WO2007129587A1 - 分子配向装置及び分子配向方法 - Google Patents

分子配向装置及び分子配向方法 Download PDF

Info

Publication number
WO2007129587A1
WO2007129587A1 PCT/JP2007/059012 JP2007059012W WO2007129587A1 WO 2007129587 A1 WO2007129587 A1 WO 2007129587A1 JP 2007059012 W JP2007059012 W JP 2007059012W WO 2007129587 A1 WO2007129587 A1 WO 2007129587A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
probe
processing
scanning
molecular orientation
Prior art date
Application number
PCT/JP2007/059012
Other languages
English (en)
French (fr)
Inventor
Kuniko Kimura
Kei Kobayashi
Hirofumi Yamada
Toshihisa Horiuchi
Kenji Ishida
Kazumi Matsushige
Yukiko Mori
Original Assignee
Kyoto University
Kyoto Instruments Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Kyoto Instruments Co., Ltd. filed Critical Kyoto University
Priority to JP2008514437A priority Critical patent/JPWO2007129587A1/ja
Publication of WO2007129587A1 publication Critical patent/WO2007129587A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques

Definitions

  • the present invention relates to a molecular alignment apparatus and a molecular alignment method, and more particularly to a molecular alignment apparatus and a molecular alignment method used for controlling the alignment characteristics of fine particles, microcrystals, or molecules in a minute region.
  • Patent Document 1 the present inventors used an atomic force microscope apparatus (hereinafter sometimes simply referred to as AFM) or the like to analyze in a minute region of a thin film.
  • AFM atomic force microscope apparatus
  • the outline of this technology is as follows.
  • a force having a sharp tip shape such as an AFM probe brought into contact with the surface of the film during or after film formation or an arbitrary part of the film is applied to the film surface.
  • the member can be scanned in the film plane to align the molecules' atoms or fine particles constituting the film in the scanning direction. If this technique is used, molecules and the like can be oriented in an arbitrary direction within the film surface, and the structure of the film can be controlled.
  • the distance between the cantilever probe and the sample is generally controlled.
  • the cantilever is a rectangular panel with a fine probe fixed to it.
  • the longitudinal direction is the X direction
  • the short direction is the Y direction
  • the facing direction of the probe and the sample is the Z direction. Called.
  • the distance between the cantilever probe and the sample can be translated into the Z position of the cantilever probe.
  • the Z position of the probe that is, the Z direction of the cantilever To control the displacement of (where “displacement in the Z direction” is detected in the same way as warping in the X direction)
  • Patent Document 2 discloses a technique for measuring a sample surface with high SZN ratio with high accuracy using a scanning probe microscope. Specifically, the shape of the sample surface is measured while the sample is vibrated lightly in contact with the sample surface at a resonance frequency of the free vibration of the cantilever or a frequency substantially equal to the resonance frequency in the vicinity thereof.
  • Patent document 1 International publication WO2004Z026459 (published on April 1, 2004)
  • Patent document 2 JP 2001-13155 (published on January 19, 2001)
  • Patent Document 1 proposes a microfabrication method based on a completely new technical idea.
  • Patent Document 1 does not particularly mention a specific configuration such as an apparatus for performing the fine processing and a control method thereof.
  • the inventors of the present invention should realize the more accurate microfabrication by using the above-described technique disclosed in Patent Document 1 and the probe-sample spacing used in the above-described AFM.
  • the technique disclosed in Patent Document 1 described above even if the above-described AFM control method is simply applied, the effect of “orienting molecules in an arbitrary direction within the film surface” is sufficiently achieved. It turned out that it was advantageous.
  • the present inventors have investigated the cause of the above problem. As a result, it became clear that the quality of the alignment result of molecules, etc. tends to depend on the scanning direction of the probe.
  • the friction force is generated between the sample and the probe by scanning the probe. Since the influence of the generated frictional force is mixed, it is confirmed that the cantilever warpage (represented here using X-direction warpage as a representative) does not depend purely on the unevenness of the sample surface. Find did.
  • the probe scan includes an X direction component
  • the influence of the frictional force due to the scan is mixed according to the ratio, and the Z direction position of the probe is accurately controlled.
  • the technique disclosed in Patent Document 2 described above enables high-precision measurement by increasing the SZN ratio of the detection signal when scanning while the cantilever is in light contact with the surface of the sample.
  • This is a technique in which the sample is vibrated at a resonance frequency of one free vibration to be performed or a frequency substantially equal to the resonance frequency in the vicinity thereof.
  • the technique disclosed in Patent Document 2 dares to vibrate the sample at a resonance point or a frequency in the vicinity thereof in order to increase the vibration amplitude of the cantilever.
  • the distance between the sample and the sharp probe is related to the technology for controlling the orientation characteristics of the fine particles or microcrystals constituting the thin film. It is necessary to develop a completely new technique for accurately controlling the temperature.
  • the present invention has been made in view of the above-described problems, and the object thereof is to reduce the influence of frictional force generated by the scanning of the probe as described above, and to prevent a gap between the sample and the probe.
  • the present inventors have (as a result of generating a minute frictional force between the two by causing the probe or sample to vibrate minutely at a high frequency.
  • a micro vibration detection circuit for example, lock-in amplifier
  • noise components molecule orientation processing
  • the position of the probe in the z direction can be accurately controlled by cutting the cantilever warpage generated by the probe scanning for the probe and measuring the measured value.
  • Sample mounting means for supporting a sample, processing means having a probe for performing processing for controlling the orientation characteristics of an arbitrary minute region of the sample surface, the sample mounting means, and Z or Scanning means for relatively scanning the processing means, oscillation means for minutely vibrating the sample mounting means and Z or processing means at a predetermined frequency, and at least of the amplitude, phase and amplitude phase of the processing means
  • the detection means for detecting any one of the above, the minute signal detection means for selectively extracting only a specific component of the signals detected by the detection means, and the signal extracted by the minute signal detection means.
  • a position control means for controlling the distance between the probe and the sample surface.
  • the minute signal detecting means selectively detects only a component that substantially matches the frequency of the minute vibrations by the oscillating means, and the position control means is connected to the minute signal detecting means.
  • the oscillating means moves the sample mounting means and Z or the processing means at a predetermined frequency in either the direction parallel to the sample surface or the direction perpendicular to the sample surface.
  • the tip of the probe of the processing means is The molecular orientation device according to any one of (1) to (3), which is always in contact with the surface of the sample.
  • a processing means including a sharp tip-shaped probe disposed in an arbitrary minute region of the sample surface arranged on the sample mounting means for supporting the sample and Z or the sample mounting means are relatively scanned.
  • a molecular orientation method for controlling the orientation characteristics of the micro-region, wherein the sample mounting means and Z or the processing means are micro-vibrated at a predetermined frequency, and the amplitude and phase of the processing means.
  • a detection step that detects at least one of the amplitude phase
  • a minute signal detection step that selectively extracts only a specific component from the signals detected in the detection step
  • a minute signal detection step that selectively extracts only a specific component from the signals detected in the detection step
  • a minute signal detection step and a minute signal detection step.
  • a position control step of controlling a distance between the probe and the sample surface based on the extracted signal.
  • the minute signal detection step is a step of selectively detecting only a component that substantially matches the frequency of the minute vibrations by the oscillation step, and the position control step is the minute signal detection step.
  • the molecular orientation method according to (8) which is a step of controlling the position of the sample mounting means and Z or the processing means so that the signal detected in step 1 becomes substantially constant.
  • a sample mounting means for supporting the sample, a probe for processing the orientation characteristics of an arbitrary minute region of the sample surface, and a sensor for detecting the force applied to the probe The processing means, a scanning means for relatively scanning the sample mounting means and Z or processing means, and information on sensor force provided in the processing means, and the probe and the sample. And a position control means for controlling the distance between the sensors, wherein the sensor detects a force that the probe receives in a direction orthogonal to the scanning direction.
  • a processing step is performed by scanning a sharp tip-shaped probe relative to the sample. And a force detection step for detecting a force received by the probe in a direction orthogonal to the scanning direction in the processing step, and based on the information detected in the force detection step, between the probe and the sample surface. And a position control step for controlling the distance.
  • a processing step is performed by scanning a sharp tip-shaped probe relative to the sample.
  • a molecular orientation method in which the distance between the probe during orientation processing and the sample is constant regardless of the unevenness of the sample surface and fluctuations in Z or frictional force due to processing in the processing step.
  • a molecular orientation method for performing a process for controlling the orientation characteristics of an arbitrary microregion on the sample surface, a pre-scanning step of scanning the surface of the sample and grasping the surface structure of the sample surface; And a processing step of scanning a sharp tip-shaped probe relative to the sample, and in the processing step, the probe is based on the surface structure information obtained in the pre-scanning step. Orientation method that controls the distance between the sample surface and the surface.
  • Sample mounting means for supporting the sample processing means having a probe for performing processing for controlling the orientation characteristics of an arbitrary minute region of the sample surface, the sample mounting means, and the Z or Scanning means for relatively scanning the processing means, and position control means for controlling the distance between the probe and the sample surface, and the position control means is a surface of the sample by the probe.
  • a molecular orientation device that controls the distance between the probe and the sample surface based on information on the surface structure obtained by performing a pre-scanning step of scanning the surface and grasping the surface structure of the sample surface.
  • the predetermined frequency for the oscillation means to cause the sample mounting means and Z or the processing means to vibrate is a frequency other than the resonance frequency of the processing means or a frequency in the vicinity thereof.
  • the oscillation means causes the sample mounting means and Z or processing means to vibrate slightly.
  • the predetermined frequency for minutely vibrating the sample mounting means and Z or the processing means is a frequency other than the resonance frequency of the processing means or a frequency in the vicinity thereof (The molecular orientation method according to 8).
  • the predetermined frequency for causing the sample mounting means and Z or the processing means to vibrate is a resonance frequency of contact vibration when the processing means and the sample are in contact with each other or the resonance frequency thereof.
  • the molecular orientation method according to (8) which is a frequency other than a nearby frequency.
  • the molecular orientation device or the molecular orientation method may be realized by a computer.
  • the molecule orientation device is realized by a computer by operating the computer as each of the means.
  • a control program for the orientation apparatus and a computer-readable recording medium on which the control program is recorded also fall within the scope of the present invention.
  • the molecular alignment apparatus or the molecular alignment method according to the present invention has the above-described configuration, the influence of the frictional force generated by the scanning of the probe is reduced, and the distance between the sample and the probe is accurately determined. Can be controlled. Therefore, molecules can be oriented in an arbitrary direction within the sample surface, and an effect is achieved that fine processing with higher accuracy can be performed.
  • FIG. 1 is a diagram schematically showing an embodiment of a molecular alignment apparatus according to the present invention.
  • FIG. 2 is a diagram schematically showing another embodiment of the molecular alignment apparatus according to the present invention.
  • FIG. 3 is a diagram showing the results of observing the surface structure of the thin film used in this example by AFM.
  • FIG. 4 is a diagram showing the results of thin film molecular orientation control performed in this example using the molecular orientation apparatus according to one embodiment of the present invention.
  • FIG. 5 In this example, the measurement was performed using the molecular alignment apparatus according to one embodiment of the present invention. It is a figure which shows the result of the molecular orientation control of another thin film.
  • FIG. 8 is a diagram showing the results of molecular orientation control of other thin films performed using a conventional AFM apparatus in a comparative example.
  • the molecular orientation device uses the processing means having a sharp tip-shaped probe to determine the orientation characteristics of an arbitrary minute region on the sample surface arranged on the sample mounting means. Any molecular orientation device that can be processed in this way can be used as long as it can accurately control the distance between the probe of the processing means and the sample (position in the Z direction of the probe).
  • the present molecular alignment apparatus includes a sample mounting unit that supports a sample, and a processing unit that includes a probe that performs processing for controlling the alignment characteristics of an arbitrary minute region on the sample surface.
  • Scanning means for relatively scanning the sample mounting means and Z or processing means; oscillation means for causing the sample mounting means and Z or processing means to vibrate relatively at a predetermined frequency; and the processing means Detecting means for detecting at least one of the amplitude, phase and amplitude phase of the signal, a minute signal detecting means for selectively extracting only a specific component from the signals detected by the detecting means, and the above
  • Other specific configurations are not particularly limited as long as they include a position control means for controlling the distance between the probe and the sample surface based on the signal extracted by the minute signal detection means. Well then .
  • processing for controlling the orientation characteristics of the microregion means controlling the orientation characteristics of at least one of molecules, fine particles, and microcrystals on the sample surface.
  • This “processing for controlling the orientation characteristics of the micro-region” is described in detail in Patent Document 1 mentioned above. Therefore, the power to omit detailed description in the present specification For the matters not described in the present specification, the description disclosed in the above-mentioned Patent Document 1 can be used as appropriate for the sake of caution. .
  • FIG. 1 is a diagram schematically showing a configuration of an embodiment of a molecular alignment apparatus according to the present invention.
  • the molecular orientation device 100 includes a processing unit 10, a sample mounting unit 20, an oscillation unit 30, a detection unit 40, a fine signal detection unit 50, and a position control unit 60.
  • the processing unit 10 has a sharp tip 11 and functions as the processing means.
  • the working part 10 is equipped with the probe 11 as described above, and its specific configuration is not particularly limited as long as it can scan the sample surface and perform microfabrication. For example, it is preferable to use an AFM cantilever.
  • a processing portion that has a force only in a thin needle-like probe portion.
  • a sensor such as a piezoelectric element or a mirror in the probe portion, it can be easily used for position detection using an electric means or an optical means.
  • the processing unit 10 is provided with a temperature control mechanism 12. This performs the same function as the temperature control means provided in the sample mounting portion 20 described later.
  • a cantilever is a rectangular panel with a fixed probe fixed.
  • the long direction is the X direction
  • the short direction is the Y direction
  • the facing direction of the probe and the sample is the Z direction.
