WO2007123248A1 - 正極用粉末および正極合剤 - Google Patents

正極用粉末および正極合剤 Download PDF

Info

Publication number
WO2007123248A1
WO2007123248A1 PCT/JP2007/058895 JP2007058895W WO2007123248A1 WO 2007123248 A1 WO2007123248 A1 WO 2007123248A1 JP 2007058895 W JP2007058895 W JP 2007058895W WO 2007123248 A1 WO2007123248 A1 WO 2007123248A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
powder
particles
graphite
active material
Prior art date
Application number
PCT/JP2007/058895
Other languages
English (en)
French (fr)
Inventor
Kazuyuki Tanino
Reiko Sasaki
Takashi Yoshida
Yoshihiro Kawakami
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US12/297,544 priority Critical patent/US20090104526A1/en
Priority to EP07742330A priority patent/EP2028705A4/en
Priority to CN200780013765.7A priority patent/CN101421867B/zh
Priority to KR1020087028101A priority patent/KR101393982B1/ko
Publication of WO2007123248A1 publication Critical patent/WO2007123248A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a positive electrode powder and a positive electrode mixture. More specifically, the present invention relates to a positive electrode powder and a positive electrode mixture containing a positive electrode active material powder and a graphite powder.
  • a positive electrode powder containing a positive electrode active material powder and a graphite powder is used in a non-aqueous electrolyte secondary battery such as a lithium secondary battery.
  • Non-aqueous electrolyte secondary batteries have already been put to practical use as power sources for mobile phones and notebook computers, and are also being applied to medium and large applications such as automobiles and power storage.
  • Japanese Patent Application Laid-Open No. 11-1140 1 40 discloses a positive electrode active material having an average particle diameter of 9.1 ⁇ m to 20.5 ⁇ m and an average particle diameter of 3.3.
  • a positive electrode powder containing m to 51.5 m of graphite is specifically described. Disclosure of the invention
  • An object of the present invention is to provide a positive electrode powder, a positive electrode powder, and a binder useful for a non-aqueous electrolyte secondary battery that exhibits a high discharge capacity and a high output at a high current rate. It is in providing the positive mix which has.
  • a nonaqueous electrolyte secondary battery obtained by using a positive electrode powder having a specific positive electrode powder or the positive electrode powder and a binder has a high discharge capacity. And high output at high current rates. It was found that it was possible and reached the present invention.
  • this invention is comprised from the following invention.
  • a positive electrode active material powder composed of primary particles and agglomerated particles of primary particles, and the particle size of 90% or more of the primary particles and the agglomerated particles of the primary particles in the powder is 0.001.
  • m is a positive electrode active material powder having a particle size of not less than 5 ⁇ m and not less than 5 ⁇ m, and a graphite powder comprising graphite particles.
  • ⁇ 2> The positive electrode powder as described in ⁇ 1> above, wherein the average particle diameter of primary particles and aggregated particles of the primary particles in the positive electrode active material powder is from 0.1 ⁇ m to 3 ⁇ m.
  • ⁇ 4> The positive electrode powder according to any one of ⁇ 1> to ⁇ 3>, wherein the graphite particles are scaly graphite particles.
  • ⁇ 6> The positive electrode powder according to any one of ⁇ 1> to ⁇ 4>, wherein the composition of the positive electrode active material is represented by the formula (2).
  • ⁇ 8> The material according to any one of ⁇ 1> to ⁇ 7>, further containing a fibrous carbon material. Positive electrode powder.
  • Positive electrode active material powder composed of primary particles and aggregated particles of primary particles, and the particle size of 90% or more of primary particles and aggregated particles of primary particles in the powder
  • a positive electrode active material powder having a particle size of not less than 0.1 m and not more than 5 m and graphite particles, and the particle size of 90% or more of the graphite particles in the powder has the maximum value.
  • a method for producing a positive electrode powder comprising mixing graphite powder having a particle size of 0.1 to 10 m.
  • ⁇ 10> The method for producing a positive electrode powder as described in ⁇ 9>, wherein the positive electrode active material powder has a BET specific surface area of 1 m 2 / g or more and 7 m 2 / g or less.
  • ⁇ 1> The method for producing a positive electrode powder as described in any one of ⁇ 9> to ⁇ 13>, wherein a fibrous carbon material is further mixed.
  • the positive electrode powder according to any one of ⁇ 1> to ⁇ 8> or the positive electrode powder and the binder obtained by the production method according to any of ⁇ 9> to ⁇ 14> A positive electrode for a non-aqueous electrolyte secondary battery.
  • the positive electrode powder of the present invention is a positive electrode active material powder comprising primary particles and agglomerated particles of primary particles. Of the primary particles and agglomerated particles of the primary particles in the powder, 90% or more of particles A positive electrode active material powder having a particle size of 0.01 ⁇ m or more and 5 m or less, and a graphite powder comprising black lead particles, and the particle size of 90% or more of the graphite particles in the powder. And graphite powder having a maximum particle size of 0.1 or more and 10 or less.
  • the values measured from the scanning electron micrograph are used for the primary particles and the aggregated particles of the primary particles in the positive electrode active material powder. Extract arbitrarily 50 particles from the primary particles and aggregated particles of the primary particles photographed in the photograph, measure the particle size of each particle, and determine the particle size of 90% or more, that is, 45 or more particles. Is 0.1 to 5 ⁇ m, it is a positive electrode active material powder in the present invention.
  • the particles in the positive electrode active material powder mean primary particles and aggregated particles of primary particles.
  • the diameter of a circle photographed in a scanning electron micrograph may be measured and set as the above particle diameter.
  • the average value may be the above particle diameter.
  • the particle size of the graphite particles in the graphite powder is the value measured from the scanning electron micrograph as the maximum particle size. That is, 50 particles arbitrarily extracted from the graphite particles photographed in the photograph, and showing the maximum value in the particle size of each graphite particle (hereinafter sometimes referred to as the maximum diameter of the graphite particles). was measured, the maximum diameter of 90% or more or 4 5 or more graphite particles are graphite powder at 0.
  • the present invention as long as 1 mu m or more 1 0 mu m or less.
  • the diameter of the circle photographed in the scanning electron micrograph may be measured, and this may be the maximum diameter.
  • the particle size of the positive electrode active material powder and the graphite powder within the above range, a high discharge capacity and a high output at a high current rate can be obtained. It can be used as a positive electrode powder for a secondary battery.
  • Positive electrode active If the number of particles in the material powder that is smaller than 0.01 m is 10% or more, the compatibility with the no-binder is not good, and the binding property with the positive electrode current collector described later can be reduced.
  • the discharge capacity and cycle performance of the nonaqueous electrolyte secondary battery are reduced, which is not preferable.
  • the number of particles exceeding 5 m in the positive electrode active material powder is 10% or more, the resulting non-aqueous electrolyte secondary battery is not sufficient to exhibit high output at a high current rate. Therefore, it is not preferable.
  • the number of graphite particles having a maximum diameter of less than 0.1 in the graphite powder is 10% or more, the energy density of the positive electrode described later and the binding property with the positive electrode current collector during the production of the positive electrode It is not preferable in terms of operability.
  • the non-aqueous electrolyte secondary results as a result of an increase in the internal resistance value in the positive electrode described later. This is not preferable because it causes a reduction in the discharge capacity of the battery, and the battery does not have sufficient power to exhibit a high output at a high current rate.
  • the average particle size of the primary particles and the aggregated particles of the primary particles in the positive electrode active material powder should be 0.1 m or more and 3 ⁇ m or less. Yes.
  • the value measured from the above scanning electron micrograph is used as the average particle size. That is, 50 particles are arbitrarily extracted from primary particles and agglomerated particles of primary particles photographed in the photograph, each particle size is measured, and the average value is taken as the average particle size.
  • the average particle size is preferably 0.1 ⁇ m or more and 2 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.5; By setting the average particle size in the above range, it is possible to obtain a positive electrode powder for a non-aqueous electrolyte secondary battery that exhibits a higher discharge capacity and a higher output at a high current rate. wear.
  • the average value of the maximum particle size of the graphite particles in the graphite powder is 1 m or more and 6 m or less.
  • the average value is a value measured from the above scanning electron micrograph. That is, arbitrarily extract 50 graphite particles from the photograph, For each particle size, measure the maximum particle size (maximum particle size) and use the average value.
  • the average value of the maximum diameter of the graphite particles is 1 m or more and 4 m or less, so that it is possible to show higher output at a high current rate. Powder for positive electrode for non-aqueous electrolyte secondary battery It can be.
  • the graphite powder in the present invention is preferably scaly graphite particles. Due to the shape of the graphite powder, it is possible to increase the conductivity of the positive electrode described later.
  • composition of the positive electrode active material powder in the present invention include the following representative compositions, that is, the composition represented by the formula (1) and the composition represented by the formula (2).
  • x 1 and y 1 are 0.9 xl ⁇ l. 2 and 0 ⁇ y 1 ⁇ 0.5 respectively, and M 1 is C 0.
  • xl is preferably 1.0 or more and 1.1 or less, more preferably 1.0 or more and 1.05 or less.
  • y 1 is 0, 05 or more and 0.3 or less, more preferably 0.1 or more and 0.2 or less.
  • X 2 is preferably 1.0 or more and 1.1 or less, and more preferably 1.0 or more and 1.05 or less.
  • y 2 is preferably 0.4 or more and 0.8 or less, and more preferably 0.5 or more and 0.7 or less.
  • M 2 is preferably in the range of 50:50 to 20:80, and more preferably in the range of 40:60 to 30:70, with Co: Mn being a molar ratio.
  • MM 2 may be replaced with B, A l, Ga, In, Si, Ge, Sn, Mg, Sc, Y, T, within the range not impairing the effects of the present invention.
  • the crystal structure specified by powder X-ray diffraction measurement is usually a NaFeO 2 type crystal structure.
