WO2007136023A1 - ウエハ保持体とその製造方法及び半導体製造装置 - Google Patents

ウエハ保持体とその製造方法及び半導体製造装置 Download PDF

Info

Publication number
WO2007136023A1
WO2007136023A1 PCT/JP2007/060327 JP2007060327W WO2007136023A1 WO 2007136023 A1 WO2007136023 A1 WO 2007136023A1 JP 2007060327 W JP2007060327 W JP 2007060327W WO 2007136023 A1 WO2007136023 A1 WO 2007136023A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer holder
wafer
semiconductor manufacturing
manufacturing apparatus
flow path
Prior art date
Application number
PCT/JP2007/060327
Other languages
English (en)
French (fr)
Inventor
Masuhiro Natsuhara
Tomoyuki Awazu
Kenji Shinma
Hirohiko Nakata
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US11/996,728 priority Critical patent/US20090283034A1/en
Publication of WO2007136023A1 publication Critical patent/WO2007136023A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Definitions

  • Wafer holder manufacturing method thereof, and semiconductor manufacturing apparatus
  • the present invention relates to a wafer holder used in a semiconductor manufacturing apparatus, and more specifically, a wafer holder for processing a wafer at a temperature lower than room temperature, and a semiconductor equipped with the wafer holder. It relates to a manufacturing apparatus.
  • a film such as an insulating film or a conductor film is formed on the wafer surface by heating the wafer or generating plasma.
  • Ceramic wafer holders are known as wafer holders for performing these processes, so-called susceptors.
  • Japanese Patent Publication No. 06-028258 discloses that a heating body is embedded in a ceramic wafer holder, and further a convex support portion is attached, and a highly reliable wafer holder. Is supposed to be obtained.
  • Japanese Patent Laid-Open No. 2002-25913 discloses a susceptor in which a metal heat sink is attached to a ceramic heater, and it is assumed that the ceramic heater and the metal heat sink can be attached by a simple method.
  • Patent Document 1 Japanese Patent Publication No. 06-028258
  • Patent Document 2 JP 2002-025913 A
  • the conventional wafer holder described above is a wafer holder that assumes that the wafer is processed at a temperature higher than room temperature, for example, a high temperature of 400 ° C or higher, in recent years, It was difficult to apply to the treatment at a temperature below room temperature.
  • the present invention can be applied to wafer processing at a temperature below room temperature, and provides a wafer holder particularly suitable for use in a CVD apparatus. It is the purpose.
  • the present invention provides a wafer holder having a wafer placement surface for placing a wafer, the wafer holder becomes a ceramic force, and a coolant is caused to flow therein.
  • the present invention provides a wafer holder for a semiconductor manufacturing apparatus, characterized by having a flow path for the purpose.
  • the present invention is a method for manufacturing a wafer holding body having a flow path for flowing a refrigerant inside the ceramic force, the flow path being formed on a single ceramic substrate, and at least Provided is a method for manufacturing a wafer holder for a semiconductor manufacturing apparatus, characterized in that at least one ceramic substrate is further bonded on and / or below the ceramic substrate so as to cover the flow path.
  • the present invention provides a semiconductor manufacturing apparatus, particularly a CVD apparatus, characterized in that the above-described wafer holder is mounted.
  • the flow path for allowing the coolant to flow directly into the ceramic wafer holder is provided, it can be used for processing such as film formation at room temperature or lower.
  • the wafer holder is made of ceramics, it eliminates contamination by metal components and has high corrosion resistance against corrosive gases used during film formation and cleaning.
  • a high wafer holder and semiconductor manufacturing apparatus can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a specific example of a wafer holder of the present invention.
  • a flow path through which a coolant for cooling the wafer holder flows is formed inside the ceramic wafer holder. Therefore, the refrigerant flowing in the flow path can take away the heat of the wafer holder, and the wafer holder can always be efficiently maintained at a low temperature. Therefore, it can be suitably used for film formation and other processes that are particularly demanded in recent years at room temperature or lower. For example, even if the wafer temperature rises during film formation, the temperature is kept below room temperature. Therefore, film formation with a uniform film thickness can be realized.
  • the coolant flowing through the flow path in the wafer holder there are no particular restrictions on the coolant flowing through the flow path in the wafer holder, and examples include water and organic solvents.
  • water due to the recent trend of low film formation temperature, water cannot be used at 0 ° C. or lower, so it is preferable to use an organic solvent such as Galden-ya alcohol.
  • Galden-ya alcohol By using these solvents, it can be used by lowering the freezing point. For example, it can be used at temperatures below 0 ° C by mixing water and alcohol.
  • a low-temperature gas such as nitrogen, helium or air.
  • the flow path formed in the wafer holder is preferably formed in an area of 80% or more of the diameter of the wafer to be mounted.
  • the diameter of the wafer is 200 mm
  • the flow path is formed from the center of the wafer holder to at least the same area as the diameter of the wafer.
  • the surface roughness of the inner wall of the flow path is preferably 5 m or less in terms of Ra.
  • the surface roughness of the inner wall of the flow path is greater than 5 m, it is not preferable, especially when the refrigerant is a liquid, because the inner wall surface of the flow path is easily eroded by the refrigerant and the wall surface is liable to deteriorate.
  • various shapes such as a circle, a rectangle, an ellipse, a semicircle, and a triangle, which are not particularly limited, can be used.
  • the material used for the wafer holder may be aluminum nitride, silicon carbide, silicon nitride, alumina, mullite, cordierite, or the like, as long as it is ceramic. Of these, aluminum nitride is preferred among these. Since aluminum nitride has high corrosion resistance against the corrosive gas used in the semiconductor manufacturing apparatus, the generation of particles in the chamber can be suppressed as much as possible. In addition, since aluminum nitride has a relatively high thermal conductivity and a small specific heat, the wafer holder can be cooled P uniformly and efficiently.
  • the surface roughness of the wafer holder itself is preferably 0.01 ⁇ m or more in terms of Ra.
  • the surface roughness is 0.01 ⁇ m or more, minute projection force on the surface heat exchange is performed, so heat exchange with a large surface area is possible, and the force that can cool the wafer holder efficiently. is there.
  • a temperature measuring element such as a thermocouple is arranged in a recess formed in the wafer holder, and the refrigerant is cooled based on the temperature measured by the temperature measuring element. Control the temperature of the flicker!
  • a high-frequency generating electrode can be provided inside the wafer holder of the present invention.
