WO2007124622A1 - Échafaudage stratifié poreux en 3d utilisé en ingénierie tissulaire et procédé de préparation de celui-ci - Google Patents

Échafaudage stratifié poreux en 3d utilisé en ingénierie tissulaire et procédé de préparation de celui-ci Download PDF

Info

Publication number
WO2007124622A1
WO2007124622A1 PCT/CN2006/001027 CN2006001027W WO2007124622A1 WO 2007124622 A1 WO2007124622 A1 WO 2007124622A1 CN 2006001027 W CN2006001027 W CN 2006001027W WO 2007124622 A1 WO2007124622 A1 WO 2007124622A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
chitosan
core material
collagen
assembly
Prior art date
Application number
PCT/CN2006/001027
Other languages
English (en)
French (fr)
Inventor
Yuhua Yan
Haixing Xu
Shipu Li
Tao Wan
Lin Yuan
Li Jia
Jianhua Li
Lei Chen
Original Assignee
Wuhan University Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University Of Technology filed Critical Wuhan University Of Technology
Publication of WO2007124622A1 publication Critical patent/WO2007124622A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges

Definitions

  • the invention relates to a porous scaffold material in a porous, layered and three-dimensional space multi-stage structure prepared by nano self-assembly technology.
  • it relates to the selection of biomedical materials with good biocompatibility, biodegradability and bioinduction properties, which have been widely used at home and abroad, and are prepared into porous, layered, three-dimensional spatial multi-level tissue scaffolds of bionic human tubular tissue. And preparation method.
  • Tissue engineering is an emerging discipline that combines cell biology and materials science to construct tissues or organs in vitro or in vivo.
  • a seed cell with a specific function is mixed with a biodegradable polymer and cultured in vitro for a period of time or implanted in the body, the seed cell continues to proliferate, the extracellular matrix is secreted, and the biological material gradually Degradation, absorption, and ultimately the formation of specific tissues or organs with normal structure and function.
  • tissue engineering technology is an innovation in surgical repair technology. Its in-depth development will make it possible to change the traditional "trauma-repairing trauma" treatment mode, and to make surgical trauma and lesion treatment from tissue organ transplantation to tissue and organ manufacturing. A major change in the field of surgical treatment.
  • the ideal tissue scaffold material has the characteristics of bionics, that is, the composition should be maximally close to the extracellular matrix (ECM) component synthesized and secreted by nerve cells, and its structure should be similar to the human tissue structure, which is conducive to tissue regeneration.
  • ECM extracellular matrix
  • the ideal tissue scaffolding material should have the following conditions: 1
  • the internal space structure should have oriented, parallel-arranged micropores.
  • 2 should be degraded in the body and absorbed by the body in a timely manner, that is, the degradation rate and metabolic absorption rate of the material should match the speed of tissue regeneration and repair.
  • 3 It has an ideal structure: that is, it has a hierarchical layered porous structure.
  • 4 The tissue should be guaranteed to provide the required nutrient supply: a growth factor that provides the regeneration of damaged tissue and can regulate seed cell growth, differentiation, and promote tissue repair and tissue regeneration.
  • the object of the present invention is to provide a composite polymer tissue scaffold material having a porous, layered, three-dimensional multi-stage structure, a pore size, a size, and an adjustable shape, and a preparation method thereof.
  • the technical solution of the present invention is: using bioabsorbable polylactic acid, chitosan, chondroitin sulfate, collagen, heparin sulfate, sodium alginate, and hyaluronic acid as a matrix material, using nano self-assembly technology, Freeze-drying and special molds for the preparation of porous, layered, three-dimensional spatial multi-level tissue scaffold materials.
  • the main part is the core material and the assembly material, wherein the core material comprises a degradable medical bismuth molecular material which can be aminated and its modified material: polylactic acid, polyglycolic acid (PGA) and its copolymer (PLGA), polycapone Ester (PCL), etc.
  • Assembly materials include natural, synthetic, biocompatible, biodegradable, positive or negatively charged medical polymer materials: chitosan, chondroitin sulfate, collagen, heparin sulfate, sodium alginate, and hyaluronic acid acid.
  • each layer is distributed with uniformly connected pores, large pores or micropores, and its structure and pore size are adjustable.
  • the present invention utilizes an organic amine compound-diamine compound to carry out an amine hydrolysis reaction on the core material to introduce a positively charged amino group on the surface of the core material, and then acidify it with a suitable acid solution, and then with positive and negative
  • the oppositely charged assembly materials are assembled alternately in layers, after assembly, frozen at different freezing temperatures, or crosslinked with a cross-linking agent to obtain a porous, layered, multi-pole structure with uniform distribution of each layer.
  • Connected pores, macropores or micropores, porogens are added to the core material and assembly materials, and molds capable of making holes are used to adjust the structure and pore size.
  • a tissue scaffold material comprising a porous scaffold core material and a core material outer assembly material, is a porous, layered, three-dimensional spatial multi-level structure, and each layer is distributed with uniformly connected pores.
  • the core material of the tissue scaffold material comprises a bioabsorbable polymer material which can be aminated by an organic diamine compound and a modified material thereof: polylactic acid, polyglycolic acid and copolymer thereof, polycaprolactone; assembly materials including natural materials Synthetic biocompatible, degradable medical polymer materials with positive or negative charge: chitosan, collagen, chondroitin sulfate, heparin sulfate, sodium alginate, and hyaluronic acid.
  • the tissue scaffold material of the present invention has an assembled layer of 5 to 5000 layers, each layer having a thickness of 1 to 100 nm and a large pore diameter of 100 to 600 ⁇ m.
  • the tissue scaffold material of the present invention has an assembled layer of 5 to 5000 layers, each layer having a thickness of 1 to 100 nm and a pore diameter of 1 to 100 ⁇ m.
  • the tissue scaffold material of the present invention has an assembled layer of 5 to 5000 layers, each layer having a thickness of 1 to 100 nm and a pore diameter of 1 nm to 1000 nm.
  • the preparation method of the tissue scaffold material of the invention comprises: firstly making a porous scaffold with a core material polylactic acid, or polyglycolic acid and a copolymer thereof, or polycaprolactone, and then using a positively charged chitosan or collagen And self-assembling the negatively charged chondroitin sulfate or heparin sulfate assembly material layer by layer on the outer layer of the porous support core layer, repeating the self-assembly step until the designed assembly layer, and then rapidly freezing and vacuum freezing, That is, a porous scaffold material having a multi-stage structure in a porous, layered, three-dimensional space is obtained.
