WO2007123157A1 - 波長群光分波器、波長群光合波器、および波長群光選択スイッチ - Google Patents

波長群光分波器、波長群光合波器、および波長群光選択スイッチ Download PDF

Info

Publication number
WO2007123157A1
WO2007123157A1 PCT/JP2007/058447 JP2007058447W WO2007123157A1 WO 2007123157 A1 WO2007123157 A1 WO 2007123157A1 JP 2007058447 W JP2007058447 W JP 2007058447W WO 2007123157 A1 WO2007123157 A1 WO 2007123157A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
output
input
waveguide grating
port
Prior art date
Application number
PCT/JP2007/058447
Other languages
English (en)
French (fr)
Inventor
Ken-Ichi Sato
Hiroshi Hasegawa
Shoji Kakehashi
Osamu Moriwaki
Shin Kamei
Kenya Suzuki
Yoshihisa Sakai
Kouichi Takiguchi
Original Assignee
National University Corporation Nagoya University
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University, Nippon Telegraph And Telephone Corporation filed Critical National University Corporation Nagoya University
Priority to JP2008512137A priority Critical patent/JP4822141B2/ja
Priority to US12/226,453 priority patent/US8244133B2/en
Publication of WO2007123157A1 publication Critical patent/WO2007123157A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • G02B6/12021Comprising cascaded AWG devices; AWG multipass configuration; Plural AWG devices integrated on a single chip
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0307Multiplexers; Demultiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3508Lateral or transverse displacement of the whole waveguides, e.g. by varying the distance between opposed waveguide ends, or by mutual lateral displacement of opposed waveguide ends
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0032Construction using static wavelength routers (e.g. arrayed waveguide grating router [AWGR] )
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0075Wavelength grouping or hierarchical aspects

Definitions

  • Wavelength group optical demultiplexer wavelength group optical multiplexer, and wavelength group optical selection switch
  • the present invention relates to a wavelength division multiplexed optical power obtained by combining a plurality of wavelength groups each including a plurality of wavelength channels.
  • the wavelength division multiplexed light power is separated into a plurality of preset wavelength groups, and the plurality of separated wavelength groups are output as a plurality of outputs. Can be output from each port, or by setting the propagation direction to the opposite direction, it is possible to combine multiple wavelength groups and output wavelength division multiplexed light having wavelength channels included in the wavelength groups TECHNICAL FIELD
  • the present invention relates to a wavelength group optical multiplexer / demultiplexer, and a wavelength group optical selection switch capable of routing wavelength groups (multiple wavelengths) collectively.
  • wavelength division multiplexing in which light of a plurality of wavelengths respectively corresponding to a plurality of wavelength channels (wave channels or light paths) divided every 100 GHz in a predetermined communication wavelength band is combined.
  • Wavelength Division Multiplexing light is transmitted.
  • the optical signal of the wavelength of the wavelength channel included in the wavelength division multiplexed light transmitted by the optical fiber or the like is split and multiplexed to the optical fiber in the predetermined transmission direction. Can be switched.
  • the number of wavelength channels handled by the optical switching devices constituting the above nodes has increased due to an increase in communication capacity, and a plurality of wavelength bands each including a plurality of wavelength channels are combined. Wavelength division multiplexing is now being used.
  • Non-Patent Document 1 Non-Patent Document 2
  • Non-Patent Document 3 Non-Patent Document 4
  • Non-Patent Document 5 Each has been proposed.
  • Non-patent document 1 “Ultra-low stress coating process: enabling technology for extrem e performance thin film interference niters” OFC 2002 Postdeadline Papers, FA8— 1
  • Non-patent document 2 “Recent technological development of AO devices” Electronic Information Communication Journal of academic society, VO J8 6-C ⁇ .12, 1236-1243, published in December 2003
  • Non-Patent Document 3 "Full Mesh Network Using Wavelength Circulation” NTT R & D VOL.49 No.6, pp.298-308, issued in June 2000
  • Non-Patent Document 5 “Hexible Waveband Optical Networking Without Guard Bands Using
  • Patent Document 1 Japanese Patent Laid-Open No. 11-30730
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-11345
  • Non-Patent Document 1 the multilayer interference filter type multiplexer / demultiplexer proposed in Non-Patent Document 1 has a complicated design and requires a large number of films, and is difficult to manufacture in order to improve the cut of the band. At the same time, it was difficult to obtain the required characteristics.
  • 8-SKIP-0 (8 wavelength channels are defined as 1 wavelength group, and wavelength channels that cannot be used between wavelength groups are set to zero) is a group of 8 wavelength channels with a channel width of 100 GHz.
  • the required number of films is 40.
  • nonlinear dispersion increased in the end region of the frequency width of the wavelength group, which was a cause of degradation of transmission characteristics.
  • Non-Patent Document 2 has a limit such as four channels at the maximum, which can be processed simultaneously. In addition, it requires a wide guard band that cannot be used for communication, and the efficiency of wavelength use Has the disadvantage of being low.
  • the array waveguide guide grating (AWG) proposed in Non-Patent Document 3 is widely used for a method of multiplexing and demultiplexing for each wavelength channel.
  • AMG array waveguide guide grating
  • the transmission bandwidth is wide in the wavelength group in which a plurality of wavelength channels are bundled.
  • the end of the transmission band is badly cut. The wider the width, the larger the guard band is required, and the wavelength utilization efficiency deteriorates significantly.
  • Non-Patent Document 4 and Non-Patent Document 5 describe two arrayed waveguide gratings (AWG: Array
  • a wavelength group demultiplexer combined with Waveguide Grating is proposed.
  • this product has a drawback in that a complicated design is required to improve the cutting of the band, and the characteristics that are difficult to manufacture cannot be obtained sufficiently.
  • FIG. 22 shows a wavelength group optical multiplexer comprising the above-mentioned conventional multilayer interference filter type multiplexer / demultiplexer, acousto-optic effect filter type multiplexer / demultiplexer, etc. having one input port and a plurality of output ports.
  • a wavelength group cross-connect switch is configured by using the demultiplexer GB for each of the input fiber and the output fiber. According to this wavelength group cross-connect switch, wavelength division multiplexed optical WDM from N optical fibers F is combined with N wavelength group optical fibers.
  • demultiplexer GB demultiplex every m groups, switch the demultiplexed wavelength group to the required direction using m optical switches (routing), and switch it to N wavelength groups After combining using optical multiplexer / demultiplexer GB, it is configured to output to N optical fibers F.
  • N + N wavelength group optical multiplexer / demultiplexers are required, and there is a disadvantage that the configuration is complicated with a large number of parts.
  • Patent Document 1 discloses an optical multiplexing / demultiplexing element configured by combining a periodic characteristic wavelength demultiplexer having wavelength recursion and a waveguide array diffraction grating wavelength demultiplexer in series. Yes. However, the periodic characteristic wavelength demultiplexer that forms the preceding stage of this optical multiplexer / demultiplexer does not have the output port capacity that is smaller than the number of wavelength channels of the input wavelength division multiplexed light, and therefore there is no wavelength channel for each output port. Multiple sets of overlapping wavelengths are output, and the waveguide array diffraction grating wavelength demultiplexer that forms the latter stage of the optical multiplexing / demultiplexing element is: It has a simple multiplexing function. Therefore, according to the optical multiplexing / demultiplexing element of Patent Document 1, it functions as a filter in which the light intensity within a predetermined selected wavelength band is flattened, reducing the power loss and not obtaining power.
  • Patent Document 2 discloses a waveguide-type optical composite comprising a combination of a first arrayed waveguide grating and a plurality of second arrayed waveguide gratings arranged in parallel in the same number as the desired number of bands.
  • a wave demultiplexing circuit is disclosed.
  • the plurality of second array waveguide diffraction gratings arranged in parallel in the subsequent stage function as a simple optical coupler, and are provided with input fibers that respectively guide a plurality of wavelength division multiplexed lights having the same wavelength channel. This is an impossible structure.
  • each node (node) of an optical communication network is generally routed by one wavelength (transmission destination switching), but it deals with an increase in the number of transmitted optical signals. Therefore, it is desirable to perform routing in units of multiple wavelengths (wavelength group).
  • Wavelength Selective Switch WBSS
  • WBSS Wavelength Selective Switch
  • the conventional wavelength group selection switch has a large number of two-dimensionally driven elements in which each wavelength constituting the wavelength group dispersed by passing through the collimator and reflected by the diffraction grating is arranged in a planar shape.
  • Each of the micromirrors is configured to be reflected so as to be able to synthesize wavelength groups at a desired output port. Therefore, the configuration is complicated and large, and the force is also very delicate in adjusting each mirror. There is a drawback that it is complicated and expensive.
  • the present invention has been made against the background of the above circumstances.
  • the first object of the present invention is to divide into one or more wavelength division multiplexed light powers into a plurality of preset wavelength groups.
  • a wavelength group optical demultiplexer that can output a plurality of separated wavelength groups from a plurality of output ports, respectively, and a wavelength group that is set in advance by combining a plurality of wavelength groups It is an object of the present invention to provide a wavelength group optical multiplexer having a simple configuration capable of outputting wavelength division multiplexed light combined with the wavelength from an output port.
  • a second object is to provide an inexpensive wavelength group light selection switch that is configured simply and compactly and that can selectively route a predetermined wavelength group. Means for solving the problem
  • the present inventor has conducted various studies against the background described above, and as a result, the arrayed waveguide grating has sufficient characteristics for demultiplexing and multiplexing with a resolution corresponding to the wavelength channel. Focusing on the fact that the output port is shifted one by one by shifting one port, if the arrayed waveguide grating is passed twice in series under the specified connection condition, wavelength division multiplexing is achieved with a simple configuration. The light is separated into a plurality of preset wavelength groups, and the separated wavelength groups are output from the plurality of output ports, respectively, or in the reverse propagation direction, the plurality of wavelength groups are multiplexed. As a result, it was found that it was possible to multiplex one or more wavelength division multiplexed lights combined with a preset wavelength group.
  • the present invention has been made based on such findings. What should be noted is that the wavelength group optical multiplexer / demultiplexer of the present invention can be shared by a plurality of input / output fibers, which can greatly contribute to the economics of the wavelength group cross connect node.
  • the wavelength group optical demultiplexer of the invention according to claim 1 for achieving the above object is provided in advance from wavelength division multiplexed light in which a plurality of wavelength groups each including a plurality of wavelength channels are combined.
  • the wavelength division multiplexed light is separated into a plurality of set wavelength groups, and the plurality of separated wavelength groups are respectively output from a plurality of ports on the output side, and the wavelength division multiplexed light is supplied to the wavelength channel.
  • Demultiplexing and multiplexing can be performed with the corresponding resolution, and the port on the output side is shifted one by one by shifting the port on the input side, and one connected to one of the input ports.
  • the signals of the plurality of wavelength channels multiplexed in the fiber are passed through an arrayed waveguide grating having a characteristic of being output without overlapping for each output port, and then the passing light again corresponds to the wavelength channel.
  • Demultiplexing with resolution And pass through an arrayed waveguide grating that has the characteristic that the output port is shifted one by one when the input port is shifted by one, and the wavelength division multiplexing is performed by the two passes.
  • the wavelength group optical demultiplexer according to the invention of claim 2 includes a plurality of wavelength channels, respectively.
  • a wavelength group optical demultiplexer that separates a plurality of wavelength groups including a plurality of wavelength groups multiplexed into a plurality of preset wavelength groups and outputs the separated wavelength groups from a plurality of output ports, respectively.
  • the wavelength division multiplexed light can be demultiplexed and multiplexed with the resolution corresponding to the wavelength channel, and the output port is shifted one by one by shifting one input port.
  • Signals of multiple wavelength channels multiplexed on a single connected fiber may be output simultaneously from the same output port with multiple wavelength channels with periodic intervals determined by the wavelength circulatory property for each output port.
  • the passing light can be demultiplexed and multiplexed with a resolution corresponding to the wavelength channel, and the input port is shifted by one.
  • the output waveguides pass through the arrayed waveguide grating having the characteristic of sequentially shifting one by one, and by passing twice, the wavelength channels are part of a plurality of wavelength channels included in the wavelength division multiplexed light and are different from each other.
  • a plurality of wavelength groups including each of the above are collectively output for each wavelength group from a plurality of output ports of a single arrayed waveguide grating that is passed through the second time.
  • the wavelength group demultiplexer according to the invention of claim 3 is the same as that of the invention according to claim 1 or 2, wherein the wavelength group optical demultiplexer is applied to a plurality of different wavelength division multiplexed lights input to the plurality of input ports.
  • the wavelength channels belonging to each of the included wavelength groups are dispersed, the divided wavelength channels are combined with a preset wavelength group, and the combined wavelength group is output from a different output port for each wavelength group.
  • the wavelength group optical demultiplexer of the invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein (a) the first arrayed waveguide to which the wavelength division multiplexed light is input. A grating, and (b) a second array waveguide grating that outputs from a different output port for each wavelength group, and (c) an output port of the first array waveguide grating and an input port of the second array waveguide grating And an optical connection path connecting the two to each other.
  • the optical connection path is provided with a plurality of waveguides without intersecting on one plane. It is characterized by being.
  • the wavelength group optical demultiplexer according to the invention of claim 6 is the same as that of the invention of claim 4 or 5.
  • the first arrayed waveguide grating and the second arrayed waveguide grating have the same number of input ports and output ports as the number of wavelength channels included in the wavelength division multiplexed light, respectively. .
  • the wavelength group optical demultiplexer of the invention according to claim 7 is the invention according to claim 4 or 5, wherein the wavelength group optical demultiplexer is a part of the output ports of the second arrayed waveguide grating 1 or Two or more ports are set as input ports, and wavelength channels belonging to wavelength groups respectively included in one or more wavelength division multiplexed lights input in the reverse propagation direction from the input ports are set as preset wavelength groups. Bi-directional wavelength division multiplexing by demultiplexing and outputting the demultiplexed wavelength groups for each wavelength group from the input ports of the first arrayed waveguide grating that do not receive the wavelength division multiplexed light. Light power A part of a plurality of wavelength channels included in it and different wavelength channels from each other.
  • It is characterized by being output after being demultiplexed into a plurality of wavelength groups.
  • the wavelength group optical demultiplexer of the invention according to claim 8 is the invention according to any one of claims 4 to 7, wherein at least one of the first array waveguide grating and the second array waveguide grating is provided.
  • the output of wavelength division multiplexed light input to one of a plurality of input waveguides has a wavelength circulation characteristic in which the output position is cyclically shifted one by one when the input position is shifted one by one. It is characterized by that.
  • the wavelength loop characteristics of the arrayed waveguide grating are realized by matching the product of the number of wavelength channels used and the wavelength channel spacing to the FSR (Free Spectral Range) of the arrayed waveguide grating.
  • the wavelength group optical demultiplexer of the invention according to claim 9 is the invention according to any one of claims 1 to 3, wherein the first array waveguide grating and the second array waveguide grating are separated from each other.
  • the desired wavelength group light is transmitted by passing through one arrayed waveguide grating twice.
  • a demultiplexing function is realized. That is, (a) a plurality of input ports into which the wavelength division multiplexed light is input in part, and a plurality of wavelength channels that are part of the plurality of wavelength channels included in the wavelength division multiplexed light and respectively include different wavelength channels.
  • a single arrayed waveguide grating having a plurality of output ports from which a wavelength group is output from a part, and (b) connecting the other part of the plurality of output ports and the other part of the plurality of input ports, Before being entered in the part And a folded connection path for inputting a plurality of optical signals output from the other part of the plurality of output ports to the other part of the input port by combining and demultiplexing the wavelength division multiplexed light, and (c) One or two or more different wavelength division multiplexed lights input to a part of the input port are demultiplexed into a plurality of wavelength groups included in the wavelength division multiplexed light and included in the wavelength division multiplexed light.
  • a plurality of wavelength groups that are part of a plurality of wavelength channels that include different wavelength channels are output from a plurality of different output ports.
  • the wavelength group optical demultiplexer of the invention according to claim 10 is the invention according to any one of claims 1 to 9, wherein the wavelength groups respectively output from the output ports are on the wavelength axis. It is characterized by a continuous wavelength channel force.
  • the wavelength group demultiplexer of the invention according to claim 11 is the invention according to any one of claims 1 to 9, wherein the wavelength groups output from the output ports are on the wavelength axis. Discontinuous wavelength channel force is also configured.
  • the wavelength group demultiplexer of the invention according to claim 12 is the invention according to claim 4 or 5, wherein the first array waveguide grating, the second array waveguide grating, The optical connection path for mutually connecting the output port of the one arrayed waveguide grating and the input port of the second arrayed waveguide grating is provided integrally on a common substrate.
  • the wavelength group optical demultiplexer of the invention according to claim 13 is the invention according to claim 12, wherein the first arrayed waveguide grating and the second arrayed waveguide grating are: A plurality of arrayed waveguides having a difference in length; and (b) an input lens waveguide that distributes wavelength division multiplexed light input to the input port and inputs the divided wavelength-division multiplexed light to the input side end portions of the plurality of arrayed waveguides. And (c) separating a plurality of wavelength channels included in the wavelength division multiplexed light output from the output side end portions of the plurality of arrayed waveguides based on the optical path length difference of the plurality of arrayed waveguides. And output lens waveguides respectively distributed to preset output ports among the output ports.
  • the wavelength group optical demultiplexer of the invention according to claim 14 is the invention according to any one of claims 4 to 8, 10 to 13, wherein the output port of the first arrayed waveguide grating and the first (2) Connect an optical switch to at least one of the optical connection paths connecting the input ports of the arrayed waveguide grating to each other. Inserting and branching the light output from the output port of the first arrayed-waveguide grating in the optical switch, and other optical signals having the same wavelength as or different from the branched optical signal. It is characterized by inserting.
  • the wavelength group optical multiplexer of the invention combines a plurality of wavelength groups each including a plurality of wavelength channels input from a plurality of ports on the input side, and combines the wavelengths.
  • a wavelength group optical multiplexer that outputs division multiplexed light from an output-side port, wherein the plurality of wavelength groups can be demultiplexed and multiplexed with a resolution corresponding to the wavelength channel, and one input port is shifted.
  • the output ports are shifted one by one in sequence, and the signals of multiple wavelength channels multiplexed on one fiber connected to one of the input ports are output without overlapping each output port.
  • the light passing through the arrayed waveguide grating can be demultiplexed and multiplexed with the resolution corresponding to the wavelength channel, and the output port is shifted by one.
  • the wavelength division multiplexed light is collectively output from a plurality of ports on the output side of a single arrayed waveguide grating that passes through the second time.
  • the wavelength group optical multiplexer of the invention combines a plurality of wavelength groups each including a plurality of wavelength channels input from a plurality of ports on the input side, and combines the wavelengths.
  • the characteristics of the output ports being shifted one by one due to shifting and the signals of multiple wavelength channels multiplexed on one fiber connected to one of the input ports are Each of the wavelength channels having periodic intervals determined by the wavelength recurring property is not output simultaneously from the same output side port, and is passed through an arrayed waveguide grating.
  • each of the plurality of wavelength channels included in the plurality of wavelength groups is included.
  • the wavelength-division multiplexed light combined with a plurality of wavelength groups is collectively output from a plurality of ports on the output side of a single arrayed waveguide grating that passes through the second time.
  • the wavelength group optical multiplexer of the invention according to claim 17 in the invention according to claim 15 or 16 multiplexes the wavelength channels belonging to the wavelength groups respectively input to the plurality of input ports, and Two or more different wavelength division multiplexed lights including a plurality of set wavelength groups are output from a plurality of output ports, respectively.
  • the wavelength group optical multiplexer of the invention according to claim 18 is the invention according to any one of claims 15 to 17, wherein the first arrayed waveguide grating to which the plurality of wavelength groups are input; A second arrayed waveguide grating that outputs wavelength division multiplexed light from an output port; and an optical connection path that interconnects the output port of the first arrayed waveguide grating and the input port of the second arrayed waveguide grating. Is included.
  • the optical connection path includes a plurality of waveguides provided on one plane without crossing. It is characterized by being.
  • the wavelength group optical multiplexer of the invention according to claim 20 is the invention according to claim 18, wherein the first array waveguide grating and the second array waveguide grating are included in the wavelength division multiplexed light. It has the same number of input ports and output ports as the number of wavelength channels.
  • the wavelength group optical multiplexer of the invention according to claim 21 is the invention according to any one of claims 18 to 20, wherein at least one of the first array waveguide grating and the second array waveguide grating is used.
  • the wavelength-division multiplexed light output to one of the multiple input waveguides has wavelength-circulation characteristics in which the output position is cyclically shifted one by one when the input position is shifted one by one. It is characterized by that.
  • the wavelength group optical multiplexer of the invention according to claim 22 is the invention according to any one of claims 15 to 18, wherein (a) a plurality of wavelength channels each including a part of the plurality of wavelength channels is provided.
  • a single arrayed waveguide case having a plurality of input ports through which a part of each wavelength group is input and a plurality of output ports through which the wavelength division multiplexed light is output from a part.
  • the wavelength group optical multiplexer of the invention according to claim 23 is the invention according to any one of claims 15 to 22, wherein the wavelength groups respectively input from the input ports are continuous on the wavelength axis.
  • the wavelength channel force is also configured.
  • the wavelength group optical multiplexer of the invention according to claim 24 is the invention according to any one of claims 15 to 22, wherein the wavelength groups respectively input from the input ports are discontinuous on the wavelength axis.
  • the wavelength channel force is also constituted.
  • the wavelength group optical multiplexer of the invention according to claim 25 is the invention according to claim 18 or 19, wherein the first arrayed waveguide grating to which the plurality of wavelength groups are input and the wavelength division multiplexing
  • the second array waveguide grating that outputs light from the output port and the optical connection path that interconnects the output port of the first array waveguide grating and the input port of the second array waveguide grating are common. It is characterized by being provided integrally on the substrate.
  • the wavelength group optical multiplexer of the invention according to claim 26 is the invention according to claim 25, wherein the first arrayed waveguide grating and the second arrayed waveguide grating are: A plurality of arrayed waveguides having a difference; and (b) an input lens waveguide that distributes the wavelength division multiplexed light input to the input port and inputs it to the input side end portions of the plurality of arrayed waveguides, respectively.
  • (C) separating a plurality of wavelength channels included in the wavelength division multiplexed light output from the output side end portions of the plurality of arrayed waveguides based on an optical path length difference between the plurality of arrayed waveguides; And an output lens waveguide that distributes to a preset output port among the output ports.
  • the wavelength group multiplexer of the invention according to claim 27 is the invention according to any one of claims 15 to 21, 23 to 26, wherein the output port of the first array waveguide grating and the second array An optical switch is inserted into at least one of the optical connection paths connecting the input ports of the waveguide grating to each other, and the light output from the output port of the first arrayed waveguide grating is branched at the optical switch. Further, another optical signal having the same wavelength as the branched optical signal or a different wavelength is inserted into the optical switch.
  • the wavelength group light selection switch of the invention according to claim 28 is the wavelength group light demultiplexer according to any one of claims 1 to 14 and one or more output from the wavelength group light demultiplexer.
  • An optical switch that is input to either an input port or an output port of the wavelength group demultiplexer for each of the wavelength groups, and includes any combination of the one or more wavelength groups. It is characterized in that it is output from the output port.
  • the wavelength group light selection switch of the invention according to claim 29 is the same as that of the invention according to claim 28, and the wavelength group light demultiplexer receives a plurality of wavelength division multiplexed lights.
  • One of the plurality of input ports used for input is a wavelength group light selection switch input port, and the other is a wavelength included in the wavelength division multiplexed light input to the one input port.
  • Group power It is used as a selected wavelength group output port that outputs a wavelength group of any selected combination.
  • the wavelength group light selecting switch of the invention according to claim 30 is the wavelength switch according to the invention of claim 29, wherein the optical switch is connected to the input port of the part in the wavelength group optical demultiplexer. Provided to each of a plurality of output ports from which light of a wavelength group included in the input wavelength division multiplexed light is output, and outputs the light of the wavelength group output from the output port to the other part. When other wavelength division multiplexed light is input, it is selectively input to a plurality of output ports from which light of a wavelength group included in the other wavelength division multiplexed light is output.
  • the wavelength group light selection switch according to the invention of claim 31 is the wavelength switch according to the invention of claim 29, wherein the optical switch is connected to the input port of the part in the wavelength group optical demultiplexer. Provided to each of a plurality of output ports from which light of a wavelength group included in the input wavelength division multiplexed light is output, and outputs the light of the wavelength group output from the output port to the other part. When other wavelength division multiplexed light is input, it is selectively input to a plurality of output ports from which light of the same wavelength group included in the other wavelength division multiplexed light is output.
  • the wavelength group light selection switch of the invention according to claim 32 is the invention according to any one of claims 28 to 31, wherein the optical switch constitutes the wavelength group light demultiplexer.
  • the first array waveguide grating, the second array waveguide grating, and the optical connection path are provided, and are provided integrally on the common substrate.
  • the wavelength group light selection switch according to the invention of claim 33 is the invention according to any one of claims 28 to 32, wherein the optical switch is a pair of arm guides to which light is input.
  • the optical switch is a pair of arm guides to which light is input.
  • the optical input includes a basic optical switch in which light input to one of the pair of arm waveguides selectively outputs the other force of the pair of arm waveguides. It is characterized by.
  • the wavelength division multiplexed light can be demultiplexed with a resolution corresponding to the wavelength channel, and the output port is shifted by one shift of the input port.
  • the characteristics are such that the signal of each wavelength channel multiplexed on one fiber connected to one of the input ports is output without overlapping for each output port.
  • the passing light After passing through the arrayed waveguide grating, the passing light can be demultiplexed and multiplexed again at a resolution corresponding to the wavelength channel, and the output ports are sequentially shifted one by one by shifting one input port.
  • a plurality of wavelengths that are part of a plurality of wavelength channels included in the wavelength division multiplexed light and each include a different wavelength channel Are output for each wavelength group in a lump from a plurality of output ports of a single arrayed waveguide grating that passes through the second time, so that a plurality of wavelength groups each including a plurality of wavelength channels are combined.
  • Divided multiplexed light power A wavelength group optical demultiplexer that divides into a plurality of preset wavelength groups and outputs the wavelength groups from a plurality of different output ports can be obtained very easily.
  • the wavelength division multiplexed light can be demultiplexed and multiplexed with a resolution corresponding to the wavelength channel and has one input port.
  • the characteristic that the output ports are sequentially shifted one by one due to the shift and the signal of multiple wavelength channels multiplexed on one fiber connected to one of the input ports is a period determined by the wavelength circulation property for each output port.
  • a plurality of wavelength channels at regular intervals are allowed to pass through an arrayed waveguide grating having the characteristic that they are not output simultaneously from the same output port, and then the transmitted light is separated again with a resolution corresponding to the wavelength channel.
  • the wavelength division multiplexed light is allowed to pass through an arrayed waveguide grating that has the property that the output port can be sequentially shifted one by one by shifting one input port.
  • a wavelength group demultiplexer that outputs multiple wavelength groups from multiple different output ports can be obtained very easily.
  • a plurality of different wavelength division multiplexed lights are respectively input to the plurality of input ports, and are respectively input to the plurality of input ports.
  • the wavelength channels belonging to the wavelength groups included in each of the wavelength division multiplexed lights are spectrally separated, and the spectral wavelength channels are combined with the preset wavelength groups, and the combined wavelength groups are separated for each wavelength group. Since it is output from a plurality of different output ports, a plurality of wavelength division multiplexed light powers respectively input to a plurality of input ports are separated into a plurality of preset wavelength groups, and the plurality of wavelength groups are divided into a plurality of wavelength groups.
  • Wavelength group demultiplexers that output from the output ports can be obtained very easily.
  • the wavelength group cross-connect device microwave group switching switch device
  • the number of required wavelength group optical multiplexer / demultiplexers can be significantly reduced. Therefore, the mounting area or mounting volume can be reduced!
  • wavelength group optical demultiplexer of the invention of claim 4 (a) a first arrayed waveguide grating to which the wavelength division multiplexed light is input, and (b) for each wavelength group A second arrayed waveguide grating that outputs from different output ports; and (c) an optical connection path that interconnects the output port of the first arrayed waveguide grating and the input port of the second arrayed waveguide grating.
  • a wavelength group optical demultiplexer of the invention of claim 4 (a) a first arrayed waveguide grating to which the wavelength division multiplexed light is input, and (b) for each wavelength group A second arrayed waveguide grating that outputs from different output ports; and (c) an optical connection path that interconnects the output port of the first arrayed waveguide grating and the input port of the second arrayed waveguide grating.
  • the optical connection path includes a plurality of waveguides provided on one plane without intersecting.
  • the optical connection path can be provided on one plane.
