ダウンビート信号と称する)の周波 数スペクトルを算出する(S27)。 周波数スペクトルを得ると、検出信号処理部 9 (重み付け平均差分処理部 96)は、 予め算出されている窓関数の周波数スペクトルに、 FFT処理で算出されたサンプリン グデータの直流成分に対応する定数を乗算して、サンプリングデータの周波数スぺ クトルカも減算する(S28)。
[0089] このようにそれぞれ直流成分除去された、アップビート信号の周波数スペクトルとダ ゥンビート信号の周波数スぺ外ルとが算出されると、検出信号処理部 9 (ピーク検出 部 94)は、アップビート信号のピーク周波数を検出するとともに、ダウンビート信号の ピーク周波数を検出する。そして、検出信号処理部 9 (距離'速度算出部 95)は、アツ プビート信号のピーク周波数とダウンビート信号のピーク周波数とのペアリングを既知 の方法を用いて行う(S 29)。
検出信号処理部 9 (距離'速度算出部 95)は、ペアとなるアップビート信号のピーク 周波数とダウンビート信号のピーク周波数との和に基づいて、レーダ装置から物標ま での距離を算出する (S30)。また、検出信号処理部 9 (距離'速度算出部 95)は、ぺ ァとなるアップビート信号のピーク周波数とダウンビート信号のピーク周波数との差に 基づいて、レーダ装置に対する物標の相対速度を算出する(S31)。
[0090] 以上のように、本実施形態の構成を用いても、周波数スペクトルに直流成分が重畳 せず、 0周波数ビン近傍のピーク周波数 (スペクトルピーク)を確実に検出することが できる。これにより、自車近傍に存在する物標を確実に検出することができる。
[0091] なお、本実施形態の方法では、窓関数処理と FFT処理とを除けば、ピーク検出の 前段階の処理として、(3— 1) FFT後の周波数スペクトルの 1周波数ビン Wに対して
1
Vから V Z2を差分する処理、および、(3— 2) FFT後の周波数スペクトルの 0周波
1 0
数ビン Wに「0」を代入する処理の 2つの処理が行われる。ここで、サンプリングデー
0
タ数が 512であった場合、(3— 1)の処理は、除算 1回と減算 1回の計 2回の演算から なり、(3— 2)の処理は、代入 1回力もなる。すなわち、全体として 3回の演算処理でピ ーク検出の前段階の処理が完了する。
[0092] 一方、特許文献 2の方法では、前述のように、 2050回の演算処理が必要となる。
[0093] ここで、一般的な DSPでは、積和演算、加算、減算、代入はいずれも 1クロックで処 理することができる。したがって、本実施形態の方法を用いることで、格段に処理負 荷を低減させることができる。これにより、従来よりも簡素な処理で、且つ第 1の実施 形態よりもさらに高速に物標検知処理を行うことができる。
なお、以上に示した各実施形態では、周波数分析のために高速フーリエ変換 (FF T)を用いたが、周波数分析方法として FFTに限られるものではない。周波数分析す べきサンプリングデータを必要なサンプリング区間に切り出す際に、いわゆるトランケ ーシヨンにより周波数分析の結果に直流成分が現れる離散フーリエ変換であれば、 同様に適用できる。

Claims

請求の範囲
[1] 探知用電波である送信信号を送信し、物標からの反射信号を含む受信信号を受信 する送受信手段と、
前記送信信号と前記受信信号との周波数差の信号であるビート信号をサンプリン グするとともに、 AD変換して所定データ数のサンプリングデータ列を生成するサンプ リングデータ列生成手段と、
該サンプリングデータ列のうち所定サンプリング区間のサンプリングデータに対して 所定の窓関数に準じた重み付けを行って、該重み付けを行ったサンプリングデータ の平均値を算出し、当該サンプリング区間のそれぞれのデータ力 前記平均値を減 じて被周波数分析データを求める被周波数分析データ生成手段と、
前記被周波数分析データに対して前記窓関数を乗じる窓関数処理手段と、 窓関数処理された被周波数分析データを離散フーリエ変換により周波数スペクトル を算出することで前記ビート信号の周波数成分を算出し、該周波数成分力 前記物 標の探知を行う物標検知手段と、
を備えたことを特徴とするレーダ装置。
[2] 前記平均値は、前記所定サンプリング区間のサンプリングデータ Xのデータ数を N 、サンプリングデータ番号を n=0, 1, 2, · · · , N— 1とし、各サンプリングデータ Xに 対応する窓関数を hとして、
Figure imgf000021_0001
で、算出される請求項 1に記載のレーダ装置。
探知用電波である送信信号を送信し、物標からの反射信号を含む受信信号を受信 する送受信手段と、
前記送信信号と前記受信信号との周波数差の信号であるビート信号をサンプリン グするとともに、 AD変換して所定データ数のサンプリングデータ列を生成するサンプ リングデータ列生成手段と、
該サンプリングデータ列に対して前記窓関数を乗じる窓関数処理手段と、 窓関数処理された被周波数分析データの離散フーリエ変換により得られる周波数 スペクトルから、該周波数スペクトルの直流成分に応じて決まる補正値で重み付けし てなる前記窓関数の周波数スペクトルを差分することで前記ビート信号の周波数成 分を算出し、該周波数成分から前記物標の探知を行う物標検知手段と、
を備えたことを特徴とするレーダ装置。
[4] 前記補正値は、前記窓関数処理された被周波数分析データの周波数スペクトルの 直流成分を Vとし、窓関数の周波数スペクトルの直流成分を Hとして、
0 0
V /H
0 0
で、算出される請求項 3に記載のレーダ装置。
[5] 前記送受信手段は、
前記探知用電波を、周波数が次第に上昇する上り変調区間と、周波数が次第に下 降する下り変調区間とが時間的に三角波状に繰り返し変化する周波数変調波とし、 前記物標検出手段は、
前記上り変調区間の前記ビート信号と前記下り変調区間の前記ビート信号とに基 づいて、物標の相対距離および相対速度を検出する請求項 1〜4のいずれかに記載 のレーダ装置。
PCT/JP2007/058942 2006-05-30 2007-04-25 レーダ装置 WO2007138812A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006149471 2006-05-30
JP2006-149471 2006-05-30