  • the preparation steps of the tissue scaffold material of the present invention are as follows:
  • Step 1 Preparation of core material: Dissolving the core material polylactic acid, or polyglycolic acid and its copolymer, or polycaprolactone Organic solvent ethyl acetate, or acetone, or chloroform, or 1,4-dioxane, injected into a multi-needle mold, dried at room temperature to constant weight, removed, transferred to a vacuum oven to dry to constant weight, immersed The ratio of ethanol to water is 1: 1 to remove grease and impurities, and rinse thoroughly with water;
  • Step 2 amination reaction: the core material prepared in step 1 is immersed in hexamethylenediamine-isopropanol, or ethylenediamine-isopropanol, or butanediamine-isopropanol, hexamethylenediamine-n-propanol, or Ethylenediamine-n-propanol, or butanediamine-n-propanol, subjected to amidolytic reaction, thoroughly rinsed with deionized water to remove unreacted hexamethylenediamine, ethylenediamine, butanediamine, vacuum oven at room temperature Drying to constant weight;
  • Step 3 acidification reaction: the core material after the amine hydrolysis in step 2 is acidified in a 0. 02 mol / liter hydrochloric acid solution at room temperature, and washed with three distilled water to remove the adsorbed hydrochloric acid;
  • Step 5 Layer-by-layer electrostatic self-assembly:
  • the core material acidified in step 3 is soaked in chondroitin sulfate or heparin sulfate solution to adsorb a layer of chondroitin sulfate or heparin sulfate, and the surface is negatively charged, with a content of 0.5 Mol / liter of NaCl in three distilled water rinse to remove excess chondroitin sulfate or heparin sulfate, and then immersed in chitosan or collagen in acetic acid solution (the acetic acid solution is acetic acid containing 2%, containing NaCl 0.
  • the aqueous solution of the core material is adsorbed with a layer of positively charged chitosan or collagen, first washed with a concentration of 0.6% acetic acid solution, the acetic acid solution containing NaCl 0.2 mole / liter, and then 5 mol / liter of three distilled water rinse to remove excess chitosan or collagen, repeat the above assembly steps 5 to 5000 times, to prepare chondroitin sulfate or amino acid-chitosan or collagen multilayer film;
  • Step 5 The core chondroitin or heparan sulfate-chitosan or collagen multilayer membrane core material prepared in step 4 is immersed in liquid nitrogen or placed in a low temperature freezer to be rapidly deep frozen, and lyophilized to obtain a porous , stratified, three-dimensional spatial multi-level structure of tissue scaffolding material.
  • the core material is immersed in 0. 07 ⁇ 0, 1 g / ml of hexamethylene diamine monoisopropanol, or ethylene diamine monoisopropanol, or butane diamine - isopropyl Alcohol, hexamethylene diamine-n-propanol, or ethylenediamine-n-propanol, or butanediamine-n-propanol, react at 37 ⁇ 2 ° C for 2 to 3 hours, rinse thoroughly with deionized water to remove unreacted
  • the organic diamine compound was dried to a constant weight in a 20-inch vacuum oven.
  • the amine core material is acidified at 0. 02 mol / liter hydrochloric acid solution for 1 to 2 hours at room temperature, and rinsed with three distilled water to remove adsorbed hydrochloric acid.
  • the layer of the preparation step 4 is electrostatically self-assembled, and the acidified core material is immersed in a solution containing chondroitin sulfate or heparin sulfate 2-50 mg/ml in NaCl for 30 to 60 minutes to adsorb a layer of chondroitin sulfate solution or Heparin sulfate, and the surface is negatively charged, the NaCl concentration in the solution is 0.5 mol / liter, washed three times with three steamed water containing NaCl 0.5 mol / liter to remove excess chondroitin sulfate solution or heparin sulfate; Then immersed in a 1%-5% acetic acid solution containing chitosan or collagen 2 ⁇ 50 mg/ml for 30 ⁇ 60 minutes to adsorb a layer of positively charged chitosan or collagen on the surface of the core material.
  • the excess chitosan or collagen was removed by washing with a solution of acetic acid having a mass concentration of 0.6% (acetic acid solution containing 0.2 mol/L NaCl) and then rinsing with three distilled water containing NaCl 0.2 mol/L.
  • the material assembly freezing temperature in the preparation step 5 is - 20 ⁇ 0. 5 ° C.
  • FIG. 1 Main process flow for preparation of tissue scaffold material;
  • Figure 2. Multi-layer structure and morphology (AFM) of the scaffold material;
  • FIG. 1 Porous structure and morphology (SEM) of the scaffold material.
  • the preparation process of the tissue scaffold material of the present invention is as shown in FIG. 1 .
  • the medical polymer material is first dissolved in an organic solvent, injected into a mold, and naturally dried to obtain a tissue scaffold core material, and the tissue scaffold core material is made of an organic diamine compound.
  • Amine hydrolysis introducing a positively charged amino group into the surface of the core material, vacuum drying, then acidifying with hydrochloric acid to obtain an acidified core material, and assembling the assembly materials with positive and negative opposite charges in sequence, assembling
  • freeze-drying is carried out at different freezing temperatures to obtain a porous, layered, three-dimensional multi-stage structure of the scaffold material.
  • Chitosan (different degree of deacetylation), polylactic acid (different molecular weight), polyglycolic acid (molecular weight 120,000), polycaprolactone, chondroitin sulfate, collagen, heparin sulfate, sodium alginate, hyaluronic acid, dimethoate Amine, butanediamine, ethylenediamine, 1, 4-dioxane, NaCl, hydrochloric acid, acetic acid, atomic force microscopy (AFM) (scanning probe microscope (SPM)), model: DI Nanoscope type IV, American trade Veeco, USA, Fourier transform infrared spectrometer, Model: Nexus, American Thermoelectric Nico, FD-80 vacuum freeze dryer (Beijing Bo Medical Instrument Factory), digital camera, vacuum Drying box.
  • AFM atomic force microscopy
  • SPM scanning probe microscope
  • Preparation of 1 core material 3 g of polylactic acid having a weight average molecular weight of 30,000 was dissolved in 10 ml of 1,4-dioxane, injected into a mold, dried at room temperature for 24 hours, demolded, and transferred to a vacuum oven ( 20 ⁇ ) dry to constant weight, immerse in 1:1 ethanol-water to remove grease and impurities, rinse thoroughly with water;
  • 4-layer electrostatic self-assembly soak the acidified core material in a 0.5 mol/L NaCl solution containing chondroitin sulfate 2 mg/ml for 30 minutes to adsorb a layer of chondroitin sulfate and negatively charge the surface.
  • Electrolyzed chitosan first washed with 0.6% acetic acid solution, and then washed with three distilled water containing 0.2 mol / liter NaCl to remove excess chitosan;
  • the core material is made of polyglycolic acid (molecular weight: 120,000), and the self-assembled material is prepared by using a mixture of chondroitin sulfate and chitosan-collagen, and the number of assembled layers is 20 layers. 7 (TC refrigerator frozen.
  • Example 2 The same method and procedure as in Example 1, except that the core material is polycaprolactone, and the self-assembled material is prepared by using a mixture of chondroitin sulfate and chitosan-collagen, and the number of assembled layers is 200 layers, and the refrigerator is frozen at 70 ° C. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Description