  • the positive electrode powder of the present invention may further contain a non-graphitic carbonaceous material.
  • the non-graphite carbonaceous material include carbon black and acetylene black.
  • the positive electrode powder of the present invention may further contain a fibrous carbon material.
  • the positive electrode powder of the present invention contains a fibrous carbon material
  • aZb is usually 20 to 1000.
  • the electrical conductivity is better.
  • the electrical conductivity of the fibrous carbon material is measured on a sample obtained by molding the fibrous carbon material to a density of 1.0 to 1.5 gZcm 3, and the electrical conductivity in that case is usually 1 SZ cm or more Preferably, it is 2 SZ cm or more.
  • the positive electrode active material powder of the present invention is used as a core material, and is further selected from B, A 1, Ga, In, Si, Ge, Sn, Mg, and a transition metal element on the particle surface. It may be deposited with a compound containing one or more elements. Among the above elements, one or more selected from B, A 1, Mg, Co, Cr, M n and Fe is preferable, and A 1 is more preferable from the viewpoint of operability.
  • the compound include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, organic acid salts, and mixtures thereof of the above elements. Of these, oxides, hydroxides, oxyhydroxides, carbonates or mixtures thereof are preferred.
  • the positive electrode active material powder in the present invention can be produced by firing a metal compound mixture that can be converted into a positive electrode active material powder by firing. That is, it can be produced by weighing a compound containing a corresponding metal element so as to have a predetermined composition and firing the resulting metal compound mixture.
  • a metal compound mixture that can be converted into a positive electrode active material powder by firing. That is, it can be produced by weighing a compound containing a corresponding metal element so as to have a predetermined composition and firing the resulting metal compound mixture.
  • the obtained metal compound mixture can be obtained by firing.
  • the compound containing the metal element for example, a compound containing a metal element of Li, A1, Ni, Mn, Co, or Fe, an oxide is used, or a hydroxide is used.
  • Hydroxides, carbonates, nitrates, acetates, halides, oxalates, alkoxides, etc. that can be decomposed and Z or oxidized to form oxides at high temperatures.
  • the compound containing Li, hydroxide and Z or carbonate are preferable, and as the compound containing A1, hydroxide and Z or oxide are preferable.
  • Mizusani ⁇ and Z or acid I arsenide compounds force s preferably as a compound containing a carbonate and / or oxide is preferably a compound containing M n, oxide as a compound containing C 0 Preferred are compounds containing Fe and hydroxides and / or oxide particles. In addition, a composite compound containing two or more of the above metal elements may be used as a compound containing a metal element.
  • the metal compound mixture before firing may further contain a compound containing boron.
  • the content of the compound containing boron usually, based on the total moles of metal elements excluding lithium in the metal compound mixture, 0.00001 mol 0/0 over 5 mole 0/0 or less containing organic in terms of boron You may do it.
  • the compound containing boron include boron oxide and boric acid, and boric acid is preferable.
  • the boron further contained in the metal compound mixture here may remain in the positive electrode active material powder of the present invention after firing, or may be removed by washing, evaporation, or the like.
  • the compound containing the metal element can be mixed by either dry mixing or wet mixing.
  • dry mixing apparatus examples include a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, and a dry pole mill.
  • the volume-based average particle diameter of the metal compound mixture is preferably in the range of 1 ⁇ m or more and 20 m or less.
  • the volume-based average particle size of the metal compound mixture means the particle size (D 50) seen from the fine particle side when 50% is accumulated in the volume-based cumulative particle size distribution.
  • the metal compound mixture After the metal compound mixture is compression-molded as necessary, it is fired by, for example, maintaining and firing for 2 to 30 hours in a temperature range of 70 ° C. or higher and 1220 ° or lower. Get. In firing, it is preferable to rapidly reach the holding temperature within a range where the firing container containing the metal compound mixture is not damaged. Further, as the firing atmosphere, a force depending on the composition air, oxygen, nitrogen, argon, or a force that can use a mixed gas thereof, an atmosphere containing oxygen is preferable.
  • the fired product can be pulverized using a pulverizer to obtain a positive electrode active material powder.
  • a jet mill should be used as a pulverizer. Is preferred.
  • the particles constituting the sintered product are accelerated by jet air flow and pulverized by collision between the particles. Generation of particles other than the object in the present invention can be suppressed.
  • vibration mills and dry pole mills may be used for pulverization.
  • the process power may be complicated, such as requiring further air classification operations.
  • it is more preferable to use a fluidized bed jet mill with a built-in classifier as the jet mill. Examples of the jet mill include a counter jet mill (manufactured by Hosokawa Micron Corporation, product name).
  • a positive electrode active material powder comprising the above primary particles and aggregated particles of primary particles,
  • the positive electrode powder of the present invention can be produced. Mixing can be done using equipment such as V-type mixer, W-type mixer, ribbon mixer, drum mixer, dry ball mill, etc. It is recommended to use a machine, a ribbon mixer, and a drum mixer.
  • the BET specific surface area of the positive electrode active material powder is preferably lm 2 Z g or more and 7 m 2 / g or less, more preferably 2.5 m 2 Z. g to 7 m 2 Z g, more preferably 3 m 2 Z g to 4 m 2 Z g.
  • nonaqueous positive electrode powder for electrolyte secondary batteries showing a higher output at high current rate
  • BET specific surface area of graphite powder 1 2 m 2 Z g or more 2 O mg it mosquito? preferably less, more preferably 1 9 m 2 or less 1 6 m 2 / g or more.
  • the weight ratio of the positive electrode active material powder to the graphite powder is usually 5 parts by weight or more of graphite powder with respect to 100 parts by weight of the positive electrode active material powder. Or less.
  • a non-graphitic carbonaceous material may be mixed. Examples of non-graphitic carbonaceous materials include force bon black and acetylene black. Since carbon black and acetylene black are fine particles and have a large surface area, they can be added to the positive electrode mixture described later to increase the conductivity inside the positive electrode and improve the charge / discharge efficiency and the rate characteristics. 5.
  • the graphite powder and the non-graphitic carbonaceous material may be 5 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the positive electrode active material powder.
  • a fibrous carbon material May be. Specific examples of the fibrous carbon material include graphitized carbon fiber and carbon nanotube. The carbon nanotube may be either a single wall or a multi wall. As the fibrous carbonaceous material, a commercially available product may be used after pulverizing as appropriate.
  • the pulverization may be either dry or wet.
  • Examples of the dry pulverization include ball milling, rocking mill, and planetary pole mill.
  • the mixing ratio of the fibrous carbon material is usually 0.1 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the positive electrode active material powder.
  • the positive electrode mixture of the present invention comprises the positive electrode powder or the binder obtained by the positive electrode powder or the positive electrode powder manufacturing method. That is, it is a positive electrode active material powder composed of primary particles and aggregated particles of primary particles, and the particle size of 90% or more of the primary particles and aggregated particles of the primary particles in the powder is 0. 0
  • the positive electrode active material powder and the graphite powder in the positive electrode mixture of the present invention may be the positive electrode active material powder in the present invention and the graphite powder in the present invention, respectively.
  • thermoplastic resin As the binder in the positive electrode mixture of the present invention, a thermoplastic resin can be used. Specifically, polyvinylidene fluoride (hereinafter sometimes referred to as PVDF), polytetrafluoroethylene (hereinafter referred to as PTFE). ) Ethylene tetrafluoride 'propylene hexafluoride ⁇ vinylidene fluoride copolymer, hexafluoropropylene ⁇ vinylidene fluoride copolymer, tetrafluoroethylene ⁇ perfluorovinyl ether copolymer And fluorine resins such as polyethylene and polypropylene. It is also possible to use a mixture of two or more of these.
  • a fluororesin and a polyolefin resin are used as a binder, and the ratio of the fluororesin to the positive electrode mixture is 1 to 10% by weight, the polyolefin resin It is preferable that the ratio is 0.1 to 2% by weight because a positive electrode mixture having excellent binding properties with the positive electrode current collector can be obtained.
  • organic solvents include amine solvents such as N, N-dimethylaminopropylamine and diethylenetriamine, ether solvents such as tetrahydrofuran, ketone solvents such as methyl ethyl ketone, and esters such as methyl acetate. And amide solvents such as dimethylacetamide and 1-methyl-2-pyrrolidone.
  • Examples of the method for producing the positive electrode mixture of the present invention include the following production methods. That is, a method of mixing a positive electrode powder and a binder, a method of mixing a positive electrode active material powder, a graphite powder, and a binder, and a method of mixing a positive electrode active material powder, a graphite powder, a non-graphitic carbonaceous material, and a binder.
  • the binder may be dissolved in an organic solvent.
  • the positive electrode can be produced by supporting the positive electrode mixture on a positive electrode current collector.
  • a positive electrode current collector Al, Ni, stainless steel or the like can be used, but A 1 is preferable in that it is easy to process into a thin film and is inexpensive.
  • a method of supporting the positive electrode mixture on the positive electrode current collector a method of pressure molding, or a positive electrode mixture paste-formed using an organic solvent is applied to the positive electrode current collector, dried and pressed, etc. And the method force to fix 5 'is mentioned.
  • Examples of the method for applying the positive electrode mixture to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
  • the positive electrode for nonaqueous electrolyte secondary batteries of this invention can be manufactured.
  • non-aqueous electrolyte secondary battery having the positive electrode for a non-aqueous electrolyte secondary battery of the present invention will be described by taking a lithium secondary battery as an example of the battery.
  • a lithium secondary battery is a negative electrode that is made by carrying a negative electrode mixture on a separator and a negative electrode current collector.