  • Figure 1 illustrates these X, Y, and ⁇ directions.
  • the “direction parallel to the surface of the sample 70” can be referred to as a ⁇ - ⁇ plane direction.
  • the “direction perpendicular to the surface of the sample 70” can be referred to as the heel direction.
  • “X, ⁇ , ⁇ direction” refers to the above direction unless otherwise specified.
  • the sample mounting section 20 functions as a sample mounting means for mounting the sample 70, and can also be referred to as a sample stage.
  • the configuration of the powerful sample mounting unit 20 is not particularly limited as long as it has the above-described functions.
  • a conventionally known sample stage such as an AFM or an electron microscope can be suitably used.
  • the sample mounting unit 20 includes the temperature control mechanism 21.
  • the sample 70 can be heated to a suitable temperature in order to control the orientation characteristics of the sample 70.
  • the configuration of the temperature control mechanism 21 is not particularly limited as long as it controls at least the temperature of the area to be coated of the sample.
  • a conventionally known heater, a heating means / cooling means, and the like can be suitably used.
  • the temperature control mechanism may be provided not only in the sample mounting section but also in the processing section, for example.
  • a temperature control means in the processing part, at least the sample is covered.
  • the temperature of the processing area can be controlled.
  • the processing unit 10 is also provided with a temperature control mechanism 12.
  • a temperature control mechanism in both the sample mounting part and the processing part. According to the powerful configuration, both the probe in the processing part and the sample mounting part can control the temperature of the sample, so that the temperature of the sample can be controlled more accurately.
  • the sample mounting unit 20 is configured to be movable in three dimensions. That is, it can be said that the sample mounting unit 20 is preferably provided with a three-dimensional scanning mechanism so that three-dimensional movement is possible. According to the above configuration, the relative position between the sample 70 and the probe 11 is changed, and the probe 11 is scanned with respect to the surface of the sample 70 (X-Y direction). Or control the distance (Z direction).
  • the configuration of the scanning mechanism is not particularly limited, and a conventionally known scanning mechanism can be used.
  • the oscillating unit 30 a conventionally known oscillating device may be used as long as it functions as an oscillating means for minutely vibrating the sample mounting unit 20 or the processing unit 10 at a predetermined frequency.
  • the specific configuration is not particularly limited. More specifically, the oscillation unit 30 minutely vibrates the sample mounting 20 or the processing unit 10 in a direction that is parallel to the surface of the sample 70 or perpendicular to the surface of the sample 70. U prefer to be. Moreover, it is preferable that the minute vibration is to vibrate at a constant frequency.
  • the oscillation unit 30 is configured to notify the minute signal detection unit 50 of a reference signal related to the oscillation frequency f in the oscillation unit 30.
  • the “predetermined frequency” in the oscillating unit 30 is preferably higher than the frequency at which the probe 11 of the processing unit 10 scans the sample surface.
  • the frequency is 10 to 1 million times higher than the frequency at which the probe 11 scans the sample surface. It is more preferable that it is 10,000 times higher.
  • the frequency should be 10 to 10 million times higher than the frequency when the probe 11 scans the sample surface. Is more preferable, and more preferably 100 times to 1 million times higher.
  • the "predetermined frequency" in the oscillation unit 30 is preferably a frequency other than the resonance frequency of the processing unit 10 or a frequency in the vicinity thereof.
  • processing part 10 and sample 70 More preferably, the frequency is other than the resonance frequency of the contact vibration at the time of contact.
  • the resonance frequency of contact vibration is intended to be vibration in which the tip (probe) and root of the cantilever are vibration nodes and the middle part of the cantilever body is antinode.
  • the specific configuration of the detection unit 40 is not particularly limited as long as it functions as a detection unit that detects the vibration state of the processing unit 10 (or the probe 11).
  • the “vibration state” can include, for example, amplitude (A), phase ( ⁇ ), or amplitude phase (Acos ⁇ ), and at least one of these components can be detected. Any configuration can be used.
  • the detection unit 40 a conventionally known detection mechanism that meets the above-mentioned purpose can be used, and it is not particularly limited.
  • the detection unit 40 irradiates the back surface of the cantilever with a laser beam as used in a conventionally known AFM and reflects it.
  • a detection mechanism in which light is detected by a photodetector can be used.
  • the detection unit 40 can be appropriately changed according to the shape of the processing unit 10 that is not limited to this configuration.
  • the minute signal detection unit 50 functions as a minute signal detection unit that selectively detects only a specific component that matches a predetermined frequency in the oscillation unit 30 among the signals detected by the detection unit 40. Is. That is, the minute signal detection unit 50 only needs to be able to detect only the frequency, amplitude, phase, amplitude phase, and the like that match the specific frequency in the oscillation unit 30.
  • a variety of various members that match the purpose of use can be used, and the specific configuration is not particularly limited. For example, in addition to lock-in amplifiers, bandpass filters and rectifier circuits A combination of roads can be suitably used.
  • the minute signal detection unit 50 is configured to notify the position control unit 60 of a signal.
  • this signal is represented as signal S.
  • the position control unit 60 controls the position of the sample mounting unit so that the signal detected by the minute signal detection unit 50 described above is substantially constant, and the distance between the probe 11 and the sample 70 is controlled. It functions as a position control means to control.
  • the position control unit 60 includes a control unit 61, a probe heel / ⁇ scanning unit 62, and a probe heel position control unit 63.
  • the control unit 61 instructs the probe tip position control unit 63 to control the position of the sample mounting unit 20 so that the signal detected by the minute signal detection unit 50 is substantially constant.
  • Conventionally known control circuits, arithmetic devices, personal computers, etc. can be suitably used.
  • the probe tip position control unit 63 is a scanning mechanism for controlling (moving) the position of the sample mounting unit 20 in accordance with an instruction from the control unit 61.
  • the probe ⁇ ⁇ ⁇ scanning unit 62 is a scanning unit for moving the sample mounting unit 20 and moving the sample 70 in the X ⁇ plane.
  • the probe 11 of the processing unit 10 since the probe 11 of the processing unit 10 is fixed, the probe 11 can scan the surface of the sample 70 by the above scanning mechanism. As a result, the orientation characteristics of an arbitrary minute region on the surface of the sample 70 can be checked by scanning the processing portion 10 having the probe 11.
  • the specific structure of the sample 70 is not particularly limited as long as it is a thin film composed of an organic or inorganic material.
  • various thin film samples disclosed in Patent Document 1 can be suitably used.
  • Processed part 10 was microvibrated in the direction of the surface of sample 70 (X—— plane) In this state, the probe 11 is brought into contact with the surface of the sample 70 and scanned.
  • the sample 70 is placed on the sample mounting unit 20, and the temperature 70 is set to an optimal temperature using the temperature control mechanism 21.
  • temperature control optimum for processing is described in Patent Document 1 described above, and since it is only necessary to take this into consideration, detailed description thereof is omitted here.
  • the sample mounting unit 20 is microvibrated at a predetermined frequency f in the direction of the surface of the sample 70 (XY plane).
  • the vibration direction of the sample mounting portion 20 is not particularly limited as long as it is an arbitrary direction in the XY plane.
  • the probe 11 is brought into contact with the surface of the sample 70 in a state where the sample mounting portion 20 is vibrated slightly.
  • the processed part 10 also vibrates minutely through the sample 70.
  • the vibration state of the probe 11 caused by the minute vibration is detected through the minute vibration detector 50 (referred to as a detected signal S).
  • the probe 11 or the sample mounting 20 is relatively scanned in the ⁇ direction in which the molecules of the sample 70 are oriented.
  • the position control unit 60 controls the position of the probe 11 in the Z direction so that the signal S is substantially constant.
  • the position control of the probe 11 can be performed using each component of the position control unit 60.
  • the sample 70 is placed on the sample mounting portion 20, and the temperature 70 is set to an optimum temperature using the temperature control mechanism 21.
  • the sample mounting unit 20 is microvibrated at a predetermined frequency f in a direction perpendicular to the surface of the sample 70 (Z direction).
  • the probe 11 is brought into contact with the surface of the sample 70 in a state where the sample mounting portion 20 is vibrated slightly.
  • the processed part 10 also vibrates minutely through the sample 70.
  • the vibration state of the probe 11 caused by the minute vibration is detected through the minute vibration detector 50 (referred to as a detected signal S).
  • the probe 11 or the sample mounting 20 is relatively scanned in the ⁇ direction in which the molecules of the sample 70 are oriented.
  • the surface of the sample 70 is scanned with the probe 11 by moving the sample mounting unit 20 using the probe ⁇ ⁇ ⁇ scanning unit 62.
  • the position control unit 60 controls the position of the probe 11 in the heel direction so that the signal S becomes substantially constant.
  • the position control of the probe 11 can be performed using each component of the position control unit 60.
  • the oscillation unit 30 causes the sample mounting unit 20 to vibrate slightly.
  • the processing unit 10 will vibrate for a first time when the probe 11 that does not vibrate directly comes into contact with the sample 70.
  • the molecular orientation device 100 is configured to detect at least one of the amplitude, phase, and amplitude phase of the processing unit 10, and in particular, of the signals detected by the detection unit 40, the oscillation unit 30. Only a specific signal matching a predetermined frequency is detected. That is, in this molecular orientation device 100, it is preferable that the processing unit 10 vibrates slightly in order to detect the amplitude and the like of the processing unit 10. Therefore, in the above operation methods (I) and (,), it is preferable that the tip of the probe 11 of the processing unit 10 is in contact with the surface of the sample at least once in the vibration cycle, and more preferably always. It can be said.
  • the sample 70 is placed on the sample mounting portion 20, and the temperature 70 is set to an optimum temperature for processing by using the temperature control mechanism 21 and ⁇ or 12.
  • the processing unit 10 is vibrated slightly at a predetermined frequency f in the direction of the surface of the sample 70 (X-plane).
  • the vibration direction of the processing unit 10 may be any direction in the XY plane, and the specific direction is not particularly limited.
  • the probe 11 is brought into contact with the surface of the sample 70 in a state where the processing unit 10 (probe 11) is slightly vibrated.
  • the vibration state of the probe 11 resulting from the minute vibration at this time is detected through the minute vibration detector 50 (referred to as a detected signal S).
  • the probe or the sample mounting portion is relatively scanned in the direction.
  • the surface of the sample 70 is scanned with the probe 11 by moving the sample mounting unit 20 using the probe ⁇ ⁇ ⁇ scanning unit 62.
  • the position control unit 60 controls the position of the probe 11 in the Z direction so that the signal S is substantially constant.
  • the position control of the probe 11 can be performed using each component of the position control unit 60.
  • the sample 70 is placed on the sample mounting portion 20, and the temperature 70 is set to an optimum temperature using the temperature control mechanism 21.
  • the processing unit 10 (probe 11) is vibrated minutely at a predetermined frequency f in a direction perpendicular to the surface of the sample 70 (Z direction).
  • the probe 11 is brought into contact with the surface of the sample 70 in a state where the processing unit 10 (probe 11) is slightly vibrated.
  • the vibration state of the probe 11 due to the minute vibration at this time is detected through the minute vibration detection unit 50 (referred to as a detected signal S).
  • the probe is scanned in the direction in which the molecules of the sample 70 are oriented.
  • the probe 1 is moved by moving the sample mounting unit 20 using the probe ⁇ ⁇ ⁇ scanning unit 62.
  • the position control unit 60 controls the position of the probe 11 in the heel direction so that the signal S becomes substantially constant.
  • the position control of the probe 11 can be performed using each component of the position control unit 60.
  • the operation of the above operation method (IV) has a configuration similar to the dynamic mode in the AFM.
  • the AFM dynamic mode is an operation mode that reduces the damage to the sample by avoiding contact between the sample and the cantilever probe as much as possible.
  • the molecular orientation device of the present invention is premised on the contact between the sample and the probe. This is because the orientation of the molecules of the sample cannot be controlled unless the sample and the probe are in contact with each other. For this reason, it can be said that the operation method (IV) and the AFM dynamic mode are greatly different depending on the technical idea.
  • the oscillation unit 30 is to vibrate the processing unit 10 and to vibrate the processing unit 10 in a direction perpendicular to the surface of the sample 70 at a predetermined frequency, It can be said that it is preferable that the tip of the probe 11 in the area 10 is always in contact with the surface of the sample.
  • the present molecular orientation apparatus is capable of finely processing the processing part (probe) or the sample mounting part at high frequency.
  • a small frictional force is generated between the two by a small vibration.
  • noise components other than the target signal (probe for orientation machining)
  • the position of the probe in the Z direction can be accurately controlled by using the measured value of the target signal (signal derived from minute vibration) as a reference. Therefore, according to the present molecular orientation device, the position control in the z direction of the probe can be performed with high accuracy without being affected by the frictional force generated by the probe scanning.
  • the present invention also includes a molecular orientation method.
  • the molecular orientation method according to the present invention comprises a processing means having a sharp tip-shaped probe disposed in an arbitrary minute region of a sample surface disposed on a sample mounting means for supporting a sample, and Z or the above sample mounting means.
  • the position control process for controlling the distance between the probe and the sample surface based on the signal extracted in the process, as long as it includes other processes, conditions, and specific configurations of equipment used, etc. Is However, it is not particularly limited.
  • the molecular alignment method can be performed, for example, by the molecular alignment apparatus described above. Since the description of the molecular alignment method substantially overlaps with the description of the molecular alignment apparatus described above, the detailed description thereof is omitted here. That is, the matters described for the molecular orientation device can be applied to the molecular orientation method as appropriate, and can be combined in various ways in this method. Needless to say, the molecular alignment method according to the present invention can provide the same effects as those of the molecular alignment apparatus described above.
  • Embodiment 1 an embodiment of a molecular orientation device that minutely vibrates a processing part (probe) or sample mounting part at a high frequency and detects only warpage of the processing part that depends on the microvibration.
  • a processing part probe
  • sample mounting part a processing part (probe) or sample mounting part at a high frequency
  • microvibration a processing part that depends on the microvibration
  • the molecular alignment apparatus includes a sample mounting means for supporting a sample, a probe for processing alignment characteristics of an arbitrary minute region of the sample surface, and a force that the probe receives. Based on the information from the sensor provided in the processing means, the scanning means for relatively scanning the sample mounting means and Z or the processing means, and the probe provided on the processing means. And a position control means for controlling the distance between the sample and the sample, and other specific configurations are acceptable as long as the sensor detects a force received by the probe in a direction orthogonal to the scanning direction. It is not particularly limited.
  • FIG. 2 is a diagram schematically showing a configuration of another embodiment of the molecular alignment apparatus according to the present invention.
  • the molecular orientation device 200 includes a processing unit 10, a temperature control mechanism 12, a temperature control mechanism 21, a sample mounting unit 20, a detection unit 80, and a position control unit 90.