多孔、 分层、 三维空间多级结构的组织支架材料及其制备方法 技术领域
本发明涉及一种基于纳米自组装技术制备的多孔、 分层、 三维空间多级结构的组织 支架材料。 特别涉及选择具有良好生物相容性、 生物可降解性和生物诱导性, 已在国内 外广泛使用的生物医用材料, 制备成仿生人体管状组织的多孔、 分层、 三维空间多级结 构的组织支架及制备方法。
背景技术
组织工程学(tissue engineering)是一门将细胞生物学和材料学相结合进行体外 或体内构建组织或器官的新兴学科。 当具有特定功能的种子细胞 (seed cell)与可降解 生物材料 (biodegradable polymer)混合并在体外培养一段时间或植入体内后, 随着种 子细胞的不断增殖、 细胞外基质分泌和生物材料的逐渐降解、 吸收, 最终形成具有正常 结构和功能的特定组织或器官。 组织工程技术的产生是外科修复技术的一项创新, 它的 深入发展将有可能改变传统 "以创伤修复创伤"的治疗模式, 使外科创伤与病损的治疗 从组织器官移植走向组织器官制造, 实现外科治疗领域的一次重大变革。
人体组织 (如神经、 血管、 食管、 气管、 肛门等组织) 损伤及缺损在临床上多见, 迄今为止, 其治疗效果尚不能令人满意。 提供性能优异、 结构高度仿生的人工材料是目 前急待研究解决的重要课题。实验证明任何材料的表面化学结构和表面形态结构都可作 为生物信号, 这类信号能在分子水平上有效地和特异性地调节人体附着细胞功能性基因 的表达、 信息核糖核酸的结构稳定、 基因产物的合成与功能, 从而有效地产生 "材料的 诱导性生物效应"。 此类生物效应不仅决定了生物材料的安全性, 也决定了生物材料用 于重建人体生理功能的特异性。这类材料表面信号对人体细胞的调节作用是功能特异性 的和极其敏感的, 在基因水平的有效调节可在细胞与材料接触的几小时内即出现。 这一 现象的发现为生物材料的研究和开发提出了全新的要求。
理想的组织支架材料具有仿生特点, 即组成成分应该与神经细胞合成分泌的细胞外 基质(extracellular matrix, ECM)成分最大限度地接近, 其结构应与人体组织结构相 似, 有利于组织的再生。
理想的组织支架材料应具备以下条件: ①内部空间结构应具有定向、 平行排列的微 孔。 ②应适时地在体内降解和被机体吸收, 即材料的降解速度和代谢吸收速度应与组织 再生修复的速度相匹配, ③具有理想的结构: 即具有分级分层多孔结构。 ④应保证组织 修复所需的营养供应: 即提供受损组织再生所需的可起到调节种子细胞生长、 分化并促 进组织修复和组织再生的生长因子。
发明内容
本发明的目的在于提供多孔、 分层、 三维空间多级结构的组成、 孔径及尺寸、 形状 可调的复合高分子组织支架材料及其制备方法。 为了实现上述目的, 本发明的技术方案是: 将生物可吸收聚乳酸、 壳聚糖、 硫酸软 骨素、胶原、硫酸肝素、海藻酸钠、 以及透明质酸作为基体材料, 利用纳米自组装技术、 冷冻干燥及专用模具制备多孔、 分层、 三维空间多级结构的组织支架材料。
主要部分为芯材和组装材料,其中芯材包括可被胺化的可降解医用髙分子材料及其 改性材料: 聚乳酸、 聚乙醇酸 (PGA)及其共聚物 (PLGA)、 聚己内酯 (PCL) 等。 组装材 料包括天然的、人工合成的具有良好生物相容性、 可降解的具有正或负电荷的医用高分 子材料: 壳聚糖、 硫酸软骨素、 胶原、 硫酸肝素、 海藻酸钠、 以及透明质酸。
其结构特点为多孔、分层、多极结构,每一层分布有均匀连通的孔隙、大孔或微孔, 其结构及孔径可调。
为实现上述结构,本发明利用有机胺化合物一二胺化合物对芯材进行胺解反应使芯 材表面引入带有正电荷的氨基, 然后用适当的酸溶液进行酸化, 再将带有正、 负相反电 荷的组装材料交替按顺序一层一层组装, 组装完毕后采用不同冷冻温度进行冷冻, 或采 用交联剂进行交联即可得到多孔、 分层、 多极结构, 每一层分布有均匀的连通的孔隙、 大孔或微孔, 在芯材及组装材料中加入致孔剂及使用能制孔的模具, 使其结构和孔径可 调。
本发明的具体方案如下
一种组织支架材料, 包括多孔的支架芯材和芯材外组装材料, 为多孔、 分层、 三维 空间多级结构, 每一层分布有均匀连通的孔隙。
该组织支架材料的芯材包括可被有机二胺化合物胺化的生物可吸收高分子材料及 其改性材料: 聚乳酸、 聚乙醇酸及其共聚物、 聚己内酯; 组装材料包括天然的、 人工合 成的具有良好生物相容性、可降解的具有正或负电荷的医用高分子材料: 壳聚糖、胶原、 硫酸软骨素、 硫酸肝素、 海藻酸钠、 以及透明质酸。