  • plasma can be generated near the wafer mounting surface, and a film can be formed on the wafer.
  • the high frequency generating electrode is preferably embedded in the wafer holder.
  • Examples of the form of the high-frequency generating electrode include a metal mesh, a metal foil, and a metal film. Among these, a film-like metal is particularly preferable. In the case of an electrode for high frequency generation that also has a film-like metal force, it is difficult for the high frequency to be used to leak to the lower part of the film, so that stable plasma generation can be obtained relatively easily.
  • the material of the high-frequency generating electrode that can be embedded in the ceramic wafer holder must match the thermal expansion coefficient of the ceramic. Therefore, it is preferable to use metals with relatively low thermal expansion coefficients among metals, such as metals and alloys such as tungsten, molybdenum, and tantalum! /.
  • the wafer holder of the present invention In order to install the wafer holder of the present invention in the chamber of the semiconductor manufacturing apparatus, it is preferable to provide a support on the surface opposite to the wafer mounting surface.
  • the support has a cylindrical shape such as a cylindrical shape
  • the temperature of the cooling pipe for supplying the refrigerant, the electrode components connected to the high frequency generating electrode, and the wafer holder are measured in the cylindrical support. It can be used to store a temperature measuring element.
  • the cylindrical support can be hermetically sealed with respect to the wafer holder, and can also be hermetically sealed with respect to the chamber.
  • the cylindrical support material is the same as that of the wafer holder, so that the generation of stress due to the difference in thermal expansion coefficient can be suppressed, and highly reliable bonding is achieved. It can be a structure.
  • the metal parts stored in the cylindrical support body are not exposed in the chamber, and the occurrence of metal contamination can be suppressed.
  • the cylindrical support body when the cylindrical support body is open to the atmosphere, when the wafer holder is cooled, condensation occurs around the cooling pipe that supplies the refrigerant. It becomes easy and corrosion of metal parts and ceramics may progress. In that case, dew condensation can be prevented by supplying a dry gas into the cylindrical support. It is also possible to prevent dew condensation by blocking the inside of the cylindrical support body from the outside air and supplying dry gas to the inside. In any case, the dew point of the atmosphere in the cylindrical support body must be at least 0 ° C or less.
  • the atmosphere in the cylindrical support body can be made substantially the same as the atmosphere in the chamber.
  • the cylindrical support can be fixed to the wafer holder with a plurality of screws, for example.
  • the merit of this method is that the parts in the cylindrical support body do not condense, and the structure can be made relatively simple.
  • corrosion of metal parts can be reduced by sending an inert gas into the cylindrical support body and making the atmosphere in the cylindrical support body relatively higher than the pressure in the chamber. Can do. Even in this case, the atmosphere in the cylindrical support body needs to have a dew point of 0 ° C or less.
  • a wafer holder having a coolant flow path therein is manufactured by bonding a plurality of ceramic substrates. At this time, a flow path is formed on one ceramic substrate, and at least the flow of the ceramic substrate is reduced. It can be manufactured by mounting and bonding another ceramic substrate on the surface on which the path is formed so as to cover the flow path.
  • This method is preferable because the flow path is formed in the sintered ceramic substrate, so that the flow path can be formed with relatively high accuracy and the flow path is hardly deformed.
  • the flow path is partially narrowed or widened.
  • the flow velocity partially increases or decreases, so that the wall surface of the flow path is easily corroded by the refrigerant.
  • a known bonding paste can be used for bonding the ceramic substrates.
  • the wafer holder is aluminum nitride
  • This paste is particularly preferred because it has excellent corrosion resistance because the main component of the bonding layer, which is formed by the force of good wettability with the aluminum nitride substrate, is aluminum nitride when bonded by heat treatment.
  • the content of aluminum nitride is preferably 1% by weight or more. If the aluminum nitride content is less than 1% by weight, the corrosion resistance may be inferior because there is little aluminum nitride in the bonding layer components. In addition, when the content of aluminum nitride exceeds S40% by weight, the adhesive strength is lowered, so that it is preferably 40% by weight or less.
  • the aluminum nitride content is particularly preferably 5 to 30% by weight, and more preferably in the range of 15 to 25% by weight because a particularly stable bonding layer can be obtained.
  • the content of Sani ⁇ aluminum in the bonding paste is preferably a Dearuko 20-80 0/0.
  • the content of aluminum oxide is less than 20% by weight or more than 80% by weight, the appearance temperature of the liquid phase for bonding becomes high, and the aluminum nitride substrate is likely to be deformed. This is preferable.
  • the content is 40-60 heavy If the content is about this level, bonding can be performed at a temperature lower than the sintering temperature of the aluminum nitride, so that deformation of the aluminum nitride substrate can be suppressed.
  • the content of the rare earth oxide in the bonding paste is preferably 10 to 50% by weight.
  • a content in this range is preferable because it tends to react with acid aluminum and easily generate a liquid phase.
  • rare earth oxides are excellent in wettability with aluminum nitride, if the content is 20 to 40% by weight, stable bonding can be realized, and the bonding strength between the bonding layer and the aluminum nitride substrate can be achieved. It is more preferable because the interface can be hermetically bonded.
  • the rare earth oxide used in the bonding paste is not particularly limited, but is preferably the same type as the sintering aid used in the aluminum nitride substrate to be bonded.
  • the type of rare earth oxide is not limited.
  • rare earth oxides yttrium oxide is particularly preferred because of its excellent corrosion resistance and wettability with nitrided nitride.
  • a predetermined amount of aluminum nitride powder, aluminum oxide powder, and rare earth oxide powder are mixed, and an organic solvent, a binder, and a plasticizer as necessary. Is added and kneaded to prepare a paste. This paste is applied to the surface of the aluminum nitride substrate to be bonded, degreased as necessary, and another aluminum nitride substrate is placed on the coated surface and heat treated to form a strong bonding layer. can do.
  • the temperature and pressure at the time of bonding are not particularly limited, but may be any temperature and pressure that do not deform the aluminum nitride substrate.
  • the heat treatment temperature is preferably about 1600 to 2000 ° C., although it depends on the composition of the paste.