  • the first arrayed waveguide grating and the second arrayed waveguide can be provided on a common substrate made of quartz or silicon. The waveguide grating and the optical connection path can be easily configured.
  • the first array waveguide grating and the second array waveguide grating include the number of wavelength channels included in the wavelength division multiplexed light, and Since the same number of input ports and output ports are provided, the structure of the wavelength group optical multiplexer / demultiplexer is simplified. In particular, when the wavelength channel has circularity, the use efficiency of the input port and output port can be increased with the wavelength group demultiplexer configuration that is shared by multiple input / output fibers.
  • one or more of the output ports of the second arrayed waveguide grating are used as input ports, Input port force Combines a wavelength group including a predetermined wavelength channel from wavelength channels included in one or more wavelength groups input in the reverse propagation direction, and the combined wavelength group is a wavelength group.
  • the wavelength division multiplexed light is transmitted from the wavelength division multiplexed light in both directions.
  • At least one of the first array waveguide grating and the second array waveguide grating is one of a plurality of input waveguides. Since the output of the wavelength division multiplexed light that has been input has a wavelength-circularity characteristic in which the output position is shifted cyclically by one by shifting the input positional force, the arrayed waveguide The number of input fibers that can be simultaneously connected to the input of the first arrayed-waveguide grating using the wavelength-circulation characteristics of the grating, or the wavelength that can be output from the output port of the second-arrayed-waveguide grating It is possible to increase the number of groups more than when there is no circulation.
  • the wavelength division multiplexed light is included in the wavelength division multiplexed light and a plurality of input ports input to the portion A single arrayed waveguide grating having a plurality of output ports from which a plurality of wavelength groups that are part of a plurality of wavelength channels and each include a different wavelength channel; and (b) the plurality of the plurality of wavelength ports.
  • the other part of the output port is connected to the other part of the plurality of input ports, and the wavelength division multiplexed light input to the part is multiplexed / demultiplexed and the other part of the plurality of output ports is output.
  • the light is divided into a plurality of wavelength groups included in the wavelength division multiplexed light, and the wavelength division is performed.
  • a portion of the plurality of wavelength channels contained in Shigemitsu be output from different output ports a plurality of wavelength groups containing different wavelength channels respectively to each other. In this way, instead of using two separate first and second arrayed waveguide gratings, a configuration in which a part of the output of one arrayed waveguide grating is folded back to the input side is used.
  • a wavelength group optical demultiplexer using a single array waveguide grating can be configured easily. Even when two arrayed waveguide gratings are formed monolithically and connected by waveguides in the actual manufacturing process, the demultiplexing characteristics of each channel start from the center wavelength of each channel between the two arrayed waveguide gratings. Although it is relatively difficult to align the characteristics, it can be easily manufactured without being affected by variations in the two characteristics when configured with a single arrayed waveguide grating in this way. .
  • each wavelength group output from the output port has a wavelength channel force continuously on the wavelength axis. Therefore, it is possible to configure the wavelength channel force by continuously demultiplexing the wavelength group on the wavelength axis.
  • each wavelength group output from the output port has a discontinuous wavelength channel force on the wavelength axis. Therefore, the demultiplexed wavelength group can be composed of discontinuous wavelength channels on the wavelength axis.
  • the first array waveguide grating, the second array waveguide grating, the output port of the first array waveguide grating, and the first array waveguide grating The optical connection path that interconnects the input ports of the two-arrayed waveguide grating is provided on a common substrate, so that it has a monolithic structure. Compared to the case where the output port of the waveguide grating and the input port of the second arrayed waveguide grating are connected to each other, the wavelength group demultiplexer is greatly reduced in size.
  • quartz-based planar circuit that forms a waveguide with a predetermined pattern by depositing a clad and a core with a quartz-diameter material on a common substrate made of quartz or silicon.
  • the first array waveguide grating and the second array waveguide grating are: (a) a plurality of optical path length differences between each other; (B) an input lens waveguide that distributes the wavelength division multiplexed light input to the input port and inputs it to the input side end portions of the plurality of array waveguides, and (c) ) Output side edge force of the plurality of arrayed waveguides
  • a plurality of wavelength channels included in the output wavelength division multiplexed light are separated based on the optical path length difference of the plurality of arrayed waveguides, and the output port Since each of the output lens waveguides to be distributed to a preset output port is included, it can be easily configured by using the quartz-based planar circuit (PLC).
  • PLC quartz-based planar circuit
  • the output port of the first arrayed waveguide grating and the input port of the second arrayed waveguide grating are connected to each other.
  • An optical switch is inserted into at least one of the optical connection paths, and an optical signal output from the output port of the first arrayed waveguide grating is branched at the optical switch, and has the same wavelength as the branched optical signal.
  • other optical signals of different wavelengths are inserted in the optical switch force, so that the wavelength division multiplexed light is output from the output port when it is input to the first arrayed waveguide grating.
  • Branching of wavelength groups, branching of specific wavelength units, and insertion of optical signals of the same wavelength or different wavelengths from the branched optical signals can be performed simultaneously in wavelength group units or wavelength units.
  • a plurality of wavelength groups can be multiplexed / demultiplexed with a resolution corresponding to the wavelength channel, and one port on the input side is shifted.
  • the output port has a characteristic that shifts one by one in sequence, the signals of multiple wavelength channels multiplexed on one fiber connected to one of the input ports overlap each other on the output port. Without passing through the arrayed waveguide grating having the characteristic of being output without being transmitted, and then the passing light can be demultiplexed and multiplexed again with the resolution corresponding to the wavelength channel, and the input port is shifted by one.
  • the output side ports are sequentially passed through an arrayed waveguide grating having a characteristic of being shifted one by one, and a plurality of wavelength groups each including a plurality of wavelength channels included in the plurality of wavelength groups by two passes.
  • the wavelength-division multiplexed light is output at the same time to the multiple output side port forces of a single arrayed waveguide grating that passes through the second time, making it very easy to construct a wavelength group optical multiplexer.
  • the plurality of wavelength groups can be demultiplexed and multiplexed with a resolution corresponding to the wavelength channel, and the port on the input side
  • the characteristics of the output ports shifting sequentially one by one due to the power offset and the signals of multiple wavelength channels multiplexed on one fiber connected to one of the input ports are Are passed through an arrayed waveguide grating having a characteristic that a plurality of wavelength channels with periodic intervals determined by wavelength recurring characteristics are not simultaneously output from the same output side port, It is possible to demultiplex and multiplex with the resolution corresponding to the wavelength channel, and pass through the arrayed waveguide grating having the characteristic that the output port is shifted one by one by shifting one input port.
  • Wavelength group optical multiplexers can be configured very easily because they are output in a batch from these ports. [0063] Further, according to the wavelength group optical multiplexer of the invention of claim 17, the wavelength channels belonging to the wavelength groups respectively input to the plurality of input ports are multiplexed, and are different from each other set in advance.
  • wavelength group demultiplexer that outputs the wavelength division multiplexed light including the plurality of wavelength groups from the plurality of output ports can be obtained very easily.
  • the wavelength group cross-connect device having a plurality of wavelength multiplexers / demultiplexers as components, the number of wavelength group optical multiplexers required can be significantly reduced. Combined with a reduction in area or mounting volume, a high economic effect can be obtained.
  • wavelength group optical multiplexer of the invention of claim 18 (a) a first arrayed waveguide grating to which a plurality of wavelength groups are input, and (b) outputting the wavelength division multiplexed light.
  • a second arrayed waveguide grating that outputs from the port; and (c) an optical connection that interconnects the output port of the first arrayed waveguide grating and the input port of the second arrayed waveguide grating.
  • the optical connection path includes a plurality of waveguides provided on one plane without crossing
  • the first array The optical connection path can be provided on one plane together with the waveguide grating and the second array waveguide grating.
  • the first array waveguide grating and the second array waveguide grating on a common substrate made of quartz or silicon. , And the optical connection path can be easily configured.
  • the first arrayed waveguide grating and the second arrayed waveguide grating include the number of wavelength channels included in the wavelength division multiplexed light, and Since the same number of input ports and output ports are provided, the structure of the wavelength group optical multiplexer / demultiplexer is simplified. In particular, if there is a circularity with respect to the wavelength channel, A wavelength group multiplexer configuration that is shared by multiple input / output fibers can increase the efficiency of input and output ports.
  • At least one of the first array waveguide grating and the second array waveguide grating is one of a plurality of input waveguides. Since the output of the wavelength division multiplexed light that has been input has a wavelength-circulation characteristic in which the output position is cyclically shifted one by one by shifting the input position force by one, the wavelength circulation of the arrayed waveguide grating Using the characteristics, the wavelength channel included in the combined wavelength group can be changed.
  • wavelength group optical multiplexer of the invention of claim 22 (a) a plurality of wavelength groups each including a part of the plurality of wavelength channels are provided for each wavelength group.
  • a single arrayed waveguide grating having a plurality of input ports that are input to the plurality of output ports and a plurality of output ports from which the wavelength division multiplexed light is output from a part thereof, and (b) other portions of the plurality of output ports and the A plurality of lights that are connected to the other parts of the plurality of input ports and are combined with the wavelength channels included in the plurality of wavelength groups input to the part and output from the other parts of the plurality of output ports.
  • the wavelength groups respectively input from the input port are configured by wavelength channel cards that are continuously input on the wavelength axis. Rumo Therefore, it is possible to configure the wavelength channel force by continuously demultiplexing wavelength groups on the wavelength axis.
  • each wavelength group input from the input port has a discontinuous wavelength channel force on the wavelength axis.
  • the demultiplexed wavelength group can be composed of discontinuous wavelength channels on the wavelength axis.
  • the first array waveguide grating, the second array waveguide grating, the output port of the first array waveguide grating, and the second The optical connection path that connects the input ports of the arrayed waveguide grating to each other is a monolithic structure because it is integrally provided on a common substrate, so the first arrayed waveguide using an optical fiber is used. Compared to the case where the output port of the grating and the input port of the second arrayed waveguide grating are connected to each other, the wavelength group optical multiplexer is greatly reduced in size.
  • quartz-based planar circuit that forms a waveguide with a predetermined pattern by depositing a clad and a core with a quartz-diameter material on a common substrate made of quartz or silicon.
  • the first array waveguide grating and the second array waveguide grating are: (a) a plurality of optical path length differences between each other; (B) an input lens waveguide that distributes the wavelength division multiplexed light input to the input port and inputs it to the input side end portions of the plurality of array waveguides, and (c) Output side end force of the plurality of arrayed waveguides
  • the plurality of wavelength channels included in the output wavelength division multiplexed light are separated based on the optical path length difference of the plurality of arrayed waveguides, and the output port Since each of the output lens waveguides to be distributed to the preset output ports is included, it can be easily configured by using the silica-based planar circuit (PLC).
  • PLC silica-based planar circuit
  • the light for connecting the output port of the first arrayed waveguide grating and the input port of the second arrayed waveguide grating to each other An optical switch is inserted into at least one of the connection paths, and an optical signal output from the output port of the first arrayed waveguide grating is branched at the optical switch and is the same as the branched optical signal. Since other optical signals having the same wavelength or different wavelengths are inserted in the optical switch force, the wavelength group output from the output port when wavelength division multiplexed light is input to the first arrayed waveguide grating is split or specified. It is possible to simultaneously divide optical signals of the same wavelength or insert optical signals of the same wavelength as the branched optical signals or different wavelengths.
  • the wavelength group light demultiplexer according to any one of claims 1 to 14 and the wavelength group light demultiplexer 1
  • An optical switch for inputting to each of the input port or the output port of the wavelength group demultiplexer for each of the plurality of wavelength groups, and any combination of the one or more wavelength groups Since one or more output ports are output from one or more output ports, a group of three-dimensionally driven micromirrors arranged in a plane is used to reflect the wavelength group input to each micromirror with a mirror.
  • the reflection port selection by the mirror eliminates the need for complicated adjustments that eliminate mechanically moving parts, resulting in a stable wavelength.
  • Group selection With Ji operation is obtained, it is possible to structure a simple and very small shape, less expensive. This means that the wavelengths required for routing in multi-wavelength units (wavelength groups) to each node (node) in the optical communication network to cope with the increase in transmitted optical signals!
  • the group cross-connect device (wavelength group switching switch device) or wavelength group add / drop multiplexer (wavelength group add / drop multiplexer) is small and inexpensive, and thus provides a high economic effect.
  • One part of the ports is a wavelength group light selective input port, and the other part is a wavelength group force included in the wavelength division multiplexed light input to that part of the input port. Since this is used as a selected wavelength group output port for outputting, as in the case of a wavelength group optical demultiplexer, it is configured simply and compactly and is inexpensive.
  • the optical switch includes wavelength division multiplexing input to the input port of the part 1 Provided in each of a plurality of output ports from which light of the wavelength group included in the light is output, the light of the wavelength group output from the output port, and other wavelength division multiplexed light is input to the other part.
  • the wavelength group light is selectively input to a plurality of output ports from which the light of the wavelength group included in the other wavelength division multiplexed light is output. It is small and inexpensive.
  • the optical switch is configured to transmit the wavelength division multiplexed light input to the input port of the first unit in the wavelength group optical demultiplexer.
  • the wavelength group light output from the output port is provided to each of a plurality of output ports that output light of the included wavelength group, and other wavelength division multiplexed light is input to the other part.
  • the optical switch includes the first array waveguide grating and the second array waveguide grating constituting the wavelength group optical demultiplexer. , And on the common substrate on which the optical connection path is provided, so that further downsizing is possible and there is no mechanical moving part, so that higher reliability is achieved. Is obtained.
  • the optical switch has a pair of arm waveguides into which light is input to one side, and a local area between the pair of arm waveguides.
  • the directional coupler is formed and an optical path difference changer that changes the optical path difference between the pair of arm waveguides, and the optical path difference is changed by the optical path difference changer. Since the light input to one of the pair of arm waveguides includes a basic optical switch that selectively outputs from the other of the pair of arm waveguides, it is small and stable light such as a mechanical movable part. A switch is obtained.
  • FIG. 1 is a conceptual diagram for explaining the configuration of a wavelength group optical multiplexer / demultiplexer according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining four types of wavelength groups WB output from an output port.
  • FIG. 3 is a diagram illustrating a configuration when the wavelength group optical multiplexer / demultiplexer of FIG. 1 is configured on a common substrate.
  • FIG. 4 is a perspective view illustrating in detail the configuration of a first arrayed waveguide grating AWG1 of the two arrayed waveguide gratings of the embodiment of FIG. 3.
  • FIG. 4 is a perspective view illustrating in detail the configuration of a first arrayed waveguide grating AWG1 of the two arrayed waveguide gratings of the embodiment of FIG. 3.
  • FIG. 4 is a diagram for explaining the wavelength revolving property of the first arrayed waveguide grating AWG1 of FIG. 4.
  • Example 2 which is another embodiment of the present invention, the first array having wavelength revolving property
  • FIG. 6 is a diagram for explaining input / output characteristics of a wavelength group optical multiplexer / demultiplexer including a waveguide grating AWG1 and a second arrayed waveguide grating AWG2.
  • FIG. 7 is a diagram for explaining input / output characteristics of a wavelength group optical multiplexer / demultiplexer in Embodiment 3, which is another embodiment of the present invention.
  • FIG. 8 is a diagram for explaining input / output characteristics of a wavelength group optical multiplexer / demultiplexer in Embodiment 4, which is another embodiment of the present invention.
  • FIG. 10 is a diagram illustrating input / output characteristics of a wavelength group optical demultiplexing function in one direction in a bidirectional wavelength group optical demultiplexer according to embodiment 6, which is another embodiment of the present invention.
  • FIG. 11 is a diagram for explaining the input / output characteristics of the wavelength group optical demultiplexing function in the direction opposite to that of FIG. 10 in the bidirectional wavelength group optical demultiplexer of Example 6, which is another embodiment of the present invention. is there.
  • FIG. 12 is a diagram for explaining the configuration of a wavelength group optical multiplexer / demultiplexer in embodiment 7, which is another embodiment of the present invention.
  • FIG. 13 In the arrayed waveguide grating AWG3 of the embodiment of FIG. 12, all input-side waveguides and output-side waveguides 6 are connected by full mesh, so that the position A of a predetermined input-side waveguide is It is a chart showing the wavelength ⁇ that connects with a predetermined output-side waveguide position B.
  • FIG. 14 shows the configuration of a wavelength group optical multiplexer / demultiplexer according to embodiment 8, which is another embodiment of the present invention.
  • FIG. 14 shows the configuration of a wavelength group optical multiplexer / demultiplexer according to embodiment 8, which is another embodiment of the present invention.
  • FIG. 15 is a diagram for explaining the configuration of a wavelength group optical multiplexer / demultiplexer in Embodiment 9, which is another embodiment of the present invention.
  • FIG. 16 is a diagram for explaining the configuration of a wavelength group optical multiplexer / demultiplexer in embodiment 10, which is another embodiment of the present invention.
  • FIG. 17 is a diagram for explaining the configuration of a wavelength group optical multiplexer / demultiplexer in Example 11, which is another example of the present invention.
  • FIG. 18 is a diagram for explaining the configuration of a wavelength group optical multiplexer / demultiplexer in Example 12, which is another example of the present invention.
  • FIG. 19 is a diagram for explaining the configuration of a wavelength group optical multiplexer / demultiplexer in embodiment 13, which is another embodiment of the present invention.
  • FIG. 20 is a diagram for explaining the connection between the optical circuit and the first arrayed waveguide grating AWG 1 in Example 13 of FIG. 19.
  • FIG. 21 is a diagram for explaining the connection between the optical circuit and the second arrayed-waveguide grating AWG2 in Example 13 of FIG.
  • FIG. 22 is a conceptual diagram for explaining the configuration of a conventional wavelength group optical multiplexer / demultiplexer.
  • FIG. 24 is a diagram for explaining the configuration of an optical switch used in the wavelength group selection switch of FIG.
  • FIG. 25 is a diagram illustrating the configuration of a basic optical switch that constitutes the optical switch of FIG. 26]
  • FIG. 26 is a cross-sectional view illustrating the configuration of the basic optical switch in FIG.
  • FIG. 29 A conceptual diagram illustrating the configuration and operation of a wavelength group selection switch which is another embodiment of the present invention.
  • FIG. 30 is a conceptual diagram illustrating the configuration and operation of a wavelength group selection switch that is another embodiment of the present invention.
  • FIG. 31 is a diagram illustrating an optical switch provided in a wavelength group optical multiplexer / demultiplexer according to another embodiment of the present invention.
  • FIG. 32 is a diagram for explaining the configuration of an example of a wavelength group optical multiplexer / demultiplexer including the optical switch of FIG.
  • AWG1 first arrayed waveguide grating
  • AWG2 Second arrayed waveguide grating
  • AWG3 Arrayed waveguide grating
  • This wavelength group optical multiplexer / demultiplexer 10 separates one or more predetermined wavelength groups from among a plurality of wavelength groups WB included in the input wavelength division multiplexed light WDM.
  • Wavelength group demultiplexing function for outputting from a specified output port and transmitting the light in the propagation direction opposite to the propagation direction when the wavelength group light demultiplexing function is generated.
  • the input wavelength group WB force is also provided with a wavelength group optical multiplexing function for combining a plurality of predetermined wavelength groups and outputting desired wavelength division multiplexed light WDM.
  • the wavelength group optical multiplexer / demultiplexer 10 has the same configuration, it can also be referred to as a wavelength group optical demultiplexer or a wavelength group optical multiplexer depending on the use mode.
  • a wavelength group optical demultiplexer or a wavelength group optical multiplexer depending on the use mode.
  • each figure is a conceptual diagram, in each figure explaining the following examples, the mechanical structure of details, the dimensional ratio of each part, etc. are not necessarily drawn accurately, and each waveguide is The intersection of the lines shown indicates a three-dimensional intersection.
  • FIG. 1 is a conceptual diagram illustrating the configuration of the wavelength group optical multiplexer / demultiplexer 10.
  • the wavelength group optical multiplexer / demultiplexer 10 includes a first arrayed waveguide grating AWG1 and a second arrayed waveguide grating AWG2 and an optical connection path 12 connecting them, and inputs from a plurality of input fibers F to F.
  • INI INj wavelength-division-multiplexed light WDM to WDM is converted into the first arrayed waveguide grating AWG1 and
  • the wavelength groups are separated into a plurality of preset wavelength groups, and the separated wavelength groups are output from a plurality of output cuffs F 1 to F, respectively.
  • the subscripts k, m, and n are integers.
  • the wavelength division multiplexing optical WDM is an optical signal for a number of wavelength channels arranged at intervals of 100 GHz on the wavelength axis.
  • wavelength channels 1 k, and a certain number of these wavelength channels, e.g. 8 wavelength channels
  • One wavelength group WB is formed for each laser.
  • (B) to (e) of Fig. 2 show examples of the output wavelength groups.
  • FIG. 3 illustrates a configuration example of the wavelength group optical multiplexer / demultiplexer 10.
  • the wavelength group optical multiplexer / demultiplexer 10 includes, for example, a common substrate 14 made of quartz or silicon, an input port 16 formed on the substrate 14, a first array waveguide grating AWG1, and a second array waveguide grating. AWG2, optical connection path 12 connecting them, and output port 18 16 is connected to each of the input fibers F to F, and the output port 18 is connected to the output fiber 18.
  • the second arrayed waveguide grating AWG2, and the optical connection path 12 connecting them, a clad and a core are deposited on the substrate 14 with, for example, a quartz-based material to form a waveguide having a predetermined pattern. It consists of a monolithic structure with a so-called quartz-based planar lightwave circuit (PLC).
  • PLC quartz-based planar lightwave circuit
  • the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating A WG2 are configured in the same manner, and FIG. 4 is a perspective view illustrating the configuration in detail, representing the first arrayed waveguide grating AWG1. is there.
  • the first arrayed-waveguide grating AWG1 includes a plurality of arrayed waveguides 20 having optical path length differences from each other, a plurality of input-side waveguides 22 each having an input port 16, and their inputs.
  • Wavelength division multiplexed light WDM provided between the side waveguide 22 and the array waveguide 20 and distributed to the input port 16 is distributed by diffusion and input to the input side ends of the plurality of array waveguides 20 respectively.
  • An input lens waveguide 24, a plurality of output side waveguides 26 respectively connected to the optical connection path 12, and a plurality of arrays are provided between the output side waveguides 26 and the arrayed waveguides 20.
  • Wavelength division multiplexed light output from the output side end of waveguide 20 Multiple wavelength channels included in WDM (for example, multiple optical signals of different wavelengths with different center wavelength positions differing by 100 GHz) Mutual optical path length difference of arrayed waveguide 20 Based on the diffraction based on each wavelength, each wavelength is individually separated and condensed at the end of the output-side waveguide 26 to be demultiplexed into the preset output-side waveguide 26, and one output side by separate demultiplexing.
  • An output lens waveguide 28 that combines and outputs the collected light at the end of the waveguide 26 is provided.
  • the wavelength channel used is
  • the arrayed waveguide 20 and the output lens waveguide 28 are designed so as to have sufficient resolution to separately divide 1 to k with sufficient signal intensity. Note that the effect of the light propagating in the first arrayed waveguide grating AWG1 is reversible, and the light propagating in the opposite direction is counteracted by the light received in the forward direction.
  • the second arrayed waveguide grating AWG2 includes a plurality of arrayed waveguides 30 having optical path length differences from each other, a plurality of input-side waveguides 32 respectively connected to the optical connection path 12, and An input lens waveguide 34 provided between the input side waveguide 32 and the arrayed waveguide 30, a plurality of output side waveguides 36 respectively connected to the output port 18, and the output side waveguide 36 And an output lens waveguide 38 provided between the arrayed waveguide 30 and the arrayed waveguide 30, and has a sufficient resolution corresponding to the wavelength channel.
  • the light travel direction is opposite to that of the first arrayed waveguide grating AWG1.
  • the connection point between the output-side waveguide 26 and the optical connection path 12 is the output port 40 of the first arrayed waveguide grating AWG1, and the connection point between the optical connection path 12 and the input-side waveguide 32 is the second array.
  • the input lens waveguide 24, the output lens waveguide 28, the input lens waveguide 34, and the output lens waveguide 38 are also referred to as slab waveguides, and have a lens function made of a relatively thick transparent material. It is comprised so that it may produce.
  • the plurality of optical connection paths 12 that connect the first array waveguide grating AWG1 and the second array waveguide grating AWG2 are parallel to each other and cross each other. Instead, they are provided on the substrate 14 in one plane.
  • the optical connection path 12 is formed on the substrate 14 simultaneously with the arrayed waveguides 20 and 30, the input-side waveguides 22 and 32, the output-side waveguides 26 and 36, and the like in a so-called quartz-based planar lightwave circuit (PLC) formation process. It is formed.
  • PLC planar lightwave circuit
  • the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2 are designed to demultiplex and multiplex the wavelength-division-multiplexed light at a wavelength resolution required for multiplexing / demultiplexing at least for each wavelength channel.
  • a wavelength separation function that separates multiple wavelength channels included in the wavelength division multiplexed light input to one input port for each wavelength and A characteristic (function) in which the position where the same wavelength appears at the output port is shifted one by one in sequence by shifting the input position by one, and multiple fibers multiplexed on the fiber connected to one port on the input side Wavelength channel signals are output on the output side without overlapping each port.
  • the first Ray waveguide grating AWG1 and second arrayed waveguide grating AWG2 has a frequency recursion, has an FSR (Free Spectral Range) equal to or greater than the wavelength band used, that is, 1 on the input side
  • FSR Free Spectral Range
  • FIG. 5 is a diagram for explaining the wavelength separability in (a) when there is no wavelength circulatory property and (b) when there is wavelength circulatory property.
  • the wavelength division multiple having five input ports 16 and five output ports 40, and each input port 16 having a wavelength channel E to E, respectively.
  • the wavelength channels are distributed as shown in the figure.
  • the wavelength channel appearing at each output port 40 is shifted by one when the position of the output port 40 is shifted by one, whereas the wavelength channel is deviated one by one.
  • the wavelength channel is not just shifted by one, but ⁇
  • the wavelength channel appearing at each output port 40 has regularity, it can be generalized by equation (1) when there is no wavelength circulatory property and by equation (2) when there is wavelength circulatory property.
  • the wavelength of the wavelength channel output from output port 40 with number #B is not wavelength recursive Is the wavelength shown in Equation (1), and when there is a wavelength circulatory property, it is the wavelength shown in Equation (2).
  • a mod ⁇ means the remainder of a being damaged by ⁇ .
  • wavelength group optical multiplexer / demultiplexer 10 configured as described above, for example, when wavelength division multiplexed optical WDM shown in (a) of Fig. 2 is input from a plurality of input ports 16, the wavelength Multiplexed wavelength power included in division multiplexed optical WDM
  • the wavelength group WB shown in any of (b) to (e) of FIG. 2 including a predetermined wavelength channel is separated and output from a predetermined output port 18.
  • the wavelength group optical multiplexer / demultiplexer 10 is switched by the wavelength group by the optical switch located at the subsequent stage and transmitted in a desired direction. For this reason, for example, in the wavelength group cross-connect switch shown in FIG.
  • a portion surrounded by a broken line consisting of N wavelength group optical multiplexer / demultiplexers GB consisting of a waver or the like can be composed of 1 to less than N wavelength group optical multiplexer / demultiplexers 10 Therefore, when the light propagation direction is unidirectional, the number of wavelength group optical multiplexers / demultiplexers is N + N when the power is the smallest, to two. For example, as shown in Example 6 to be described later When it is configured in both directions, it can be greatly reduced to one when it is the least.
  • the wavelength division multiplexed optical WDM can be demultiplexed and multiplexed with a resolution corresponding to the wavelength channel, and the input port 16 is shifted by one.
  • the arrayed waveguide gratings AWG1 and AWG2 having a characteristic that the output ports are sequentially shifted one by one twice, a part of the multiple wavelength channels included in the wavelength division multiplexed optical WDM can be respectively transmitted.
  • Multiple wavelength groups including WB are output from multiple output ports 18, respectively. Therefore, multiple wavelength groups each including multiple wavelength channels are combined.
  • the wavelength group optical multiplexer / demultiplexer 10 that separates the wavelength group WB and outputs the plurality of wavelength groups WB from the plurality of output ports 18 can be obtained very easily.
  • one or two or more different wavelength division multiplexed optical WDMs are respectively input to the input ports 16.
  • the wavelength division multiplexed optical WDM respectively input to the multiple input ports 16
  • the wavelength channels belonging to each of the included wavelength groups WB are dispersed, the dispersed wavelength channels are combined with the preset wavelength group WB, and the combined wavelength group WB is added for each wavelength group WB. Since the signals are output from different output ports 18, a plurality of wavelength division multiplexed optical WDMs respectively input to the plurality of input ports 16 are separated into a plurality of preset wavelength groups WB, and the plurality of wavelength groups WB are divided into a plurality of wavelength groups WB.