本发明的组织支架材料, 其组装层数为 5〜5000层, 每层厚度 1〜100纳米, 孔径 为 100〜600微米的大孔。
本发明的组织支架材料, 其组装层数为 5〜5000层, 每层厚度 1〜100纳米, 孔径 为 1〜100微米的小孔。
本发明的组织支架材料, 其组装层数为 5〜5000层, 每层厚度 1〜100纳米, 孔径 为 1纳米〜 1000纳米的微孔。
本发明的组织支架材料的制备方法:先用芯材材料聚乳酸、或聚乙醇酸及其共聚物、 或聚己内酯制成多孔的支架, 然后用带有正电荷的壳聚糖或胶原, 与带有负电荷的硫酸 软骨素或硫酸肝素组装材料交替按顺序一层一层自组装在多孔支架芯材外层,重复自组 装步骤直到设计的组装层数, 而后快速冷冻和真空冷冻, 即得到多孔、 分层、三维空间 多级结构的组织支架材料。
本发明的组织支架材料的制备步骤为:
步骤 1、 芯材的制备: 将芯材材料聚乳酸、 或聚乙醇酸及其共聚物、 或聚己内酯溶于 有机溶剂乙酸乙酯、 或丙酮、 或氯仿、 或 1, 4一二氧六环中, 注入具有多针模具中, 于 室温干燥至恒重, 去模, 转入真空烘箱干燥至恒重, 浸入乙醇与水体积比为 1 : 1溶液中 去除油脂及杂质, 用水充分漂洗;
步骤 2、 胺化反应: 将步骤 1制备的芯材浸入己二胺一异丙醇, 或乙二胺一异丙醇, 或丁二胺一异丙醇, 己二胺一正丙醇, 或乙二胺一正丙醇, 或丁二胺一正丙醇中, 进行 胺解反应, 用去离子水充分漂洗去掉未反应的己二胺, 乙二胺, 丁二胺, 在室温真空干 燥箱中烘干至恒重;
步骤 3、 酸化反应: 将步骤 2胺解后的芯材于室温下在 0. 02摩尔 /升盐酸溶液中酸化, 用三蒸水冲洗以去除吸附的盐酸;
步骤 4、 层层静电自组装: 将步骤 3酸化后的芯材在硫酸软骨素或硫酸肝素溶液中 浸泡以吸附一层硫酸软骨素或硫酸肝素,并使表面带上负电,用含 0. 5 摩尔 /升 NaCl 的 三蒸水冲洗以去除多余的硫酸软骨素或硫酸肝素,然后浸入到壳聚糖或胶原的乙酸溶液 中浸泡 (其乙酸溶液为含乙酸 2%, 含 NaCl 0. 2 摩尔 /升的水溶液) , 使芯材表面吸附 一层带正电的壳聚糖或胶原,先用质量浓度 0. 6%的乙酸溶液洗,该乙酸溶液含 NaCl 0. 2 摩尔 /升, 再用含 NaCl 0. 2 摩尔 /升的三蒸水冲洗去除多余的壳聚糖或胶原, 重复上述 组装步骤 5〜5000次, 制备得到硫酸软骨素或氨基酸-壳聚糖或胶原多层膜;
步骤 5、 将步骤 4制得的组装有硫酸软骨素或硫酸肝素-壳聚糖或胶原多层膜芯材, 浸入液氮或放入低温冰箱中迅速深度冷冻, 寘空冷冻干燥, 即得到多孔、 分层、 三维空 间多级结构的组织支架材料。
所述的制备步骤 2的胺化反应, 将芯材浸入 0. 07〜0, 1克 /毫升的己二胺一异丙醇, 或乙二胺一异丙醇, 或丁二胺一异丙醇, 己二胺一正丙醇, 或乙二胺一正丙醇, 或丁二 胺一正丙醇中, 在 37±2°C反应 2〜3小时, 用去离子水充分漂洗去掉未反应的有机二胺 化合物, 于 20士 1Ό真空干燥箱中烘干至恒重。
所述的制备步骤 3的酸化反应, 将胺解芯材于室温下在 0. 02摩尔 /升 盐酸溶液中酸 化 1〜2小时, 用三蒸水冲洗以去除吸附的盐酸。
所述的制备步骤 4的层层静电自组装, 将酸化芯材在含硫酸软骨素溶液或硫酸肝素 2- 50毫克 /毫升的 NaCl溶液中浸泡 30〜60分钟以吸附一层硫酸软骨素溶液或硫酸肝素, 并使表面带上负电, 溶液中 NaCl浓度为 0. 5 摩尔 /升, 用含 NaCl 0. 5 摩尔 /升 的三蒸水 冲洗 3次以去除多余的硫酸软骨素溶液或硫酸肝素; 然后浸入到含壳聚糖或胶原 2〜50毫 克 /毫升的质量浓度 1%-5%乙酸溶液中浸泡 30〜60分钟,使芯材表面吸附一层带正电的壳 聚糖或胶原, 先用质量浓度为 0. 6%的乙酸溶液洗 (乙酸溶液含 0. 2摩尔 /升 NaCl ) , 再 用含 NaCl 0. 2 摩尔 /升的三蒸水冲洗去除多余的壳聚糖或胶原。
所述的制备步骤 5中的材料组装冷冻温度为- 20±0. 5°C。
附图说明
图 1、 组织支架材料制备主要工艺流程; 图 2、 支架材料截面多层结构、 形貌 (AFM);
图 3、 支架材料多孔结构、 形貌 (SEM)。