  • the processing unit 10 may be a conventionally known so-called cantilever.
  • a sensor such as a piezoelectric element or a mirror is provided in the probe portion, so that the force acting on the probe is electrically or optically applied. It may be a structure to detect automatically.
  • the processing unit 10 also includes a temperature control mechanism 12. As long as the temperature control mechanism 12 controls the temperature of at least the region to be processed of the sample 70, it is necessary.
  • the detection unit 80 detects a force applied to the processing unit 10 or the probe 11.
  • the detection unit 80 may be configured to send the detection result to the position control unit 90 described later.
  • the detection unit 80 also functions in cooperation with the sensor. That is, it can be said that the detection unit 80 detects the force that the probe 11 receives in the direction orthogonal to the scanning direction in cooperation with the sensor.
  • the detection unit 80 a conventionally known detection mechanism that meets the above-described purpose can be used.
  • a cantilever is used as the processing unit 10, as shown in Fig. 2, the back surface of the cantilever is irradiated with a laser beam used in a conventionally known AFM, and the reflected light is detected by a photodetector.
  • a detection mechanism can be used.
  • the detection unit 80 can be changed as appropriate according to the shape of the processing unit 10 and the like, which is not limited to this configuration.
  • the position control unit 90 functions as a position control unit that controls the distance between the probe 11 and the sample 70 on the basis of the length of warpage in the longitudinal direction of the processing unit 10. Furthermore, the position control unit 90 also functions as a scanning unit that causes the processing unit 10 to scan the sample 70.
  • the position control unit 90 includes a control unit 91, a probe rod / collision rod unit 92, and a probe rod position control unit 93.
  • the control unit 91 controls the distance between the probe 11 and the sample 70 on the basis of the amount of warpage in the longitudinal direction of the processing unit 10 according to the signal from the detection unit 80. It instructs the needle ⁇ position control unit 93, and a conventionally known control circuit, arithmetic device, personal computer, etc. can be suitably used.
  • the probe tip position control unit 93 controls the position of the specimen mounting unit 20 in the heel direction in accordance with an instruction from the control unit 91, and the distance between the probe 11 of the processing unit 10 and the sample 70 in the heel direction. It is a scanning mechanism for controlling.
  • the probe ⁇ / ⁇ scanning unit 92 is a scanning means for moving the sample mounting unit 20 and moving the relative position between the probe 11 and the sample 70 in the X- X plane.
  • the probe 11 of the processing section 10 has a fixed configuration, so that the probe 11 can scan the surface of the sample 70 with the above configuration.
  • the orientation characteristic of an arbitrary minute region on the surface of the sample 70 can be checked by scanning the processing portion 10 having the probe 11. That is, the probe X ⁇ ⁇ scanning unit 92 moves the sample mounting unit 20 to scan the processing unit 10 (probe 11) with respect to the sample 70 in the short direction of the processing unit 10. In other words.
  • the specific configuration of the powerful probe ⁇ ⁇ ⁇ scanning unit 92 is not particularly limited as long as it is a configuration that meets the above-described purpose.
  • an electron microscope can include a sample stage in a surface roughness meter. Such a sample stage is capable of freely moving the sample 70 by appropriately combining the vertical movement, the horizontal movement, and the rotational movement in the vertical plane.
  • the relative position between the probe 11 and the sample 70 can be moved with high precision and in units of fine force. Therefore, an arbitrary minute region of the sample 70 can be scanned accurately with the probe 11.
  • the molecular alignment apparatus 200 does not need to be provided with members such as an oscillating unit for generating minute vibrations and a minute signal detecting unit for detecting only specific signals. For this reason, cost reduction and size reduction can be achieved.
  • the probe is perpendicular to the scanning direction in a plane parallel to the sample.
  • the Z direction property of the probe can be more accurately treated.
  • the probe is based on the length of the warp in the longitudinal direction (X) of the cantilever.
  • An example is a configuration that controls the distance between samples and scans in the short direction (Y direction) of the cantilever.
  • the position control in the Z direction of the probe can be performed with high accuracy without being affected by the frictional force generated by the probe scanning.
  • the present invention also includes a molecular orientation method.
  • the molecular orientation method according to the present invention is a molecular orientation method in which processing for controlling the orientation characteristics of an arbitrary minute region on the surface of a sample is performed, and a sharp tip-shaped probe is scanned relative to the sample. Based on the machining process to be machined, the force detection process for detecting the force received by the probe in the direction perpendicular to the scanning direction in the machining process, and the information detected in the force detection process. As long as it has a position control process for controlling the distance to the surface of the sample, other processes, conditions, and specific configurations of equipment used are not particularly limited.
  • the molecular alignment method can be performed, for example, by the molecular alignment apparatus described above. Since the description of the molecular alignment method substantially overlaps the description of the molecular alignment apparatus described above, Will not be described. The matters described for the molecular orientation device can be applied to the molecular orientation method as appropriate, and can be combined in various ways in this method. It should be noted that the molecular alignment method according to the present invention can provide the same effect as the molecular alignment apparatus described above!
  • the distance between the probe and the sample during alignment processing is fixed regardless of the unevenness of the sample surface and the fluctuation of frictional force due to processing.
  • the thing of the structure may be included.
  • the feedback gain that controls the position of the probe in the z direction is lowered, and the responsiveness of controlling the position of the probe in the Z direction due to the effects of unevenness and frictional force on the sample surface is reduced.
  • the sample surface may be scanned (observed) in advance, the structure of the sample surface may be grasped, and then the probe may be scanned according to the surface structure.
  • feedback for controlling the position of the probe in the Z direction is not performed during scanning for orientation control.
  • the molecular orientation method according to the present invention provides a sharp tip-shaped probe as described above, compared to the molecular orientation method in which processing for controlling the orientation characteristics of an arbitrary microregion on the sample surface is performed.
  • the molecular alignment apparatus or the molecular alignment method can be suitably used, for example, when there are few irregularities on the sample surface.
  • the distance between the probe and the sample In the molecular orientation device, the distance between the probe and the sample
  • the molecular alignment method according to the present invention is a molecular alignment method in which processing for controlling the alignment characteristics of an arbitrary microregion on the sample surface is performed.
  • the surface of the sample surface is scanned by scanning the surface of the sample.
  • the pre-scanning process includes If the distance between the probe and the sample surface is controlled based on the information on the surface structure obtained in this way.
  • a sample mounting means for supporting a sample and a process for controlling the orientation characteristics of an arbitrary minute region of the sample surface are provided.
  • Processing means having a probe to be applied, scanning means for relatively scanning the sample mounting means and Z or processing means, and position control means for controlling the distance between the probe and the sample surface.
  • the position control means scans the surface of the sample with the probe and performs the pre-scanning process for grasping the surface structure of the sample surface, based on the information on the surface uneven structure, It includes a molecular orientation device that controls the distance between the probe and the sample surface.
  • the position control unit 60 or 90 is not limited to this configuration described as the configuration for controlling the position of the sample mounting unit 20.
  • the position control unit 60 or 90 may be configured to control and move the positions of the processing unit 10 and the probe 11 that are not positioned in the X, Y, and heel positions of the sample mounting unit 20.
  • the configuration of the present embodiment in which the position of the sample mounting portion 20 is moved is more preferable for reasons such as ease of configuration of the device, operability, and avoiding enlargement of the device.
  • the structure of the thin film having a thickness of 100 Onm or less can be controlled.
  • the area of the minute region that controls the structure can be in increments of lnm 2 .
  • another thin film is stacked and the same structure is controlled again. By repeating this series of steps multiple times, structural control in three dimensions is possible.
  • each block of the molecular orientation device 100 or the molecular orientation device 200, in particular, the position control unit 60 and the position control unit 90 may be configured by hardware logic or using a CPU as follows. Can be realized by software! /.
  • the molecular alignment apparatus 100 or the molecular alignment apparatus 200 includes a CPU (central processing unit) that executes instructions of a control program that realizes each function, a ROM (read only memory) that stores the program, and the program. RAM (random access memory) to be deployed, storage devices (recording media) such as memory for storing the above programs and various data Equipped.
  • the object of the present invention is to read the program code (execution format program, intermediate code program, source program) of the control program of the molecular alignment apparatus 100 or the molecular alignment apparatus 200, which is software that realizes the functions described above, by a computer.
  • the recording medium recorded in such a manner is supplied to the molecular orientation device 100 or the molecular orientation device 200, and the computer (or CPU or MPU) reads and executes the program code recorded on the recording medium. Achievable.
  • the recording medium includes, for example, a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) Z hard disk, and an optical disk such as a CD-ROMZMOZ MD / DVD / CD-R.
  • a tape system such as a magnetic tape and a cassette tape
  • a magnetic disk such as a floppy (registered trademark) Z hard disk
  • an optical disk such as a CD-ROMZMOZ MD / DVD / CD-R.
  • Disk systems IC cards (including memory cards) Z optical cards and other card systems, or mask ROMZEPROMZEEPROMZ flash ROM and other semiconductor memory systems can be used.
  • the molecular orientation device 100 or the molecular orientation device 200 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, A satellite communication network or the like can be used.
  • the transmission medium constituting the communication network is not particularly limited.
  • IEEE1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth (registered trademark), 802.11 wireless, HDR, mobile phone network, satellite line, terrestrial digital network, etc. can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave, in which the program code is embodied by electronic transmission.
  • the film temperature was heated to 142 ° C, just below the melting point (147 ° C) of P (VDF-TrFE), and molecular orientation processing was performed using a cantilever with a panel constant of 2.4 NZm.
  • sample mounting portion was moved in the Z direction, and the probe at the tip of the cantilever was brought into contact with the sample surface.
  • the cantilever vibrates at the frequency f in the Y direction due to the frictional force between the probe and the sample surface. This vibration was detected by a photodetector as the position of the laser beam irradiated on the back of the cantilever.
  • this amplitude signal is input to a computer for controlling the relative positions of the probe and sample in the X, ⁇ , and Z directions, and feedback is provided so that the amplitude signal always converges to a value within this range.
  • the sample sample mounting part
  • Figure 4 shows the results of AFM observation at a sample temperature of 30 ° C after processing. As a result of the well-oriented orientation of the molecules in the direction of the probe travel (X direction), it was confirmed that the edge-on lamellar crystals elongated in the Y direction were neatly formed. [Example 2]
  • the position of the sample in the Z direction was set so that the amplitude signal of the vibration in the X direction of the force lever generated by bringing the probe into contact with the sample surface was 0.4 to 0.7 mV.
  • this amplitude signal is input to a computer that controls the relative position of the probe in the X, Y, and Z directions, and feedback control is performed so that the amplitude signal always converges to a value within this range.
  • sample mounting part was scanned 2 ⁇ m in the Y direction, moved 8 nm in the X direction, and scanned 2 ⁇ m in the Y direction. This operation was repeated 256 times, and orientation processing was performed on molecules in the 2 m ⁇ 2 ⁇ m region.
  • Figure 5 shows the results of the AFM observation at a sample temperature of 30 ° C after processing. As a result of the well-oriented orientation of the molecules in the direction of the probe travel (Y direction), it was confirmed that the edge-on lamellar crystals elongated in the Y direction were neatly formed.
  • Example 3 A sample similar to that in Example 2 was placed in a molecular orientation processing apparatus having the configuration shown in FIG. 1, and the film temperature was heated to 142 ° C. In this state, molecular orientation processing was performed using a cantilever with a panel constant of 2.4 NZm.
  • the sample sample mounting portion
  • the position of the sample in the Z direction was set so that the amplitude signal of the vibration in the Y direction of the cantilever generated by bringing the probe into contact with the sample surface was 0.3 to 0.6 mV.
  • this amplitude signal is input to the computer for controlling the relative position of the probe in the X, ⁇ , and Z directions, and feedback control is performed so that the amplitude signal always converges to a value within this range.
  • the sample was scanned 2 m in the 45 ° direction (a direction) with respect to the X direction, then moved 8 nm in the 45 ° direction with respect to the Y direction, and scanned 2 m in the a direction. This operation was repeated 256 times to align the molecules in the 2 ⁇ ⁇ 2 ⁇ m region.
  • Figure 6 shows the results of AFM observation at a sample temperature of 30 ° C after processing. As a result of the well-oriented orientation of the molecules in the direction of the probe travel (45 ° to the X direction), elongated, edge-on lamellar crystals are formed in a 45 ° direction to the Y direction. It was confirmed that
  • Example 4 A sample similar to that in Example 3 was placed in a molecular orientation processing apparatus having the configuration shown in FIG. 1, and the film temperature was heated to 142 ° C. In this state, molecular orientation processing was performed using a cantilever with a panel constant of 2.4 NZm.
  • the sample sample mounting portion
  • the position of the sample in the Z direction was set so that the amplitude signal of the vibration in the Y direction of the cantilever generated by bringing the probe into contact with the sample surface was 0.5 to 1. OmV.
  • this amplitude signal is input to the computer for controlling the relative position of the probe in the X, ⁇ , and Z directions, and feedback control is performed so that the amplitude signal always converges to a value in this range.
  • the sample was scanned 2 m in the Y direction, moved 8 nm in the X direction, and scanned 2 ⁇ m in the X direction. This operation was repeated 256 times to align the molecules in the 2 ⁇ ⁇ 2 ⁇ m region.
  • Figure 7 shows the results of AFM observation at a sample temperature of 30 ° C after processing. As a result of the well-oriented orientation of the molecules in the direction of the probe travel (Y direction), it was confirmed that the edge-on lamellar crystals elongated in the Y direction were neatly formed.
  • Example 4 A sample similar to that in Example 4 was placed in a conventional AFM apparatus and the film temperature was heated to 142 ° C. In this state, molecular orientation processing was performed using a cantilever having a panel constant of 2.4 NZm. The probe was brought into contact with the sample surface, and the sample was moved 2 ⁇ m in the X direction while applying feedback control so that the X-direction warpage of the cantilever at that time was constant (normal contact mode). It moved 8 nm in the Y direction and scanned 2 m in the X direction. This operation was repeated 256 times to align the molecules in the 2 ⁇ ⁇ 2 ⁇ m region.
  • FIG. 8 shows the best results obtained by changing the value of the cantilever warpage during processing and performing the above processing.
  • Conventional AF When the M device is used, the molecules are oriented in some areas, but the results are not good. In addition, the Z direction control of the probe position was improper and it was very difficult to break the film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

