WO2007125965A1 - 多重差動伝送システム - Google Patents

多重差動伝送システム Download PDF

Info

Publication number
WO2007125965A1
WO2007125965A1 PCT/JP2007/058967 JP2007058967W WO2007125965A1 WO 2007125965 A1 WO2007125965 A1 WO 2007125965A1 JP 2007058967 W JP2007058967 W JP 2007058967W WO 2007125965 A1 WO2007125965 A1 WO 2007125965A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
output
output signal
inverted
differential
Prior art date
Application number
PCT/JP2007/058967
Other languages
English (en)
French (fr)
Inventor
Seiji Hamada
Hirotsugu Fusayasu
Shin-Ichi Tanimoto
Ryou Matsubara
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN200780006898.1A priority Critical patent/CN101390354B/zh
Priority to US12/160,297 priority patent/US7692563B2/en
Priority to JP2007534948A priority patent/JP4129050B2/ja
Publication of WO2007125965A1 publication Critical patent/WO2007125965A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • H04L25/085Arrangements for reducing interference in line transmission systems, e.g. by differential transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop

Definitions

  • the present invention relates to a multiplex differential transmission system for transmitting a bit information signal of a plurality of bits using a signal transmission path composed of a small number of signal lines.
  • This differential transmission device is a transmission device that sends signals of opposite phases to each other through two wiring patterns formed on a single balanced cable force printed circuit board.
  • Features include low noise, strong resistance to external noise, low voltage amplitude, and high-speed data transmission, and the introduction of high-speed transmission methods has been promoted especially in the display field.
  • Patent Document 1 Japanese Patent No. 3507687.
  • Patent Document 2 JP-A-4 230147.
  • a differential transmission device has many advantages in high-speed transmission as described above, compared to a normal single-ended transmission device.
  • the number of signal lines increases in order to realize multi-bit data transmission, and the wiring area of the signal lines on the printed circuit board increases. It had problems such as becoming larger. For this reason, it has become a major issue in realizing further high-speed transmission.
  • V signal is transmitted by performing differential transmission of a 3-bit bit information signal through three signal lines, but the output signals of all three differential drivers must be different.
  • all three bits cannot transmit 0 and 1 states, and all three bits (8 states) exclude all 0 and 1 states from 6 bits. Therefore, there was a big problem for actual use.
  • the object of the present invention is to solve the above-mentioned problems, to suppress the generation of noise, and to further reduce the number of signal lines, and to realize a 6-bit bit information signal using three signal lines. Is to provide a multiple differential transmission system capable of transmitting a signal, and a signal transmitter and a signal receiver therefor.
  • a signal transmitter includes a signal transmitter, a signal receiver, and first, second, and third signal lines that connect the signal transmitter and the signal receiver.
  • a signal transmitter for a multiple differential transmission system comprising a signal transmission path
  • a bipolar 4-level first output signal having a predetermined first signal voltage level and an inverted first output signal that is a phase inverted signal of the first output signal
  • a first differential driver that generates
  • a bipolar quadruple second output signal having the first signal voltage level and an inverted second output that is a phase inverted signal of the second output signal
  • a bipolar quaternary third output signal having a second signal voltage level different from the first signal voltage level, and a phase inversion of the third output signal
  • a third differential driver that generates an inverted second output signal that is a signal, and the first output signal and the inverted third output signal are combined and then transmitted to the first signal line
  • the second output signal and the inverted first output signal are combined and then applied to the second signal line. Sent
  • the third output signal and the inverted second output signal are combined and then transmitted to the third signal line.
  • a signal receiver is a signal for receiving three output signals received from the signal transmitter via a signal transmission path including first, second, and third signal lines.
  • decoding processing means for decoding and outputting.
  • a multiple differential transmission system according to a third invention is characterized by comprising the signal transmitter according to the first invention and the signal receiver according to the second invention.
  • a signal transmitter comprises a signal transmitter, a signal receiver, and first, second, and third signal lines connecting the signal transmitter and the signal receiver.
  • a signal transmitter for a multiple differential transmission system comprising a signal transmission path
  • a bipolar binary first output signal having a predetermined first signal voltage level and an inverted first output signal that is a phase inverted signal of the first output signal
  • a first differential driver that generates
  • a bipolar binary second output signal having a predetermined second signal voltage level different from the first signal voltage level by a first differential voltage;
  • a second differential driver for generating an inverted second output signal that is a phase inverted signal of the second output signal;
  • a bipolar binary third output signal having the first signal voltage level and an inverted third output that is a phase inverted signal of the third output signal
  • a third differential driver for generating a signal
  • a bipolar binary fourth output signal having the second signal voltage level and an inverted fourth output that is a phase inverted signal of the fourth output signal
  • a fourth differential driver for generating a signal
  • the first signal voltage level has a predetermined third signal voltage level that differs from the first differential voltage by a second differential voltage that is smaller than the first differential voltage.
  • a fifth differential driver that generates a bipolar binary fifth output signal and an inverted fifth output signal that is a phase inverted signal of the fifth output signal;
  • the second signal voltage level is only the third differential voltage that is smaller than the first differential voltage and larger than the second differential voltage.
  • the first output signal, the second output signal, the inverted fifth output signal, and the inverted sixth output signal are combined and then transmitted to the first signal line,
  • the inverted first output signal, the inverted second output signal, the third output signal, and the fourth output signal are combined and transmitted to the second signal line,
  • the inverted third output signal, the inverted fourth output signal, the fifth output signal, and the sixth output signal are combined and then transmitted to the third signal line.
  • a signal receiver is a signal receiver that receives three output signals received from the signal transmitter via a signal transmission path composed of first, second, and third signal lines. So,
  • a multiple differential transmission system is characterized by comprising the signal transmitter according to the fourth invention and the signal receiver according to the fifth invention.
  • a 6-bit bit information signal can be differentially transmitted using three signal lines, in a state in which an increase in noise is suppressed, and in the related art Differential transmission of multi-bit bit information signals is possible with fewer wires than technology.
  • FIG. 1 is a block diagram showing a configuration of a multiple differential transmission system according to a first embodiment of the present invention.
  • FIG. 3 is a waveform diagram showing the relationship between the signal waveforms of the output signals S13a and S13b of the differential driver 13 of FIG. 1, the definition of the current direction or the polarity of the signal voltage, and the assigned bit information.
  • FIG. 4 is a diagram showing a relationship between bit information signals Bl and B2 inputted in the differential driver 13 of FIG. 1 and output signals S 11a and SI lb.
  • FIG. 5 is a diagram showing a relationship between bit information signals B3 and B4 input to the differential driver 14 of FIG. 1 and output signals S 12a and S12b.
  • FIG. 6 is a diagram showing a relationship between bit information signals B5 and B6 inputted in the differential driver 15 of FIG. 1 and output signals S 13a and S13b.
  • FIG. 7 The bit information signals B1-B6 transmitted in the multiplex differential transmission system of FIG. 1 and the termination voltages VI, V2, V3 generated by the termination resistors 41, 42, 43 of the signal receiver 20 It is a figure which shows the 1st part of a relationship.
  • FIG. 8 Bit information signals B 1-B6 transmitted in the multiplex differential transmission system of FIG. 1 and termination voltages VI, V2, V3 generated by termination resistors 41, 42, 43 of the signal receiver 20
  • FIG. 5 is a diagram showing a second part of the relationship.
  • FIG. 9 is a block diagram showing a configuration of a multiple differential transmission system according to a second embodiment of the present invention.
  • Figure 10 Shows the relationship between the output signal Slla, Sl lb, S12a, S12b, S13a, S13b, S14a, and S14b of the differential dryno 11A, 12A, 13A, and 14A in Figure 9 and the assigned bit information FIG.
  • FIG. 11 is a waveform diagram showing the relationship between the signal waveforms of the output signals S15a, S15b, S16a, and S16b of the differential dryers 15A and 16A of FIG. 9 and the assigned bit information.
  • FIG. 12 The bit information signals B 1—B6 transmitted in the multiple differential transmission system of FIG. 9 and the termination voltages VI, V2, V3 generated by the termination resistors 41, 42, 43 of the signal receiver 20A. It is a figure which shows the 1st part of a relationship.
  • FIG. 13 The bit information signals B 1—B6 transmitted in the multiple differential transmission system of FIG. 9 and the termination voltages VI, V2, V3 generated by the termination resistors 41, 42, 43 of the signal receiver 20A. It is a figure which shows the 2nd part of a relationship.
  • FIG. 1 is a block diagram showing the configuration of the multiple differential transmission system according to the first embodiment of the present invention.
  • a multiple differential transmission system includes a signal transmitter 10 and a signal receiver. 20 and a signal transmission path 30 that connects these and includes three signal lines 31, 32, and 33.
  • FIG. 2 shows the relationship between the signal waveform of the output signals Sl la, Sl lb, S12a, and S12b of Fig. 1, the definition of the current direction or polarity of the signal voltage, and the assigned bit information.
  • FIG. 3 is a waveform diagram showing the relationship between the signal waveforms of the output signals S 13a and SI 3b of the differential driver 13 of FIG. 1, the definition of the current direction or the polarity of the signal voltage, and the assigned bit information.
  • FIG. 4 is a diagram showing the relationship between the bit information signals Bl and B2 inputted in the differential driver 13 of FIG. 1 and the output signals Slla and SI lb.
  • FIG. 5 is a diagram showing the relationship between the bit information signals B3 and B4 inputted in the differential driver 14 of FIG. 1 and the output signals S12a and S12b.