  • the electrode group obtained by laminating the electrode and the above-described positive electrode is housed in a battery can and then impregnated with an electrolytic solution made of an organic solvent containing an electrolyte. Can do.
  • the shape of the electrode group for example, a shape such as a cross-sectional force, a circle, an ellipse, a rectangle, a rectangle with a rounded corner, etc. when the electrode group is cut in a direction perpendicular to the winding axis is used.
  • a shape such as a cross-sectional force, a circle, an ellipse, a rectangle, a rectangle with a rounded corner, etc. when the electrode group is cut in a direction perpendicular to the winding axis is used.
  • Examples of the shape of the battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.
  • a negative electrode mixture containing a lithium ion doped / desorbable material supported on a negative electrode current collector, lithium metal or lithium alloy, etc. can be used, and lithium ion doped / dedoped.
  • Specific examples of possible materials include carbonaceous materials such as natural graphite, artificial graphite, coatas, carbon black, pyrolytic carbons, carbon fibers, and fired organic polymer compounds. It is also possible to use chalcogen compounds such as oxides and sulfides that can be doped and dedoped with lithium ions at a low potential.
  • a carbonaceous material mainly composed of graphite such as natural graphite or artificial graphite is preferred because of high potential flatness and low average discharge potential.
  • the shape of the carbonaceous material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
  • the cycle characteristics and large current discharge characteristics of the resulting battery may be improved. .
  • the negative electrode mixture may contain a binder as necessary.
  • the binder include thermoplastic resins, and specific examples include PVDF, thermoplastic polyimide, carboxymethylcellulose, polyethylene, and polypropylene.
  • the chalcogen compounds such as the above-mentioned oxides and sulfides, used as a material that can be doped with and dedoped with lithium ions contained in the negative electrode mixture are listed in the periodic table.
  • Examples include crystalline or amorphous chalcogen compounds mainly composed of Group 13, 14, and 15 elements, such as sulfides, and more specifically, amorphous materials mainly composed of stannic acid compounds. Examples thereof include chemical compounds. These can contain a carbonaceous material as a conductive material as required.
  • the negative electrode current collector of the Cu, N i, etc. may be mentioned stainless steel, that hardly makes an alloy with lithium, in terms of easily processed into a thin film, Cu force? Not preferable.
  • the method of supporting the negative electrode mixture on the negative electrode current collector is the same as in the case of the positive electrode.
  • the method is a method of pressure molding, pasted using a solvent, applied onto the negative electrode current collector, dried and pressed. Examples of the method include pressure bonding.
  • the separator for example, a material such as a porous film, a nonwoven fabric, or a woven fabric made of a material such as a polyolefin resin such as polyethylene or polypropylene, a fluorine resin, or a nitrogen-containing aromatic polymer is used. It is also possible to make a separate evening using two or more of these materials.
  • the separator include separators described in JP 2000-30686 A, JP 10-324758 A, and the like.
  • the thickness of the separator is preferably as thin as possible as long as the mechanical strength is maintained in terms of increasing the density of the volume energy of the battery and reducing the internal resistance M, more preferably about 10 to 200 / m, more preferably 10 About 30 m.
  • the electrolyte In the electrolyte, the electrolyte, L i C 10 4, L i PF 6, L i A s F 6, L i S bF 6, LI BF 4, L i CF 3 S0 3, L i N (S0 2 CF 3) had L i C (S_ ⁇ 2 CF 3) 3, L i 2 B 10 C 1 10, lower aliphatic carboxylic acid lithium salts, include lithium salts such as L i a 1 C 1 4, these Mixtures of two or more may be used as the lithium salt, among which Li PF 6 containing fluorine, Li A s F, Li SbF 6 , Li BF 4 , Li CF 3 S 0 3 , It is preferable to use one containing at least one selected from the group consisting of L i N (S 0 2 CF 3 ) 2 and L i C (S 0 2 CF 3 ) 3 .
  • examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, jetyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1 Carbonates such as 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2, 2, 3, 3-tetrafluoro Ethers such as ropropyldifluoromethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and y-ptyrolactone; nitriles such as acetonitrile and butyronitrile; N, N-dimethyl Formamide, N, N-dimethylase Amides such as amides; Carbamates such as 3-methyl-2-oxazo
  • a mixed solvent of cyclic carbonate and non-cyclic carbonate As a mixed solvent of cyclic carbonate and non-cyclic carbonate, it has a wide operating temperature range, excellent load characteristics, and is hardly decomposable even when black lead material such as natural graphite or artificial graphite is used as the negative electrode active material.
  • a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate is preferable.
  • a mixed solvent containing ethers having fluorine substituents such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyldifluoromethyl ether and dimethyl carbonate also has high current discharge characteristics. It is excellent and more preferable.
  • a solid electrolyte may be used instead of the above electrolytic solution.
  • a polymer electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
  • a so-called gel type in which a nonaqueous electrolyte solution is held in a polymer can also be used. L i 2 3 ⁇ 4—S i S 2 , L i 2 S—Ge 2 , L 1 2 S—P 2 S 5 L i 2 —B 2 S.
  • a sulfide electrolyte such as Li 2 S—S i S 2 —L i 3 P0 4 , L i 2 SS i S 2, and a sulfide-containing inorganic compound electrolyte such as L i 2 S0 4 It may be possible to increase sex.
  • a sulfide electrolyte such as Li 2 S—S i S 2 —L i 3 P0 4 , L i 2 SS i S 2, and a sulfide-containing inorganic compound electrolyte such as L i 2 S0 4 It may be possible to increase sex.
  • the present invention will be described in more detail with reference to examples.
  • a scanning electron micrograph (SEM photograph) was taken, 50 arbitrarily extracted from the graphite particles photographed in the photograph, and the particle size showing the maximum value in the particle size of each graphite particle was measured. .
  • NMP NMP
  • Nickel hydroxide manufactured by Kansai Catalytic Chemical Co., Ltd.
  • manganese oxide manufactured by high purity chemical
  • lithium carbonate manufactured by Honjo Chemical Co., Ltd.
  • cobalt oxide manufactured by Shodo Chemical Co., Ltd.
  • boric acid Yamamoto Chemical
  • This powder was placed in a tunnel-type continuous furnace and fired in air at 1040 ° C for 4 hours to obtain a fired product.
  • the fired product is coarsely pulverized with a roll crusher, and then, using a jet mill (spiral jet mill NPK100 type, manufactured by Nippon Pneumatic Co., Ltd.) under the conditions of a powder supply rate of 2 kg / h and a pressure of 4 kg / cm 2 .
  • Coarse particles were removed from the pulverized powder with a sieve having an opening of 45 m to obtain positive electrode active material powder 1.
  • 90% or more of the particles are 0.01 m or more and 5 or less. It was.
  • the average particle size was 1.
  • the BET specific surface area of the powder is 3.
  • the positive electrode active material powder 1 is used as the positive electrode active material powder, and the maximum particle diameter of 90% or more of the constituting particles is 0.1 m or more and 10 ⁇ m or less as the graphite powder.
  • the maximum particle diameter An average value of 3 m and a BET specific surface area of 18 m 2 Z g of scale-like black lead particles were used to fabricate a flat battery, and constant current and constant voltage charging and constant current under the following conditions: A charge / discharge test by discharging was performed. The results obtained are shown in Table 1. Charging / discharging conditions:
  • Nickel hydroxide manufactured by Kansai Catalytic Chemical Co., Ltd.
  • manganese oxide manufactured by high purity chemical
  • lithium carbonate manufactured by Honjo Chemical Co., Ltd.
  • cobalt oxide manufactured by Shodo Chemical Co., Ltd.
  • boric acid Yamamoto Chemical
  • This powder was placed in a tunnel-type continuous furnace and fired in air at 1040 for 4 hours to obtain a fired product.
  • the fired product was pulverized for 13 hours (peripheral speed 0.7 m / s) using a dry ball mill with 15 mm alumina balls as media, and an air classifier (Sedic Enterprise Spedic Classic Air SPC-250) was used.
  • In the SEM photograph of the positive electrode active material powder 2 it was found that 90% or more of the particles were from 0.01 ⁇ m to 5 ⁇ m.
  • the average particle size was 1.
  • the BET specific surface area of the powder was 2.3 m 2 / g.
  • the maximum particle size of 90% or more of the constituting particles as the graphite powder is from 0 ⁇ m to 10 ⁇ m, and the maximum particle size
  • a flat battery was prepared using powder composed of flaky graphite particles having an average diameter of 6 111 and a BET specific surface area of 14 m 2 Z g.
  • a constant current was obtained under the same conditions as in Example 1.
  • a charge / discharge test using constant voltage charge and constant current discharge was performed. Table 1 shows the results obtained.
  • Example 4 Example 4
  • a positive electrode active material powder 4 was obtained.
  • the result of the BET specific surface area was the same as that of Example 2.
  • a flat battery was produced in the same manner as in Example 2, and a charge / discharge test using constant current and constant voltage charging and constant current discharge was performed in the same manner as in Example 2. The same results as in Example 2 were obtained. Comparative Example 1
  • the maximum particle size of 54% of the constituting particles is 0.1 m or more and 10 ⁇ m or less.
  • a flat battery was prepared using powder made of flaky graphite particles having an average value of 13 m and a BET specific surface area of 11 m 2 / g, and was charged under the same conditions as in Example 1. Charge / discharge tests were conducted by constant current charging and constant current discharging. The results obtained are shown in Table 1. table 1
  • the battery using the positive electrode active material powder of Example 1 has a discharge current. Even if the value is increased (for example, 10 C), the discharge capacity is large, especially the high output.
  • the positive electrode powder of the present invention or the positive electrode mixture having the positive electrode powder and a binder is used in a nonaqueous electrolyte secondary battery, it exhibits a high discharge capacity and a high current rate. Therefore, the positive electrode powder of the present invention and the positive electrode mixture having the positive electrode powder and the binder can be used for a non-aqueous electrolyte secondary battery, and particularly high. It can be suitably used as a non-aqueous electrolyte secondary battery for power tools such as automobiles and power tools such as power tools that require high output at a current rate, and the present invention is extremely useful industrially. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の正極用粉末は、一次粒子および一次粒子の凝集粒子からなる正極活物質粉末であり、該粉末における一次粒子および一次粒子の凝集粒子のうち90%以上の数の粒子の粒径が0.01μm以上5μm以下である正極活物質粉末と、黒鉛粒子からなる黒鉛粉末であり、該粉末における黒鉛粒子のうち90%以上の数の粒子の粒径で、最大の値を示す粒径が0.1μm以上10μm以下である黒鉛粉末とを含有する。この正極用粉末を非水電解質二次電池に使用すると、高い放電容量を示し、かつ高い電流レートにおいて高出力を示すことが可能となる。