 試料搭載部(20)と、探針(11)を有する加工部(10)、試料搭載部(20)及び/又は加工部(10)とを相対的に走査させる探針X,Y走査部(62)、試料搭載部(20)及び/又は加工部(10)を所定の周波数で微小振動させる発振部(30)、加工部(10)の振幅等を検出する検出部(40)、検出部(40)にて検出した信号のうち、特定成分のみを選択的に抽出する微小信号検出部(50)、微小信号検出部(50)にて抽出された信号に基づき探針(11)と試料表面との距離を制御する位置制御部(60)、を備える分子配向装置(100)によれば、探針の走査により発生する摩擦力の影響を軽減し、試料と探針との間の距離を正確に制御でき、より精度の高い微細加工を行うことができる。

Description

明 細 書
分子配向装置及び分子配向方法
技術分野
[0001] 本発明は、分子配向装置及び分子配向方法に関し、特に、微小領域における微粒 子又は微結晶あるいは分子の配向特性を制御する場合に用いられる分子配向装置 及び分子配向方法に関するものである。
背景技術
[0002] 近年、有機物質や無機物質等の薄膜にお!ヽて、当該薄膜を構成する微粒子又は 微結晶あるいは分子の配向特性を制御する技術が開発されている。このような技術 は、例えば、ナノメートルオーダーの微小領域に情報を記録'再生する高密度記録 媒体等をはじめとした、様々な応用が可能であり、その開発動向に注目が集まってい る。
[0003] このような状況のなか、本発明者らは、特許文献 1に示すように、原子間力顕微鏡 装置 (以下、単に AFMと称する場合もある)等を用いて薄膜の微小領域における分 子等の配向特性を制御する方法を独自に開発している。この技術の概要を説明する と以下の通りである。
[0004] すなわち、製膜途中又は製膜後の膜全体又は膜内の任意の部分に、例えば、 AF Mの探針等の鋭利な先端形状を有する部材を膜表面に接触させて力を加えた状態 で、当該部材を膜面内で走査することにより、膜を構成する分子'原子又は微粒子を 走査方向に配向させることができる技術である。この技術を用いれば、分子等を膜面 内の任意の方向に配向させることができ、膜の構造の制御が可能となる。
[0005] ところで、従来の AFMでは試料表面を走査し観察する場合、一般的にカンチレバ 一の探針と試料との間の距離が制御される。なお、カンチレバーとは、微細な探針が 固定された矩形板パネのことであり、その長手方向を X方向、短手方向を Y方向とし 、探針と試料との対向する向きを Z方向と称する。この場合、カンチレバーの探針と試 料との間の距離は、カンチレバーの探針の Z方向位置と換言できる。
[0006] AFMにお!/、て、上述のように探針の Z方向位置、すなわちカンチレバーの Z方向 の変位 (ここで「Z方向の変位」とは X方向の反りと同様に検出される)を制御するのは
、カンチレバーと試料との間の距離が一定でないと、試料表面を正確に観察できな いためである。
[0007] また、特許文献 2には、走査型プローブ顕微鏡を用いて、高 SZN比で精度よく試 料表面の測定を行う技術が開示されている。具体的には、カンチレバーの自由振動 の共振周波数又は、この近傍の実質的に共振周波数に等しい周波数で試料を加振 した状態で、カンチレバーを試料表面に軽く接触しながら試料表面の形状を測定す る技術である。
特許文献 1:国際公開 WO2004Z026459号公報(2004年 4月 1日公開) 特許文献 2 :特開 2001— 13155号公報(2001年 1月 19日公開)
発明の開示
[0008] 上述したように、上記特許文献 1に開示の技術は、全く新規な技術思想に基づく微 細加工法を提案するものである。し力しながら、上記特許文献 1には、当該微細加工 を行うための装置やその制御方法等の具体的な構成については、特に言及されて いない。
[0009] それゆえ、本発明者らは、より正確な微細加工を実現すベぐ上記特許文献 1に開 示の技術にぉ ヽて、上述した AFMで用いられて ヽる探針 ·試料間距離 (探針の Z方 向位置)の制御方法を用いることを試みた。しかし、上記特許文献 1に開示の技術に おいて、上述した AFMの制御方法を単純に適用しても、「分子等を膜面内の任意の 方向に配向加工する」効果が十分に達成し得な 、と 、うことがわかった。
[0010] このような課題は従前、全く考慮されていな力つた。つまり、このような課題が存在す ること自体、全く知られていな力つた。
[0011] そこで、本発明者らは、上記課題の原因の究明を行った。その結果、分子等の配 向結果の品質が、探針の走査方向に依存する傾向がみられることが明らかとなった。 具体的な一例として、上述した AFMにおける探針 '試料間距離の制御方法では、探 針を走査することにより、試料と探針との間に摩擦力が発生する。そして、この発生し た摩擦力の影響が混入してしまうゆえに、カンチレバーの反り(ここでは代表して X方 向の反りを用いて説明する)が純粋に試料表面の凹凸のみに依存しないことを見出 した。つまり、本発明者らは、探針走査が X方向成分を含む場合には、その割合に応 じて、走査による摩擦力の影響が混入してしまい、探針の Z方向位置を正確に制御 できず、その結果として膜の分子等の配向加工を正確に行うことができな 、と 、う課 題をはじめて明らかにした。
[0012] この摩擦力の影響は AFMを用いた通常の像観察においても存在すると考えられる 力 これまではほとんど考慮されてこな力つた。しかし、上記特許文献 1等に開示の「 分子の配向特性を制御 ·加工する技術」では、一般的な AFMによる像観察の場合 に比して、上記摩擦力の影響が非常に大きくなり、微細加工の結果に大きな影響を 及ぼすと考えられる。
[0013] なお、例えば、上記特許文献 2に開示の技術をそのまま特許文献 1に開示の技術 に適用しても、上記の問題は解決できない。具体的には、上述したように、上記特許 文献 2に開示の技術は、カンチレバーが試料の表面に軽く接触した状態で走査する 場合において、検出信号の SZN比を高くして高精度の測定を行うベぐカンチレバ 一の自由振動の共振周波数又はこの近傍の実質的に共振周波数に等しい周波数 で試料を加振させる技術である。つまり、特許文献 2に開示の技術は、カンチレバー の振動振幅を大きくするために、あえて共振点又はその近傍の周波数で試料を振動 させている。
[0014] し力しながら、上述したように、特許文献 1のような微細加工を行う場合、試料とカン チレバーの探針との間に大きな相互作用の力が発生する。そして、この相互作用の 力の影響により、カンチレバーの周波数特性、共振特性が変化してしまう。このため、 共振点又はその近傍の周波数でカンチレバーまたは試料を振動させると、カンチレ バーの探針と試料との間の距離を正確に制御できないという問題がある。
[0015] このため、有機物質や無機物質等の薄膜において、当該薄膜を構成する微粒子又 は微結晶ある ヽは分子の配向特性を制御する技術に関して、試料と鋭利な探針との 間の距離を正確に制御するための全く新規な技術の開発が必要である。
[0016] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、上述したよう な探針の走査により発生する摩擦力の影響を軽減し、試料と探針との間の距離を正 確に制御でき、より精度の高い微細加工を行うための分子配向装置及び分子配向方 法を提供することにある。
[0017] 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、(0探針又は試料を 高周波で微小振動させることにより、両者の間に微小な摩擦力を発生させ、それによ る加工部(例えば、カンチレバー等)の反りを、微小振動検出回路 (例えば、ロックイン アンプ等)を介して測定することで、目的の信号 (微小振動)以外のノイズ成分 (分子 の配向加工のための探針走査により発生するカンチレバーの反りによる信号)をカツ トし、その測定値を基にすることにより、探針の z方向位置を正確に制御できること、を 見出した。さらに、 GO薄膜を構成する微粒子又は微結晶あるいは分子の配向特性を 制御する技術において、カンチレバーの長手方向(X方向)の反りの大きさを基に探 針'試料間の距離を制御する場合、それと直交方向であるカンチレバーの短手方向(
Y方向)に走査することにより、探針の Z方向位置を正確に制御できること、を見出し た。そして、上記 (0又は GOに開示の技術によれば、微粒子や分子等の配向特性を良 好に制御できることを確認し、本願発明を完成させるに至った。本発明は、かかる新 規知見に基づいて完成されたものであり、以下の発明を包含する。
[0018] (1)試料を支持する試料搭載手段と、上記試料表面の任意の微小領域の配向特 性を制御するための加工を施す探針を有する加工手段と、上記試料搭載手段及び Z又は加工手段とを相対的に走査させる走査手段と、上記試料搭載手段及び Z又 は加工手段を所定の周波数で微小振動させるための発振手段と、上記加工手段の 振幅、位相および振幅位相のうち少なくともいずれか一つを検出する検出手段と、上 記検出手段にて検出した信号のうち、特定成分のみを選択的に抽出する微小信号 検出手段と、上記微小信号検出手段にて抽出された信号に基づき上記探針と試料 表面との距離を制御する位置制御手段と、を備える分子配向装置。
[0019] (2)上記微小信号検出手段は、上記発振手段による上記微小振動の周波数と略 一致する成分のみを選択的に検出するものであり、上記位置制御手段は、上記微小 信号検出手段にて検出される信号が略一定となるように上記試料搭載手段及び z 又は加工手段の位置を制御するものである(1)に記載の分子配向装置。
[0020] (3)上記発振手段は、上記試料搭載手段及び Z又は加工手段を、試料表面と平 行な方向あるいは試料表面と垂直な方向のいずれかの方向に、所定の周波数にて 微小振動させるものである(1)又は(2)に記載の分子配向装置。
[0021] (4)上記加工手段の探針の先端は、上記微小振動の周期にお!/、て少なくとも 1回 は試料表面に接触する(1)〜(3)の 、ずれかに記載の分子配向装置。
[0022] (5)上記発振手段が上記加工手段を微小振動させ、かつ上記加工手段を試料表 面と垂直な方向に所定の周波数にて微小振動させる場合、上記加工手段の探針の 先端は、常に試料の表面に接触した状態である(1)〜(3)のいずれかに記載の分子 配向装置。
[0023] (6)上記発振手段による微小振動の周波数は、上記加工手段の走査の周波数より 高い(1)〜(5)の 、ずれかに記載の分子配向装置。
[0024] (7)上記試料搭載手段及び Z又は加工手段は、試料の少なくとも被加工領域の温 度を制御する温度制御機構を備える(1)〜(6)の ヽずれかに記載の分子配向装置。
[0025] (8)試料を支持する試料搭載手段に配置された試料表面の任意の微小領域に鋭 利な先端形状の探針を備える加工手段及び Z又は上記試料搭載手段を相対的に 走査させて加工を施し、該微小領域の配向特性を制御する分子配向方法であって、 上記試料搭載手段及び Z又は加工手段を所定の周波数で微小振動させる発振ェ 程と、上記加工手段の振幅、位相および振幅位相のうち少なくともいずれか一つを 検出する検出工程と、上記検出工程にて検出した信号のうち、特定成分のみを選択 的に抽出する微小信号検出工程と、上記微小信号検出工程にて抽出された信号に 基づき上記探針と試料表面との距離を制御する位置制御工程と、を含む分子配向 方法。
[0026] (9)上記微小信号検出工程は、上記発振工程による上記微小振動の周波数と略 一致する成分のみを選択的に検出する工程であり、上記位置制御工程は、上記微 小信号検出工程にて検出される信号が略一定となるように上記試料搭載手段及び Z又は加工手段の位置を制御する工程である(8)に記載の分子配向方法。
[0027] (10)試料を支持する試料搭載手段と、上記試料表面の任意の微小領域の配向特 性を加工するための探針と、該探針が受ける力を検出するためのセンサとを有する 加工手段と、上記試料搭載手段及び Z又は加工手段を相対的に走査させる走査手 段と、上記加工手段に設けられたセンサ力もの情報に基づき、上記探針と試料との 間の距離を制御する位置制御手段とを備え、上記センサは、上記探針が走査方向と 直交する方向に受ける力を検出するものである分子配向装置。
[0028] (11)試料表面の任意の微小領域の配向特性を制御するための加工を施す分子 配向方法において、鋭利な先端形状の探針を上記試料と相対的に走査させて加工 する加工工程と、上記加工工程において上記探針が走査方向と直交する方向に受 ける力を検出する力検出工程と、上記力検出工程で検出された情報に基づき、上記 探針と試料表面との間の距離を制御する位置制御工程と、を有する分子配向方法。
[0029] (12)試料表面の任意の微小領域の配向特性を制御するための加工を施す分子 配向方法において、鋭利な先端形状の探針を上記試料と相対的に走査させて加工 する加工工程を有し、上記加工工程では、試料表面の凹凸及び Z又は加工による 摩擦力の変動に関係なく配向加工中の探針と試料間の距離を一定とする分子配向 方法。
[0030] (13)試料表面の任意の微小領域の配向特性を制御するための加工を施す分子 配向方法において、試料の表面を走査し、該試料表面の表面構造を把握する前走 查工程と、鋭利な先端形状の探針を上記試料と相対的に走査させて加工する加工 工程を有し、上記加工工程では、上記前走査工程にて得られた表面構造の情報に 基づき、上記探針と試料表面間の距離を制御する分子配向方法。
[0031] (14)試料を支持する試料搭載手段と、上記試料表面の任意の微小領域の配向特 性を制御するための加工を施す探針を有する加工手段と、上記試料搭載手段及び Z又は加工手段とを相対的に走査させる走査手段と、上記探針と試料表面との距離 を制御する位置制御手段と、を備えており、上記位置制御手段は、上記探針にて試 料の表面を走査し、該試料表面の表面構造を把握する前走査工程を行って得られ る表面構造の情報に基づいて、上記探針と試料表面間の距離を制御するものである 分子配向装置。
[0032] (15)上記発振手段が上記試料搭載手段及び Z又は加工手段を微小振動させる ための所定の周波数は、上記加工手段の共振周波数またはその近傍の周波数以外 の周波数である(1)に記載の分子配向装置。
[0033] (16)上記発振手段が上記試料搭載手段及び Z又は加工手段を微小振動させる ための所定の周波数は、当該加工手段と試料とが接触した際の接触振動の共振周 波数またはその近傍の周波数以外の周波数である(1)に記載の分子配向装置。
[0034] (17)上記発振工程において、上記試料搭載手段及び Z又は加工手段を微小振 動させるための所定の周波数は、上記加工手段の共振周波数またはその近傍の周 波数以外の周波数である(8)に記載の分子配向方法。
[0035] (18)上記発振工程において、上記試料搭載手段及び Z又は加工手段を微小振 動させるための所定の周波数は、当該加工手段と試料とが接触した際の接触振動の 共振周波数またはその近傍の周波数以外の周波数である(8)に記載の分子配向方 法。
[0036] なお、上記分子配向装置又は分子配向方法は、コンピュータによって実現してもよ ぐこの場合には、コンピュータを上記各手段として動作させることにより上記分子配 向装置をコンピュータにて実現させる分子配向装置の制御プログラム、及びそれを記 録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