  • FIG. 6 is a diagram showing the relationship between the bit information signals B5 and B6 inputted in the differential driver 15 of FIG. 1 and the output signals S13a and S13b.
  • bipolar quaternary outputs having signal voltage levels of, for example, + 2V, + 1V, -IV, 2V, as shown in FIGS.
  • a differential driver 11 that outputs a signal S 1 la and an inverted output signal S 1 lb that is a phase inverted signal thereof;
  • the output signal Sl la and the inverted output signal S13b are combined and then transmitted to the signal receiver 20 via the signal line 31, and the output signal S12a and the inverted output signal Sl lb are combined and then transmitted.
  • the signal is transmitted to the signal receiver 20 via the signal line 32, and the output signal S 13 a and the inverted output signal S 12 b are combined and then transmitted to the signal receiver 20 via the signal line 33.
  • each differential The drivers 11, 12 and 13 output the output signal Slla-S16a and its inverted output signal Sllb-S16b in synchronization with the clock synchronized with the input bit information signals B1-B6.
  • the signal receiver 20 includes three AZD conversions 21, 22, 23, a clock recovery circuit 24, a table memory 25a, a decoding processor 25 composed of, for example, a CPU or DSP, and three Terminal resistors 41, 42, and 43 are provided.
  • the voltage on the signal receiver 20 side of each signal line 31, 32, 33 is assumed to be Vsl, Vs2, Vs3.
  • a termination resistor 41 having a resistance value R 1 is connected between the signal line 31 and the signal line 32
  • a termination resistor 42 having a resistance value R2 is connected between the signal line 32 and the signal line 33.
  • a termination resistor 43 having a resistance value R3 is connected between the signal line 33 and the signal line 31.
  • the termination voltage VI generated by the termination resistor 41 is AZD converted by the AZD conversion 21 and then output to the decoding processor 25.
  • the termination voltage V2 generated by the termination resistor 42 is AZD converted by the AZD conversion and then output to the decoding processor 25.
  • the termination voltage V3 generated by the termination resistor 43 is AZD converted by the AZD conversion 23 and then output to the decoding processor 25.
  • the clock recovery circuit 24 includes, for example, a rising edge detection circuit and a PLL circuit, detects the rising edge of each signal transmitted through the signal lines 31, 32, and 33, and synchronizes with the detection result to generate a predetermined signal. A clock having a frequency is generated and output to the AZD variables 21, 22, 23 and the decoding processor 25.
  • FIG. 6 is a diagram showing a relationship between ⁇ 6 and termination voltages VI, V 2 and V3 generated by termination resistors 41, 42 and 43 of the signal receiver 20.
  • the decryption processor 25 includes a table memory 25a in which the information tables of FIGS. 7 and 8 are stored in advance.
  • the decoding processor 25 refers to the table in the table memory 25a, and based on the termination voltages VI, V2, V3 input from the AZD converters 21, 22, 23, 6-bit bit information signals B1-B6
  • the bit information signal Bl—B6 is output as a result of the determination.
  • the input termination voltages VI-V6 are within a range of ⁇ 10% of the termination voltage values in FIGS. 7 and 8, for example.
  • the value substantially matches the value in).
  • the termination voltages VI, V2, and V3 that appear at the termination resistors 41, 42, and 43 connected to each adjacent signal line all have different voltage values depending on the 26 states of the 6-bit bit information signal.
  • the original bit information signals B1 to B6 can be decoded based on the terminal voltages VI, V2, and V3 detected by the AZD converters 21, 22, and 23.
  • each signal line 31, 32, 33 of the signal transmission line 30 is 0 in total when any bit information is transmitted, and the noise radiated from each signal line 31, 32, 33. Since they cancel each other, transmission with less noise is possible as in the normal differential transmission method.
  • the differential drivers 11 and 12 output a bipolar quaternary output signal and an inverted output signal having substantially the same signal voltage level
  • the differential driver 13 May be any one that outputs a bipolar quaternary output signal and an inverted output signal having signal voltage levels different from those of the differential drivers 11 and 12.
  • the differential driver 13 outputs a bipolar quaternary output signal and an inverted output signal having a signal voltage level higher than the signal voltage level of the differential drivers 11 and 12.
  • FIG. 9 is a block diagram showing a configuration of a multiple differential transmission system according to the second embodiment of the present invention.
  • FIG. The multiplex differential transmission system according to the second embodiment differs from the first embodiment in the following points.
  • (1) instead of a signal receiver 10 having three differential drivers 11, 12, 13 that output a pair of output signals and inverted output signals in response to 2-bit bit information signals, respectively. It has a signal receiver 10A equipped with six differential drivers 11A, 12A, 13A, 14A, 15A, and 16A that output a pair of output signals and inverted output signals in response to a 1-bit bit information signal. thing.
  • a signal receiver 20A is provided instead of the signal receiver 20, and the signal receiver 20A includes a decoding processor 25 including a table memory 25b having a table different from the table of the table memory 25a.
  • FIG. 10 shows the output signals Slla, Sl lb, SI 2a, SI 2b, SI 3a, SI 3b, S14a, and S 14b of the differential driver 11A, 12A, 13A, and 14A of FIG.
  • FIG. 6 is a waveform diagram showing a relationship with information.
  • FIG. 11 is a waveform diagram showing the relationship between the signal waveforms of the output signals S15a, S15b, S16a, and S16b of the differential drivers 15A and 16A of FIG. 9 and the assigned bit information.
  • the differential driver 11A In response to the 1-bit bit information signal B1, the differential driver 11A outputs, for example, a bipolar binary output signal Sl la having a signal voltage level of ⁇ IV and its inverted output signal Sl lb.
  • the differential driver 12A is twice the signal voltage level of the differential driver 11A (for example, it may be a natural number multiple of 3 or more).
  • a bipolar binary output signal S 12a having a signal voltage level of 2V and its inverted output signal S12b are output.
  • the differential driver 13A In response to the 1-bit bit information signal B3, the differential driver 13A, like the differential driver 11A, for example, a bipolar binary output signal S 13a having a signal voltage level of IV, and its inverted output Outputs signal S13b.
  • the differential driver 14A responds to the 1-bit bit information signal B4 and, like the differential driver 12A, for example, a bipolar binary output signal S14a having a signal voltage level of ⁇ 2V. And its inverted output signal S14b.
  • the differential driver 15A responds to the 1-bit bit information signal B5 and outputs a bipolar binary signal having a signal voltage level slightly different from the signal voltage level of the differential driver 11A, for example ⁇ 1. IV. Outputs signal S15a and its inverted output signal S15b.
  • the differential driver 16A responds to the 1-bit bit information signal B6, and outputs a binary bipolar signal having a signal voltage level slightly different from the signal voltage level of the differential driver 12A, for example ⁇ 2.2V. Outputs signal S16a and its inverted output signal S16b.
  • the output signal Sl la, the output signal S12a, the inverted output signal S15b, and the inverted output signal S15b are combined and transmitted to the signal line 31. Further, the inverted output signal Sl lb, the inverted output signal S12b, the output signal S13a, and the output signal S14a are combined and then transmitted to the signal line 32. Further, the inverted output signal S13b, the inverted output signal S14b, the output signal S15a, and the output signal S16a are combined and transmitted to the signal line 33.
  • the decoding processor 25 includes a table memory 25a in which the information tables of FIGS. 12 and 13 are stored in advance.
  • the decryption processor 25 refers to the table in the table memory 25b, and is based on the termination voltages VI, V2, V3 that are manpowered by each A / D change 21, 22, 23, and 6 bits.
  • the bit information signal B1— ⁇ 6 is judged and the bit information signal B1— ⁇ 6 of the judgment result is output.
  • each input termination voltage VI-V6 is within a range of ⁇ 10% of the termination voltage value in FIGS. 12 and 13 (this error range is differential). This is determined according to the difference in signal voltage level between the drivers 11 and 12 and the differential driver 13).
  • each output signal and inverted output signal are transmitted by being superimposed on the three signal lines 31, 32, 33 by the differential driver 11A-16A
  • the termination voltages VI, V2, and V3 appearing at the termination resistors 41, 42, and 43 connected to each adjacent signal line all have different voltage values depending on the 26 states of the 6-bit bit information signal.
  • the original bit information signal B1-B6 can be decoded.
  • the voltage applied to each signal line 31, 32, 33 of the signal transmission line 30 is 0 in total when any bit information is transmitted, and the noise radiated from each signal line 31, 32, 33. Since they cancel each other, transmission with less noise is possible as in the normal differential transmission method.
  • the signal voltage levels of the differential drivers 11A to 16A are not limited to the above values, and may be any of the following conditions.
  • the signal voltage levels of the differential drivers 12A and 14A may be set so that the signal voltage level forces of the differential drivers 11A and 13A differ by a predetermined first differential voltage AVdl.
  • the signal voltage level of the differential driver 15A may be set to be different from the signal voltage level of the differential drivers 11A and 13A by a predetermined second differential voltage AVd2 (where AVd2 ⁇ AVdl). .
  • the signal voltage level of the differential driver 16A is set to be different from the signal voltage level of the differential drivers 12A and 14A by a predetermined third differential voltage AVd3 (where AVd2 ⁇ AVd3 ⁇ AVdl). May be.
  • the signal voltage levels of the differential drivers 12A and 14A may be set to be higher by a predetermined first differential voltage AVdl than the signal voltage level force of the differential drivers 11A and 13A.
  • the signal voltage level of the differential driver 15A may be set to be higher by a predetermined second differential voltage AVd2 (where AVd2 ⁇ AVdl) than the signal voltage level of the differential drivers 11A and 13A. Good.
  • the signal voltage level of the differential driver 16A is set to be higher than the signal voltage level of the differential drivers 12A and 14A by a predetermined third differential voltage AVd3 (where AVd2 ⁇ AVd3 ⁇ AVdl).
  • AVd3 Third differential voltage
  • a 6-bit bit information signal can be differentially transmitted using three signal lines, and an increase in noise is suppressed.
  • the multiplex differential transmission system according to the present invention is used as a multi-bit data transmission for a display for realizing higher image quality than the conventional technology, and as a high-speed transmission system in a device that needs to be downsized. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