  • the pressure to be applied, lkgZcm 2 or more preferably tool LOkgZcm 2 than on are more preferable.
  • the metal film electrode When the high frequency generating electrode is formed in the wafer holder, it is particularly preferable to form the metal film electrode by screen printing. According to screen printing, the film thickness obtained is relatively uniform, and the cost is low and the mass productivity is excellent. Electricity used for screen printing As the electrode forming paste, a paste obtained by adding a binder, an organic solvent, and, if necessary, a plasticizer to a refractory metal powder such as tungsten, molybdenum, or tantalum may be used.
  • the electrode forming paste is applied onto a ceramic substrate by screen printing, dried, and then fired in a non-acidic atmosphere at a temperature of 1600 to 2000 ° C. An electrode for high frequency generation of a metal film is obtained. Thereafter, if the ceramic substrate is bonded using the bonding method described above, a wafer holder having a high-frequency generating electrode therein can be manufactured relatively easily. As a matter of course, bonding for forming a flow path for flowing a coolant and bonding for embedding a high-frequency generating electrode can be performed at the same time. The body can be manufactured.
  • the wafer holder according to the present invention can be suitably used in a semiconductor manufacturing process where it is necessary to cool the wafer.
  • it can be mounted on a semiconductor manufacturing apparatus to perform processes such as etching, ashing, and CVD.
  • a CVD apparatus an efficient film formation can be realized by mounting a wafer holder in which a high frequency generating electrode is embedded.
  • yttrium oxide powder as a sintering aid was added to 99.5% by weight of aluminum nitride powder, an organic solvent and a binder were further added, and a ball mill was mixed to prepare a slurry.
  • the obtained slurry was made into granules by spray drying, and a compact was produced by press molding.
  • the compact was degreased at 800 ° C. in a nitrogen atmosphere and then sintered at 1900 ° C. in a nitrogen atmosphere to obtain an aluminum nitride sintered body.
  • Three aluminum nitride sintered bodies were formed by the above-described method, and each was used as an aluminum nitride substrate. That is, one of them was processed to a diameter of 330 mm and a thickness of 10 mm, and then a coolant flow path having a depth of 3 mm and a width of 6 mm was formed by machining. Since the diameter of the wafer to be mounted on the wafer holder is 300 mm, the flow path formation area was an area with a diameter of 310 mm from the center. The surface roughness of the inner wall of the channel was Ra / lO / zm. And the inlet of the channel The outlet was formed so as to be near the center of the substrate.
  • Tungsten paste such as tungsten powder, binder, and organic solvent
  • tungsten powder such as tungsten powder, binder, and organic solvent
  • screen printing degreased at 800 ° C, fired at 1850 ° C, and high frequency A generating electrode was formed.
  • the remaining one substrate was processed to have a diameter of 330 mm and a thickness of 3 mm.
  • the obtained wafer holder was countersunk from the opposite side of the wafer mounting surface of the wafer holder 1 to the high-frequency generating electrode 2, and a tungsten electrode was attached to this. Installed.
  • a stainless steel cooling pipe 4 was attached to the flow path 3 of the wafer holder 1. Further, a concave portion was formed on the surface of the wafer holder 1 opposite to the wafer mounting surface, and a sheath type thermocouple 5 was attached. Note that a nickel electrode pipe 6 having a through hole in the upper peripheral wall was joined to the tungsten electrode of the high frequency generating electrode 2 so that an inert gas could be supplied to the inside thereof.
  • the flange portion of the cylindrical support 7 was joined to the surface of the wafer holder 1 opposite to the wafer mounting surface by screwing.
  • This cylindrical support 7 is made of aluminum nitride, and has a flange portion with a diameter of 80 mm, an outer diameter of 60 mm, an inner diameter of 50 mm, and a height of 200 mm.
  • the cooling pipe 4, the thermocouple 5, and the electrode pipe 6 were accommodated in the cylindrical support body 7.
  • the wafer holder 1 was placed in the chamber of the CVD apparatus.
  • the refrigerant Galden was supplied through the cooling pipe 4 housed in the cylindrical support 7 and flowed into the flow path 3 of the wafer holder 1.
  • the electrode pipe 6 is supplied with 2 degassed helium gas at a dew point of 70 ° C as an inert gas.
  • the temperature of the wafer holder 1 was controlled at 20 ° C.
  • a wafer having a diameter of 300 mm was placed on the wafer placement surface, and a film forming gas was introduced into the chamber.
  • a film was formed on the wafer by applying a high frequency of 13.56 MHz to the high-frequency generating electrode 2 to generate plasma, a uniform film could be formed on the wafer.
  • the temperature distribution of the wafer was measured with a thermometer, and it was possible to control it to 20 ° C ⁇ 1 ° C.
  • Example 1 flow path processing was performed on the aluminum nitride substrate. At that time, the flow path formation region was changed as shown in Table 1 below, and the temperature distribution was measured when the temperature of each wafer holder was controlled at 20 ° C. The results obtained are shown in Table 1 below. In Table 1 below, the results of Example 1 are also shown for reference. For wafer temperature measurement, a 300 mm diameter wafer thermometer with 29 measurement points was used.
  • An aluminum nitride wafer holder was produced in the same manner as in Example 1 above. However, the flow path The corrosivity of aluminum nitride was confirmed by measuring the pH of the refrigerant after the test by flowing a water-alcohol mixed solvent adjusted to -10 ° C for 1000 hours while changing the surface roughness.
  • Aluminum nitride is generally stable because an oxide film is formed on the surface in the air, but an oxide film such as a fracture surface or a polished surface is formed. Since the ammonia is generated when the untouched part comes into contact with water, it was judged that the corrosion of the flow path had progressed if the pH touched the alkaline side. The results obtained are shown in Table 2 below. The pH before the test was 7 in all cases.
  • a wafer holder was prepared in the same manner as in Example 1, and helium gas was supplied into the electrode pipe. At that time, the dew point of helium gas was changed, and the temperature of the wafer holder was controlled at 10 ° C, and a 1000 hour durability test was conducted. After this endurance test, the corrosion state of the stainless steel cooling pipe and the nickel electrode pipe was visually confirmed, and the results are shown in Table 3 below.
  • a wafer holder was produced in the same manner as in Example 1, but the material was changed to silicon nitride, alumina, mullite, cordierite, or silicon carbide.
  • the temperature of these wafer holders was controlled in the same manner as in Example 1, and the temperature distribution was measured.
  • the obtained results are shown in Table 4 below together with the results in Example 1.
  • aluminum nitride was the best thermal uniformity of the wafer.
  • Aluminum nitride (Example 1) 1.0