本发明的组织支架材料制备工艺如图 1所示,先将医用高分子材料溶解于有机溶剂 中, 注入模具, 自然干燥, 制得组织支架芯材, 将该组织支架芯材用有机二胺化合物胺 解、 使芯材表面引入带有正电荷的氨基, 真空干燥, 然后用盐酸酸化, 制得酸化芯材, 再将带有正、 负相反电荷的组装材料按顺序一层一层组装, 组装完毕后采用不同冷冻温 度进行冷冻干燥, 即可得到多孔、 分层、 三维空间多级结构的组织支架材料。
具体实施方式
实验所需主要材料和仪器
壳聚糖 (不同脱乙酰度)、 聚乳酸 (不同分子量)、 聚乙醇酸 (分子量 12万)、 聚己 内酯、 硫酸软骨素、 胶原、 硫酸肝素、 海藻酸钠、 透明质酸、 己二胺、 丁二胺、 乙二胺、 1, 4一二氧六环、 NaCl、 盐酸、 醋酸、 原子力显微镜 (AFM) (扫描探针显微镜 (SPM) ), 型号: DI Nanoscope IV型, 美国维易科精密仪器有限公司 (Veeco, USA), 付里叶变换 红外光谱仪, 型号: Nexus, 美国热电尼高力公司、 FD— 80型真空冷冻干燥机 (北京博 医康仪器厂)、 数码相机、 真空干燥箱。
实施例 1
1.支架材料的制备
①芯材的制备: 将 3克重均分子量为 3万的聚乳酸溶于 10毫升 1, 4一二氧六环中, 注 入模具上, 于室温干燥 24小时, 去模, 转入真空烘箱 (20Ό)干燥至恒重, 浸入 1 : 1的乙 醇一水中去除油脂及杂质, 用水充分漂洗;
②胺化反应: 将上述芯材浸入 0. 07克 /毫升的己二胺一异丙醇中, 37 C反应 2小时, 用水充分漂洗去掉未反应的己二胺, 20Ό真空干燥箱中烘干至恒重;
③酸化反应: 将胺解 PDLLA 芯材于室温下在 0. 02摩尔 /升 盐酸溶液中酸化 1小时, 用大量三蒸水冲洗以去除吸附的盐酸;
④层层静电自组装:将酸化芯材在含硫酸软骨素 2毫克 /毫升的 0. 5 摩尔 /升 NaCl溶 液中浸泡 30分钟以吸附一层硫酸软骨素,并使表面带上负电,用含 0. 5 摩尔 /升 NaCl 的 三蒸水冲洗 3 次以去除多硫酸软骨素,然后浸入到 2毫克 /毫升壳聚糖的 2%乙酸溶液中浸 泡 30 分钟, 使聚乳酸表面吸附一层带正电的壳聚糖; 先用 0. 6% 的乙酸溶液洗, 再用含 0. 2 摩尔 /升 NaCl 的三蒸水冲洗去除多余的壳聚糖;
⑤材料组装: 重复上述步骤, 可制备理想层数 (10层) 的硫酸软骨素 -壳聚糖多层 膜, - 20Ό冷冻, 去掉模具, 冷冻干燥, 即得。
2.支架材料的组成、 形貌、 结构和性能测试
利用付里叶变换红外光谱仪, 型号: Nexus, 美国热电尼高力公司、 D/MAX— ΙΠΑ型 X射线衍射仪: (日本理学 Rikagu) 及日立 S- 450型扫描电镜、 美国维易科扫描探针显 微镜 (SPM, DI Nanoscope IV型) (原子力显微镜, AFM) ) 观察支架材料形貌。 体外实验 是将样品置于磷酸缓冲溶液中, 测定材料的溶胀性和降解性, pH值的变化情况。
扫描电镜观察到内层膜孔径较小约为 3纳米, 外层孔径较大约为 3微米; 原子力显 微镜观察支架材料截面具有明显的纳米级层状结构、 每层有均匀孔隙分布, 层与层间孔 隙连通, 且孔隙孔径呈分级变化。植入体内后, 随时间延长, 材料降解。体外实验观察, 材料在 15天发生溶胀、 2个月外形完整, 溶液 PH值变化微小。
实施例 2
与实施例 1相同的方法与步骤, 但芯材釆用聚乙醇酸(分子量 12万), 自组装材料 采用硫酸软骨素与壳聚糖一胶原混合物进行材料制备, 组装层数为 20层, 一 7(TC冰箱 冷冻。
扫描电镜观察到内层膜孔径较小约为 3纳米, 外层孔径较大约为 15微米; 原子力 显微镜观察导管截面具有明显的纳米级层状结构、 每层有均匀孔隙分布, 层与层间孔隙 连通, 且孔隙孔径呈分级变化。 植入体内后, 随时间延长, 材料降解。 体外实验观察, 材料在 15天发生溶胀、 2个月外形完整, 溶液 pH值变化微小。
实施例 3
与实施例 1相同的方法与步骤, 但芯材采用聚己内酯, 自组装材料采用硫酸软骨素 与壳聚糖一胶原混合物进行材料制备, 组装层数为 200层, 一 70°C冰箱冷冻。
扫描电镜观察到内层膜孔径较小约为 3纳米, 外层孔径大约为 3500 纳米; 原子力 显微镜观察导管截面具有明显的纳米级层状结构、 每层有均匀孔隙分布, 层与层间孔隙 连通, 且孔隙孔径呈分级变化。 植入体内后, 随时间延长, 材料降解。 体外实验观察, 材料在 15天发生溶胀、 2个月外形完整, 溶液 pH值变化微小。