Description

明細書 正極用粉末および正極合剤 技術分野
本発明は正極用粉末および正極合剤に関する。 さらに詳しくは正極活物質粉末 と黒鉛粉末とを含有する正極用粉末および正極合剤に関する。 背景技術
正極活物質粉末と黒鉛粉末とを含有する正極用粉末は、 リチウム二次電池など の非水電解質二次電池に用いられている。 非水電解質二次電池は、 既に携帯電話 やノートバソコン等の電源として実用化されており、 更に自動車用途や電力貯蔵 用途などの中 .大型用途においても、 適用が試みられている。
従来の正極用粉末として、 特開平 1 1一 4 0 1 4 0号公報には平均粒径が 9 . 1 Λ m〜 2 0 . 5 μ mの正極活物質と、 平均粒径が 3 . 3 m〜 5 1 . 5 mの 黒鉛とを含有する正極用粉末が具体的に記載されている。 発明の開示
しかしながら、 従来の正極用粉末を用いて得られる非水電解質二次電池は、 そ の正極の内部抵抗値が高いためか、 高い電流レートにおける高出力を要求される 用途、 すなわち自動車用途や電動工具等のパワーツール用途においては、 十分な ものではない。 本発明の目的は、 高い放電容量を示し、 力 高い電流レートにお いて高出力を示すことが可能な非水電解質二次電池に有用な正極用粉末おょぴ該 正極用粉末とバインダ一とを有する正極合剤を提供することにある。
本発明者らは上記事情に鑑み、 種々検討した結果、 特定の正極用粉末または該 正極用粉末とバインダーとを有する正極合剤を使用して得られる非水電解質二次 電池が、 高い放電容量を示し、 かつ高い電流レートにおいて高出力を示すことが 可能であることを見出し、 本発明に至った。
すなわち本発明は、 下記の発明から構成される。
< 1 >一次粒子および一次粒子の凝集粒子からなる正極活物質粉末であり、 該粉 末における一次粒子および一次粒子の凝集粒子のうち 9 0 %以上の数の粒子の粒 径が 0. 0 1 m以上 5 μ m以下である正極活物質粉末と、黒鉛粒子からなる黒鉛 粉末であり、 該粉末における黒鉛粒子のうち 9 0%以上の数の粒子の粒径で、 最 大の値を示す粒径が 0. 1 μ m以上 1 0 μ m以下である黒鉛粉末とを含有する正 極用粉末。
< 2 >正極活物質粉末における一次粒子および一次粒子の凝集粒子の平均粒径が 0. 1 μ m以上 3 μ m以下である前記 < 1〉記載の正極用粉末。
< 3 >黒鉛粉末における黒鉛粒子の粒径で、 最大の値を示す粒径の平均値が 1 μ m以上 6 μ m以下である前記 < 1 >または < 2 >記載の正極用粉末。
< 4〉黒鉛粒子が、 鱗片状黒鉛粒子である前記 < 1 >〜く 3 >のいずれかに記載 の正極用粉末。
< 5 >正極活物質の組成が、 式 ( 1 ) で表される前記 < 1 >〜< 4 >のいずれか に記載の正極用粉末。
L ixlN i 1_ylM1 yl 02 (1)
(式 (1 ) 中、 X 1、 y 1はそれぞれ 0. 9≤ x l ≤ l . 2、 0≤ y 1≤ 0. 5 であり、 M1は C 0である。 )
< 6 >正極活物質の組成が、 式 (2) で表される前記< 1 >〜< 4 >のぃずれか に記載の正極用粉末。
L ix2N i 1.y2M2 y202 (2 )
(式 (2) 中、 X 2、 y 2はそれぞれ 0. 9≤x 2≤ 1. 2、 0. 3≤ y 2≤ 0 . 9であり、 M2は C 0および Mnである。 )
< 7 >さらに非黒鉛炭素質材料を含有する前記 < 1 >〜く 6 >のいずれかに記載 の正極用粉末。
< 8 >さらに繊維状炭素材料を含有する前記 < 1 >〜く 7 >のいずれかに記載の 正極用粉末。
く 9 >一次粒子およぴ一次粒子の凝集粒子からなる正極活物質粉末であり、 該粉 末における一次粒子およぴ一次粒子の凝集粒子のうち 9 0 %以上の数の粒子の粒 径が 0 . 0 1 以上 5 m以下である正極活物質粉末と、黒鉛粒子からなる黒鉛 粉末であり、 該粉末における黒鉛粒子のうち 9 0 %以上の数の粒子の粒径で、 最 大の値を示す粒径が 0 . 1 以上 1 0 m以下である黒鉛粉末とを混合する正 極用粉末の製造方法。
< 1 0 >正極活物質粉末の B E T比表面積が 1 m2 / g以上 7 m2 / g以下である 前記ぐ 9 >記載の正極用粉末の製造方法。
< 1 1 >黒鉛粉末の B E T比表面積が 1 2 m2 / g以上 2 0 m2 / g以下である前 記 < 9 >またはぐ 1 0 >記載の正極用粉末の製造方法。
く 1 2 >正極活物質粉末 1 0 0重量部に対して黒鉛粉末が 5重量部以上 2 0重量 部以下である前記 < 9 >〜< 1 1〉のいずれかに記載の正極用粉末の製造方法。 < 1 3 >さらに非黒鉛炭素質材料を混合する前記く 9 >〜< 1 2 >のいずれかに 記載の正極用粉末の製造方法。
< 1 >さらに繊維状炭素材料を混合する前記 < 9 >〜< 1 3 >のいずれかに記 載の正極用粉末の製造方法。
< 1 5 >前記< 1 >〜< 8 >のいずれかに記載の正極用粉末または前記 < 9 >〜 < 1 4 >のいずれかに記載の製造方法によって得られた正極用粉末とバインダー とを有する正極合剤。
く 1 6〉前記く 1〉〜< 8 >のいずれかに記載の正極用粉末または前記 < 9 >〜 く 1 4〉のいずれかに記載の製造方法によって得られた正極用粉末とバインダ一 とを有する非水電解質二次電池用正極。
く 1 7 >前記< 1 6〉記載の非水電解質二次電池用正極を有する非水電解質二次 電池。 発明を実施するための最良の形態 本発明の正極用粉末は、 一次粒子および一次粒子の凝集粒子からなる正極活物 質粉末であり、 該粉末における一次粒子およぴ一次粒子の凝集粒子のうち 9 0 % 以上の数の粒子の粒径が 0 . 0 1 μ m以上 5 m以下である正極活物質粉末と、黒 鉛粒子からなる黒鉛粉末であり、 該粉末における黒鉛粒子のうち 9 0 %以上の数 の粒子の粒径で、 最大の値を示す粒径が 0 . 1 以上 1 0 以下である黒鉛 粉末とを含有することを特徴とする。
本発明において、 正極活物質粉末における一次粒子および一次粒子の凝集粒子 の粒径は、 走査型電子顕微鏡写真から測定される値を用いる。 該写真に撮影され ている一次粒子および一次粒子の凝集粒子の粒子から任意に 5 0個抽出し、 それ ぞれの粒径を測定し、 9 0 %以上すなわち 4 5個以上の粒子の粒径が 0 . 0 1; m以上 5 μ m以下であれば本発明における正極活物質粉末である。 ここで正極活 物質粉末における粒子とは、 一次粒子および一次粒子の凝集粒子のことをいう。 なお、 これら一次粒子および一次粒子の凝集粒子力球状である場合は、 走査型電 子顕微鏡写真に撮影される円の直径を測定し、 これを上記粒径とすればよいが、 上記一次粒子および一次粒子の凝集粒子が球状以外の形状である場合は、 走査型 電子顕微鏡写真に撮影される形状の任意の数方向、 例えば最長方向と最短方向の 2方向で長さ (径) を測定し、 その平均値を上記粒径とすればよい。 また、 黒鉛 粉末における黒鉛粒子の粒径で、 最大の値を示す粒径も走査型電子顕微鏡写真か ら測定される値を用いる。 すなわち、 該写真に撮影されている黒鉛粒子から任意 に 5 0個抽出し、 それぞれの黒鉛粒子の粒径において最大の値を示す粒径 (以下 、 黒鉛粒子の最大径と呼ぶことがある。 ) を測定し、 9 0 %以上すなわち 4 5個 以上の黒鉛粒子の最大径が 0 . 1 μ m以上 1 0 μ m以下であれば本発明における 黒鉛粉末である。 なお、 黒鉛粒子が球状である場合は、 走査型電子顕微鏡写真に 撮影される円の直径を測定し、 これを上記最大径とすればよい。 本発明において は、 正極活物質粉末および黒鉛粉末における粒子の粒径を上記の範囲とすること で、 高い放電容量を示し、 かつ高い電流レートにおいて高出力を示すことが可能 である非水電解質二次電池用の正極用粉末とすることができるのである。 正極活 物質粉末における粒子で 0 . 0 1 mより小さい粒子の個数が 1 0 %以上である と、 ノ インダ一との相性が良くなく、 後述の正極集電体との結着性カ 氐下するこ とにより、 結果的に非水電解質二次電池の放電容量低下、 サイクル性低下を招く ことから好ましくない。 また、 正極活物質粉末における粒子で 5 mを超える粒 子の個数が 1 0 %以上であると、 得られる非水電解質二次電池が、 高い電流レー トにおいて髙出力を示すことが十分でないことから、 好ましくない。 また、 黒鉛 粉末における黒鉛粒子の最大径が 0 . 1 より小さい粒子の個数が 1 0 %以上 であると、 後述の正極におけるエネルギー密度の点、 正極作製時の正極集電体と の結着性等の操作性の点で好ましくない。 また、 黒鉛粉末における黒鉛粒子の最 大径が 1 0 mより大きい粒子の個数が 1 0 %以上であると、 後述の正極におけ る内部抵抗値の増加により、 結果的に非水電解質二次電池の放電容量低下を招き 、 また該電池が高い電流レートにおいて高出力を示すこと力十分でないことから 、 好ましくない。
非水電解質二次電池の放電容量をより高める意味で、 正極活物質粉末における —次粒子および一次粒子の凝集粒子の平均粒径は 0 . 1 m以上 3 μ m以下であ ることカ 子ましい。 ここで、 平均粒径は、 上記の走査型電子顕微鏡写真から測定 される値を用いる。 すなわち、 該写真に撮影されている一次粒子および一次粒子 の凝集粒子の粒子から任意に 5 0個抽出し、 それぞれの粒径を測定し、 その平均 値を平均粒径とする。 また、 平均粒径は、 0 . 1 μ m以上 2 μ m以下が好ましく 、 より好ましくは 0 . l m以上 1 . 5; m以下である。 平均粒径を上記の範囲 とすることで、 さらにより高い放電容量を示し、 高い電流レートにおいてより高 出力を示すことが可能である非水電解質二次電池用の正極用粉末とすることがで きる。
非水電解質二次電池の放電容量をより高める意味で、 黒鉛粉末における黒鉛粒 子の粒径で、 最大の値を示す粒径の平均値は 1 m以上 6 m以下であることが 好ましい。 ここで、 平均値は、 上記の走査型電子顕微鏡写真から測定される値を 用いる。 すなわち該写真に撮影されている黒鉛粒子から任意に 5 0個抽出し、 そ れぞれの粒子の粒径で、 最大の値を示す粒径 (粒子の最大径) を測定し、 その平 均値を用いる。 また、 黒鉛粒子の最大径の平均値は、 1 m以上 4 m以下とす ることで、 高い電流レートにおいてより高出力を示すことが可能である非水電解 質二次電池用の正極用粉末とすることができる。
本発明における黒鉛粉末は、 鱗片状黒鉛粒子であることが好ましい。 黒鉛粉末 の形^^鱗片状であることにより、 後述の正極において、 その導電性を高めるこ とができる。