  • the wavelength group optical multiplexer / demultiplexer 10 respectively outputting from the output port 18 can be obtained very easily.
  • the first array waveguide grating AWG1 and the second array waveguide grating AWG2 and (c) the first array waveguide grating AWG1 Since the output port 26 and the optical connection path 12 interconnecting the input port 42 of the second arrayed waveguide grating AWG2 are included, the two first arrayed waveguide gratings AWG1 and the second arrayed waveguide grating
  • a wavelength group optical multiplexer / demultiplexer 10 that outputs a plurality of wavelength groups WB from a plurality of output ports 18 can be obtained very easily.
  • the optical connection path 12 has a certain relationship with the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2.
  • a plurality of waveguides are provided without intersecting on one plane, so that the optical connection path 1 2 as well as the first array waveguide grating AWG1 and the second array waveguide grating AWG2 are arranged in one plane.
  • the first array waveguide grating AWG1, the second array waveguide grating AWG2, and the optical connection path 12 can be easily formed as a single-chip monolithic structure. Can be configured.
  • the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2 each have a plurality of arrayed waveguides having optical path length differences.
  • Waveguides 20 and 30; input lens waveguides 24 and 34 for distributing the input light to the respective input side ends of the plurality of arrayed waveguides 20 and 30, and the output side of the arrayed waveguides 20 and 30 Multiple wavelength channels included in the light output from the end are separated based on the optical path length difference between the arrayed waveguides 20 and 30 and distributed to the preset output ports of the output ports 40 and 18, respectively.
  • Output lens waveguides 28 and 38 respectively.
  • a quartz planar lightwave circuit in which clats and cores are deposited on, for example, a quartz-based material on a common substrate made of UK or silicon to form a waveguide with a predetermined pattern.
  • PLC quartz planar lightwave circuit
  • the wavelength group optical multiplexer / demultiplexer 10 can function as a wavelength group optical multiplexer with the same configuration.
  • the output port 18 functions as an input port
  • the input port 16 functions as an output port
  • the second array waveguide grating AWG2 serves as the first array waveguide grating.
  • the first arrayed waveguide grating AWG1 functions as the second arrayed waveguide grating.
  • wavelength group optical multiplexer When used as this wavelength group optical multiplexer, when a plurality of wavelength groups WB, which are the output signals described above, are input from the input port (output port 18), the wavelengths combined in a predetermined combination are used. Division multiplexed optical WDM is output from the output port (input port 16). When used as such a wavelength group optical multiplexer, the same effects as described above can be obtained.
  • Figure 6 shows 16 wavelength channels transmitted through four input fibers F ⁇ ⁇
  • Wavelength recursion with as many as 16 input ports p to p and output ports q to q
  • a first arrayed waveguide grating AWG1 having a wavelength wraparound with 20 input ports r to r and output ports s to s, which is four more than the number of wavelength channels.
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of this embodiment is configured such that the output ports q to q of the first arrayed waveguide grating AWG1 are connected to the second arrayed waveguide grating A.
  • the first wavelength division multiplexed optical WDM A (wavelengths Chanerue eight-e A),
  • WDM C (wavelength channel ⁇ c to e c)
  • WDM D (wavelength channel)
  • the output ports By passing through the waveguide grating AWG1 and the second array waveguide grating AWG2, the output ports s to s, s to s, s to s, and s to s of the second array waveguide grating AWG2
  • WB4 (A) to WB1 (A), WB4 (B) to WB1 (B), WB4 (C) to WB1 (C), WB4 (D) to WB1 (D) 1S is output one by one.
  • WB1 (A) to WB4 (A) are wavelengths including part of the wavelengths (four wavelengths in this embodiment) included in the input first wavelength division multiplexed light WDM A.
  • WB1 (A) indicates the wavelength channels ⁇ 8 to E8, and WB2 (A)
  • WB3 (A) indicates wavelength channels E8 to E
  • WB4 (A) indicates wavelength channels E8 to E8.
  • connection relationship between ⁇ r and r ⁇ r is expressed by the general formula (3). Also human power fiber
  • connection position of F is expressed by general formula (4).
  • i is the position of the input port
  • D is an integer that indicates the number of wavelength channels in one wavelength group
  • [] is the largest integer that does not exceed the number in parentheses (ceiling)
  • the first key having m input ports p and m output ports q.
  • Ray waveguide grating AWG1 and second arrayed waveguide grating AWG2 with m + B input ports r and m + B output ports s were used.
  • the second arrayed waveguide grating AWG2 force m + 2B input ports r and m + 2B output ports s, or m + May have 3B input ports r and m + 3B output ports s! /.
  • it may generally have m + (positive integer) XB input ports r and m + (positive integer) XB output ports s.
  • many more connection relationships are established.
  • the wavelength group optical multiplexer / demultiplexer 10 of the second embodiment in addition to the same effects as those of the above-described embodiments, the wavelength including adjacent wavelength channels on the wavelength axis is also obtained. There is an advantage that each group is output from the output port 18.
  • the wavelength group optical multiplexer / demultiplexer 10 of the second embodiment is used as a wavelength group optical multiplexer, in FIG. 6, four consecutive wavelengths continuous every 100 GHz on the wavelength axis.
  • four wavelength groups WB each including a channel are input from the output ports s to s, s to s, s to s, and s to s of the second arrayed waveguide grating AWG2, respectively, the second arrayed waveguide
  • the wavelength groups are combined in a preset combination, and the first wavelength division multiplexed WDM A (wavelength channel E8 ⁇ e , Second wavelength division multiplexed WDM B (wavelength channel B ⁇
  • Input division multiplexing optical WDM D (wavelength Chanerue D ⁇ e D) is in the first arrayed waveguide grating AWG
  • Figure 7 shows 16 wavelength channels transmitted through four input fibers F ⁇ ⁇
  • wavelength division multiplexed lights including IN 1 16 WDM A to WDM D 1S Wavelength recurring with 16 input ports p to p and output ports q to q, the same number of wavelength channels.
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of this embodiment is, for example, an optical fiber or a three-dimensional optical waveguide having a crossover, or a cross between waveguides which are crossed on the same plane.
  • the second arrayed waveguide grating AWG2 is not used for input and output ports.
  • the first wavelength division multiplexed light WDM A (wavelength channels E8 to E8)
  • Second wavelength division multiplexed light WDM B (wavelength channel ⁇ ⁇ to ⁇ ), third wavelength division multiplexed
  • Optical WDM C (wavelength channel ⁇ c to e c)
  • fourth wavelength division multiplexed optical WDM D (wavelength channel)
  • Nel D to D are connected to the input ports p, p, p, p of the first arrayed waveguide grating AWG1.
  • the first arrayed waveguide grating AWGl and the second arrayed waveguide grating AW G2 are passed through, so that the output port (s, s s s
  • each input wavelength division multiplexed WDM there are four wavelengths that are included in each input wavelength division multiplexed WDM and each include four discontinuous preset wavelength channels separated by 400 GHz on the wavelength axis.
  • One group is output for each group.
  • wavelength group optical multiplexer / demultiplexer 10 of the third embodiment is used as a wavelength group optical multiplexer, in FIG. 7, discontinuous wavelength channels separated by 400 GHz on the wavelength axis are arranged.
  • Each of the four wavelength groups including WB is the output port of the second arrayed waveguide grating AWG2 (s, s,
  • the fourth wavelength division multiplexing optical WDM D (wavelength Chanerue D to example D) is
  • Figure 8 shows 16 wavelength channels transmitted through four input fibers F ⁇ ⁇
  • WDM A to WDM D each including IN 1 16 are wavelength-circulating with 16 input ports p to p and output ports q to q, the same number of wavelength channels.
  • a first arrayed waveguide grating AWG1 having the same number of wavelength channels and 16 second input ports r to r and output ports s to s.
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of the present embodiment is, for example, an optical fiber or a three-dimensional optical waveguide having a crossover, or a crosstalk between the waveguides which intersects on the same plane but is predetermined.
  • the first wavelength division multiplexed optical WDM A (wavelengths Chanerue eight-e A)
  • WDM C (wavelength channel ⁇ c to e c)
  • WDM D (wavelength channel)
  • the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2 are passed through so that the output ports (s, s, s, s), (s, s, s, s), (s, s, s, s,
  • Wavelength division multiplexed light Each of the four wavelength groups that are included in each WDM and that includes four discontinuous preset wavelength channels separated by 400 GHz on the wavelength axis is output one by one.
  • connection relationship with 1 16 1 to r is expressed by the general formula (5). Also, the connection position of input fiber F
  • the 16 IN position is represented by general formula (6).
  • i is an integer indicating the position of the input port
  • D is an integer indicating the number of wavelength channels in one wavelength group
  • [] is the maximum integer (ceiling) that does not exceed the number in parentheses
  • the first array conductor having m input ports ⁇ and m output ports q under the condition that a plurality of waveguides constituting the optical connection path 12 intersect.
  • the second arrayed waveguide grating AWG2 under the condition that the force used by the waveguide grating AWG1 and the second arrayed waveguide grating AWG2 with m input ports r and m output ports s intersect May have m + B input ports r and m + B output ports s, or m + 2B input ports r and m + 2B output ports s . Further, it may generally have m + (positive integer) XB input ports r and m + (positive integer) XB output ports s.
  • wavelength group optical multiplexer / demultiplexer 10 of the fourth embodiment is used as a wavelength group optical multiplexer, in FIG. 8, discontinuous wavelength channels separated by 400 GHz on the wavelength axis are arranged.
  • Each of the four wavelength groups including WB is the output port of the second arrayed waveguide grating AWG2 (s, s,
  • the fourth wavelength division multiplexing optical WDM D (wavelength Chanerue D to example D) is
  • the wavelength group WB respectively output from the output port 18 is represented by (d) or (e) in FIG. As shown, since the wavelength channel force is discontinuous on the wavelength axis, a wavelength group including discontinuous wavelength channels on the wavelength axis is obtained.
  • Figure 9 shows 16 wavelength channels transmitted through two input fibers F ⁇ ⁇
  • Two wavelength division multiplexed light including IN 1 16 WDM A to WDM B 1S Has wavelength recursion with 16 input ports p to p and output ports q to q as many as the number of wavelength channels.
  • the demultiplexing function when input to the wavelength group optical multiplexer / demultiplexer 10 composed of the path grating AWG2 is described.
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of this embodiment is, for example, an optical fiber or a three-dimensional optical waveguide having a crossover, or a crosstalk between the waveguides which intersects on the same plane.
  • the output port q of the first arrayed waveguide grating AWG1 is connected to the second arrayed waveguide using an optical waveguide configured to be less than
  • Force ports q to q and q to q are connected to the input ports r to r and r of the second arrayed waveguide grating AWG2.
  • the first wavelength division multiplexed optical WDM A (wavelengths Chanerue eight-e A)
  • the second wavelength division multiplexed light WDM B (wavelength channel E to B) is the first arrayed waveguide grating.
  • the first arrayed waveguide grating AWG1 When input to the input ports p and p of AWG1, respectively, the first arrayed waveguide grating AWG1
  • each of the four wavelength groups is included in each of the input wavelength division multiplexed light WDM and includes two discontinuous preset wavelength channels separated by 400 GHz on the wavelength axis. Output one by one.
  • wavelength group optical multiplexer / demultiplexer 10 of the fifth embodiment is used as a wavelength group optical multiplexer, in FIG. 9, discontinuous wavelength channels separated by 400 GHz on the wavelength axis are arranged.
  • Each of the two wavelength groups including WB is the output port of the second arrayed waveguide grating AWG2 (s, s,
  • the first arrayed waveguide grating AWG1 are sequentially passed, and these wavelength groups are combined in a preset combination, and the first wavelength division multiplexed light WDM A (wavelength channels ⁇ A to, Wavelength-division-multiplexed light WDM B (wavelength channels E to B)
  • Wavelength division multiplexed light composed of 4 wavelength groups each including 2 wavelength channels actually used as wavelength groups is the input port of the first arrayed waveguide grating AWG
  • Figures 10 and 11 show 12 wavelength channels transmitted over 4 optical fibers F.
  • Heavy light WDM A to WDM D force 16 input ports ⁇ to p and output ports q to q
  • Wavelength-division-multiplexed light WDM E to WDM H force Example of executing wavelength group demultiplexing function when the light is propagated in the opposite direction to the second arrayed waveguide grating AWG2 at the same time in both directions
  • Wavelength group optical multiplexer / demultiplexer 10 has a wavelength group demultiplexing function in both directions.
  • four wavelength division multiplexed lights WDM A to WDM D are the first.
  • Arrayed waveguide grating When manpowered by AWG 1 manpower port
  • four wavelength division multiplexed light WDM E to WDM H are input to the output port of the second arrayed waveguide grating AWG2 in the opposite direction. Describes the part that operates as a wavelength group splitter when
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of the present embodiment is, for example, an optical fiber or a three-dimensional optical waveguide having a crossover, or a crosstalk between the waveguides intersecting on the same plane.
  • the output ports q to q, q to q, q to q, q to q of the first arrayed waveguide grating AWG1 are connected to the second array using an optical waveguide created so that is less than a predetermined value.
  • 3 4 11 12 is prevented from outputting wavelength group demultiplexing, while output ports S, S, S, S
  • 3 4 11 12 includes 16 other wavelength signals, that is, wavelength channels, ⁇ ,
  • the first wavelength division multiplexed light WDM A (wavelength channels E8 to E8
  • Length division multiplexing optical WDM B (wavelength Chanerue B ⁇ example wavelength Chanerue ⁇ in B, lambda B
  • the output ports (s, s, s), (s, s, s), (s, s, s), (s, s, s), for example, (d) in Figure 2
  • each WB ie [WB3 (A), WB1 (A), WB2 (A)] [WB3 (B), WB1 (B), WB2 (B)] [WB1 (C), WB2 ( C), WB3 (C)] [WB2 (D), WB3 (D), WB1 (D)] are output one by one.
  • the wavelength groups WB1 (A), WB2 (A), WB3 (A) are part of the wavelengths included in the input first wavelength division multiplexed light WDM A (in this embodiment, four wavelengths each) )
  • WB1 (A) is a wavelength group including wavelength channels ⁇ ⁇ ⁇ 8 output from the output port s,
  • the output port s power output is wavelength Chanerue ⁇ , ⁇ eight, eh eight, including the e A
  • WB3 (A) is a wavelength Chanerue ⁇ output also output port s force, lambda eight, e A
  • Each wavelength group includes 2 3 7 11 ⁇ ⁇ .
  • the fifth wavelength division multiplexed light WDM E (wavelength channel in the wavelength channels E to E)
  • WDM F Wavelength Chanerue F ⁇ e wavelength in F Chanerue F, e F, e F, e F
  • the input port of the first arrayed waveguide grating AW G1 (p ⁇ ⁇ ⁇ ⁇ ⁇
  • each of the input wavelength division multiplexed light WDMs is included in each of the WDMs and is separated by 400 GHz on the wavelength axis.
  • Three wavelength groups each including three preset wavelength channels are output one by one.
  • one or more output ports s s s s s which are a part of the output ports of the second arrayed waveguide grating AWG2 are used as input ports, and reverse propagation is performed from the input ports.
  • wavelength division multiplexed lights input in the direction are separated for each wavelength group included in each wavelength division multiplexed light, and the wavelength division multiplexed multiplexing of the input ports of the first arrayed waveguide grating AWG 1 Optical WDM A WDM B WDM WDM ° is input and output from the input ports (ppp), (ppp), (ppp), (ppp).
  • the wavelength division multiplexed light power is bi-directionally divided into a plurality of wavelength groups that are part of a plurality of wavelength channels included therein and include different wavelength channels. Can function as a duplexer.
  • wavelength group optical multiplexer / demultiplexer 10 of this embodiment is used as a wavelength group optical multiplexer
  • FIG. 10 four discontinuous wavelength channels separated by 400 GHz on the wavelength axis are shown.
  • 4 wavelength groups each including WB is the output port of the second arrayed waveguide grating AWG2 (s, s
  • the wavelength groups are combined in a preset combination, and the first wavelength division multiplexed light WDM A (wavelength channel antenna) 8 to A , ⁇ 8 to A , ⁇ 8 to A , ⁇ ⁇ to A
  • Second wavelength-division-multiplexed light WDM B (wavelength channel B ⁇ E ⁇ ⁇ ⁇ E ⁇ ⁇ ⁇
  • Channels D to D , ⁇ D to D , ⁇ D to D , ⁇ D to D ) are the first array waveguides
  • V and four wavelength groups WB each including four discontinuous wavelength channels separated by 400 GHz on the wavelength axis are input ports (p, ⁇ , ⁇ ;), ( ⁇ , ⁇ , ⁇
  • WDM F (wavelength Chanerue F ⁇ e F, ⁇ F ⁇ e F, ⁇ F ⁇ e F, ⁇ F ⁇ e F), seventh
  • Fig. 12 shows that the wavelength group optical multiplexer / demultiplexer 10 is common, that is, a single arrayed waveguide grating AW. 4 is a conceptual diagram showing an example in which G3 and a folded waveguide 50 are integrally formed on a substrate 14.
  • FIG. This arrayed waveguide grating AWG3 is similar to the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2 described above, and includes the arrayed waveguide 20, the input side waveguide 22, and the input side waveguide 22 thereof.
  • Waveguide 26 (output port 40) is a chart showing that the wavelength at which the force is also output is ⁇ +
  • the arrayed waveguide grating AWG3 has no wavelength revolving property.
  • the wavelength division multiplexed optical WDM is input to a part of the plurality of input ports 16 and demultiplexed in the single arrayed waveguide grating AWG3.
  • the arrayed waveguide grating AWG3 A return connection path (feedback waveguide) 50 is provided to allow the other part of the output port 40 to be input to the other part of the input port 16 of the arrayed waveguide grating.
  • Wavelength group optical multiplexer / demultiplexer 10 uses a single arrayed waveguide grating AWG3 to change from a plurality of different wavelength division multiplexed optical WDMs input to a part of input port 16 to the wavelength division multiplexed optical WDM.
  • a plurality of wavelength groups WB converted to a different wavelength group WB are output to the feedback waveguides at the other part of the output port 40, respectively.
  • the number of input ports 16 of the arrayed waveguide grating AWG3 is M
  • the number of output ports 40 of the arrayed waveguide grating AWG3 is N
  • the number of wavelength groups is B
  • the wavelength channels in the wavelength group are If the number is D and the number of 1 XB multiplexers / demultiplexers in the wavelength group optical multiplexer / demultiplexer (device) 10 is A, the total number of wavelength channels used is BXD, the number of input ports of the device is A, The number of output ports is AXB.
  • the folded connection path 50 can be expressed by the following general formulas (a) to (( Connected as shown in d). That is,
  • the A input ports use the ports a, a + D,..., -A + (A—1) D of the arrayed waveguide grating AWG3.
  • Equation (7) is a constraint based on the fact that the output port number power is greater than or equal to
  • Equation (8) is the number of the output port used for the loopback connection path 50 and the output port required for the device to output the wavelength group.
  • Equation 9 does not duplicate the number of the input port used for the loopback connection path 50 and the input port required for the device to input the wavelength division multiplexing optical DM. It is a restriction condition for doing so.
  • number n 8, wavelength group optical multiplexer / demultiplexer (device)
  • the output port Out41-48 (41st to 48th) is connected to the input port In31-38 (31st to 38th), and the output port Out49-56 (49th).
  • Output port Out65-72 (65 to 72) is input port In58-65 (58 to 65)
  • output port Out73-80 (73 to 80) is input port In67-74 (No.
  • a single arrayed waveguide grating AWG3 is provided, but its output is input again through the folded connection path 50, and the arrayed waveguide grating Since AWG3 can be passed twice, the same effect as in the previous embodiment can be obtained.
  • the wavelength division multiplexed light WDM is input to a part of the plurality of input ports, and outputs different from each other for each of the combined wavelength groups.
  • Single arrayed waveguide grating AWG3 output from part of port and common arrayed waveguide grating AWG3 The other part of the output port of AWG3 is input to the other part of the input port of the common arrayed waveguide grating AWG3
  • the single arrayed waveguide grating A WG3 is included in the wavelength division multiplexed optical WDM from a plurality of different wavelength division multiplexed optical waves WD M input to a part of the input port.
  • One arrayed waveguide grating AWG3 and 50 folded connections Is wavelength group optical multiplexer demultiplexer 10 is simply structured.
  • wavelength group optical multiplexer / demultiplexer 10 of the fifth embodiment is used as a wavelength group optical multiplexer, in FIG. 12, a plurality of wavelength groups WB are respectively input from a part of the output ports 40.
  • a single arrayed waveguide grating AWG3 is passed twice in the propagation direction opposite to that of the wavelength group demultiplexer, so that the wavelength groups are combined in a preset combination. Then, wavelength division multiplexed optical WDM is output as a part of the input port 16 Example 8
  • the wavelength group optical multiplexer / demultiplexer 10 of the embodiment of FIG. 14 is the same as the embodiment of FIG. 12, except that some of the output ports connected to the return connection path 50 and some of the input ports are different. Configured in the same way Yes. That is, in the embodiment of FIG. 12, the old number port of the input and output ports of the arrayed waveguide grating AWG3 is used for connection of the return connection path 50, and the young number port is used for input / output of the device. In this embodiment, among the input and output ports of the arrayed waveguide grating AWG3, the young number port is used for connection of the return connection path 50, and the old number port is used for input / output of the device. Even in this embodiment, the same effect as the embodiment of FIG. 12 can be obtained.
  • the wavelength group optical multiplexer / demultiplexer 10 of the embodiment of FIG. 15 is similar to the embodiment of FIG. 6, and the first wavelength division multiplexed light WDM A (wavelength channel E8 to E 8) or 3rd
  • Wavelength-division-multiplexed WDM e (wavelength channels e c to e )
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of this embodiment is composed of an optical waveguide formed on the substrate 14, and the output ports q to q of the first arrayed waveguide grating AWG 1 are connected to the second Arrayed waveguide grating AWG2 input port r ⁇ ! :, ⁇ : ⁇ r
  • FIG. 15 shows the demultiplexing function when the two wavelength division multiplexed light WDM A and the wavelength division multiplexed light WDM e are input.
  • First wavelength division multiplexed light WDM A (wavelength channels ⁇ 8 to 8)
  • third wavelength division multiplexed light WDM C (wavelength channels c to e c)
  • the output port (s) of the second arrayed waveguide grating AWG2 (s), for example, as shown in (b) and (c) of FIG.
  • Wavelength division multiplexed light input to 1 Wavelength division multiplexed light input to 1
  • wavelength groups WB each including four consecutive wavelength channels respectively included in WDM A and continuously adjacent to each other on the wavelength axis every 100 GHz on the wavelength axis Are output to the input port p from the output ports (S, S, S, s).
  • Wavelength-division-multiplexed light Wavelength groups each containing 4 consecutive wavelength channels that are included in each WDM e and that are adjacent to each other on the wavelength axis and continuously adjacent to each 1 OOGHz Are output respectively.
  • the second array waveguide grating AW G2 to be used is made by connecting two or more input ports of the second array waveguide grating AWG 2 that are not used.
  • the output ports are not adjacent.
  • Such input / output characteristics are such that the difference between the number of the output port of the first arrayed waveguide grating AWG1 and the number of the input port of the second arrayed waveguide grating AWG2 connected to each other by the optical connection path 12 is not continuous. And the proper selection of the input port of the first arrayed waveguide grating AWG1 to be used.
  • the selection of the ports connected to each other by the optical connection path 12 and the ports to which the wavelength division multiplexed WDM A and WDM e are input can be changed as appropriate within the range that satisfies these conditions.
  • the output ports of the second arrayed waveguide grating AWG 2 are not adjacent to each other. Therefore, there is an advantage that the interval between the output waveguides connected to the output port can be widened.
  • the structure of the output waveguide from the second arrayed waveguide grating AWG2 can be improved, for example, the waveguide width can be widened to increase the transmission band, or the waveguide shape can be made parabolic. Effects such as flat transmission spectrum can be obtained.
  • wavelength group in the embodiment of FIG. 16 optical multiplexer demultiplexer 10 like the embodiment of FIG. 7, a first wavelength division multiplexed optical WDM A input (wavelength Chanerue eight to example A) or Third wavelength
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of the present embodiment is, for example, an optical fiber or a crossover formed on the substrate 14.
  • Second array waveguide 4 r, r to r, r to r, r to r are connected so as to cross each other.
  • FIG. 16 shows the demultiplexing function when the above two wavelength division multiplexed light WDM A and wavelength division multiplexed light WDM e are input.
  • First wavelength division multiplexed light WDM A (wavelength channels ⁇ 8 to 8)
  • third wavelength division multiplexed light WDM C (wavelength channels c to e c)
  • wavelength groups WB each including four wavelength channels that are included in each DM A and are not adjacent to each other on the wavelength axis every 100 GHz on the wavelength axis are output, and output ports (s 1, s 2, s) from the wavelength division multiplexed optical WDM C input to the input port p
  • wavelength groups WB that are included in each wavelength and each include a discontinuous wavelength channel that is not adjacent to every 1 OOGHz on the wavelength axis are output.
  • the output port of the second arrayed waveguide grating AWG2 to be used is adjacent by making the input port of the second arrayed waveguide grating AWG2 to be used adjacent to each other. Do not let it be continuous. In such input / output characteristics, the difference between the number of the output port of the first arrayed waveguide grating AWG1 and the number of the input port of the second arrayed waveguide grating AWG2 connected to each other by the optical connection path 12 is not continuous. It can be obtained by setting the jump value and appropriately selecting the input port of the first arrayed waveguide grating AWG1 to be used.
  • the selection of the ports connected to each other by the optical connection path 12 and the ports to which the wavelength division multiplexed light WDM A and WDM e are input can be changed as appropriate within the range satisfying these conditions.
  • the output ports of the second arrayed waveguide grating AWG2 are not adjacent to each other! , So that the output connected to its output port from There is an advantage that the interval between the waveguides can be widened.
  • the structure of the output waveguide from the second arrayed waveguide grating AWG2 can be improved, for example, the transmission band can be expanded by widening the waveguide width, or the transmission spectrum can be made by making the waveguide shape parabolic. The effect of flattening can be obtained.
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of the present embodiment is configured by, for example, an optical waveguide force formed in parallel in a plane on the substrate 14, and the output port of the first arrayed waveguide grating A WG1 q to q are input ports r to r and r of the second arrayed waveguide grating AWG2.
  • Fig. 17 shows the demultiplexing function when the above two wavelength division multiplexed light WDM A and wavelength division multiplexed light WDM e are input.
  • First wavelength division multiplexed light WDM A (wavelength channel ⁇ 8 to e and third wavelength division multiplexed light WDM C (wavelength channel e c to e
  • the second arrayed waveguide grating AW G2 output port (s, s, s, s)
  • wavelength groups WB each including four wavelength channels included in the wavelength division multiplexed optical WDM A input to 13 and adjacent every 100 GHz on the wavelength axis are output and output ports From (s 1, s 2, s 2, s), the wavelength division multiplexed light WD input to the input port p
  • 21 19 17 15 21 M respectively for each C contains and four wavelength groups WB each comprising a wavelength Channel successive adjacent to each 100GHz on the wavelength axis are outputted.
  • the second array waveguide grating to be used is used by adjoining (continuous) two or more input ports of the second array waveguide grating AWG 2 that are not used.
  • a WG2 output ports should not be contiguous without being contiguous!
  • This input / output characteristic is the difference between the number of the output port of the first arrayed waveguide grating AWG 1 and the number of the input port of the second arrayed waveguide grating AWG2 connected to each other by the optical connection path 12. It can be obtained by taking values that are not continuous and by appropriately selecting the input port of the first arrayed waveguide grating AWG1 to be used.
  • the selection of the ports connected to each other by the optical connection path 12 and the ports to which the wavelength division multiplexed light WDM A and WDM C are input can be appropriately changed within a range satisfying these conditions.
  • the output port of the second arrayed waveguide grating AWG2 is not adjacent. Therefore, there is an advantage that the interval between the output waveguides connected to the output port can be widened.
  • the structure of the output waveguide from the second arrayed waveguide grating AWG2 can be improved, for example, the waveguide width can be widened to increase the transmission band, or the waveguide shape can be made parabolic. As a result, the transmission spectrum can be flattened.
  • the optical connection path 12 of the wavelength group optical multiplexer / demultiplexer 10 of the present embodiment is also configured with, for example, a three-dimensional optical waveguide force having a crossover formed on an optical fiber or a substrate 14, and the first array waveguide Grid A Output port q of WG1
  • FIG. 18 shows a demultiplexing function when the above two wavelength division multiplexed light WDM A and wavelength division multiplexed light WDM e are input.