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

明 細 書
ウェハ保持体とその製造方法及び半導体製造装置
技術分野
[0001] 本発明は、半導体製造装置に使用されるウェハ保持体に関するものであり、より特 定的には常温より低い温度でウェハを処理するためのウェハ保持体、及びそれを搭 載した半導体製造装置に関する。
背景技術
[0002] 従来から半導体製造プロセスにおいて、例えば CVD装置などにおいては、ウェハ を加熱し、あるいはプラズマを発生させるなどして、ウェハ表面に絶縁膜や導体膜な どの成膜を行っている。それらの処理を行うためのウェハ保持体、いわゆるサセプタ として、セラミックス製のウェハ保持体が知られている。
[0003] 例えば、特公平 06— 028258号公報などには、セラミックス製のウェハ保持体に発 熱体を埋設し、更には凸状支持部を取り付けることが記載され、信頼性の高いウェハ 保持体が得られるとしている。また、特開 2002— 25913号報には、セラミックスヒータ に金属放熱板が取り付けられたサセプタが開示され、セラミックスヒータと金属放熱板 は簡単な手法で取り付けられるとして 、る。
[0004] 特許文献 1 :特公平 06— 028258号公報
特許文献 2 :特開 2002— 025913号報
発明の開示
発明が解決しょうとする課題
[0005] 近年では、このような CVD装置にっ 、て、成膜温度の低温化が進み、場合によつ ては室温以下の温度で成膜する必要が生じている。また、チャンバ一内の金属成分 力 Sコンタミネーシヨンとなり、ウェハを汚染することがあるため、コンタミネーシヨンの発 生を抑えることも要望されて 、る。
[0006] し力しながら、上記した従来のウェハ保持体は、 、ずれも常温以上の温度、例えば 400°C以上の高温でウェハを処理することを想定したウェハ保持体であるため、近 年における常温以下の温度での処理に適用することは困難であった。 [0007] 本発明は、このような従来の事情に鑑み、常温以下の温度でのウェハの処理に適 用することができ、特に CVD装置での使用に適したウェハ保持体を提供することを 目的とするものである。
課題を解決するための手段
[0008] 上記目的を達成するため、本発明は、ウェハを載置するためのウェハ載置面を有 するウェハ保持体であって、該ウェハ保持体がセラミックス力 なり、その内部に冷媒 を流すための流路を有することを特徴とする半導体製造装置用ウェハ保持体を提供 するものである。
[0009] また、本発明は、セラミックス力 なり、その内部に冷媒を流すための流路を有する ウェハ保持体の製造方法であって、 1枚のセラミックス基板上に流路を形成し、少なく とも該流路を覆うように該セラミックス基板の上及び Z又は下に更に少なくとも 1枚の セラミックス基板を接合することを特徴とする半導体製造装置用ウェハ保持体の製造 方法を提供する。
[0010] 更に、本発明は、上記したウェハ保持体を搭載したことを特徴とする半導体製造装 置、特に CVD装置を提供するものである。
発明の効果
[0011] 本発明によれば、セラミックス製のウェハ保持体の内部に直接冷媒を流す流路を具 備しているために、常温以下の温度での成膜などの処理に使用することができる。し 力も、ウェハ保持体はセラミックス製であることから、金属成分によるコンタミネーシヨン をなくし、成膜時やクリーニング時に使用する腐食性ガスに対しても高い耐食性を有 しているため、信頼性の高いウェハ保持体及び半導体製造装置を提供することがで きる。
図面の簡単な説明
[0012] [図 1]本発明のウェハ保持体の一具体例を示す概略の断面図である。
符号の説明
[0013] 1 ウェハ保持体
2 高周波発生用電極 5 熱電対
6 電極パイプ
7 筒状支持体
発明を実施するための最良の形態
[0014] 本発明においては、セラミックス製のウェハ保持体の内部に、ウェハ保持体を冷却 するための冷媒が流れる流路が形成されている。そのため、流路を流れる冷媒がゥ ェハ保持体力 熱を奪い、ウェハ保持体を常に効率的に低温に維持することができ る。従って、近年に特に要望されている室温以下の温度での成膜その他の処理に好 適に使用することができ、例えば成膜中にウェハの温度が上昇しても室温以下の温 度に抑えることができるため、均一な膜厚での成膜を実現することができる。
[0015] ウェハ保持体内の流路に流す冷媒としては、特に制限はないが、水や有機溶剤な どがあげられる。しかし、近年における成膜温度の低温ィ匕の傾向から、水は 0°C以下 では使用できな 、ため、ガルデンゃアルコールなどの有機溶剤を用いることが好まし い。これらの溶剤を用いることによって、凝固点降下させることで使用することもできる 。例えば水とアルコールを混合させることで、 0°C以下の温度でも使用することができ る。特に水は比熱が他の冷媒に比較して大きいため、効率的な冷却が期待される。 また、これらの冷媒よりも冷却効率は劣るものの、低温の気体、例えば窒素やヘリウム 、空気なども使用することが可能である。
[0016] ウェハ保持体内に形成される流路については、搭載するウェハの直径に対して 80 %以上の領域に流路が形成されていることが好ましい。例えば、ウェハの直径が 200 mmの場合には、少なくともウェハ保持体の中心から直径 160mmの領域まで流路が 存在することが好ましい。この領域まで流路が存在しない場合、ウェハ保持体の外周 部が周囲の雰囲気力 熱を吸収し、ウェハの外周部付近の温度が上昇するため、均 一な成膜が難しくなる。特に、ウェハ保持体の中心から少なくともウェハの直径と同じ 領域まで流路が形成されて 、ることが更に好ま U、。この程度の領域まで冷媒の流 路が形成されていると、ウェハ端部の温度上昇もなぐ均一な成膜をすることができる [0017] また、流路の内壁の表面粗さは、 Raで 5 m以下であることが好ましい。流路内壁 の表面粗さが 5 mよりも大きくなると、特に冷媒が液体の場合には、流路の内壁表 面が冷媒で侵食されやすくなり、壁面が劣化しやすくなるため好ましくない。尚、流路 の断面形状に関しては、特に制約はなぐ円形、四角形、楕円形、半円形、三角形な どさまざまな形状を取ることができる。
[0018] ウェハ保持体に使用する材料は、セラミックスであれば特に制約はなぐ窒化アルミ ユウム、炭化珪素、窒化珪素、アルミナ、ムライト、コージエライトなどを使用することが できる。し力し、これらの中では窒化アルミニウムが好適である。窒化アルミニウムは 半導体製造装置で使用される腐食性ガスに対する耐食性が高いため、チャンバ一 内におけるパーティクルの発生を極力抑制することができる。また、窒化アルミニウム は比較的熱伝導率が高ぐ比熱も小さいため、均一且つ効率的にウェハ保持体を冷 去 Pすることができる。
[0019] また、ウェハ保持体自体の表面粗さは、 Raで 0.01 μ m以上であることが好ましい。
表面粗さが 0.01 μ m以上であれば、表面の微小な突起力 熱交換が行われるため 、広い表面積での熱交換が可能となり、効率的にウェハ保持体を冷却することができ る力 である。尚、ウェハ保持体における温度制御は、例えばウェハ保持体に形成さ れた凹部に熱電対などの測温素子を配置し、その測温素子で測定した温度に基づ V、て冷媒を冷却するチラ一などの温度を制御すればよ!、。
[0020] 本発明のウェハ保持体の内部には、高周波発生用電極を備えることができる。高 周波発生用電極を備えることによって、ウェハ載置面の近くにプラズマを発生させ、 ウェハ上に膜生成することができる。高周波発生用電極は、ウェハ保持体内に埋設 されていることが好ましい。