また、 本発明における正極活物質粉末の組成としては、 以下の代表組成、 すな わち、 式 (1) で表される組成、 式 (2) で表される組成を挙げることができる o
Figure imgf000007_0001
(式 (1) 中、 x 1、 y 1はそれぞれ 0. 9 x l≤ l . 2、 0≤ y 1≤0. 5 であり、 M1は C 0である。 )
ここで、 放電容量をより高くする意味で、 x lは 1. 0以上 1. 1以下が好ま しく、 より好ましくは 1. 0以上 1. 05以下である。 また、 同様の意味で、 y 1は 0, 05以上 0. 3以下カ 子ましく、 より好ましくは 0. 1以上 0. 2以下 である。
L ix2N i1.y2M2 y202 (2)
(式 (2) 中、 X 2、 y 2はそれぞれ 0. 9≤ 2≤ 1. 2、 0. 3≤ y 2≤0 . 9であり、 M2は C 0および Mnである。 )
ここで、 放電容量をより高くする意味で、 X 2は 1. 0以上 1. 1以下が好ま しく、 より好ましくは 1. 0以上 1. 05以下である。 また、 同様の意味で、 y 2は 0. 4以上 0. 8以下が好ましく、 より好ましくは 0. 5以上 0. 7以下で ある。 また、 M2は、 C o : Mnがモル比で 50 : 50〜20 : 80の範囲である ことが好ましく、 より好ましくは 40 : 60〜30 : 70の範囲である。
また、 本発明の効果を損なわない範囲で、 上記の M M2の元素の一部を B、 A l、 G a、 I n、 S i、 G e、 S n、 Mg、 S c、 Y、 T i、 Z r、 H f 、 V 、 Nb、 Ta、 Cr、 Mo、 W、 Tc、 Fe、 Ru、 Rh、 I r、 Pd、 Cu、
Ag、 Z n等の元素で置換してもよい。
また本発明における正極活物質粉末について、 粉末 X線回折測定により特定さ れる結晶構造は、 通常、 NaFe02型結晶構造である。
また、 本発明の正極用粉末は、 さらに非黒鉛炭素質材料を含有してもよい。 非 黒鉛炭素質材料としては、 カーボンブラック、 アセチレンブラックなどを挙げる ことができる。 また、 本発明の正極用粉末は、 さらに繊維状炭素材料を含有して もよい。
本発明の正極用粉末が繊維状炭素材料を含有する場合、 繊維状炭素材料の長さ を a、 該材料の長さ方向に垂直な断面の径を bとしたとき、 aZbは、 通常 20 〜1000である。 また、 繊維状炭素材科において、 その電気伝導度は高い方が よい。 繊維状炭素材料の電気伝導度は、 繊維状炭素材料を密度を 1. 0〜1. 5 gZcm3となるように成形した試料について測定され、その場合の電気伝導度は 、 通常 1 SZ cm以上であり、 好ましくは 2 SZ cm以上である。
また、 本発明における正極活物質粉末をコア材として、 その粒子の表面に、 さ らに B, A 1 , G a, I n, S i, Ge, Sn, M gおよび遷移金属元素から選 ばれる 1種以上の元素を含有する化合物で被着させてもよい。 上記元素の中でも 、 B, A 1 , Mg, C o, Cr, M nおよび F eから選ばれる 1種以上が好まし く、 操作性の観点から A 1がより好ましい。 化合物としては、 例えば上記元素の 酸化物、 水酸化物、 ォキシ水酸化物、 炭酸塩、 硝酸塩、 有機酸塩またはこれらの 混合物が挙げられる。 中でも、 酸化物、 水酸化物、 ォキシ水酸化物、 炭酸塩また はこれらの混合物が好ましい。
次に本発明における正極活物質粉末を製造する方法について説明する。
本発明における正極活物質粉末は、 焼成により正極活物質粉末となり得る金属 化合物混合物を焼成することにより製造することができる。 すなわち、 対-応する 金属元素を含有する化合物を、 所定の組成となるように秤量し、 混合した後に得 られる金属化合物混合物を焼成することにより製造することができる。 例えば、 好ましい組成の一つである L i丄 08 [N i 0.35Mn0.44 C o0.21] 02で表される 複合酸ィ匕物は、 水酸ィ匕リチウム、 三酸化二ニッケル、 炭酸マンガン、 酸化コバル トを L i : N i : Mn: C 0のモル比が 1. 08 : 0. 35 : 0. 44 : 0. 2 1となるように枰量し、 混合した後に得られる金属化合物混合物を焼成すること により得ることができる。
前記の金属元素を含有する化合物としては、 例えば L i、 A 1、 N i、 Mn、 Co、 F eの金属元素を含有する化合物で、 酸ィ匕物を用いるか、 または、 水酸ィ匕 物、 ォキシ水酸化物、 炭酸塩、 硝酸塩、 酢酸塩、 ハロゲン化物、 シユウ酸塩、 ァ ルコキシドなど高温で分解および Zまたは酸化して酸化物になり得るものを用い ることができる。 これらの中でも、 L iを含有する化合物としては水酸ィ匕物およ び Zまたは炭酸塩が好ましく、 A 1を含有する化合物としては水酸化物および Z または酸ィ匕物が好ましく、 N iを含有する化合物としては水酸ィ匕物および Zまた は酸ィヒ物力 s好ましく、 M nを含有する化合物としては炭酸塩および/または酸化 物が好ましく、 C 0を含有する化合物としては酸化物およぴ/または水酸化物が 好ましく、 F eを含有する化合物としては水酸化物および/または酸化物カ 子ま しい。 また、 上記の金属元素の 2種以上を含有する複合化合物を、 金属元素を含 有する化合物として用いてもよい。
また、 正極活物質粉末の結晶性を高めるため、 焼成前の前記の金属化合物混合 物が、 さらにホウ素を含有する化合物を含有していてもよい。 ホウ素を含有する 化合物の含有量としては、 通常、 前記金属化合物混合物中のリチウムを除く金属 元素の総モルに対して、 ホウ素換算で 0. 00001モル0 /0以上 5モル0 /0以下含 有していてもよい。 好ましくは、 ホウ素換算で 0. 0001モル0 /0以上 3モル0 /0 以下である。 ホウ素を含有する化合物としては、 酸化ホウ素、 ホウ酸が挙げられ 、 好ましくはホウ酸である。 また、 ここで金属化合物混合物にさらに含有された ホウ素は、 焼成後の本発明の正極活物質粉末に残留していてもよいし、 洗浄、 蒸 発等により除去されていてもよい。
前記金属元素を含有する化合物の混合は、 乾式混合、 湿式混合のいずれによつ てもよいが、 より簡便な乾式混合が好ましく、 乾式混合装置としては、 V型混合 機、 W型混合機、 リボン混合機、 ドラムミキサー、 乾式ポールミル等によって行 うことができる。
また、 焼成時の固相反応を促進させる観点から、 金属化合物混合物の体積基準 の平均粒径は、 1 μ m以上 2 0 m以下の範囲の値であることが好ましい。 ここ で、 金属化合物混合物の体積基準の平均粒径は、 体積基準の累積粒度分布に於い て、 5 0 %累積時の微小粒子側から見た粒径 (D 5 0 ) のことを意味し、 レーザ 一回折散乱法粒度分布測定装置により測定される。
前記金属化合物混合物を、 必要に応じて圧縮成形した後、 例えば、 7 0 0 °C以 上 1 2 0 0 1以下の温度範囲にて、 2〜3 0時間保持して焼成することにより焼 成品を得る。 焼成の際には、 金属化合物混合物を入れた焼成容器が破損しない範 囲で、 急速に保持温度まで到達させることが好ましい。 また焼成の雰囲気として は、 組成にもよる力 空気、 酸素、 窒素、 アルゴンまたはそれらの混合ガスを用 いることができる力 酸素が含まれている雰囲気が好ましい。
次に焼成品を、 粉砕機を用いて粉砕して、 正極活物質粉末を得ることができる 。 正極活物質粉末における一次粒子および一次粒子の凝集粒子のうち 9 0 %以上 の粒子の粒径を 0 . 0 1 m以上 5 m以下とする観点で、粉砕機としては、 ジェ ッ トミルを用いることが好ましい。 ジヱットミルの場合、 ジェッ ト気流により焼 成物を構成する粒子を加速させ粒子同士の衝突により粉砕を行い、 衝突による結 晶構造の歪みが少なく、 また短時間での粉砕が容易であることから、 本発明にお ける目的以外の粒子の発生が抑えることができる。 ジェッ トミルに換えて、 振動 ミルや乾式ポールミルを用いて、 粉砕してもよレ、が、 その際には、 さらに風力分 級操作を要する等、 工程力複雑になる場合がある。 また、 ジェッ トミルとして、 分級機が内蔵された流動層式ジエツ トミルを用いることがより好ましい。 該ジェ ッ トミルとしては、 カウンタジェッ トミル (ホソカワミクロン株式会社製、 製品 名) を挙げることができる。
上記の一次粒子およぴ一次粒子の凝集粒子からなる正極活物質粉末であり、 該 粉末における一次粒子および一次粒子の凝集粒子のうち 9 0 %以上の数の粒子の 粒径が 0 . 0 1 m以上 5 μ m以下である正極活物質粉末と、黒鉛粒子からなる黒 鉛粉末であり、 該粉末における黒鉛粒子のうち 9 0 %以上の数の粒子の粒径で、 最大の値を示す粒径が 0 . 1 μ m以上 1 0 μ m以下である黒鉛粉末とを混合する ことにより、 本発明の正極用粉末を製造することができる。 混合は、 V型混合機 、 W型混合機、 リボン混合機、 ドラムミキサー、 乾式ボールミル等の装置を用い て行うことができる力?、 粉碎を進行させない観点で、 V型混合機、 W型混合機、 リボン混合機、 ドラムミキサーを用いることカ 子ましい。
正極活物質粉末の保存特性、 操作性の点から、 正極活物質粉末の B E T比表面 積は l m2Z g以上 7 m2/ g以下であることが好ましく、 より好ましくは 2 . 5 m2Z g以上 7 m2Z g以下、 さらにより好ましくは 3 m2Z g以上 4 m2Z g以下 である。
高い電流レートにおいてより高出力を示すこと力 ?可能である非水電解質二次電 池用の正極用粉末とする意味で、黒鉛粉末の B E T比表面積は、 1 2 m2Z g以上 2 O m g以下であることカ?好ましく、より好ましくは 1 6 m2/ g以上 1 9 m2 以下である。
また、 本発明の正極用粉末の製造において、 正極活物質粉末と黒鉛粉末の重量 比としては、 通常、 正極活物質粉末 1 0 0重量部に対して黒鉛粉末が 5重量部以 上 2 0重量部以下である。 また、 さらに非黒鉛炭素質材料を混合してもよい。 非 黒鉛炭素質材料としては、 力一ボンブラック、 アセチレンブラックなどを挙げる ことが'できる。 カーボンブラックやアセチレンブラックは、 微粒で表面積が大き いため、 後述の正極合剤中に添加することにより正極内部の導電性を高め、 充放 電効率及ぴレ一ト特性を向上させることができる力5、 多く入れすぎるとバインダ —による正極合剤と後述の正極集電体との結着性を低下させ、 かえって内部抵抗 を増加させる原因となる。 よって、 非黒鉛炭素質材料を混合する際には、 正極活 物質粉末 1 0 0重量部に対して、 黒鉛粉末および非黒鉛炭素質材料が 5重量部以 上 2 0重量部以下であることが好ましい。 また、 さらに繊維状炭素材料を混合し てもよい。 繊維状炭素材料として、 具体的には、 黒鉛化炭素繊維、 カーボンナノ チューブを挙げることができる。 カーボンナノチューブは、 シングルウォール、 マルチウォールのいずれでもよい。 繊維状炭素材科は、 市販されているものを、 適宜、 粉碎して用いてもよい。 粉砕は、 乾式、 湿式のいずれによってもよく、 乾 式粉砕としては、 ボールミル、 ロッキングミル、 遊星ポールミルによる粉砕が挙 げられ、 湿式粉砕としては、 ボールミル、 デイスパーマッ トによる粉砕が挙げら れる。 繊維状炭素材料を混合する際の割合は、 正極活物質粉末 1 0 0重量部に対 して、 通常、 0 . 1重量部以上 1 0重量部以下である。