  • First wavelength division multiplexed light WDM A (wavelength channel ⁇ 8 to e and third wavelength division multiplexed light WDM C (wavelength channel e c to e
  • the output of the second arrayed waveguide grating AWG 2 can be obtained, for example, as shown in (d) and (e) of FIG. Wavelength division multiplexed light input to input port p from ports (s, s, s, s)
  • wavelength groups each including four wavelength channels that are each included in WDM A and that are not adjacent to each other at 100 GHz on the wavelength axis, and WB forces are output, and output ports (s 1, s 2, s 1, s 2) ) From the wavelength division multiplexed light W input to the input port p.
  • the output port of the second arrayed waveguide grating AWG2 to be used is adjacent to the output port of the second arrayed waveguide grating AWG2 to be used. Do not let it be continuous. In such input / output characteristics, the difference between the number of the output port of the first arrayed waveguide grating AWG1 and the number of the input port of the second arrayed waveguide grating AWG2 connected to each other by the optical connection path 12 is not continuous. It can be obtained by setting the jump value and appropriately selecting the input port of the first arrayed waveguide grating AWG1 to be used.
  • the selection of the ports connected to each other by the optical connection path 12 and the ports to which the wavelength division multiplexed light WDM A and WDM e are input can be changed as appropriate within the range satisfying these conditions.
  • the output ports of the second arrayed waveguide grating AWG2 are not adjacent to each other! Therefore, there is an advantage that the interval between the output waveguides connected to the output port can be widened. Due to this advantage, the structure of the output waveguide from the second array waveguide grating AWG2 is improved, for example, the waveguide width is widened and transmitted. Effects such as widening the band or flattening the transmission spectrum by making the waveguide shape parabolic.
  • FIG. 19 shows a wavelength group optical multiplexer / demultiplexer 10 in which eight optical circulators 60 are provided in the embodiment of FIGS. 10 and 11.
  • the optical circulator 60 includes a plurality of ports, for example, a first port 60a, a second port 60b, and a third port 60c, and light input from one of the ports is output from a port adjacent to the one rotation direction side indicated by an arrow. It has the characteristic to make it.
  • the optical circulator 60 is provided on the human power ports p, p, p, p of the first arrayed waveguide grating A WG1, and as shown in FIG. Are
  • Waveguide grating AWG2 is provided at output ports s, s, s, s. Because of this, the second
  • the wavelength division multiplexed light that is input WDM A to WDM H force wavelength channel E, E, ⁇
  • wavelength group optical multiplexer / demultiplexer 10 of the present embodiment while functioning as a bidirectional wavelength group optical demultiplexer and wavelength group optical multiplexer. Wavelength channels with unnecessary ports are not required to be removed.
  • the optical circulator 60 includes, for example, the first arrayed waveguide grating AWG1, the second arrayed waveguide grating AWG2, and the optical connection path 12 connecting them together on the common substrate 14 made of, for example, quartz or silicon.
  • Wavelength group optical multiplexer / demultiplexer can be integrated monolithic structure by silica-based planar lightwave circuit (PLC) in which clad and core are deposited with silica-based material to form a waveguide with a predetermined pattern 10 layers can be downsized.
  • PLC planar lightwave circuit
  • a wavelength group selection switch 60 for performing so-called routing for arbitrarily assembling wavelength-division multiplexed light composed of a set of desired wavelength groups and transmitting it in a desired direction will be described.
  • This wavelength group selection The selector switch uses the characteristics of the arrayed waveguide gratings AWG1 and AWG2 that the output ports of the wavelength branched by shifting one input port are shifted one by one.
  • the above-mentioned arrayed waveguide grating AWG1 is made up of three elements by passing AWG2 twice and selecting the input port for the second pass again using an optical switch before passing further.
  • the desired wavelength group multiplexed in any combination is output from the input side port or output side port of AWG2.
  • the wavelength group selection switch 60 shown in FIGS. 23 to 30 since there is no mechanical moving part, complicated adjustment is not required and stable wavelength group selection operation can be obtained, and the structure is simple. It can be made an extremely small shape.
  • Fig. 23 shows 32 optical paths 12 (32 wavelength paths), and the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2 connected in units of 8 as shown in Fig. 7 are provided.
  • the first array waveguide grating AWG1 or the second array waveguide grating AWG2 is divided into 8 wavelength groups WB 1 to WB8 bundled every 4 wavelength paths, two 1 X 3SW type (1 input (3 outputs)
  • Optical switch 62a, 62b, 3 output ports with any combination of wavelength groups output from second arrayed waveguide grating AWG2 input to optical switches 62a, 62b Connected to one input fiber F and three output fibers F.
  • FIG. 5 is a conceptual diagram for explaining a converging-type wavelength group selection switch 60 configured to have a continuous 1-input 3-output function.
  • FIG. 23 only two 1 ⁇ 3SW (1 input 3 output) optical switches 62a and 62b are connected, but eight second array waveguide gratings that output eight wavelength groups WB1 to WB8. Each can be connected to AWG2 port.
  • a 1-input 7-output merged wavelength group selection switch 60 can be configured when combining and demultiplexing into 4 wavelength groups WB1 to WB4 bundled for every 8 wavelength paths. .
  • the number of output fibers is further increased.
  • wavelength groups bundled every 4 wavelength paths are combined into WB1 to WB7.
  • multiplex wavelength group selection switch 60 of 1 input 7 outputs or 2 sets of 1 input 3 outputs A combined wavelength group selection switch 60 can be configured.
  • the above-mentioned 1 X 3SW type (1 input 3 output) optical switches 62a and 62b have three IX 2SW type (1 input 2 output) in a common substrate 14, for example, as shown in FIG.
  • Basic light switch 64 forces 1 input 3 outputs (1 X 3SW) or 1 input 4 outputs (1 X 4SW) by connecting two basic optical switches 64 in parallel on the output side of one basic optical switch 64
  • the optical switch 62 is configured.
  • two basic optical switches 64 are connected to the output side of one basic optical switch 64 in parallel, and one more basic optical switch 64 is connected to the output side of three basic optical switches 64.
  • 1 X 5SW, 1 X 6SW, 1 X 7SW, and 1 X 8SW can be sequentially configured by connecting IJs in parallel.
  • This basic optical switch 64 is connected from the first port 64 to the third port 64 as shown in FIG.
  • the pair of 3 dB directional couplers 70 and 72 and the pair of 3 dB directional couplers 70 and 72 formed by bringing the first waveguide 66 and the second arm waveguide 68 close to each other. And thin film heaters 74 and 76 provided on the first arm waveguide 66 and the second arm waveguide 68, respectively.
  • the first-arm waveguide 66 and the second arm waveguide 68 basically constitute a Matsuhsunder interferometer, and the first arm waveguide 66 and the second arm waveguide 68 have the same structure.
  • the optical path length difference AL is zero, the input light is from the first port 64 to the fourth port 64, or from the second port 64.
  • pi p4 p2 is output through the cross path from port 3 to port 3, but if the optical path length difference A L is half-wavelength
  • the input signal is sent to either the third port 64 or the fourth port 64.
  • a 1-input 2-output optical switch (1 X 2SW) is configured.
  • the basic optical switch 64 is configured in the same manner as the quartz PLC. That is, as shown in Fig. 26, quartz glass particles are deposited on the Si substrate 78 by hydrolytic deposition (FHD), and further heated and sintered in an electric furnace to sinter the lower cladding of about several tens of meters.
  • the first arm waveguide 66 and the second arm waveguide 68 are formed in a predetermined pattern by forming a layer 80 and a core layer 82 of about 10 m and using a combination of photolithography technology and reactive ion etching method. After forming and covering the upper clad layer 84 thereon, a sputter is formed.
  • the thin film heaters 74 and 76 having a predetermined pattern are fixed on the first arm waveguide 66 and the second arm waveguide 68 by using tulling and etching.
  • the optical switches 62a and 62b composed of the basic optical switch 64 are, for example, quartz together with the first array waveguide grating AWG1, the second array waveguide grating AWG2, and the optical connection path 12 connecting them.
  • the monolithic structure is integrated on the silicon common substrate 14 by the quartz-based planar lightwave circuit (PLC) as described above, the wavelength group light selection switch 60 has a small size. It becomes.
  • FIG. 27 specifically shows an example of 1-input ⁇ 3-output in a format in which a dispersion arrangement type wavelength group is output.
  • the wavelength group selection switch 60 in FIG. 27 is configured by arranging four optical switches 62a, 62b, 62c, and 62d in the wavelength group optical multiplexer / demultiplexer 10 of the fourth embodiment in FIG. In this wavelength group selection switch 60, the input port p of the first arrayed waveguide grating AWG1
  • the output port s force of the second arrayed waveguide grating AWG2 is also output.
  • the wavelength group ( ⁇ ⁇ ⁇ ⁇ 8) is changed to the second arrayed waveguide grating A by the optical switch 62a.
  • One of the output ports s, s, s is selected when the port that is input again to WG2 is selected
  • the group ( ⁇ A, E A, E 8, E 8) is the second arrayed waveguide grating AW by the optical switch 62b.
  • the port that is input again to G2 is selected and output port S, S, or S
  • the wavelength group that is input and the output port s force of the second arrayed waveguide grating AWG2 is output (
  • ⁇ 8, EA, E8, E8) are connected to the second arrayed waveguide grating AWG2 by optical switch 62c.
  • the port to be input again is selected and input to one of the output ports s, s, or s.
  • the second output port s power output is the wavelength group of the arrayed waveguide grating AWG2 (lambda Alpha,
  • the input port is selected and input to one of the output ports s, s, or s.
  • the wavelength groups WB1 (A), WB2 (A), WB3 (A), and WB4 (A) can be changed to the three input ports p, p, and p of the first array waveguide grating AWG1 in any combination
  • wavelength groups WB are the first wavelength division multiplexed optical WDM A (wave Long channels ( ⁇ to ⁇ )) and any arbitrary discontinuity separated by 400 GHz on the wavelength axis
  • the first wavelength division multiplexed light WDM A and the second wavelength division multiplexed light WDM are used.
  • B the third wavelength division multiplexed light WDM e
  • the fourth wavelength division multiplexed light WDM D is input to the input port p, a part of the input ports p, p, p, p.
  • 62a, 62b, 62c, and 62d are input ports P used as wavelength group light selection switch input ports in the wavelength group optical multiplexer / demultiplexer 10 of Example 4 in FIG.
  • 1 D to 16 D are output in the same number of output ports (S, S, S), (S, S, S), (S, S, S), ( Selective input to S, S, S) 1 9 10 3 11 12 5 13 14 7 15 16
  • Fig. 28 specifically shows an example of 1 input x 3 output in a format in which a wavelength group of continuous arrangement type is output.
  • the wavelength group selection switch 60 in FIG. 28 is configured by arranging four 1 ⁇ 3 SW optical switches 62a, 62b, 62c, and 62d in the wavelength group optical multiplexer / demultiplexer 10 of Example 2 in FIG. ing.
  • the first wavelength division multiplexed light WDM A (wavelength channels E8 to E8) input to the input port p of the first arrayed waveguide grating AWG1.
  • Any of the output wavelength channels ( ⁇ ⁇ , ⁇ A, E A, E 8) is controlled by the optical switch 62a.
  • Waveguide grating AWG2 output port s force Output wavelength group ( ⁇ ⁇ ⁇ ⁇ 8) Is selected again by the optical switch 62b and is input to one of the output ports s, s, s, and the second array waveguide is selected.
  • Output port s force of grating AWG2 Output wavelength group ( ⁇ ⁇ ⁇ ⁇ 8) is light
  • Output port s of child AWG2 s The output wavelength group ( ⁇ 8, e8, e8, e A)
  • the port 62d selects the port that is input again to the second arrayed waveguide grating AWG2 and inputs it to one of the output ports s, s, s, so that the wavelength group WB1 (A
  • WB2 (A), and WB3 (A) are output in any combination from the three output ports p, p, p of the first arrayed waveguide grating AWG1. These wavelength groups WB are input
  • the first wavelength division multiplexed light WDM A (wavelength channel E8 ⁇ EA) and the wavelength axis
  • the input port p which is part of the input ports p, p, p, p where the wavelength-division-multiplexed optical signal WDM e 3 and the fourth wavelength-division multiplexed optical signal WDM D were input, is input to the wavelength group optical switch.
  • the optical switches 62a, 62b, 62c, and 62d are the first ones input to the input port p used as the wavelength group light selection switch input port in the wavelength group optical multiplexer / demultiplexer 10 of Example 2 in FIG. 1 wavelength division multiplexed light WDM A
  • Each of the output ports s, s, s, s force is provided for each light of the output wavelength group
  • Fig. 29 specifically shows an example of 1-input x 7-output in a format in which a dispersion-constrained wavelength group is output.
  • the wavelength group selection switch 60 in FIG. 29 is configured by adding three IX 7SW optical switches 62a, 62b, and 62c to the wavelength group optical multiplexer / demultiplexer 10 in Example 6 in FIGS. 10 and 11. .
  • this wavelength group selection switch 60 the first wavelength division multiplexed light WDM A (wavelength channel A to ⁇ 1) input to the input port p of the first arrayed waveguide grating AWG 1 is used.
  • the wavelength group ( ⁇ A, e8, e8, e8) for which s force is also output is reflected by the second switch by the optical switch 62a.
  • ⁇ A) is connected to the second arrayed waveguide grating AWG2 or the first array by the optical switch 62b.
  • Wavelength groups WB1 (A), WB2 (A), WB3 (A), WB4 (A), WB5 (A), WB6 (A), WB7 (A) are the first array waveguide grating AWG1 3 One port ⁇ , ⁇ , ⁇ and second
  • wavelength groups WB are included in the input first wavelength division multiplexed light WDM A (wavelength channel ⁇ 8 ⁇ e A) and are arbitrary discrete wavelengths separated by 400 GHz on the wavelength axis.
  • the first wavelength division multiplexed light WDM A and the second wavelength division Multiple light WDM B in the wavelength group optical multiplexer / demultiplexer 10 of Embodiment 6 of FIGS. 10 and 11, the first wavelength division multiplexed light WDM A and the second wavelength division Multiple light WDM B , third wavelength division multiplexed light WDM e , fourth wavelength division multiplexed light WDM D , fifth wavelength division multiplexed light WDM E , sixth wavelength division multiplexed light WDM F , seventh wavelength division multiplexed
