WO2007131937A1 - Rotorblatt für eine windenergieanlage - Google Patents
Rotorblatt für eine windenergieanlage Download PDFInfo
- Publication number
- WO2007131937A1 WO2007131937A1 PCT/EP2007/054533 EP2007054533W WO2007131937A1 WO 2007131937 A1 WO2007131937 A1 WO 2007131937A1 EP 2007054533 W EP2007054533 W EP 2007054533W WO 2007131937 A1 WO2007131937 A1 WO 2007131937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor blade
- component
- supporting part
- blade according
- rotor
- Prior art date
Links
- 238000009434 installation Methods 0.000 title abstract description 3
- 239000000463 material Substances 0.000 claims abstract description 37
- 229910000831 Steel Inorganic materials 0.000 claims description 9
- 239000010959 steel Substances 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 210000001503 joint Anatomy 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 6
- 210000003127 knee Anatomy 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 239000003562 lightweight material Substances 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 1
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/30—Retaining components in desired mutual position
- F05B2260/301—Retaining bolts or nuts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/10—Inorganic materials, e.g. metals
- F05B2280/102—Light metals
- F05B2280/1021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/10—Inorganic materials, e.g. metals
- F05B2280/107—Alloys
- F05B2280/1071—Steel alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2280/00—Materials; Properties thereof
- F05B2280/60—Properties or characteristics given to material by treatment or manufacturing
- F05B2280/6013—Fibres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/02—Light metals
- F05C2201/021—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0448—Steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2253/00—Other material characteristics; Treatment of material
- F05C2253/16—Fibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a rotor blade for a wind energy plant, wherein the rotor blade has at least a first and a second component, wherein the first component of the rotor blade tip and the second component comprises the rotor blade root.
- a split rotor blade is z. B. from DE 199 62 989 A1.
- the parts of this known rotor blade are manufactured and transported separately because of the considerable dimensions, so as to limit infrastructure requirements both during manufacture and during transport.
- the object of the present invention is to further optimize a rotor blade for a wind energy plant.
- This object is achieved in a rotor blade of the type mentioned by the use of a first material for the first component and a second material for the second component.
- a rotor blade for a wind turbine which has at least a first and a second component.
- the first component has the rotor blade tip and the second component has the rotor blade root.
- the first and second components are configured as separate parts to jointly form the rotor blade.
- the first component has a first material and the second component has a second material.
- the invention is based on the knowledge that although the dimensions of the parts to be handled are reduced by a pitch of the rotor blade, a selection of suitable materials and associated production
- the economic efficiency also have a favorable influence and that this is due to several factors.
- the requirements for infrastructure and logistics in the manufacture, handling and transport of the rotor blades, down to installation on the wind turbine are reduced.
- the infrastructure also depends on the material to be processed, because depending on the material, pre- and post-processing steps are required before and after the pure shaping. These are z. B. Cutting and deburring in metalworking. When processing fiber-reinforced plastics, compliance with given thermal requirements is required, eg. B. tempering, etc.
- the invention proposes the use of different materials which can be advantageously matched to the main function of the component. This targeted selection of materials leads z. Example, to a material with a comparatively high modulus of elasticity for a region which is subjected to high loads, and to a material of low weight for rotor blade parts where these loads do not occur.
- the second component is in turn divided into at least two parts, which together form the second component.
- the division is particularly preferably in a supporting part and a leaf rear box.
- the leaf back box can be divided into several parts if required, so that rotor blades of any size can be manufactured and transported in this way.
- the first component preferably has a length of about 5/6 to 1/2 of the length of the entire rotor blade, while the length of the second component is preferably 1/6 to 1 / 2 corresponds to the rotor blade length.
- the leaf rear box or its parts can, for. B. made of aluminum.
- This material is light, ductile and has a temperature behavior close to that of steel. Therefore, a combination of an aluminum box and a supporting steel part, a relatively inexpensive to produce sheet is to be expected with a sufficient dimensional accuracy.