Claims

权利 要求书
1. 一种组织支架材料, 其特征在于, 该组织支架材料包括多孔的支架芯材和芯材 外组装材料, 为多孔、 分层、 三维空间多级结构, 每一层分布有均勾连通的孔隙。
2. 如权利要求 1所述的组织支架材料, 其特征在于, 其支架芯材包括可被有机胺 胺化的生物可吸收高分子材料及其改性材料:聚乳酸、聚乙醇酸及其共聚物、聚己内酯; 组装材料包括天然的、 人工合成的具有良好生物相容性、 可降解的具有正或负电荷的医 用高分子材料: 壳聚糖、 胶原、 硫酸软骨素、 硫酸肝素、 海藻酸钠、 以及透明质酸。
3. 如权利要求 1所述的组织支架材料, 其特征在于, 组装材料层数为 5〜5000层, 每层厚度 1〜100纳米; 孔径为 100〜600微米的大孔。
4. 如权利要求 1所述的组织支架材料, 其特征在于, 组装材料层数为 5〜5000层, 每层厚度 1〜100纳米, 孔径为 1〜100微米的小孔。
5. 如权利要求 1所述的组织支架材料, 其特征在于, 组装材料层数为 5〜5000层, 每层厚度 1〜100纳米, 孔径为 1纳米〜 1000纳米的微孔。
6. 权利要求 1所述的组织支架材料的制备方法, 其特征在于, 先用芯材材料聚乳 酸、 或聚乙醇酸及其共聚物、 或聚己内酯制成多孔的支架, 然后用组装材料壳聚糖或胶 原, 与硫酸软骨素或硫酸肝素交替按顺序一层一层自组装在多孔支架芯材外层, 重复自 组装步骤直到设计的组装层数, 而后快速冷冻和真空冷冻, 即得到多孔、 分层、 三维空 间多级结构的组织支架材料。
7. 如权利要求 6所述的组织支架材料的制备方法, 其特征在于, 制备步骤为: 步骤 1、 芯材的制备: 将芯材材料聚乳酸、 或聚乙醇酸及其共聚物、 或聚己内酯溶 于有机溶剂乙酸乙酯、 或丙酮、 或氯仿、 或 1, 4一二氧六环中, 注入具有多针模具中, 于室温干燥至恒重, 去模, 转入真空烘箱干燥至恒重, 浸入乙醇与水体积比为 1 : 1溶液 中去除油脂及杂质, 用水充分漂洗;
步骤 2、 胺化反应: 将步骤 1制备的芯材浸入己二胺一异丙醇, 或乙二胺一异丙醇, 或丁二胺一异丙醇, 己二胺一正丙醇, 或乙二胺一正丙醇, 或丁二胺一正丙醇中, 进行 胺解反应, 用去离子水充分漂洗去掉未反应的己二胺, 乙二胺, 丁二胺, 在室温真空干 燥箱中烘干至恒重;
步骤 3、酸化反应:将步骤 2胺解后的芯材于室温下在 0. 02摩尔 /升 盐酸溶液中酸化, 用三蒸水冲洗以去除吸附的盐酸; '
步骤 4、 层层静电自组装: 将步骤 3酸化后的芯材在硫酸软骨素或硫酸肝素溶液中 浸泡以吸附一层硫酸软骨素或硫酸肝素,并使表面带上负电,用含 0. 5 摩尔 /升 NaCl 的 三蒸水冲洗以去除多余的硫酸软骨素或硫酸肝素; 然后浸入到壳聚糖或胶原的乙酸溶液 中浸泡, 其乙酸溶液为含乙酸 2%和含 NaCl 0. 2 摩尔 /升的水溶液, 使芯材表面吸附一 层带正电的壳聚糖或胶原, 先用质量浓度 0. 6% 的乙酸溶液洗, 再用含 NaCl 0. 2 摩尔 / 升的三蒸水冲洗去除多余的壳聚糖或胶原, 重复上述组装步骤 5〜5000次, 制备得到硫 酸软骨素或硫酸肝素-壳聚糖或胶原多层膜;
步骤 5、 将步骤 4制得的组装有硫酸软骨素或硫酸肝素-壳聚糖或胶原多层膜芯材, 浸入液氮或放入低温冰箱中迅速深度冷冻, 真空冷冻千燥, 即得到多孔、 分层、 三维空 间多级结构的组织支架材料。
8. 如权利要求 7所述的组织支架材料的制备方法, 其特征在于, 所述的步骤 2的胺化 反应, 将芯材浸入 0. 07〜0. 1克 /毫升的己二胺一异丙醇, 或乙二胺一异丙醇, 或丁二胺 一异丙醇, 己二胺一正丙醇, 或乙二胺一正丙醇, 或丁二胺一正丙醇中, 在 37±2°C反 应 2〜3小时, 用去离子水充分漂洗去掉未反应的有机二胺化合物, 于 20士 1 °C真空干燥 箱中烘干至恒重。
9. 如权利要求 7所述的组织支架材料的制备方法, 其特征在于, 所述的步骤 3的酸化 反应, 将胺解芯材于室温下在 0. 02摩尔 /升 盐酸溶液中酸化 1〜2小时, 用三蒸水冲洗以 去除吸附的盐酸。
10. 如权利要求 7所述的组织支架材料的制备方法, 其特征在于, 所述的步骤 4的层 层静电自组装,将酸化芯材在含硫酸软骨素溶液或硫酸肝素 2〜50毫克 /毫升的 NaCl溶液 中浸泡 30〜60分钟以吸附一层硫酸软骨素溶液或硫酸肝素, 并使表面带上负电, 用含 NaCl 0. 5 摩尔 /升的三蒸水冲洗 3次以去除多余的硫酸软骨素溶液或硫酸肝素; 然后浸 入到含壳聚糖或胶原 2- 50毫克 /毫升的质量浓度 1%〜5%乙酸溶液中浸泡 30〜60 分钟,使 芯材表面吸附一层带正电的壳聚糖或胶原, 先用质量浓度为 0. 6% 的乙酸溶液洗, 再用 含 NaCl 0. 2 摩尔 /升 的三蒸水冲洗去除多余的壳聚糖或胶原。
11. 如权利要求 7所述的组织支架材料的制备方法, 其特征在于, 所述的步骤 5中的 材料组装冷冻温度为 -20 ±0. 5°C。
PCT/CN2006/001027 2006-04-28 2006-05-19 Échafaudage stratifié poreux en 3d utilisé en ingénierie tissulaire et procédé de préparation de celui-ci WO2007124622A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006100189625A CN100453124C (zh) 2006-04-28 2006-04-28 多孔、分层、三维空间多级结构的组织支架材料及其制备方法
CN200610018962.5 2006-04-28