  • the optical switches 62a, 62b, and 62c of W are input to the input port P used as the wavelength group optical selection switch input port in the wavelength group optical multiplexer / demultiplexer 10 of the sixth embodiment shown in FIGS.
  • 1 1 16 is output to each of multiple output ports s, s, s, and output port s
  • a plurality of output ports (s that same wavelength group and the wavelength group ⁇ e H) is output, s, s, p, p
  • FIG. 30 specifically shows an embodiment in which two 1-input ⁇ 3-output wavelength group selection switches in the form in which a dispersion-arranged wavelength group is output are realized simultaneously.
  • the wavelength group selection switch 60 in FIG. 30 has six 1 ⁇ 3SW optical switches 62a, 62b, 62c, 62d, 62e, and 62f in the wavelength group optical multiplexer / demultiplexer 10 of the embodiment 4 in FIG. Consists of!
  • the signal is input to the input port p of the first arrayed waveguide grating AWG1.
  • each wavelength channel included in the first wavelength division multiplexed light WDM A (wavelength channel E8 to E8)
  • the wavelength group in which the output port s force of the second arrayed waveguide grating AWG2 is also output (wavelength channel E8 to E8)
  • ⁇ 8, eh, eh, eh8) is transferred to the second arrayed waveguide grating AWG2 by the optical switch 62a.
  • the port to be input again is selected and input to one of the output ports s, s, s
  • the second arrayed waveguide grating AWG2 output port s force The output wavelength group ( ⁇ 8
  • the input port is selected and input to one of the output ports s, s, or s.
  • Output port s force of the second arrayed waveguide grating AWG2
  • the selected port is selected and input to one of the output ports s, s, or s
  • the wavelength groups WBl (A), WB2 (A), and WB3 (A) are output in any combination of the three input ports p, p, and p forces of the first arrayed waveguide grating A WG1.
  • the long group WB is the first wavelength division multiplexed WDM A input (wavelength channel ⁇ ⁇ ⁇ 8)
  • E8, e8, e8) are input to the first arrayed waveguide grating AWG1 by optical switch 62d
  • the wavelength group ( ⁇ A, E8, E8, E8) that also outputs the port p-force is generated by the optical switch 62e.
  • 3 (E) is each of the three output ports s, s, s force of the second arrayed waveguide grating AWG2
  • wavelength groups WB are included in the input first wavelength division multiplexed light WDM E (wavelength channel ⁇ ⁇ to ⁇ ) and are separated by 400 GHz on the wavelength axis.
  • the first wavelength division multiplexed light WDM A and the second wavelength division multiplexed light WDM are used.
  • B No. Wavelength division multiplexed light WDM e , 4th wavelength division multiplexed light WDM D Input port p, p, p, p where the wavelength WDM D was input, 5th wavelength division multiplexed light WDM E when used in the reverse direction
  • optical switches 62a, 62b, and 62c are connected to the input port p used as the wavelength group light selection switch input port in the wavelength group optical multiplexer / demultiplexer 10 of Example 4 in FIG.
  • a plurality of output ports the same wavelength group and 1 D ⁇ e 16 D) wavelength group is output (S, S, S), (S, S, S), is selectively input to the (S, S, S) . Also
  • Optical switches 62d, 62e, and 62f are input ports p used as wavelength group light selecting switch input ports in the wavelength group optical multiplexer / demultiplexer 10 of Example 4 in FIG.
  • the optical connection path 12 configured by using a three-dimensional optical waveguide having an optical fiber or a crossover is provided between the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2.
  • a plurality of optical switches shown in FIG. May be provided respectively.
  • FIG. 32 shows an embodiment in which an optical switch 90 is applied to the wavelength group optical multiplexer / demultiplexer of FIG.
  • This optical switch 90 is a 2 X 2SW optical switch, and the output ports q to q of the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG
  • the optical switch 90 includes an input port 92 and an output port 94, an add port 96 that receives an optical signal (add signal) to be output from the output port 94, and an optical signal input to the input port 92.
  • drop port 98 for dropping (branching) the signal.
  • the optical signal received at input port 92 is output as it is as shown by the one-dot chain line.
  • the optical signal received at input port 92 is dropped from drop port 98 and at the same time, the same wavelength as the dropped optical signal received at add port 96.
  • an optical signal having a different wavelength is output from the output port 94 instead of the optical signal input to the input port 92.
  • This optical switch 90 can be preferably integrated with the first arrayed waveguide grating AWG1 and the second arrayed waveguide grating AWG2 in the quartz-based planar lightwave circuit PLC.
  • wavelength division multiplexed light WDM to WDM for example, wavelength division multiplexed light WDM to WDM
  • One frequency force The force that has been configured One wavelength channel is further divided into a plurality of subchannels, and one group of subchannels is routed as a single wavelength channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】波長分割多重光から予め設定された複数の波長群に分離して複数の出力ポートからそれぞれ出力することができる、簡単に構成された波長群光合波分波器を提供することにある。 【解決手段】波長分割多重光WDMが、波長チャネルに対応した分解能で分波可能であり且つ入力ポート16が1つずれることにより出力ポートが1つずつずれる特性を有するアレイ導波路格子AWGを合計2回通過させられることにより、その波長分割多重光WDMに含まれる複数の波長チャネルの一部をそれぞれ含む複数の波長群WBが複数の出力ポート18からそれぞれ出力されるので、複数の波長チャネルをそれぞれ含む複数の波長群WBが合波された波長分割多重光WDMから予め設定された複数の波長群WBに分離してその複数の波長群WBを複数の出力ポート18からそれぞれ出力する波長群光合波分波器10が、極めて簡単に得られる。

Description

明 細 書
波長群光分波器、波長群光合波器、および波長群光選択スィッチ 技術分野
[0001] 本発明は、複数の波長チャネルをそれぞれ含む複数の波長群が合波された波長 分割多重光力 予め設定された複数の波長群に分離し、分離した複数の波長群を 複数の出力ポートからそれぞれ出力することができ、或いは伝播方向がそれとは逆 向きとすることにより複数の波長群を合波してその波長群に含まれる波長チャネルを 有する波長分割多重光を出力することができる波長群光合波分波器、および、波長 群(多波長)を一括してルーティングできる波長群光選択スィッチに関するものである 背景技術
[0002] 光ネットワークでは、所定の通信波長帯のたとえば 100GHz毎に分割された複数 の波長チャネル (wave channel or light path)にそれぞれ対応する複数の波長の光が 合波された波長分割多重(WDM : Wavelength Division Multiplexing)光が伝送され るようになっている。上記光ネットワークの各ノードでは、光ファイバ一などにより伝送 された上記波長分割多重光に含まれる波長チャネルの波長の光信号が分光され且 つ合波されて、所定の伝送方向の光ファイバ一へ切り換えられる。また、近年では、 通信容量の増加により上記ノードを構成する光切換装置で取り扱われる波長チヤネ ル数が増大しており、複数の波長チャネルをそれぞれ含む複数の波長群 (wave band )が合波された波長分割多重が用いられるようになって 、る。
[0003] このため、光ネットワークの各ノードにおいては、上記波長チャネル毎に光信号を分 光し且つ合波して所定の伝送方向の光ファイバ一へ切り換える構成に加えて、波長 群毎に光信号を分光し且つ合波して所定の伝送方向の光ファイバ一へ切り換える方 式を適用することが検討されている。この際、波長分割多重信号に含まれる複数の 波長群を分波および合波するために、従来より、多層干渉膜フィルタ式合波分波器、 音響光学効果フィルタ式合波分波器 (AOTF :Acoust-optic Tunable Filter )等がた とえば非特許文献 1、非特許文献 2、非特許文献 3、非特許文献 4、非特許文献 5〖こ それぞれ提案されている。
非特許文献 1:「Ultra- low stress coating process: an enabling technology for extrem e performance thin film interference niters」 OFC 2002 Postdeadline Papers, FA8— 1 非特許文献 2:「AO素子の最近の技術進展」電子情報通信学会論文誌、 VOし J8 6-C Νο.12、 1236-1243頁、 2003年 12月発行
非特許文献 3 :「波長周回性を用いたフルメッシュネットワーク」 NTT R&D VOL.49 No .6、 298-308頁、 2000年 6月発行
特干文献 4: rintegrated Band Demultiplexer Using Waveguide urating Routers」 I
EEE PHOTONICS TECHNILOGY LETTERS, VOL, 15, NO.8, AUGUST 2003 非特許文献 5:「Hexible Waveband Optical Networking Without Guard Bands Using
Novel 8— Skip— 0 Banding Filters」 IEEE PHOTONICS TECHNILOGY LETTERS, V
Oし, 17, NO.3, MARCH 2005
特許文献 1:特開平 11― 30730号公報
特許文献 2:特開 2006 - 11345号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、それら従来の合波分波器には、以下のような不都合があった。すなわ ち、非特許文献 1において提案されている多層干渉膜フィルタ式合波分波器は、バ ンドの切れを良くするために、複雑な設計と必要な膜数が多く製造が困難であるとと もに、必要な特性が得られ難カゝつた。たとえば、 8-SKIP-0 (8つの波長チャネルを 1 波長群とし、波長群間で使用できない波長チャネルを零とする方式)の 100GHzの チャネル幅の波長チャネル 8つから成るそれぞれの波長群を群毎に合波 Z分波する 場合、必要な膜数が 40
9層となるとともに、波長群の周波数幅の端部領域では非線形な分散が大きくなり、 それが伝送特性の劣化要因となっていた。
[0005] また、非特許文献 2にお 、て提案されて!、る音響光学効果フィルタ式合波分波器 は、同時に処理できる波長チャネル数が最大でもたとえば 4チャネルと 、うように限界 があるとともに、通信に使用できない広いガードバンドを必要とし、波長の使用効率 が低いという欠点があった。
[0006] また、非特許文献 3にお 、て提案されて 、るアレイ導波路格子 (AWG: Array Wave guide Grating)は、波長チャネル毎に合波分波する方式には広く用いられているが、 これを波長群毎の合波分波器として使用する場合は、以下の欠点があった。すなわ ち、波長チャネルを複数束ねた波長群では透過帯域幅が広くなるが、広い透過帯域 をアレイ導波路格子で実現する場合は、透過帯域の端部の切れが悪 1、ために透過 帯域幅が広ければ広いほど大きなガードバンドを必要とし、波長の使用効率が著しく 劣化するという欠点があった。
[0007] また、非特許文献 4および非特許文献 5は、 2つのアレイ導波路格子 (AWG: Array
Waveguide Grating)を組み合わせた波長群分波器を提案している。し力し、このもの は、バンドの切れをよくするため複雑な設計が必要となって製造が難しぐ特性も充 分には得られな 、と 、う欠点があった。
[0008] 図 22は、 1つの入力ポートおよび複数の出力ポートを有する、上記従来の多層干 渉膜フィルタ式合波分波器、音響光学効果フィルタ式合波分波器等から成る波長群 光合波分波器 GBを、入力ファイバ及び出力ファイバ毎に用いることにより波長群クロ スコネクトスィッチを構成した従来例を示して ヽる。この波長群クロスコネクトスィッチ によれば、 N本の光ファイバ一 F からの波長分割多重光 WDMを N個の波長群光合
IN
波分波器 GBを用いて m個の群毎に分波し、分波された波長群を m個の光スィッチ S Wを用いて必要な方向に切り換え (ルーティング)、それを N個の波長群光合波分波 器 GBを用いて合波した後で、 N本の光ファイバ一 F へ出力するように構成されて
OUT
いる。これによれば、 N + N個の波長群光合波分波器を必要とし、部品点数が多ぐ 構成が複雑となるという欠点があつたのである。
[0009] 上記に対し、特許文献 1には、波長周回性を有する周期特性波長分波器と導波路 アレイ回折格子波長分波器とを直列に組み合わせて構成した光合分波素子が開示 されている。しかし、この光合分波素子の前段を構成する周期特性波長分波器は、 入力される波長分割多重光の波長チャネル数よりも少ない出力ポートし力備えない ため、その出力ポート毎に波長チャネルが重なった波長の組が多重出力されるもの であり、その光合分波素子の後段を構成する導波路アレイ回折格子波長分波器は、 単純な合波機能を有するものである。したがって、特許文献 1の光合分波素子によれ ば、所定の選択波長帯域内の光強度を平坦ィ匕したフィルタとして機能し、パワーロス を低下させることし力 得られない。
[0010] また、特許文献 2には、第 1のアレイ導波路回折格子と、所望のバンドの個数と同じ 数だけ複数並列配置した第 2アレイ導波路回折格子とを組み合わせた導波路型光 合波分波回路が開示されている。しかし、後段に並列配置された複数個の第 2アレイ 導波路回折格子は単なる光結合器として機能するものであり、同じ波長チャネルを有 する複数の波長分割多重光をそれぞれ導く入力ファイバを設けることが不可能な構 造である。
[0011] 一方、光通信ネットワークの各ノード (結節点)においては 1波長ずつのルーティン グ (伝送先の切換)が行われるのが一般的であるが、伝送される光信号の増大に対 処するために、多波長単位 (波長群)でルーティングすることが望まれる。この多波長 をルーティングするために入力された波長群力 所望の波長を分離して多重化した 所望の波長群を合成できる波長群選択スィッチ(WBSS : Waveband Selective Switch )が提案されている。し力しながら、従来の波長群選択スィッチは、コリメータを通過し 回折格子で反射されることにより分光された波長群を構成する各波長が、面状に配 列された二次元駆動可能な多数個のマイクロミラーによって所望の出力ポートで波 長群を合成できるようにそれぞれ反射されるように構成されて 、るので、構成が複雑 且つ大形であり、し力も各ミラーの調整が極めて微妙で煩雑であるため高価となると いう欠点があった。
[0012] 本発明は以上の事情を背景として為されたものであり、その第 1の目的とするところ は、 1または 2以上の波長分割多重光力 予め設定された複数の波長群に分離し、 分離した複数の波長群を複数の出力ポートからそれぞれ出力することができる、簡単 に構成された波長群光分波器、および、複数の波長群を合波し、予め設定された波 長群が合波された波長分割多重光を出力ポートから出力することができる、簡単に 構成された波長群光合波器を提供することにある。また、第 2の目的とするところは、 所定の波長群を選択的にルーティングできる、簡単かつ小型に構成された安価な波 長群光選択スィッチを提供することにある。 課題を解決するための手段
[0013] 本発明者は、以上の事情を背景として種々検討を重ねた結果、アレイ導波路格子 が波長チャネルに対応した分解能で分波および合波するには充分な特性を持つこと 、且つ入力ポートが 1つずれることにより出力ポートが 1つずつずれる特性を有する点 に着目し、そのアレイ導波路格子を所定の接続条件下で直列に 2回通過させると、 簡単な構成で、波長分割多重光から予め設定された複数の波長群に分離し、分離し た複数の波長群を複数の出力ポートからそれぞれ出力させること、或いは、それと逆 の伝播方向においては、複数の波長群を合波することにより予め設定された波長群 が合波された 1または 2以上の波長分割多重光に合波できることを見出した。本発明 はこのような知見に基づいて為されたものである。そして、特筆すべき点は、複数の 入出力ファイバで本発明の波長群光合波分波器を共有することができ、波長群クロ スコネクトノードの経済性に大きく寄与できることである。
[0014] すなわち、前記目的を達成するための請求項 1に係る発明の波長群光分波器は、 複数の波長チャネルをそれぞれ含む複数の波長群が合波された波長分割多重光か ら予め設定された複数の波長群に分離し、分離した複数の波長群を複数の出力側 のポートからそれぞれ出力する波長群光分波器にぉ 、て、前記波長分割多重光を、 前記波長チャネルに対応した分解能で分波および合波可能であり且つ入力側のポ ートが 1つずれることにより出力側のポートが順次 1つずつずれる特性と、入力ポート の一つに接続された 1本のファイバに多重されている複数の波長チャネルの信号は 出力ポート毎に重なることなく出力される特性とを有するアレイ導波路格子を通過さ せ、次いで、該通過光を再び、前記波長チャネルに対応した分解能で分波および合 波可能であり且つ入力側のポートが 1つずれることにより出力側のポートが順次 1つ ずつずれる特性を有するアレイ導波路格子を通過させ、その 2回の通過により、該波 長分割多重光に含まれる複数の波長チャネルの一部であって互いに異なる波長チ ャネルをそれぞれ含む複数の波長群を、 2回目に通過させる単一のアレイ導波路格 子の複数の出力側のポートから一括して波長群毎にそれぞれ出力することを特徴と する。
[0015] また、請求項 2に係る発明の波長群光分波器は、複数の波長チャネルをそれぞれ 含む複数の波長群が合波された波長分割多重光から予め設定された複数の波長群 に分離し、分離した複数の波長群を複数の出力ポートからそれぞれ出力する波長群 光分波器において、前記波長分割多重光を、前記波長チャネルに対応した分解能 で分波および合波可能であり且つ入力ポートが 1つずれることにより出力ポートが順 次 1つずつずれる特性と、入力ポートの一つに接続された 1本のファイバに多重され ている複数の波長チャネルの信号は、出力ポート毎に波長周回性で決まる周期的な 間隔の複数の波長チャネルが同一の出力ポートから同時に出力されることがない特 性とを有するアレイ導波路格子を通過させ、次いで該通過光を再び、前記波長チヤ ネルに対応した分解能で分波および合波可能であり且つ入力ポートが 1つずれるこ とにより出力ポートが順次 1つずつずれる特性を有するアレイ導波路格子を通過させ 、その 2回通過により、該波長分割多重光に含まれる複数の波長チャネルの一部で あって互いに異なる波長チャネルをそれぞれ含む複数の波長群を、 2回目に通過さ せる単一のアレイ導波路格子の複数の出力ポートから一括して波長群毎にそれぞれ 出力することを特徴とする。
[0016] また、請求項 3に係る発明の波長群光分波器は、請求項 1または 2に係る発明にお いて、複数の入力ポートに入力された互いに異なる複数の波長分割多重光にそれぞ れ含まれる波長群に属する波長チャネルを分光し、分光した波長チャネルを予め設 定された波長群に合波し、合波した波長群をその波長群毎に異なる出力ポートから 出力させることを特徴とする。
[0017] また、請求項 4に係る発明の波長群光分波器は、請求項 1乃至 3のいずれかに係る 発明において、 (a)前記波長分割多重光が入力される第 1アレイ導波路格子と、 (b) 前記波長群毎に異なる出力ポートから出力させる第 2アレイ導波路格子と、 (c)その 第 1アレイ導波路格子の出力ポートと該第 2アレイ導波路格子の入力ポートとを相互 に接続する光接続路とを含むことを特徴とする。
[0018] また、請求項 5に係る発明の波長群光分波器は、請求項 4に係る発明において、前 記光接続路は、複数本の導波路が一平面上において交差なく設けられたものである ことを特徴とする。
[0019] また、請求項 6に係る発明の波長群光分波器は、請求項 4または 5に係る発明にお いて、前記第 1アレイ導波路格子および第 2アレイ導波路格子は、前記波長分割多 重光に含まれる波長チャネル数と同じ数の入力ポートおよび出力ポートをそれぞれ 備えたものであることを特徴とする。
[0020] また、請求項 7に係る発明の波長群光分波器は、請求項 4または 5に係る発明にお いて、前記第 2アレイ導波路格子の出力ポートのうち一部である 1または 2以上のポ ートを入力ポートとし、該入力ポートから逆の伝播方向で入力された 1または 2以上の 波長分割多重光にそれぞれ含まれる波長群に属する波長チャネルを予め設定され た波長群に分波し、分波された波長群を波長群毎に該第 1アレイ導波路格子の入力 ポートのうち前記波長分割多重光が入力されていないポートから出力することにより、 双方向で波長分割多重光力 それに含まれる複数の波長チャネルの一部であって 互 ヽに異なる波長チャネルをそれぞれ
含む複数の波長群へ分波して出力するものであることを特徴とする。
[0021] また、請求項 8に係る発明の波長群光分波器は、請求項 4乃至 7のいずれかの発 明において、前記第 1アレイ導波路格子および第 2アレイ導波路格子の少なくとも一 方は、複数の入力導波路の 1つに入力した波長分割多重光の出力が、入力位置が 1 つずつずれることによって出力位置が周回的に 1つずつずれる波長周回特性を備え たものであることを特徴とする。上記アレイ導波路格子の波長周回特性は、使用する 波長チャネル数と波長チャネル間隔との積を、アレイ導波路格子の FSR(Free Spectr al Range)に一致させることにより実現される。
[0022] また、請求項 9に係る発明の波長群光分波器は、請求項 1乃至 3のいずれかに係る 発明において、別々の第 1アレイ導波路格子および第 2アレイ導波路格子の二個を 用いるのではなぐ 1個のアレイ導波路格子の出力の一部を入力側に折返す構成を 用いることにより、 1個のアレイ導波路格子を 2回経由させることにより、所望の波長群 光分波機能を実現するものである。すなわち、 (a)前記波長分割多重光が一部に入 力される複数の入力ポートと、波長分割多重光に含まれる複数の波長チャネルの一 部であって互いに異なる波長チャネルをそれぞれ含む複数の波長群が一部から出 力される複数の出力ポートを有する単一のアレイ導波路格子と、 (b)前記複数の出力 ポートの他部と前記複数の入力ポートの他部とを接続し、前記一部に入力された前 記波長分割多重光が合分波されて前記複数の出力ポートの他部から出力される複 数の光信号を、前記入力ポートの他部へ入力させる折返接続路とを、含み、 (c)前記 入力ポートの一部に入力された 1又は 2以上の互いに異なる複数の波長分割多重光 を、該波長分割多重光に含まれる複数の波長群に分波し、該波長分割多重光に含 まれる複数の波長チャネルの一部であって互いに異なる波長チャネルをそれぞれ含 む複数の波長群をそれぞれ異なる複数の出力ポートから出力させるものであることを 特徴とする。
[0023] また、請求項 10に係る発明の波長群光分波器は、請求項 1乃至 9のいずれかに係 る発明において、前記出力ポートからそれぞれ出力される波長群は、波長軸上で連 続している波長チャネル力 構成されるものであることを特徴とする。
[0024] また、請求項 11に係る発明の波長群光分波器は、請求項 1乃至 9のいずれかに係 る発明において、前記出力ポートからそれぞれ出力される波長群は、波長軸上で不 連続の波長チャネル力も構成されるものであることを特徴とする。
[0025] また、請求項 12に係る発明の波長群光分波器は、請求項 4または 5に係る発明に おいて、前記第 1アレイ導波路格子、前記第 2アレイ導波路格子、該第 1アレイ導波 路格子の出力ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続する光 接続路は、共通の基板上に一体に設けられたことを特徴とする。
[0026] また、請求項 13に係る発明の波長群光分波器は、請求項 12に係る発明において 、前記第 1アレイ導波路格子および第 2アレイ導波路格子は、 (a)相互に光路長差を 有する複数本のアレイ導波路と、 (b)前記入力ポートに入力された波長分割多重光 を分配して該複数本のアレイ導波路の入力側端部にそれぞれ入力させる入力レンズ 導波路と、 (c)前記複数本のアレイ導波路の出力側端部から出力された波長分割多 重光に含まれる複数の波長チャネルを前記複数本のアレイ導波路の光路長差に基 づいて分離し、前記出力ポートのうちの予め設定された出力ポートへそれぞれ分配 する出力レンズ導波路とを、それぞれ含むことを特徴とする。
[0027] また、請求項 14に係る発明の波長群光分波器は、請求項 4乃至 8、 10乃至 13のい ずれかの発明において、前記第 1アレイ導波路格子の出力ポートと前記第 2アレイ導 波路格子の入力ポートとを相互に接続する光接続路の少なくとも 1つに光スィッチを 挿入し、該第 1アレイ導波路格子の出力ポートから出力される光を該光スィッチにお いて分岐し、該分岐した光信号と同じ波長或いは異なる波長の他の光信号を該光ス イッチ力 挿入することを特徴とする。
[0028] また、請求項 15に係る発明の波長群光合波器は、複数の入力側のポートから入力 された、複数の波長チャネルをそれぞれ含む複数の波長群を合波し、合波した波長 分割多重光を出力側のポートから出力する波長群光合波器であって、前記複数の 波長群を、前記波長チャネルに対応した分解能で分波および合波可能であり且つ 入力ポートが 1つずれることにより出力側のポートが順次 1つずつずれる特性と、入力 側のポートの一つに接続された 1本のファイバに多重されている複数の波長チャネル の信号は出力ポート毎に重なることなく出力される特性とを有するアレイ導波路格子 を通過させ、次いで、該通過光を再び、前記波長チャネルに対応した分解能で分波 および合波可能であり且つ入力側のポートが 1つずれることにより出力側のポートが 順次 1つずつずれる特性を有するアレイ導波路格子を通過させ、その 2回の通過に より、前記複数の波長群に含まれる複数の波長チャネルをそれぞれ含む複数の波長 群が合波された波長分割多重光を、 2回目に通過させる単一のアレイ導波路格子の 複数の出力側のポートから一括してそれぞれ出力することを特徴とする。
[0029] また、請求項 16に係る発明の波長群光合波器は、複数の入力側のポートから入力 された、複数の波長チャネルをそれぞれ含む複数の波長群を合波し、合波した波長 分割多重光を出力側のポートから出力する波長群光合波器であって、前記複数の 波長群を、前記波長チャネルに対応した分解能で分波および合波可能であり且つ 入力側のポートが 1つずれることにより出力側のポートが順次 1つずつずれる特性と、 入力側のポートの一つに接続された 1本のファイバに多重されている複数の波長チヤ ネルの信号は、出力側のポート毎に波長周回性で決まる周期的な間隔の複数の波 長チャネルが同一の出力側のポートから同時に出力されることがない特性とを有する アレイ導波路格子を通過させ、次いで該通過光を再び、前記波長チャネルに対応し た分解能で分波および合波可能であり且つ入力側のポートが 1つずれることにより出 力側のポートが順次 1つずつずれる特性を有するアレイ導波路格子を通過させ、そ の 2回通過により、前記複数の波長群に含まれる複数の波長チャネルをそれぞれ含 む複数の波長群が合波された波長分割多重光を、 2回目に通過させる単一のアレイ 導波路格子の複数の出力側のポートから一括してそれぞれ出力することを特徴とす る。