次に、 本発明の正極合剤について説明する。 本発明の正極合剤は、 上記の正極 用粉末または上記の正極用粉末の製造方法によって得られた正極用粉末とバイン ダ一とを有することを特徴とする。 すなわち、 一次粒子および一次粒子の凝集粒 子からなる正極活物質粉末であり、 該粉末における一次粒子およぴ一次粒子の凝 集粒子のうち 9 0 %以上の数の粒子の粒径が 0 . 0 1 μ m以上 5 μ m以下である正 極活物質粉末と、 黒鉛粒子からなる黒鉛粉末であり、 該粉末における黒鉛粒子の うち 9 0 %以上の数の粒子の粒径で、 最大の値を示す粒径が 0 . 1 μ m以上 1 0 μ m以下である黒鉛粉末とバインダ一と有することを特徴とする。 本発明の正極 合剤における正極活物質粉末および黒鉛粉末は、 それぞれ上記の本発明における 正極活物質粉末およぴ上記の本発明における黒鉛粉末であればよい。
本発明の正極合剤におけるバインダーとしては、 熱可塑性樹脂を用いることが でき、 具体的には、 ポリフッ化ビニリデン (以下、 P V D Fということがある。 ) 、 ポリテトラフルォロエチレン (以下、 P T F Eということがある。 ) 、 四フ ッ化エチレン '六フッ化プロピレン · フッ化ビニリデン系共重合体、 六フッ化プ ロピレン · フッ化ビニリデン系共重合体、 四フッ化工チレン ·パーフルォロビニ ルエーテル系共重合体などのフッ素樹脂、 ポリエチレン、 ポリプロピレンなどの ポリオレフイン樹脂等が挙げられる。 また、 これらの二種以上を混合して用いて もよレ 。 また、 バインダーとしてフッ素樹脂およびポリオレフイン樹脂を用い、 正極合剤に対する該フッ素樹脂の割合が 1〜 1 0重量%、 該ポリオレフィン樹脂 の割合が 0 . 1〜2重量%となるように含有させることによって、 正極集電体と の結着性に優れた正極合剤を得ることができるので好ましい。
また、 バインダーは有機溶媒に溶解されていてもよい。 このとき有機溶媒とし ては、 N, N—ジメチルァミノプロピルァミン、 ジエチレントリアミン等のアミ ン系溶媒、 テトラヒドロフラン等のエーテル系溶媒、 メチルェチルケトン等のケ トン系溶媒、 酢酸メチル等のエステル系溶媒、 ジメチルァセトアミ ド、 1—メチ ルー 2—ピロリ ドン等のアミ ド系溶媒等が挙げられる。
本発明の正極合剤の製造方法としては、 次の製造方法を挙げることができる。 すなわち、 正極用粉末とバインダーとを混合する方法、 正極活物質粉末と黒鉛粉 末とバインダーとを混合する方法、 正極活物質粉末と黒鉛粉末と非黒鉛炭素質材 料とバインダーとを混合する方法、 正極活物質粉末と黒鉛粉末と繊維状炭素材料 とバインダーとを混合する方法、 正極活物質粉末と黒鉛粉末と非黒鉛炭素質材料 と繊維状炭素材料とバインダ一とを混合する方法を挙げることができる。 バイン ダ一は有機溶媒に溶解されていてもよい。
次に、 本発明の非水電解質二次電池用正極を製造する方法について説明する。 該正極は、 上記の正極合剤を正極集電体に担持させて製造することができる。 前記正極集電体としては、 A l、 N i、 ステンレスなどを用いることができる が、 薄膜に加工しやすく、 安価であるという点で A 1が好ましい。 正極集電体に 正極合剤を担持させる方法としては、 加圧成型する方法、 または有機溶媒を用い てペースト化された正極合剤を、 正極集電体に塗布して、 乾燥後プレスするなど して固着する方法力5'挙げられる。 正極合剤を正極集電体に塗布する方法としては 、 例えば、 スリッ トダイ塗工法、 スクリーン塗工法、 カーテン塗工法、 ナイフ塗 工法、 グラビア塗工法、 静電スプレー法等が挙げられる。 以上に挙げた方法によ り、 本発明の非水電解質二次電池用正極を製造することができる。
次に、 本発明の非水電解質二次電池用正極を有する非水電解質二次電池につい て、 該電池の例としてリチウム二次電池を挙げて説明する。
リチウム二次電池は、 セパレータ、 負極集電体に負極合剤が担持されてなる負 極、 および上述の正極を、 積層おょぴ卷回することにより得られる電極群を、 電 池缶内に収納した後、 電解質を含有する有機溶媒からなる電解液を含浸させて製 造することができる。
前記の電極群の形 としては、 例えば、 該電極群を卷回の軸と垂直方向に切断 したときの断面力、 円、 楕円、 長方形、 角がとれたような長方形等となるような 形状を挙げることができる。 また、 電池の形状としては、 例えば、 ペーパー型、 コイン型、 円筒型、 角型などの形状を挙げることができる。
前記負極としては、 リチウムイオンをドープ ·脱ドーブ可能な材料を含む負極 合剤を負極集電体に担持したもの、 リチウム金属またはリチウム合金などを用い ることができ、 リチウムイオンをドープ ·脱ドーブ可能な材料としては、 具体的 には、 天然黒鉛、 人造黒鉛、 コータス類、 カーボンブラック、 熱分解炭素類、 炭 素繊維、 有機高分子化合物焼成体などの炭素質材料が挙げられ、 正極よりも低い 電位でリチウムイオンのドープ '脱ドープを行うことができる酸化物、 硫化物等 のカルコゲン化合物を用いることもできる。 炭素質材料としては、 電位平坦性が 高い点、 平均放電電位が低い点などから、 天然黒鉛、 人造黒鉛等の黒鉛を主成分 とする炭素質材料が好ましい。 炭素質材料の形状としては、 例えば天然黒鉛のよ うな薄片状、 メソカーボンマイクロビーズのような球状、 黒鉛化炭素繊維のよう な繊維状、 または微粉末の凝集体などのいずれでもよい。
前記の電解液力 s後述のエチレンカーボネートを含有しない場合において、 ポリ エチレンカーボネ一トを含有した負極合剤を用いると、 得られる電池のサイクル 特性と大電流放電特性が向上することがあり好ましい。
前記の負極合剤は、 必要に応じて、 バインダーを含有してもよい。 バインダー としては、 熱可塑性樹脂を挙げることができ、 具体的には、 P V D F、 熱可塑性 ポリイミ ド、 カルボキシメチルセルロース、 ポリエチレン、 ポリプロピレンなど を挙げることができる。
また負極合剤に含有されるリチウムイオンをドープ '脱ドーブ可能な材料とし て用いられる前記の酸ィ匕物、 硫化物等のカルコゲン化合物としては、 周期率表の 13、 14、 15族の元素を主体とした結晶質または非晶質の酸ィヒ物、 硫化物等 のカルコゲン化合物が挙げられ、 具体的には、 スズ酸ィ匕物を主体とした非晶質化 合物等が挙げられる。 これらは必要に応じて導電材としての炭素質材料を含有す ることができる。
前記の負極集電体としては、 Cu、 N i、 ステンレスなどを挙げることができ 、 リチウムと合金を作り難い点、 薄膜に加工しやすいという点で、 Cu力 ?好まし い。
該負極集電体に負極合剤を担持させる方法としては、 正極の場合と同様であり 、 加圧成型による方法、 溶媒などを用いてペースト化し負極集電体上に塗布、 乾 燥後プレスし圧着する方法等が挙げられる。
前記セパレー夕としては、 例えば、 ポリエチレン、 ポリプロピレンなどのポリ ォレフィン樹脂、 フッ素樹脂、 含窒素芳香族重合体などの材質からなる、 多孔質 膜、 不織布、 織布などの形態を有する材料を用いることができ、 また、 これらの 材質を 2種以上用いたセパレー夕としてもよい。 該セパレーターとしては、 例え ば特開 2000— 30686号公報、 特開平 10— 324758号公報等に記載 のセパレータを挙げることができる。 該セパレータの厚みは電池の体積ェネルギ 一密度が上がり、 内部抵抗力 M、さくなるという点で、 機械的強度が保たれる限り 薄いほど好ましく、 10〜200 / m程度が好ましく、 より好ましくは 10〜3 0 m程度である。
前記電解液において、 電解質としては、 L i C 104、 L i P F6、 L i A s F6 、 L i S bF6、 L I BF4、 L i CF3S03、 L i N (S02CF3)い L i C ( S〇2CF3) 3、 L i2B10C 110、 低級脂肪族カルボン酸リチウム塩、 L i A 1 C 14などのリチウム塩が挙げられ、これらの 2種以上の混合物を使用してもよい リチウム塩として、 これらの中でもフッ素を含む L i P F6、 L i A s Fい L i SbF6、 L i BF4、 L i CF3S〇3、 L i N ( S 02 C F3) 2および L i C ( S02CF3)3からなる群から選ばれた少なくとも 1種を含むものを用いることが 好ましい。 また前記電解液において、 有機溶媒としては、 例えばプロピレンカーボネート 、 エチレンカーボネート、 ジメチルカーボネート、 ジェチルカーポネート、 ェチ ルメチルカーポネート、 4一トリフルォロメチルー 1, 3—ジォキソラン _ 2— オン、 1, 2—ジ (メ トキシカルポニルォキシ) ェタンなどのカーボネート類; 1, 2ージメ トキシエタン、 1 , 3—ジメ トキシプロパン、 ペンタフルォロプロ ピルメチルエーテル、 2, 2 , 3, 3ーテトラフルォロプロピルジフルォロメチ ルエーテル、 テトラヒドロフラン、 2—メチルテトラヒドロフランなどのエーテ ル類;ギ酸メチル、 酢酸メチル、 y—プチロラクトンなどのエステル類; ァセト 二トリル、 ブチロニトリルなどの二トリル類; N, N—ジメチルホルムアミ ド、 N, N—ジメチルァセトアミ ドなどのアミ ド類; 3—メチルー 2—ォキサゾリ ド ンなどのカーバメート類;スルホラン、 ジメチルスルホキシド、 1, 3—プロパ ンサルトンなどの含硫黄化合物、 または上記の有機溶媒にさらにフッ素置換基を 導入したものを用いることができる力、 通常はこれらのうちの二種以上を混合し て用いる。 中でもカーボネート類を含む混合溶媒力 子ましく、 環^!犬カーボネート と非環 ¾ ^カーボネート、 または環;!犬カーボネートとエーテル類の混合溶媒がさら に好ましい。