[0037] 本発明に係る分子配向装置又は分子配向方法は、上記の構成を有するゆえに、 探針の走査により発生する摩擦力の影響を軽減し、試料と探針との間の距離を正確 に制御できる。それゆえ、試料面内の任意の方向に分子を配向加工することができ るようになり、より一層、精度の高い微細加工を行うことができるという効果を奏する。
[0038] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[0039] [図 1]本発明に係る分子配向装置の一実施形態を模式的に示す図である。
[図 2]本発明に係る分子配向装置の他の一実施形態を模式的に示す図である。
[図 3]本実施例において用いた薄膜の表面構造を AFMにより観察した結果を示す 図である。
[図 4]本実施例において、本発明の一実施形態に係る分子配向装置を用いて行った 薄膜の分子配向制御の結果を示す図である。
[図 5]本実施例において、本発明の一実施形態に係る分子配向装置を用いて行った 他の薄膜の分子配向制御の結果を示す図である。
圆 6]本実施例において、本発明の一実施形態に係る分子配向装置を用いて行った 他の薄膜の分子配向制御の結果を示す図である。
圆 7]本実施例において、本発明の一実施形態に係る分子配向装置を用いて行った 他の薄膜の分子配向制御の結果を示す図である。
[図 8]比較例において、従来の AFM装置を用いて行った他の薄膜の分子配向制御 の結果を示す図である。
符号の説明
10 加工部 (加工手段)
11 探針
12 温度制御機構
20 試料搭載部 (試料搭載手段)
21 温度制御機構
30 発振部 (発振手段)
40 検出部 (検出手段)
50 微小信号検出部 (微小信号検出手段)
60 位置制御部 (位置制御手段)
61 制御部
62 探針 X, Y走査部 (走査手段)
63 探針 z位置制御部
80 検出部 (検出手段)
90 位置制御部 (位置制御手段)
91 制御部
92 探針 X, Y走査部 (走査手段)
93 探針 z位置制御部
100 分子配向装置
200 分子配向装置
発明を実施するための最良の形態 [0041] 〔実施の形態 1〕
本発明に係る分子配向装置の一実施形態について説明すると以下の通りである。 なお、本発明は以下の説明に限定されるものではな 、。
[0042] すなわち、本発明に係る分子配向装置は、試料搭載手段上に配置された試料表 面の任意の微小領域の配向特性を、鋭利な先端形状の探針を有する加工手段を走 查させて加工する分子配向装置であって、加工手段の探針と試料との間の距離 (探 針の Z方向の位置)を正確に制御することができるものであればよい。
[0043] 具体的な一例として、本分子配向装置は、試料を支持する試料搭載手段と、上記 試料表面の任意の微小領域の配向特性を制御するための加工を施す探針を有する 加工手段と、上記試料搭載手段及び Z又は加工手段とを相対的に走査させる走査 手段と、上記試料搭載手段及び Z又は加工手段を相対的に所定の周波数で微小 振動させるための発振手段と、上記加工手段の振幅、位相および振幅位相のうち少 なくともいずれか一つを検出する検出手段と、上記検出手段にて検出した信号のうち 、特定成分のみを選択的に抽出する微小信号検出手段と、上記微小信号検出手段 にて抽出された信号に基づき上記探針と試料表面との距離を制御する位置制御手 段と、を備えるものであればよぐその他の具体的な構成は特に限定されるものでは ない。
[0044] ここで、上記「微小領域の配向特性を制御するための加工」とは、試料表面の分子 、微粒子、又は微結晶の少なくともいずれか 1つの配向特性を制御することをいう。な お、この「微小領域の配向特性を制御するための加工」については、上述した特許文 献 1に詳細に説明してある。それゆえ、本明細書での詳細な説明は省略する力 本 明細書に記載されていない事項については、適宜、上記特許文献 1に開示の記載 内容を利用することができることを念のため付言する。
[0045] 以下、図面を用いて、本発明に係る分子配向装置について、例を挙げて詳細に説 明する。
[0046] 図 1は、本発明に係る分子配向装置の一実施形態の構成を模式的に示す図であ る。同図に示すように、分子配向装置 100は、加工部 10,試料搭載部 20,発振部 3 0,検出部 40,微細信号検出部 50,位置制御部 60を備えている。 [0047] 加工部 10は、鋭利な先端形状の探針 11を有しており、上記加工手段として機能す るものである。力かる加工部 10としては、上記のような探針 11を備えており、試料表 面を走査し、微細加工が可能なものであればよぐその具体的な構成については特 に限定されないが、例えば、 AFMのカンチレバーを用いることが好ましい。また、力 ンチレバー以外にも、例えば、細い針状の探針部分のみ力もなる加工部も用いること ができる。この場合、探針部分に圧電素子やミラー等のセンサを設けることにより、電 気的手段または光学的手段を用いて容易に位置検出に用いることができる。また、 加工部 10には、温度制御機構 12が設けられている。これは、後述する試料搭載部 2 0に設けられている温度制御手段と同様の機能を行うものである。
[0048] ここで、上記加工部 10として、カンチレバーを用いる場合を例に挙げて、具体的に 説明する。カンチレバーとは、微細な探針が固定された矩形板パネのことであり、そ の長手方向を X方向、短手方向を Y方向とし、探針と試料との対向する向きを Z方向 とする。図 1には、これら X、 Y、 Ζ方向を図示してある。この場合、上記「試料 70表面 と平行な方向」とは、 Χ—Υ平面方向と称することができる。また、「試料 70表面と垂直 な方向」とは、 Ζ方向と称することができる。なお、以下、本明細書において特に言及 しない場合は、「X、 Υ、 Ζ方向」とは、上記の方向のことを示す。
[0049] 試料搭載部 20は、試料 70を載置するための試料搭載手段として機能するものであ り、試料ステージと称することもできる。力かる試料搭載部 20としては、上記機能を有 するものであればよぐその構成は特に限定されないが、例えば、 AFMや電子顕微 鏡等の従来公知の試料ステージを好適に用いることができる。
[0050] また、試料搭載部 20は、温度制御機構 21を備えて 、ることが好ま 、。この温度制 御機構 21を備えることにより、試料 70の配向特性を制御するために、試料 70を好適 な温度まで加温することができる。温度制御機構 21の構成にっ ヽても特に限定され るものではなぐ試料の少なくとも被カ卩工領域の温度を制御するものであればよい。こ のような温度制御機構としては、従来公知のヒータや加熱手段 ·冷却手段を備えるも のを好適に用いることができる。
[0051] なお、温度制御機構は、上記試料搭載部だけではなぐ例えば、加工部に設けら れていてもよい。加工部に温度制御手段を設けることによつても、試料の少なくとも被 加工領域の温度を制御することができる。本実施の形態では、加工部 10にも温度制 御機構 12を設けている。このように、試料搭載部と加工部の両方に温度制御機構を 設けることがより好ましい。力かる構成によれば、加工部の探針と試料搭載部の両方 力 試料の温度を制御することができるため、より正確に試料の温度を制御すること ができる。
[0052] また、試料搭載部 20は、 3次元に移動可能に構成されて 、ることが好ま 、。つまり 、試料搭載部 20は、 3次元の移動が可能なように、 3次元の走査機構が備えられて いることが好ましいといえる。上記の構成によれば、試料 70と探針 11との相対位置を 変化させて、探針 11を試料 70表面 (X—Y方向)に対して走査させたり、探針 11と試 料 70との距離 (Z方向)を制御したりすることができる。上記走査機構の構成について も特に限定されるものではなぐ従来公知の走査機構を用いることができる。
[0053] 発振部 30は、試料搭載部 20又は加工部 10を所定の周波数で微小振動させるた めの発振手段として機能するものであればよぐ従来公知の発振装置を用いることが でき、その具体的な構成については特に限定されるものではない。より詳細には、発 振部 30は、試料搭載 20又は加工部 10を、試料 70表面と平行な方向あるいは試料 7 0表面と垂直な方向の 、ずれかの方向に、微小振動させるものであることが好ま U、 。また、上記微小振動は、一定の周波数で振動させるものであることが好ましい。な お、発振部 30は、微小信号検出部 50に対して、発振部 30における発振周波数 fに 関する参照信号を通知するように構成されて ヽる。
[0054] また、発振部 30における「所定の周波数」とは、加工部 10の探針 11が試料表面を 走査する際の周波数より、高い周波数であることが好ましい。発振部 30が試料搭載 部 20を振動させる場合、探針 11が試料表面を走査する際の周波数に比べて、 10倍 〜100万倍高い周波数であることが好ましぐさらには 100倍〜 10万倍高いことがよ り好ましい。一方、発振部 30が加工部 10 (及び Z又は探針 11)を振動させる場合、 探針 11が試料表面を走査する際の周波数に比べて、 10倍〜 1000万倍高い周波 数であることが好ましぐさらには 100倍〜 100万倍高いことがより好ましい。
[0055] また、発振部 30における上記「所定の周波数」は、加工部 10の共振周波数または その近傍の周波数以外の周波数であることが好ましい。中でも、加工部 10と試料 70 とが接触した際の接触振動の共振周波数以外の周波数であることがより好ま 、。な お、接触振動の共振周波数とは、カンチレバーの先端部 (探針)および根元部分が 振動の節となり、カンチレバー本体の中間部分が腹となる振動を意図する。
[0056] これは、本実施の形態のような微細加工を行う場合、試料 70と力卩ェ部 10の探針 11 との間に大きな相互作用力が発生し、この相互作用力の影響により、加工部 10の周 波数特性、共振特性が変化してしまう。このため、上述の共振周波数又はその近傍 の周波数で力卩ェ部 10または試料 70を振動させると、加工部 10の探針 11と試料 70 表面との間の距離を正確に制御することが困難である。その一方、上述の共振周波 数またはその近傍の周波数以外で微小振動させると、相互作用力の影響を受けて 加工部 10の周波数特性が変化しないため、加工部 10の探針 11と試料 70表面との 間の距離をより精密に制御することができる。
[0057] 検出部 40は、加工部 10 (又は探針 11)の振動状態を検出する検出手段として機 能するものであればよぐその具体的な構成は特に限定されない。例えば、「振動状 態」とは、例えば、振幅 (A)、位相( φ )、又は振幅位相 (Acos φ )を挙げることができ 、少なくともこれらの成分のうちいずれかの成分を検出することができる構成であれば よい。検出部 40としては、上記の目的に合致する従来公知の検出機構を用いること ができ、特に限定されるものではない。
[0058] 例えば、加工部 10としてカンチレバーを用いる場合、図 1に示すように、検出部 40 としては、従来公知の AFMに用いられているような、レーザ光をカンチレバーの背面 に照射し、反射光を光検出器にて検出するという検出機構を用いることができる。な お、検出部 40は、この構成に限られるものではなぐ加工部 10の形状等に応じて、 適宜変更可能であることは 、うまでもな 、。
[0059] 微小信号検出部 50は、検出部 40にて検出した信号のうち、発振部 30における所 定の周波数と一致する特定の成分のみを選択的に検出する微小信号検出手段とし て機能するものである。つまり、微小信号検出部 50は、発振部 30における特定の周 波数と一致する、周波数、振幅、位相、振幅位相等のみを検出できるものであればよ い。力かる目的に合致した各種様々な部材を用いることができ、その具体的な構成 は特に限定されない。例えば、ロックインアンプの他、バンドパスフィルタ及び整流回 路の組み合わせ等を好適に用いることができる。
[0060] また、微小信号検出部 50は、位置制御部 60に対して、信号を通知する構成となつ ている。図 1では、この信号を信号 Sとして表す。
[0061] 位置制御部 60は、上述した微小信号検出部 50にて検出した信号が略一定となる ように、試料搭載部の位置を制御し、探針 11と試料 70との間の距離を制御する位置 制御手段として機能するものである。
[0062] 本実施の形態では、位置制御部 60は、制御部 61,探針 Χ·Υ走査部 62,探針 Ζ位 置制御部 63を備えている。
[0063] 制御部 61は、微小信号検出部 50にて検出した信号が略一定となるように、試料搭 載部 20の位置を制御するために、探針 Ζ位置制御部 63に指示を行うものであり、従 来公知の制御回路、演算装置、パーソナルコンピュータ一等を好適に用いることがで きる。探針 Ζ位置制御部 63は、制御部 61からの指示に応じて、試料搭載部 20につ いて、 Ζ方向の位置を制御する(移動させる)ための走査機構である。
[0064] また、探針 Χ·Υ走査部 62は、試料搭載部 20を移動させ、試料 70を X— Υ平面内 で移動させるための走査手段である。本実施の形態では、加工部 10の探針 11は、 固定されている構成であるため、上記の走査機構により、探針 11が試料 70の表面を 走査できる。これにより、試料 70表面の任意の微小領域の配向特性を、探針 11を有 する加工部 10を走査させてカ卩ェすることができる。
[0065] 試料 70は、有機又は無機材料カゝら構成される薄膜であればよぐその具体的な構 成については、特に限定されるものではない。力かる試料としては、例えば、上記特 許文献 1に開示されている種々の薄膜試料を好適に用いることができる。
[0066] 次に、本分子配向装置 100の動作について説明する。本実施の形態に係る分子 配向装置 100の動作方式として、少なくとも以下 (I)〜(IV)の 4つの方式がある。
(I)試料搭載部 20を試料 70の表面方向 (Χ—Υ平面)に微小振動させた状態で、探 針 11を試料 70表面に接触させ、走査する方式。
(II)試料搭載部 20を試料 70の表面と垂直な方向(Ζ方向)に微小振動させた状態で 、探針 11を試料 70表面に接触させ、走査する方式。
(III)加工部 10 (又は探針 11)を試料 70の表面方向(X— Υ平面)に微小振動させた 状態で、探針 11を試料 70表面に接触させ、走査する方式。
(IV)加工部 10 (又は探針 11)を試料 70の表面と垂直な方向(Z方向)に微小振動さ せた状態で、探針 11を試料 70表面に接触させ、走査する方式。
[0067] 動作方式 (I)につ 、て説明すると以下の通りである。
[0068] まず、試料搭載部 20上に試料 70を載置し、温度制御機構 21を用いて試料 70を加 ェに最適な温度に設定する。なお、加工に最適な温度制御については、上記特許 文献 1に記載されており、これを参酌すればよいため、ここでは詳細な説明を省略す る。
[0069] 次に、発振部 30を用いて、試料搭載部 20を、試料 70表面 (X— Y平面)方向に、 所定の周波数 fにて微小振動させる。なお、試料搭載部 20の振動方向は X—Y平面 内の任意の方向であればよぐその具体的な方向は特に限定されない。
[0070] 続 ヽて、試料搭載部 20を微小振動させた状態で、探針 11を試料 70表面に接触さ せる。探針 11が試料 70表面に接触すると、試料 70を介して加工部 10も、微小振動 することになる。ここで、上記微小振動に起因する探針 11の振動状態を、微小振動 検出部 50を通して検知する(検出した信号 Sと称する)。
[0071] 次 ヽで、試料 70の分子等を配向させた ヽ方向に探針 11または試料搭載 20を相対 的に走査させる。