- the modulus of elasticity of aluminum is about a factor of 5 smaller than that of steel. This results in u. a., That loads that are applied to the second component, are not absorbed by the softer material of the Schukastens. Correspondingly cheaper, in turn, the dimensioning of the parts of the Schukastens done.
- the supporting part of the second component is particularly preferably made accessible.
- connection of the first and second components of the rotor blade is particularly preferably carried out with a blunt impact, wherein the connecting elements are arranged for bridging the butt joint exclusively within the rotor blade.
- connection is preferably formed such that the connecting elements comprise transverse bolts, tension elements and on the second component a rotorblatteintiti directed L-flange, wherein the transverse bolts are received in recesses in the first component.
- These recesses are formed in a preferred embodiment as through holes.
- the holes are covered in a suitable manner. This can be done by means of prefabricated covers, with which the hole is covered from the outside. Of course, this task can be solved even in the leaf surface processing by applying a filling compound o. ⁇ .
- the recesses are formed as blind holes from the inside of the first component forth, wherein the tension elements are connected to the transverse bolts regardless of the type of execution of the recesses, extending through the L flange and secured there ,
- Decisive for the embodiment of the recesses is the material thickness of the first component in the region of the recess.
- a predetermined minimum contact surface is required for the transverse bolts, from which the necessary depth of the recess results. If the material is not thicker, the result is a through hole, which then has to be covered on the rotor blade surface. If the material is thicker, a blind hole is sufficient, so that a reworking of the rotor blade surface is not required.
- a wind energy plant is provided with at least one such rotor blade.
- Fig. 1 is an exploded view of a rotor blade according to the invention
- FIG. 2 shows an illustration of a rotor blade according to the invention in the assembled state
- FIG. 3 shows a simplified representation of the connection between the first and the second component in a side view
- Fig. 5 shows an alternative embodiment of the connection shown in Figure 3.
- the exploded view in FIG. 1 shows the first component 10, which comprises the rotor blade tip 11.
- the second component 20 is formed from two parts, namely a supporting part 22, which also includes the rotor blade root 23 for fastening the rotor blade to the rotor hub, not shown, and a blade rear box 24.
- the supporting part 22 has a first connecting surface 22a and a second connecting surface 22b.
- the first connecting surface 22a serves to connect the supporting part 22 to the first component or the connecting surface 10a of the first component.
- the second connection or contact surface 22 b serves to connect the supporting part 22 with the leaf rear box 24.
- FIG. 2 shows the rotor blade 1 according to the invention assembled.
- the first component 10 and the composite of the parts 22 and 24 second component 20, the rotor blade which is designated in its entirety by the reference numeral 1.
- fiber-reinforced synthetic resin is preferably used for the first component (blade tip), while steel is used for the supporting component of the second component (blade root) and aluminum is used for the blade-backing part or parts.
- the supporting part of the required strength can be given by long known and safely mastered working process in steel processing.
- the second component is the one comprising the rotor blade root, which thus forms the inner, near-hub region in the assembled rotor blade, no particularly high demands are placed on the dimensional accuracy. Due to the relatively high modulus of elasticity of steel, no additional material is required to dissipate the occurring loads from the rotor blade. Otherwise, the z.
- Example in glass fiber reinforced plastic (GRP) as a material for the second component. More material would have to be used here than is actually necessary for a dimensionally stable design in order to achieve the bending stiffness required for load transfer. But since steel has about 5 times higher modulus of elasticity than GFRP, this reinforcement and the associated inevitable effort is not required.
- GRP glass fiber reinforced plastic
- the first component which forms the outer part of the rotor blade, however, must be manufactured with high dimensional accuracy, since this component predominantly determines the aerodynamic properties of the rotor blade.
- manufacturing processes using fiber-reinforced synthetic resins have been known for many years, so that even in mass production components with a high dimensional accuracy and at the same time low weight, but with higher material costs than for steel, can be produced.
- another comparatively light weight material such as aluminum, may be used for the first component.
- the low weight of the first Component leads to correspondingly low loads, which act on the second component and the wind turbine as a whole.
- the orbital cyclic loads due to the gravitational effect may be mentioned here.
- FIG. 3 shows how a connection between the first component 10 and the second component 20 or the contact surface 10a and the contact surface 22b can take place.
- a transverse pin 12 is used in the first component 10 so-called blind holes, ie recesses that do not completely penetrate the material.
- the second component 20 has an L-flange 26, which is directed rotorblatteinTER, it can be seen from this figure 3, that also the cross pin 12 is inserted from the rotor blade inside into the recess. This leaves the rotor blade outside intact and thus aerodynamically clean.
- the two components 10, 20 of the rotor blade are connected to one another by fitting a nut 16 onto the thread of the tension element 14 protruding from the L flange 26 of the second component 20.
- knee panels 28 may be provided at predetermined intervals.
- FIG. 4 shows the connection between the first component 10 and the second component 20 in a plan view.
- the transverse bolts 12 are shown, with which pulling elements 14 are connected, which pass through the L-flange 26 of the second component 20 and are tightened with nuts 16, so that a firm connection between the two components 10, 20 results.
- This figure can also be deduced that between each two adjacent pulling elements in each case a knee plate 28 is provided, so that these knee plates 28 are distributed over the entire inner circumference of the rotor blade and thus support a uniform load transfer.
- FIG. 5 shows an alternative embodiment of the connection shown in FIG.
- the difference between the two figures is essentially that in Figure 5 through holes are shown at the location of the blind holes shown in Figure 3.
- the remaining parts are the same and have the same reference numerals, as in Figure 3. Therefore, a repetition of the description is omitted and in this regard, reference is made to the description of Figure 3.
- the rotor blades described above are preferably used as rotor blades of a wind turbine, the wind turbine preferably having three of these rotor blades.
- the leaf rear box 24 and the rotor blade tip may have different dimensions.
- a rotor blade for a wind turbine can be modular.
- the respective rotor blade can thus be easily adapted to the expected operating conditions.
- rotor blades with different length, width and with different geometric dimensions can be produced, wherein the supporting part 22 remains unchanged and only the rotor blade tip and the blade trailing box must be adjusted accordingly.
- the supporting part can be achieved because this part is designed to be identical for a plurality of different rotor blades.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502007002345T DE502007002345D1 (de) | 2006-05-11 | 2007-05-10 | Rotorblatt für eine windenergieanlage |
NZ572311A NZ572311A (en) | 2006-05-11 | 2007-05-10 | Multicomponent rotor blade for a wind energy installation |
DK07728985.8T DK2018475T3 (da) | 2006-05-11 | 2007-05-10 | Rotorblad for et vindenergianlæg |
CN2007800166325A CN101438053B (zh) | 2006-05-11 | 2007-05-10 | 用于风力设备的转子叶片 |
CA2650898A CA2650898C (en) | 2006-05-11 | 2007-05-10 | Rotor blade for a wind energy installation |
BRPI0711283-1A BRPI0711283B1 (pt) | 2006-05-11 | 2007-05-10 | Lâmina de rotor para uma instalação de energia eólica, e, instalação de energia eólica |
MX2008014120A MX2008014120A (es) | 2006-05-11 | 2007-05-10 | Pala de rotor para una instalacion de energia eolica. |
AT07728985T ATE452289T1 (de) | 2006-05-11 | 2007-05-10 | Rotorblatt für eine windenergieanlage |
AU2007251569A AU2007251569B2 (en) | 2006-05-11 | 2007-05-10 | Rotor blade for a wind energy installation |
PL07728985T PL2018475T3 (pl) | 2006-05-11 | 2007-05-10 | Łopata wirnika przeznaczona dla elektrowni wiatrowej |
EP07728985A EP2018475B1 (de) | 2006-05-11 | 2007-05-10 | Rotorblatt für eine windenergieanlage |
US12/299,904 US8192170B2 (en) | 2006-05-11 | 2007-05-10 | Rotor blade for a wind energy installation |
JP2009508389A JP4880749B2 (ja) | 2006-05-11 | 2007-05-10 | 風力設備のためのロータブレード |
NO20085130A NO340100B1 (no) | 2006-05-11 | 2008-12-09 | Rotorblad for et vindkraftanlegg |
AU2010201844A AU2010201844A1 (en) | 2006-05-11 | 2010-05-11 | Rotor blade for a wind energy installation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006022279.2A DE102006022279B4 (de) | 2006-05-11 | 2006-05-11 | Rotorblatt für eine Windenergieanlage |
DE102006022279.2 | 2006-05-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007131937A1 true WO2007131937A1 (de) | 2007-11-22 |
Family
ID=38328187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/054533 WO2007131937A1 (de) | 2006-05-11 | 2007-05-10 | Rotorblatt für eine windenergieanlage |
Country Status (23)
Country | Link |
---|---|
US (1) | US8192170B2 (de) |
EP (1) | EP2018475B1 (de) |
JP (1) | JP4880749B2 (de) |
KR (1) | KR101038372B1 (de) |
CN (1) | CN101438053B (de) |
AR (1) | AR060889A1 (de) |
AT (1) | ATE452289T1 (de) |
AU (2) | AU2007251569B2 (de) |
BR (1) | BRPI0711283B1 (de) |
CA (1) | CA2650898C (de) |
CY (1) | CY1109844T1 (de) |
DE (2) | DE102006022279B4 (de) |
DK (1) | DK2018475T3 (de) |
ES (1) | ES2335548T3 (de) |
MA (1) | MA30415B1 (de) |
MX (1) | MX2008014120A (de) |
NO (1) | NO340100B1 (de) |
NZ (1) | NZ572311A (de) |
PL (1) | PL2018475T3 (de) |
PT (1) | PT2018475E (de) |
SI (1) | SI2018475T1 (de) |
WO (1) | WO2007131937A1 (de) |
ZA (1) | ZA200809217B (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011510208A (ja) * | 2008-01-14 | 2011-03-31 | クリッパー・ウィンドパワー・インコーポレーテッド | 発電用タービン用のモジュール式ローターブレード及びモジュール式ローター・ブレードを備えた発電用タービンを組み立てる方法 |
CN102046963A (zh) * | 2008-05-30 | 2011-05-04 | 歌美飒创新技术公司 | 具有高升力装置的风轮机叶片 |
WO2012156547A1 (es) | 2011-05-13 | 2012-11-22 | Investigaciones Y Desarrollos Eolicos, S.L. | Sistema. de unión de tramos componentes de palas de aerogenerador |
WO2012167891A1 (de) | 2011-06-10 | 2012-12-13 | Repower Systems Se | Rotorblatt einer windenergieanlage und windenergieanlage |
EP3219979A1 (de) | 2016-03-15 | 2017-09-20 | Siemens Aktiengesellschaft | Schraubenverbindung für laufschaufelsegmente |
US10077757B2 (en) | 2011-12-08 | 2018-09-18 | Wobben Properties Gmbh | Rotor blade and connecting device |
US10578077B2 (en) | 2014-04-07 | 2020-03-03 | Wobben Properties Gmbh | Rotor blade for a wind turbine |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2352945B2 (es) * | 2007-11-23 | 2011-10-19 | Investigaciones Y Desarrollos Eolicos, S.L. | Sistema de amarre para la union de tramos de palas de aerogenerador partidas. |
GB2462308A (en) * | 2008-08-01 | 2010-02-03 | Vestas Wind Sys As | Extension portion for wind turbine blade |
GB2462307A (en) * | 2008-08-01 | 2010-02-03 | Vestas Wind Sys As | Extension portion for wind turbine blade |
US8510947B2 (en) * | 2008-11-14 | 2013-08-20 | General Electric Company | Turbine blade fabrication |
EP2253837A1 (de) * | 2009-05-18 | 2010-11-24 | Lm Glasfiber A/S | Windturbinenschaufel mit Flusswechselelementen |
JP2011137386A (ja) * | 2009-12-25 | 2011-07-14 | Mitsubishi Heavy Ind Ltd | 風車回転翼および風車回転翼の製造方法 |
US9500179B2 (en) | 2010-05-24 | 2016-11-22 | Vestas Wind Systems A/S | Segmented wind turbine blades with truss connection regions, and associated systems and methods |
DK201100109U3 (da) | 2010-07-14 | 2011-11-11 | Envision Energy Denmark Aps | Profileret nav-forlænger |
DE102010040596A1 (de) | 2010-09-10 | 2012-03-15 | Aloys Wobben | Abnehmbare Rotorblattspitze |
US20120027588A1 (en) * | 2011-05-20 | 2012-02-02 | General Electric Company | Root flap for rotor blade in wind turbine |
DE202011101634U1 (de) * | 2011-06-09 | 2011-07-14 | EUROS- Entwicklungsgesellschaft für Windkraftanlagen mbH | Rotorblattverbindung |
DE102012209935A1 (de) * | 2011-12-08 | 2013-06-13 | Wobben Properties Gmbh | Hinterkasten, Rotorblatt mit Hinterkasten und Windenergieanlage mit solchem Rotorblatt |
US9677538B2 (en) | 2012-02-09 | 2017-06-13 | General Electric Company | Wind turbine rotor blade assembly with root extension panel and method of assembly |
ES2393329B2 (es) * | 2012-10-22 | 2013-05-06 | Universidad De La Rioja | Dispositivo hiper-hipo sustentador para la región de la raíz de una pala de aerogenerador |
EP2878806B1 (de) * | 2013-02-18 | 2016-10-12 | Mitsubishi Heavy Industries, Ltd. | Verfahren zur Herstellung eines Windradflügels |
US9297357B2 (en) | 2013-04-04 | 2016-03-29 | General Electric Company | Blade insert for a wind turbine rotor blade |
US9506452B2 (en) | 2013-08-28 | 2016-11-29 | General Electric Company | Method for installing a shear web insert within a segmented rotor blade assembly |
US9664174B2 (en) | 2013-11-22 | 2017-05-30 | General Electric Company | Aerodynamic root adapters for wind turbine rotor blades |
EP2905464A1 (de) * | 2014-02-07 | 2015-08-12 | Siemens Aktiengesellschaft | Rotorblattwurzelabschnitt aus Spannbeton |
DE102014206670A1 (de) | 2014-04-07 | 2015-10-08 | Wobben Properties Gmbh | Rotorblatt einer Windenergieanlage |
DE102014214220A1 (de) | 2014-07-22 | 2016-01-28 | Wobben Properties Gmbh | Hinterkantensegment eines Rotorblatts |
DE102014117914B4 (de) * | 2014-12-04 | 2021-11-11 | fos4X GmbH | Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage |
DE102015116634A1 (de) * | 2015-10-01 | 2017-04-06 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt und Windenergieanlage |
DE102015117437A1 (de) | 2015-10-14 | 2017-04-20 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt und Verfahren zum Herstellen eines Windenergieanlagen-Rotorblattes |
DE102015120113A1 (de) * | 2015-11-20 | 2017-05-24 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt und Windenergieanlage |
DE102016208051A1 (de) * | 2016-05-10 | 2017-11-16 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt, und Windenergieanlage mit selbigem |
DE202016103595U1 (de) * | 2016-07-05 | 2017-10-06 | Peter Lutz | Rotorblatt und Rotor für Windkraftanlagen im Megawatt-Bereich |
DK3563053T3 (da) | 2016-12-28 | 2020-12-21 | Vestas Wind Sys As | Forbindelsesled til en afsnitsopdelt vindmøllerotorvinge og associerede fremgangsmåder |
BR112020009468B1 (pt) | 2017-11-16 | 2023-12-05 | Wobben Properties Gmbh | Pá de rotor, pá de rotor montada, rotor para uma turbina eólica, turbina eólica, e, métodos para produzir uma pá de rotor, para conectar uma pá de rotor a um cubo de rotor e para reparar um rotor de uma turbina eólica |
DE102017126970A1 (de) | 2017-11-16 | 2019-05-16 | Wobben Properties Gmbh | Rotorblatt und Rotor für eine Windenergieanlage, Windenergieanlage, Verfahren zur Herstellung eines Rotorblatts, zur Verbindung eines Rotorblatts mit einer Rotornabe und zur Reparatur eines Rotors einer Windenergieanlage |
DE102018125659B4 (de) * | 2018-10-16 | 2022-05-12 | Hochschule Bremerhaven | Strömungsmaschine und Verfahren zum Betrieb einer Strömungsmaschine |
DE102018130895A1 (de) | 2018-12-04 | 2020-06-04 | Wobben Properties Gmbh | Rotor für eine Windenergieanlage und Verfahren |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2647586A (en) * | 1945-07-30 | 1953-08-04 | Smith Corp A O | Wide hollow steel propeller blade and method of making the same |
EP0258926A1 (de) * | 1986-08-18 | 1988-03-09 | Strijense Kunststof Technieken B.V. | Zweiblättriger Windturbinenrotor |
EP1184566A1 (de) * | 1999-05-31 | 2002-03-06 | Manuel Torres Martinez | Schaufel einer windmühle |
WO2003078833A1 (en) * | 2002-03-19 | 2003-09-25 | Lm Glasfiber A/S | Wind turbine blade with carbon fibre tip |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3674379A (en) * | 1969-01-30 | 1972-07-04 | Siai Marchetti Spa | Helicopter rotor blade |
DE2921152C2 (de) | 1979-05-25 | 1982-04-22 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Rotorblatt für Windkraftwerke |
DE3103710C2 (de) * | 1981-02-04 | 1983-03-24 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | "Rotor in Schalenbauweise" |
US4995788A (en) * | 1989-09-08 | 1991-02-26 | United Technologies Corporation | Composite rotor blade |
US5320491A (en) | 1992-07-09 | 1994-06-14 | Northern Power Systems, Inc. | Wind turbine rotor aileron |
DE19733372C1 (de) * | 1997-08-01 | 1999-01-07 | Aloys Wobben | Rotorblatt und Rotor einer Windenergieanlage |
JP2000064941A (ja) * | 1998-08-19 | 2000-03-03 | Hitachi Zosen Corp | 風力発電装置 |
US6179565B1 (en) * | 1999-08-09 | 2001-01-30 | United Technologies Corporation | Coolable airfoil structure |
DE19962454A1 (de) | 1999-12-22 | 2001-07-05 | Aerodyn Eng Gmbh | Rotorblatt für Windenergieanlagen |
DE19962989B4 (de) * | 1999-12-24 | 2006-04-13 | Wobben, Aloys, Dipl.-Ing. | Rotorblatt für Windenergieanlagen |
DE10152449A1 (de) * | 2001-10-26 | 2003-05-15 | Aloys Wobben | Rotorblatt für eine Windenergieanlage |
WO2002051730A2 (de) * | 2000-12-23 | 2002-07-04 | Aloys Wobben | Rotorblatt für eine windenergieanlage |
EP3219981B1 (de) * | 2001-07-19 | 2021-09-01 | Vestas Wind Systems A/S | Windturbinenschaufel |
DE20206942U1 (de) * | 2002-05-02 | 2002-08-08 | REpower Systems AG, 22335 Hamburg | Rotorblatt für Windenergieanlagen |
JP2004011616A (ja) * | 2002-06-11 | 2004-01-15 | Shin Meiwa Ind Co Ltd | 風力発電機の風車ブレード構造 |
JP2005282451A (ja) * | 2004-03-30 | 2005-10-13 | Ishikawajima Harima Heavy Ind Co Ltd | 風力発電装置 |
-
2006
- 2006-05-11 DE DE102006022279.2A patent/DE102006022279B4/de not_active Expired - Fee Related
-
2007
- 2007-05-10 PL PL07728985T patent/PL2018475T3/pl unknown
- 2007-05-10 EP EP07728985A patent/EP2018475B1/de active Active
- 2007-05-10 PT PT07728985T patent/PT2018475E/pt unknown
- 2007-05-10 WO PCT/EP2007/054533 patent/WO2007131937A1/de active Application Filing
- 2007-05-10 MX MX2008014120A patent/MX2008014120A/es active IP Right Grant
- 2007-05-10 US US12/299,904 patent/US8192170B2/en active Active
- 2007-05-10 JP JP2009508389A patent/JP4880749B2/ja not_active Expired - Fee Related
- 2007-05-10 DE DE502007002345T patent/DE502007002345D1/de active Active
- 2007-05-10 AU AU2007251569A patent/AU2007251569B2/en not_active Ceased
- 2007-05-10 SI SI200730125T patent/SI2018475T1/sl unknown
- 2007-05-10 NZ NZ572311A patent/NZ572311A/en not_active IP Right Cessation
- 2007-05-10 KR KR1020087030129A patent/KR101038372B1/ko active IP Right Grant
- 2007-05-10 ES ES07728985T patent/ES2335548T3/es active Active
- 2007-05-10 AT AT07728985T patent/ATE452289T1/de active
- 2007-05-10 CN CN2007800166325A patent/CN101438053B/zh active Active
- 2007-05-10 CA CA2650898A patent/CA2650898C/en not_active Expired - Fee Related
- 2007-05-10 DK DK07728985.8T patent/DK2018475T3/da active
- 2007-05-10 BR BRPI0711283-1A patent/BRPI0711283B1/pt active IP Right Grant
- 2007-05-11 AR ARP070102040A patent/AR060889A1/es not_active Application Discontinuation
-
2008
- 2008-10-27 ZA ZA200809217A patent/ZA200809217B/xx unknown
- 2008-11-19 MA MA31387A patent/MA30415B1/fr unknown
- 2008-12-09 NO NO20085130A patent/NO340100B1/no not_active IP Right Cessation
-
2010
- 2010-02-19 CY CY20101100166T patent/CY1109844T1/el unknown
- 2010-05-11 AU AU2010201844A patent/AU2010201844A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2647586A (en) * | 1945-07-30 | 1953-08-04 | Smith Corp A O | Wide hollow steel propeller blade and method of making the same |
EP0258926A1 (de) * | 1986-08-18 | 1988-03-09 | Strijense Kunststof Technieken B.V. | Zweiblättriger Windturbinenrotor |
EP1184566A1 (de) * | 1999-05-31 | 2002-03-06 | Manuel Torres Martinez | Schaufel einer windmühle |
WO2003078833A1 (en) * | 2002-03-19 | 2003-09-25 | Lm Glasfiber A/S | Wind turbine blade with carbon fibre tip |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011510208A (ja) * | 2008-01-14 | 2011-03-31 | クリッパー・ウィンドパワー・インコーポレーテッド | 発電用タービン用のモジュール式ローターブレード及びモジュール式ローター・ブレードを備えた発電用タービンを組み立てる方法 |
CN102046963A (zh) * | 2008-05-30 | 2011-05-04 | 歌美飒创新技术公司 | 具有高升力装置的风轮机叶片 |
WO2012156547A1 (es) | 2011-05-13 | 2012-11-22 | Investigaciones Y Desarrollos Eolicos, S.L. | Sistema. de unión de tramos componentes de palas de aerogenerador |
WO2012167891A1 (de) | 2011-06-10 | 2012-12-13 | Repower Systems Se | Rotorblatt einer windenergieanlage und windenergieanlage |
DE102011077402A1 (de) | 2011-06-10 | 2012-12-13 | Repower Systems Se | Rotorblatt einer Windenergieanlage und Windenergieanlage |
US10077757B2 (en) | 2011-12-08 | 2018-09-18 | Wobben Properties Gmbh | Rotor blade and connecting device |
US10578077B2 (en) | 2014-04-07 | 2020-03-03 | Wobben Properties Gmbh | Rotor blade for a wind turbine |
EP3219979A1 (de) | 2016-03-15 | 2017-09-20 | Siemens Aktiengesellschaft | Schraubenverbindung für laufschaufelsegmente |
US10330076B2 (en) | 2016-03-15 | 2019-06-25 | Siemens Gamesa Renewable Energy A/S | Bolted joint for rotor blade segments |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2018475B1 (de) | Rotorblatt für eine windenergieanlage | |
EP2788617B1 (de) | Rotorblatt und verbindungsvorrichtung | |
DE102014106743B4 (de) | Strömungskörper mit einem darin integrierten Lasteinleitungselement, Verfahren zum Herstellen eines Strömungskörpers und Flugzeug mit einem solchen Strömungskörper | |
EP2788618B1 (de) | Hinterkasten, rotorblatt mit hinterkasten und windenergieanlage mit solchem rotorblatt | |
DE102007018025A1 (de) | Windenergieanlagenturm | |
EP2857699B1 (de) | Gewindebuchse zum Einschrauben | |
EP2434143B1 (de) | Rotorblatt oder Rotorblattsegment für eine Windenergieanlage | |
DE102010041184A1 (de) | Karosseriestruktur für einen Frontbereich eines Fahrzeugs | |
WO2015140295A1 (de) | Windenergieanlagen-rotorblatt mit rotorblattanschluss sowie herstellungsverfahren | |
EP3339633A1 (de) | Verfahren zur herstellung einer potentialausgleichsverbindung an einem windenergieanlagenrotorblatt und windenergieanlagenrotorblatt mit einer potentialausgleichsverbindung | |
EP2398636A1 (de) | Verfahren zum herstellen eines schalenkörpers und der so erhaltene körper | |
EP3376024A1 (de) | Teilbares windenergieanlagenrotorblatt mit bolzenverbindung | |
EP3559417B1 (de) | Verfahren zum herstellen eines windenergieanlagen-rotorblattes und windenergieanlagen-rotorblatt | |
EP2698295B1 (de) | Längenverstellbares Teleskoprohr, Stützwinde und Montageverfahren | |
EP3204633B1 (de) | Windenergieanlagen-rotorblatt | |
DE102010039778B4 (de) | Rotorblatt für Windenergieanlagen | |
EP3356669B1 (de) | Windenergieanlagen-rotorblatt und windenergieanlage | |
DE102009053053B4 (de) | Plattenförmiges Bauteil und Verfahren zur Herstellung eines plattenförmigen Bauteils | |
DE102017106875B4 (de) | Windkraftanlage und Verfahren zu dessen Montage | |
EP4155530B1 (de) | Windenergieanlagen-rotorblatt | |
DE102013223302A1 (de) | Verfahren zur Reparatur von Composite-verstärkten metallischen Strukturen in Hybridbauweise | |
EP3807523B1 (de) | Anordnung zur zug- bzw. längskrafteinleitung sowie verfahren zur herstellung einer solchen anordnung | |
EP2602398B1 (de) | Holzrahmen | |
DE202016104146U1 (de) | Nischenpoller | |
EP4400712A1 (de) | Insert für ein windenergieanlagenrotorblatt sowie windenergieanlagenrotorblatt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07728985 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4272/KOLNP/2008 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007251569 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 572311 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2650898 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2008/014120 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780016632.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009508389 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2007251569 Country of ref document: AU Date of ref document: 20070510 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007728985 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020087030129 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12299904 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0711283 Country of ref document: BR Kind code of ref document: A2 Effective date: 20081103 |