[0021] 高周波発生用電極の形態としては、金属メッシュや金属箔、あるいは金属膜などを あげることができるが、これらのうち特に膜状の金属が好ましい。膜状金属力もなる高 周波発生用電極の場合、使用する高周波が膜の下部に漏れにくいため、安定したプ ラズマの発生が比較的簡単に得られる。セラミックス製のウェハ保持体中に埋設でき る高周波発生用電極の材質としては、セラミックスとの熱膨張係数のマッチングが必 要なため、金属の中でも比較的熱膨張係数の小さな金属、例えばタングステン、モリ ブデン、タンタルなどの金属や合金であることが好まし!/、。
[0022] 本発明のウェハ保持体は、半導体製造装置のチャンバ一内に設置するために、ゥ ェハ載置面とは反対側の面に、支持体を設けることが好ましい。例えば、支持体を円 筒形などの筒状とすれば、その筒状支持体内に、冷媒を供給するための冷却配管、 高周波発生用電極に接続された電極部品、ウェハ保持体の温度を測定するための 測温素子などを収納することができる。
[0023] 上記筒状支持体は、ウェハ保持体に対して気密にシールし、更にチャンバ一に対 しても気密にシールすることができる。このような気密シールの構造にする場合、筒状 支持体の材質をウェハ保持体の材質と同一にすることにより、熱膨張係数差による応 力の発生を抑えることができ、信頼性の高い接合構造とすることができる。また、筒状 支持体内に収納した金属部品がチャンバ一内に露出せず、金属コンタミネーシヨン の発生を抑制することができるため好まし 、。
[0024] ただし、上記気密シールの構造において、筒状支持体内が大気に開放されている と、ウェハ保持体を冷却している場合には、冷媒を供給する冷却配管を中心に結露 が発生しやすくなり、金属部品やセラミックスの腐食が進むことがある。その場合には 、筒状支持体内に乾燥した気体を供給することによって、結露を防止することができ る。また、筒状支持体内を外気と遮断し、内部に乾燥気体を供給することで結露を防 止することも可能である。いずれの場合も、筒状支持体内の雰囲気の露点は、少なく とも 0°C以下であることが必要である。
[0025] また、上記気密シールとは別の形態として、筒状支持体内の雰囲気を、チャンバ一 内の雰囲気と実質的に同一にすることができる。この場合の筒状支持体は、例えば、 ウェハ保持体に複数のネジで固定することができる。この手法のメリットは、筒状支持 体内の部品が結露せず、比較的簡単な構造とすることができる点にある。勿論この構 造の場合にも、筒状支持体内に不活性ガスを送り込み、相対的に筒状支持体内の 雰囲気をチャンバ一内の圧力よりも高くすることで、金属部品の腐食を低減すること ができる。この場合においても、筒状支持体内の雰囲気は、露点が 0°C以下であるこ とが必要である。 [0026] 次に、本発明によるウェハ保持体の製造方法を説明する。内部に冷媒の流路を備 えるウェハ保持体は、複数枚のセラミックス基板を接合して製造するが、その際に、 1 枚のセラミックス基板上に流路を形成し、このセラミックス基板の少なくとも流路を形成 した面に、流路を覆うように別のセラミックス基板を載せて接合することにより、製造す ることがでさる。
[0027] この方法にぉ 、ては、焼結したセラミックス基板に流路を形成するため、比較的精 度良く流路が形成できると共に、流路の変形が生じにくいため好ましい。例えば、未 焼成のセラミックス成形体に流路を形成した後、これを焼結する方法では、部分的に 流路が狭くなつたり広くなつたりする。このような流路の場合、特に冷媒が液体である 場合には、部分的に流速が速くなつたり遅くなつたりするため、冷媒による流路の壁 面の腐食が進みやすくなる。
[0028] セラミックス基板の接合には、公知の接合ペーストを用いることができる。特に、ゥェ ハ保持体が窒化アルミニウムである場合、窒化アルミニウム、酸ィ匕アルミニウム、希土 類酸化物の混合物力 なるペーストの使用が好ましい。このペーストは、熱処理して 接合する際に、窒化アルミニウム基板との濡れ性が良いば力りでなぐ出来上がった 接合層の主成分が窒化アルミニウムとなるため、耐食性にも優れるので特に好ま Uヽ
[0029] 上記窒化アルミニウム基板の接合ペーストでは、窒化アルミニウムの含有量が 1重 量%以上であることが好ましい。窒化アルミニウムの含有量が 1重量%未満では、接 合層成分中に窒化アルミニウムが少ないため、耐食性に劣ることがある。また、窒化 アルミニウムの含有量力 S40重量%を超えると密着強度の低下を引き起こすため、 40 重量%以下であることが好まし 、。特に好まし 、窒化アルミニウムの含有量は 5〜30 重量%であり、更に 15〜25重量%の範囲において特に安定した接合層が得られる ため一層好ましい。
[0030] また、上記接合ペースト中の酸ィ匕アルミニウムの含有量は、 20〜80重量0 /0であるこ とが好ましい。酸ィ匕アルミニウムの含有量が 20重量%より少ない場合、あるいは 80重 量%より多い場合には、接合するための液相の出現温度が高くなり、窒化アルミ-ゥ ム基板の変形が生じやすくなるため好ましくな 、。特に好ま 、含有量は 40〜60重 量%であり、この程度の含有量であれば、窒化アルミニウムの焼結温度より低い温度 で接合することができるため、窒化アルミニウム基板の変形を抑制することができる。
[0031] 更に、上記接合ペースト中の希土類酸ィ匕物の含有量は、 10〜50重量%であること が好ましい。この範囲の含有量であれば、酸ィ匕アルミニウムと反応して液相を発生し やすくなるため好ましい。特に希土類酸ィ匕物は窒化アルミニウムとの濡れ性に優れて いるため、その含有量が 20〜40重量%であれば、安定した接合を実現でき、し力も 接合層と窒化アルミニウム基板との接合界面を気密に接合することができるため更に 好ましい。
[0032] 上記接合ペーストに使用する希土類酸ィ匕物としては、特に制約はないが、接合す べき窒化アルミニウム基板に使用されている焼結助剤と同じ種類であることが好まし い。窒化アルミニウム基板に焼結助剤が含まれていない場合には、希土類酸化物の 種類は問わない。希土類酸ィ匕物の中では、イットリウムの酸ィ匕物が耐食性や、窒化ァ ルミ-ゥムとの濡れ性の面で優れて 、るため、特に好まし 、。
[0033] 具体的な窒化アルミニウム基板の接合方法としては、所定量の窒化アルミニウム粉 末、酸化アルミニウム粉末、希土類酸化物粉末を混合し、これに有機溶剤、バインダ 一、必要に応じて可塑剤などを添加し、混練してペーストを作製する。このペーストを 接合すべき窒化アルミニウム基板の表面に塗布し、必要に応じて脱脂処理を行 ヽ、 その塗布面に別の窒化アルミニウム基板を載せて、熱処理を行うことにより、強固な 接合層を形成することができる。
[0034] 接合時の温度と圧力に関しては、特に制約はないが、窒化アルミニウム基板が変 形しない程度の温度と圧力であればよい。具体的には、熱処理温度は、ペーストの 組成にもよるが、 1600〜2000°C程度が好適である。また、熱処理の際に、接合面 に対して垂直方向に圧力を加えることにより、欠陥の少ない接合層を形成することが できるため好ましい。加える圧力としては、 lkgZcm2以上が好ましぐ lOkgZcm2以 上が更に好ましい。
[0035] ウェハ保持体内に高周波発生用電極を形成する場合には、特にスクリーン印刷に より金属膜の電極を形成することが好ましい。スクリーン印刷によれば、得られる膜厚 が比較的均一であり、コストも安ぐ量産性に優れている。スクリーン印刷に用いる電 極形成用ペーストは、タングステン、モリブデン、タンタルなどの高融点金属粉末に、 バインダーや有機溶剤、必要に応じて可塑剤などを加え、ペースト状にしたものを使 用すればよい。
[0036] 具体的には、セラミックス基板上にスクリーン印刷により上記電極形成用ペーストを 塗布し、乾燥した後、非酸ィ匕性雰囲気中にて 1600〜2000°Cの温度で焼成すること により、金属膜の高周波発生用電極が得られる。その後、上記した接合方法を用い てセラミックス基板を接合すれば、内部に高周波発生用電極を有するウェハ保持体 を比較的容易に製造することができる。また当然のことであるが、冷媒を流す流路を 形成するための接合と、高周波発生用電極を埋設するための接合を同時に実施す ることができ、この同時接合によって比較的安価にウェハ保持体を製造することがで きる。