[0072] このとき、位置制御部 60が、上記信号 Sが略一定となるように、探針 11の Z方向位 置を制御する。探針 11の位置制御は、位置制御部 60の各構成を用いて行うことが できる。
[0073] 次に動作方式 (Π)につ 、て説明する。
[0074] まず、試料搭載部 20上に試料 70を載置し、温度制御機構 21を用いて試料 70を加 ェに最適な温度に設定する。次に、発振部 30を用いて、試料搭載部 20を、試料 70 表面に対して垂直な方向(Z方向)に、所定の周波数 fにて微小振動させる。
[0075] 続 ヽて、試料搭載部 20を微小振動させた状態で、探針 11を試料 70表面に接触さ せる。探針 11が試料 70表面に接触すると、試料 70を介して加工部 10も、微小振動 することになる。ここで、上記微小振動に起因する探針 11の振動状態を、微小振動 検出部 50を通して検知する(検出した信号 Sと称する)。 [0076] 次 ヽで、試料 70の分子等を配向させた ヽ方向に探針 11または試料搭載 20を相対 的に走査させる。具体的な一例として、探針 Χ·Υ走査部 62を用いて、試料搭載部 2 0を移動させることにより、探針 11をもって試料 70表面上を走査させる。
[0077] このとき、位置制御部 60が、上記信号 Sが略一定となるように、探針 11の Ζ方向位 置を制御する。探針 11の位置制御は、位置制御部 60の各構成を用いて行うことが できる。
[0078] なお、上記動作方式 (I) , (II)では、発振部 30が試料搭載部 20を微小振動させる 。このような場合、加工部 10は、直接振動することなぐ探針 11が試料 70と接触する ことにより、はじめて微小振動することになる。ここで、分子配向装置 100では、加工 部 10の振幅、位相および振幅位相のうち少なくともいずれか一つを検出する構成で あり、特に、検出部 40にて検出した信号のうち、発振部 30の所定の周波数に一致す る特定の信号のみを検出することを特徴としている。つまり、本分子配向装置 100で は、加工部 10の振幅等を検出するため、加工部 10が微小振動することが好ましい。 そこで、上記動作方式 (I) , (Π)では、加工部 10の探針 11の先端は、振動周期に少 なくとも 1回、より好ましくは常に試料の表面に接触した状態であることが好ましいとい える。
[0079] 次 、で動作方式 (III)につ 、て説明する。
[0080] まず、試料搭載部 20上に試料 70を載置し、温度制御機構 21及び Ζ又は 12を用 いて試料 70を加工に最適な温度に設定する。次に、発振部 30を用いて、加工部 10 (探針 11)を、試料 70表面 (X— Υ平面)方向に、所定の周波数 fにて微小振動させる 。なお、加工部 10 (探針 11)の振動方向は X— Y平面内の任意の方向であればよぐ その具体的な方向は特に限定されない。
[0081] 続いて、加工部 10 (探針 11)を微小振動させた状態で、探針 11を試料 70表面に 接触させる。このときの微小振動に起因する探針 11の振動状態を、微小振動検出部 50を通して検知する(検出した信号 Sと称する)。
[0082] 次 、で、試料 70の分子等を配向させた 、方向に探針又は試料搭載部を相対的に 走査させる。具体的な一例として、探針 Χ·Υ走査部 62を用いて、試料搭載部 20を移 動させることにより、探針 11をもって試料 70表面上を走査させる。 [0083] このとき、位置制御部 60が、上記信号 Sが略一定となるように、探針 11の Z方向位 置を制御する。探針 11の位置制御は、位置制御部 60の各構成を用いて行うことが できる。探針の振動周期にお ヽて少なくとも 1回試料と接触して ヽればよ!/ヽ。
[0084] 次に動作方式 (IV)について説明する。
[0085] まず、試料搭載部 20上に試料 70を載置し、温度制御機構 21を用いて試料 70を加 ェに最適な温度に設定する。次に、発振部 30を用いて、加工部 10 (探針 11)を、試 料 70表面に対して垂直な方向(Z方向)に、所定の周波数 fにて微小振動させる。
[0086] 続いて、加工部 10 (探針 11)を微小振動させた状態で、探針 11を試料 70表面に 接触させる。このときの上記微小振動に起因する探針 11の振動状態を、微小振動検 出部 50を通して検知する(検出した信号 Sと称する)。
[0087] 次 、で、試料 70の分子等を配向させた 、方向に探針を走査させる。具体的な一例 として、探針 Χ·Υ走査部 62を用いて、試料搭載部 20を移動させることにより、探針 1
1をもって試料 70表面上を走査させる。
[0088] このとき、位置制御部 60が、上記信号 Sが略一定となるように、探針 11の Ζ方向位 置を制御する。探針 11の位置制御は、位置制御部 60の各構成を用いて行うことが できる。
[0089] なお、上記動作方式 (IV)の動作の場合、 AFMにおけるダイナミックモードと類似 の構成となる。しかしながら、 AFMのダイナミックモードは、試料とカンチレバーの探 針との接触をできるだけ避け、試料のダメージを軽減するための動作モードである。 一方、本発明の分子配向装置では、試料と探針とが接触することが前提となっている 。これは、試料と探針とが接触しなければ、試料の分子等の配向性を制御できないた めである。このため、上記(IV)の動作方式と AFMのダイナミックモードとは、その技 術思想にぉ 、て大きく異なって 、ると 、える。
[0090] つまり、発振部 30が、加工部 10を微小振動させるものであって、かつ加工部 10を 試料 70表面と垂直な方向に、所定の周波数にて微小振動させるものである場合、加 ェ部 10の探針 11の先端は、常に試料の表面に接触した状態であることが好ましいと いえる。
[0091] 以上のように、本分子配向装置は、加工部 (探針)又は試料搭載部を高周波で微 小振動させることにより、両者の間に微小な摩擦力を発生させる。そして、この微小な 摩擦力により生じる加工部の反りを、微小信号検出部を介して測定することで、目的 の信号 (微小振動に由来する信号)以外のノイズ成分 (配向加工のための探針走査 により発生する摩擦力による加工部の反りによる信号)をカットすることができる。そし て、上記の目的の信号 (微小振動に由来する信号)の測定値を基準とすることにより 、探針の Z方向位置を正確に制御することができる。それゆえ、本分子配向装置によ れば、探針走査に伴って発生する摩擦力の影響を受けることなぐ探針における z方 向の位置制御を高精度で行うことができる。
[0092] また、本発明には分子配向方法も含まれる。本発明に係る分子配向方法は、試料 を支持する試料搭載手段に配置された試料表面の任意の微小領域に鋭利な先端 形状の探針を備える加工手段及び Z又は上記試料搭載手段を相対的に走査させて 加工を施し、該微小領域の配向特性を制御する分子配向方法であって、上記試料 搭載手段及び Z又は加工手段を所定の周波数で微小振動させる発振工程と、上記 加工手段の振幅、位相および振幅位相のうち少なくともいずれか一つを検出する検 出工程と、上記検出工程にて検出した信号のうち、特定成分のみを選択的に抽出す る微小信号検出工程と、上記微小信号検出工程にて抽出された信号に基づき上記 探針と試料表面との距離を制御する位置制御工程と、を含むものであればよぐその 他の工程、条件、使用機器等の具体的な構成については、特に限定されるものでは ない。
[0093] 上記分子配向方法は、例えば、上述した分子配向装置により実施できる。本分子 配向方法の説明は、実質的に上述した分子配向装置の説明と重複するため、ここで はその詳細な説明を省略する。つまり、上記分子配向装置について説明した事項は 、適宜、分子配向方法にも適用可能であり、本方法においても様々に組み合わせる ことができる。なお、本発明に係る分子配向方法によっても、上述した分子配向装置 と同様の効果を得ることができることは 、うまでもな 、。
[0094] 〔実施の形態 2〕
上記実施形態 1では、加工部 (探針)又は試料搭載部を高周波で微小振動させ、 当該微小振動に依存する加工部の反りのみを検出する分子配向装置の一実施形態 について説明した。本実施形態では、上記実施形態 1とは異なり、加工部又は試料 搭載部の微小振動を行わない分子配向装置の一実施形態について説明する。なお
、説明の便宜上、上記実施形態 1にて説明した部材と同じ機能を有する部材につい ては、同じ符号を付記し、その説明を省略する。本実施の形態では、上記実施形態 1 との相違点について説明するものとする。
[0095] 本実施の形態に係る分子配向装置は、試料を支持する試料搭載手段と、上記試 料表面の任意の微小領域の配向特性を加工するための探針と、該探針が受ける力 を検出するためのセンサとを有する加工手段と、上記試料搭載手段及び Z又は加工 手段を相対的に走査させる走査手段と、上記加工手段に設けられたセンサからの情 報に基づき、上記探針と試料との間の距離を制御する位置制御手段とを備え、上記 センサは、上記探針が走査方向と直交する方向に受ける力を検出するものであれば よぐその他の具体的な構成は特に限定されるものではない。
[0096] 以下、図面を用いて、本発明に係る分子配向装置の各構成部材について、例を挙 げて詳細に説明する。
[0097] 図 2は、本発明に係る分子配向装置の他の一実施形態の構成を模式的に示す図 である。同図に示すように、分子配向装置 200は、加工部 10,温度制御機構 12、温 度制御機構 21,試料搭載部 20,検出部 80,位置制御部 90を備えている。
[0098] 加工部 10は従来公知のいわゆるカンチレバーであってよぐまた、カンチレバー以 外にも探針部分に圧電素子やミラー等のセンサを設けることにより、探針に働く力を 電気的または光学的に検出する構造であってもよい。また、加工部 10は、温度制御 機構 12を備えている。温度制御機構 12は、試料 70の少なくとも被加工領域の温度 を制御するものであればょ 、。
[0099] 検出部 80は、加工部 10または探針 11に加わる力を検出する。また、検出部 80は その検出結果を後述の位置制御部 90へ送る構成であればよい。また、検出部 80は 、上記センサと協働して機能するものでもある。つまり、検出部 80は、上記センサと協 働して、探針 11が走査方向と直交する方向に受ける力を検出するものであると 、え る。
[0100] 検出部 80としては、上記の目的に合致する従来公知の検出機構を用いることがで き、特に限定されるものではない。例えば、加工部 10としてカンチレバーを用いる場 合、図 2に示すように、従来公知の AFMに用いられているようなレーザ光をカンチレ バーの背面に照射し、反射光を光検出器にて検出するという検出機構を用いること ができる。なお、検出部 80は、この構成に限られるものではなぐ加工部 10の形状等 に応じて、適宜変更可能である。
[0101] 位置制御部 90は、加工部 10における長手方向の反りの大きさを基準として、探針 11と試料 70との間の距離を制御する位置制御手段として機能するものである。さら に、位置制御部 90は、加工部 10を試料 70に対して、走査させる走査手段としても機 能するものである。本実施の形態では、位置制御部 90は、制御部 91,探針 Χ·Υ走 查部 92,探針 Ζ位置制御部 93を備えている。
[0102] 制御部 91は、上記検出部 80からの信号に従って、加工部 10における長手方向の 反りの大きさを基準として、探針 11と試料 70との間の距離を制御するために、探針 Ζ 位置制御部 93に指示を行うものであり、従来公知の制御回路、演算装置、パーソナ ルコンピュータ一等を好適に用いることができる。探針 Ζ位置制御部 93は、制御部 9 1からの指示に応じて、試料搭載部 20の Ζ方向の位置を制御し、加工部 10の探針 1 1と試料 70との Ζ方向の距離を制御するための走査機構である。
[0103] また、探針 Χ·Υ走査部 92は、試料搭載部 20を移動させ、探針 11と試料 70との相 対位置を X— Υ平面内で移動させるための走査手段である。本実施の形態では、加 ェ部 10の探針 11は、固定されている構成であるため、上記の構成により、探針 11が 試料 70の表面を走査できる。これにより、試料 70表面の任意の微小領域の配向特 性を、探針 11を有する加工部 10を走査させてカ卩ェすることができる。つまり、探針 X· Υ走査部 92は、試料搭載部 20を移動させることにより、加工部 10 (探針 11)を試料 7 0に対して、加工部 10の短手方向に走査させるものであると換言できる。
[0104] 力かる探針 Χ·Υ走査部 92の具体的な構成は、上記の目的に合致する構成であれ ばよぐその具体的な構成については特に限定されるものではない。例えば、電子顕 微鏡ゃ表面粗さ計における試料ステージを挙げることができる。かかる試料ステージ は、 Χ—Υ平面において縦移動'横移動'回転移動、及びこれらを適宜組み合わせて 、試料 70を自由に移動させることができるものである。 [0105] このような試料搭載部 20及び位置制御部 90によれば、探針 11と試料 70との相対 位置を細力べ単位、かつ高精度で移動させることができる。このため、探針 11をもつ て、試料 70の任意の微小領域を正確に走査させることができる。それゆえ、試料 70 の任意の位置'任意の形状の領域で、分子又は微結晶等を規則正しく配列させるこ とができるという利点がある。さらに、本分子配向装置 200は、上記実施形態 1と異な り、微小振動を起こすための発振部や特定の信号のみを検出するための微小信号 検出部等の部材を設ける必要が無い。このため、低コスト化、小型化を達成すること ができる。
[0106] 上記の分子配向装置によれば、試料 (薄膜)を構成する微粒子又は微結晶あるい は分子の配向特性を制御する技術において、探針が試料と平行な面内で走査方向 と直交方向に受ける力を基準に Z方向の距離を制御することにより探針の Z方向性世 をより性格に行うことができる、例えばカンチレバーの長手方向(X)の反りの大きさを 基に探針'試料間の距離を制御し、かつカンチレバーの短手方向 (Y方向)に走査す る構成がその一例である。これにより、走査に伴って生じた摩擦力によって、発生す るカンチレバーの長手方向 (X)の反りの影響を無視でき、探針の Z方向位置を正確 に制御できる。
[0107] それゆえ、本分子配向装置によれば、探針走査に伴って発生する摩擦力の影響を 受けることなぐ探針における Z方向の位置制御を高精度で行うことができる。
[0108] また、本発明には分子配向方法も含まれる。本発明に係る分子配向方法は、試料 表面の任意の微小領域の配向特性を制御するための加工を施す分子配向方法に おいて、鋭利な先端形状の探針を上記試料と相対的に走査させて加工する加工ェ 程と、上記加工工程において上記探針が走査方向と直交する方向に受けるカを検 出する力検出工程と、上記力検出工程で検出された情報に基づき、上記探針と試料 表面との間の距離を制御する位置制御工程と、を有するものであればよぐその他の 工程、条件、使用機器等の具体的な構成については、特に限定されるものではない
[0109] 上記分子配向方法は、例えば、上述した分子配向装置により実施できる。本分子 配向方法の説明は、実質的に上述した分子配向装置の説明と重複するため、ここで はその説明を省略する。上記分子配向装置について説明した事項は、適宜、分子配 向方法にも適用可能であり、本方法においても様々に組み合わせることができる。な お、本発明に係る分子配向方法によっても、上述した分子配向装置と同様の効果を 得ることができることは!、うまでもな!/、。