Publications (1)

Publication Number Publication Date
WO2007124622A1 true WO2007124622A1 (fr) 2007-11-08

Family

ID=37014337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001027 WO2007124622A1 (fr) 2006-04-28 2006-05-19 Échafaudage stratifié poreux en 3d utilisé en ingénierie tissulaire et procédé de préparation de celui-ci

Country Status (2)

Country Link
CN (1) CN100453124C (zh)
WO (1) WO2007124622A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116355A1 (en) 2015-12-29 2017-07-06 Atilim Universitesi Tissue scaffold with enhanced biocompatibility and mechanical properties and a method for producing it
CN108251409A (zh) * 2018-01-11 2018-07-06 山东交通学院 一种吸附降解油污的复合微生物导弹材料及其制备方法
CN109731141A (zh) * 2019-01-17 2019-05-10 广州润虹医药科技股份有限公司 一种引导组织修复的复合膜及其制备方法和应用
CN113368304A (zh) * 2021-06-17 2021-09-10 福建师范大学 一种利用基于原位乳化的3d打印技术制备包埋载药微球的多功能海藻酸钠支架的方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100450555C (zh) * 2006-10-23 2009-01-14 天津大学 壳聚糖-明胶-聚乳酸共混物三维多孔支架的制备方法
CN100421736C (zh) * 2006-11-01 2008-10-01 华中科技大学 一种基于仿生结构的叠层梯度复合支架材料及其制备方法
CN101884808B (zh) * 2010-07-23 2016-02-03 中国人民解放军第三军医大学野战外科研究所 局部抗凝及细胞捕获的脱细胞骨基质复合材料及制备方法
CN102675678B (zh) * 2011-03-17 2014-04-16 中国医学科学院肿瘤研究所 一种PCL-g-PGMA/明胶复合材料及其制备方法
CN102675676A (zh) * 2011-03-17 2012-09-19 中国医学科学院肿瘤研究所 一种PCL-g-PDMAEMA/明胶复合材料及其制备方法
CN102675677B (zh) * 2011-03-17 2014-04-16 中国医学科学院肿瘤研究所 PCL-g-PGMA/明胶复合材料在细胞转染中的应用
CN102247621A (zh) * 2011-07-05 2011-11-23 上海理工大学 一种聚丙氨酸乙酯磷腈三维立体细胞支架及其制备方法
CN102716512A (zh) * 2012-06-29 2012-10-10 上海大学 药物分级缓释型骨修复体制备方法
CN104056302B (zh) * 2013-03-18 2016-12-28 杭州启迪生物科技有限公司 一种用于构建骨移植物的组织工程支架材料及其制备方法
CN103861152B (zh) * 2014-03-12 2015-05-27 暨南大学 分级多孔壳聚糖/聚乳酸复合材料及其制备方法与应用
CN105833359A (zh) * 2016-05-10 2016-08-10 武汉理工大学 含生长因子的肌腱吻合器的制备方法
CN106798948A (zh) * 2017-02-13 2017-06-06 武汉大学 一种调控生物膜表面拓扑结构以促进细胞爬行的方法
CN107419530B (zh) * 2017-07-26 2020-01-14 武汉理工大学 一种聚己内酯静电纺丝支架及其制备方法
CN107376031A (zh) * 2017-08-02 2017-11-24 北京华信佳音医疗科技发展有限责任公司 一种胶原聚乳酸硬化复合材料的制备方法
CN107970490B (zh) * 2017-12-22 2020-12-22 重庆医科大学附属永川医院 一种用于骨创伤修复的可降解复合材料及其制备方法
CN110292660A (zh) * 2018-03-21 2019-10-01 广州创尔生物技术股份有限公司 一种表面自组装生物活性涂层的钛合金及其制备方法
CN112704768A (zh) * 2020-11-30 2021-04-27 山东大学 一种硫酸软骨素修饰的胶原蛋白/聚己内酯血管修复支架及其制备方法与应用
CN112957527B (zh) * 2021-03-23 2021-11-23 武汉理工大学 一种导电神经导管及其制备方法
CN115400265B (zh) * 2022-08-05 2024-06-21 河北医科大学口腔医院 仿生化梯度支架及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319436A (zh) * 2001-02-28 2001-10-31 中国医学科学院生物医学工程研究所 复合胶原基组织工程支架及其制备方法
US6379962B1 (en) * 1997-11-14 2002-04-30 Bonetec Corporation Polymer scaffold having microporous polymer struts defining interconnected macropores
US20020183858A1 (en) * 2001-06-05 2002-12-05 Contiliano Joseph H. Attachment of absorbable tissue scaffolds to scaffold fixation devices
CN1394901A (zh) * 2002-07-10 2003-02-05 浙江大学 用静电吸引层层自组装改性聚酯类材料为表面具有细胞相容性生物材料的方法
WO2003082366A1 (fr) * 2002-03-28 2003-10-09 Japan As Represented By President Of National Cardiovascular Center Materiau support d'ingenierie tissulaire, vaisseau artificiel, element de manchette et revetement destine a des implants
CN1176726C (zh) * 2002-07-10 2004-11-24 浙江大学 组织工程用聚乳酸多孔支架的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379962B1 (en) * 1997-11-14 2002-04-30 Bonetec Corporation Polymer scaffold having microporous polymer struts defining interconnected macropores
CN1319436A (zh) * 2001-02-28 2001-10-31 中国医学科学院生物医学工程研究所 复合胶原基组织工程支架及其制备方法
US20020183858A1 (en) * 2001-06-05 2002-12-05 Contiliano Joseph H. Attachment of absorbable tissue scaffolds to scaffold fixation devices
WO2003082366A1 (fr) * 2002-03-28 2003-10-09 Japan As Represented By President Of National Cardiovascular Center Materiau support d'ingenierie tissulaire, vaisseau artificiel, element de manchette et revetement destine a des implants
CN1394901A (zh) * 2002-07-10 2003-02-05 浙江大学 用静电吸引层层自组装改性聚酯类材料为表面具有细胞相容性生物材料的方法
CN1176726C (zh) * 2002-07-10 2004-11-24 浙江大学 组织工程用聚乳酸多孔支架的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU Y. ET AL.: "LBL Self-assembly of Chondroitin Sulfate and collagen onto Poly(L-lactic acid) Surface for Improving Its Cytocompatibility with Endothelial Cells", CHEM. J. CHINESE UNIVERSITIES, vol. 25, no. 7, 2004, pages 1347 - 1350 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116355A1 (en) 2015-12-29 2017-07-06 Atilim Universitesi Tissue scaffold with enhanced biocompatibility and mechanical properties and a method for producing it
CN108251409A (zh) * 2018-01-11 2018-07-06 山东交通学院 一种吸附降解油污的复合微生物导弹材料及其制备方法
CN108251409B (zh) * 2018-01-11 2020-02-11 山东交通学院 一种吸附降解油污的复合微生物导弹材料及其制备方法
CN109731141A (zh) * 2019-01-17 2019-05-10 广州润虹医药科技股份有限公司 一种引导组织修复的复合膜及其制备方法和应用
CN109731141B (zh) * 2019-01-17 2021-12-21 广州润虹医药科技股份有限公司 一种引导组织修复的复合膜及其制备方法和应用
CN113368304A (zh) * 2021-06-17 2021-09-10 福建师范大学 一种利用基于原位乳化的3d打印技术制备包埋载药微球的多功能海藻酸钠支架的方法
CN113368304B (zh) * 2021-06-17 2022-02-15 福建师范大学 一种利用基于原位乳化的3d打印技术制备包埋载药微球的多功能海藻酸钠支架的方法