環状カーボネートと非環状カーボネートの混合溶媒としては、 動作温度範囲が 広く、 負荷特性に優れ、 かつ負極の活物質として天然黒鉛、 人造黒鉛等の黒铅材 料を用いた場合でも難分解性であるという点で、 エチレンカーポネ一ト、 ジメチ ルカーボネートおよびェチルメチルカーボネートを含む混合溶媒が好ましい。 また、特に優れた安全性向上効果力 s得られる点で、 L i P F6等のフッ素を含む リチウム塩およびフッ素置換基を有する有機溶媒を含む電解液を用いることが好 ましい。 ペンタフルォロプロピルメチルエーテル、 2, 2, 3 , 3—テトラフル ォロプロピルジフルォロメチルエーテル等のフッ素置換基を有するエーテル類と ジメチルカーボネートとを含む混合溶媒は、 大電流放電特性にも優れており、 さ らに好ましい。
また、 上記の電解液の代わりに固体電解質を用いてもよい。 固体電解質としては、 例えばポリエチレンオキサイド系の高分子化合物、 ポリ オルガノシロキサン鎖もしくはポリオキシアルキレン鎖の少なくとも一種以上を 含む高分子化合物などの高分子電解質を用いることができる。 また、 高分子に非 水電解質溶液を保持させた、 いわゆるゲルタイプのものを用いることもできる。 また L i2¾— S i S2、 L i2S— Ge 2、 L 12 S— P2 S5 L i2 — B2S。 などの硫化物電解質、 または L i2S— S i S2— L i3P04、 L i2 S-S i S2 一 L i2S04などの硫化物を含む無機化合物電解質を用いると、 安全性をより高 めることができることがある。 以下、 本発明を実施例によりさらに詳細に説明する。
( 1 ) 正極活物質粉末の粒子の粒径測定
走査型電子顕微鏡写真 (SEM写真) を撮影し、 該写真に撮影されている一次 粒子および一次粒子の凝集粒子の粒子から任意に 50個抽出し、 それぞれの粒径 を測定した。
(2) 黒鉛粉末の粒子の粒径の最大値の測定
走査型電子顕微鏡写真 (SEM写真) を撮影し、 該写真に撮影されている黒鉛 粒子から任意に 50個抽出し、 それぞれの黒鉛粒子の粒径において最大の値を示 ' す粒径を測定した。
( 3 ) 正極活物質粉末及び黒鉛粉末の B E T比表面積の測定
粉末 1 gを窒素気流中 150 t、 15分間乾燥した後、 マイクロメリティック ス社製フローソープ I 12300を用いて測定した。
(4) 充放電試験用の平板型電池の作製
正極活物質粉末と黒鉛粉末とアセチレンブラックとバインダーとしての P V D • Fの 1—メチル一2—ピロリ ドン (以下、 NMPとすることがある) 溶液とを、 正極活物質粉末:黒鉛粉末:アセチレンブラック : PVDFが重量比で 87 : 9 : 1 : 3となるように混合 ·混練することによりペースト状正極合剤を得て、 正 極集電体となる厚さ 20 mの A 1箔に該正極合剤を塗布して、 60 で熱風乾 燥機にて 1時間乾燥後、 50 で 8時間真空乾燥を行い、 ロールプレスにて圧密 化処理を行い、 1. 5 cmX2 cmのサイズに切り出し正極を得た。 得られた正 極の重量を測定し、 正極の重量から A 1箔の重量を減じ、 正極合剤重量を算出し 、 さらに、 上記のペースト状正極合剤の重量比から正極活物質粉末重量を算出し た。
得られた正極と、 電解液としてエチレンカーボネート (以下、 ECということ がある。 ) とジメチルカ一ボネート (以下、 DMCということがある。 ) とェチ ルメチルカーボネート (以下、 EMCということがある。 ) との 30 : 35 : 3 5 (体積比) 混合液に L i P F6を 1モル Zリッ トルとなるように溶解したもの ( 以下、 L i P F6/E C + DMC + EMCと表すことがある。 ) と、 セパレータと してポリエチレン多孔質膜と、 また対極および参照極電極として金属リチウムと を用い、 これらを組み合わせて平板型電池を作製した。 実施例 1
(1) 正極活物質粉末の合成
水酸化ニッケル (関西触媒化学株式会社製) 、 酸化マンガン (高純度化学製) 、 炭酸リチウム (本荘ケミカル株式会社製) 、 酸化コバルト (正同化学社製) 、 ホウ酸 (米山化学) を各元素のモル比が L i : N i :Mn : Co : B=l. 07 : 0. 35 : 0. 44 : 0. 21 : 0. 03となるように秤取した後、 15 mm のアルミナボールをメディアとした乾式ボールミルにより 4時間 (周速 0. 7 m/s) 粉砕混合し粉体を得た。 この粉体をトンネル型の連続炉に入れ、 空気中 にて 1040°Cで 4時間保持して焼成し、 焼成品を得た。 該焼成品をロールクラ ッシヤーにて粗粉砕を行った後、 ジェットミル (日本ニューマチック社製スパイ ラルジエツ トミル NPK100型) を用いて、 粉末供給量 2 k g/h、 圧力 4 k g/cm2の条件で本粉砕し、粉砕粉末を得た。該粉砕粉末を 45 mの目開きの 篩にて粗粒子を除去し、 正極活物質粉末 1を得た。 正極活物質粉末 1の SEM写 真において、粒子の 90%以上が0.01 m以上 5 以下であることがわかつ た。 また、 平均粒径は 1. であった。 また、 粉末の BET比表面積は 3.
3m2Zgであった。
(2) リチウム二次電池の充放電性能評価
正極活物質粉末として、 正極活物質粉末 1を用いて、 黒鉛粉末として、 構成す る粒子のうち 90 %以上の粒子の最大径が 0. 1 m以上 10 μ m以下であり、 粒子の最大径の平均値が 3 mであり、 B E T比表面積が 18 m2 Z gの鱗片状黒 鉛粒子からなる粉末を用いて、 平板型電池を作製し、 以下の条件で定電流定電圧 充電、 定電流放電による充放電試験を実施した。 得られた結果を表 1に示す。 充放電条件:
正極活物質単位重量当りの電流値を l C=150mAZgとして、 上記により 得られた正極活物質粉末重量を乗ずることにより、 1 Cの電流値を算出する。 充電は、 充電最大電圧 4. 3 V、 充電時間 8時間、 充電電流 0. 2 Cの条件で 行い、 放電は、 放電最小電圧 3. 0¥、 放電電流0. 2C、 1C、 5C、 10C の条件で行った。 尚、 それぞれの放電試験前には同じ条件で充電を行った。 実施例 2
(1) 正極活物質粉末の合成
水酸化ニッケル (関西触媒化学株式会社製) 、 酸化マンガン (高純度化学製) 、 炭酸リチウム (本荘ケミカル株式会社製) 、 酸化コバルト (正同化学社製) 、 ホウ酸 (米山化学) を各元素のモル比が L i : N i :Mn : Co : B=l. 08 : 0. 35 : 0. 44 : 0. 21 : 0. 03となるように秤取した後、 15 mm のアルミナボールをメディアとした乾式ポールミルにより 4時間 (周速 0. 7 m/s) 粉砕混合し粉体を得た。 この粉体をトンネル型の連続炉に入れ、 空気中 にて 1040でで 4時間保持して焼成し、 焼成品を得た。 該焼成品を 15mm のアルミナボールをメディアとした乾式ボールミルにより 13時間 (周速 0. 7 m/ s ) 粉砕し、 風力分級機 (株式会社セィシン企業製スぺディッククラッシフ アイァー SPC—250) を用いて、粉末供給量 1 k g/h、風量 2 OmVm i n、 ローター回転数 2 0 0 0 r p mの条件で風力分級を行い、 粗大粒子を除去し 、 正極活物質粉末 2を得た。 該正極活物質粉末 2の S EM写真において、 粒子の 9 0 %以上が 0. 0 1 ^ m以上 5 μ m以下であることがわかつた。また、平均粒径 は 1. であった。 また、 粉末の BET比表面積は 2. 3 m2/gであった。 (2) リチウム二次電池の充放電性能評価
正極活物質粉末として正極活物質粉末 2を用いて、 黒鉛粉末として、 構成する 粒子のうち 9 0 %以上の粒子の最大径が 0. μ m以上 1 0 μ m以下であり、 粒 子の最大径の平均値が 6 111であり、 BET比表面積が 1 4 m2 Z gの鱗片状黒鉛 粒子からなる粉末を用いて、 平板型電池を作製し、 実施例 1と同一の条件にて定 電流定電圧充電、 定電流放電による充放電試験を実施した。 得られた結果を表 1 に示す。 実施例 3
各元素のモル比が L i : N i : Mn : C o : B= l . 1 0 : 0. 3 6 : 0. 4 2 : 0. 2 1 : 0. 0 3となるようにした以外は、 実施例 1と同様にして、 正極 活物質粉末 3を得た。 正極活物質粉末 3の S E M写真の結果、 B E T比表面積の 結果は、 実施例 1と同様であった。 正極活物質粉末 3を用いて、 実施例 1と同様 にして、 平板型電池を作製し、 実施例 1と同様に.して、 定電流定電圧充電、 定電 流放電による充放電試験を実施したところ、 実施例 1と同様の結果が得られた。 実施例 4
各元素のモル比が L i : N i : Mn : C o : B= l . 1 1 : 0. 3 6 : 0. 4 2 : 0. 2 1 : 0. り 3となるようにした以外は、 実施例 2と同様にして、 正極 活物質粉末 4を得た。 正極活物質粉末 4の S E M写真の結果、 B E T比表面積の 結果は、 実施例 2と同様であった。 正極活物質粉末 4を用いて、 実施例 2と同様 にして、 平板型電池を作製し、 実施例 2と同様にして、 定電流定電圧充電、 定電 流放電による充放電試験を実施したところ、 実施例 2と同様の結果が得られた。 比較例 1
リチゥム二次電池の充放電性能評価
正極活物質粉末として正極活物質粉末 2を用いて、 黒鉛粉末として、 構成する 粒子のうち 5 4 %の粒子の最大径が 0 . 1 m以上 1 0 μ m以下であり、 粒子の 最大径の平均値が 1 3 mであり、 B E T比表面積が 1 1 m2 / gの鱗片状黒鉛粒 子からなる粉末を用いて、 平板型電池を作製し、 実施例 1と同一の条件にて定電 流定電圧充電、 定電流放電による充放電試験を実施した。 得られた結果を表 1に 示す。 表 1
Figure imgf000021_0001
表 1に示される実施例 1、 実施例 2、 比較例 1における放電容量のデータと 0 ' . 2 C対レート特性のデータから、 実施例 1の正極活物質粉末を用いた電池は、 放電電流を高くしても (例えば 1 0 C) 、 放電容量が大きく、 特に高出力である こと力 Sわ力る。 本発明の正極用粉末または該正極用粉末とバインダーとを有する正極合剤を非 水電解質二次電池に使用すると、 高い放電容量を示し、 力 高い電流レートにお いて高出力を示すことから、 本発明の正極用粉末およぴ該正極用粉末とバインダ 一とを有する正極合剤は、 非水電解質二次電池用として使用することができ、 特 に、 高い電流レートにおける高出力を要求される用途、 すなわち自動車用途ゃ電 動工具等のパワーツール用途の非水電解質二次電池用として好適に使用すること ができ、 本発明は工業的に極めて有用である。