 信号送信機と信号受信機を3本の信号線にてなる信号伝送路にて接続されてなる多重差動伝送システムのための信号送信機において、第1及び第2の差動ドライバはそれぞれ2ビットの第1及び第2のビット情報信号に応答して、所定の第1の信号電圧レベルを有するバイポーラ4値の第1及び第2出力信号とその反転第1及び第2出力信号とを発生する。第2の差動ドライバは2ビットの第3のビット情報信号に応答して第2の信号電圧レベルを有するバイポーラ4値の第3出力信号とその反転第2出力信号とを発生する。上記第1出力信号と上記反転第3出力信号とは合成された後、第1信号線に送信され、上記第2出力信号と上記反転第1出力信号とは合成された後、第2信号線に送信され、上記第3出力信号と上記反転第2出力信号とは合成された後、第3信号線に送信される。

Description

明 細 書
多重差動伝送システム
技術分野
[0001] 本発明は、複数ビットのビット情報信号を少ない本数の信号線にてなる信号伝送路 を用 、て伝送する多重差動伝送システムに関する。
背景技術
[0002] 近年、液晶テレビやプラズマテレビに代表されるフラットパネルディスプレイにお!/ヽ て、 VGA(Video Graphics Array)から XGA(eXtended Graphics Array)へと高画質と なるに従い、画像情報を転送する信号速度は高速ィ匕が進んでいる。そこで、高速デ ジタル ·データ伝送の装置として、低振幅の差動伝送装置が用いられるようになった
[0003] この差動伝送装置は、 1本の平衡ケーブル力 プリント基板上に形成された 2本の 配線パターンを通じて、互いに逆相の信号を送る伝送装置である。特徴としては、低 ノイズ、外来ノイズに対する強耐性、低電圧振幅、高速データ伝送などがあり、高速 伝送の手法として、特にディスプレイの分野にぉ 、て導入が進んで 、る。
[0004] 特許文献 1:特許第 3507687号公報。
特許文献 2:特開平 4 230147号公報。
発明の開示
発明が解決しょうとする課題
[0005] 差動伝送装置は、通常のシングルエンド伝送装置に比べ、上述したような高速伝 送における多くのメリットを有する。しかし、 1ビットのデータ伝送に 2本の信号線を必 要とするため、多ビットのデータ伝送を実現するには、信号線の本数が多くなり、プリ ント基板上の信号線の配線領域が大きくなるなどの問題を有していた。このため、今 後更なる高速伝送を実現してゆく上での大きな課題となっていた。
[0006] この課題に関して、例えば、特許文献 1で示されているデータ伝送システムでは、 3 本の信号線を用いて、 1本の信号線を相補データ線として用いることで、 2ビットのデ ータ伝送を 3本の信号線 (従来技術に係る差動伝送装置では 4本の信号線が必要で ある。)で実現し、信号線の本数の削減を達成しているが、 3本の信号線を伝送する 伝送信号の平衡がとれておらず、通常の差動伝送方法に比べて輻射ノイズが大きく なるなどの問題点があった。
[0007] また、特許文献 2では 3本の信号線で 3ビットのビット情報信号の差動伝送を行って V、るが、 3つ全ての差動ドライバの出力信号が異ならなければならな 、と 、つた制限 や、 3つ全てのビットが 0及び 1の状態を伝送することができず、 3ビット(8状態)から 3 つ全てのビットが 0及び 1の状態を除 、た 6状態し力 云送できな 、ため、実使用にあ たつては大きな問題点があつた。
[0008] 本発明の目的は以上の問題点を解決し、ノイズの発生を抑え、かつ更なる信号線 の本数の削減を実現すベぐ 3本の信号線を用いて 6ビットのビット情報信号を伝送 可能な多重差動伝送システム、並びにそのための信号送信機及び信号受信機を提 供することにある。
課題を解決するための手段
[0009] 第 1の発明に係る信号送信機は、信号送信機と、信号受信機と、上記信号送信機 と上記信号受信機とを接続する第 1、第 2及び第 3の信号線にてなる信号伝送路とを 備えた多重差動伝送システムのための信号送信機において、
2ビットの第 1のビット情報信号に応答して、所定の第 1の信号電圧レベルを有する バイポーラ 4値の第 1出力信号と、上記第 1出力信号の位相反転信号である反転第 1 出力信号とを発生する第 1の差動ドライバと、
2ビットの第 2のビット情報信号に応答して、上記第 1の信号電圧レベルを有するバ ィポーラ 4値の第 2出力信号と、上記第 2出力信号の位相反転信号である反転第 2出 力信号とを発生する第 2の差動ドライバと、
2ビットの第 3のビット情報信号に応答して、上記第 1の信号電圧レベルとは異なる 第 2の信号電圧レベルを有するバイポーラ 4値の第 3出力信号と、上記第 3出力信号 の位相反転信号である反転第 2出力信号とを発生する第 3の差動ドライバとを備え、 上記第 1出力信号と上記反転第 3出力信号とは合成された後、上記第 1信号線に 送信され、
上記第 2出力信号と上記反転第 1出力信号とは合成された後、上記第 2信号線に 送信され、
上記第 3出力信号と上記反転第 2出力信号とは合成された後、上記第 3信号線に 送信されたことを特徴とする。
[0010] 第 2の発明に係る信号受信機は、上記信号送信機から第 1、第 2及び第 3の信号線 にてなる信号伝送路を介して受信される 3つの出力信号を受信する信号受信機であ つて、
上記第 1の信号線と上記第 2の信号線との間に接続された第 1の終端抵抗と、 上記第 2の信号線と上記第 3の信号線との間に接続された第 2の終端抵抗と、 上記第 3の信号線と上記第 1の信号線との間に接続された第 3の終端抵抗と、 上記第 1の終端抵抗によって発生される第 1の終端電圧と、上記第 2の終端抵抗に よって発生される第 2の終端電圧と、上記第 3の終端抵抗によって発生される第 3の 終端電圧とに基づいて、上記第 1、第 2及び第 3のビット情報信号を復号して出力す る復号処理手段とを備えたことを特徴とする。
[0011] 第 3の発明に係る多重差動伝送システムは、第 1の発明に係る信号送信機と、第 2 の発明に係る信号受信機とを備えたことを特徴とする。
[0012] 第 4の発明に係る信号送信機は、信号送信機と、信号受信機と、上記信号送信機 と上記信号受信機とを接続する第 1、第 2及び第 3の信号線にてなる信号伝送路とを 備えた多重差動伝送システムのための信号送信機において、
1ビットの第 1のビット情報信号に応答して、所定の第 1の信号電圧レベルを有する バイポーラ 2値の第 1出力信号と、上記第 1出力信号の位相反転信号である反転第 1 出力信号とを発生する第 1の差動ドライバと、
1ビットの第 2のビット情報信号に応答して、上記第 1の信号電圧レベルとは第 1の 差分電圧だけ異なる所定の第 2の信号電圧レベルを有するバイポーラ 2値の第 2出 力信号と、上記第 2出力信号の位相反転信号である反転第 2出力信号とを発生する 第 2の差動ドライバと、
1ビットの第 3のビット情報信号に応答して、上記第 1の信号電圧レベルを有するバ ィポーラ 2値の第 3出力信号と、上記第 3出力信号の位相反転信号である反転第 3出 力信号とを発生する第 3の差動ドライバと、 1ビットの第 4のビット情報信号に応答して、上記第 2の信号電圧レベルを有するバ ィポーラ 2値の第 4出力信号と、上記第 4出力信号の位相反転信号である反転第 4出 力信号とを発生する第 4の差動ドライバと、