[0037] 本発明によるウェハ保持体は、ウェハを冷却する必要がある半導体製造工程にお いて好適に使用することができる。例えば、半導体製造装置に搭載して、エッチング やアツシング、 CVDなどの処理を実施することができる。また、特に CVD装置におい ては、高周波発生用電極を埋設したウェハ保持体を搭載することにより、効率的な成 膜を実現することができる。
実施例
[0038] [実施例 1]
窒化アルミニウム粉末 99.5重量%に焼結助剤として酸化イットリウム粉末 0.5重量 %加え、更に有機溶剤とバインダーを加え、ボールミル混合してスラリーを作製した。 得られたスラリーをスプレードライにより顆粒とし、プレス成形により成形体を作製した 。その成形体を窒素雰囲気中にて 800°Cで脱脂した後、窒素雰囲気中において 19 00°Cで焼結し、窒化アルミニウム焼結体を得た。
[0039] 上記手法により 3枚の窒化アルミニウム焼結体を形成し、それぞれ窒化アルミニウム 基板とした。即ち、そのうちの 1枚を直径 330mm、厚み 10mmに加工した後、機械 加工により深さ 3mm、幅 6mmの冷媒用の流路を形成した。ウェハ保持体に搭載す るウェハの直径は 300mmであるため、流路の形成領域は中心から直径 310mmの 領域とした。また、流路内壁の表面粗さは、 Raで l.O /z mとした。また、流路の入口と 出口は、基板の中心部付近になるように形成した。
[0040] 次に、もう 1枚の基板は、直径 330mm、厚み 5mmに加工した。この片側の面の中 心から直径 320mmの領域に、タングステン粉末、バインダー、有機溶剤など力もな るタングステンペーストをスクリーン印刷により塗布し、 800°Cで脱脂した後、 1850°C で焼成して、高周波発生用電極を形成した。更に、残り 1枚の基板は、直径 330mm 、厚み 3mmに加工した。
[0041] これら 3枚の窒化アルミニウム基板のうち、高周波発生用電極を形成した基板の両 面に、 20重量%窒化アルミニウム- 30重量%酸化イットリウム- 50重量%酸ィ匕アルミ -ゥム力もなる接合ペーストをスクリーン印刷により塗布し、 800°Cの窒素雰囲気中で 脱脂した。その後、この基板の高周波発生用電極を形成した面に上記厚み 3mmの 基板を載せ、反対側の面には上記流路を形成した基板を流路が内側になるように重 ねて、接合面に対し垂直方向に 20kgZcm2の圧力をカ卩えながら、窒素雰囲気中に おいて 1800°Cで加熱処理して接合した。最後に、上下面を研磨して、窒化アルミ- ゥム製のウェハ保持体とした。
[0042] 得られたウェハ保持体は、図 1に示すように、ウェハ保持体 1のウェハ載置面の反 対側から高周波発生用電極 2まで座繰り加工を行 ヽ、これにタングステン電極を取り 付けた。また、ウェハ保持体 1の流路 3に、ステンレス製の冷却配管 4を取り付けた。 更に、ウェハ保持体 1のウェハ載置面とは反対側の面に凹部を形成し、シース型の 熱電対 5を取り付けた。尚、上記高周波発生用電極 2のタングステン電極には、上部 側の周壁に貫通孔を設けたニッケル製の電極パイプ 6を接合し、その内側に不活性 ガスを供給できるようにした。
[0043] 上記ウェハ保持体 1のウェハ載置面と反対側の面に、筒状支持体 7のフランジ部を ネジ止めにより接合した。この筒状支持体 7は窒化アルミニウム製であり、フランジ部 の直径 80mm、外径 60mm及び内径 50mm、高さ 200mmである。尚、この筒状支 持体 7の内部に、上記の冷却配管 4、熱電対 5、電極パイプ 6を収納した。
[0044] このウェハ保持体 1を、 CVD装置のチャンバ一内に設置した。筒状支持体 7内に 収納した冷却配管 4を通して冷媒のガルデンを供給し、ウェハ保持体 1の流路 3に流 した。また、電極パイプ 6には不活性ガスとして露点— 70°Cのヘリウムガスを毎分 2リ ットルの割合で供給し、上部側の貫通孔力 筒状支持体 7内に循環させることにより、 筒状支持体 7内での結露の発生を防ぐと共に、筒状支持体 7内に腐食性ガスが侵入 することを防止した。
[0045] 上記ウェハ保持体 1の温度を 20°Cに制御した。そのウェハ載置面に直径 300m mのウェハを載置して、チャンバ一内に成膜用のガスを導入した。高周波発生用電 極 2に 13.56MHzの高周波を印加してプラズマを発生させることにより、ウェハ上に 膜形成を行ったところ、ウェハ上に均一な膜を形成することができた。このときのゥェ ハの温度分布は、温度計によって測定した結果、 20°C± 1°Cに制御することがで きた。
[0046] [実施例 2]
上記実施例 1と同様に窒化アルミニウム基板に対して流路加工を行った。その際、 流路の形成領域をそれぞれ下記表 1のように変化させ、各ウェハ保持体の温度を 20°Cに制御したときの温度分布を測定した。得られた結果を下記表 1に示す。なお、 下記表 1には、参考のために上記実施例 1の結果も併せて示した。また、ウェハの温 度測定には、 29点測定ポイントのある直径 300mmのウェハ温度計を使用した。
[0047] [表 1]
Figure imgf000012_0001
[0048] [実施例 3]
上記実施例 1と同様に窒化アルミニウム製ウェハ保持体を作製した。ただし、流路 の表面粗さを変化させ、― 10°Cに温度調整した水—アルコール混合溶媒を 1000時 間流し、試験後の冷媒の PHを測定することで窒化アルミニウムの腐食性を確認した 。なお、窒化アルミニウムは、通常、大気中では表面に酸ィ匕物系の膜が形成されるた め比較的安定であるが、破断面や研磨面などの酸ィ匕物系の膜が形成されていない 部分が水に触れるとアンモニアが発生するために、 pHがアルカリ性側にふれれば流 路の腐食が進んでいるものと判断した。得られた結果を下記表 2に示す。なお、試験 前の pHは全て 7であった。
[0049] [表 2]
Figure imgf000013_0001
[0050] [実施例 4]
上記実施例 1と同様にウェハ保持体を作製し、電極パイプ内にヘリウムガスを供給 した。このときヘリウムガスの露点を変化させ、ウェハ保持体の温度を 10°Cに制御 して、 1000時間耐久試験を行った。この耐久試験後に、ステンレス製の冷却配管と ニッケル製の電極パイプの腐食状態を目視にて確認し、その結果を下記表 3に示し た。
[0051] [表 3] ^^ 6ガスの露点(で) 冷却配管(sus) 電極パイプ (Ni)
-70 変化なし 変化なし
-50 変化なし 変化なし
-30 変化なし 変化なし
-15 若干茶色に変色 若干茶色に変色
±0 若干茶色に変色 若干茶色に変色
+ 1. 5 茶色に変色、 粉を吹いてお 茶色に変色、 粉を吹いてお り、 粉末が飛散している り、 粉末が飛散している
[0052] また、上記 1000時間の耐久試験後、各ウェハ保持体を用いて成膜試験を行!ヽ、 その影響を確認した。その結果、露点が 0°C以下のヘリウムガスを用いたものでは、 耐久試験後も問題なく成膜できたが、露点が 15°Cの場合はウエノ、にステンレスや- ッケルのパーティクルが付着した。
[0053] [実施例 5]
上記実施例 1と同様にウェハ保持体を作製したが、その材質を窒化珪素、アルミナ 、ムライト、コージエライト、炭化珪素に変えた。これらのウェハ保持体を実施例 1と同 様に温度制御し、その温度分布を測定した。得られた結果を実施例 1における結果と 併せて下記表 4に示した。この結果力 分るように、ウェハの均熱性は、窒化アルミ- ゥムが最も優れていた。
[0054] [表 4]
ウェハ保持体の材質 ウェハの温度分布 (一 20°C±°C) 窒化アルミニウム(実施例 1) 1.0
窒化珪素 2.1
炭化珪素 1.5
アルミナ 2.6
ムライ ト 3.4
コージェライ ト 3.5