[0030] また、請求項 17に係る発明の波長群光合波器は、請求項 15または 16に係る発明 において、複数の入力ポートにそれぞれ入力された波長群に属する波長チャネルを 合波し、予め設定された複数の波長群を含む 2以上の互いに異なる複数の波長分割 多重光を、複数の出力ポートからそれぞれ出力することを特徴とする。
[0031] また、請求項 18に係る発明の波長群光合波器は、請求項 15乃至 17のいずれかに 係る発明において、前記複数の波長群が入力される第 1アレイ導波路格子と、前記 波長分割多重光を出力ポートから出力させる第 2アレイ導波路格子と、該第 1アレイ 導波路格子の出力ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続す る光接続路とを、含むことを特徴とする。
[0032] また、請求項 19に係る発明の波長群光合波器は、請求項 18に係る発明において 、前記光接続路は、複数本の導波路が一平面上において交差なく設けられたもので あることを特徴とする。
[0033] また、請求項 20に係る発明の波長群光合波器は、請求項 18に係る発明において 、前記第 1アレイ導波路格子および第 2アレイ導波路格子は、前記波長分割多重光 に含まれる波長チャネル数と同じ数の入力ポートおよび出力ポートをそれぞれ備えた ものであることを特徴とする。
[0034] また、請求項 21に係る発明の波長群光合波器は、請求項 18乃至 20のいずれかに 係る発明において、前記第 1アレイ導波路格子および第 2アレイ導波路格子の少なく とも一方は、複数の入力導波路の 1つに入力した波長分割多重光の出力が、入力位 置が 1つずつずれることによって出力位置が周回的に 1つずつずれる波長周回特性 を備えたものであることを特徴とする。
[0035] また、請求項 22に係る発明の波長群光合波器は、請求項 15乃至 18のいずれかに 係る発明において、(a)前記複数の波長チャネルの一部の波長チャネルをそれぞれ 含む複数の波長群が波長群毎に一部に入力される複数の入力ポートと、前記波長 分割多重光が一部から出力される複数の出力ポートを有する単一のアレイ導波路格 子と、 (b)前記複数の出力ポートの他部と前記複数の入力ポートの他部とを接続し、 前記一部に波長群毎に入力された前記複数の波長群に含まれる波長チャネルが合 波されて前記複数の出力ポートの他部力 出力される複数の光信号を、前記入力ポ 一トの他部へ入力させる折返接続路とを、含み、(C)前記入力ポートの一部に入力さ れた前記互 、に異なる波長チャネルをそれぞれ含む複数の波長群を、互 、に異なる 複数の波長群を有する複数の波長分割多重光に合波し、該複数の波長分割多重光 を出力させるものであることを特徴とする。
[0036] また、請求項 23に係る発明の波長群光合波器は、請求項 15乃至 22のいずれかに 係る発明において、前記入力ポートからそれぞれ入力される波長群は、波長軸上で 連続している波長チャネル力も構成されるものであることを特徴とする。
[0037] また、請求項 24に係る発明の波長群光合波器は、請求項 15乃至 22のいずれかに 係る発明において、前記入力ポートからそれぞれ入力される波長群は、波長軸上で 不連続の波長チャネル力も構成されるものであることを特徴とする。
[0038] また、請求項 25に係る発明の波長群光合波器は、請求項 18または 19に係る発明 において、前記複数の波長群が入力される第 1アレイ導波路格子と、前記波長分割 多重光を出力ポートから出力させる第 2アレイ導波路格子と、その第 1アレイ導波路 格子の出力ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続する光接 続路とは、共通の基板上に一体に設けられたことを特徴とする。
[0039] また、請求項 26に係る発明の波長群光合波器は、請求項 25に係る発明において 、前記第 1アレイ導波路格子および第 2アレイ導波路格子は、 (a)相互に光路長差を 有する複数本のアレイ導波路と、 (b)前記入力ポートに入力された波長分割多重光 を分配して該複数本のアレイ導波路の入力側端部にそれぞれ入力させる入力レンズ 導波路と、 (c)前記複数本のアレイ導波路の出力側端部から出力された波長分割多 重光に含まれる複数の波長チャネルを前記複数本のアレイ導波路の光路長差に基 づいて分離し、前記出力ポートのうちの予め設定された出力ポートへそれぞれ分配 する出力レンズ導波路とを含むことを特徴とする。
[0040] また、請求項 27に係る発明の波長群合波器は、請求項 15乃至 21、 23乃至 26の いずれかの発明において、前記第 1アレイ導波路格子の出力ポートと前記第 2アレイ 導波路格子の入力ポートとを相互に接続する光接続路の少なくとも 1つに光スィッチ を挿入し、該第 1アレイ導波路格子の出力ポートから出力される光を該光スィッチに おいて分岐し、該分岐した光信号と同じ波長或いは異なる波長の他の光信号を該光 スィッチカゝら挿入することを特徴とする。
[0041] また、請求項 28に係る発明の波長群光選択スィッチは、請求項 1乃至 14のいずれ かの波長群光分波器と、その波長群光分波器から出力される 1乃至複数の波長群の おのおのに対して前記波長群光分波器の入力ポートまたは出力ポートのいずれか へ入力させる光スィッチとを、含み、上記 1乃至複数の波長群の任意の組み合わせ を 1乃至複数の出力ポートから出力させるようにしたことを特徴とする。
[0042] また、請求項 29に係る発明の波長群光選択スィッチは、請求項 28に係る発明にお V、て、前記波長群光分波器にお!、て複数の波長分割多重光をそれぞれ入力させる ために用いられる複数の入力ポートのうちの 1部を波長群光選択スィッチ入力ポート とし、他の 1部を、該 1部の入力ポートに入力された波長分割多重光に含まれる波長 群力 選択した任意の組み合わせの波長群を出力する選択波長群出力ポートとして 用いることを特徴とする。
[0043] また、請求項 30に係る発明の波長群光選択スィッチは、請求項 29に係る発明にお いて、前記光スィッチは、前記波長群光分波器において、前記 1部の入力ポートに入 力された波長分割多重光に含まれる波長群の光が出力される複数の出力ポートにそ れぞれ設けられ、該出力ポートから出力される波長群の光を、前記他の 1部に他の波 長分割多重光が入力されたときに該他の波長分割多重光に含まれる波長群の光が 出力される複数の出力ポートへ選択的に入力させるものであることを特徴とする。
[0044] また、請求項 31に係る発明の波長群光選択スィッチは、請求項 29に係る発明にお いて、前記光スィッチは、前記波長群光分波器において、前記 1部の入力ポートに入 力された波長分割多重光に含まれる波長群の光が出力される複数の出力ポートにそ れぞれ設けられ、該出力ポートから出力される波長群の光を、前記他の 1部に他の波 長分割多重光が入力されたときに該他の波長分割多重光に含まれる同じ波長群の 光が出力される複数の出力ポートへ選択的に入力させるものであることを特徴とする [0045] また、請求項 32に係る発明の波長群光選択スィッチは、請求項 28乃至 31のいず れかに係る発明において、前記光スィッチは、前記波長群光分波器を構成する前記 第 1アレイ導波路格子、前記第 2アレイ導波路格子、および前記光接続路が設けら れて 、る前記共通の基板上に一体に設けられて 、ることを特徴とする。
[0046] また、請求項 33に係る発明の波長群光選択スィッチは、請求項 28乃至 32のいず れカに係る発明において、前記光スィッチは、一方に光が入力される一対のアーム 導波路と、その一対のアーム導波路の間に局部的に形成された方向性結合器と、該 一対のアーム導波路の光路差を変化させる光路差変更器とを備え、該光路差変更 器により光路差が変化させられたことに関連して、前記一対のアーム導波路の一方 に入力された光が該一対のアーム導波路の他方力 選択的に出力する基本光スィ ツチを、含むものであることを特徴とする。
発明の効果
[0047] 請求項 1に係る発明の波長群光分波器によれば、波長分割多重光が、波長チヤネ ルに対応した分解能で分波可能であり且つ入力ポートが 1つずれることにより出力ポ ートが順次 1つずつずれる特性と、入力ポートの一つに接続された 1本のファイバに 多重されている複数の波長チャネルの信号は出力ポート毎に重なることなく出力され る特性とを有するアレイ導波路格子を通過させ、次いで、該通過光を再び、前記波 長チャネルに対応した分解能で分波および合波可能であり且つ入力ポートが 1つず れることにより出力ポートが順次 1つずつずれる特性を有するアレイ導波路格子を通 過させ、その 2回の通過により、該波長分割多重光に含まれる複数の波長チャネル の一部であって互いに異なる波長チャネルをそれぞれ含む複数の波長群を、 2回目 に通過させる単一のアレイ導波路格子の複数の出力ポートから一括して波長群毎に それぞれ出力されるので、複数の波長チャネルをそれぞれ含む複数の波長群が合 波された波長分割多重光力 予め設定された複数の波長群に分離してその複数の 波長群が相互に異なる複数の出力ポートからそれぞれ出力する波長群光分波器が 、極めて簡単に得られる。
[0048] また、請求項 2に係る発明の波長群光分波器によれば、波長分割多重光が、前記 波長チャネルに対応した分解能で分波および合波可能であり且つ入力ポートが 1つ ずれることにより出力ポートが順次 1つずつずれる特性と、入力ポートの一つに接続 された 1本のファイバに多重されている複数の波長チャネルの信号は、出力ポート毎 に波長周回性で決まる周期的な間隔の複数の波長チャネルが同一の出力ポートか ら同時に出力されることがない特性とを有するアレイ導波路格子を通過させ、次いで 該通過光を再び、前記波長チャネルに対応した分解能で分波および合波可能であ り且つ入力ポートが 1つずれることにより出力ポートが順次 1つずつずれる特性を有 するアレイ導波路格子を通過させ、その 2回通過により、該波長分割多重光に含まれ る複数の波長チャネルの一部であって互いに異なる波長チャネルをそれぞれ含む複 数の波長群を、 2回目に通過させる単一のアレイ導波路格子の複数の出力ポートか ら一括して波長群毎にそれぞれ出力されるので、複数の波長チャネルをそれぞれ含 む複数の波長群が合波された波長分割多重光から予め設定された複数の波長群に 分離してその複数の波長群が相互に異なる複数の出力ポートからそれぞれ出力する 波長群光分波器が、極めて簡単に得られる。
[0049] また、請求項 3に係る発明の波長群光分波器によれば、互いに異なる複数の波長 分割多重光が複数の入力ポートにそれぞれ入力され、その複数の入力ポートにそれ ぞれ入力された波長分割多重光にそれぞれ含まれる波長群に属する波長チャネル が分光され、その分光された波長チャネルが予め設定された波長群に合波され、合 波された波長群がその波長群毎に互いに異なる複数の出力ポートから出力させられ るので、複数の入力ポートにそれぞれ入力された複数の波長分割多重光力 予め設 定された複数の波長群に分離してその複数の波長群が複数の出力ポートからそれ ぞれ出力する波長群光分波器が、極めて簡単に得られる。すなわち、複数の波長合 波分波器を構成要素とする波長群クロスコネクト装置 (波長群切換スィッチ装置)に おいて、必要となる波長群光合波分波器の個数を著しく低減することが可能となり、 実装面積或いは実装体積の低減とあ!、まって、高!、経済効果が得られる。
[0050] また、請求項 4に係る発明の波長群光分波器によれば、 (a)前記波長分割多重光 が入力される第 1アレイ導波路格子と、 (b)前記波長群毎に異なる出力ポートから出 力させる第 2アレイ導波路格子と、 (c)その第 1アレイ導波路格子の出力ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続する光接続路とを含むことから、第 1 アレイ導波路格子および第 2アレイ導波路格子を光接続路で接続することにより、単 一または複数の入力ポートにそれぞれ入力された複数の波長分割多重光力 予め 設定された複数の波長群に分離してその複数の波長群を複数の出力ポートからそ れぞれ出力する波長群光分波器が、極めて簡単に得られる。
[0051] また、請求項 5に係る発明の波長群光分波器によれば、上記光接続路は、複数本 の導波路が一平面上において交差なく設けられたものであるので、第 1アレイ導波路 格子および第 2アレイ導波路格子と共に光接続路も一平面上に設けることができ、た とえば石英若しくはシリコン製の共通の基板上において、第 1アレイ導波路格子、第 2 アレイ導波路格子、および光接続路を容易に構成することができる。
[0052] また、請求項 6に係る発明の波長群光分波器によれば、前記第 1アレイ導波路格子 および第 2アレイ導波路格子は、前記波長分割多重光に含まれる波長チャネル数と 同じ数の入力ポートおよび出力ポートをそれぞれ備えたものであるので、波長群光合 波分波器の構造が簡単となる。特に、波長チャネルに関して周回性を持つ場合、複 数の入出力ファイバで共用して使用する波長群分波器構成で、入力ポートおよび出 力ポートの使用効率を高めることができる。
[0053] また、請求項 7に係る発明の波長群光分波器によれば、前記第 2アレイ導波路格子 の出力ポートのうち一部である 1または 2以上のポートを入力ポートとし、該入力ポート 力 逆の伝播方向で入力された 1または 2以上の波長群にそれぞれ含まれる波長チ ャネルから予め定められた波長チャネルを含む波長群を合波し、合波された波長群 を波長群毎に該第 1アレイ導波路格子の入力ポートのうち前記波長分割多重光が入 力されていないポートから出力することにより、双方向で、波長分割多重光からそれ に含まれる複数の波長チャネルの一部であって互いに異なる波長チャネルをそれぞ れ含む複数の波長群へ分波して出力する波長群分波器として機能することができる
[0054] また、請求項 8に係る発明の波長群光分波器によれば、前記第 1アレイ導波路格子 および第 2アレイ導波路格子の少なくとも一方は、複数の入力導波路の 1つに入力し た波長分割多重光の出力が、入力位置力^つずつずれることによって出力位置が周 回的に 1つずつずれる波長周回特性を備えたものであることから、そのアレイ導波路 格子の波長周回特性を利用して前記第 1分アレイ導波路格子の入力に同時接続す ることができる入力ファイバの本数、或いは第 2アレイ導波路格子の出力ポートから出 力することができる波長群の個数を、周回性がない場合よりも増カロさせることが可能 である。
[0055] また、請求項 9に係る発明の波長群光分波器によれば、 (a)前記波長分割多重光 がー部に入力される複数の入力ポートと、波長分割多重光に含まれる複数の波長チ ャネルの一部であって互いに異なる波長チャネルをそれぞれ含む複数の波長群が 一部から出力される複数の出力ポートを有する単一のアレイ導波路格子と、 (b)前記 複数の出力ポートの他部と前記複数の入力ポートの他部とを接続し、前記一部に入 力された前記波長分割多重光が合分波されて前記複数の出力ポートの他部力 出 力される複数の光信号を、前記入力ポートの他部へ入力させる折返接続路とを、含 み、(c)前記入力ポートの一部に入力された 1又は 2以上の互いに異なる複数の波長 分割多重光を、該波長分割多重光に含まれる複数の波長群に分波し、該波長分割 多重光に含まれる複数の波長チャネルの一部であって互いに異なる波長チャネルを それぞれ含む複数の波長群をそれぞれ異なる出力ポートから出力させる。このように 、別々の第 1アレイ導波路格子および第 2アレイ導波路格子の二個を用いるのではな く、 1個のアレイ導波路格子の出力の一部を入力側に折返す構成を用いることにより 、 1個のアレイ導波路格子を 2回経由させることにより、所望の波長群光分波機能を 実現するものであるので、単一のアレイ導波路格子を用いて波長群光分波器を簡単 に構成することができる。実際の製造過程において、モノリシックに 2つのアレイ導波 路格子を形成してそれを導波路で接続する場合でも、 2つのアレイ導波路格子間で 各チャネルの中心波長を始めとして互いの分波特性を揃えることが比較的困難であ つたが、このように単一のアレイ導波路格子で構成される場合は 2つの特性のばらつ きに影響されることがなぐ容易に製造することができる。
[0056] また、請求項 10に係る発明の波長群光分波器によれば、前記出力ポートからそれ ぞれ出力される波長群は、波長軸上で連続して 、る波長チャネル力 構成されるも のであるので、分波した波長群を波長軸上で連続して 、る波長チャネル力 構成す ることがでさる。 [0057] また、請求項 11に係る発明の波長群光分波器によれば、前記出力ポートからそれ ぞれ出力される波長群は、波長軸上で不連続の波長チャネル力 構成されるもので あるので、分波した波長群を波長軸上で、不連続な波長チャネルから構成することが できる。
[0058] また、請求項 12に係る発明の波長群光分波器によれば、前記第 1アレイ導波路格 子、第 2アレイ導波路格子、その第 1アレイ導波路格子の出力ポートと第 2アレイ導波 路格子の入力ポートとを相互に接続する光接続路は、共通の基板上に一体に設けら れたことから、モノリシック構造とされるので、光ファイバを用いて第 1アレイ導波路格 子の出力ポートと第 2アレイ導波路格子の入力ポートとを相互に接続する場合に比 較して、波長群光分波器が大幅に小型化される。たとえば、石英若しくはシリコン製 の共通の基板上においてたとえば石英径の材料でクラッドおよびコアを堆積して所 定パターンの導波路を形成する石英系プレーナ回路 (PLC)を用いることにより、容易 に構成できる。
[0059] また、請求項 13に係る発明の波長群光分波器によれば、前記第 1アレイ導波路格 子および第 2アレイ導波路格子は、 (a)相互に光路長差を有する複数本のアレイ導波 路と、 (b)前記入力ポートに入力された波長分割多重光を分配して該複数本のアレイ 導波路の入力側端部にそれぞれ入力させる入力レンズ導波路と、 (c)前記複数本の アレイ導波路の出力側端部力 出力された波長分割多重光に含まれる複数の波長 チャネルを前記複数本のアレイ導波路の光路長差に基づいて分離し、前記出力ポ ートのうちの予め設定された出力ポートへそれぞれ分配する出力レンズ導波路とを、 それぞれ含むことから、上記石英系プレーナ回路 (PLC)を用いることにより、容易に 構成できる。
[0060] また、請求項 14に係る発明の波長群光分波器によれば、前記第 1アレイ導波路格 子の出力ポートと前記第 2アレイ導波路格子の入力ポートとを相互に接続する光接 続路の少なくとも 1つに光スィッチが挿入され、その第 1アレイ導波路格子の出力ポ ートから出力される光信号が該光スィッチにおいて分岐され、該分岐した光信号と同 じ波長或いは異なる波長の他の光信号がその光スィッチ力 挿入されるので、波長 分割多重光が第 1アレイ導波路格子に入力されたときのその出力ポートから出力され る波長群の分岐或いは特定の波長単位の分岐や、分岐された光信号と同じ波長或 いは異なる波長の光信号の挿入を波長群単位或いは波長単位で同時に行うことが 可能となる。
[0061] また、請求項 15に係る発明の波長群光合波器によれば、複数の波長群が、波長チ ャネルに対応した分解能で合分波可能であり且つ入力側のポートが 1つずれることに より出力ポートが順次 1つずつずれる特性を有と、入力側のポートの一つに接続され た 1本のファイバに多重されている複数の波長チャネルの信号は出力側のポート毎 に重なることなく出力される特性とを有するアレイ導波路格子を通過させ、次いで、該 通過光を再び、前記波長チャネルに対応した分解能で分波および合波可能であり 且つ入力側のポートが 1つずれることにより出力側のポートが順次 1つずつずれる特 性を有するアレイ導波路格子を通過させ、その 2回の通過により、前記複数の波長群 に含まれる複数の波長チャネルをそれぞれ含む複数の波長群が合波された波長分 割多重光が、 2回目に通過させる単一のアレイ導波路格子の複数の出力側のポート 力 一括してそれぞれ出力されるので、波長群光合波器を極めて簡単に構成するこ とがでさる。
[0062] また、請求項 16に係る発明の波長群光合波器によれば、前記複数の波長群が、前 記波長チャネルに対応した分解能で分波および合波可能であり且つ入力側のポート 力 つずれることにより出力ポートが順次 1つずつずれる特性と、入力側のポートの一 つに接続された 1本のファイバに多重されている複数の波長チャネルの信号は、出 力側のポート毎に波長周回性で決まる周期的な間隔の複数の波長チャネルが同一 の出力側のポートから同時に出力されることがない特性とを有するアレイ導波路格子 を通過させ、次いで該通過光を再び、前記波長チャネルに対応した分解能で分波お よび合波可能であり且つ入力側のポートが 1つずれることにより出力側のポートが順 次 1つずつずれる特性を有するアレイ導波路格子を通過させ、その 2回通過により、 前記複数の波長群に含まれる複数の波長チャネルをそれぞれ含む複数の波長群が 合波された波長分割多重光が、 2回目に通過させる単一のアレイ導波路格子の複数 の出力側のポートから一括してそれぞれ出力されるので、波長群光合波器を極めて 簡単に構成することができる。 [0063] また、請求項 17に係る発明の波長群光合波器によれば、複数の入力ポートにそれ ぞれ入力された波長群に属する波長チャネルを合波し、予め設定された互いに異な る複数の波長群を含む複数の波長分割多重光が互いに異なる複数の出力ポートか らそれぞれ出力させられるので、複数の入力ポートにそれぞれ入力された複数の波 長群から予め設定された波長群に合波してその複数の波長群を含む波長分割多重 光を複数の出力ポートからそれぞれ出力する波長群光分波器が、極めて簡単に得ら れる。すなわち、複数の波長合波合波器を構成要素とする波長群クロスコネクト装置 (波長群切換スィッチ装置)において、必要となる波長群光合波器の個数を著しく低 減することが可能となり、実装面積或いは実装体積の低減とあいまって、高い経済効 果が得られる。
[0064] また、請求項 18に係る発明の波長群光合波器によれば、 (a)複数の波長群が入力 される第 1アレイ導波路格子と、 (b)前記波長分割多重光を出力ポートから出力させ る第 2アレイ導波路格子と、 (c)その第 1アレイ導波路格子の出力ポートと該第 2アレイ 導波路格子の入力ポートとを相互に接続する光接続路とを含むことから、第 1アレイ 導波路格子および第 2アレイ導波路格子を光接続路で接続することにより、単一また は複数の入力ポートにそれぞれ入力された複数の波長群力 予め設定された互い に異なる複数の波長群に合波してその複数の波長群をそれぞれ含む複数の波長分 割多重光を出力ポートからそれぞれ出力する波長群光合波器が、極めて簡単に得ら れる。
[0065] また、請求項 19に係る発明の波長群光合波器によれば、上記光接続路は、複数 本の導波路が一平面上において交差なく設けられたものであるので、第 1アレイ導波 路格子および第 2アレイ導波路格子と共に光接続路も一平面上に設けることができ、 たとえば石英若しくはシリコン製の共通の基板上において、第 1アレイ導波路格子、 第 2アレイ導波路格子、および光接続路を容易に構成することができる。
[0066] また、請求項 20に係る発明の波長群光合波器によれば、前記第 1アレイ導波路格 子および第 2アレイ導波路格子は、前記波長分割多重光に含まれる波長チャネル数 と同じ数の入力ポートおよび出力ポートをそれぞれ備えたものであるので、波長群光 合波分波器の構造が簡単となる。特に、波長チャネルに関して周回性を持つ場合、 複数の入出力ファイバで共用して使用する波長群合波器構成で、入力ポートおよび 出力ポートの使用効率を高めることができる。
[0067] また、請求項 21に係る発明の波長群光合波器によれば、前記第 1アレイ導波路格 子および第 2アレイ導波路格子の少なくとも一方は、複数の入力導波路の 1つに入力 した波長分割多重光の出力が、入力位置力^つずつずれることによって出力位置が 周回的に 1つずつずれる波長周回特性を備えたものであることから、そのアレイ導波 路格子の波長周回特性を利用して、合波された波長群に含まれる波長チャネルを変 更することができる。
[0068] また、請求項 22に係る発明の波長群光合波器によれば、 (a)前記複数の波長チヤ ネルの一部の波長チャネルをそれぞれ含む複数の波長群が波長群毎に一部に入力 される複数の入力ポートと、前記波長分割多重光が一部から出力される複数の出力 ポートを有する単一のアレイ導波路格子と、 (b)前記複数の出力ポートの他部と前記 複数の入力ポートの他部とを接続し、前記一部に入力された前記複数の波長群に含 まれる波長チャネルが合波されて前記複数の出力ポートの他部から出力される複数 の光信号を、前記入力ポートの他部へ入力させる折返接続路とを、含み、 (c)前記入 力ポートの一部に入力された 1又は 2以上の互いに異なる複数の波長群を、互いに 異なる複数の波長群を有する波長分割多重光に合波し、該複数の波長分割多重光 を出力させる。このように、別々の第 1アレイ導波路格子および第 2アレイ導波路格子 の二個を用いるのではなぐ 1個のアレイ導波路格子の出力の一部を入力側に折返 す構成を用いることにより、 1個のアレイ導波路格子を 2回経由させることにより、所望 の波長群光合波機能を実現するものであるので、単一のアレイ導波路格子を用いて 波長群光合波器を簡単に構成することができる。実際の製造過程において、モノリシ ックに 2つのアレイ導波路格子を形成してそれを導波路で接続する場合でも、 2つの アレイ導波路格子間で各チャネルの中心波長を始めとして互 、の分波特性を揃える ことが比較的困難であつたが、このように単一のアレイ導波路格子で構成される場合 は 2つの特性のばらつきに影響されることがなぐ容易に製造することができる。
[0069] また、請求項 23に係る発明の波長群光合波器によれば、前記入力ポートからそれ ぞれ入力される波長群は、波長軸上で連続して ヽる波長チャネルカゝら構成されるも のであるので、分波した波長群を波長軸上で連続して 、る波長チャネル力 構成す ることがでさる。
[0070] また、請求項 24に係る発明の波長群光合波器によれば、前記入力ポートからそれ ぞれ入力される波長群は、波長軸上で不連続の波長チャネル力 構成されるもので あるので、分波した波長群を波長軸上で、不連続な波長チャネルから構成することが できる。
[0071] また、請求項 25に係る発明の波長群光合波器によれば、前記第 1アレイ導波路格 子、第 2アレイ導波路格子、その第 1アレイ導波路格子の出力ポートと第 2アレイ導波 路格子の入力ポートとを相互に接続する光接続路は、共通の基板上に一体に設けら れたことから、モノリシック構造とされるので、光ファイバを用いて第 1アレイ導波路格 子の出力ポートと第 2アレイ導波路格子の入力ポートとを相互に接続する場合に比 較して、波長群光合波器が大幅に小型化される。たとえば、石英若しくはシリコン製 の共通の基板上においてたとえば石英径の材料でクラッドおよびコアを堆積して所 定パターンの導波路を形成する石英系プレーナ回路 (PLC)を用いることにより、容易 に構成できる。
[0072] また、請求項 26に係る発明の波長群光合波器によれば、前記第 1アレイ導波路格 子および第 2アレイ導波路格子は、 (a)相互に光路長差を有する複数本のアレイ導波 路と、 (b)前記入力ポートに入力された波長分割多重光を分配して該複数本のアレイ 導波路の入力側端部にそれぞれ入力させる入力レンズ導波路と、 (c)前記複数本の アレイ導波路の出力側端部力 出力された波長分割多重光に含まれる複数の波長 チャネルを前記複数本のアレイ導波路の光路長差に基づいて分離し、前記出力ポ ートのうちの予め設定された出力ポートへそれぞれ分配する出力レンズ導波路とを、 それぞれ含むことから、上記石英系プレーナ回路 (PLC)を用いることにより、容易に 構成できる。
[0073] また、請求項 27に係る発明の波長群光合波器によれば、前記第 1アレイ導波路格 子の出力ポートと前記第 2アレイ導波路格子の入力ポートとを相互に接続する光接 続路の少なくとも 1つに光スィッチが挿入され、その第 1アレイ導波路格子の出力ポ ートから出力される光信号が該光スィッチにおいて分岐され、該分岐した光信号と同 じ波長或いは異なる波長の他の光信号がその光スィッチ力 挿入されるので、波長 分割多重光が第 1アレイ導波路格子に入力されたときのその出力ポートから出力され る波長群の分岐或いは特定の波長単位の分岐や、分岐された光信号と同じ波長或 いは異なる波長の光信号の挿入を波長群単位或いは波長単位で同時に行うことが 可能となる。
[0074] また、請求項 28に係る発明の波長群光選択スィッチによれば、請求項 1乃至 14の いずれかの波長群光分波器と、その波長群光分波器から出力される 1乃至複数の波 長群のおのおのに対して前記波長群光分波器の入力ポートまたは出力ポートのい ずれかへ入力させる光スィッチとを、含み、該 1乃至複数の波長群の任意の組み合 わせを 1乃至複数の出力ポートから出力させるようにしたので、面状に配列された三 次元に駆動可能な多数個のマイクロミラーによってマイクロミラー毎に入力される波 長群をミラーで反射させて波長群光分波器の入力ポートまたは出力ポートのいずれ かへ入力させる場合に比較して、少なくともミラーでの反射ポート選択において機械 的な可動部分がなぐ複雑な調整が不要となって安定した波長群選択スィッチ作動 が得られるとともに、構造が単純で極めて小さな形状とすることができ、安価となる。こ のことは、伝送される光信号の増大に対処するために、光通信ネットワークの各ノード (結節点)にお!/、て多波長単位 (波長群)でルーティングする場合に必要となる波長 群クロスコネクト装置 (波長群切換スィッチ装置)或いは波長群分岐挿入装置 (波長 群アド'ドロップマルチプレクサ)において、小型且つ安価となるので、高い経済効果 が得られる。
[0075] また、請求項 29に係る発明の波長群光選択スィッチによれば、前記波長群光分波 器にお!、て複数の波長分割多重光をそれぞれ入力させるために用いられる複数の 入力ポートのうちの 1部を波長群光選択入力ポートとし、他の 1部を、その 1部の入力 ポートに入力された波長分割多重光に含まれる波長群力 選択した任意の組み合わ せの波長群を出力する選択波長群出力ポートとして用いることから、波長群光分波 器と同様に、簡単且つ小型に構成され、安価となる。
[0076] また、請求項 30に係る発明の波長群光選択スィッチによれば、前記光スィッチは、 前記波長群光分波器において、前記 1部の入力ポートに入力された波長分割多重 光に含まれる波長群の光が出力される複数の出力ポートにそれぞれ設けられ、該出 力ポートから出力される波長群の光を、前記他の 1部に他の波長分割多重光が入力 されたときに該他の波長分割多重光に含まれる波長群の光が出力される複数の出 力ポートへ選択的に入力させるものであることから、波長群光分波器と同様に、簡単 且つ小型に構成され、安価となる。
[0077] また、請求項 31に係る発明の波長群光選択スィッチによれば、前記光スィッチは、 前記波長群光分波器において、前記 1部の入力ポートに入力された波長分割多重 光に含まれる波長群の光が出力される複数の出力ポートにそれぞれ設けられ、該出 力ポートから出力される波長群の光を、前記他の 1部に他の波長分割多重光が入力 されたときに該他の波長分割多重光に含まれる同じ波長群の光が出力される複数の 出力ポートへ選択的に入力させるものであることから、波長群光分波器と同様に、簡 単且つ小型に構成され、安価となる。
[0078] また、請求項 32に係る発明の波長群光選択スィッチは、前記光スィッチは、前記波 長群光分波器を構成する前記第 1アレイ導波路格子、前記第 2アレイ導波路格子、 および前記光接続路が設けられている前記共通の基板上に一体に設けられているこ とから、一層小型化が可能となるとともに、機械的な可動部分が全くないので、一層 高い信頼性が得られる。
[0079] また、請求項 33に係る発明の波長群光選択スィッチは、前記光スィッチは、一方に 光が入力される一対のアーム導波路と、その一対のアーム導波路の間に局部的に 形成された方向性結合器と、該一対のアーム導波路の光路差を変化させる光路差 変更器とを備え、該光路差変更器により光路差が変化させられたことに関連して、前 記一対のアーム導波路の一方に入力された光が該一対のアーム導波路の他方から 選択的に出力する基本光スィッチを、含むものであることから、機械的な可動部分の な ヽ小型で安定な光スィッチが得られる。 図面の簡単な説明
[0080] [図 1]本発明の一実施例の波長群光合波分波器の構成を説明するための概念図で ある。
[図 2]図 1の波長群光合波分波器の入力ポートに入力される波長分割多重光 WDM 、出力ポートから出力される 4種類の波長群 WBをそれぞれ説明する図である。
圆 3]図 1の波長群光合波分波器を共通の基板上に構成した場合の構成を説明する 図である。
[図 4]図 3の実施例の 2つのアレイ導波路格子のうちの第 1アレイ導波路格子 AWG1 の構成を詳しく示すための斜視図である。
圆 5]図 4の第 1アレイ導波路格子 AWG1が備えるの波長周回性を説明する図である 圆 6]本発明の他の実施例である実施例 2において、波長周回性を有する第 1アレイ 導波路格子 AWG1および第 2アレイ導波路格子 AWG2を備えた波長群光合波分 波器の入出力特性を説明する図である。
[図 7]本発明の他の実施例である実施例 3において、波長群光合波分波器の入出力 特性を説明する図である。
[図 8]本発明の他の実施例である実施例 4において、波長群光合波分波器の入出力 特性を説明する図である。
圆 9]本発明の他の実施例である実施例 5において、波長周回性を有しない第 1ァレ ィ導波路格子 AWG1および第 2アレイ導波路格子 AWG2を備えた波長群光合波分 波器の入出力特性を説明する図である。
[図 10]本発明の他の実施例である実施例 6の双方向波長群光分波器において、一 方向における波長群光分波機能の入出力特性を説明する図である。
[図 11]本発明の他の実施例である実施例 6の双方向波長群光分波器において、図 1 0とは反対方向における波長群光分波機能の入出力特性を説明する図である。
[図 12]本発明の他の実施例である実施例 7において、波長群光合波分波器の構成 を説明する図である。
[図 13]図 12の実施例のアレイ導波路格子 AWG3において、全ての入力側導波路と 出力側導波路 6とがフルメッシュ接続されていることにより、所定の入力側導波路の 位置 Aと所定の出力側導波路位置 Bとの間を結びつける波長 λ を示す図表であ
A+B-1
る。
[図 14]本発明の他の実施例である実施例 8において、波長群光合波分波器の構成 を説明する図である。
[図 15]本発明の他の実施例である実施例 9において、波長群光合波分波器の構成 を説明する図である。
[図 16]本発明の他の実施例である実施例 10において、波長群光合波分波器の構成 を説明する図である。
[図 17]本発明の他の実施例である実施例 11において、波長群光合波分波器の構成 を説明する図である。