1ビットの第 5のビット情報信号に応答して、上記第 1の信号電圧レベルとは、上記 第 1の差分電圧よりも小さい第 2の差分電圧だけ異なる所定の第 3の信号電圧レベル を有するバイポーラ 2値の第 5出力信号と、上記第 5出力信号の位相反転信号である 反転第 5出力信号とを発生する第 5の差動ドライバと、
1ビットの第 6のビット情報信号に応答して、上記第 2の信号電圧レベルとは、上記 第 1の差分電圧よりも小さくかつ上記第 2の差分電圧よりも大きい第 3の差分電圧だ け異なる所定の第 4の信号電圧レベルを有するバイポーラ 2値の第 6出力信号と、上 記第 6出力信号の位相反転信号である反転第 6出力信号とを発生する第 6の差動ド ライバとを備え、
上記第 1出力信号と上記第 2出力信号と上記反転第 5出力信号と上記反転第 6出 力信号とは合成された後、上記第 1信号線に送信され、
上記反転第 1出力信号と上記反転第 2出力信号と上記第 3出力信号と上記第 4出 力信号とは合成された後、上記第 2信号線に送信され、
上記反転第 3出力信号と上記反転第 4出力信号と上記第 5出力信号と上記第 6出 力信号とは合成された後、上記第 3信号線に送信されたことを特徴とする。
第 5の発明に係る信号受信機は、上記信号送信機から第 1、第 2及び第 3の信号線 にてなる信号伝送路を介して受信される 3つの出力信号を受信する信号受信機であ つて、
上記第 1の信号線と上記第 2の信号線との間に接続された第 1の終端抵抗と、 上記第 2の信号線と上記第 3の信号線との間に接続された第 2の終端抵抗と、 上記第 3の信号線と上記第 1の信号線との間に接続された第 3の終端抵抗と、 上記第 1の終端抵抗によって発生される第 1の終端電圧と、上記第 2の終端抵抗に よって発生される第 2の終端電圧と、上記第 3の終端抵抗によって発生される第 3の 終端電圧とに基づいて、上記第 1乃至第 6のビット情報信号を復号して出力する復号 処理手段とを備えたことを特徴とする。 [0014] 第 6の発明に係る多重差動伝送システムは、第 4の発明に係る信号送信機と、第 5 の発明に係る信号受信機とを備えたことを特徴とする。
発明の効果
[0015] 従って、本発明に係る多重差動伝送システムによれば、 6ビットのビット情報信号を 3本の信号線を用いて差動伝送でき、ノイズの増加を抑えた状態で、かつ、従来技術 に比較して少ない配線で多ビットのビット情報信号の差動伝送が可能となる。
図面の簡単な説明
[0016] [図 1]本発明の第 1の実施形態に係る多重差動伝送システムの構成を示すブロック図 である。
[図 2]図 1の差動ドライノ 11, 12の出力信号 Sl la, Sl lb, S12a, S12bの信号波形 と、電流方向又は信号電圧の極性の定義と、割り当てられるビット情報の関係を示す 波形図である。
[図 3]図 1の差動ドライバ 13の出力信号 S13a, S13bの信号波形と、電流方向又は 信号電圧の極性の定義と、割り当てられるビット情報の関係を示す波形図である。
[図 4]図 1の差動ドライバ 13において入力されるビット情報信号 Bl, B2と出力信号 S 11a, SI lbとの関係を示す図である。
[図 5]図 1の差動ドライバ 14において入力されるビット情報信号 B3, B4と出力信号 S 12a, S12bとの関係を示す図である。
[図 6]図 1の差動ドライバ 15において入力されるビット情報信号 B5, B6と出力信号 S 13a, S13bとの関係を示す図である。
[図 7]図 1の多重差動伝送システムにおいて伝送されるビット情報信号 B1— B6と、信 号受信機 20の終端抵抗 41, 42, 43によって発生される終端電圧 VI, V2, V3との 関係の第 1の部分を示す図である。
[図 8]図 1の多重差動伝送システムにおいて伝送されるビット情報信号 B 1— B6と、信 号受信機 20の終端抵抗 41, 42, 43によって発生される終端電圧 VI, V2, V3との 関係の第 2の部分を示す図である。
[図 9]本発明の第 2の実施形態に係る多重差動伝送システムの構成を示すブロック図 である。 [図 10]図 9の差動ドライノ 11A, 12A, 13 A, 14Aの出力信号 Sl la, Sl lb, S12a , S12b, S13a, S13b, S14a, S14bの信号波形と割り当てビット情報との関係を示 す波形図である。
[図 11]図 9の差動ドライノ 15A, 16Aの出力信号 S15a, S15b, S16a, S16bの信 号波形と割り当てビット情報との関係を示す波形図である。
[図 12]図 9の多重差動伝送システムにおいて伝送されるビット情報信号 B 1— B6と、 信号受信機 20Aの終端抵抗 41, 42, 43によって発生される終端電圧 VI, V2, V3 との関係の第 1の部分を示す図である。
[図 13]図 9の多重差動伝送システムにおいて伝送されるビット情報信号 B 1— B6と、 信号受信機 20Aの終端抵抗 41, 42, 43によって発生される終端電圧 VI, V2, V3 との関係の第 2の部分を示す図である。
符号の説明
[0017] 10, 10A…信号送信機、
11, 12, 13, 14, 15, 16, 11A, 12A, 13A, 14A, 15A, 16Α· ··差動ドライノく、
20, 20A…信号受信機、
21, 22, 23- AZD変 、
24· ··クロック再生回路、
25· ··復号処理器、
25a, 25b…テーブルメモリ、
30· ··信号伝送路、
31, 32, 33· ··信号線、
41, 42, 43· ··終端抵抗。
発明を実施するための最良の形態
[0018] 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各 実施形態にぉ 、て、同様の構成要素につ 、ては同一の符号を付して 、る。
[0019] 第 1の実施形態.
図 1は本発明の第 1の実施形態に係る多重差動伝送システムの構成を示すブロッ ク図である。図 1において、多重差動伝送システムは、信号送信機 10と、信号受信機 20と、これらを接続しかつ 3本の信号線 31, 32, 33にてなる信号伝送路 30とを備え て構成される。
[0020] 図 2は図 1の差動ドライノ 11, 12の出力信号 Sl la, Sl lb, S12a, S12bの信号 波形と、電流方向又は信号電圧の極性の定義と、割り当てられるビット情報の関係を 示す波形図である。また、図 3は図 1の差動ドライバ 13の出力信号 S 13a, SI 3bの信 号波形と、電流方向又は信号電圧の極性の定義と、割り当てられるビット情報の関係 を示す波形図である。さらに、図 4は図 1の差動ドライバ 13において入力されるビット 情報信号 Bl, B2と出力信号 Sl la, SI lbとの関係を示す図である。図 5は図 1の差 動ドライバ 14において入力されるビット情報信号 B3, B4と出力信号 S12a, S12bと の関係を示す図である。図 6は図 1の差動ドライバ 15において入力されるビット情報 信号 B5, B6と出力信号 S13a, S13bとの関係を示す図である。
[0021] 図 1において、信号送信機 10は、
(a)パラレル 2ビットのビット情報信号 Bl, B2に応答して、図 2及び図 4に示すように、 例えば + 2V, + 1V, - IV, 2Vの信号電圧レベルを有するバイポーラ 4値の出力 信号 S 1 laと、その位相反転信号である反転出力信号 S 1 lbとを出力する差動ドライ バ 11と、