[0110] また、本発明には、分子配向装置又は分子配向方法として、例えば、試料表面の 凹凸及び加工による摩擦力の変動に関係なく配向加工中の探針'試料間距離を一 定とする構成のものが含まれていてもよい。具体的な一例として、探針の z方向位置 の制御を行うフィードバックゲインを下げて、試料表面の凹凸や摩擦力の影響により 探針の Z方向の位置を制御する応答性を落とした構成のものが考えられる。また、試 料の表面を予めスキャン (観察)しておき、試料表面の大ま力な構造を把握した後、 その表面構造に応じて探針を走査させる構成であってもよい。勿論、この場合、配向 性制御のための走査時には、探針の Z方向位置を制御するフィードバックは行わな い。
[0111] すなわち、本発明に係る分子配向方法は、試料表面の任意の微小領域の配向特 性を制御するための加工を施す分子配向方法にぉ 、て、鋭利な先端形状の探針を 上記試料と相対的に走査させてカ卩ェする加工工程を有し、上記加工工程では、試 料表面の凹凸及び Z又は加工による摩擦力の変動に関係なく配向加工中の探針と 試料間の距離を一定とするものであればよい。
[0112] 上記分子配向装置又は分子配向方法は、例えば、試料表面の凹凸が少ない場合 などに好適に用いることができる。上記分子配向装置では、探針と試料との間の距離
(探針の Z方向位置)を制御する必要が無いため、例えば、微小信号検出部や発振 部を設ける必要が無い。このため、装置の小型化、コストダウンを図ることができる。
[0113] すなわち、本発明に係る分子配向方法は、試料表面の任意の微小領域の配向特 性を制御するための加工を施す分子配向方法において、試料の表面を走査し、該 試料表面の表面の凹凸構造を把握する前走査工程と、鋭利な先端形状の探針を上 記試料と相対的に走査させてカ卩ェする加工工程とを有し、上記加工工程では、上記 前走査工程にて得られた表面構造の情報に基づき、上記探針と試料表面間の距離 を制御するものであればょ 、。 [0114] また、本発明には、上記の分子配向方法を実施するための装置として、試料を支持 する試料搭載手段と、上記試料表面の任意の微小領域の配向特性を制御するため の加工を施す探針を有する加工手段と、上記試料搭載手段及び Z又は加工手段と を相対的に走査させる走査手段と、上記探針と試料表面との距離を制御する位置制 御手段と、を備えており、上記位置制御手段は、上記探針にて試料の表面を走査し 、該試料表面の表面構造を把握する前走査工程を行って得られる表面の凹凸構造 の情報に基づ 、て、上記探針と試料表面間の距離を制御するものである分子配向 装置が含まれる。
[0115] なお、上述した 2つの実施の形態では、位置制御部 60又は 90は、試料搭載部 20 の位置を制御する構成として説明した力 この構成に限られるものではない。例えば 、位置制御部 60又は 90が、試料搭載部 20の X、 Y、 Ζ方向の位置ではなぐ加工部 10や探針 11の位置を制御し移動させる構成であってもよい。ただし、装置の構成の 容易さや操作性、装置の大型化を避ける等の理由で、試料搭載部 20の位置を移動 させるような、本実施形態の構成がより好ましい。
[0116] また、上述した本発明に係る分子配向装置又は分子配向方法によれば、膜厚 100 Onm以下の薄膜でもその構造制御が可能である。構造制御を行う微小領域の面積 は、 lnm2の領域刻みも可能である。さらに、この技術により構造制御を行った後、別 の薄膜を積層し、再び同様の構造制御を行う。この一連の工程を複数回繰り返すこと により、 3次元における構造制御も可能である。こうして、本発明によれば、任意の位 置'任意の形状の領域で分子又は微結晶を規則正しく配列させることにより、光学的 又は誘電的又は力学的特性に異方性を発現させることが可能になる。
[0117] 最後に、分子配向装置 100又は分子配向装置 200の各ブロック、特に位置制御部 60及び位置制御部 90は、ハードウェアロジックによって構成してもよいし、次のように CPUを用いてソフトウェアによって実現してもよ!/、。
[0118] すなわち、分子配向装置 100又は分子配向装置 200は、各機能を実現する制御 プログラムの命令を実行する CPU (central processing unit) ,上記プログラムを格納 した ROM (read only memory)、上記プログラムを展開する RAM (random access me mory)、上記プログラム及び各種データを格納するメモリ等の記憶装置 (記録媒体)な どを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアであ る分子配向装置 100又は分子配向装置 200の制御プログラムのプログラムコード (実 行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取 り可能に記録した記録媒体を、上記分子配向装置 100又は分子配向装置 200に供 給し、そのコンピュータ(又は CPUや MPU)が記録媒体に記録されているプログラム コードを読み出し実行することによっても、達成可能である。
[0119] 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッ ピー(登録商標)ディスク Zハードディスク等の磁気ディスクや CD— ROMZMOZ MD/DVD/CD—R等の光ディスクを含むディスク系、 ICカード (メモリカードを含 む) Z光カード等のカード系、あるいはマスク ROMZEPROMZEEPROMZフラッ シュ ROM等の半導体メモリ系などを用いることができる。
[0120] また、分子配向装置 100又は分子配向装置 200を通信ネットワークと接続可能に 構成し、上記プログラムコードを、通信ネットワークを介して供給してもよい。この通信 ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキス トラネット、 LAN、 ISDN, VAN, CATV通信網、仮想専用網(virtual private networ k)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネット ワークを構成する伝送媒体としては、特に限定されず、例えば、 IEEE1394、 USB、 電力線搬送、ケーブル TV回線、電話線、 ADSL回線等の有線でも、 IrDAやリモコ ンのような赤外線、 Bluetooth (登録商標)、 802. 11無線、 HDR、携帯電話網、衛 星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プ ログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータ データ信号の形態でも実現され得る。
[0121] 以下実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん 、本発明は以下の実施例に限定されるものではなぐ細部については様々な態様が 可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるも のではなぐ請求項に示した範囲で種々の変更が可能であり、それぞれ開示された 技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲 に含まれる。 実施例
[0122] 上述した分子配向装置又は分子配向方法を用いて、薄膜表面の任意の微小領域 の配向特性を制御する実験を行った。その方法及び結果を以下に示す。
[0123] 〔実施例 1〕
フッ化ビ-リデン'三フッ化工チレン共重合体 ((P(VDF- TrFE》共重合比(VDF/TrF E=75/25)のメチルェチルケトン溶液をグラフアイト基板上にスピン塗布した後、 140 °Cで 1時間熱処理結晶化して膜厚 200nmの薄膜を得た。この膜の表面 AFM像を 図 3に示す。次に、この薄膜を図 1に示す構成の分子配向加工装置に設置し膜温度 を P(VDF-TrFE)の融点(147°C)直下の 142°Cに加熱した。この状態で、パネ定数 2 . 4NZmのカンチレバーを用いて分子配向加工を行った。加工に際して、発振器を 用いて試料 (試料搭載部)を Y方向に周波数 f= 9kHzで振動させた。振動振幅は約 1. 3nmであった。
[0124] 次に、試料 (試料搭載部)を Z方向に移動し、カンチレバー先端の探針を試料表面 に接触させた。この状態でカンチレバーは探針と試料表面の摩擦力により Y方向に 周波数 fで振動する。この振動をカンチレバー背面に照射したレーザ光の位置の振 れとして光検出器で検出した。
[0125] 図 1の構成では光検出器の出力を、ロックインアンプを介することで周波数 f(9kHz) の成分のみを取り出している。ロックインアンプの出力としてカンチレバーの Y方向振 動の振幅信号と位相信号が得られる力 このうちの振幅信号が 0. 5〜0. 9mVとなる ように試料の Z方向位置を設定した。
[0126] 次いで、この振幅信号を探針 ·試料間の X, Υ, Z方向の相対位置を制御するため のコンピュータに入力し、振幅信号が常にこの範囲の値に収束するようにフィードバ ック制御を行 ヽながら、試料 (試料搭載部)を X方向にに 2 μ m走査後 Υ方向に 8nm 移動して— X方向に 2 μ m走査した。この動作を 256回繰り返して 2 μ ηι Χ 2 μ mの領 域の分子に配向加工を施した。
[0127] 加工後、試料温度 30°Cで AFM観察した加工結果を図 4に示す。分子が探針の走 查方向(X方向)に良好に配向した結果、 Y方向に細長いエッジオン型のラメラ結晶 が綺麗に並んで形成されて!ヽることが確認された。 [0128] 〔実施例 2〕
実施例 1と同様の方法でフッ化ビ-リデン ·三フッ化工チレン共重合体 ((P(VDF-TrF E))共重合比 (VDF/TrFE=75/25)の膜厚 200nmの薄膜を得た。この薄膜を図 1に示 す構成の分子配向加工装置に設置し膜温度を 142°Cに加熱した。この状態で、パネ 定数 2. 4NZmのカンチレバーを用いて分子配向加工を行った。
[0129] 本実施例 2では、加工に際して発振器を用いて試料 (試料搭載部)を X方向に周波 数 f= 9kHzで振動させた。また、探針を試料表面に接触させることにより発生する力 ンチレバーの X方向の振動の振幅信号が 0. 4〜0. 7mVになるように試料の Z方向 位置を設定した。次に、この振幅信号を探針'試料間の X, Y, Z方向の相対位置を 制御するためのコンピュータに入力し、振幅信号が常にこの範囲の値に収束するよう にフィードバック制御を行 ヽながら、試料 (試料搭載部)を Y方向に 2 μ m走査後 X方 向に 8nm移動して一 Y方向に 2 μ m走査した。この動作を 256回繰り返して 2 m X 2 μ mの領域の分子に配向加工を施した。
[0130] 加工後、試料温度 30°Cで AFM観察したカ卩ェ結果を図 5に示す。分子が探針の走 查方向(Y方向)に良好に配向した結果、 Y方向に細長いエッジオン型のラメラ結晶 が綺麗に並んで形成されて!ヽることが確認された。
[0131] 〔実施例 3〕
実施例 2と同様の試料を図 1に示す構成の分子配向加工装置に設置し、膜温度を 142°Cに加熱した。この状態で、パネ定数 2. 4NZmのカンチレバーを用いて分子 配向加工を行った。実施例 3では、加工に際して発振器を用いて試料 (試料搭載部) を Y方向に周波数 f= 9kHzで振動させた。また、探針を試料表面に接触させることに より発生するカンチレバーの Y方向の振動の振幅信号が 0. 3〜0. 6mVになるように 試料の Z方向位置を設定した。
[0132] 次に、この振幅信号を探針'試料間の X, Υ, Z方向の相対位置を制御するための コンピュータに入力し、振幅信号が常にこの範囲の値に収束するようにフィードバック 制御を行いながら、試料を X方向に対して 45° の方向(a方向とする)に 2 m走査 後 Y方向に対して 45° の方向に 8nm移動して a方向に 2 m走査した。この動作 を 256回繰り返して 2 μ ηι Χ 2 μ mの領域の分子に配向加工を施した。 [0133] 加工後、試料温度 30°Cで AFM観察した加工結果を図 6に示す。分子が探針の走 查方向(X方向に対して 45° の方向)に良好に配向した結果、 Y方向に対して 45° の方向に細長 、エッジオン型のラメラ結晶が綺麗に並んで形成されて 、ることが確認 された。
[0134] 〔実施例 4〕
実施例 3と同様の試料を図 1に示す構成の分子配向加工装置に設置し膜温度を 1 42°Cに加熱した。この状態で、パネ定数 2. 4NZmのカンチレバーを用いて分子配 向加工を行った。実施例 4では加工に際して発振器を用いて試料 (試料搭載部)を Y 方向に周波数 f= 9kHzで振動させた。また、探針を試料表面に接触させることにより 発生するカンチレバーの Y方向の振動の振幅信号が 0. 5〜1. OmVになるように試 料の Z方向位置を設定した。
[0135] 次に、この振幅信号を探針'試料間の X, Υ, Z方向の相対位置を制御するための コンピュータに入力し、振幅信号が常にこの範囲の値に収束するようにフィードバック 制御を行いながら、試料を Y方向に 2 m走査後 X方向に 8nm移動して—X方向に 2 μ m走査した。この動作を 256回繰り返して 2 μ ηι Χ 2 μ mの領域の分子に配向加工 を施した。
[0136] 加工後、試料温度 30°Cで AFM観察した加工結果を図 7に示す。分子が探針の走 查方向(Y方向)に良好に配向した結果、 Y方向に細長いエッジオン型のラメラ結晶 が綺麗に並んで形成されて!ヽることが確認された。
[0137] 〔比較例 1〕
実施例 4と同様の試料を、従来の AFM装置に設置し膜温度を 142°Cに加熱した。 この状態で、パネ定数 2. 4NZmのカンチレバーを用いて分子配向加工を行った。 探針を試料表面に接触させ、その時のカンチレバーの X方向の反りが一定になるよう にフィードバック制御を加えながら(通常のコンタクトモード)試料を X方向に 2 μ m走 查した。その Y方向に 8nm移動して—X方向に 2 m走査した。この動作を 256回繰 り返して 2 μ ηι Χ 2 μ mの領域の分子に配向加工を施した。
[0138] 加工後、試料温度 30°Cで AFM観察した。加工時のカンチレバーの反りの値を変 えて上記の加工を行った結果、最も良好であった加工結果を図 8に示す。従来の AF M装置を用いた場合には一部の領域では分子が配向されているもののその結果は 良好ではない。また、探針位置の Z方向制御が不適切なため非常に膜が破れやす いことが分力つた。
[0139] なお、発明を実施するための最良の形態の項においてなした具体的な実施態様ま たは実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのよう な具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に 記載する特許請求の範囲内で、いろいろと変更して実施することができるものである 産業上の利用の可能性
[0140] 本発明によれば、ナノメートルオーダーの微小領域における膜の配向制御が可能 となり、例えば、情報を記録'再生する高密度記録媒体等をはじめとした、様々な産 業上の分野において応用が可能である。