Claims

請求の範囲
[1] ウェハを載置するためのウェハ載置面を有するウェハ保持体であって、該ゥェハ保 持体がセラミックス力 なり、その内部に冷媒を流すための流路を有することを特徴と する半導体製造装置用ウェハ保持体。
[2] 前記セラミックスが窒化アルミニウムであることを特徴とする、請求項 1に記載の半導 体製造装置用ウェハ保持体。
[3] 前記ウェハ保持体の内部に高周波発生用電極が形成されていることを特徴とする 、請求項 1又は 2に記載の半導体製造装置用ウェハ保持体。
[4] 前記高周波発生用電極が膜状の金属であることを特徴とする、請求項 3に記載の 半導体製造装置用ウェハ保持体。
[5] 前記ウェハ保持体を支持するための筒状支持体を有し、該筒状支持体内に、冷媒 を供給するための冷却配管、高周波発生用電極に接続された電極部品、及びゥェ ハ保持体の温度を測定するための測温素子の少なくとも 1種が収納されていることを 特徴とする、請求項 1〜4のいずれかに記載の半導体製造装置用ウェハ保持体。
[6] 前記筒状支持体内における雰囲気の露点が 0°C以下であることを特徴とする、請求 項 5に記載の半導体製造装置用ウェハ保持体。
[7] セラミックス力 なり、その内部に冷媒を流すための流路を有するウェハ保持体の 製造方法であって、 1枚のセラミックス基板上に流路を形成し、少なくとも該流路を覆 うように該セラミックス基板の上及び/又は下に更に少なくとも 1枚のセラミックス基板 を接合することを特徴とする半導体製造装置用ウェハ保持体の製造方法。
[8] 前記セラミックス基板の 1枚に高周波発生用電極を形成し、少なくとも該高周波発 生用電極を覆うように更に少なくとも 1枚のセラミックス基板を接合することを特徴とす る、請求項 7に記載の半導体製造装置用ウェハ保持体の製造方法。
[9] 前記高周波発生用電極をスクリーン印刷により形成することを特徴とする、請求項 8 に記載の半導体製造装置用ウェハ保持体の製造方法。
[10] 前記セラミックス基板が窒化アルミニウムよりなり、少なくとも 2枚のセラミックス基板を 接合する際に、少なくとも片方の基板に窒化アルミニウム、酸ィ匕アルミニウム、希土類 酸化物を含有するペーストを塗布し、基板を重ね合わせて熱処理すること特徴とする 、請求項 7〜9のいずれかに記載の半導体製造装置用ウェハ保持体の製造方法。
[11] 請求項 1〜10のいずれかに記載の半導体製造装置用ウェハ保持体が搭載されて
Vヽることを特徴とする半導体製造装置。
[12] 前記半導体製造装置が CVD装置であることを特徴とする、請求項 11に記載の半 導体製造装置。
PCT/JP2007/060327 2006-05-24 2007-05-21 ウエハ保持体とその製造方法及び半導体製造装置 WO2007136023A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/996,728 US20090283034A1 (en) 2006-05-24 2007-05-21 Wafer holder, manufacturing method thereof and semiconductor manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006143506 2006-05-24
JP2006-143506 2006-05-24