[図 18]本発明の他の実施例である実施例 12にお 、て、波長群光合波分波器の構成 を説明する図である。
[図 19]本発明の他の実施例である実施例 13において、波長群光合波分波器の構成 を説明する図である。
[図 20]図 19の実施例 13にお 、て、光サーキユレ一タと第 1アレイ導波路格子 AWG 1 との接続を説明する図である。
[図 21]図 19の実施例 13にお 、て、光サーキユレ一タと第 2アレイ導波路格子 AWG2 との接続を説明する図である。
圆 22]従来の波長群光合波分波器の構成を説明するための概念図である。
圆 23]本発明の他の実施例である波長群選択スィッチの構成を説明する概念図であ る。
[図 24]図 23の波長群選択スィッチに用いられている光スィッチの構成を説明する図 である。
圆 25]図 24の光スィッチを構成する基本光スィッチの構成を説明する図である。 圆 26]図 25の基本光スィッチの構成を説明する断面図である。
圆 27]本発明の他の実施例である波長群選択スィッチの構成および作動を説明する 概念図である。
圆 28]本発明の他の実施例である波長群選択スィッチの構成および作動を説明する 概念図である。
圆 29]本発明の他の実施例である波長群選択スィッチの構成および作動を説明する 概念図である。 [図 30]本発明の他の実施例である波長群選択スィッチの構成および作動を説明する 概念図である。
[図 31]本発明の他の実施例の波長群光合波分波器に設けられる光スィッチを説明 する図である。
[図 32]図 31の光スィッチを備えた波長群光合波分波器の一例の構成を説明する図 である。
符号の説明
[0081] 10:波長群光合波分波器
12:光接続路
14:基板
16:入力ポート
18:出力ポート
20、 30:アレイ導波路
22、 32:入力側導波路
24、 34:入力レンズ導波路
26、 36:出力側導波路
28、 38:出力レンズ導波路
60:波長群光選択スィッチ
62:光スィッチ
64:基本光スィッチ
90:光スィッチ
AWG1:第 1アレイ導波路格子
AWG2:第 2アレイ導波路格子
AWG3:アレイ導波路格子
発明を実施するための最良の形態
[0082] 以下、本発明の一実施例の波長群光合波分波器 10を、図面を参照しつつ説明す る。この波長群光合波分波器 10は、入力された波長分割多重光 WDMからそれに 含まれる複数の波長群 WBのうち予め定めされた所望の 1または複数の波長群を分 波して所定の出力ポートから出力する波長群光分波機能を備えるとともに、その波長 群光分波機能を発生するときの光に伝播方向とは逆の伝播方向に光を伝播させるこ とにより、入力された複数の波長群 WB力 予め定められた複数の波長群を合波して 所望の波長分割多重光 WDMを出力する波長群光合波機能をも備えて 、る。このた め、波長群光合波分波器 10は、同じ構成であるにも拘わらず、その使用態様に応じ て波長群光分波器或いは波長群光合波器とも称され得る。なお、各図は概念図であ るから、以下の実施例を説明する各図において、細部の機械的構造や各部の寸法 比等は必ずしも正確に描かれて 、な 、し、各導波路を示す線の交差部分は立体的 な交差を示す。
実施例 1
[0083] 図 1は、波長群光合波分波器 10の構成を説明する概念図である。波長群光合波 分波器 10は、第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2と、 それらを接続する光接続路 12とを備え、複数本の入力ファイバ F 乃至 F から入力
INI INj された波長分割多重光 WDM乃至 WDMを第 1アレイ導波路格子 AWG1および
1 i
第 2アレイ導波路格子 AWG2を用いて 2回通過させることにより、波長分割多重光 W DM乃至 WDMにそれぞれ含まれる、複数の波長チャネルえ 乃至え のうちの一
1 j l k 部をそれぞれ含む複数の波長群 WB乃至 WB が合波された波長分割多重光から
1 m
予め設定された複数の波長群に分離し、分離した複数の波長群を複数の出カフアイ ノ F 乃至 F からそれぞれ出力する。上記の添え字 k、 m、 nは整数である。
OUT1 OUTn
[0084] 上記波長分割多重光 WDMは、たとえば図 2の (a)に示すように、たとえば波長軸 上において 100GHzの間隔に配置された多数の波長チャネルえ 乃至え 毎の光信
1 k 号を含み、それら波長チャネルえ 乃至え のうちの一定数たとえば 8つの波長チヤネ
1 k
ル毎に 1つの波長群 WBが形成されている。図 2の (b)乃至 (e)は、上記出力される波 長群の例を示している。
[0085] 図 3は上記波長群光合波分波器 10の構成例を説明するものである。波長群光合 波分波器 10は、たとえば石英製若しくはシリコン製の共通の基板 14と、その基板 14 上に形成された入力ポート 16、第 1アレイ導波路格子 AWG1、第 2アレイ導波路格 子 AWG2、それらを接続する光接続路 12、および出力ポート 18とを備え、入力ポー ト 16は前記入力ファイバ F 乃至 F にそれぞれ接続され、出力ポート 18は前記出
INI INj
力ファイバ F 乃至 F にそれぞれ接続されている。上記第 1アレイ導波路格子 A
OUT1 OUTn
WG1、第 2アレイ導波路格子 AWG2、およびそれらを接続する光接続路 12は、基 板 14の上においてたとえば石英系の材料でクラッドおよびコアを堆積して所定パタ 一ンの導波路を形成する所謂石英系プレーナ光波回路 (PLC)によりモノリシック構 造で構成される。上記第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 A WG2は互いに同様に構成されており、図 4は、第 1アレイ導波路格子 AWG1を代表 させてその構成を詳しく説明する斜視図である。
[0086] 図 4において、第 1アレイ導波路格子 AWG1は、相互に光路長差を有する複数本 のアレイ導波路 20と、入力ポート 16をそれぞれ有する複数本の入力側導波路 22と、 その入力側導波路 22とアレイ導波路 20との間に設けられ、入力ポート 16に入力され た波長分割多重光 WDMを拡散により分配して複数本のアレイ導波路 20の入力側 端部にそれぞれ入力させる入力レンズ導波路 24と、前記光接続路 12にそれぞれ接 続された複数本の出力側導波路 26と、その出力側導波路 26とアレイ導波路 20との 間に設けられ、複数本のアレイ導波路 20の出力側端部から出力された波長分割多 重光 WDMに含まれる複数の波長チャネル(たとえば 100GHzずつ相違する中心波 長位置が相違する互いに異なる波長の複数の光信号)を複数本のアレイ導波路 20 の相互の光路長差に基づく回折により波長毎に個別に分光するとともに出力側導波 路 26の端部に集光させることにより予め設定された出力側導波路 26へそれぞれ分 波し、別々の分波により 1つの出力側導波路 26の端部に集光された光を合波して出 力させる出力レンズ導波路 28とを備えている。この第 1アレイ導波路格子 AWG1で は、使用される波長チャネルえ
1乃至え kを充分な信号強度で個別に分光できる充分 な分解能を備えるように、アレイ導波路 20および出力レンズ導波路 28等が設計され ている。なお、第 1アレイ導波路格子 AWG1内において伝播する光が受ける作用は 可逆的であり、反対向きに伝播する光は上記順方向に伝播する光が受けるものと反 対の作用を受ける。
[0087] 第 2アレイ導波路格子 AWG2も同様に、相互に光路長差を有する複数本のアレイ 導波路 30と、光接続路 12にそれぞれ接続された複数本の入力側導波路 32と、その 入力側導波路 32とアレイ導波路 30との間に設けられた入力レンズ導波路 34と、前 記出力ポート 18にそれぞれ接続された複数本の出力側導波路 36と、その出力側導 波路 36とアレイ導波路 30との間に設けられた出力レンズ導波路 38とを備え、波長チ ャネルえ 乃至え に対応した充分な分解能を有している。この第 2アレイ導波路格子
1 k
AWG2では、図 1の記号にも示すように、上記第 1アレイ導波路格子 AWG1とは逆 向きの光の進行方向となるように設定されている。なお、出力側導波路 26と光接続 路 12との接続点が第 1アレイ導波路格子 AWG1の出力ポート 40であり、光接続路 1 2と入力側導波路 32との接続点が第 2アレイ導波路格子 AWG2の入力ポート 42で ある。また、前記入力レンズ導波路 24、出力レンズ導波路 28、入力レンズ導波路 34 、出力レンズ導波路 38は、スラブ導波路とも称されるものであり、比較的厚い膜厚の 透明材料によりレンズ機能を生じるように構成されている。
[0088] 上記第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2とを接続す る複数本の光接続路 12は、図 3においては、互いに並行していて相互に交差してお らず、基板 14上において 1平面内に設けられている。上記光接続路 12は、所謂石英 系プレーナ光波回路(PLC)の形成工程において、アレイ導波路 20および 30、入力 側導波路 22および 32、出力側導波路 26および 36等と同時に基板 14上に形成され る。
[0089] 上記第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2は、波長分 割多重光が少なくとも波長チャネル毎の合波分波に必要な波長の分解能で分波お よび合波を可能とする性能を有するとともに、 1個の入力ポートに対して入力される波 長分割多重光に含まれる複数の波長チャネルが波長毎に分離される波長分離機能 と、複数の入力ポートに対して入力位置が 1つずれることにより出力ポートにおいて同 じ波長が現れる位置が順次 1つずつずれて出力する特性 (機能)と、入力側の 1つの ポートに接続されたファイバーに多重されている複数の波長チャネルの信号は出力 側ではポート毎に重なることなく出力される特性とを有する。さらに、入力位置が 1つ ずつずれることによって出力位置が周回的に 1つずつずれるようにすることも可能で あり、これを波長周回性という。このような入力と出力との関係が可逆的に成立するの で、光の伝播方向を逆にすれば波長群光合波器として機能できる。また、上記第 1ァ レイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2が波長周回性を有する 場合には、使用する波長帯域と等しいか、それ以上の FSR (Free Spectral Range)を 有し、すなわち、入力側の 1つのポートに接続されたファイバーに多重されている複 数の波長チャネルの信号に対しては、出力側ではポート毎に波長周回性で決まる周 期的な間隔の複数の波頭チャネルが同一の出力ポートから同時に出力されることが ない特性を有する。
[0090] 図 5はそれらの波長分離性を波長周回性のない場合については (a)に、波長周回 性のある場合については (b)にそれぞれ説明する図である。図 5では、たとえば第 1ァ レイ導波路格子 AWG1を用いて説明すると、入力ポート 16および出力ポート 40を各 5個とし、各入力ポート 16に波長チャネルえ 乃至え をそれぞれ有する波長分割多
1 n
重光 WDMA乃至 WDMEを並列的に入力させると、図に示すように波長チャネルが それぞれ分配される。波長周回性のない場合 (a)では、各出力ポート 40に現れる波 長チャネルは出力ポート 40の位置が 1つずれると、波長チャネルが単純に 1つずつ ずれるのに対し、波長周回性のある場合 (b)では、波長チャネルが単に 1つずれるだ けでなく、え λ
1〜 5が周期的に現れる。
[0091] 上記各出力ポート 40に現れる波長チャネルは、規則性があるため、波長周回性の ない場合は(1)式により、波長周回性がある場合は(2)式により一般化され得る。す なわち、番号 # Α (Α= 1〜Ν)を有する複数の入力ポート 16に対して、同じ波長チヤ ネルえ 乃至え をそれぞれ有する波長分割多重光 WDM#1乃至 WDM#Nを並列的
1 n
に入力して、番号 # B (B = 1〜N)を有する複数の出力ポート 40から出力させるとき、 番号 # Bの出力ポート 40から出力される波長チャネルの波長は、波長周回性のない ときは式(1)で示す波長となり、波長周回性があるときは式 (2)に示す波長となる。こ こで、 a mod βとは、 aを βで害 Uつた余りを示す。
[0092] A+ B - 1 · · · ( 1)
(A+ B- 2) + 1 · ' · (2)
modN
[0093] たとえば N = 5である図 5においては、 4番の出力ポート 40からは、 4番の入力ポー ト 16から入力された波長分割多重光 WDMDに含まれる波長チャネルのうちの如何 なるものが出力されるかというと、波長周回性のないとき場合は、 A=4および B =4を (1)式に代入することにより、波長チャネルえ ΰが出力される。しかし、波長周回性が
7
ある場合は、 Α=4および Β=4を(2)式に代入することにより、波長チャネルえ D
2 出力される。
[0094] 以上のように構成された波長群光合波分波器 10によれば、たとえば図 2の (a)に示 す波長分割多重光 WDMが複数の入力ポート 16から入力されると、波長分割多重 光 WDMに含まれる多数の波長テャネル力 予め定められた波長テャネルを含む図 2の (b)乃至 (e)のいずれかに示す波長群 WBが分離されて所定の出力ポート 18から 出力され、波長群光合波分波器 10の後段に位置する光スィッチによりその波長群単 位で切り換えられて所望の方向へ伝送される。このため、たとえば図 22に示す波長 群クロスコネクトスィッチでは、前述の非特許文献 1、 2、 3、 4に示すような多層干渉膜 フィルタ式合波分波器、音響光学効果フィルタ式合波分波器等から成る N個の波長 群光合波分波器 GBから成る破線で囲まれた部分が、 1個乃至 N個より少ない複数 個の波長群光合波分波器 10から構成され得るようになるので、光の伝播方向を一方 向とした場合は波長群光合波分波器の個数を N+N個力 最も少ない場合には 2個 へ、また、例えば後述の実施例 6に示すように双方向に構成された場合には最も少 ない場合には 1個へ大幅に低減できるようになる。
[0095] 本実施例の波長群光合波分波器 10によれば、波長分割多重光 WDMが、波長チ ャネルに対応した分解能で分波および合波可能であり且つ入力ポート 16が 1つずれ ることにより出力ポートが順次 1つずつずれる特性を有するアレイ導波路格子 AWG1 および AWG2を合計 2回通過させられることにより、その波長分割多重光 WDMに含 まれる複数の波長チャネルの一部をそれぞれ含む複数の波長群 WBが複数の出力 ポート 18からそれぞれ出力されるので、複数の波長チャネルをそれぞれ含む複数の 波長群 WBが合波された波長分割多重光 WDMカゝら予め設定された複数の波長群 WBに分離してその複数の波長群 WBを複数の出力ポート 18からそれぞれ出力する 波長群光合波分波器 10が、極めて簡単に得られる。
[0096] また、本実施例の波長群光合波分波器 10によれば、 1または 2以上の互いに異な る複数の波長分割多重光 WDMが複数の入力ポート 16のいずれか〖こそれぞれ入力 され、その複数の入力ポート 16にそれぞれ入力された波長分割多重光 WDMにそ れぞれ含まれる波長群 WBに属する波長チャネルが分光され、その分光された波長 チャネルが予め設定された波長群 WBに合波され、合波された波長群 WBがその波 長群 WB毎に異なる出力ポート 18から出力させられるので、複数の入力ポート 16に それぞれ入力された複数の波長分割多重光 WDMから予め設定された複数の波長 群 WBに分離してその複数の波長群 WBを複数の出力ポート 18からそれぞれ出力す る波長群光合波分波器 10が、極めて簡単に得られる。
[0097] また、本実施例の波長群光合波分波器 10によれば、第 1アレイ導波路格子 AWG1 および第 2アレイ導波路格子 AWG2と、 (c)その第 1アレイ導波路格子 AWG1の出 力ポート 26と第 2アレイ導波路格子 AWG2の入力ポート 42とを相互に接続する光接 続路 12とを含むことから、 2つの第 1アレイ導波路格子 AWG1および第 2アレイ導波 路格子 AWG2を光接続路 12で接続することにより、単一または複数の入力ポート 16 にそれぞれ入力された複数の波長分割多重光 WDMカゝら予め設定された複数の波 長群 WBに分離してその複数の波長群 WBを複数の出力ポート 18からそれぞれ出力 する波長群光合波分波器 10が、極めて簡単に得られる。
[0098] また、本実施例の波長群光合波分波器 10によれば、上記光接続路 12は、第 1ァレ ィ導波路格子 AWG1および第 2アレイ導波路格子 AWG2に一定の関係を成立させ るために、複数本の導波路が一平面上において交差なく設けられたものであるので、 第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2と共に光接続路 1 2も一平面上に設けることができ、たとえば石英若しくはシリコン製の共通の基板 14 上において、第 1アレイ導波路格子 AWG1、第 2アレイ導波路格子 AWG2、および 光接続路 12を容易に 1チップのモノリシック構造として構成することができる。
[0099] また、本実施例の波長群光合波分波器 10によれば、第 1アレイ導波路格子 AWG1 および第 2アレイ導波路格子 AWG2は、相互に光路長差を有する複数本のアレイ導 波路 20, 30と、入力された光を分配して複数本のアレイ導波路 20, 30の入力側端 部にそれぞれ入力させる入力レンズ導波路 24, 34と、アレイ導波路 20, 30の出力 側端部から出力された光に含まれる複数の波長チャネルをアレイ導波路 20, 30の光 路長差に基づいて分離し、出力ポート 40、 18のうちの予め設定された出力ポートへ それぞれ分配する出力レンズ導波路 28, 38とを、それぞれ含むことから、たとえば石 英若しくはシリコン製の共通の基板 14上においてたとえば石英系の材料でクラットお よびコアを堆積して所定パターンの導波路を形成した石英系プレーナ光波回路 (PL C)により、容易に 1チップのモノリシック構造として構成できる。
[0100] 以上、波長群光合波分波器 10の波長群光分波器としての機能を説明したが、光 は可逆的に伝播する性質があるから、上述の説明と反対の方向に光を伝播させるこ とにより、そのままの構成で波長群光合波分波器 10を波長群光合波器として機能さ せることができる。この場合、図 3の波長群光合波分波器 10において、出力ポート 18 が入力ポートとして、入力ポート 16が出力ポートとして機能し、第 2アレイ導波路格子 AWG2が第 1アレイ導波路格子として、第 1アレイ導波路格子 AWG1が第 2アレイ導 波路格子として機能する。この波長群光合波器として用いられる場合は、前述の出 力信号である複数の波長群 WBが入力ポート(出力ポート 18)から入力されると、予 め定められた組み合わせで合波された波長分割多重光 WDMが出力ポート (入力ポ ート 16)から出力される。このような波長群光合波器として用いられる場合も上述と同 様の効果が得られる。
[0101] 次に、上記波長群光合波分波器 10の他の構成例や具体例を説明する。なお、以 下の説明において、実施例相互に共通する部分には同一の符号を付して説明を省 略する。
実施例 2
[0102] 図 6は、 4本の入力ファイバ F を介して伝送された、 16個の波長チャネルえ 〜λ
IN 1 をそれぞれ含む 4つの波長分割多重光 WDMA乃至 WDMD力 その波長チャネル
16
数と同数の 16個の入力ポート p 〜p および出力ポート q〜q を備えた波長周回性
1 16 1 16
を有する第 1アレイ導波路格子 AWG1と、波長チャネル数よりも 4だけ多い 20個の入 力ポート r〜r および出力ポート s〜s を備えた波長周回性を有する第 2アレイ導
1 20 1 20
波路格子 AWG2とから構成された波長群光合波分波器 10に入力された場合の分 波機能を説明するものである。本実施例の波長群光合波分波器 10の光接続路 12 は、第 1アレイ導波路格子 AWG1の出力ポート q〜q を、第 2アレイ導波路格子 A
1 16
WG2の入力ポート r〜: r 、r〜: r、r 〜: r 、r 〜r とそれぞれ一平面内において接
1 4 6 9 11 14 16 19
続しており、互いに交差することがない。第 2アレイ導波路格子 AWG2の入力ポート r 、r 、r 、r と出力ポート s 、s 、s 、s とが使用されない。
5 10 15 20 2 7 12 17
[0103] 本実施例において、第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え A)、
1 16 第 2の波長分割多重光 WDMB (波長チャネル λ Β〜 λ Β )、第 3の波長分割多重光
1 16
WDMC (波長チャネル λ c〜え c )、第 4の波長分割多重光 WDMD (波長チヤネ
1 16
ル λ D〜え D )が入力ポート p 、p 、p 、p にそれぞれ入力されると、第 1アレイ導
1 16 1 5 9 13
波路格子 AWG1および第 2ァレ ィ導波路格子 AWG2を通されることにより、第 2ァ レイ導波路格子 AWG2の出力ポート s 〜s 、s〜s 、s 〜s 、s 〜s からは、たと
18 1 3 6 8 11 13 16
えば図 2の (b)および (c)に示すように、入力された波長分割多重光 WDM毎にそれ ぞれ含まれ且つ波長軸上で 100GHz毎に隣接して連続する予め設定された 4つの 連続した波長チャネルをそれぞれ含む 4群の波長群 WBすなわち WB4 (A)〜WB1 (A)、 WB4 (B)〜WB1 (B)、 WB4 (C)〜WB1 (C)、 WB4 (D)〜WB1 (D) 1S それ ぞれ 1つずつ出力される。ここで、たとえば WB1 (A)〜WB4 (A)は、入力された第 1 の波長分割多重光 WDMAに含まれる波長の一部 (本実施例では 4波長ずつ)をそ れぞれ含む波長群であり、 WB1 (A)は波長チャネル λ 八〜え 八を示し、 WB2 (A)
1 4
は波長チャネルえ A〜え 八を示し、 WB3 (A)は波長チャネルえ 八〜え を示し 、
5 8 9 12
WB4 (A)は波長チャネルえ 八〜え 八を示している。
13 16
[0104] 本実施例の光接続路 12における出力ポート q〜q と入力ポート r〜r、 i:〜 r、 r
1 16 1 4 6 9
〜r 、 r 〜r との間の接続関係は、一般式(3)により表される。また、人力ファイバ
11 14 16 19
F の接続位置は、一般式 (4)により表される。式(3)において、 iは入力ポートの位置
IN
を示す整数、 Dは 1波長群内の波長チャネル数を示す整数、 []はその括弧内の数値 を超えない最大の整数 (シーリング)、 l≤r≤m+B、 k=0又は 1である。また、式 (4 )にお 、て、 Bは波長群 (バンド)の数、 1≤r≤ A、 j = l、2' '、k= l、2' '、である。ま た、式(4)において、 Bは波長群(バンド)の数、 l≤p≤m、t=0、 1、 2· ·Β—1であ る。
[0105] r =q +j X [ (q - l) /D] +k · · · (3)
(但し、 k+j (B— l) +m≤A)
p =l-t X D · · · (4)
[0106] 本実施例 2において、 m個の入力ポート pおよび m個の出力ポート qを有する第 1ァ レイ導波路格子 AWG1と、 m+B個の入力ポート rおよび m+B個の出力ポート sを有 する第 2アレイ導波路格子 AWG2とが用いられていたが、光接続路 12を構成する複 数本の導波路が交差しな 、ものと 、う前提にぉ 、て、第 2アレイ導波路格子 AWG2 力 m+ 2B個の入力ポート rおよび m+ 2B個の出力ポート sを有するもの、或いは m + 3B個の入力ポート rおよび m + 3B個の出力ポート sを有するものであってもよ!/、。 さらに、一般に m+ (正の整数) X B個の入力ポート rおよび m+ (正の整数) X B個の 出力ポート sを有するものであってもよい。その他、光接続路 12を構成する複数本の 導波路が交差するものであれば、さらに多くの接続関係が成立する。
[0107] 本実施例 2の波長群光合波分波器 10によれば、前述の実施例と同様の効果が得 られるのに加えて、波長軸上で隣接して連続する波長チャネルを含む波長群がそれ ぞれ出力ポート 18から出力される利点がある。
[0108] ここで、本実施例 2の波長群光合波分波器 10が波長群光合波器として用いられる 場合は、図 6において、上記波長軸上で 100GHz毎に連続する 4つの連続した波長 チャネルをそれぞれ含む 4つの波長群 WBが第 2アレイ導波路格子 AWG2の出力ポ ート s 〜s 、 s〜s 、 s 〜s 、 s 〜s からそれぞれ入力されると、第 2アレイ導波路
18 1 3 6 8 11 13 16
格子 AWG2および第 1アレイ導波路格子 AWG1を順に通されることにより、それら波 長群が予め設定された組み合わせで合波されて、第 1の波長分割多重光 WDMA ( 波長チャネルえ 八〜え 、第 2の波長分割多重光 WDMB (波長チャネルえ B
1 16 1 λ Β )、第 3の波長分割多重光 WDMe (波長チャネルえ c〜え C )、第 4の波長分
16 1 16
割多重光 WDMD (波長チャネルえ D〜え D )が第 1アレイ導波路格子 AWGの入
1 16 1 力ポート p 、 p 、 p 、 p 力もそれぞれ出力される
1 5 9 13
実施例 3
[0109] 図 7は、 4本の入力ファイバ F を介して伝送された、 16個の波長チャネルえ 〜λ
IN 1 16 をそれぞれ含む 4つの波長分割多重光 WDMA〜WDMD 1S その波長チャネル数と 同数の 16個の入力ポート p 〜p および出力ポート q〜q を備えた波長周回性を有
1 16 1 16
する第 1アレイ導波路格子 AWG1と、同様に波長チャネル数と同じ 16個の入力ポー ト r〜r および出力ポート s 〜s を備えた波長周回性を有する第 2アレイ導波路格
1 16 1 16
子 AWG2とから構成された波長群光合波分波器 10に入力された場合の分波機能を 説明するものである。本実施例の波長群光合波分波器 10の光接続路 12は、たとえ ば光ファイバ或 、はクロスオーバを有する三次元光導波路、或いは同一平面上で交 差はするが導波路間のクロストークが所定の値以下となる様に作成された導波路を 用いて、第 1アレイ導波路格子 AWG1の出力ポート q〜q 、q〜q 、q 〜q 、q 〜
1 4 5 8 9 12 13 q を、第 2アレイ導波路格子 AWG2の入力ポート r〜r 、 r〜r、 r 〜r、 r 〜r と
16 4 1 8 5 12 9 16 13 それぞれ交差して接続しており、第 2アレイ導波路格子 AWG2の入力ポートおよび 出力ポートにぉ 、て使用されな 、ものは存在しな!、。
[0110] 本実施例 3において、第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え 八)
1 16
、第 2の波長分割多重光 WDMB (波長チャネル λ Β〜え Β )、第 3の波長分割多重
1 16
光 WDMC (波長チャネル λ c〜え c )、第 4の波長分割多重光 WDMD (波長チヤ
1 16
ネルえ D〜え D )が第 1アレイ導波路格子 AWG1の入力ポート p 、p 、p 、p にそ
1 16 1 2 9 10 れぞれ入力されると、第 1アレイ導波路格子 AWGlおよび第 2アレイ導波路格子 AW G2を通されることにより、第 2アレイ導波路格子 AWG2の出力ポート(s 、s 、s 、s
2 4 14 16
)、(s 、s 、s 、s ;)、(s 、s 、s 、s ;)、(s 、s 、s 、s )からは、たとえば図 2の (d)
1 3 5 15 6 8 10 12 7 9 11 13
および (e)に示すように、入力された波長分割多重光 WDM毎にそれぞれ含まれ且 つ波長軸上で 400GHz隔てた不連続の予め設定された 4つの波長チャネルをそれ ぞれ含む 4つの波長群がそれぞれ 1つずつ出力される。
[0111] ここで、本実施例 3の波長群光合波分波器 10が波長群光合波器として用いられる 場合は、図 7において、上記波長軸上で 400GHz隔てた不連続の波長チャネルをそ れぞれ含む 4つの波長群 WBが第 2アレイ導波路格子 AWG2の出力ポート(s 、s 、
2 4 s 、s )、 s 、s 、s 、s )、 (s 、s 、s 、s )、 s 、s 、s 、s )力らそれぞれ入力さ
14 16 1 3 5 15 6 8 10 12 7 9 11 13
れると、第 2アレイ導波路格子 AWG2および第 1アレイ導波路格子 AWG1を順に通 されることにより、それら波長群が予め設定された組み合わせで合波されて、第 1の 波長分割多重光 WDMA (波長チャネルえ 八乃至え 、第 2の波長分割多重光 W
1 16
DMB (波長チャネルえ B乃至え 、第 3の波長分割多重光 WDMe (波長チャネル
1 16
λ c乃至え C )、第 4の波長分割多重光 WDMD (波長チャネルえ D乃至え D )が
1 16 1 16 第 1アレイ導波路格子 AWGの入力ポート p 、 p 、 p 、 p 力 それぞれ出力される
1 1 2 9 10
実施例 4 [0112] 図 8は、 4本の入力ファイバ F を介して伝送された、 16個の波長チャネルえ 〜λ
IN 1 16 をそれぞれ含む 4つの波長分割多重光 WDMA乃至 WDMDが、その波長チャネル 数と同数の 16個の入力ポート p 〜p および出力ポート q〜q を備えた波長周回性
1 16 1 16
を有する第 1アレイ導波路格子 AWG1と、同様に波長チャネル数と同じ 16個の入力 ポート r乃至 r および出力ポート s乃至 s を備えた波長周回性を有する第 2アレイ
1 16 1 16
導波路格子 AWG2とから構成された波長群光合波分波器 10に入力された場合の 分波機能を説明するものである。本実施例の波長群光合波分波器 10の光接続路 1 2は、たとえば光ファイバ或いはクロスオーバを有する三次元光導波路、或いは同一 平面上で交差はするが導波路間のクロストークが所定の値以下となる様に作成され た導波路を用いて、第 1アレイ導波路格子 AWG1の出力ポート q〜q 、q〜q 、q
1 4 5 8 9
〜q 、 q 〜q を、第 2アレイ導波路格子 AWG2の入力ポート r〜r、 r〜r、 r 〜r
12 13 16 4 1 8 5 12
、r 〜r とそれぞれ交差して接続しており、第 2アレイ導波路格子 AWG2の入力ポ
9 16 13
ートおよび出力ポートには使用されないものが存在しない。
[0113] 本実施例において、第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え A )、
1 16 第 2の波長分割多重光 WDMB (波長チャネル λ Β〜 λ Β )、第 3の波長分割多重光
1 16
WDMC (波長チャネル λ c〜え c )、第 4の波長分割多重光 WDMD (波長チヤネ
1 16
ル λ
1 D〜え 16 D )が入力ポート p 、p 、p 、p
5 6 13 14にそれぞれ入力されると、第 1アレイ導 波路格子 AWG1および第 2アレイ導波路格子 AWG2を通されることにより、第 2ァレ ィ導波路格子 AWG2の出力ポート(s 、s 、s 、s )、(s 、s 、s 、s )、(s 、s 、s 、
2 4 6 8 3 5 7 9 1 11 13 s ) , (s 、s 、s 、s )力 は、たとえば図 2の (d)および (e)に示すように、入力され
15 10 12 14 16
た波長分割多重光 WDM毎にそれぞれ含まれ且つ波長軸上で 400GHz隔てた不 連続の予め設定された 4つの波長チャネルをそれぞれ含む 4つの波長群がそれぞれ 1つずつ出力される。
[0114] 上記実施例 3および 4の光接続路 12における出力ポート q乃至 q と入力ポート r
1 16 1 乃至 r との接続関係は、一般式 (5)により表される。また、入力ファイバ F の接続位
16 IN 置は、一般式 (6)により表される。式(5)において、 iは入力ポートの位置を示す整数 、 Dは 1波長群内の波長チャネル数を示す整数、 []はその括弧内の数値を超えない 最大の整数 (シーリング)、 l≤r≤m、k=0、 1、 2' '、m—l、の m通りの接続が可能 である。また、式(6)において、 Bは波長群(バンド)の数、 l≤Pi≤m、t=0、 1、 2··、 である。
[0115] r =〈BX{2X[(q — 1)ZB] + 1}— q +k〉 +1
i o o mod m
•••(5)
p =<2tB+ a> +1
i mod m
<2tB+ a+Z) +1 ··· (6)
mod m
但し、 Z=l、 3、 5、 "-2 -1
a =1、 2、 3、 ·'·2Β— 1
[0116] ここで、本実施例において、光接続路 12を構成する複数本の導波路が交差すると いう条件下で、 m個の入力ポート ρおよび m個の出力ポート qを有する第 1アレイ導波 路格子 AWG1と、 m個の入力ポート rおよび m個の出力ポート sを有する第 2アレイ導 波路格子 AWG2とが用いられていた力 交差するというという条件下では、第 2アレイ 導波路格子 AWG2力 m+B個の入力ポート rおよび m+B個の出力ポート sを有す るもの、或 、は m+ 2B個の入力ポート rおよび m+ 2B個の出力ポート sを有するもの であってもよい。さらに、一般に m+ (正の整数) XB個の入力ポート rおよび m+ (正 の整数) XB個の出力ポート sを有するものであってもよい。
[0117] ここで、本実施例 4の波長群光合波分波器 10が波長群光合波器として用いられる 場合は、図 8において、上記波長軸上で 400GHz隔てた不連続の波長チャネルをそ れぞれ含む 4つの波長群 WBが第 2アレイ導波路格子 AWG2の出力ポート(s 、s 、
2 4 s 、s )、 (s 、 s 、s 、s )、(s 、s 、s 、s )、 (s 、s 、s 、s )力らそれぞれ入力さ
6 8 3 5 7 9 1 11 13 15 10 12 14 16
れると、第 2アレイ導波路格子 AWG2および第 1アレイ導波路格子 AWG1を順に通 されることにより、それら波長群が予め設定された組み合わせで合波されて、第 1の 波長分割多重光 WDMA (波長チャネルえ 八乃至え 、第 2の波長分割多重光 W
1 16
DMB (波長チャネルえ B乃至え 、第 3の波長分割多重光 WDMe (波長チャネル
1 16
λ c乃至え C)、第 4の波長分割多重光 WDMD (波長チャネルえ D乃至え D)が
1 16 1 16 第 1アレイ導波路格子 AWGの入力ポート p 、 p 、 p 、 p 力 それぞれ出力される
1 5 6 13 14