Also Published As

Publication number Publication date
CN100453124C (zh) 2009-01-21
CN1836743A (zh) 2006-09-27

Similar Documents

Publication Publication Date Title
WO2007124622A1 (fr) Échafaudage stratifié poreux en 3d utilisé en ingénierie tissulaire et procédé de préparation de celui-ci
TWI264301B (en) Multi-channel bioresorbable nerve regeneration conduit and preparation method for the same
Chen et al. Scaffold design for tissue engineering
Dinis et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration
TWI374037B (en) Bio-acceptable conduits and method providing the same
CN109701080B (zh) 一种4轴3d打印管状医用支架及其制备方法
Lee et al. The role of bacterial cellulose in artificial blood vessels
CN109876186B (zh) 一种用于神经修复的生物医用可降解双层支架及其制备方法
CN101708344B (zh) 纳米纤维人工血管及制备方法
Mansouri The influence of topography on tissue engineering perspective
WO2017022750A1 (ja) 人工血管、人工血管の製造方法、及び、多孔質組織再生基材の製造方法
CN101264341A (zh) 三维多孔组织工程支架材料、其制备及应用
CN100548391C (zh) 丝素蛋白多孔管的制备方法
CN101703796A (zh) 纳米纤维人工血管修饰内层及制备方法
WO2008103017A1 (en) Biodegradable porous composite and hybrid composite of biopolymers and bioceramics
Chen et al. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications
CA2993374A1 (en) Medical implant based on nanocellulose
KR101616345B1 (ko) 나노섬유 및 나노입자를 포함하는 인공피부 및 충전제용 복합지지체, 및 이의 제조방법
CN100358589C (zh) 用于修复人体周围神经缺损的管式材料及制备方法
Govorčin Bajsić et al. Preparation and characterization of electrospun PCL/silk fibroin scaffolds
CN110859994B (zh) 一种改性柞蚕丝素蛋白3d打印支架及其制备方法
CN110172186A (zh) 一种多糖复合磷酸钙双重响应性气凝胶的制备方法
Rafiq et al. Improvisations to electrospinning techniques and ultrasonication process to nanofibers for high porosity: Ideal for cell infiltration and tissue integration
CN109224132A (zh) 多层复合腹壁修复补片支架及其制备方法
US20230218379A1 (en) An auxetic structure, a support structure, a method of preparing an auxetic structure, and use of a cellulosic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06741915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06741915

Country of ref document: EP

Kind code of ref document: A1