Publications (1)

Publication Number Publication Date
WO2007136023A1 true WO2007136023A1 (ja) 2007-11-29

Family

ID=38723335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060327 WO2007136023A1 (ja) 2006-05-24 2007-05-21 ウエハ保持体とその製造方法及び半導体製造装置

Country Status (4)

Country Link
US (1) US20090283034A1 (ja)
KR (1) KR20080091072A (ja)
TW (1) TW200746350A (ja)
WO (1) WO2007136023A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232156B2 (en) 2010-11-04 2012-07-31 International Business Machines Corporation Vertical heterojunction bipolar transistors with reduced base-collector junction capacitance
WO2013179936A1 (ja) 2012-05-30 2013-12-05 京セラ株式会社 流路部材ならびにこれを用いた吸着装置および冷却装置
NL2012204A (en) * 2013-02-07 2014-12-18 Asml Holding Nv Lithographic apparatus and method.
JP6704834B2 (ja) * 2016-10-28 2020-06-03 日本特殊陶業株式会社 加熱装置
US10147610B1 (en) * 2017-05-30 2018-12-04 Lam Research Corporation Substrate pedestal module including metallized ceramic tubes for RF and gas delivery
WO2019189197A1 (ja) * 2018-03-28 2019-10-03 京セラ株式会社 ヒータ及びヒータシステム
JP2020049400A (ja) * 2018-09-25 2020-04-02 東京エレクトロン株式会社 ドライエアーの生成装置、ドライエアーの生成方法、および基板処理システム
US20210035767A1 (en) * 2019-07-29 2021-02-04 Applied Materials, Inc. Methods for repairing a recess of a chamber component
US20230154781A1 (en) * 2021-11-15 2023-05-18 Ngk Insulators, Ltd. Wafer placement table

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152548A (ja) * 1990-10-16 1992-05-26 Mitsubishi Materials Corp ウェーハの収納方法及び収納容器
JPH06267902A (ja) * 1993-02-06 1994-09-22 Hyundai Electron Ind Co Ltd イーシーアール装置
JPH10289934A (ja) * 1997-02-12 1998-10-27 Tokyo Electron Ltd プローブ装置及びプローブ方法
JP2002313899A (ja) * 2001-04-11 2002-10-25 Sumitomo Electric Ind Ltd 基板保持構造体および基板処理装置
JP2002373873A (ja) * 2001-06-15 2002-12-26 Sumitomo Metal Ind Ltd ウェハ保持用真空チャック

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213781A (ja) * 1996-02-01 1997-08-15 Tokyo Electron Ltd 載置台構造及びそれを用いた処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04152548A (ja) * 1990-10-16 1992-05-26 Mitsubishi Materials Corp ウェーハの収納方法及び収納容器
JPH06267902A (ja) * 1993-02-06 1994-09-22 Hyundai Electron Ind Co Ltd イーシーアール装置
JPH10289934A (ja) * 1997-02-12 1998-10-27 Tokyo Electron Ltd プローブ装置及びプローブ方法
JP2002313899A (ja) * 2001-04-11 2002-10-25 Sumitomo Electric Ind Ltd 基板保持構造体および基板処理装置
JP2002373873A (ja) * 2001-06-15 2002-12-26 Sumitomo Metal Ind Ltd ウェハ保持用真空チャック

Also Published As

Publication number Publication date
US20090283034A1 (en) 2009-11-19
KR20080091072A (ko) 2008-10-09
TW200746350A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
WO2007136023A1 (ja) ウエハ保持体とその製造方法及び半導体製造装置
JP2008004926A (ja) ウエハ保持体とその製造方法及び半導体製造装置
CN102741998B (zh) 静电卡盘装置
US9330953B2 (en) Electrostatic chuck device
US9837296B2 (en) Electrostatic chuck apparatus
KR101800337B1 (ko) 정전 척 장치
JP2020138906A (ja) 希土類酸化物系モノリシックチャンバ材料
KR101142000B1 (ko) 정전척
WO2013118781A1 (ja) 静電チャック装置
JP2018536287A (ja) 堆積された表面フィーチャを有する基板支持アセンブリ
JP2008160093A (ja) 静電チャック、静電チャックの製造方法および基板処理装置
JP2007317772A (ja) 静電チャック装置
JP6319023B2 (ja) 静電チャック装置
JP2002313899A (ja) 基板保持構造体および基板処理装置
JP5982887B2 (ja) 静電チャック装置
JP6155922B2 (ja) 静電チャック装置
WO2015106190A1 (en) Diffusion bonded plasma resisted chemical vapor deposition (cvd) chamber heater
JP2005150506A (ja) 半導体製造装置
JP5504924B2 (ja) 静電チャック装置
JP6027140B2 (ja) 試料保持具
JP2006013256A (ja) 静電チャック
CN111837329A (zh) 静电卡盘装置
JP6139249B2 (ja) 試料保持具
JP6503689B2 (ja) 静電チャック装置およびその製造方法
JP2008270400A (ja) 半導体製造装置用ウエハ保持体及びそれを搭載した半導体製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020087001781

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11996728

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743761

Country of ref document: EP

Kind code of ref document: A1