(b)パラレル 2ビットのビット情報信号 B3, B4に応答して、図 2及び図 5に示すように、 差動ドライバ 11と同様の信号電圧レベルを有するバイポーラ 4値の出力信号 S 12aと 、その位相反転信号である反転出力信号 S12bとを出力する差動ドライバ 12と、
(c)パラレル 2ビットのビット情報信号 B5, B6に応答して、図 3及び図 6に示すように、 差動ドライバ 11, 12とは若干異なる信号電圧レベルである例えば + 2. 2V, + 1. 1 V, - 1. IV, - 2. 2Vの信号電圧レベルを有するバイポーラ 4値の出力信号 S 13a と、その位相反転信号である反転出力信号 S13bとを出力する差動ドライバ 13とを備 えて構成される。
[0022] 出力信号 Sl laと反転出力信号 S13bとは合成された後、信号線 31を介して信号 受信機 20に送信され、出力信号 S12aと反転出力信号 Sl lbとは合成された後、信 号線 32を介して信号受信機 20に送信され、出力信号 S 13aと反転出力信号 S 12bと は合成された後、信号線 33を介して信号受信機 20に送信される。ここで、各差動ド ライバ 11, 12, 13は入力されるビット情報信号 B1— B6と同期するクロックに同期し て出力信号 Slla— S16a及びその反転出力信号 Sllb— S16bを出力する。
[0023] 信号受信機 20は、 3個の AZD変翻 21, 22, 23と、クロック再生回路 24と、テー ブルメモリ 25aを有し例えば CPU又は DSPにてなる復号処理器 25と、 3個の終端抵 抗 41, 42, 43とを備えて構成される。ここで、各信号線 31, 32, 33の信号受信機 2 0側の電圧を Vsl, Vs2, Vs3とする。また、信号線 31と信号線 32との間に抵抗値 R 1を有する終端抵抗 41が接続され、信号線 32と信号線 33との間に抵抗値 R2を有す る終端抵抗 42が接続され、信号線 33と信号線 31との間に抵抗値 R3を有する終端 抵抗 43が接続される。終端抵抗 41により発生される終端電圧 VIは AZD変 21 により AZD変換された後、復号処理器 25に出力される。また、終端抵抗 42により発 生される終端電圧 V2は AZD変 により AZD変換された後、復号処理器 25 に出力される。さらに、終端抵抗 43により発生される終端電圧 V3は AZD変翻 23 により AZD変換された後、復号処理器 25に出力される。クロック再生回路 24は例え ば立ち上がりエッジ検出回路と PLL回路とを備えて構成され、信号線 31, 32, 33 により伝送された各信号の立ち上がりエッジを検出し、その検出結果に同期して所定 の周波数を有するクロックを発生して AZD変 21, 22, 23及び復号処理器 25 に出力する。
[0024] 図 7及び図 8は図 1の多重差動伝送システムにおいて伝送されるビット情報信号 B1
Β6と、信号受信機 20の終端抵抗 41, 42, 43によって発生される終端電圧 VI, V 2, V3との関係を示す図である。復号処理器 25は、図 7及び図 8の情報テーブルを 予め格納してなるテーブルメモリ 25aを内蔵する。復号処理器 25は、テーブルメモリ 25a内のテーブルを参照して、各 AZD変換器 21, 22, 23から入力される終端電圧 VI, V2, V3に基づいて、 6ビットのビット情報信号 B1— B6を判定してその判定結果 のビット情報信号 Bl— B6を出力する。なお、復号処理器 25におけるビット情報の判 定においては、入力される各終端電圧 VI— V6が例えば図 7及び図 8の終端電圧値 の ± 10%の範囲内(この誤差範囲は、差動ドライバ 11, 12と差動ドライバ 13との信 号電圧レベルの差に応じて決定される。 )にその値に実質的に一致するとして判定を 行う。 [0025] 以上説明したように、本実施形態によれば、差動ドライバ 11, 12, 13により 3本の 信号線 31, 32, 33に重畳して各出力信号及び反転出力信号を送信したときに、各 隣接する信号線に接続された終端抵抗 41, 42, 43に現れる終端電圧 VI, V2, V3 は、 6ビットのビット情報信号の 26状態に依存してすべて異なる電圧値となり、その終 端電圧値の組み合わせから、各 AZD変換器 21, 22, 23により検出された終端電 圧 VI, V2, V3に基づいて元のビット情報信号 B1— B6を復号することができる。ま た、信号伝送路 30の各信号線 31, 32, 33に加わる電圧は、いずれのビット情報を 伝送する場合においてもトータルで 0となり、各信号線 31, 32, 33から輻射されるノィ ズが互いに打ち消しあうため、通常の差動伝送方法と同様にノイズの少ない伝送が 可能である。
[0026] なお、第 1の実施形態においては、差動ドライバ 11, 12は実質的に同一の信号電 圧レベルを有するバイポーラ 4値の出力信号及び反転出力信号を出力する一方、差 動ドライバ 13は差動ドライバ 11 , 12とは異なる信号電圧レベルを有するバイポーラ 4 値の出力信号及び反転出力信号を出力するものであればよい。また、好ましくは、差 動ドライバ 13は差動ドライバ 11, 12の信号電圧レベルよりも高 ヽ信号電圧レベルを 有するバイポーラ 4値の出力信号及び反転出力信号を出力する。
[0027] 第 1の実施形態においては、
(1)差動ドライバ 11, 12, 13, 14の信号電圧レベル =±1, ±2;
(2)差動ドライバ 15, 16の信号電圧レベル =±1. 1, ±2.2;
であるが、例えば、
(1)差動ドライバ 11, 12, 13, 14の信号電圧レベル =±1, ±3;
(2)差動ドライバ 15, 16の信号電圧レベル =±1. 1, ±3.3;
ちしくは、
(1)差動ドライバ 11, 12, 13, 14の信号電圧レベル =±2, ±3;
(2)差動ドライバ 15, 16の信号電圧レベル =±2.2, ±3.3;
であってもよい。
[0028] 第 2の実施形態.
図 9は本発明の第 2の実施形態に係る多重差動伝送システムの構成を示すブロッ ク図である。第 2の実施形態に係る多重差動伝送システムは、第 1の実施形態と比較 して、以下の点が異なる。
(1)それぞれ 2ビットのビット情報信号に応答して 1対の出力信号及び反転出力信号 を出力する 3個の差動ドライバ 11, 12, 13を備えた信号受信機 10に代えて、それぞ れ 1ビットのビット情報信号に応答して 1対の出力信号及び反転出力信号を出力する 6個の差動ドライバ 11A, 12A, 13A, 14A, 15A, 16Aを備えた信号受信機 10Aを 備えたこと。
(2)信号受信機 20に代えて、信号受信機 20Aを備え、信号受信機 20Aは、テープ ルメモリ 25aのテーブルとは異なるテーブルを有するテーブルメモリ 25bを備えた復 号処理器 25を含むこと。
以下、上記相違点について詳細説明する。
[0029] 図 10は図 9の差動ドライバ 11A, 12A, 13A, 14Aの出力信号 Sl la, Sl lb, SI 2a, SI 2b, SI 3a, SI 3b, S14a, S 14bの信号波形と割り当てビット情報との関係を 示す波形図である。また、図 11は図 9の差動ドライバ 15A, 16Aの出力信号 S15a, S15b, S16a, S16bの信号波形と割り当てビット情報との関係を示す波形図である。