Claims

請求の範囲
[1] 試料を支持する試料搭載手段と、
上記試料表面の任意の微小領域の配向特性を制御するための加工を施す探針を 有する加工手段と、
上記試料搭載手段及び Z又は加工手段とを相対的に走査させる走査手段と、 上記試料搭載手段及び Z又は加工手段を所定の周波数で微小振動させるための 発振手段と、
上記加工手段の振幅、位相および振幅位相のうち少なくとも!/、ずれか一つを検出 する検出手段と、
上記検出手段にて検出した信号のうち、特定成分のみを選択的に抽出する微小信 号検出手段と、
上記微小信号検出手段にて抽出された信号に基づき上記探針と試料表面との距 離を制御する位置制御手段と、
を備えることを特徴とする分子配向装置。
[2] 上記微小信号検出手段は、上記発振手段による上記微小振動の周波数と略一致 する成分のみを選択的に検出するものであり、
上記位置制御手段は、上記微小信号検出手段にて検出される信号が略一定とな るように上記試料搭載手段及び Z又は加工手段の位置を制御するものであることを 特徴とする請求項 1に記載の分子配向装置。
[3] 上記発振手段は、上記試料搭載手段及び Z又は加工手段を、試料表面と平行な 方向あるいは試料表面と垂直な方向の!/、ずれかの方向に、所定の周波数にて微小 振動させるものであることを特徴とする請求項 1又は 2に記載の分子配向装置。
[4] 上記加工手段の探針の先端は、上記微小振動の周期にお 、て少なくとも 1回は試 料表面に接触することを特徴とする請求項 1〜3のいずれか 1項に記載の分子配向 装置。
[5] 上記発振手段が上記加工手段を微小振動させ、かつ上記加工手段を試料表面と 垂直な方向に所定の周波数にて微小振動させる場合、
上記加工手段の探針の先端は、常に試料の表面に接触した状態であることを特徴 とする請求項 1〜3のいずれ力 1項に記載の分子配向装置。
[6] 上記発振手段による微小振動の周波数は、上記加工手段の走査の周波数より高 いことを特徴とする請求項 1〜5のいずれか 1項に記載の分子配向装置。
[7] 上記試料搭載手段及び Z又は加工手段は、試料の少なくとも被加工領域の温度 を制御する温度制御機構を備えることを特徴とする請求項 1〜6のいずれか 1項に記 載の分子配向装置。
[8] 試料を支持する試料搭載手段に配置された試料表面の任意の微小領域に鋭利な 先端形状の探針を備える加工手段及び Z又は上記試料搭載手段を相対的に走査 させて加工を施し、該微小領域の配向特性を制御する分子配向方法であって、 上記試料搭載手段及び Z又は加工手段を所定の周波数で微小振動させる発振ェ 程と、
上記加工手段の振幅、位相および振幅位相のうち少なくとも!/、ずれか一つを検出 する検出工程と、
上記検出工程にて検出した信号のうち、特定成分のみを選択的に抽出する微小信 号検出工程と、
上記微小信号検出工程にて抽出された信号に基づき上記探針と試料表面との距 離を制御する位置制御工程と、
を含むことを特徴とする分子配向方法。
[9] 上記微小信号検出工程は、上記発振工程による上記微小振動の周波数と略一致 する成分のみを選択的に検出する工程であり、
上記位置制御工程は、上記微小信号検出工程にて検出される信号が略一定とな るように上記試料搭載手段及び Z又は加工手段の位置を制御する工程であることを 特徴とする請求項 8に記載の分子配向方法。
[10] 試料を支持する試料搭載手段と、
上記試料表面の任意の微小領域の配向特性を加工するための探針と、該探針が 受ける力を検出するためのセンサとを有する加工手段と、
上記試料搭載手段及び Z又は加工手段を相対的に走査させる走査手段と、 上記加工手段に設けられたセンサ力もの情報に基づき、上記探針と試料との間の 距離を制御する位置制御手段とを備え、
上記センサは、上記探針が走査方向と直交する方向に受ける力を検出するもので あることを特徴とする分子配向装置。
[11] 試料表面の任意の微小領域の配向特性を制御するための加工を施す分子配向方 法において、
鋭利な先端形状の探針を上記試料と相対的に走査させて加工する加工工程と、 上記加工工程において上記探針が走査方向と直交する方向に受ける力を検出す る力検出工程と、
上記力検出工程で検出された情報に基づき、上記探針と試料表面との間の距離を 制御する位置制御工程と、
を有することを特徴とする分子配向方法。
[12] 試料表面の任意の微小領域の配向特性を制御するための加工を施す分子配向方 法において、
鋭利な先端形状の探針を上記試料と相対的に走査させて加工する加工工程を有 し、
上記加工工程では、試料表面の凹凸及び Z又は加工による摩擦力の変動に関係 なく配向加工中の探針と試料間の距離を一定とすることを特徴とする分子配向方法
[13] 試料表面の任意の微小領域の配向特性を制御するための加工を施す分子配向方 法において、
試料の表面を走査し、該試料表面の表面構造を把握する前走査工程と、 鋭利な先端形状の探針を上記試料と相対的に走査させて加工する加工工程を有 し、
上記加工工程では、上記前走査工程にて得られた表面構造の情報に基づき、上 記探針と試料表面間の距離を制御することを特徴とする分子配向方法。
[14] 試料を支持する試料搭載手段と、
上記試料表面の任意の微小領域の配向特性を制御するための加工を施す探針を 有する加工手段と、 上記試料搭載手段及び z又は加工手段とを相対的に走査させる走査手段と、 上記探針と試料表面との距離を制御する位置制御手段と、を備えており、 上記位置制御手段は、上記探針にて試料の表面を走査し、該試料表面の表面構 造を把握する前走査工程を行って得られる表面構造の情報に基づ!/ヽて、上記探針と 試料表面間の距離を制御するものであることを特徴とする分子配向装置。
[15] 上記発振手段が上記試料搭載手段及び Z又は加工手段を微小振動させるための 所定の周波数は、上記加工手段の共振周波数またはその近傍の周波数以外の周 波数であることを特徴とする請求項 1に記載の分子配向装置。
[16] 上記発振手段が上記試料搭載手段及び Z又は加工手段を微小振動させるための 所定の周波数は、当該加工手段と試料とが接触した際の接触振動の共振周波数ま たはその近傍の周波数以外の周波数であることを特徴とする請求項 1に記載の分子 配向装置。
[17] 上記発振工程にお!、て、上記試料搭載手段及び Z又は加工手段を微小振動させ るための所定の周波数は、上記加工手段の共振周波数またはその近傍の周波数以 外の周波数であることを特徴とする請求項 8に記載の分子配向方法。
[18] 上記発振工程にお!、て、上記試料搭載手段及び Z又は加工手段を微小振動させ るための所定の周波数は、当該加工手段と試料とが接触した際の接触振動の共振 周波数またはその近傍の周波数以外の周波数であることを特徴とする請求項 8に記 載の分子配向方法。
PCT/JP2007/059012 2006-05-09 2007-04-26 分子配向装置及び分子配向方法 WO2007129587A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008514437A JPWO2007129587A1 (ja) 2006-05-09 2007-04-26 分子配向装置及び分子配向方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-130821 2006-05-09
JP2006130821 2006-05-09

Publications (1)

Publication Number Publication Date
WO2007129587A1 true WO2007129587A1 (ja) 2007-11-15

Family

ID=38667695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059012 WO2007129587A1 (ja) 2006-05-09 2007-04-26 分子配向装置及び分子配向方法

Country Status (2)

Country Link
JP (1) JPWO2007129587A1 (ja)
WO (1) WO2007129587A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406386A (zh) * 2017-10-30 2019-03-01 西南交通大学 应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计及加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223766A (ja) * 1993-01-22 1994-08-12 Seiko Instr Inc 表面分析及び加工装置
JPH06323834A (ja) * 1993-05-13 1994-11-25 Agency Of Ind Science & Technol 原子間力顕微鏡および原子間力顕微鏡における試料観察方法
JPH07134023A (ja) * 1993-11-09 1995-05-23 Agency Of Ind Science & Technol 原子間力顕微鏡及び原子間力顕微鏡における試料観察方法
JPH07280818A (ja) * 1994-04-11 1995-10-27 Nikon Corp 原子間力顕微鏡
JPH11174066A (ja) * 1997-12-15 1999-07-02 Nikon Corp 走査型プローブ顕微鏡
JPH11326771A (ja) * 1998-05-06 1999-11-26 Canon Inc プローブ、走査型プローブ顕微鏡、記録再生装置
WO2004026459A1 (ja) * 2002-09-12 2004-04-01 Kyoto Instruments Co., Ltd. 薄膜及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223766A (ja) * 1993-01-22 1994-08-12 Seiko Instr Inc 表面分析及び加工装置
JPH06323834A (ja) * 1993-05-13 1994-11-25 Agency Of Ind Science & Technol 原子間力顕微鏡および原子間力顕微鏡における試料観察方法
JPH07134023A (ja) * 1993-11-09 1995-05-23 Agency Of Ind Science & Technol 原子間力顕微鏡及び原子間力顕微鏡における試料観察方法
JPH07280818A (ja) * 1994-04-11 1995-10-27 Nikon Corp 原子間力顕微鏡
JPH11174066A (ja) * 1997-12-15 1999-07-02 Nikon Corp 走査型プローブ顕微鏡
JPH11326771A (ja) * 1998-05-06 1999-11-26 Canon Inc プローブ、走査型プローブ顕微鏡、記録再生装置
WO2004026459A1 (ja) * 2002-09-12 2004-04-01 Kyoto Instruments Co., Ltd. 薄膜及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIMURA K. ET AL.: "Orientation control of poly (vinylidenefluoride-trifluoroethylene) crystals and molecules using atomic force microscopy", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, vol. 82, no. 23, 9 June 2003 (2003-06-09), pages 4050 - 4052, XP001174845 *
YASUO HOSHI ET AL.: "Observation of Self-Assembled Monolayer Using the lateral Resonance of the Cantilever in the Contact and Noncontact Retions", JAPANESE JOURNAL OF APPLIED PHYSICS, THE JAPAN SOCIETY OF APLIED PHYSICS, vol. 43, no. 7B, 30 July 2004 (2004-07-30), pages 4533 - 4536, XP003016946 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406386A (zh) * 2017-10-30 2019-03-01 西南交通大学 应用于纳米级单点接触超低摩擦系数测量的异形横截面微悬臂梁探针设计及加工方法

Also Published As

Publication number Publication date
JPWO2007129587A1 (ja) 2009-09-17

Similar Documents

Publication Publication Date Title
CA2098040C (en) Automatic tip approach method and apparatus for scanning probe microscope
Tanaka et al. Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage
JP4832296B2 (ja) 原子間力顕微鏡用プローブ
WO2003067224A1 (en) Scanning probe microscope and specimen surface structure measuring method
Yong et al. Collocated z-axis control of a high-speed nanopositioner for video-rate atomic force microscopy
JP5252389B2 (ja) 走査型プローブ顕微鏡
WO2006129561A1 (ja) 走査型プローブ顕微鏡およびカンチレバー駆動装置
JP4496350B2 (ja) 原子間力顕微鏡
US5371728A (en) Information recording/reproducing apparatus using probe
JP2002228573A (ja) 高速走査探針顕微鏡用高周波振動探針
Yan et al. Characterization study on machining PMMA thin‐film using AFM tip‐based dynamic plowing lithography
WO2007129587A1 (ja) 分子配向装置及び分子配向方法
JP6129630B2 (ja) 熱アシスト磁気ヘッド素子の検査方法及びその装置、微小熱源の温度測定方法及びその装置並びにカンチレバーおよびその製造方法
JPH063397A (ja) 電位分布測定装置
JP2000036139A (ja) 表面観察方法及び記録再生方法、並びに、走査型プローブ顕微鏡及び記録再生装置
JP5283038B2 (ja) 制御装置、原子間力顕微鏡、制御方法およびプログラム
US11761751B2 (en) Thin film metrology
JP4103136B2 (ja) データ記録再生装置
JPH09264897A (ja) 走査型プローブ顕微鏡
JPH09119938A (ja) 走査型プローブ顕微鏡
EP3663775A1 (en) Scanning probe microscope, scan head and method
JP3185742B2 (ja) 表面計測器
JP2004122278A (ja) 走査型プローブの制御装置とそれによる加工装置および観察装置、プローブの加振方法とそれを用いた加工方法
Wu et al. A compact tapping mode AFM with sliding mode controller for precision image scanning
Wessels et al. Fast and gentle side approach for atomic force microscopy

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008514437

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742447

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)