Claims

請求の範囲
1. 一次粒子およぴ一次粒子の凝集粒子からなる正極活物質粉末であり、 該粉 末における一次粒子および一次粒子の凝集粒子のうち 90 %以上の数の粒子の粒 径が 0, 01 Λ ΠΙ以上 5 111以下である正極活物質粉末と、黒鉛粒子からなる黒鉛 粉末であり、 該粉末における黒鉛粒子のうち 90%以上の数の粒子の粒径で、 最 大の値を示す粒径が 0. 1 μ m以上 10 μ m以下である黒鉛粉末とを含有する正 極用粉末。
2. 正極活物質粉末における一次粒子および一次粒子の凝集粒子の平均粒径が 0. 1 μ m以上 3 μ m以下である請求項 1記載の正極用粉末。
3. 黒鉛粉末における黒鉛粒子の粒径で、 最大の値を示す粒径の平均値が 1 μ m以上 6 μ m以下である請求項 1または 2記載の正極用粉末。
4. 黒鉛粒子が、 鱗片状黒鉛粒子である請求項 1〜 3のいずれかに記載の正極 用粉末。
5. 正極活物質の組成が、 式 ( 1 ) で表される請求項 1〜 4のいずれかに記載 の正極用粉末。
L ixlN i1.ylM1 yl02 (1)
(式 ( 1 ) 中、 x 1、 y 1はそれぞれ 0. 9≤ 1≤ 1. 2、 0≤y 1≤0. 5 であり、 M1は C 0である。 )
6. 正極活物質の組成が、 式 ( 2 ) で表される請求項 1〜 4のいずれかに記載 の正極用粉末。
L ix2N i1.y2M2 y202 (2 ) (式 (2) 中、 x 2、 y 2はそれぞれ 0. 9≤x 2≤ 1. 2、 0. 3≤y 2≤0 . 9であり、 M2は C oおよび Mnである。 )
7. さらに非黒鉛炭素質材料を含有する請求項 1〜 6のいずれかに記載の正極 用粉末。
8. さらに繊維状炭素材料を含有する請求項 1〜 7のいずれかに記載の正極用 不刀、末。
9. 一次粒子およぴ一次粒子の凝集粒子からなる正極活物質粉末であり、 該粉 末における一次粒子および一次粒子の凝集粒子のうち 90 %以上の数の粒子の粒 径が 0.01 m以上 5 / m以下である正極活物質粉末と、黒鉛粒子からなる黒鉛 粉末であり、 該粉末における黒鉛粒子のうち 90 %以上の数の粒子の粒径で、 最 大の値を示す粒径が 0. 1 μ m以上 10 μ m以下である黒鉛粉末とを混合する正 極用粉末の製造方法。
10. 正極活物質粉末の B E T比表面積が 1 m2 Z g以上 7 m2 / g以下である 請求項 9記載の正極用粉末の製造方法。
1 1. 黒鉛粉末の BET比表面積が 12 m2 Z g以上 20 m2 / g以下である請 求項 9または 10記載の正極用粉末の製造方法。
12. 正極活物質粉末 100重量部に対して黒鉛粉末が 5重量部以上 20重量 部以下である請求項 9〜 1 1のいずれかに記載の正極用粉末の製造方法。
13. さらに非黒鉛炭素質材料を混合する請求項 9〜 12のいずれかに記載の 正極用粉末の製造方法。
1 4 . さらに繊維状炭素材料を混合する請求項 9〜 1 3のいずれかに記載の正 極用粉末の製造方法。
1 5 . 請求項 1〜 8のいずれかに記載の正極用粉末または請求項 9〜 1 4のい ずれかに記載の製造方法によって得られた正極用粉末とバインダーとを有する正 極合剤。
1 6 . 請求項 1〜 8のいずれかに記載の正極用粉末または請求項 9〜 1 4のい ずれかに記載の製造方法によって得られた正極用粉末とバイングーとを有する非 水電解質二次電池用正極。
1 7 . 請求項 1 6記載の非水電解質二次電池用正極を有する非水電解質二次電 池。
PCT/JP2007/058895 2006-04-21 2007-04-18 正極用粉末および正極合剤 WO2007123248A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/297,544 US20090104526A1 (en) 2006-04-21 2007-04-18 Powder for positive electrode and positive electrode mix
EP07742330A EP2028705A4 (en) 2006-04-21 2007-04-18 POWDER FOR POSITIVE ELECTRODE AND POSITIVE ELECTRODE COMPOSITE
CN200780013765.7A CN101421867B (zh) 2006-04-21 2007-04-18 正极用粉末和正极合剂
KR1020087028101A KR101393982B1 (ko) 2006-04-21 2007-04-18 정극용 분말 및 정극 합제

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006117615 2006-04-21
JP2006-117615 2006-04-21
JP2006233387 2006-08-30
JP2006-233387 2006-08-30

Publications (1)

Publication Number Publication Date
WO2007123248A1 true WO2007123248A1 (ja) 2007-11-01

Family

ID=38625144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058895 WO2007123248A1 (ja) 2006-04-21 2007-04-18 正極用粉末および正極合剤

Country Status (6)

Country Link
US (1) US20090104526A1 (ja)
EP (1) EP2028705A4 (ja)
KR (1) KR101393982B1 (ja)
CN (1) CN101421867B (ja)
TW (1) TW200746516A (ja)
WO (1) WO2007123248A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080102427A (ko) * 2006-03-15 2008-11-25 스미또모 가가꾸 가부시끼가이샤 정극 활물질 분말
US8465873B2 (en) * 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
JP2011054559A (ja) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd 正極用粉末および正極合剤
US20120052299A1 (en) * 2010-09-01 2012-03-01 Jiang Fan Non-spherical electroactive agglomerated particles, and electrodes and batteries comprising the same
JP5791935B2 (ja) 2011-03-31 2015-10-07 シャープ株式会社 非水電解質二次電池及びその製造方法
US20130130126A1 (en) * 2011-10-12 2013-05-23 Giner, Inc. Electrochemical cell for high-voltage operation and electrode coatings for use in the same
JP6456630B2 (ja) 2013-09-18 2019-01-23 株式会社東芝 非水電解質電池
CN106532005B (zh) 2016-12-16 2020-06-09 贵州振华新材料有限公司 球形或类球形锂电池正极材料、电池及制法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162357A (ja) * 1990-10-26 1992-06-05 Asahi Chem Ind Co Ltd 非水系二次電池
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JPH1140140A (ja) 1997-07-23 1999-02-12 Asahi Chem Ind Co Ltd 非水系二次電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002279998A (ja) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd 非水二次電池用正極およびそれを用いた非水二次電池
JP2003257416A (ja) * 2002-03-04 2003-09-12 Mitsubishi Cable Ind Ltd リチウムイオン二次電池用正極および該正極を用いたリチウムイオン二次電池
JP2005116304A (ja) * 2003-10-07 2005-04-28 Nissan Motor Co Ltd 二次電池

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660887A (ja) * 1992-08-06 1994-03-04 Sanyo Electric Co Ltd 非水系電池
JPH07130341A (ja) * 1993-11-02 1995-05-19 Fuji Photo Film Co Ltd 非水電池
CN1088266C (zh) * 1994-04-08 2002-07-24 索尼公司 非水电解液二次电池
EP0827223B1 (en) * 1996-08-29 1999-11-03 Murata Manufacturing Co., Ltd. Lithium secondary battery
JP4022937B2 (ja) * 1997-04-24 2007-12-19 宇部興産株式会社 リチウムイオン非水電解質二次電池
TW460505B (en) * 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
EP1117145B1 (en) * 1998-08-27 2011-10-05 NEC Corporation Nonaqueous electrolyte secondary cell
US20030165739A1 (en) * 2000-05-24 2003-09-04 Kenichi Kizu Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them
US6767671B2 (en) * 2000-07-14 2004-07-27 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and secondary battery containing same
US6756154B2 (en) * 2000-11-29 2004-06-29 Toda Kogyo Corporation Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
US6706446B2 (en) * 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
US7393476B2 (en) * 2001-11-22 2008-07-01 Gs Yuasa Corporation Positive electrode active material for lithium secondary cell and lithium secondary cell
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
JP2004158352A (ja) * 2002-11-07 2004-06-03 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004265806A (ja) * 2003-03-04 2004-09-24 Canon Inc リチウム金属複合酸化物粒子、前記リチウム金属複合酸化物粒子の製造方法、前記リチウム金属複合酸化物粒子を含有す電極構造体、前記電極構造体の製造方法、及び前記電極構造体を有するリチウム二次電池
JP4554911B2 (ja) * 2003-11-07 2010-09-29 パナソニック株式会社 非水電解質二次電池
TWI459616B (zh) * 2004-08-16 2014-11-01 Showa Denko Kk Lithium batteries with positive and the use of its lithium batteries
JP4784085B2 (ja) * 2004-12-10 2011-09-28 新神戸電機株式会社 リチウム二次電池用正極材料とその製造法及びリチウム二次電池
JP2006324286A (ja) * 2005-05-17 2006-11-30 Tdk Corp 電気化学キャパシタ用電極の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162357A (ja) * 1990-10-26 1992-06-05 Asahi Chem Ind Co Ltd 非水系二次電池
JPH10324758A (ja) 1997-03-26 1998-12-08 Sumitomo Chem Co Ltd パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池
JPH1140140A (ja) 1997-07-23 1999-02-12 Asahi Chem Ind Co Ltd 非水系二次電池
JP2000030686A (ja) 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2002279998A (ja) * 2001-03-22 2002-09-27 Hitachi Maxell Ltd 非水二次電池用正極およびそれを用いた非水二次電池
JP2003257416A (ja) * 2002-03-04 2003-09-12 Mitsubishi Cable Ind Ltd リチウムイオン二次電池用正極および該正極を用いたリチウムイオン二次電池
JP2005116304A (ja) * 2003-10-07 2005-04-28 Nissan Motor Co Ltd 二次電池

Also Published As

Publication number Publication date
CN101421867A (zh) 2009-04-29
KR20090005188A (ko) 2009-01-12
EP2028705A4 (en) 2012-05-02
EP2028705A1 (en) 2009-02-25
CN101421867B (zh) 2015-06-03
KR101393982B1 (ko) 2014-05-12
TW200746516A (en) 2007-12-16
US20090104526A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US10276870B2 (en) Composite cathode active material, lithium battery including the same, and preparation method thereof
JP4318313B2 (ja) リチウム二次電池用の正極活物質粉末
JP5450284B2 (ja) チタン酸リチウム粒子およびその製造方法、リチウムイオン電池用負極、ならびにリチウム電池
JP5352736B2 (ja) リチウムマンガン系固溶体正極材料
US8501350B2 (en) Lithium manganese composite oxide
EP2012380B1 (en) Positive electrode active material powder
JP6508870B2 (ja) リチウム二次電池用複合活物質およびその製造方法
KR102380023B1 (ko) 이차전지
WO2008050903A1 (fr) Batterie secondaire au lithium
JPWO2004082046A1 (ja) リチウム二次電池用正極活物質粉末
WO2007123248A1 (ja) 正極用粉末および正極合剤
JP6543428B1 (ja) 二次電池用負極活物質および二次電池
JP2008305665A (ja) 非水二次電池用負極材料及び非水二次電池
US8029928B2 (en) Positive electrode active material powder
US20090050841A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery
US20090309062A1 (en) Lithium composite metal oxide
JP2007053081A (ja) 非水電解質二次電池用正極活物質
JP7040832B1 (ja) リチウムイオン二次電池用負極活物質、その製造方法、及びリチウムイオン二次電池用負極電極
JP2007280943A (ja) 正極活物質粉末
JP5332121B2 (ja) 正極活物質粉末
WO2007011053A1 (ja) 非水電解質二次電池用正極活物質
JP5176356B2 (ja) 正極用粉末および正極合剤
JP5168757B2 (ja) 非水二次電池用正極活物質の製造方法
JP4994725B2 (ja) リチウム複合金属酸化物の製造方法
JP2008159300A (ja) 非水二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780013765.7

Country of ref document: CN

Ref document number: 12297544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087028101

Country of ref document: KR

Ref document number: 2007742330

Country of ref document: EP