[0030] 図 9の信号送信機 10Aにおいて、
(1)差動ドライバ 11Aは、 1ビットのビット情報信号 B1に応答して、例えば ± IVの信 号電圧レベルを有するバイポーラ 2値の出力信号 Sl laとその反転出力信号 Sl lbを 出力する。
(2)差動ドライバ 12Aは、 1ビットのビット情報信号 B2に応答して、差動ドライバ 11A の信号電圧レベルの 2倍 (例えば 3以上の自然数倍であってもよ 、。 )である例えば 士 2Vの信号電圧レベルを有するバイポーラ 2値の出力信号 S 12aとその反転出力信 号 S12bを出力する。
(3)差動ドライバ 13Aは、 1ビットのビット情報信号 B3に応答して、差動ドライバ 11A と同様に、例えば士 IVの信号電圧レベルを有するバイポーラ 2値の出力信号 S 13a とその反転出力信号 S13bを出力する。
(4)差動ドライバ 14Aは、 1ビットのビット情報信号 B4に応答して、差動ドライバ 12A と同様に、例えば ± 2Vの信号電圧レベルを有するバイポーラ 2値の出力信号 S14a とその反転出力信号 S14bを出力する。
(5)差動ドライバ 15Aは、 1ビットのビット情報信号 B5に応答して、差動ドライバ 11A の信号電圧レベルと若干異なる例えば ± 1. IVの信号電圧レベルを有するノ イポー ラ 2値の出力信号 S15aとその反転出力信号 S15bを出力する。
(6)差動ドライバ 16Aは、 1ビットのビット情報信号 B6に応答して、差動ドライバ 12A の信号電圧レベルと若干異なる例えば ± 2. 2Vの信号電圧レベルを有するノ イポー ラ 2値の出力信号 S16aとその反転出力信号 S16bを出力する。
[0031] 図 9において、出力信号 Sl laと出力信号 S12aと反転出力信号 S15bと反転出力 信号 S15bとは合成された後、信号線 31に送信される。また、反転出力信号 Sl lbと 反転出力信号 S12bと出力信号 S13aと出力信号 S14aとは合成された後、信号線 3 2に送信される。さらに、反転出力信号 S13bと反転出力信号 S14bと出力信号 S15a と出力信号 S16aとは合成された後、信号線 33に送信される。
[0032] 図 12及び図 13は図 9の多重差動伝送システムにおいて伝送されるビット情報信号 Bl— B6と、信号受信機 20Aの終端抵抗 41, 42, 43によって発生される終端電圧 V 1, V2, V3との関係を示す図である。
[0033] 復号処理器 25は、図 12及び図 13の情報テーブルを予め格納してなるテーブルメモ リ 25aを内蔵する。復号処理器 25は、テーブルメモリ 25b内のテーブルを参照して、 各 A/D変 21, 22, 23力ら人力される終端電圧 VI, V2, V3に基づ!/ヽて、 6ビ ットのビット情報信号 B1— Β6を判定してその判定結果のビット情報信号 B1— Β6を 出力する。なお、復号処理器 25におけるビット情報の判定においては、入力される 各終端電圧 VI— V6が例えば図 12及び図 13の終端電圧値の ± 10%の範囲内(こ の誤差範囲は、差動ドライバ 11, 12と差動ドライバ 13との信号電圧レベルの差に応 じて決定される。)にその値に実質的に一致するとして判定を行う。
[0034] 以上説明したように、本実施形態によれば、差動ドライバ 11A— 16Aにより 3本の 信号線 31, 32, 33に重畳して各出力信号及び反転出力信号を送信したときに、各 隣接する信号線に接続された終端抵抗 41, 42, 43に現れる終端電圧 VI, V2, V3 は、 6ビットのビット情報信号の 26状態に依存してすべて異なる電圧値となり、その終 端電圧値の組み合わせから、各 AZD変換器 21, 22, 23により検出された終端電 圧 VI, V2, V3に基づいて元のビット情報信号 B1— B6を復号することができる。ま た、信号伝送路 30の各信号線 31, 32, 33に加わる電圧は、いずれのビット情報を 伝送する場合においてもトータルで 0となり、各信号線 31, 32, 33から輻射されるノィ ズが互いに打ち消しあうため、通常の差動伝送方法と同様にノイズの少ない伝送が 可能である。
[0035] なお、第 2の実施形態においては、各差動ドライバ 11A— 16Aの信号電圧レベル は上記の値に限定されず、以下の条件であればよい。
(1)差動ドライバ 12A, 14Aの信号電圧レベルは、差動ドライバ 11A, 13Aの信号電 圧レベル力 所定の第 1の差分電圧 AVdlだけ異なるように設定されてもよい。
(2)差動ドライバ 15Aの信号電圧レベルは、差動ドライバ 11A, 13Aの信号電圧レ ベルから所定の第 2の差分電圧 AVd2 (ここで、 AVd2< AVdl)だけ異なるように 設定されてもよい。
(3)差動ドライバ 16Aの信号電圧レベルは、差動ドライバ 12A, 14Aの信号電圧レ ベルから所定の第 3の差分電圧 AVd3 (ここで、 AVd2< AVd3< AVdl)だけ異な るように設定されてもよい。
[0036] また、好ましくは、
(1)差動ドライバ 12A, 14Aの信号電圧レベルは、差動ドライバ 11A, 13Aの信号電 圧レベル力 所定の第 1の差分電圧 AVdlだけ高くなるように設定されてもよい。
(2)差動ドライバ 15Aの信号電圧レベルは、差動ドライバ 11A, 13Aの信号電圧レ ベルから所定の第 2の差分電圧 AVd2 (ここで、 AVd2< AVdl)だけ高くなるように 設定されてもよい。
(3)差動ドライバ 16Aの信号電圧レベルは、差動ドライバ 12A, 14Aの信号電圧レ ベルから所定の第 3の差分電圧 AVd3 (ここで、 AVd2< AVd3< AVdl)だけ高く なるように設定されてもょ 、。
[0037] 第 2の実施形態においては、
(1)差動ドライバ 11 A, 13Aの信号電圧レベル =士 1;
(2)差動ドライバ 12A, 14Aの信号電圧レベル = ± 2;
(3)差動ドライバ 15Aの信号電圧レベル = ± 1. 1 ; (4)差動ドライバ 16Aの信号電圧レベル =±2.2;
であるが、例えば、
(1)差動ドライバ 11 A, 13Aの信号電圧レベル =士 1;
(2)差動ドライバ 12A, 14Aの信号電圧レベル =士 3;
(3)差動ドライバ 15Aの信号電圧レベル =±1. 1;
(4)差動ドライバ 16Aの信号電圧レベル =±3.3;
ちしくは、
(1)差動ドライバ 11 A, 13Aの信号電圧レベル = ± 2;
(2)差動ドライバ 12A, 14Aの信号電圧レベル =士 3;
(3)差動ドライバ 15Aの信号電圧レベル =±2.2;
(4)差動ドライバ 16Aの信号電圧レベル =±3.3;
であってもよい。
産業上の利用可能性
以上詳述したように、本発明に係る多重差動伝送システムによれば、 6ビットのビット 情報信号を 3本の信号線を用いて差動伝送でき、ノイズの増加を抑えた状態で、 つ、従来技術に比較して少な 、配線で多ビットのビット情報信号の差動伝送が可能 となる。特に、本発明に係る多重差動伝送システムは、従来技術に比較してより高画 質を実現するためのディスプレイ用の多ビットのデータ伝送や、小型化が必要な機器 における高速伝送システムとして利用可能である。