Publications (1)

Publication Number Publication Date
WO2007138812A1 true WO2007138812A1 (ja) 2007-12-06

Family

ID=38778333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058942 WO2007138812A1 (ja) 2006-05-30 2007-04-25 レーダ装置

Country Status (1)

Country Link
WO (1) WO2007138812A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125489A1 (ja) * 2008-04-11 2009-10-15 パイオニア株式会社 テンポ検出装置及びテンポ検出プログラム
JP2010071958A (ja) * 2008-09-22 2010-04-02 Denso Corp レーダ装置
CN102445689A (zh) * 2011-12-01 2012-05-09 安徽蓝盾光电子股份有限公司 一种具有车辆方向辨别功能的测速雷达系统
CN104251992A (zh) * 2013-06-27 2014-12-31 成都中远信电子科技有限公司 一种连续波测速雷达

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149327A (ja) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp ドップラレーダの信号処理装置
JP2004264234A (ja) * 2003-03-04 2004-09-24 Fujitsu Ten Ltd レーダ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149327A (ja) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp ドップラレーダの信号処理装置
JP2004264234A (ja) * 2003-03-04 2004-09-24 Fujitsu Ten Ltd レーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SINGH D. ET AL.: "An improved windowing technique for heart rate variability power spectrum estimation", JOURNAL OF MEDICAL ENGINEERING & TECHNOLOGY, vol. 29, no. 2, 2005, pages 95 - 101, XP003019801 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009125489A1 (ja) * 2008-04-11 2009-10-15 パイオニア株式会社 テンポ検出装置及びテンポ検出プログラム
JP5008766B2 (ja) * 2008-04-11 2012-08-22 パイオニア株式会社 テンポ検出装置及びテンポ検出プログラム
US8344234B2 (en) 2008-04-11 2013-01-01 Pioneer Corporation Tempo detecting device and tempo detecting program
JP2010071958A (ja) * 2008-09-22 2010-04-02 Denso Corp レーダ装置
CN102445689A (zh) * 2011-12-01 2012-05-09 安徽蓝盾光电子股份有限公司 一种具有车辆方向辨别功能的测速雷达系统
CN104251992A (zh) * 2013-06-27 2014-12-31 成都中远信电子科技有限公司 一种连续波测速雷达

Similar Documents

Publication Publication Date Title
JP4120679B2 (ja) レーダ
US7460058B2 (en) Radar
JP3788322B2 (ja) レーダ
EP3588126A1 (en) Doppler signal processing device and method thereof for interference spectrum tracking and suppression
JP2008232832A (ja) 干渉判定方法,fmcwレーダ
WO2014106907A1 (ja) レーダ装置
JP6279193B2 (ja) 物体検出装置及びセンサ装置
US9753120B2 (en) Method to “zoom into” specific objects of interest in a radar
WO2007138812A1 (ja) レーダ装置
JP2021067461A (ja) レーダ装置及びレーダ信号処理方法
US20210231789A1 (en) Doppler signal processing device and method thereof for interference suppression
JP2007033155A (ja) 移動物体検出装置
JP3505441B2 (ja) Fft信号処理でのピーク周波数算出方法
JP3773779B2 (ja) レーダ信号処理装置
US20220381877A1 (en) Method for removing random noise of radar collection signal in biometric signal measurement radar, and apparatus for same
US6927726B2 (en) Radar
JP2005017143A (ja) 気象レーダ信号処理装置
JPH11271432A (ja) Fmcwレーダ装置
JPH11271431A (ja) Fmcwレーダ装置
WO2023063093A1 (ja) レーダ装置及びレーダ装置の干渉対策検出方法
JP6881531B2 (ja) 信号源推定装置
JPH11352215A (ja) レーダ装置及びfmcw測距・測速度方法
KR100987306B1 (ko) 신호 처리 장치 및 그 방법
JP7124329B2 (ja) 信号処理装置
JP2000147101A (ja) レーダ信号処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP