DE102014117914B4 - Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage - Google Patents

Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage Download PDF

Info

Publication number
DE102014117914B4
DE102014117914B4 DE102014117914.5A DE102014117914A DE102014117914B4 DE 102014117914 B4 DE102014117914 B4 DE 102014117914B4 DE 102014117914 A DE102014117914 A DE 102014117914A DE 102014117914 B4 DE102014117914 B4 DE 102014117914B4
Authority
DE
Germany
Prior art keywords
rotor blade
fiber
acceleration
signal
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102014117914.5A
Other languages
English (en)
Other versions
DE102014117914A1 (de
Inventor
Matthias Schubert
Mathias Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vc Viii Polytech Holding Aps Dk
Original Assignee
fos4X GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by fos4X GmbH filed Critical fos4X GmbH
Priority to DE102014117914.5A priority Critical patent/DE102014117914B4/de
Priority to PCT/EP2015/078233 priority patent/WO2016087451A2/de
Publication of DE102014117914A1 publication Critical patent/DE102014117914A1/de
Application granted granted Critical
Publication of DE102014117914B4 publication Critical patent/DE102014117914B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/325Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/334Vibration measurements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/804Optical devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/807Accelerometers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/808Strain gauges; Load cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage, umfassend:
- Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der faseroptische Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist;
- Messen eines statischen Biegemoments mit einem Dehnungssensor, wobei die Dehnung in zumindest einer Richtung tangential zu einer Torsionsachse des Rotorblatts gemessen wird;
- Auswerten der Beschleunigung zur Erzeugung eines Signals zur Erfassung eines Flatterns; und
- Erzeugen eines Signals zur Flatterwarnung, wobei bei der Erzeugung des Signals zur Flatterwarnung ein dynamisches Signal des Beschleunigungssensors mit einem statischen Signal des Dehnungssensors kombiniert wird.

Description

  • TECHNISCHES GEBIET
  • Ausführungsformen der vorliegenden Erfindung betreffen im Allgemeinen eine Steuerung und/oder Regelung bzw. Überwachung des Betriebs von Windkraftanlagen sowie die hierzu verwendeten Komponenten wie Beschleunigungssensoren und/oder die korrespondierenden Komponenten einer Windkraftanlage. Insbesondere betreffen Ausführungsformen ein Verfahren zur Überwachung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage, und ein Profil für eine Hinterkante eines Rotorblatts einer Windkraftanlage, ein Rotorblatt einer Windkraftanlage, ein Rotor einer Windkraftanlage, und eine Windkraftanlage.
  • STAND DER TECHNIK
  • Windenergieanlagen unterliegen einer komplexen Steuerung, die zum Beispiel durch wechselnde Betriebsbedingungen notwendig sein kann. Durch die mit dem Betrieb einer Windkraftanlage verknüpften Bedingungen, zum Beispiel Temperaturschwankungen, Witterung und Wetterverhältnisse, aber auch insbesondere stark wechselnde Windverhältnisse, sowie durch die Vielzahl von gesetzlich vorgeschriebenen Sicherheitsmaßnahmen sind die Überwachung und die für die Überwachung notwendigen Sensoren einer Vielzahl von Randbedingungen unterworfen.
  • Zum Beispiel kann im Betrieb eine Torsionsinstabilität der Rotorblätter auftreten. Hierbei verdreht sich das Rotorblatt um eine sich im Wesentlichen entlang des Radius erstreckenden Torsionsachse, und kann gegebenenfalls zu einer Vibration bzw. Oszillation um die Torsionsachse führen, dem so genannten Flattern. Zur Steuerung des Betriebs einer Windkraftanlage ist es wichtig eine Torsionsinstabilität zu erkennen bzw. zu überwachen. Insbesondere beim Flattern können kritische Betriebszustände erreicht werden, wobei entsprechende Gegenmaßnahmen ergriffen werden müssen.
  • Die Druckschrift GB 2 191 606 A beschreibt ein Verfahren zum Steuern von unregelmäßigen Bewegungsverläufen wie etwa „Flattern“ in Turbomaschinen. Dabei wird ein unregelmäßiger Bewegungsverlauf der Turbomaschine mit einem Sensormittel erfasst, und es wird ein Kontrollsignal zum Ansteuern eines Aktuatormittels bereitgestellt, um dem unregelmäßigen Bewegungsverlauf entgegenzuwirken.
  • Die Druckschrift WO 2012/000 509 A2 beschreibt ein Verfahren zur Erkennung von Vereisung oder anderen Lasten auf Rotorblättern von Windkraftanlagen mit unter anderem faseroptischen Sensoren.
  • Bei der Überwachung von Betriebszuständen von Windenergieanlagen wird eine Mehrzahl von Sensoren verwendet. Zum Beispiel können Dehnungsmessungen zur Messung der Biegung eines Rotorblatts, Beschleunigungsmessungen zur Messung einer Beschleunigung eines Rotorblatts, oder andere Größen gemessen werden. Eine Gruppe von Sensoren, die als Erfolg versprechend für zukünftige Applikationen erscheint, sind faseroptische Sensoren.
  • In Anbetracht des erläuterten Stands der Technik ist es die Aufgabe der vorliegenden Erfindung, Messungen zur Überwachung einer Windkraftanlage mit. faseroptischen Sensoren weiter zu verbessern. Insbesondere soll mithilfe von faseroptischen Sensoren ein stabiler Betrieb einer Windkraftanlage ermöglicht werden.
  • Dabei sollen Verbesserungen bei der Steuerung und Überwachung, bei den Sensoren für ein Rotorblatt einer Windkraftanlage, bei Rotorblättern für Windkraftanlagen, und Windkraftanlagen selbst herbeigeführt werden. Diese Aufgabe wird durch den Gegenstand des Patentanspruchs 1 gelöst.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Erfindungsgemäß wird ein Verfahren zur Erfassung einer Torsionsinstabilität, konkret eines Flatterns, eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist und ein Auswerten der Beschleunigung zur Erzeugung eines Signals zur Erfassung eines Flatterns.
  • Überdies wird ein Verfahren zur Erfassung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet ein Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist, und wobei das Signal mit einem Lichtleiter zur Blattwurzel des Rotorblatts, der sich insbesondere entlang einer Hinterkante des Rotorblatts erstreckt, geführt wird; und ein Auswerten der Beschleunigung zur Erzeugung eines Signals zur Erfassung einer Torsionsinstabilität, insbesondere Flattern, und/oder eines Signals zur Erfassung einer Torsions-Biege-Kopplung.
  • Ferner wird ein Profil für die Hinterkante eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Das Profil umfasst zumindest eine erste Befestigungsvorrichtung für einen Lichtleiter, insbesondere wobei das Profil ausgestaltet ist, um sich entlang zumindest 10% oder zumindest 30% des Radius des Rotorblatts zu erstrecken, weiterhin insbesondere wobei sich ein oder mehrere Segmente des Profils entlang zumindest 10% oder zumindest 30 % des Radius des Rotorblatts erstrecken
  • Figurenliste
  • Ausführungsbeispiele sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. In den Zeichnungen zeigen:
    • 1 zeigt schematisch ein Rotorblatt einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen;
    • 2 zeigt schematisch einen Teil einer Windkraftanlage mit Rotorblättern und Beschleunigungssensoren gemäß hier beschriebenen Ausführungsformen;
    • 3 zeigt schematisch einen Lichtleiter mit einem Faser-Bragg-Gitter zur Verwendung in Beschleunigungssensoren gemäß hier beschriebenen Ausführungsformen;
    • 4 zeigt schematisch eine Ausgestaltung eines Beschleunigungssensors gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen;
    • 5 zeigt schematisch einen Rotor einer Windkraftanlage mit Rotorblättern und Beschleunigungssensoren gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen;
    • 6 zeigt schematisch einen Messaufbau für einen faseroptischen Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. für Verfahren zur Überwachung und/oder Steuerung und/oder Regelung gemäß hier beschriebenen Ausführungsformen;
    • 7 zeigt schematisch einen Messaufbau für einen faseroptischen Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. für Verfahren zur Überwachung und/oder Steuerung und/oder Regelung gemäß hier beschriebenen Ausführungsformen;
    • 7A zeigt den Einfluss der Messung mit einem Anti-Aliasing-Filter gemäß hier beschriebenen Ausführungsformen;
    • 8A und 8B zeigen schematisch Beschleunigungssensoren zur Verwendung in hier beschriebenen Ausführungsformen;
    • 9A und 9B zeigen schematisch einen faseroptischen Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen;
    • 10 zeigt schematisch ein Rotorblatt einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen;
    • 11 zeigt schematisch ein Rotorblatt einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen, wobei ein Profil für ein Rotorblatt gemäß hier beschriebenen Ausführungsformen zur Verfügung gestellt ist;
    • 11A zeigt ein Profil für ein Rotorblatt gemäß Ausführungsformen der vorliegenden Erfindung;
    • 12, 13A und 13B zeigen schematisch einen Teil eines Rotorblatts einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen;
    • 14 zeigt schematisch einen weiteren Teil eines Rotorblatts einer Windkraftanlage mit einer Verbindung eines Beschleunigungssensors gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen;
    • 15 zeigt schematisch einen Teil eines Rotorblatts einer Windkraftanlage mit einem Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen bzw. zur Verwendung in hier beschriebenen Ausführungsformen; und
    • 16 bis 18 zeigen Ablaufdiagramme von Verfahren zur Überwachung und/oder Steuerung und/oder Regelung von Windkraftanlagen gemäß hier beschriebenen Ausführungsformen.
  • In den Zeichnungen bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten oder Schritte.
  • WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Im Folgenden wird detaillierter Bezug genommen auf verschiedene Ausführungsformen der Erfindung, wobei ein oder mehrere Beispiele in den Zeichnungen veranschaulicht sind.
  • 1A zeigt ein Rotorblatt 100 einer Windkraftanlage. Das Rotorblatt 100 hat eine Achse 101 entlang seiner Längserstreckung. Die Länge 105 des Rotorblatts reicht von dem Blattflansch 102 zu der Blattspitze 104. Gemäß hier beschriebenen Ausführungsformen befindet sich in einem axialen bzw. radialen Bereich, das heißt einem Bereich entlang der Achse 101, ein Beschleunigungssensor 110, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines Rotorblatts der Windkraftanlage zur Verfügung gestellt ist.
  • Sensoren sind in der Praxis bislang nahe dem Blattflansch 102 angebracht worden. Typischerweise wurden Sensoren in der Praxis bislang in den inneren 20 % des Radius eines Rotorblatts angebracht. Diese Positionierung war bislang eine oft geforderte Voraussetzung, da für Windenergieanlagen bzw. Windkraftanlagen ein Blitzeinschlag eine ernst zu nehmende Gefahr darstellt. Zum einen kann ein Blitzeinschlag unmittelbar in elektronische Komponenten und/oder Kabel bzw. Signalkabel für elektronische Komponenten erfolgen. Zum anderen kann selbst bei einer Ableitung eines Blitzeinschlags über einen Blitzableiter, d.h. bei einer kontrollierten Ableitung zu einem Erdpotenzial, ein Schaden durch die durch Induktion erzeugten Ströme in Kabeln bzw. Signalkabeln entstehen. Bei Blitzeinschlag kann es hierbei zum einen zur Zerstörung von Komponenten einer Windkraftanlage kommen. Zum anderen können Blitzeinschläge zu einer größeren Materialermüdung führen. Dies kann zum Beispiel die Wartungskosten erheblich vergrößern. Zum Beispiel kann mit ein bis vier Blitzeinschlägen pro Jahr in ein Rotorblatt gerechnet werden.
  • Diese Positionierung von Sensoren nahe dem Blattflansch ist in der Praxis eine Randbedingung bzw. eine existierende Annahme, der Ausführungsformen der vorliegenden Erfindung entgegentreten. Sensoren, insbesondere Beschleunigungssensoren, können bei einer radialen Positionierung, die entgegen der gängigen Praxis im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt wird, verbesserte Verfahren zur Messung von Betriebszuständen einer Windkraftanlage ermöglichen.
  • Gemäß typischen Ausführungsformen, kann hierbei eine Positionierung eines Beschleunigungssensors entlang des Radius eines Rotorblatts wie folgt zur Verfügung gestellt werden. Bei Rotorblättern, die bis ca. 50 % bis 60 % des Radius (der Blattflanschs entspricht hier in etwa 0 % des Radius) begehbar sind, kann zumindest ein Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt werden. Bei Rotorblättern, die einen deutlich geringeren begehbaren Bereich aufweisen, kann der Vorteil einer Montage an einer begehbaren Position alternativ auch aufgegeben werden. In einem solchen Fall kann eine Montage eines Beschleunigungssensors nahe der Blattspitze, zum Beispiel in einem Bereich von 30 % bis 95 % des Radius (0 % entspricht dem Flansch an der Blattwurzel) zur Verfügung gestellt wird.
  • 2 zeigt eine Windkraftanlage 200. Die Windkraftanlage 200 beinhaltet einen Turm 40 und eine Gondel 42. An der Gondel 42 ist der Rotor befestigt. Der Rotor beinhaltet eine Nabe 44, an der die Rotorblätter 100 befestigt sind. Gemäß typischen Ausführungsformen hat der Rotor zumindest 2 Rotorblätter, insbesondere 3 Rotorblätter. Beim Betrieb der Windenergieanlage bzw. der Windkraftanlage rotiert der Rotor, d.h. die Nabe mit den Rotorblättern um eine Achse. Dabei wird ein Generator zur Stromerzeugung angetrieben. Wie in 2 dargestellt, ist zumindest ein Beschleunigungssensor 110 in einem Rötorblatt 100 zur Verfügung gestellt. Der Beschleunigungssensor ist mit einer Signalleitung mit einer Auswerteeinheit 114 verbunden. Die Auswerteeinheit 114 liefert ein Signal an eine Steuerung und/oder Regelung 50 der Windkraftanlage 200.
  • Erfindungsgemäß handelt es sich bei dem Beschleunigungssensor 110 um einen faseroptischen Beschleunigungssensor. Für faseroptische Beschleunigungssensoren wird ein optisches Signal mittels eines Lichtleiters 112, zum Beispiel einer optischen Faser, an die Auswerteeinheit 114 übertragen. Bei einem faseroptischen Beschleunigungssensor kann das Sensorelement selbst außerhalb einer optischen Faser zur Verfügung gestellt werden. Ein Beispiel ist im Detail in Bezug auf 9A und 9B beschrieben. Alternativ hierzu kann bei einem faseroptischen Beschleunigungssensor das eigentliche Sensorelement innerhalb einer optischen Faser zur Verfügung gestellt werden, zum Beispiel in Form eines Faser-Bragg-Gitters. Dies ist im Detail in Bezug auf die 3 und 4 beschrieben.
  • In 2 ist durch die Pfeile 201 eine Torsion eines Rotorblatts 100 illustriert. Diese Torsion kann zum Beispiel entlang eine Achse 101 existieren. Bei einer ungewünschten Oszillation um die Achse 101 spricht man von Flattern des Rotorblatts 110. Das Flattern des Rotorblatts 110 kann zu gefährlichen Betriebszuständen führen. Es ist daher erstrebenswert verbesserte Verfahren zur Überwachung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage zur Verfügung zu stellen. Gemäß hier beschriebenen Ausführungsformen wird eine Beschleunigung mit einem Beschleunigungssensor gemessen, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt ist. Das Signal des Beschleunigungssensors, d.h. das Beschleunigungssignal bzw. die Beschleunigung wird ausgewertet, um ein Warnsignal zu generieren. Das Warnsignal kann ein Signal zur Erfassung einer Torsionsinstabilität, insbesondere Flattern, und/oder ein Signal zur Erfassung einer Torsions-Biege-Kopplung sein. In der hier vorliegenden Offenbarung wird der Begriff Torsions-Biege-Kopplung verwendet. Alternativ kann auch der Begriff Biege-Torsions-Kopplung verwendet werden. Die Auswertung des Beschleunigungssignals kann hierbei in der Auswerteeinheit 114 oder in der Steuerung und/oder Regelung 50 erfolgen.
  • Im Gegensatz zu sogenannten „edgewise vibrations“ bei Rotorblättern, d.h. seitlichen Vibrationen, die zum Beispiel durch dynamische Stall-Effekte entstehen können, sind die Torsionsinstabilitäten bzw. Torsionsschwingungen nicht in der Gondel bzw., der Blattwurzel bzw., dem Blattflansch erfassbar. Bei den „edgewise vibrations“ sind die Rotorblätter in dieser Richtung schlecht gedämpft sind, und es kann eine Anregung durch dynamische Stall-Effekte entstehen. Bei Torsionsinstabilitäten wird eine Messung in der Blattspitze durchgeführt. Zum Beispiel kann die Torsionsinstabilität lokal auftreten. Beispielweise kann nur die Spitze des Rotorblatts schwingen. Jedes Rotorblatt kann separat eine individuelle Torsionsinstabilität aufweisen. Daher wird gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ein Beschleunigungssensor in jedem Rotorblatt zur Verfügung gestellt. Der Sensor kann in der Blattspitze zur Verfügung gestellt werden, d.h. in den äußeren 30 % des Radius des Rotorblatts, da eine Torsionsinstabilität auch nur in der Rotorblattspitze auftreten kann. Gemäß hier beschriebenen Ausführungsformen werden hierfür insbesondere Lösungen für die Reparatur, die Anbringung bzw. den Austausch der Beschleunigungssensoren zur Verfügung gestellt, wobei in dem relevanten Bereich des Rotorblatts für die Montage des Beschleunigungssensors des Rotorblatts nicht begehbar ist.
  • Während des Designs eines Rotorblatts lässt sich das Problem einer Torsionsinstabilität nur schwer ausschließen, da gegebenenfalls im Test dieses Problem nicht auftritt. Es lassen sich durch hier beschriebene Ausführungsformen demnach Konstruktionsrisiken bei großen Rotorblättern bzw. solchen Rotorblättern mit einer konstruktiv vorgesehenen Torsions-Biege-Kopplung, reduzieren bzw. ausschließen. Gemäß typischen Ausführungsformen werden die Verfahren zur Überwachung einer Torsionsinstabilität auch bei Rotorblättern zur Verfügung gestellt, die zur passiven Leistungsregelung eine Torsions-Biege-Kopplung verwenden. Die Torsionsinstabilität ist ein Problem, das insbesondere bei größeren Blättern, zum Beispiel mit einer Länge von ungefähr 40 m oder mehr, auftritt, bzw. bei modernen Rotorblättern, die ein bestimmtes Verhältnis von Torsionssteifigkeit zur Anregungsfrequenzen aufweisen.
  • Gemäß typischen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ist der Beschleunigungssensor in den äußeren 50 % des Radius des Rotorblatts zur Verfügung gestellt. Zusätzlich oder alternativ kann der Beschleunigungssensor ein Abstand von der Torsionsachse von zumindest 10 cm haben. Ferner ist es günstig, wenn der Beschleunigungssensor zumindest eine Beschleunigung mit einer Richtungskomponente senkrecht zur Profilsehne des Rotorblatts bzw. senkrecht zur Blattoberfläche zur Verfügung stellt. Eine gemessene Beschleunigungsrichtung kann somit tangential in Bezug auf die Traktionsachse sein. Durch die Anordnung und Orientierung des Beschleunigungssensors kann eine verbesserte Erkennung einer dynamischen Torsion, zum Beispiel einer Oszillation um eine Torsionsachse, zur Verfügung gestellt werden.
  • Die gemäß Ausführungsformen zur Verfügung gestellte radiale Position im Bereich der äußeren 70 % des Radius des Rotorblatts, insbesondere den äußeren 50 % des Radius des Rotorblatts, weiterhin insbesondere den äußeren 70 bis 95 % des Radius des Rotorblatts, generiert hierbei ein verbessertes Signal des Beschleunigungssensors. Dies ermöglicht eine zuverlässigere Erkennung bzw. Überwachung einer Torsionsinstabilität, zum Beispiel Flattern.
  • Gemäß einigen hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ermöglichen faseroptische Beschleunigungssensoren, bei denen ein Signal optisch über einen Lichtleiter 12 übertragen wird, eine bisher in der Praxis als ungünstig angesehene radialen Position, da die Übertragung mittels eines Lichtleiters bzw. einer optischen Faser ein reduziertes Risiko eines Blitzschadens mit sich bringt. Es wird hierbei folglich ein existierendes Vorurteil der Montage von Sensoren in der Nähe des Blattflanschs überwunden. Dies kann insbesondere durch die Verwendung von metallfreien Beschleunigungssensoren bzw. im Wesentlichen metallfreien Beschleunigungssensoren, wie sie in Bezug auf 9A und 9B mehr erläutert werden, ermöglicht werden. Aber auch faseroptische Beschleunigungssensoren können derart zur Verfügung gestellt werden, dass sie eine Montage in einem radial äußeren Bereich eines Rotorblatts erlauben, ohne das Risiko eines Blitzschadens zu ignorieren.
  • 3 zeigt einen in einen Lichtwellenleiter integrierten Sensor bzw. einen faseroptischen Sensor 310, welche ein Faser-Bragg-Gitter 306 aufweist. Obwohl in 3 nur ein einziges Faser-Bragg-Gitter 306 gezeigt ist, ist zu verstehen, dass die vorliegende Erfindung nicht auf eine Datenerfassung aus einem einzelnen Faser-Bragg-Gitter 306 beschränkt ist, sondern dass längs eines Lichtleiters 112, einer Übertragungsfaser, einer Sensorfaser bzw. einer optischen Faser eine Vielzahl von Faser-Bragg-Gittern 306 angeordnet sein können.
  • 3 zeigt somit nur einen Abschnitt eines optischen Wellenleiters, welcher als Sensorfaser, optischer Faser bzw. Lichtleiter 112 ausgebildet ist, wobei diese Sensorfaser empfindlich auf eine Faserdehnung (siehe Pfeil 308) ist. Es sei hier darauf hingewiesen, dass der Ausdruck „optisch“ bzw. „Licht“ auf einen Wellenlängenbereich im elektromagnetischen Spektrum hinweisen soll, welcher sich vom ultravioletten Spektralbereich über den sichtbaren Spektralbereich bis hin zu dem infraroten Spektralbereich erstrecken kann. Eine Mittenwellenlänge des Faser-Bragg-Gitters 306, d.h. eine so genannte Bragg-Wellenlänge λB, wird durch die folgende Gleichung erhalten: λ B = 2 nk Λ .
    Figure DE102014117914B4_0001
  • Hierbei ist nk die effektive Brechzahl des Grundmodus des Kerns der optischen Faser und A die räumliche Gitterperiode (Modulationsperiode) des Faser-Bragg-Gitters 306.
  • Eine spektrale Breite, die durch eine Halbwertsbreite der Reflexionsantwort gegeben ist, hängt von der Ausdehnung des Faser-Bragg-Gitters 306 längs der Sensorfaser ab. Die Lichtausbreitung innerhalb der Sensorfaser bzw. des Lichteiters 112 ist somit durch die Wirkung des Faser-Bragg-Gitters 306 beispielsweise abhängig von Kräften, Momenten und mechanischen Spannungen sowie Temperaturen, mit der die Sensorfaser, d.h. die optische Faser und insbesondere das Faser-Bragg-Gitter 306 innerhalb der Sensorfaser beaufschlagt werden.
  • Wie in 3 gezeigt, tritt elektromagnetische Strahlung 14 oder Primärlicht von links in die optische Faser bzw. den Lichtleiter 112 ein, wobei ein Teil die elektromagnetische Strahlung 14 als ein transmittiertes Licht 16 mit einem im Vergleich zur elektromagnetischen Strahlung 14 veränderten Wellenlängenverlauf austritt. Ferner ist es möglich, reflektiertes Licht 15 am Eingangsende der Faser (d.h. an dem Ende, an welchem auch das elektromagnetische Strahlung 14 eingestrahlt wird) zu empfangen, wobei das reflektierte Licht 15 ebenfalls eine modifizierte Wellenlängenverteilung aufweist. Das optische Signal, das zur Detektion und Auswertung verwendet wird, kann gemäß den hier beschriebenen Ausführungsformen durch das reflektieret Licht, durch das transmittierte Licht, sowie eine Kombination der beiden zur Verfügung gestellt werden.
  • In einem Fall, in dem die elektromagnetische Strahlung 14 bzw. das Primärlicht in einem breiten Spektralbereich eingestrahlt wird, ergibt sich in dem transmittierten Licht 16 an der Stelle der Bragg-Wellenlänge ein Transmissionsminimum. In dem reflektierten Licht ergibt sich an dieser Stelle ein Reflexionsmaximum. Eine Erfassung und Auswertung der Intensitäten des Transmissionsminimums bzw. des Reflexionsmaximums, oder von Intensitäten in entsprechenden Wellenlängenbereichen erzeugt ein Signal, das im Hinblick auf die Längenänderung der optischen Faser bzw. des Lichtleiters 112 ausgewertet werden kann und somit auf Kräfte bzw. Beschleunigungen Aufschluss gibt.
  • 4 zeigt eine Vorrichtung 110 zum Detektieren einer Beschleunigung. Die Vorrichtung beinhaltet eine Masse 402, die an einem Hebelarm 406 befestigt ist. Der Hebelarm 406 hat einen Fixpunkt 422, so dass eine Bewegung des Hebelarms und der Masse, die durch Pfeil 423 dargestellt ist, ermöglicht wird. Weiterhin ist eine optische Faser bzw. ein Lichtleiter 112 mit einem Faser-Bragg-Gitter 306 an dem Hebelarm 406 befestigt. Hierbei ist die Sensorfaser mit einem Befestigungselement 412 am Hebelarm 406 befestigt. Gemäß typischen Ausführungsformen kann das Befestigungselement eine Klebestelle oder eine Klemmvorrichtung sein. Die Masse 402 ist an einer ersten Hebelposition mit dem Hebelarm 406 verbunden und die optische Faser ist an einer zweiten Hebelposition mit dem Hebelarm 406 verbunden. Eine Bewegung der Masse bzw. des Hebelarms, die durch Pfeil 423 dargestellt ist, führt zu einer Längenänderung der optischen Faser bzw. des Lichtleiter 112, die durch Pfeil 308 dargestellt ist, bzw. einer Kraftauswirkung auf die optische Faser. Hierbei erzeugt das Faser-Bragg-Gitter 306 einen von der Dehnung bzw. Längenänderung abhängigen veränderten Wellenlängenverlauf des optischen Signals wie zum Beispiel des reflektierten Lichts 15, dass durch Reflexion des Primärlichts bzw. der elektromagnetischen Strahlung 14 erzeugt wird.
  • Bei herkömmlichen Beschleunigungssensoren wird die Masse typischerweise durch einen Federmechanismus an der Auslegung in einer oder mehreren Raumrichtungen eingeschränkt. Im einfachsten Fall kann sich die Masse lediglich in eine Richtung bewegen. In diese Richtung wird eine Sensorfaser an der Masse befestigt, die sich bei einer Beschleunigung der Masse dehnt. Bei einer solchen Anordnung sind die maximale Dehnung und damit die Empfindlichkeit der Faser durch das Gewicht der Masse und die Steifigkeit der Faser gegeben. Hierbei kann, um die Empfindlichkeit eines solchen Sensors zu steigern, lediglich die Masse vergrößert werden. Für empfindliche Sensoren kann dies zu Massen von bis zu mehreren 100 g Gewicht führen. Ein weiterer Nachteil einer solchen Anordnung ist, dass hierbei die Resonanzfrequenz f des Faser-Masse-Systems eine Abhängigkeit f ~ Wurzel(k/m) hat, die folglich mit steigender Masse abnimmt. Hierbei ist k die Federsteifigkeit des Faser-Masse-Systems. Da die minimale Federsteifigkeit durch die Steifigkeit der Faser beschränkt ist, lässt sich somit nur ein eingeschränkter Bereich konfigurieren.
  • Durch die Verwendung eines Hebelarms kann diese Beschränkung des zu konfigurieren Bereichs aufgehoben bzw. verringert werden. Wie bereits in 4 zu erkennen ist, kann durch eine Veränderung der Befestigungsposition der optischen Faser entlang des Hebelarms 406, d.h. einer Veränderung der zweiten Hebelposition, an der die optische Faser bzw. der Lichtleiter 112 befestigt ist, eine Veränderung der Empfindlichkeit der Vorrichtung zum Detektieren einer Beschleunigung bereitgestellt werden. Die Empfindlichkeit kann somit verändert werden ohne hierzu die Masse 402 zu verändern und somit die Resonanzfrequenz zu beeinflussen.
  • Somit erlauben es Ausführungsformen gemäß 4 den Zusammenhang zwischen Steifigkeit der Faser, Empfindlichkeit, sowie Resonanzfrequenz zu brechen. Durch den Einsatz eines mechanischen Hebels wird das Verhältnis aus Auslenkung der Faser und notwendiger Kraft beliebig konfigurierbar. Ferner erlaubt die Verwendung eines Hebelarms eine vergrößerte Kraft an der Faser auch mit einer kleinen Masse bzw. einer konstanten Masse.
  • Die durch Pfeil 423 dargestellte Bewegung ist eine Bewegung des Hebelarm 406 bzw. der Masse 402 in der Papierebene von 4. Typischerweise kann der Fixpunkt 422 derart ausgestaltet sein, dass eine Bewegung lediglich in einer Ebene erfolgt. Gemäß weiteren Ausführungsformen kann eine Bewegung jedoch auch in zwei Ebenen oder sogar drei Ebenen erfolgen. Bei einer solchen Ausführungsform mit mehreren Bewegungsebenen können weitere optische Fasern mit jeweils einem Faser-Bragg-Gitter 306 mit dem Hebelarm 406 verbunden sein, so dass eine Detektion einer Beschleunigung in mehreren Raumrichtungen erfolgen kann. Gemäß typischen Ausführungsformen, wird eine Vorrichtung zum mehrdimensionalen Detektieren einer Beschleunigung jedoch wie in Bezug auf 8B beschrieben ausgeführt.
  • 5 zeigt einen Rotor 500 einer Windkraftanlage. Der Rotor 500 hat eine Nabe 44 und daran angebrachte Rotorblätter 100. In zumindest einem der Rotorblätter 100 ist ein Beschleunigungssensor 110 zur Verfügung gestellt. Das Signal des Beschleunigungssensors 110 wird über einen Lichtleiter 112 an einen Verteiler 510 geleitet. Der Verteiler 510 kann zum Beispiel ein Feldverteiler sein, an dem mehrere Signale von unterschiedlichen Sensoren zur Verfügung gestellt werden.
  • Gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Verteiler bzw. der Feldverteiler am Blattschott des Rotorblatts angebracht sein. Der Verteiler kann zum An- und Abstecken eines Signalkabels eines Sensors ausgebildet sein. Ferner kann ein Sensorkabel zum An- und Abstecken vom Feldverteiler zum Messgerät bzw. zur Auswerteeinheit zur Verfügung gestellt sein. Gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ist der Verteiler 510 am Blattschott oder in der Blattwurzel zur Verfügung gestellt.
  • Der Bereich der Blattwurzel ist durch die Trennlinie 502 illustriert. Typischerweise erstreckt sich die Blattwurzel von einem Blattflansch 102, mit dem das Rotorblatt 100 an der Nabe 44 befestigt ist, radial, d.h. entlang der Längserstreckung des Rotorblatts, über eine Länge von 1 m bis 3 m.
  • Wie in 5 dargestellt, kann gemäß manchen Ausführungsformen ein Lichtleiter 512 bzw. eine optische Faser von dem Verteiler 510 zu der Auswerteeinheit 114 geführt werden. Zum Beispiel kann der Lichtleiter 512 entlang einer Feder oder einer Spirale 513 bzw. durch eine Feder oder eine Spirale 513 oder ein entsprechendes mechanisches Element geführt werden, so dass bei einer Rotation des Rotorblatts 100 um seine Längsachse, d.h. beim Pitchen des Rotorblatts, der Lichtleiter nicht beschädigt wird. Die mechanische Führung des Lichtleiters 512 entlang einer Spirale bzw. durch eine Spirale 513 erlaubt eine Torsion des Lichtleiters, so dass beim Pitchen des Rotorblatts der Lichtleiter nicht beschädigt wird
  • Eine Mehrzahl der in den Figuren beschriebenen Ausführungsformen zeigt einen Beschleunigungssensor in jeweils einem der Rotorblätter. Gemäß weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann eine Messung der Beschleunigung an mehreren Positionen eines Rotorblatts, insbesondere an mehreren radialen Positionen im Bereich der äußeren 70 % des Radius des Rotorblatts, durchgeführt werden. Hierzu können mehrere Beschleunigungssensoren an der jeweiligen radialen Position zur Verfügung gestellt sein. Durch die Messung an mehreren radialen Positionen kann zum einen die Messgenauigkeit erhöht werden. Zusätzlich oder alternativ können Signale zur Erfassung einer Torsionsinstabilität, insbesondere Flattern, und/oder Signale zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung für unterschiedliche Betriebsbedingungen an unterschiedlichen radialen Positionen leichter und/oder zuverlässiger erkannt werden. Zum Beispiel kann eine Steuerung und/oder Regelung einer Windkraftanlage dadurch ausgelöst werden, dass ein Warnsignal an zumindest einer radialen Position erzeugt wird oder an einer vorbestimmten Anzahl von radialen Positionen erzeugt wird. Gemäß noch weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann ein Beschleunigungssensor oder mehrere Beschleunigungssensoren auch mit zumindest einem weiteren Sensor kombiniert werden. Der zumindest eine weitere Sensor kann ausgewählt sein aus einem oder mehreren Sensoren aus der Gruppe bestehend aus: einem Dehnungssensor, einem Temperatursensor, einem Drucksensor, einem Schallpegelsensor, und einem Inklinometer (zur Messung der Position der Rotation des Rotors).
  • Insbesondere für die Erzeugung von Signalen zur Flatterwarnung bzw. zur Torsionsinstabilität-Warnung kann ein Sensor zum Messen einer Druckschwankung (zum Beispiel eines Schalldrucks) am Rotorblatt zur Verfügung gestellt werden. Hierdurch können zum Beispiel Geräusche, die beim Flattern eines Rotorblatts typischerweise auftreten können, erkannt werden und für die Erzeugung von Warnsignalen hinzugezogen werden.
  • Darüber hinaus ist die Messung der Temperatur am Rotorblatt zur Auswertung der Signale des bzw. der Beschleunigungssensoren vorteilhaft, da durch die Temperatur die Blatteigenschaften, wie zum Beispiel die Eigenfrequenz, beeinflusst werden. Eine Korrelation der Blatteigenschaften mit den Signalen des bzw. der Beschleunigungssensoren führt zu einer präziseren Auswertung bei der Erzeugung von Warnsignalen bzw. den Messungen des oder der Beschleunigungssensoren. Zum Beispiel kann die Messung der Temperatur, wie zum Beispiel mit einem Temperatursensor, in einem Beschleunigungssensor oder in einem Lichtleiter bzw. einer optischen Faser erfolgen.
  • Erfindungsgemäß wird ein Dehnungssensor zum Messen eines statischen Biegemoments, insbesondere eines statischen Torsionsmoment, zur Verfügung gestellt. Somit wird bei der Erzeugung eines Signals zur Flatterwarnung ein dynamisches Signal des Beschleunigungssensors mit einem statischen Signal des Dehnungssensors kombiniert. Zum Beispiel kann ein Dehnungssensor im Bereich der Blattwurzel zur Verfügung gestellt werden. Für die Messung eines statischen Torsionsmoments misst der Dehnungssensor eine Dehnung in zumindest einer Richtung tangential zur Torsionsachse. Für eine kombinierte Messung kann eine Ausrichtung eines Dehnungssensors in einem Bereich von 30° bis 60°, insbesondere 45°, relativ zur Torsionsachse vorteilhaft sein.
  • In einer Steuerung und/oder Regelung 50 einer Windkraftanlage 200, wie sie in 2 dargestellt ist, kann das Signal zur Flatterwarnung und/oder das Signal zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung für die Steuerung und/oder Regelung der Windkraftanlage verwendet werden. Die Steuerung und/oder Regelung kann insbesondere aus einer Pitchregelung eines Rotorblatts, einer Anpassung einer Generator Kennlinie der Windkraftanlage, einer Notausschaltung der Windkraftanlage, oder eine Kombination von zwei oder mehreren dieser Maßnahmen bestehen.
  • 6 zeigt ein typisches Messsystem zur Detektion einer Beschleunigung mit einer Vorrichtung zur Detektion einer Beschleunigung gemäß den hierin beschriebenen Ausführungsformen. Das System enthält einen oder mehrere Beschleunigungssensoren 110. Das System weist eine Quelle 602 für elektromagnetische Strahlung, zum Beispiel eine Primärlichtquelle, auf. Die Quelle dient zur Bereitstellung von optischer Strahlung mit welcher mindestens ein faseroptisches Sensorelement eines Beschleunigungssensors bestrahlt werden kann. Zu diesem Zweck ist eine optische Übertragungsfaser bzw. ein Lichtleiter 603 zwischen der Primärlichtquelle 602 und einem ersten Faserkoppler 604 bereitgestellt. Der Faserkoppler koppelt das Primärlicht in die optische Faser bzw. dem Lichtleiter 112 Die Quelle 602 kann zum Beispiel eine Breitbandlichtquelle, einen Laser, eine LED (light emitting diode), eine SLD (Superlumineszenzdiode), eine ASE-Lichtquelle (Amplified Spontaneous Emission-Lichtquelle) oder ein SOA (Semiconductor Optical Amplifier) sein. Es können für hier beschriebene Ausführungsformen auch mehrere Quellen gleichen oder unterschiedlichen Typs (s.o.) verwendet werden.
  • Das faseroptische Sensorelement, wie zum Beispiel ein Faser-Bragg-Gitter (FBG) oder ein optischer Resonator, ist in eine Sensorfaser integriert bzw. an die Sensorfaser optisch angekoppelt. Das von den faseroptischen Sensorelementen zurückgeworfene Licht wird wiederum über den Faserkoppler 604 geleitet, welcher das Licht über die Übertragungsfaser 605 einen Strahlteiler 606 leitet. Der Strahlteiler 606 teilt das zurückgeworfene Licht zur Detektion mittels eines ersten Detektors 607 und eines zweiten Detektors 608. Hierbei wird das auf dem zweiten Detektor 608 detektierte Signal zunächst mit einem optischen Kantenfilter 609 gefiltert.
  • Durch den Kantenfilter 609 kann eine Verschiebung der Braggwellenlänge am FBG bzw. eine Wellenlängenänderung durch den optischen Resonator detektiert werden. Im Allgemeinen kann ein Messsystem, wie es in 6 dargestellt ist, ohne den Strahlteiler 606 bzw. den Detektor 607 zur Verfügung gestellt sein. Der Detektor 607 ermöglicht jedoch eine Normierung des Messsignals des Beschleunigungssensors in Bezug auf anderweitige Intensitätsfluktuationen, wie zum Beispiel Schwankungen der Intensität der Quelle 602, Schwankungen durch Reflexionen an Schnittstellen zwischen einzelnen Lichtleitern, oder andere Intensitätsschwankungen. Diese Normierung verbessert die Messgenauigkeit und reduziert die Abhängigkeit von Messsystemen von der Länge der zwischen der Auswerteeinheit und dem faseroptischen Sensor zur Verfügung gestellten Lichtleiter.
  • Insbesondere bei der Verwendung von mehreren FBGs können zusätzliche optische Filtereinrichtungen (nicht dargestellt) für die Filterung des optischen Signales bzw. Sekundärlichts verwendet werden. Eine optische Filtereinrichtung 609 bzw. zusätzliche optische Filtereinrichtungen können einen optischen Filter umfassen, der gewählt ist aus der Gruppe, welche besteht aus einem Dünnschichtfilter, einem Faser-Bragg-Gitter, einem LPG, einem Arrayed-Waveguide-Grating (AWG), einem Echelle-Gitter, einer Gitteranordnung, einem Prisma, einem Interferometer, und jedweder Kombination davon.
  • Ein weiterer Aspekt bei der Überwachung von Windkraftanlagen, der mit anderen hier beschriebenen Ausführungsformen und Aspekten kombiniert werden kann, der jedoch auch unabhängig von weiteren Ausführungsformen, Aspekte und Details zur Verfügung gestellt ist, ist ein verbessertes Verfahren zur Überwachung einer Windkraftanlage mit einem faseroptischen Beschleunigungssensor. Gemäß einem solchen Aspekt bzw. einer solchen Ausführungsform wird ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Das Verfahren zur Überwachung einer Windkraftanlage umfasst das Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines Rotorblatts der Windkraftanlage zur Verfügung gestellt ist und das Filtern eines Beschleunigungssignals des faseroptischen Beschleunigungssensors mit einem analogen Tiefpass-Filter bzw. einem analogen anti-aliasing Filter.
  • 7 zeigt eine Auswerteeinheit 114, wobei ein Signal eines Faser-Bragg-Gitters 306 über einen Lichtleiter zur Auswerteeinheit geführt wird. In 7 ist weiterhin eine Lichtquelle 602 dargestellt, die optional in der Auswerteeinheit zur Verfügung gestellt werden kann. Die Lichtquelle 602 kann aber auch unabhängig bzw. außerhalb von der Auswerteeinheit 114 zur Verfügung gestellt sein. Das optische Signal des faseroptischen Beschleunigungssensors 110 wird mit einem Detektor in ein elektrisches Signal gewandelt. Die Wandlung von einem optischen Signal zu einem elektrischen Signal ist durch das Symbol 702 in 7 dargestellt. Das elektrische Signal wird mit einem analogen Anti-Aliasing-Filter 710 gefiltert. Im Anschluss an die analoge Filterung mit einem analogen Anti-Aliasing-Filter bzw. Tiefpassfilter wird das Signal durch einen Analog-Digital-Wandler 704 digitalisiert.
  • Gemäß einigen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Anti-Aliasing-Filter eine Grenzfrequenz von 1 kHz oder kleiner insbesondere von 500 Hz oder kleiner, weiterhin insbesondere von 100 Hz oder kleiner aufweisen. Gemäß hier beschriebenen Ausführungsformen, findet eine solche Filterung vor der Digitalisierung statt. Ferner findet für die hier beschriebenen Ausführungsformen keine spektrale Aufspaltung der Signale statt, wobei mit einem Spektrometer und einem Mehrkanaldetektor bereits eine optische Digitalisierung vorgenommen wird.
  • Gemäß hier beschriebenen Ausführungsformen findet eine analoge Tiefpassfilterung vor einer Digitalisierung eines Signals eines faseroptischen Beschleunigungssensors statt. Gemäß hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Tiefpassfilter auch als ein analoger anti-aliasing Filter bezeichnet werden. Hierbei wird im Rahmen eines Abtasttheorems die Nyquist-Frequenz berücksichtigt, und eine Tiefpassfilterung mit Signalanteilen kleiner der Nyquist-Frequenz mittels des analogen Tiefpass-Filters bzw. analogen anti-aliasing Filters zur Verfügung gestellt.
  • Durch die hier beschriebenen Ausführungsformen mit einem faseroptischen Beschleunigungssensor und einer analogen Tiefpassfilterung kann eine verbesserte Messung einer Beschleunigung zur Überwachung einer Windkraftanlage zur Verfügung gestellt werden.
  • 7 zeigt ferner eine digitale Auswerteeinheit 706, die zum Beispiel eine CPU, Speicher, und andere Elemente zur digitalen Datenverarbeitung beinhalten kann. Der Aspekt der verbesserten Messung mit faseroptischen Beschleunigungssensoren an Windkraftanlagen durch die Verwendung eines analogen Anti-Aliasing-Filters kann mit anderen Ausführungsformen, insbesondere in Bezug auf die Positionierung der Beschleunigungssensoren, der Verwendung der Signale zur Flatterwarnung bzw. zur Torsionsinstabilitäts-Warnung, zur Pitch-Regelung; zur Warnung in Bezug auf den Turmfreigangs eines Rotorblatts, die Anbringung von Beschleunigungssensoren bzw. Lichtleitern, faseroptische Beschleunigungssensoren, die für die Verwendung in Windkraftanlagen durch einen reduzierten Metallanteil verbessert sind, kombiniert werden.
  • Gemäß weiteren Ausführungsformen, kann die verbesserte Messung mit faseroptische Beschleunigungssensoren mit einer analogen Tiefpassfilterung vor einer Digitalisierung weiterhin vorteilhaft ausgestaltet werden, um eine digitale Auswertung in der digitalen Auswerteeinheit 706 zur Stochastic Subspace Identification (SSI) vorzunehmen. Hierbei können Eigenwerte des Rotorblatts, wobei die Eigenwerte insbesondere die Dämpfungen und die Frequenzen, d.h. die Eigenfrequenzen, eines Rotorblatts beinhalten können, berechnet werden.
  • Gemäß hier beschriebenen Ausführungsformen ist eine stehende bzw. trudelnde Windkraftanlage eine Windkraftanlage bei lastfreiem Drehen des Rotors. Zum Beispiel kann die Windkraftanlage ohne Zuschaltung des Generators mit zurückgepitchten Rotorblättern frei drehen. Beispielsweise kann dieser Zustand durch eine Rotationsfrequenz des Rotors von 0,1 Hz oder weniger beschrieben werden.
  • Gemäß weiteren Ausführungsformen, kann die Messung mit einem faseroptischen Beschleunigungssensor mit einer Temperaturmessung kombiniert werden. Die Temperatur beeinflusst die Eigenschaften des Rotorblatts. Zum Beispiel haben die Eigenwerte typischerweise eine funktionale Abhängigkeit von der Temperatur. Eine Abweichung bzw. Änderung der Eigenwerte kann somit relativ zu dem zu erwartenden Eigenwert bei einer vorgegebenen Temperatur ermittelt werden. Gemäß noch weiteren Ausführungsformen, die mit hier beschriebenen Ausführungsformen kombiniert werden können, kann eine Berücksichtigung einer Größe ausgewählt aus der Gruppe bestehend aus: Rotorposition, Temperatur, Pitch-Winkel, Yaw- Beschleunigung, und Rotationsrate des Rotors, bei der Auswertung zur Verfügung gestellt werden.
  • Wie in Bezug auf 7 erläutert, kann ein Verfahren zur Überwachung einer Windkraftanlage mittels eines faseroptischen Beschleunigungssensors verbessert werden, indem Ausführungsformen einen analogen Tiefpassfilter bzw. einen analogen Anti-aliasing-filter verwenden. Gemäß entsprechenden Ausführungsformen, kann ein Rotor Windkraftanlage zur Verfügung gestellt werden. Der Rotor beinhaltet zumindest ein Rotorblatt. Ein faseroptischer Beschleunigungssensor ist an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt. Ein analoger Tiefpassfilter bzw. Anti-Aliasing-Filter ist ausgebildet zum Filtern des Beschleunigungssignals des faseroptischen Beschleunigungssensors, insbesondere zum analogen Filtern eines elektrischen Signals, das aus dem faseroptischen Beschleunigungssignal generiert wurde. Zum Beispiel beinhaltet der Rotor eine Auswerteeinheit 114, die in einer Nabe 44 zur Verfügung gestellt ist. Die Auswerteeinheit 114 kann einen Wandler zum Wandeln des optischen Signals in ein elektrisches Signal beinhalten. Zum Beispiel kann eine Fotodiode, ein Photomultiplier (PM) oder ein anderer opto-elektronischer Detektor als Wandler verwendet werden. Die Auswerteeinheit beinhaltet ferner einen Anti-Aliasing-Filter 710, der zum Beispiel mit dem Ausgang des Wandlers bzw. des opto-elektronischen Detektors verbunden ist. Die Auswerteeinheit kann ferner einen Analog-digital-Wandler 704 beinhalten, der mit dem Ausgang des Anti-Aliasing-Filters 710 verbunden ist. Die Auswerteeinheit 114 kann darüber hinaus eine digitale Auswerteeinheit 706 beinhalten, die zur Auswertung der digitalisierten Signale eingerichtet ist. Weitere Ausgestaltungen des Rotors bzw. der Rotorblätter können gemäß der hier beschriebenen Ausführungsformen in Bezug auf die faseroptischen Beschleunigungssensoren, die Positionierung von faseroptischen Beschleunigungssensoren, und/oder die Signalübertragung mit Lichtleiter zur Verfügung gestellt werden.
  • 7A zeigt unterschiedliche Beschleunigungssignale zur weiteren Erläuterung der hier beschriebenen Ausführungsformen. Dabei zeigt der obere Graph (730) in 7A eine reale Beschleunigung in einem Rotorblatt bzw. ein Referenzsignal, das zu Versuchszwecken mit einem Referenzsensor ermittelt wurde. Es ist die Power-Spectral-Density (PSD) über der Frequenz aufgetragen, um zum Beispiel die hier beschriebenen Eigenwerte zu ermitteln. Der mittlere Graph (731) zeigt das Beschleunigungssignal eines faseroptischen Beschleunigungssensors, wobei das Beschleunigungssignal dem Referenzsignal entspricht. Der mittlere Graph wurde ohne die Abfolge des opto-elektronisches Wandelns des Beschleunigungssignals des faseroptischen Beschleunigungssensors und einem Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter erzeugt. Der untere Graph in 7A zeigt das Beschleunigungssignal eines faseroptischen Beschleunigungssensors, wobei das Beschleunigungssignal dem Referenzsignal entspricht. Der untere Graph wurde mit der Abfolge des opto-elektronisches Wandelns des Beschleunigungssignals des faseroptischen Beschleunigungssensors und einem Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter erzeugt. Es ist deutlich zu erkennen, dass für den unteren Graph (732) eine verbesserte Erkennung von Eigenwerten insbesondere in einem Frequenzbereich von 0,3 Hz bis 20 Hz im Vergleich zum mittleren Graph (731) existiert. Gemäß hier beschriebenen Ausführungsformen kann folglich eine verbesserte Messung von optischen Beschleunigungssignalen erzielt werden. Gemäß weiteren Ausführungsformen, die mit hier beschriebenen Ausführungsformen kombiniert werden können kann das Filtern des opto-elektronisch gewandelten Beschleunigungssignals mit einem analogen Anti-aliasing-Filter eine Grenzfrequenz von 10 Hz bis 40 Hz hat, insbesondere von 15 Hz bis 25 Hz haben.
  • Gemäß hier beschriebenen Ausführungsformen kann in einem Rotorblatt eine Beschleunigung optisch gemessen werden. Hierbei wird eine Anti-Aliasing-Filterung durchgeführt, insbesondere eine analoge Anti-Aliasing-Filterung. Im Gegensatz zu anderen üblichen Mitteln der optischen Signalerkennung mittels Spektrometer oder dem Auslesen mittels eines Scanning-Lasers, kann gemäß hier beschriebenen Ausführungsformen eine Beschleunigung in einem Rotorblatt optisch gemessen werden. Es wird ein Aliasing-Effekt verhindert, im Gegensatz zu einer Glättung der Messwerte, wobei bei der Glättung der Messwerte lediglich ein besseres Regelsignal erzeugt wird. Die Anti-Aliasing-Filterung wird in den hier beschriebenen Ausführungen analog durchgeführt, d.h. es wird zum Beispiel eine Umsetzung des optischen Beschleunigungssignals in ein analoges elektrisches Messsignal verwendet, bevor eine analoge Anti-Aliasing-Filterung zur Verfügung gestellt wird. Das analoge elektrische Messsignal wird analog Tiefpassgefiltert, wobei mindestens die halbe Nyquist Frequenz als Grenzwert verwendet wird.
  • Gemäß weiteren hier beschriebenen Ausführungsformen, wird das mit einem analogen Anti-Aliasing-Filter gefilterte Signal mittels SSI (Stochastic Subspace Identification, Statistische Zeitbereichs-Systemidentifikationsverfahren) ausgewertet. Hiermit können Eisansatz und/oder sonstige frequenzabhängige Eigenschaften von Rotorblättern, zum Beispiel Alterung, Schädigung, etc., erkannt werden.
  • Eine Beschleunigung in einem Rotorblatt wird zum Beispiel mit einem hier beschriebenen faseroptischen Beschleunigungssensor gemessen. Dies kann in einem ersten Zeitintervall, zum Beispiel einem kurzen Zeitintervall von z.B. 5 - 30 Minuten erfolgen. Ferner können einer oder mehrere der zu kompensierenden Parameter gemessen werden. Diese Parameter können sein: eine Rotorblatttemperatur, ein Pitchwinkel, eine Windgeschwindigkeit, eine Leistung der Windkraftanlage (z.B. die erzeugte oder die ans Netz abgegebene Leistung), und/oder eine Rotationsrate des Rotors. Insbesondere kann die Temperatur des Rotorblatts als Einflussgröße auf die Eigenwerte des Rotorblatts gemessen werden. Die Eigenwerte des Rotorblatts können aus den Beschleunigungsdaten mittels SSI in dem ersten Zeitintervall ermittelt werden. Die Eigenwerte mit zugehörigem Parametersatz aus einem oder mehreren der zu kompensierenden Parameter können abgespeichert werden. Die oben beschriebene Messung mit der Bestimmung der Eigenwerte kann mehrfach wiederholt werden, bis ein Datensatz erhalten ist, der einen Teil oder einen Großteil des Parameterraums beim Betrieb der jeweiligen Windkraftanlage repräsentiert. Dieser zweite Zeitraum kann sich zum Beispiel über mehrere Wochen erstrecken. Nach Ermittlung von Werten in einem Teil des Parameterraums kann das Verhaltens der Eigenwerte über dem Parameterraum bestimmt werden, zum Beispiel durch anfitten eines geeigneten Modells (Lineares Modell, Taylor Approximation, Lookup Tabelle). Die Koeffizienten des Kompensationsmodells bzw. die Lookup-Tabelle können in einer Recheneinheit auf der Windenergieanlage gespeichert werden. Es kann somit eine Kalibrierung der Eigenwerte in Abhängigkeit von einem oder mehreren Parametern erfolgen.
  • Gemäß weiteren Ausführungsformen kann nach der Kalibrierung eine Messung mit kompensierten bzw. kalibrierten Parametern durchgeführt werden. Es können die Eigenwerte eines Rotorblatts mithilfe einer Beschleunigungsmessung, zum Beispiel mit einem faseroptischen Beschleunigungssensor, ermittelt werden. Diese können mithilfe des Kalibrierungsmodells umgerechnet werden bzw. die Parameter, die während der Beschleunigungsmessung ermittelt werden, können für eine Kompensation der Eigenwerte herangezogen werden. Basierend auf den kompensierten Eigenwerten kann eine Abweichung der kompensierten Eigenwerte bestimmt werden. Zum Beispiel kann mittels einem oder mehrerer Schwellwerte die Ausgabe eines Warnsignals zur Verfügung gestellt werden. Alternativ können auch mehrere Schwellwerte innerhalb des Parameterraums zur Verfügung gestellt werden, sodass die Ausgabe eines Warnsignals anhand der Eigenwerte im Parameterraum erfolgt, d.h. ohne vorherige Umrechnung der Eigenwerte.
  • Ein weiterer Aspekt bzw. eine weitere Ausführungsform, die unabhängig von anderen Ausführungsformen aber ebenso in Kombination mit anderen Ausführungsformen zur Verfügung gestellt ist, ist eine Überwachung einer Windkraftanlage mit einem faseroptischen Dehnungssensor. Das Verfahren zur Überwachung einer Windkraftanlage umfasst das Messen einer Dehnung mit einem faseroptischen Dehnungssensor. Ein digitalisiertes Signal des Dehnungssensors wird zum Beispiel einer digitalen Auswertung in einer digitalen Auswerteeinheit unterzogen, wobei eine Auswertung mittels Stochastic Subspace Identification (SSI) verwendet wird. Auch hierbei können Eigenwerte des Rotorblatts, wobei die Eigenwerte insbesondere die Dämpfungen und die Frequenzen, d.h. die Eigenfrequenzen, eines Rotorblatts beinhalten können, berechnet werden.
  • Die so berechneten Eigenwerte können gegebenenfalls auch mit den Eigenwerten aus einem faseroptische Beschleunigungssensoren kombiniert werden bzw. mit diesen verglichen werden, um eine Redundanz in Bezug auf die Information des Betriebszustandes der Windkraftanlage er erhalten. Gemäß weiteren Ausführungsformen, kann die Messung mit einem faseroptischen Dehnungssensor mit einer Temperaturmessung kombiniert werden. Die Temperatur beeinflusst die Eigenschaften des Rotorblatts. Somit kann die Temperaturmessung zur Auswertung der Eigenwerte hinzugezogen werden. Dies kann zum Beispiel durch eine hier beschriebene Kalibrierung geschehen. Gemäß noch weiteren Ausführungsformen, die mit hier beschriebenen Ausführungsformen kombiniert werden können, kann eine Berücksichtigung einer Größe ausgewählt aus der Gruppe bestehend aus Rotorposition, Temperatur, Pitch-Winkel, Yaw- Beschleunigung, und Rotationsrate des Rotors bei der Auswertung zur Verfügung gestellt werden.
  • Der Beschleunigungssensor 110, der in den 8A und 8B näher erläutert wird, beinhaltet eine Testmasse, deren Beschleunigung im Sensor gemessen wird. Gemäß typischen Ausführungsformen können verwendete Dehnungssensoren und/oder verwendete Beschleunigungssensoren faseroptische Sensoren sein. Hierbei werden die Dehnung bzw. die Beschleunigung der Testmasse durch Faser-Bragg-Gitter in einer Faser optisch gemessen. Durch die Verwendung dieser Sensoren kann die oben beschriebene Messgenauigkeit zur Verfügung gestellt werden. Ferner bieten diese Sensoren vorteilhafte Eigenschaften zur Verwendung in Windkraftanlagen.
  • Die in den hier beschriebenen Anordnungen und Verfahren verwendeten Beschleunigungssensoren 110 werden nun in Bezug auf 8A und 8B beschrieben. 8A zeigt einen Beschleunigungssensor 110, wobei eine Testmasse 812 an einer optischen Faser 822 angebracht ist. Ein Gehäuse 802 ist derart ausgestaltet, dass bei einer Beschleunigung der Masse 812 eine Dehnung, d.h. eine relative Längenänderung (Verlängerung oder Verkürzung) der optischen Faser 822 eintritt. Durch die Dehnung der Faser 822 wird das Faser-Bragg-Gitter 824 verändert. Dies führt zu einer veränderten Reflexion bzw. Transmission des Faser-Bragg- Gitters in Bezug auf die reflektierten bzw. transportierten Wellenlängen. Diese Änderung kann als Maß für die Dehnung der Faser und somit indirekt als Maß für die Beschleunigung der Testmasse 812 verwendet werden. In 8B ist ein Beschleunigungssensor 110 dargestellt. Diese Anordnung kombiniert 3 der in 8A gezeigten Sensoren, wobei die Rotation der Sensoren in Illustration eine dreidimensionale Anordnung darstellen soll, so dass drei Beschleunigungswerte in einem Koordinatensystem, wie zum Beispiel einem kartesischen Koordinatensystem, gemessen werden.
  • Die Verwendung der Sensoren 110 bzw. deren Anordnung zueinander und das Zusammenspiel der Auswerteeinheit 114 zur Überwachung eines Zustandes eines Rotorblatts werden unter Bezugnahme auf die 2 und 5 näher erläutert. 2 zeigt einen Teil einer Windkraftanlage 200. Auf einem Turm 40 ist eine Gondel 42 angeordnet. An einer Rotornabe 44 sind Rotorblätter 100 angeordnet, so dass der Rotor (mit der Rotornabe und den Rotorblättern) in einer durch die Linie 852 dargestellten Ebene rotiert. Typischerweise ist diese Ebene relativ zu der Senkrechten geneigt. 5 zeigt eine Vorderansicht der Rotorblätter 100 und der Rotornabe 44 in Richtung der Rotationsachse, wobei Koordinaten x und y im blattfesten Koordinationssystem, die Gravitationskraft bzw. Gravitationsbeschleunigung g, sowie der Sensor 110 dargestellt sind.
  • Bei einer Rotation des Rotors der Windenergieanlage misst der Beschleunigungssensor 110 unter anderem die Gravitationsbeschleunigung. Diese Gravitationsbeschleunigung wird im Koordinatensystem gemäß 5 in y-Richtung und in x-Richtung gemessen. Durch die Neigung des Rotors, die in 2 dargestellt ist, wird im Koordinatensystem in 5 auch in z-Richtung die Gravitationsbeschleunigung zu einem gewissen Maß einem Signal überlagert sein. Das Messsignal, welches typischerweise in der in 5 eingezeichneten y-Richtung gemessen wird, ist dem Gravitationssignal überlagert. Durch Bereinigung des Messsignals vom Gravitationssignal erhält man ein bereinigtes Signal.
  • Die Steuerungen und/oder Regelungen moderner Windkraftanlagen beinhalten typischerweise eine sogenannte Pitch-Regelung, wobei das Rotorblatt um eine Längsachse des Rotorblatts gedreht wird. Demzufolge ändert sich in einem blattfesten Koordinationssystem die in 5 dargestellte y-Richtung während einer Rotation des Rotorblatts 100 um die Längsachse des Rotorblatts. Bei der Betrachtung der von einem Beschleunigungssensor 110 gemessenen Beschleunigung, die den Einfluss der Gravitationsbeschleunigung auf eine Testmasse beinhaltet, bedarf es zur verbesserten Bewertung der Signale einer Betrachtung der verschiedenen Koordinatensysteme. Zum einen existiert ein blattfestes Koordinatensystem. Bei einer Rotation des Rotorblatts um die Längsachse des Rotorblatts rotieren das Koordinatensystem sowie der Sensor 110. Darüber hinaus existiert ein Koordinatensystem welches fest in Bezug auf die Rotornabe 44 ist. Dabei handelt es sich um ein rotierendes Koordinatensystem, welches unabhängig von einer Pitch-Regelung verwendet werden kann. Ferner existiert ein ortsfestes Koordinatensystem, welches fest in Bezug auf die Windenergieanlage 200 und somit fest in Bezug auf die Gravitationskraft bzw. Gravitationsbeschleunigung ist.
  • Gemäß typischen Ausführungsformen wird zur Korrektur des oder der Signale des Beschleunigungssensors und/oder der Dehnungssensoren, d.h. eines Signals in x-, y- und z-Richtung im blattfesten Koordinatensystem, eine Transformation in das ortsfeste Koordinatensystem durchgeführt, wobei die Rotation des Rotors, der Pitch-Winkel des Rotorblatts sowie die Neigung des Rotors, berücksichtigt werden. Im ortsfesten Koordinatensystem kann das Signal von der Gravitationsbeschleunigung bereinigt werden. Anschließend kann eine Rücktransformation in das Koordinatensystem, welches fest in Bezug auf die Rotornabe ist, durchgeführt werden. In diesem Koordinatensystem, welches fest in Bezug auf die Rotornabe ist, wird typischerweise eine Beschleunigung im Wesentlichen parallel zur Windrichtung oder im Wesentlichen parallel zur Rotationsachse des Rotors ermittelt.
  • Gemäß einigen hier beschriebenen Ausführungsformen, wird ein Beschleunigungssensor in den äußeren 70 % des Radius eines Rotorblatts insbesondere in einem Bereich von 60 bis 90 % des Radius des Rotorblatts zur Verfügung gestellt. Dabei kann zum Beispiel durch die Verwendung eines faseroptischen Beschleunigungssensors, wie zum Beispiel eines faseroptischen Beschleunigungssensors, eine optische Signalübertragung erfolgen. Die optische Signalübertragung reduziert das Risiko eines Blitzschadens. Durch die optische Signalübertragung kann eine bisher in der Praxis existierende Limitierung, Sensoren möglichst nahe an dem Blattflansch zur Verfügung zu stellen überwunden werden.
  • Die Verringerung des Risikos eines Blitzeinschlags bzw. eines Blitzschadens kann weiter dadurch reduziert werden, einen metallfreien bzw. einen im Wesentlichen metallfreien Beschleunigungssensor zur Verfügung zu stellen. Gemäß einer Ausführungsform wird ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Das Verfahren beinhaltet das messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der Beschleunigungssensoren einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt ist, wobei der Beschleunigungssensoren zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.
  • Gemäß einer weiteren Ausführungsform wird ein Rotorblatt einer Windkraftanlage zur Verfügung gestellt. Das Rotorblatt beinhaltet einen faseroptischen Beschleunigungssensor, wobei der faseroptische Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist, und wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält. Zum Beispiel kann ein Lichtleiter von dem faseroptischen Beschleunigungssensor bis zu einer radialen Rotorblattposition geführt ist, an der das Rotorblatt begehbar ist. Gemäß noch weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der faseroptische Beschleunigungssensoren eine maximale Ausdehnung von 10 mm in einem Querschnitt senkrecht zu einer Erstreckung des Lichtleiters haben.
  • Gemäß hier beschriebenen Ausführungsformen können Beschleunigungssensoren mit ausreichen wenig Metall oder metallfreien Beschleunigungssensoren zur Verfügung gestellt werden. Somit können zusätzlich zu existierenden Ideen einer kabellosen Signalübertragung, d.h. einer Signalübertragung ohne elektrische Kabel in einem Rotorblatt, metallfreie Beschleunigungssensoren zur Verfügung gestellt werden, die ein reduziertes Risiko eines Blitzschadens zur Verfügung stellen. Durch ein blitzsicheres Design bzw. ein Design mit reduziertem Risiko eines Blitzschadens oder Blitzeinschlags kann die erforderliche hohe Zuverlässigkeits- und Lebensdaueranforderung an Windkraftanlagen erfüllt werden.
  • Zum Beispiel können für eine vorteilhafte Anbringung in der Blattspitze geringe Abmessungen und/oder Massen des Sensors vorteilhaft sein. Für die faseroptische Messung mittels Faser-Bragg-Gitter sind aber relative große Massen notwendig, da die Faser relativ steif ist. Hierbei kann ein Membransensor mittels Fabry Perot Interferometer zu noch weiteren Verbesserungen führen.
  • Neben faseroptischen Beschleunigungssensoren, die ebenfalls im wesentlichen metallfrei zur Verfügung gestellt werden können, da die eigentliche Sensorik durch ein Faser-Bragg-Gitter zur Verfügung gestellt ist, kann gemäß einer Ausführungsform ein faseroptischer Beschleunigungssensor wie folgt zur Verfügung gestellt werden. Der faseroptische Beschleunigungssensor beinhaltet einen Lichtleiter bzw. eine optische Faser mit einer Lichtaustrittsfläche. Ferner beinhaltet der faseroptische Beschleunigungssensor eine Membran und eine mit der Membran in Verbindung stehende Masse. Hierbei kann die Masse entweder zusätzlich zur Masse der Membran zur Verfügung gestellt werden oder die Membran kann mit einer geeigneten ausreichend großen Masse ausgestaltet sein. Der faseroptische Beschleunigungssensor beinhaltet einen optischen Resonator, der zwischen der Lichtaustrittsfläche und der Membran ausgebildet ist. Zum Beispiel kann der Resonator ein Fabry-Perot-Resonator sein. Ferner beinhaltet der faseroptische Beschleunigungssensor einen Spiegel, der im Strahlengang zwischen der Lichtaustrittsfläche und der Membran zur Verfügung gestellt ist, wobei der Spiegel in einem Winkel von 30° bis 60° relativ zu einer optischen Achse des Lichtleiter bzw. der optischen Faser ausgebildet ist. Zum Beispiel kann der Spiegel in einem Winkel von 45° ausgebildet sein.
  • Die 9A und 9B zeigen einen faseroptischen Beschleunigungssensor 910. Ein primäres optisches Signal wird über einen Lichtleiter 112 dem Beschleunigungssensor 910 zugeführt. Zum Beispiel kann der Lichtleiter mit einem Substrat 912 verbunden werden. Das Substrat 912 kann aus einem nicht-metallischen Material bestehen. Auf dem Substrat 912 bzw. an dem Substrat 912 ist eine Membran 914 ausgebildet. Das aus dem Lichtleiter 112 austretende primäre optische Signal wird über einen Spiegel 916 in Richtung der Membran 912 gelenkt. Gemäß typischen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann der Spiegel 916 als eine im Substrat ausgeformte Fläche zur Verfügung gestellt werden. Zum Beispiel kann das Substrat aus einem Material bestehen, dass in einem vorgegebenen Wellenlängenbereich, typischerweise dem Wellenlängenbereich des primären optischen Signals, reflektiert. Der Spiegel kann relativ zur Achse des Lichtleiters einen Winkel im Bereich von 30° bis 60°, zum Beispiel einen Winkel von 45°, haben.
  • Das primäre optische Signal wird wie durch den Pfeil 901 angedeutet durch den Spiegel 916 umgelenkt und auf die Membran gerichtet. An der Membran findet eine Reflexion des primären optischen Signals statt. Das reflektierte Licht wird wie durch den Pfeil 903 dargestellt zurück in die optische Faser bzw. den Lichtleiter 112 gekoppelt. Somit wird zwischen der Lichtaustrittsfläche für den Austritt des primären optischen Signals und der Membran ein optischer Resonator 930 ausgebildet. Hierbei ist zu berücksichtigen, dass im Allgemeinen die Lichtaustrittsfläche des primären optischen Signals gleich der Lichteintrittsfläche für das reflektierte sekundäre Signal ist. Der optische Resonator kann somit als Fabry-Perot-Resonator ausgebildet sein. Für einen faseroptischen Beschleunigungssensor gemäß hier beschriebenen Ausführungsformen kann eine Masse 922 an der Membran 914 zur Verfügung gestellt sein. Alternativ kann die Masse der Membran selbst als Masse für die Detektion einer Beschleunigung dienen. Bei einer Beschleunigung wird die Membran 914 durch die Trägheit der Masse 922 ausgelenkt. Dies führt zu einem optisch messbaren Signal in dem optischen Resonator 930. Gemäß hier beschriebenen Ausführungsformen ist der faseroptische Beschleunigungssensor ausgestaltet, um eine Beschleunigung mit einer Richtungskomponente zum Messen, die eine Richtungskomponente senkrecht zur Achse der Faser bzw. des Lichtleiter 112 ist. Durch die Richtungskomponente senkrecht zur Achse des Lichtleiter 112, kann der faseroptische Beschleunigungssensoren 912 für Verfahren zur Überwachung von Rotorblättern eingesetzt werden, bzw. in Rotorblätter von Windkraftanlagen bzw. Windkraftanlagen eingebaut werden, um eine Überwachung zu ermöglichen.
  • Gemäß hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ist ein faseroptischer Beschleunigungssensor, d.h. zum Beispiel ein extrinsischer faseroptischer Beschleunigungssensor mit einem mittels der Faser oder angrenzend an die Faser zur Verfügung gestellten optischen Sensor, zum Beispiel mit einem optischen Resonator, oder ein intrinsischer faseroptische Beschleunigungssensor mit einem innerhalb der Faser zur Verfügung gestellten Sensor, an einer radialen Position der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt. Dies entspricht in manchen Fällen einem radialen Bereich des Rotorblatts, an dem es nicht möglich ist das Rotorblatt im fertigen Zustand zu begehen. Somit kann gemäß weiteren Ausführungsformen, die hier beschriebene radiale Position der Beschleunigungssensoren auch durch eine radiale Position, an der das Rotorblatt im fertigen Zustand nicht begehbar ist, beschrieben werden. Insbesondere kann der Beschleunigungssensoren in den äußeren 50 % des Radius des Rotorblatts bzw. den äußeren 60 bis 90 % des Radius des Rotorblatts zur Verfügung gestellt werden. Durch die im Wesentlichen metallfreie Ausgestaltung des faseroptischen Beschleunigungssensors kann die Gefahr eines Blitzanschlages ausreichend reduziert werden, um einen Beschleunigungssensor an einer solchen radialen Position auch in der Praxis zu verwenden. Durch die nach außen verlagerte radiale Position des Beschleunigungssensors kann eine Empfindlichkeit des Beschleunigungssensors erzielt werden, die eine Vielzahl von Überwachungen, Zustandsbestimmungen, und Steuerungsmöglichkeiten und/oder Regelungsmöglichkeiten erlaubt.
  • Die in den 9A und 9B dargestellten Komponenten des extrinsischen faseroptischen Beschleunigungssensors können gemäß beispielhaften Ausführungsformen aus folgenden Materialien bestehen. Der Lichtleiter 112, kann zum Beispiel eine Glasfaser, eine optische Faser oder ein Lichtwellenleiter sein, wobei Materialien wie optische Polymere, Polymethylmethacrylat, Polycarbonat, Quarzglas, Ethylen-Tetrafluorethylen verwendet werden können, die gegebenenfalls dotiert sind. Das Substrat 912 bzw. der darin ausgestaltete Spiegel 916 kann zum Beispiel aus Silizium bestehen. Die Membran kann aus einem Kunststoff oder einem Halbleiter zur Verfügung gestellt werden, der geeignet ist, als dünne Membran ausgebildet zu werden. Die Masse 922 kann aus jedem nichtmetallischen Material zur Verfügung gestellt werden, wobei insbesondere Materialien mit einer hohen Dichte geeignet sind. Durch eine hohe Dichte kann die Abmessung der Masse reduziert werden.
  • Um einen faseroptischen Beschleunigungssensor, wie er zum Beispiel in den 9A und 9B dargestellt ist, besonders einfach an einem Rotorblatt, insbesondere in einem äußeren radialen Bereich, zur Verfügung zu stellen, ist es von Vorteil, wenn der faseroptische Beschleunigungssensor in einem Querschnitt senkrecht zum Lichtleiter 112 in 9A bzw. 9B eine geringe Abmessungen aufweist. Zum Beispiel kann eine maximale Abmessung in einem Querschnitt senkrecht zur Achse des Lichtleiter 112 10 mm oder weniger betragen. Durch die Ausgestaltung, wie Sie in Bezug auf die 9A und 9B dargestellt ist, kann eine solche Dimensionierung einfach realisiert werden.
  • Der in den 9A und 9B beschriebene faseroptische Beschleunigungssensor 910 kann durch eine weitere Modifikation zu einem unabhängigen weiteren Aspekt ausgebildet werden, der insbesondere in Verfahren zur Überwachung von Rotorblättern von Windkraftanlagen und in Rotorblättern von Windkraftanlagen angewendet werden kann. Bei einer Verringerung bzw. einem Entfallen der Masse 922 kann die Membran 914 sowohl zur Messung eines statischen Drucks verwendet werden als auch zur Messung eines Schalldruckpegels. Für die Messung eines statischen Drucks ist der Bereich des optischen Resonators 930 vom Umgebungsdruck getrennt, so dass bei einer Änderung des Umgebungsdrucks, eine Bewegung der Membran stattfindet. Für die Messung eines Schalldruckpegels, ist die Membran ausgestaltet um bei einem entsprechenden Schalldruck eine Bewegung, insbesondere eine oszillierende Bewegung auszuführen, die über den optischen Resonator in ein optisches Signal übertragen wird. Hierbei ist es für die Verwendung in Rotorblättern von Windkraftanlagen bzw. für die Verfahren zur Überwachung von Windkraftanlagen besonders günstig, dass der Schalldruck in einer Richtung senkrecht zur Längserstreckung des Lichtleiters 112 gemessen wird.
  • Gemäß hier beschriebenen Ausführungsformen, werden Verfahren zur Überwachung und/oder Steuerung (bzw. Regelung) von Windkraftanlagen zur Verfügung gestellt. Ferner werden gemäß hier beschriebenen Ausführungsformen verbesserte Beschleunigungssensoren, insbesondere intrinsische oder extrinsische faseroptische Beschleunigungssensoren, zur Verfügung gestellt. Hierbei sind intrinsische faseroptische Beschleunigungssensoren, Sensoren mit einer innerhalb der Faser zur Verfügung gestellten Sensoreinheit, wie zum Beispiel einem Faser-Bragg-Gitter. Extrinsische faseroptische Beschleunigungssensoren, haben eine mittels der Faser oder an der Faser zur Verfügung gestellten optischen Sensor. Somit können auch extrinsische faseroptische Beschleunigungssensoren mittels einer optischen Faser und einem optischen Sensor, d.h. einem nicht elektrischen Sensor, einen Beschleunigung ohne elektrische Komponenten messen. Hierbei können Beschleunigungssensoren zum Beispiel an einer radialen Position im Bereich der äußeren 70 % des Radius des Rotorblatts zur Verfügung gestellt werden, insbesondere im Bereich der äußeren 50 % des Radius des Rotorblatts, wie zum Beispiel im Bereich von 60 % bis 95 % des Radius, wobei 0 % dem Flansch an der Blattwurzel entspricht. Weitere Ausgestaltungen zur Anbringung, Positionierung und zur Führung der Beschleunigungssignale vom Beschleunigungssensor zur Blattwurzel werden im Folgenden beschrieben. Diese Ausgestaltungen zur Anbringung, Positionierung und zur Führung der Beschleunigungssignale vom Beschleunigungssensor zur Blattwurzel können für alle hier beschriebenen Ausführungsformen vorteilhaft verwendet werden.
  • 10 zeigt ein Rotorblatt 100. Das Rotorblatt erstreckt sich entlang seiner Länge 105, die dem Radius des Rotorblatts entspricht, von dem Blattflansch 102 zu der Blattspitze. Ein Beschleunigungssensor 110 ist an einer radialen Position im Bereich 107 zur Verfügung gestellt. Der Beschleunigungssensor kann zum Beispiel ein faseroptischer Beschleunigungssensor 110 sein. Eine Signalleitung von dem Beschleunigungssensor 110 zu der Blattwurzel wird entlang der Hinterkante des Rotorblatts geführt. Zum Beispiel kann die Signalleitung ein Lichtleiter 112 sein. Gemäß hier beschriebenen Ausführungsformen kann die Signalleitung innerhalb des Rotorblatts entlang der Hinterkante, zum Beispiel bei einem neu produzierten Rotorblatt, oder außerhalb des Rotorblatts entlang der Hinterkante, zum Beispiel in einem an der Hinterkante angebrachten Profil, zur Verfügung gestellt werden.
  • Ausführungsformen der vorliegenden Erfindung erlauben es, Beschleunigungssensoren, insbesondere faseroptische Beschleunigungssensoren bzw. faseroptische Beschleunigungssensoren, nahe der Blattspitze, d.h. in hier beschriebenen radial äußeren Bereichen, in denen ein Rotorblatt nicht begehbar ist, einzusetzen, nachzurüsten und/oder im Reparaturfall entsprechende Wartungsmaßnahmen ergreifen zu können. Somit ergibt sich gemäß der hier vorliegenden Offenbarung eine detaillierte technische Lehre zur Ausführung und/oder zur Verfahrensweise für eine Messung der Beschleunigung in den hier beschriebenen radial außenliegenden Bereichen eines Rotorblatts. Diese technische Lehre bezieht sich zum einen auf die Montage, die Führung von Lichtleitern, redundante Verwendung von Komponente, und/oder eine Nachrüstung entsprechender Sensoren, zum anderen - alternative oder zusätzlich - zum anderen auf eine Messwerterfassung mittels eines analogen Anti-Aliasing-Filters bzw. einer SSI Auswertung der hier beschriebenen Beschleunigungssensoren. Somit wird über die rein theoretische Verwendung solcher Sensoren in radial außenliegenden Bereichen eines Rotorblatts hinaus, eine technische Lehre zur Verfügung gestellt, die einen praktischen Einsatz von faseroptischen Beschleunigungssensoren in einem radialen Bereich eines Rotorblatts, an dem das Rotorblatt nicht begehbar ist (zum Beispiel die äußeren 70%, insbesondere die äußeren 50%, weiterhin insbesondere die äußeren 30% des Radius), ermöglichen. Somit erlauben hier beschrieben Ausführungsformen durch die beschriebenen Anti-Aliasing-Filter eine gute Verwendung von Messsignalen. Darüber hinaus können alternativ oder zusätzlich die entsprechenden Komponenten technisch auch derart zur Verfügung gestellt werden, dass die verbesserten Regelungsstrategien bzw. Messstrategien auch über eine ausreichend lange Lebensdauer von zum Beispiel mehr als 20 Jahren zur Verfügung gestellt werden können. Ausführungsformen erlauben zum Beispiel Reparatur- und Austauschmöglichkeiten, ohne die ein Einsatz von Beschleunigungssensoren nicht praktikabel ist.
  • Im Bereich der Blattwurzel ist durch die gepunktete Linie illustriert, dass gemäß hier beschriebenen Ausführungsformen bei einer Kabelverlegung an der Hinterkante des Rotorblatts ein Durchstich in das Innere des Rotorblatts an einer radialen Position zur Verfügung gestellt wird, an der das Rotorblatt begehbar ist. Dies kann in der Nähe der Blattwurzel bzw. an der Blattwurzel sein. Es kann aber auch in einem anderen radialen Bereich des Rotorblatts sein, an dem das Rotorblatt begehbar ist.
  • Bei der Herstellung von neuen Rotorblättern kann im Rahmen der Fertigung eine Verlegung des Signalkabels, wie zum Beispiel des Lichtleiters 112, im Inneren des Rotorblatts, insbesondere im Hinterkasten des Rotorblatts vorgenommen werden. Weiterhin kann der Sensor ebenfalls im Inneren des Rotorblatts montiert werden. Insbesondere kann der Sensor in einer abgetrennten Kammer zur Verfügung gestellt werden. Dies ermöglicht einen Schutz gegen lose Klebstoffreste und andere Verunreinigungen. Ein Signalkabel wie zum Beispiel ein Lichtleiter kann jedoch auch entlang der Hinterkante geführt werden, wobei ein Durchstich ins Innere des Rotorblatts bevorzugterweise in einem begehbaren Bereich des Rotorblatts erfolgt. Diese Position des Durchstichs erlaubt vereinfachte Wartungsmaßnahmen. Zum Beispiel kann in einem Reparaturfall eines Beschleunigungssensors, die Signalleitung bzw. der Lichtleiter an einem Stecker, der nahe am Durchstich zur Verfügung gestellt sein kann, getrennt werden. Eine als Ersatz zur Verfügung gestellte Signalleitung, zum Beispiel ein Ersatz-Lichtleiter, bzw. ein als Ersatz zur Verfügung gestellter Beschleunigungssensor können in einem solchen Fall außen verlegt werden. Die ursprüngliche Signalleitung bzw. der ursprüngliche Sensor können hierbei aufgegeben werden.
  • Gemäß weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, ist bei einer Nachrüstung eines Sensors, zum Beispiel zur Eiserkennung, der Lichtleiter 112 ebenfalls außen verlegt. Für ein Nachrüsten eines Sensors und/oder für eine nachträgliche Anbringung eines Lichtleiters, kann gemäß hier beschriebener Ausführungsformen ein separates Profil zur Verfügung gestellt werden. 11 zeigt ein weiteres Rotorblatt 100. Hierbei ist an der Hinterkante des Rotorblatts ein Profil 150 zur Verfügung gestellt, so dass der Lichtleiter 112 in dem Profil geführt werden kann. Gemäß hier beschriebenen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, hat das Profil eine Befestigungsvorrichtung für den Lichtleiter 112 bzw. ein entsprechendes Signalkabel, insbesondere ein optisches Signalkabel.
  • Das Profil 150 kann zum Beispiel ein pultrudiertes Profil sein. Das Profil kann weiterhin an die Hinterkante eines Rotorblatts angepasst sein. Es hat zum Beispiel eine Längserstreckung, die zumindest 10 % oder zumindest 30 % des Radius des Rotorblatts entspricht. Weiterhin kann das Profil durch segmentierte Elemente zur Verfügung gestellt werden. Zum Beispiel können sich mehrere segmentierte Elemente entlang zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß manchen Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann das Profil entlang seiner Länge eine gleichbleibende Geometrie aufweisen. Es kann ebenfalls eine Geometrie haben, die für verschiedene Hinterkantendicken ausgebildet ist. Weiterhin kann das Profil optional derart ausgestaltet sein, um eine aerodynamische Verbesserungen des Rotorblatts zu bewirken.
  • Wie in 11A gezeigt, kann das Profil 150 an der Hinterkante 109 des Rotorblatts zur Verfügung gestellt werden. Zum Beispiel kann das Profil mit einem Befestigungselement 151 an der Hinterkante angebracht werden. Das Profil kann mittels eines Klebers 152 an der Hinterkante zur Verfügung gestellt werden. Gemäß einigen Ausführungsformen kann der Lichtleiter 112 in dem Kleber zur Verfügung gestellt werden, zum Beispiel eingebettet sein. Der Lichtleiter 112 verläuft entlang der Hinterkante 109 des Rotorblatts in dem Profil 150.
  • Gemäß weiteren Ausführungsformen kann das Profil einen Leerkanal 153 aufweisen, um im Rahmen einer Wartung oder Reparatur einen Ersatzlichtleiter zur Verfügung zu stellen. Gemäß noch weiteren alternativen oder zusätzlichen Ausgestaltungen kann das Profil 150 eine Struktur 157 zur aerodynamischen Strömungsbeeinflussung beinhalten. Diese kann zum Beispiel eine Gurney-Flap sein. Die Struktur 157 ist in 11A gestrichelt dargestellt.
  • 12 zeigt eine weitere optionale Ausgestaltung, die mit anderen Ausführungsformen kombiniert werden kann. Hierbei hat das Profil 150, das an der Hinterkante des Rotorblatts 100 zur Verfügung gestellt werden kann, eine weitere Befestigungsvorrichtung für einen Beschleunigungssensor 110. Der Beschleunigungssensor 110 kann in dem Profil 150 zur Verfügung gestellt sein. Dies erlaubt ein besonders einfaches Nachrüsten eines Beschleunigungssensors und der entsprechenden optischen Signalübertragung in dem nachrüstbaren Profil an der Hinterkante des Rotorblatts.
  • Gemäß einem hier beschriebenen Aspekt wird ein Profil für die Hinterkante eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Das Profil beinhaltet zumindest eine Befestigungsvorrichtung für einen Lichtleiter. Typischerweise ist das Profil ausgestaltet, um sich entlang zumindest 30 % des Radius des Rotorblatts erstrecken. Gemäß weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann die zumindest eine Befestigungsvorrichtung eine oder mehrere Klebestellen sein. Zum Beispiel kann ein Lichtleiter in das Profil eingeklebt werden. Gemäß weiteren Ausführungsformen, kann als Befestigungsvorrichtung eine Klemmvorrichtung für einen Lichtleiter oder ein Leerkanal zur Verfügung gestellt sein, durch den ein Lichtleiter hindurchgeführt werden kann.
  • Gemäß noch weiteren Ausführungsformen, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden können, kann das Profil eine weitere Befestigungsvorrichtung für einen Beschleunigungssensor beinhalten. Die weitere Befestigungsvorrichtung kann als Klemmvorrichtung, Gewinde oder Schraube, und/oder durch ein oder mehrere Klebestellen zur Verfügung gestellt sein. Insbesondere Klemmvorrichtungen, Gewinde bzw. Schrauben sind bevorzugt aus einem nichtmetallische Material ausgebildet. Durch ein Profil gemäß hier beschriebenen Ausführungsformen, kann ein Nachrüsten für ein Rotorblatt mit einem Beschleunigungssensor und einer entsprechenden optischen Signalübertragung besonders einfach zur Verfügung gestellt werden. Weiterhin kann durch die Verwendung von nichtmetallischen Materialien das Risiko eines Blitzschadens bzw. eines Blitzeinschlags reduziert werden.
  • 13A zeigt eine weitere Ausführungsform, die mit anderen hier beschriebenen Ausführungsformen kombiniert werden kann. Der Beschleunigungssensor 110 ist in einer Kammer 162 zur Verfügung gestellt. Der Lichtleiter 112 wird an der Hinterkante aus dem Rotorblatt 100 geführt. Der Lichtleiter 112 wird in dem Profil 150 entlang der Hinterkante in Richtung der Blattwurzel bzw. des Blattflanschs geführt. Als weitere zusätzliche Option, wie Sie in 13B dargestellt ist, kann in einem Bereich des Übergangs zwischen dem Rotorblatt 100 und dem Profil 150 eine Steckverbindung 172 zur Verfügung gestellt werden. Dies erlaubt einen einfachen Austausch des Lichtleiters 112, falls dieser im Rahmen von Wartungsarbeiten gewechselt werden sollte.
  • In Bezug auf das Nachrüsten, die Wartung bzw. den Austausch von Komponenten sei vermerkt, dass faseroptische Beschleunigungssensoren, insbesondere faseroptische Beschleunigungssensoren einen relativ geringen Wartungsaufwand haben bzw. relativ robust sind. Für die Verwendung an Windkraftanlagen sollte jedoch berücksichtigt werden, dass die Betriebsbedingungen durch große Temperaturschwankungen und/oder große Beschleunigungen, die auf die Komponenten einwirken, insbesondere auch möglicherweise existierende Vibrationen, extrem sind. Somit ist bei der Verwendung in Windkraftanlagen eine Redundanz von Komponenten bzw. die vereinfachte Möglichkeit zum Austausch von Komponenten, insbesondere vorteilhaft.
  • 14 illustriert die Kabelverlegung, zum Beispiel die Verlegung des Lichtleiters 112, in einem der Blattwurzel zugewandten radialen Bereich des Rotorblatts. Diese Details, Ausgestaltungen, und Ausführungsformen der Kabelverlegung können mit anderen Ausführungsformen kombiniert werden. Der Lichtleiter 112 ist entlang der Hinterkante des Rotorblatts 100 geführt. Dies kann zum Beispiel wie oben beschrieben in einem Profil ermöglicht werden. Es wird ein Durchstich in das Innere des Rotorblatts zur Verfügung gestellt. Insbesondere kann die radiale Position des Durchstichs derart festgelegt sein, dass das Rotorblatt an der radialen Position des Durchstichs begehbar ist. Gemäß weiteren optionalen Ausgestaltungen, kann im Bereich des Durchstichs, zum Beispiel direkt am Durchstich bzw. nahe des Durchstichs im Inneren des Rotorblatts, eine weitere Steckverbindung 174 zur Verfügung gestellt werden. Ein Lichtleiter bzw. eine optische Faser führt von der Steckverbindung 174 zu einem Stecker 176 an einem Verteiler 510, zum Beispiel einem Feldverteiler. Ein weiterer Lichtleiter 512 führt von dem Verteiler 510 zu der Auswerteeinheit 114. Zum Beispiel kann die Auswerteeinheit 114 in der Nabe des Rotors zur Verfügung gestellt werden. Gemäß typischen Ausführungsformen, wie Sie mit anderen Ausführungsformen kombiniert werden können, kann der Lichtleiter 512 derart entlang einer Spirale (Feder) oder durch eine Spirale 513 geführt werden, das eine Rotation des Rotorblatts 100 um seine Längsachse, zum Beispiel beim Pitchen, nicht zu einer Beschädigung des Lichtleiter 512 führt. Zur besseren Übersicht ist der Lichtleiter 512 in 14 gestrichelt durch die Feder bzw. Spirale gekennzeichnet. Eine verbesserte Entlastung des Lichtleiters kann dadurch gegeben werden, dass gemäß Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, der Lichtleiter parallel zur Spirale 513 geführt wird (durch die gestrichelte Linie symbolisiert bzw. nicht explizit dargestellt).
  • 15 zeigt exemplarisch eine weitere Ausgestaltung für die Verwendung von einem Beschleunigungssensor 110 in einem Rotorblatt 100. Der Beschleunigungssensor 110 ist in einem Bereich nahe der Blattspitze 104 zur Verfügung gestellt. Weiterhin sind im Inneren des Rotorblatts 100 zwei Lichtleiter in Richtung der Blattwurzel bzw. in Richtung des Blattflanschs geführt. In einer weiteren Kammer 164, die im Rahmen von Wartungsarbeiten geöffnet werden kann, existiert eine erste Steckverbindung 178 und ein weiterer Stecker 179. Durch die Verwendung von zwei Lichtleitern kann eine Redundanz zur Verfügung gestellt werden. Beim Ausfall eines Lichtleiters kann die Kammer 164 geöffnet werden und die Steckverbindung 178 des Beschleunigungssensor 110 gelöst werden, um im Anschluss den Beschleunigungssensor 110 an den Stecker 179 zu stecken. Wie durch den alternativ oder zusätzlich zur Verfügung gestellten zweiten Beschleunigungssensor 110 (gestrichelt dargestellt) illustriert, kann eine zusätzliche oder alternative Redundanz auch in Bezug auf den Beschleunigungssensor zur Verfügung gestellt werden. Es kann zusätzlich oder alternativ der Ausfall eines Beschleunigungssensors durch ein Umstecken behoben werden.
  • Gemäß noch weiteren Ausführungsformen, die mit anderen Ausführungsformen kombiniert werden können, kann für eine Reparatur eines Lichtleiters ein im Inneren verlegter Lichtleiter aufgegeben werden und durch einen in einem Profil zur Verfügung gestellten Lichtleiter ersetzt werden. Weiterhin ist es möglich ein in einem Profil zur Verfügung gestellten Lichtleiter im Rahmen einer Reparatur aufzugeben und einen weiteren Lichtleiter mit einem weiteren Profil auf das erste Profil zu montieren. Gemäß noch weiteren Ausführungsformen, kann sowohl innerhalb eines Rotorblatts und/oder innerhalb eines Profils ein Leerkanal zur Verfügung gestellt sein. In einem Leerkanal kann ein Lichtleiter nachträglich eingeführt werden. Dies kann insbesondere vorteilhaft mit einer Steckverbindung 174, wie Sie in 14 dargestellt ist, kombiniert werden.
  • Die Verwendung eines Leerkanals in einem Profil bzw. auch im Inneren eines Rotorblatts kann ferner mit Ausführungsformen von Beschleunigungssensoren, die wie oben beschrieben eine geringe maximale Abmessung in einem Querschnitt senkrecht zur Lichtleiter-Achse vorteilhaft sein. Für faseroptische Beschleunigungssensoren mit kleinen Abmessungen im Querschnitt senkrecht zum Lichtleiter-Achse kann ein Ersatz-Lichtleiter gegebenenfalls auch mit einem Ersatz-Beschleunigungssensor in den Leerkanal eingebracht werden.
  • Gemäß hier beschriebenen Ausführungsformen ist eine Mehrzahl an Verwendungsmöglichkeiten von Beschleunigungssensoren, insbesondere faseroptischen Beschleunigungssensoren, wie zum Beispiel faseroptische Beschleunigungssensoren, in Windkraftanlagen beschrieben, wobei Ausgestaltungen durch die radiale Positionierung, den Aufbau von faseroptischen Beschleunigungssensoren, sowie die Anbringung von Beschleunigungssensoren und/oder Anbringung von Lichtleitern zur Verfügung gestellt sind.
  • Gemäß einer Ausführungsform ist ein Verfahren zur Überwachung einer Torsionsinstabilität eines Rotorblatts einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 16 dargestellt. Eine Beschleunigung wird mit einem Beschleunigungssensor gemessen (siehe Bezugszeichen 962), wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist. Ferner wird die Beschleunigung zur Erzeugung eines Signals zur Flatterwarnung und/oder eines Signals zur Instabilitätswarnung bei einer Torsions-Biege-Kopplung ausgewertet (siehe Bezugszeichen 964). Es wird die Existenz einer Torsionsinstabilität erfasst bzw. überwacht, um entsprechende Maßnahmen bei der Regelung der Windkraftanlage vornehmen zu können.
  • Gemäß einer weiteren Ausführungsform ist ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 17 dargestellt. Eine Beschleunigung wird mit einem faseroptischen Beschleunigungssensor gemessen (siehe Bezugszeichen 972), wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius eines Rotorblatts der Windkraftanlage zur Verfügung gestellt ist. Ferner wird das Beschleunigungssignals des faseroptischen Beschleunigungssensors mit einem analogen anti-aliasing-Filter gefiltert (siehe Bezugszeichen 974).
  • Gemäß einer noch weiteren Ausführungsform ist ein Verfahren zur Überwachung einer Windkraftanlage zur Verfügung gestellt. Ein entsprechendes Ablaufdiagramm ist in 18 dargestellt. Eine Beschleunigung wird mit einem faseroptischen Beschleunigungssensor gemessen (siehe Bezugszeichen 982), wobei der Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist, wobei der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält.
  • In solchen Ausführungsformen von Windkraftanlagen kann der Beschleunigungssensor insbesondere in den äußeren 50 % des Radius des Rotorblatts, weiterhin insbesondere in einem Bereich von 60 % bis 90 % des Radius des Rotorblatts zur Verfügung gestellt sein. Hierbei ist es insbesondere vorteilhaft, wenn der Beschleunigungssensor zu weniger als 10 Gew.-% aus Metall besteht oder weniger als 20 g Metall enthält. Ein solcher Beschleunigungssensor kann insbesondere der faseroptische Beschleunigungssensor gemäß einer der Ausführungsformen sein, wie sie in Bezug auf die 9A und 9B beschrieben sind. Weiterhin kann der Beschleunigungssensor bzw. ein Lichtleiter zur Signalübertragung des Signals des Beschleunigungssensors gemäß einer der Ausführungsformen zur Verfügung gestellt werden, wie sie im Hinblick auf die 10 bis 15 beschrieben sind.
  • Obwohl die vorliegende Erfindung vorstehend anhand typischer Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar. Auch ist die Erfindung nicht auf die genannten Anwendungsmöglichkeiten beschränkt.

Claims (18)

  1. Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage, umfassend: - Messen einer Beschleunigung mit einem faseroptischen Beschleunigungssensor, wobei der faseroptische Beschleunigungssensor an einer radialen Position im Bereich der äußeren 70% des Radius des Rotorblatts zur Verfügung gestellt ist; - Messen eines statischen Biegemoments mit einem Dehnungssensor, wobei die Dehnung in zumindest einer Richtung tangential zu einer Torsionsachse des Rotorblatts gemessen wird; - Auswerten der Beschleunigung zur Erzeugung eines Signals zur Erfassung eines Flatterns; und - Erzeugen eines Signals zur Flatterwarnung, wobei bei der Erzeugung des Signals zur Flatterwarnung ein dynamisches Signal des Beschleunigungssensors mit einem statischen Signal des Dehnungssensors kombiniert wird.
  2. Verfahren gemäß Anspruch 1, wobei das Signal mit einem Lichtleiter zur Blattwurzel des Rotorblatts geführt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, wobei das Signal mit einem Lichtleiter, der sich entlang der Hinterkante des Rotorblatts erstreckt, geführt wird.
  4. Verfahren gemäß Anspruch 2 oder 3, wobei der Lichtleiter im Bereich der Blattwurzel über eine Spirale geführt wird, die eine Torsion des Lichtleiters erlaubt.
  5. Verfahren gemäß einem der Ansprüche 2 bis 4, wobei der Lichtleiter an einem an einer Hinterkante des Rotorblatts zur Verfügung gestellten Profil zur Verfügung gestellt ist.
  6. Verfahren gemäß Anspruch 5, wobei das Profil ein pultrudiertes Profil ist und/oder wobei das Profil eine aerodynamische Beeinflussung des Rotorblatts bewirkt.
  7. Verfahren gemäß Anspruch 5 oder 6, wobei sich das Profil entlang zumindest 10 % oder zumindest 30% des Radius des Rotorblatts erstreckt.
  8. Verfahren nach Anspruch 7, wobei sich ein oder mehrere Segmente des Profils entlang zumindest 10 % oder zumindest 30 % des Radius des Rotorblatts erstrecken.
  9. Verfahren gemäß einem der Ansprüche 5 bis 8, wobei der faseroptische Beschleunigungssensor innerhalb des Profils oder an der Hinterkante zur Verfügung gestellt wird.
  10. Verfahren gemäß einem der Ansprüche 2 bis 9, wobei der Lichtleiter an einer radialen Position, an der das Rotorblatt begehbar ist, von außen in das Innere des Rotorblatts geführt wird.
  11. Verfahren gemäß Anspruch 10, wobei der Lichtleiter beim Führen von außen in das Innere oder im Inneren im Wesentlichen an derjenigen radialen Position mit einer Steckverbindung verbunden ist, an der der Lichtleiter von außen in das Innere des Rotorblatts geführt wird.
  12. Verfahren gemäß einem der Ansprüche 1 bis 11, wobei der faseroptische Beschleunigungssensor in den äußeren 50% des Radius des Rotorblatts zur Verfügung gestellt ist und/oder wobei der faseroptische Beschleunigungssensor einen Abstand von der Torsionsachse von 10 cm oder mehr hat.
  13. Verfahren gemäß einem der Ansprüche 1 bis 12, wobei die gemessene Beschleunigung eine Richtungskomponente senkrecht zur Profilsehne des Rotorblatts hat.
  14. Verfahren gemäß einem der Ansprüche 1 bis 13, weiterhin umfassend: - Messen eines Schalldruckpegels am Rotorblatt.
  15. Verfahren gemäß einem der Ansprüche 1 bis 14, weiterhin umfassend: - Messen einer Temperatur.
  16. Verfahren gemäß Anspruch 15, wobei die Temperatur im Beschleunigungssensor und/oder in dem Lichtleiter gemessen wird.
  17. Verfahren gemäß einem der Ansprüche 1 bis 16, wobei das Signal zur Flatterwarnung zu einer Regelung der Windkraftanlage verwendet wird.
  18. Verfahren nach Anspruch 17, wobei die Regelung in einer Pitchregelung des Rotorblatts, in einer Anpassung einer Generatorkennlinie, und/oder einer Ausschaltung der Windkraftanlage besteht.
DE102014117914.5A 2014-12-04 2014-12-04 Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage Active DE102014117914B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014117914.5A DE102014117914B4 (de) 2014-12-04 2014-12-04 Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage
PCT/EP2015/078233 WO2016087451A2 (de) 2014-12-04 2015-12-01 Verfahren zur erfassung einer torsionsinstabilität eines rotorblatts einer windkraftanlage und profil für ein rotorblatt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014117914.5A DE102014117914B4 (de) 2014-12-04 2014-12-04 Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage

Publications (2)

Publication Number Publication Date
DE102014117914A1 DE102014117914A1 (de) 2016-06-09
DE102014117914B4 true DE102014117914B4 (de) 2021-11-11

Family

ID=54754656

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014117914.5A Active DE102014117914B4 (de) 2014-12-04 2014-12-04 Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage

Country Status (2)

Country Link
DE (1) DE102014117914B4 (de)
WO (1) WO2016087451A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016112633A1 (de) * 2016-07-11 2018-01-11 Wobben Properties Gmbh Torsionswinkelmessung eines Rotorblatts
DE102016116065A1 (de) * 2016-08-29 2018-03-01 fos4X GmbH Optischer magnetfeldsensor
DE102016117691B3 (de) * 2016-09-20 2017-08-03 fos4X GmbH Verfahren und Vorrichtung zur Funktionsprüfung eines faseroptischen Sensors und Computerprogrammprodukt
DE102016118136B4 (de) 2016-09-26 2018-05-17 fos4X GmbH Verfahren zur Funktionsprüfung eines Messsystems für eine technische Anlage
KR101999432B1 (ko) * 2017-04-04 2019-07-11 두산중공업 주식회사 터빈 블레이드의 플러터 측정을 위한 자기장 통신 시스템 및 방법
WO2018206159A1 (en) 2017-05-09 2018-11-15 Siemens Wind Power A/S Wind turbine rotor blade with embedded sensors
DE102017123077A1 (de) * 2017-10-05 2019-04-11 Wobben Properties Gmbh Verfahren zur Kalibrierung eines Drucksensors an einer Windenergieanlage sowie Windenergieanlage mit einer Einrichtung zur Kalibrierung eines Drucksensors
DE102020107180A1 (de) 2020-03-16 2021-09-16 fos4X GmbH Faseroptischer Beschleunigungssensor
CN114704439B (zh) * 2022-06-07 2022-08-19 东方电气风电股份有限公司 一种风力发电机组叶片扭转变形在线监测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2191606A (en) 1986-04-28 1987-12-16 Rolls Royce Plc Active control of unsteady motion phenomena in turbomachinery
DE4241631A1 (de) 1992-12-10 1994-06-16 Peter Dipl Ing Frieden Windkraftanlage
DE19939583A1 (de) 1999-02-24 2000-09-14 Siemens Ag Bragg-Gitter-Vorrichtung zum Messen einer mechanischen Kraft sowie Anwendung und Verfahren zum Betrieb der Vorrichtung
US6607161B1 (en) 1999-09-14 2003-08-19 Eurocopter Convertible aircraft with tilting rotors
WO2012000509A2 (en) 2010-06-30 2012-01-05 Vestas Wind Systems A/S Wind turbine system for detection of blade icing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10103387A1 (de) * 2001-01-26 2002-08-01 Thorsten Nordhoff Windkraftanlage mit einer Einrichtung zur Hindernisbefeuerung bzw. Nachtkennzeichnung
DK176352B1 (da) * 2005-12-20 2007-09-10 Lm Glasfiber As Profilserie til vinge til vindenergianlæg
DE102006022279B4 (de) * 2006-05-11 2016-05-12 Aloys Wobben Rotorblatt für eine Windenergieanlage
WO2009140435A1 (en) * 2008-05-13 2009-11-19 Purdue Research Foundation Monitoring of wind turbines
DE102012209935A1 (de) * 2011-12-08 2013-06-13 Wobben Properties Gmbh Hinterkasten, Rotorblatt mit Hinterkasten und Windenergieanlage mit solchem Rotorblatt
DE102011121439A1 (de) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Messvorrichtung und Verfahren zum Erfassen einer Belastung eines Rotorblatts und Regelsystem zum Ansteuern des Rotorblatts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2191606A (en) 1986-04-28 1987-12-16 Rolls Royce Plc Active control of unsteady motion phenomena in turbomachinery
DE4241631A1 (de) 1992-12-10 1994-06-16 Peter Dipl Ing Frieden Windkraftanlage
DE19939583A1 (de) 1999-02-24 2000-09-14 Siemens Ag Bragg-Gitter-Vorrichtung zum Messen einer mechanischen Kraft sowie Anwendung und Verfahren zum Betrieb der Vorrichtung
US6607161B1 (en) 1999-09-14 2003-08-19 Eurocopter Convertible aircraft with tilting rotors
WO2012000509A2 (en) 2010-06-30 2012-01-05 Vestas Wind Systems A/S Wind turbine system for detection of blade icing
EP2588752B1 (de) 2010-06-30 2015-07-22 Vestas Wind Systems A/S System zur bestimmung von vereisung eines rotorblatts einer windenergieanlage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Barlas, T.K. et al. Review of state of the art in smart rotor control research for wind turbines. In: Progress in Aerospace Sciences, Vol. 46, 2010, S. 1-27. - ISSN 0376-0421
Raja, S. et al. Active Control of Wing Flutter Using Piezoactuated Surface. In: Journal of Aircraft. 2007, 44. Jg, Nr. 1, S. 71-80.

Also Published As

Publication number Publication date
DE102014117914A1 (de) 2016-06-09
WO2016087451A3 (de) 2016-07-28
WO2016087451A2 (de) 2016-06-09

Similar Documents

Publication Publication Date Title
EP3227690B1 (de) Verfahren zur überwachung einer windkraftanlage, verfahren zur eiserkennung an einer windkraftanlage, beschleunigungssensor für ein rotorblatt, rotorblatt mit beschleunigungssensor, und profil für ein rotorblatt
EP3227552B1 (de) Verfahren zur individuellen pitchregelung von rotorblättern einer windkraftanlage und windkraftanlagen
DE102014117914B4 (de) Verfahren zur Erfassung eines Flatterns eines Rotorblatts einer Windkraftanlage
EP2956661B1 (de) Verfahren zum überprüfen des betriebs einer windenergieanlage und windenergieanlage
EP2898216B1 (de) Verfahren und vorrichtung zur überwachung von betriebszuständen von rotorblättern
EP3652433A1 (de) Dehnungs- und vibrations-messsystem zur überwachung von rotorblättern
DE102011083749B4 (de) Rotorblatt einer Windkraftanlage mit einer Vorrichtung zum Erfassen eines Abstandswertes und Verfahren zum Erfassen eines Abstandswertes
EP3353501B1 (de) Lichtleiter-einspannvorrichtung, faseroptischer sensor und herstellungsverfahren
DE102017125457B4 (de) Verfahren zum Bestimmen einer Wahrscheinlichkeit zu einem Drosseln und/oder einem Abschalten zumindest einer Windkraftanlage aufgrund von Eisansatz
DE102017115926B4 (de) Blattbiegemomentbestimmung mit zwei Lastsensoren pro Rotorblatt und unter Einbezug von Rotordaten
WO2019229172A1 (de) Sensoranordnung für eine windkraftanlage
EP3353516B1 (de) Faseroptischer drucksensor und verfahren
EP3353500B1 (de) Sensorpatch und verfahren zum herstellen eines sensorpatches
DE102012214441B4 (de) Messverfahren
EP3877646A1 (de) Verbesserung bzw. optimierung des ertrags einer windenergieanlage durch detektion eines strömungsabrisses
DE102014117916A1 (de) Verfahren zur Überwachung einer Windkraftanlage, Beschleunigungssensor für ein Rotorblatt, und Rotorblatt mit Beschleunigungssensor
DE102018127801A1 (de) Verbesserung bzw. Optimierung des Ertrags einer Windenergieanlage durch aerodynamische Anpassung bei einem Strömungsabriss
DE102018127414A1 (de) Verbesserung bzw. Maximierung des Ertrags in Abhängigkeit der Turbulenzintensität und deren Messung
DE102019101630A1 (de) Faseroptischer Sensor und Verfahren
DE102019132522A1 (de) Fabry-Perot-Temperatursensor

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

R082 Change of representative

Representative=s name: ZACCO LEGAL RECHTSANWALTSGESELLSCHAFT MBH, DE

R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: VC VIII POLYTECH HOLDING APS, DK

Free format text: FORMER OWNER: FOS4X GMBH, 81371 MUENCHEN, DE