Claims

請求の範囲
[1] 信号送信機と、信号受信機と、上記信号送信機と上記信号受信機とを接続する第 1、第 2及び第 3の信号線にてなる信号伝送路とを備えた多重差動伝送システムのた めの信号送信機において、
2ビットの第 1のビット情報信号に応答して、所定の第 1の信号電圧レベルを有する バイポーラ 4値の第 1出力信号と、上記第 1出力信号の位相反転信号である反転第 1 出力信号とを発生する第 1の差動ドライバと、
2ビットの第 2のビット情報信号に応答して、上記第 1の信号電圧レベルを有するバ ィポーラ 4値の第 2出力信号と、上記第 2出力信号の位相反転信号である反転第 2出 力信号とを発生する第 2の差動ドライバと、
2ビットの第 3のビット情報信号に応答して、上記第 1の信号電圧レベルとは異なる 第 2の信号電圧レベルを有するバイポーラ 4値の第 3出力信号と、上記第 3出力信号 の位相反転信号である反転第 2出力信号とを発生する第 3の差動ドライバとを備え、 上記第 1出力信号と上記反転第 3出力信号とは合成された後、上記第 1信号線に 送信され、
上記第 2出力信号と上記反転第 1出力信号とは合成された後、上記第 2信号線に 送信され、
上記第 3出力信号と上記反転第 2出力信号とは合成された後、上記第 3信号線に 送信されたことを特徴とする信号送信機。
[2] 請求項 1記載の信号送信機力 第 1、第 2及び第 3の信号線にてなる信号伝送路を 介して受信される 3つの出力信号を受信する信号受信機であって、
上記第 1の信号線と上記第 2の信号線との間に接続された第 1の終端抵抗と、 上記第 2の信号線と上記第 3の信号線との間に接続された第 2の終端抵抗と、 上記第 3の信号線と上記第 1の信号線との間に接続された第 3の終端抵抗と、 上記第 1の終端抵抗によって発生される第 1の終端電圧と、上記第 2の終端抵抗に よって発生される第 2の終端電圧と、上記第 3の終端抵抗によって発生される第 3の 終端電圧とに基づいて、上記第 1、第 2及び第 3のビット情報信号を復号して出力す る復号処理手段とを備えたことを特徴とする信号受信機。
[3] 請求項 1記載の信号送信機と、
請求項 2記載の信号受信機とを備えたことを特徴とする多重差動伝送システム。
[4] 信号送信機と、信号受信機と、上記信号送信機と上記信号受信機とを接続する第 1、第 2及び第 3の信号線にてなる信号伝送路とを備えた多重差動伝送システムのた めの信号送信機において、
1ビットの第 1のビット情報信号に応答して、所定の第 1の信号電圧レベルを有する バイポーラ 2値の第 1出力信号と、上記第 1出力信号の位相反転信号である反転第 1 出力信号とを発生する第 1の差動ドライバと、
1ビットの第 2のビット情報信号に応答して、上記第 1の信号電圧レベルとは第 1の 差分電圧だけ異なる所定の第 2の信号電圧レベルを有するバイポーラ 2値の第 2出 力信号と、上記第 2出力信号の位相反転信号である反転第 2出力信号とを発生する 第 2の差動ドライバと、
1ビットの第 3のビット情報信号に応答して、上記第 1の信号電圧レベルを有するバ ィポーラ 2値の第 3出力信号と、上記第 3出力信号の位相反転信号である反転第 3出 力信号とを発生する第 3の差動ドライバと、
1ビットの第 4のビット情報信号に応答して、上記第 2の信号電圧レベルを有するバ ィポーラ 2値の第 4出力信号と、上記第 4出力信号の位相反転信号である反転第 4出 力信号とを発生する第 4の差動ドライバと、
1ビットの第 5のビット情報信号に応答して、上記第 1の信号電圧レベルとは、上記 第 1の差分電圧よりも小さい第 2の差分電圧だけ異なる所定の第 3の信号電圧レベル を有するバイポーラ 2値の第 5出力信号と、上記第 5出力信号の位相反転信号である 反転第 5出力信号とを発生する第 5の差動ドライバと、
1ビットの第 6のビット情報信号に応答して、上記第 2の信号電圧レベルとは、上記 第 1の差分電圧よりも小さくかつ上記第 2の差分電圧よりも大きい第 3の差分電圧だ け異なる所定の第 4の信号電圧レベルを有するバイポーラ 2値の第 6出力信号と、上 記第 6出力信号の位相反転信号である反転第 6出力信号とを発生する第 6の差動ド ライバとを備え、
上記第 1出力信号と上記第 2出力信号と上記反転第 5出力信号と上記反転第 6出 力信号とは合成された後、上記第 1信号線に送信され、
上記反転第 1出力信号と上記反転第 2出力信号と上記第 3出力信号と上記第 4出 力信号とは合成された後、上記第 2信号線に送信され、
上記反転第 3出力信号と上記反転第 4出力信号と上記第 5出力信号と上記第 6出 力信号とは合成された後、上記第 3信号線に送信されたことを特徴とする信号送信 機。
[5] 請求項 4記載の信号送信機力 第 1、第 2及び第 3の信号線にてなる信号伝送路を 介して受信される 3つの出力信号を受信する信号受信機であって、
上記第 1の信号線と上記第 2の信号線との間に接続された第 1の終端抵抗と、 上記第 2の信号線と上記第 3の信号線との間に接続された第 2の終端抵抗と、 上記第 3の信号線と上記第 1の信号線との間に接続された第 3の終端抵抗と、 上記第 1の終端抵抗によって発生される第 1の終端電圧と、上記第 2の終端抵抗に よって発生される第 2の終端電圧と、上記第 3の終端抵抗によって発生される第 3の 終端電圧とに基づいて、上記第 1乃至第 6のビット情報信号を復号して出力する復号 処理手段とを備えたことを特徴とする信号受信機。
[6] 請求項 4記載の信号送信機と、
請求項 5記載の信号受信機とを備えたことを特徴とする多重差動伝送システム。
PCT/JP2007/058967 2006-04-27 2007-04-25 多重差動伝送システム WO2007125965A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780006898.1A CN101390354B (zh) 2006-04-27 2007-04-25 多路复用差动传输系统
US12/160,297 US7692563B2 (en) 2006-04-27 2007-04-25 Multiple differential transmission system including signal transmitter and signal receiver connected via three signal lines
JP2007534948A JP4129050B2 (ja) 2006-04-27 2007-04-25 多重差動伝送システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006123173 2006-04-27
JP2006-123173 2006-04-27

Publications (1)

Publication Number Publication Date
WO2007125965A1 true WO2007125965A1 (ja) 2007-11-08

Family

ID=38655491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058967 WO2007125965A1 (ja) 2006-04-27 2007-04-25 多重差動伝送システム

Country Status (4)

Country Link
US (1) US7692563B2 (ja)
JP (1) JP4129050B2 (ja)
CN (1) CN101390354B (ja)
WO (1) WO2007125965A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021978A (ja) * 2007-06-11 2009-01-29 Panasonic Corp 伝送ケーブル
JP2009033710A (ja) * 2007-06-28 2009-02-12 Panasonic Corp 差動伝送線路用コネクタ
GB2456517A (en) * 2008-01-15 2009-07-22 Andrzej Radecki Serial data communication circuit for use with transmission lines using both data and clock to enable recovery of data synchronously

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125963A1 (ja) * 2006-04-27 2007-11-08 Panasonic Corporation 多重差動伝送システム
US9231790B2 (en) * 2007-03-02 2016-01-05 Qualcomm Incorporated N-phase phase and polarity encoded serial interface
US8064535B2 (en) * 2007-03-02 2011-11-22 Qualcomm Incorporated Three phase and polarity encoded serial interface
US9711041B2 (en) 2012-03-16 2017-07-18 Qualcomm Incorporated N-phase polarity data transfer
US8717065B2 (en) * 2009-02-27 2014-05-06 Yonghua Liu Data tranmission driver, system and method
KR101079603B1 (ko) * 2009-08-11 2011-11-03 주식회사 티엘아이 3레벨 전압을 이용하는 차동 데이터 송수신 장치 및 차동 데이터 송수신 방법
US9374216B2 (en) 2013-03-20 2016-06-21 Qualcomm Incorporated Multi-wire open-drain link with data symbol transition based clocking
US9313058B2 (en) 2013-03-07 2016-04-12 Qualcomm Incorporated Compact and fast N-factorial single data rate clock and data recovery circuits
US9363071B2 (en) 2013-03-07 2016-06-07 Qualcomm Incorporated Circuit to recover a clock signal from multiple wire data signals that changes state every state cycle and is immune to data inter-lane skew as well as data state transition glitches
US9137008B2 (en) * 2013-07-23 2015-09-15 Qualcomm Incorporated Three phase clock recovery delay calibration
US9735948B2 (en) 2013-10-03 2017-08-15 Qualcomm Incorporated Multi-lane N-factorial (N!) and other multi-wire communication systems
US9755818B2 (en) 2013-10-03 2017-09-05 Qualcomm Incorporated Method to enhance MIPI D-PHY link rate with minimal PHY changes and no protocol changes
US9203599B2 (en) 2014-04-10 2015-12-01 Qualcomm Incorporated Multi-lane N-factorial (N!) and other multi-wire communication systems
EP3114792B1 (en) * 2014-03-06 2021-06-09 Qualcomm Incorporated Clock recovery circuit for multiple wire data signals
US20170131326A1 (en) * 2015-11-10 2017-05-11 Qualitau, Inc. Pulsed current source with internal impedance matching
US10177749B2 (en) 2016-05-04 2019-01-08 Rambus Inc. Differential cryogenic transmitter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367139A (ja) * 1991-06-14 1992-12-18 Fujitsu Ltd 出力保護回路付き信号送信回路
JPH06261092A (ja) * 1993-03-02 1994-09-16 Sony Kihara Kenkyusho:Kk シリアルディジタルデータの伝送方法及び伝送装置
JPH10233810A (ja) * 1997-02-21 1998-09-02 Hitachi Ltd 差動入出力伝送装置および方法
JP2001168927A (ja) * 1999-09-27 2001-06-22 Toshiba Corp 半導体集積回路装置
JP2004080827A (ja) * 2000-10-05 2004-03-11 Matsushita Electric Ind Co Ltd 伝送路符号化方法、および復号方法
JP2005333508A (ja) * 2004-05-21 2005-12-02 Sony Corp 信号変換装置およびドライバ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166956A (en) 1990-05-21 1992-11-24 North American Philips Corporation Data transmission system and apparatus providing multi-level differential signal transmission
JP3507687B2 (ja) 1998-02-10 2004-03-15 松下電器産業株式会社 データ伝送システム
US6317465B1 (en) * 1998-02-10 2001-11-13 Matsushita Electric Industrial Co., Ltd. Data transmission system
US6556628B1 (en) * 1999-04-29 2003-04-29 The University Of North Carolina At Chapel Hill Methods and systems for transmitting and receiving differential signals over a plurality of conductors
WO2002030075A1 (fr) 2000-10-05 2002-04-11 Matsushita Electric Industrial Co., Ltd. Emetteur de donnees numeriques, procede de codage d'une ligne de transmission et procede de decodage
US6891311B2 (en) * 2002-06-27 2005-05-10 Siemens Medical Solutions Usa, Inc Ultrasound transmit pulser with receive interconnection and method of use
JP3730607B2 (ja) * 2002-08-29 2006-01-05 株式会社東芝 差動データドライバー回路
CN100556013C (zh) * 2004-07-05 2009-10-28 友达光电股份有限公司 低电压差动对信号传送器及接收器
JP2004333508A (ja) * 2004-07-23 2004-11-25 Pioneer Electronic Corp 移動距離導出方法及び装置
US7339443B2 (en) * 2004-12-06 2008-03-04 Matsushita Electric Industrial Co., Ltd. Common mode radiation inhibit circuit and electronic equipment
US7388449B2 (en) * 2004-12-10 2008-06-17 Matsushita Electric Industrial Co., Ltd. Radiation noise suppression circuit for differential transmission line
JP4834385B2 (ja) * 2005-11-22 2011-12-14 株式会社日立製作所 プリント基板および電子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367139A (ja) * 1991-06-14 1992-12-18 Fujitsu Ltd 出力保護回路付き信号送信回路
JPH06261092A (ja) * 1993-03-02 1994-09-16 Sony Kihara Kenkyusho:Kk シリアルディジタルデータの伝送方法及び伝送装置
JPH10233810A (ja) * 1997-02-21 1998-09-02 Hitachi Ltd 差動入出力伝送装置および方法
JP2001168927A (ja) * 1999-09-27 2001-06-22 Toshiba Corp 半導体集積回路装置
JP2004080827A (ja) * 2000-10-05 2004-03-11 Matsushita Electric Ind Co Ltd 伝送路符号化方法、および復号方法
JP2005333508A (ja) * 2004-05-21 2005-12-02 Sony Corp 信号変換装置およびドライバ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021978A (ja) * 2007-06-11 2009-01-29 Panasonic Corp 伝送ケーブル
JP2009033710A (ja) * 2007-06-28 2009-02-12 Panasonic Corp 差動伝送線路用コネクタ
GB2456517A (en) * 2008-01-15 2009-07-22 Andrzej Radecki Serial data communication circuit for use with transmission lines using both data and clock to enable recovery of data synchronously

Also Published As

Publication number Publication date
US20090195699A1 (en) 2009-08-06
JP4129050B2 (ja) 2008-07-30
US7692563B2 (en) 2010-04-06
JPWO2007125965A1 (ja) 2009-09-10
CN101390354B (zh) 2011-08-03
CN101390354A (zh) 2009-03-18

Similar Documents

Publication Publication Date Title
WO2007125965A1 (ja) 多重差動伝送システム
WO2007125963A1 (ja) 多重差動伝送システム
KR101266067B1 (ko) 클럭 임베디드 신호를 이용한 직렬 통신 방법 및 장치
EP2868047B1 (en) N-phase polarity output pin mode multiplexer
US8259838B2 (en) Signal transmission system for transmitting transmission signals via a transmission line including transmission conductors
TWI428749B (zh) 主機端連接模組、操作端控制模組、矩陣式多電腦切換器系統、本地端模組、遙控端模組及訊號延伸器系統
US20140254712A1 (en) Voltage mode driver circuit for n-phase systems
WO2015179546A1 (en) Programmable pre-emphasis circuit for mipi c-phy
JP2004522362A (ja) サイドチャネルデータの送信方法およびその送信システム
JP6372202B2 (ja) 受信装置、送信装置、および通信システム
JP2003189122A (ja) デジタルビデオ信号伝送システム及び伝送方法
JP2009065399A (ja) ディジタルデータ送信装置、ディジタルデータ受信装置、ディジタルデータ送受信システム、ディジタルデータ送信方法、ディジタルデータ受信方法、ディジタルデータ送受信方法、および電子情報機器
JP2007318807A (ja) 多重差動伝送システム
JP2009077099A (ja) 信号送信機、信号受信機及び多重差動伝送システム
WO2007125964A1 (ja) 多重差動伝送システム
JP2009060489A (ja) 信号送信機、信号受信機及び多重差動伝送システム
JP2009186502A (ja) 差動信号の伝送方式
JP5417105B2 (ja) シリアル出力回路および半導体装置
US7885362B2 (en) Data transmission system and method thereof
WO2012153843A1 (ja) 信号伝送方式及び送信装置
JP2002237853A (ja) 差動信号伝送回路および該回路の伝送エラー検出方法
JP4230381B2 (ja) Lvdsシステム、その送信側回路、および、その受信側回路
JP2008011559A (ja) 多重差動伝送システム
CN101567161B (zh) 平面显示器的信号传输系统
JP2019153921A (ja) 受信装置及びデータ受信方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007534948

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780006898.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12160297

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07742402

Country of ref document: EP

Kind code of ref document: A1