[0118] 実施例 3および 4の波長群光合波分波器 10によれば、前述の実施例と同様の効果 が得られるのに加えて、第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 A WG2は、波長分割多重光 WDMに含まれる波長チャネル数と同じ数の入力ポートお よび出力ポートをそれぞれ備えたものであるので、波長群光合波分波器の規模が小 さくなるとともに構造が一層簡単となる。
[0119] また、実施例 3および 4の波長群光合波分波器 10によれば、出力ポート 18からそ れぞれ出力される波長群 WBは、図 2の (d)或いは (e)に示すように、波長軸上で不 連続の波長チャネル力 構成されるものであるので、波長軸上で不連続な波長チヤ ネルを含む波長群が得られる。
実施例 5
[0120] 図 9は、 2本の入力ファイバ F を介して伝送された、 16個の波長チャネルえ 〜λ
IN 1 16 をそれぞれ含む 2つの波長分割多重光 WDMA〜WDMB 1S その波長チャネル数と 同数の 16個の入力ポート p 〜p および出力ポート q〜q を備えた波長周回性を有
1 16 1 16
しない第 1アレイ導波路格子 AWG1と、同様に波長チャネル数と同じ 16個の入力ポ ート r〜r および出力ポート s 〜s を備えた波長周回性を有しない第 2アレイ導波
1 16 1 16
路格子 AWG2とから構成された波長群光合波分波器 10に入力された場合の分波 機能を説明するものである。本実施例の波長群光合波分波器 10の光接続路 12は、 たとえば光ファイバ或いはクロスオーバを有する三次元光導波路、或いは同一平面 上で交差はするが導波路間のクロストークが書英の値以下となる様に構成された光 導波路を用いて、第 1アレイ導波路格子 AWG1の出力ポート qを第 2アレイ導波路
8
格子 AWG2の入力ポート rに接続するとともに、第 1アレイ導波路格子 AWG1の出
5
力ポート q〜q 、 q 〜q を、第 2アレイ導波路格子 AWG2の入力ポート r 〜r、 r
9 12 13 16 12 9 16
〜r とそれぞれ交差して接続するとともに、第 1アレイ導波路格子 AWG1の出力ポ
13
ート qを第 2アレイ導波路格子 AWG2no入力ポート rに接続している。第 1アレイ導
8 5
波路格子 AWG1の出力ポート q〜q、第 2アレイ導波路格子 AWG2の入力ポート r
1 7 1
〜r、r〜rおよび出力ポート s 〜s は使用されない。
4 6 8 6 13
[0121] 本実施例において、第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え A)、
1 16 第 2の波長分割多重光 WDMB (波長チャネルえ B〜え B )が第 1アレイ導波路格子
1 16
AWG1の入力ポート p 、 p にそれぞれ入力されると、第 1アレイ導波路格子 AWG1
1 2
および第 2アレイ導波路格子 AWG2を通されることにより、第 2アレイ導波路格子 AW G2の出力ポート(s 、 s 、 s 、 s )、(s 、 s 、 s 、 s )からは、たとえば図 2の (d)およ
2 4 14 16 1 3 5 15
び )に示すように、入力された波長分割多重光 WDM毎にそれぞれ含まれ且つ波 長軸上で 400GHz隔てた不連続の予め設定された 2つの波長チャネルをそれぞれ 含む 4つの波長群がそれぞれ 1つずつ出力される。
[0122] ここで、本実施例 5の波長群光合波分波器 10が波長群光合波器として用いられる 場合は、図 9において、上記波長軸上で 400GHz隔てた不連続の波長チャネルをそ れぞれ含む 2つの波長群 WBが第 2アレイ導波路格子 AWG2の出力ポート(s 、s 、
2 4 s 、s )、(s 、s 、s 、s )からそれぞれ入力されると、第 2アレイ導波路格子 AWG2
14 16 1 3 5 15
および第 1アレイ導波路格子 AWG1を順に通されることにより、それら波長群が予め 設定された組み合わせで合波されて、第 1の波長分割多重光 WDMA (波長チャネル λ A乃至え 、第 2の波長分割多重光 WDMB (波長チャネルえ B乃至え B )の
1 16 1 16 中で実際に波長群として使用されている 2つの波長チャネルをそれぞれ含む 4つの 波長群から構成される波長分割多重光が第 1アレイ導波路格子 AWGの入力ポート
1
P 、 p
1 2力 それぞれ出力される
実施例 6
[0123] 図 10および図 11は、 4本の光ファイバ F を介して伝送された、 12個の波長チヤネ
IN
ルえ 〜 λ 、 え 〜 λ 、 え 〜 λ 、え 〜え をそれぞれ含 む 4つの波長分割多
1 3 5 7 9 11 13 15
重光 WDMA〜WDMD力 16個の入力ポート ρ 〜p および出力ポート q〜q を備
1 16 1 16 えた波長周回性を有する第 1アレイ導波路格子 AWGlと、 16個の入力ポート!:乃至
1 r および出力ポート s乃至 s を備えた波長周回性を有する第 2アレイ導波路格子 A
16 1 16
WG2とから構成された波長群光合波分波器 10の第 1アレイ導波路格子 AWGlに入 力された場合の波長群分波機能と、 4本の光ファイバ F を介して伝送された、 12個
IN
の波長チャネルえ 〜え 、 え 〜 λ 、え 〜 λ 、 え 〜 λ をそれぞれ含む 4つの
1 3 5 7 9 11 13 15
波長分割多重光 WDME〜WDMH力 第 2アレイ導波路格子 AWG2に入力されて 上記と逆方向に光を伝播させたときの波長群分波機能とを、同時に双方向で実行す る例を説明するものである。波長群光合波分波器 10は、双方向で波長群分波機能 を有するものである力 理解を容易とするために、図 10では、 4つの波長分割多重光 WDMA〜WDMDが第 1アレイ導波路格子 AWG 1の人力ポートに人力された場合 の一方向における波長群分波器として作動する部分を説明し、図 11ではそれとは反 対方向に 4つの波長分割多重光 WDME〜WDMHが第 2アレイ導波路格子 AWG2 の出力ポートに入力された場合の波長群分波器として作動する部分を説明している
[0124] 本実施例の波長群光合波分波器 10の光接続路 12は、たとえば光ファイバ或いは クロスオーバを有する三次元光導波路、或いは同一平面上で交差はするが導波路 間のクロストークが所定の値以下となるように作成された光導波路を用いて、第 1ァレ ィ導波路格子 AWG1の出力ポート q〜q 、 q〜q 、 q〜q 、 q 〜q を、第 2アレイ
1 4 5 8 9 12 13 16
導波路格子 AWG2の入力ポート r〜: r、 r〜: r、 r 〜: r、 r 〜r とそれぞれ交差し
4 1 8 5 12 9 16 13
て接続している。但し、本実施例では、図 7の実施例に比較して、波長チャネルえ 、
4 λ 、え 、 λ は敢えて用いられておらず、 4つの波長分割多重光 WDMA〜WDMD
8 12 16
に含まれていないので、第 2アレイ導波路格子 AWG2の出力ポート s 、s 、s 、s に
3 4 11 12 は波長群分波出力が出ないようにされる一方で、出力ポート S 、 S 、 S 、 S
3 4 11 12には、他 の入力信号である 16個の波長チャネルえ 〜え において波長チャネルえ 、 λ 、
1 16 4 8 λ 、 λ を除く 12個の波長チャネルを各々含む 4つの波長分割多重光 WDME
12 16
〜WDMHが入力されるようになって!/、る。
[0125] 本実施例において、第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え 八に
1 16 おいて波長チャネルえ A、 λ A、 え 八、え Aを除く 12個の波長チャネル)、第 2の波
4 8 12 16
長分割多重光 WDMB (波長チャネルえ B〜え Bにおいて波長チャネルえ Β、 λ B
1 16 4 8
、 え Β、え Βを除く 12個の波長チャネル)、第 3の波長分割多重光 WDMe (波長チ
12 16
ャネノレえ c〜え cにお!/、て波長チヤネノレえ c、え c、え c、え cを除く 12個の波
1 16 4 8 12 16 長チャネル)、第 4の波長分割多重光 WDMD (波長チャネル λ D〜 λ Dにお 、て波
1 16
長チャネルえ D、え D、え D、え Dを除く 12個の波長チャネル)が入力ポート P 、
4 8 12 16 1 p 、 p 、 P にそれぞれ入力されると、第 1アレイ導波路格子 AWG1および第 2アレイ
2 9 10
導波路格子 AWG2を通されることにより、第 2アレイ導波路格子 AWG2の出力ポート (s 、 s 、 s )、(s 、 s 、 s )、 (s 、 s 、 s )、(s 、 s 、 s )からは、たとえば図 2の (d)
2 14 16 1 5 15 6 8 10 7 9 13
および (e)に示すように、入力された波長分割多重光 WDM毎にそれぞれ含まれ且 つ波長軸上で 400GHz隔てた不連続の予め設定された 4つの波長チャネルをそれ ぞれ含む 3群の波長群 WBすなわち [WB3 (A), WB1 (A) , WB2(A)] [WB3 (B) , WB1(B), WB2(B)] [WB1 (C) , WB2 (C) , WB3(C)] [WB2 (D) , WB3(D ), WB1(D)]が、それぞれ 1つずつ出力される。ここで、たとえば上記波長群 WB1( A) , WB2 (A) , WB3 (A)は、入力された第 1の波長分割多重光 WDMAに含まれる 波長の一部 (本実施例では 4波長ずつ)をそれぞれ含む波長群であり、 WB1 (A)は 出力ポート s から出力される波長チャネルえ λ λ λ 八を含む波長群、
14 1 5 9 13
WB2(A)は出力ポート s 力 出力される波長チャネルえ Α、 λ 八、え 八、え Aを含
16 2 6 10 14 む波長群、 WB3(A)は出力ポート s力も出力される波長チャネルえ Α、 λ 八、え A
2 3 7 11 λ Αを含む波長群をそれぞれ示している。
15
[0126] また、第 5の波長分割多重光 WDME (波長チャネルえ E〜え Eにおいて波長チヤ
1 16
ネルえ λ λ λ Εを除く 12個の波長チャネル)、第 6の波長分割多重光
4 8 12 16
WDMF (波長チャネルえ F〜え Fにおいて波長チャネルえ F、え F、え F、え F
1 16 4 8 12 16 を除く 12個の波長チャネル)、第 7の波長分割多重光 WDMC (波長チャネルえ C
1 λ において波長チャネルえ °, λ °, λ °, λ sを除く 12個の波長チャネル)、
16 4 8 12 16
第 8の波長分割多重光 WDMH (波長チャネルえ H〜え Hにおいて波長チャネルえ
1 16
Η λ H、え H、え Hを除く 12個の波長チャネル)が第 2アレイ導波路格子 AWG2
4 8 12 16
の出力ポート s s s s にそれぞれ入力されると、第 2アレイ導波路格子 AWG2
3 4 11 12
および第 1アレイ導波路格子 AWG1を通されることにより、第 1アレイ導波路格子 AW G1の入力ポート(p ρ ρ ρ ρ
4 6 16 )、(ρ ρ ρ
3 5 7 )、(ρ
8 12 14 )、(ρ ρ ρ
11 13 15 )からは、 たとえば図 2の (d)および (e)に示すように、入力された波長分割多重光 WDM毎にそ れぞれ含まれ且つ波長軸上で 400GHz隔てた不連続の予め設定された 3つの波長 チャネルをそれぞれ含む 3つの波長群がそれぞれ 1つずつ出力される。
[0127] 本実施例では、第 2アレイ導波路格子 AWG2の出力ポートのうち一部である 1また は 2以上の出力ポート s s s s を入力ポートとし、その入力ポートから逆の伝播
3 4 11 12
方向で入力された 1または 2以上の波長分割多重光から各々の波長分割多重光に 含まれる波長群毎に分離して、第 1アレイ導波路格子 AWG 1の入力ポートのうち前 記波長分割多重光 WDMA WDMB WDM WDM°が入力されて!、な!/、入力ポ ート(p p p )、(p p p )、(p p p )、(p p p )から出力することによ り、双方向で、波長分割多重光力 それに含まれる複数の波長チャネルの一部であ つて互いに異なる波長チャネルをそれぞれ含む複数の波長群へ分波して出力する ので、双方向で同時に波長群分波器として機能することができる。
[0128] ここで、本実施例の波長群光合波分波器 10が波長群光合波器として用いられる場 合は、図 10において、波長軸上で 400GHz隔てた不連続の 4つの波長チャネルを それぞれ含む 4群の波長群 WBが第 2アレイ導波路格子 AWG2の出力ポート(s 、 s
2 1
、 S )、(S 、 S 、 S )、(S 、 S 、 S )、(S 、 S 、 S )からからそれぞれ入力されると、第 4 16 1 5 15 6 8 10 7 9 13
2アレイ導波路格子 AWG2および第 1アレイ導波路格子 AWG1を順に通されること により、それら波長群が予め設定された組み合わせで合波されて、第 1の波長分割 多重光 WDMA (波長チャネルえ 八〜え A、 λ 八〜え A、 λ 八〜え A、 λ Α〜え A
1 3 5 7 9 11 13 15
)、第 2の波長分割多重光 WDMB (波長チャネルえ B〜え λ Β〜え λ Β
1 3 5 7 9 λ λ Β〜え Β )、第 3の波長分割多重光 WDMe (波長チャネルえ c〜え e
11 13 15 1 3 λ C〜え λ C〜え λ C〜え C )、第 4の波長分割多重光 WDMD (波長チ
5 7 9 11 13 15
ャネルえ D〜え D、 λ D〜え D、 λ D〜え D、 λ D〜え D )が第 1アレイ導波路
1 3 5 7 9 11 13 15
格子 AWG の入力ポート p 、 p 、 p 、 p からそれぞれ出力される。また、図 11にお
1 1 2 9 10
V、て、波長軸上で 400GHz隔てた不連続の 4つの波長チャネルをそれぞれ含む 4つ の波長群 WBが第 1アレイ導波路格子 AWG1の入力ポート (p ,ρ ,ρ ;)、 (ρ 、ρ 、ρ
4 6 16 3 5 7
)、 (Ρ 、Ρ 、Ρ )、 (Ρ 、Ρ 、Ρ )
8 12 14 11 13 15からそれぞれ入力されると、第 1アレイ導波路格子 A
WG1および第 2アレイ導波路格子 AWG2を順に通されることにより、それら波長群が 予め設定された組み合わせで合波されて、第 5の波長分割多重光 WDME (波長チヤ ネルえ E〜え λ Ε〜え λ Ε〜え λ Ε〜え 、第 6の波長分割多重光
1 3 5 7 9 11 13 15
WDMF (波長チャネルえ F〜え F、 λ F〜え F、 λ F〜え F、 λ F〜え F )、第 7
1 3 5 7 9 11 13 15 の波長分割多重光 WDMG (波長チャネルえ 〜え ° , λ 〜え ° , λ 〜え 、
1 3 5 7 9 11 λ 〜え )、第 8の波長分割多重光 WDMH (波長チャネルえ H〜え H、 え H
13 15 1 3 5 λ Η、 え Η〜え Η、 え Η〜え Η )が第 2アレイ導波路格子 AWG2の出力ポート s 、
7 9 11 13 15 3
S 、 S 、 S にそれぞれ出力される。
4 11 12
実施例 7
[0129] 図 12は、波長群光合波分波器 10が共通のすなわち単一のアレイ導波路格子 AW G3および折返導波路 50が基板 14上に一体構成された例を示す概念図である。こ のアレイ導波路格子 AWG3は、前述の第 1アレイ導波路格子 AWG1および第 2ァレ ィ導波路格子 AWG2と同様に、アレイ導波路 20、入力側導波路 22、その入力側導 波路 22とアレイ導波路 20との間に設けられた入力レンズ導波路 24と、複数本の出 力側導波路 26、その出力側導波路 26とアレイ導波路 20との間に設けられた出カレ ンズ導波路 28とを備えている。このため、第 1アレイ導波路格子 AWG1および第 2ァ レイ導波路格子 AWG2と同様の入力ポートが 1つずれることにより出力ポートが順次 1つずつずれる特性を備えている。図 13は、 M本の全ての入力側導波路 22と N本出 力側導波路 26とにっ 、て α番目の入力側導波路 22 (入力ポート 16)から入力され、 β番目の出力側導波路 26 (出力ポート 40)力も出力される波長が λ + |8— 1) ( 但し、括弧内はサフィックス)であることを示す図表である。本実施例において、上記 アレイ導波路格子 AWG3は波長周回性を持たないものである。
[0130] 本実施例の波長群光合波分波器 10では、単一のアレイ導波路格子 AWG3にお いて波長分割多重光 WDMが複数の入力ポート 16の一部に入力され且つ分波され た波長群毎に互いに異なる出力ポート 40の一部から出力させる機能を実現するため に単一のアレイ導波路格子 AWG3に対してそれを 2回通過させるために、そのァレ ィ導波路格子 AWG3の出力ポート 40の他部をアレイ導波路格子の入力ポート 16の 他部に入力させる折返接続路 (帰還用導波路) 50が設けられている。波長群光合波 分波器 10では、単一のアレイ導波路格子 AWG3により、入力ポート 16の一部に入 力された互いに異なる複数の波長分割多重光 WDMから、その波長分割多重光 W DMに含まれる複数の波長群 WBとは異なる波長群 WBに変換されたものが、出力ポ ート 40の他部の帰還用の各導波路にそれぞれ出力される。
[0131] 本実施例において、アレイ導波路格子 AWG3の入力ポート 16の数を M、アレイ導 波路格子 AWG3の出力ポート 40の数を N、波長群の数を B、波長群内の波長チヤ ネル数を D、波長群光合波分波器 (デバイス) 10内の 1 X Bの合分波器数を Aとする と、使用する総波長チャネル数は B X D、デバイスの入力ポート数は A、デバイスの 出力ポート数は A X Bとされる。
[0132] 本実施例においては、折返接続路 50では、一般式で表現すると、以下の (a)乃至( d)に示すように接続される。すなわち、
[0133] (a) A本の入力ポートは、アレイ導波路格子 AWG3のポート a、 a + D、 · · -a+ (A— 1)Dを使用する。
[0134] (b)アレイ導波路格子 AWG3の出力ポート N— (A+B— 1)D+1〜Nを、アレイ導 波路格子 AWG3の入力ポートへ折り返す。即ち、つなぎ方のポイントは、出力ポート 力 個毎に「接続先の入力ポート番号と出力ポート番号の差」を 1ずつ変えることにあ る。
[0135] (c)折り返して接続するポート間は、以下の通りとする。
(出力ポート) (入力ポート)
N— D+1〜N → M— D+1〜M
N— 2D+1〜N— D → M— 2D〜M— D— 1
N— 3D+1〜N— 2D → M— 3D— 1〜M— 2D— 2
N— 4D+1〜N— 3D → M— 4D— 2〜M— 3D— 3
(中略)
N— (A+B— 1)D+1〜N— (A+B— 2) D→
M- (A+B-DD- (A+B— 3)
〜M— (A+B-2)D- (A+B— 2)
[0136] (d) Α·Β本のデバイスの出力ポートは、アレイ導波路格子 AWG3の以下の出力ポ ートを使用する。
a + N— M〜a + N— M + D— 1
a + N— M + D+l〜a + N— M + 2D
a + N— M + 2D + 2〜a + N— M + 3D+1
(中略) a + N— M+ (A— 1)D+A— l〜a + N— M+AD+A— 2 [0137] 上記の一般式で表現される接続を行う場合、上記折返接続路 50による接続は、式 (7)、(8)、(9)を満たすことが必要である。式 (7)は出力ポート番号力 以上であるこ とに基づく制約条件であり、式 (8)は折返接続路 50に用いる出力ポートと波長群を 出力するためのデバイスに必要な出力ポートとの番号を重複させないようにするため の制約条件であり、式(9)は折返接続路 50に用いる入力ポートと波長分割多重光 W DMを入力するためにデバイスに必要な入力ポートとの番号を重複させないようにす るための制約条件である。
[0138] a≥M-N+ l · · · (7)
M> (2A+B- l) D+A+a- 3 …(8)
M> (2A+B- 2) D+ (A + B + a- 3) · · · (9)
[0139] たとえば、アレイ導波路格子 AWG3の入力ポート 16の数 M= 128、アレイ導波路 格子 AWG3の出力ポート 40の数 N= 128、波長群の数 B = 8、波長群内の波長チヤ ネル数 n=8、波長群光合波分波器 (デバイス) 10内の 1 X Bの合分波器数 A=4、 a = 1とした場合を具体的に説明すると、(7)式の制約条件は、その左辺 = 1、右辺 = 1 28— 128 + 1 = 1となって満足され、(8)式の制約条件は、その左辺 = 128、右辺 = (2 X 4 + 8- 1) X 8+4+ 1— 3 = 122となって満足され、(9)式の制約条件は、その 左辺 = 128、右辺 = (2 X 4 + 8- 2) X 8+ (4 + 8 + 1— 3) = 122となって満足される 。したがって、デバイスの入力ポートとしては、アレイ導波路格子 AWG3の入力ポート の Inl(l番)、 In9(9番)、 Inl7(17番)、 In25(25番)が用いられるとともに、デバイスの 出力ポートとしては、入力ポート Inl力もの入力光が出力される出力ポート Outl-8と、 入力ポート In9力 の入力光が出力される出力ポート OutlO-17と、入力ポート Inl7か らの入力光が出力される出力ポート Outl9-26と、入力ポート In25からの入力光が出 力される出力ポート Out28- 35とが用いられる。
[0140] また、折返接続路 50としては、出力ポートの Out41-48( 41番〜 48番)が入力ポート の In31-38(31番〜 38番)へ、出力ポートの Out49-56( 49番〜 56番)が入力ポートの In 40- 47(40番〜 47番)へ、出力ポートの Out57- 64( 57番〜 64番)が入力ポートの In49- 56(49番〜 56番)へ、出力ポートの Out65- 72( 65番〜 72番)が入力ポートの In58- 65(5 8番〜 65番)へ、出力ポートの Out73-80( 73番〜 80番)が入力ポートの In67-74(67番 〜74番)へ、出力ポートの Out81-88( 81番〜 88番)が入力ポートの In76-83(76番〜 8 3番)へ、出力ポートの Out89-96( 89番〜 96番)が入力ポートの In85-92(85番〜 92番) へ、出力ポートの Out97- 104( 97番〜 104番)が入力ポートの In94- 101(94番〜 101 番)へ、出力ポートの Outl05- 112( 105番〜 112番)が入力ポートの Inl03- 110(103 番〜 110番)へ、出力ポートの Outll3- 120( 113番〜 120番)が入力ポートの Inll2- 119(112番〜 119番)へ、出力ポートの Outl21- 128( 121番〜 128番)が入力ポート の Inl21- 128(121番〜 128番)へそれぞれ接続される。
[0141] 本実施例の波長群光合波分波器 10では、単一のアレイ導波路格子 AWG3が備え られているが、その出力が折返接続路 50により再度入力させられて、アレイ導波路 格子 AWG3を 2回通過させられるので、前述の実施例と同様の効果が得られる。
[0142] また、本実施例の波長群光合波分波器 10によれば、波長分割多重光 WDMが複 数の入力ポートの一部に入力され且つ合波された波長群毎に互いに異なる出力ポ ートの一部から出力させる単一のアレイ導波路格子 AWG3と、その共通のアレイ導 波路格子 AWG3の出力ポートの他部をその共通のアレイ導波路格子 AWG3の入力 ポートの他部に入力させる折返接続路 50とを含み、その単一のアレイ導波路格子 A WG3は、入力ポートの一部に入力された互いに異なる複数の波長分割多重光 WD Mから、その波長分割多重光 WDMに含まれる複数の波長群 WBとは異なる波長群 WBに変換されたもの力 出力ポートの一部である帰還用の各導波路からそれぞれ 出力させるものであることから、基板 14上に一体構成された単一のアレイ導波路格 子 AWG3および折返接続路 50から波長群光合波分波器 10が簡単に構造される。
[0143] ここで、本実施例 5の波長群光合波分波器 10が波長群光合波器として用いられる 場合は、図 12において、複数の波長群 WBが出力ポート 40の一部からそれぞれ入 力されると、単一のアレイ導波路格子 AWG3を波長群光分波器の場合とは逆の伝 播方向で 2回通されることにより、それら波長群が予め設定された組み合わせで合波 されて、波長分割多重光 WDMが入力ポート 16の一部力 それぞれ出力される 実施例 8
[0144] 図 14の実施例の波長群光合波分波器 10は、折返接続路 50が接続する出力ポー トの一部と入力ポートの一部とが相違する他は、図 12の実施例と同様に構成されて いる。すなわち、図 12の実施例ではアレイ導波路格子 AWG3の入力ポートおよび出 力ポートのうちの老番ポートが折返接続路 50の接続に用いられ、若番ポートがデバ イスの入出力に用いられていた力 本実施例では、アレイ導波路格子 AWG3の入力 ポートおよび出力ポートのうちの若番ポートが折返接続路 50の接続に用いられ、老 番ポートがデバイスの入出力に用いられて ヽる。本実施例にお!ヽても図 12の実施例 と同様の効果が得られる。
実施例 9
[0145] 図 15の実施例の波長群光合波分波器 10は、図 6の実施例と類似するものであり、 入力される第 1の波長分割多重光 WDMA (波長チャネルえ 八乃至え 八)或いは第 3
1 16
の波長分割多重光 WDMe (波長チャネルえ c〜え の波長チャネル数と同数の
1 16
16個の入力ポート p〜p および出力ポート q〜q を備えた波長周回性を有する第
1 16 1 16
1ァレイ導波路格子 AWG 1と、上記波長チャネル数よりも 8だけ多い 24個の入力ポ ート r〜r および出力ポート s〜s を備えた波長周回性を有する第 2アレイ導波路
1 24 1 24
格子 AWG2とから構成されて ヽる。本実施例の波長群光合波分波器 10の光接続路 12は、基板 14上に形成された光導波路から構成され、第 1アレイ導波路格子 AWG 1の出力ポート q〜q を、第 2アレイ導波路格子 AWG2の入力ポート r〜!:、 ι:〜 r
1 16 1 4 7 10
、r 〜r 、r 〜r と、相互に交差することなくそれぞれ 1平面内において並行に接続
13 16 19 22
している。第 2アレイ導波路格子 AWG2の入力ポート r、r、r 、r 、r 、r 、r 、r
5 6 11 12 17 18 23 24 と出力ポート s 〜s 、s 、s 、s 、s 〜s 、s 、s 、s とが使用されていない。
2 6 8 10 12 14 18 20 22 24
[0146] 図 15は、上記 2つの波長分割多重光 WDMAおよび波長分割多重光 WDMeが入 力された場合の分波機能を示している。第 1の波長分割多重光 WDMA (波長チヤネ ル λ 八乃至え 八)および第 3の波長分割多重光 WDMC (波長チャネルえ c〜え c
1 16 1 16
)が第 1アレイ導波路格子 AWG1の入力ポート pおよび p にそれぞれ入力されると、
1 9
第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2を通過させられる ことにより、たとえば図 2の (b)および (c)に示すように、第 2アレイ導波路格子 AWG2 の出力ポート(s
1、s
23、s
21、s )
19からは、入力ポート p
1に入力された波長分割多重光
WDMAにそれぞれ含まれ且つ波長軸上で 100GHz毎に隣接して連続する予め設 定された 4つの連続した波長チャネルをそれぞれ含む 4つの波長群 WBが、からそれ ぞれ出力されるとともに、出力ポート(S、 S 、 S、 s )からは、入力ポート p に入力さ
13 11 9 7 9 れた波長分割多重光 WDMe毎にそれぞれ含まれ且つ波長軸上で 1 OOGHz毎に隣 接して連続する予め設定された 4つの連続した波長チャネルをそれぞれ含む 4つの 波長群 WBが、それぞれ出力される。
[0147] 本実施例の波長群光合波分波器 10では、使用しない第 2アレイ導波路格子 AWG 2の入力ポートを 2つ以上ずつ連続させることで、使用する第 2アレイ導波路格子 AW G2の出力ポートが隣接しないようにされている。このような入出力特性は、光接続路 12によって相互に接続される第 1アレイ導波路格子 AWG1の出力ポートの番号と第 2アレイ導波路格子 AWG2の入力ポートの番号との差が連続しない飛び飛びの値を すること、および、使用する第 1アレイ導波路格子 AWG1の入力ポートを適切に選択 すること〖こより得られる。従って、それらの条件を満足する範囲で、光接続路 12によつ て相互に接続されるポートや、波長分割多重光 WDMAおよび WDMeが入力される ポート等の選択は適宜変更可能である。本実施例の波長群光合波分波器 10によれ ば、前述の実施例と同様の効果が得られるのに加えて、第 2アレイ導波路格子 AWG 2の出力ポートが隣接しな 、ようにされて 、ることからその出力ポートに接続される出 力導波路の間隔を広くすることができる利点がある。この利点により、第 2アレイ導波 路格子 AWG2からの出力導波路の構造を改良して、たとえば導波路幅を広くして透 過帯域を拡大できたり、或いは導波路の形状をパラボラ型にして透過スペクトルを平 坦ィ匕できたりする等の効果が得られる。
実施例 10
[0148] 図 16の実施例の波長群光合波分波器 10は、図 7の実施例と同様に、入力される 第 1の波長分割多重光 WDMA (波長チャネルえ 八乃至え A)或いは第 3の波長分
1 16
割多重光 WDMG (波長チャネルえ c〜え G )の波長チャネル数と同数の 16個の入
1 16
力ポート p〜p および出力ポート q
1〜q を備えた波長周回性を有する第 1アレイ導
1 16 16
波路格子 AWG1と、同様に波長チャネル数と同数の 16個の入力ポート r
1〜r およ 16 び出力ポート s〜s を備えた波長周回性を有する第 2アレイ導波路格子 AWG2とか
1 16
ら構成されている。本実施例の波長群光合波分波器 10の光接続路 12は、図 7の実 施例と同様に、たとえば光ファイバ一或いは基板 14上に形成されたクロスオーバを 有する三次元光導波路から構成され、第 1アレイ導波路格子 AWGlの出力ポート q
1
〜q 、 q〜q 、 q〜q 、 q 〜q
4 5 8 9 12 13 16を、第 2アレイ導波路格子 AWG2の入力ポート r〜
4 r 、r〜r、r 〜r、r 〜r と、相互に交差した状態で接続している。第 2アレイ導波
1 8 5 12 9 16 13
路格子 AWG2の入力ポートにお!、て使用されて ヽな 、ものは存在しな 、が、出力ポ ートでは 1つ置きに使用されて 、な!/、。
[0149] 図 16は、上記 2つの波長分割多重光 WDMAおよび波長分割多重光 WDMeが入 力された場合の分波機能を示している。第 1の波長分割多重光 WDMA (波長チヤネ ル λ 八乃至え 八)および第 3の波長分割多重光 WDMC (波長チャネルえ c〜え c
1 16 1 16
)が第 1アレイ導波路格子 AWG1の入力ポート pおよび p にそれぞれ入力されると、
1 9
第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2を通過させられる ことにより、たとえば図 2の (d)および (e)に示すように、第 2アレイ導波路格子 AWG2 の出力ポート(s 、s 、s 、s )からは、入力ポート p に入力された波長分割多重光 W
14 16 2 4 1
DMAにそれぞれ含まれ且つ波長軸上で 100GHz毎に隣接せず不連続な 4つの波 長チャネルをそれぞれ含む 4つの波長群 WBが、それぞれ出力されるとともに、出力 ポート(s 、s 、s 、s )からは、入力ポート p に入力された波長分割多重光 WDMC
6 8 10 12 9
毎にそれぞれ含まれ且つ波長軸上で 1 OOGHz毎に隣接せず不連続な波長チヤネ ルをそれぞれ含む 4つの波長群 WBが、それぞれ出力される。
[0150] 本実施例の波長群光合波分波器 10では、使用する第 2アレイ導波路格子 AWG2 の入力ポートを隣接させることで、使用する第 2アレイ導波路格子 AWG2の出力ポー トを隣接させず連続しないようにされている。このような入出力特性は、光接続路 12 によって相互に接続される第 1アレイ導波路格子 AWG1の出力ポートの番号と第 2ァ レイ導波路格子 AWG2の入力ポートの番号との差が連続しない飛び飛びの値をす ること、および、使用する第 1アレイ導波路格子 AWG1の入力ポートを適切に選択す ることにより得られる。従って、それらの条件を満足する範囲で、光接続路 12によって 相互に接続されるポートや、波長分割多重光 WDMAおよび WDMeが入力されるポ ート等の選択は適宜変更可能である。本実施例の波長群光合波分波器 10によれば 、前述の実施例と同様の効果が得られるのに加えて、第 2アレイ導波路格子 AWG2 の出力ポートが隣接しな!、ようにされて!、ることからその出力ポートに接続される出力 導波路の間隔を広くすることができる利点がある。この利点により、第 2アレイ導波路 格子 AWG2からの出力導波路の構造を改良して、たとえば導波路幅を広くして透過 帯域を拡大できたり、或いは導波路の形状をパラボラ型にして透過スペクトルを平坦 化できたりする等の効果が得られる。
実施例 11
[0151] 図 17の実施例の波長群光合波分波器 10は、入力される第 1の波長分割多重光 W
DMA (波長チャネルえ A乃至え A)或いは第 3の波長分割多重光 W DML (波長
21 36
チャネルえ c〜え つの波長チャネル数 16よりも多い 24個の入力ポート p 〜p お
21 36 1 24 よび出力ポート q〜q を備えた波長周回性のない第 1アレイ導波路格子 AWG1と、
1 24
同様に波長チャネル数よりも多い 34個の入力ポート入力ポート r〜r および出力ポ
1 34
ート s 〜s を備えた波長周回 性のない第 2アレイ導波路格子 AWG2とから構成さ
1 34
れている。本実施例の波長群光合波分波器 10の光接続路 12は、たとえば基板 14 上に平面的に並行して形成された光導波路力 構成され、第 1アレイ導波路格子 A WG1の出力ポート q〜q を、第 2アレイ導波路格子 AWG2の入力ポート r〜r 、r
1 24 1 4 7
〜: r 、 r 〜: r 、 r 〜: r 、 r 〜: r 、 r 〜r と、 1平面内にお ヽて並行に接続して ヽる。
10 13 16 19 22 25 28 31 34
第 2アレイ導波路格子 AWG2の入力ポート r、r、r 、r 、r 、r 、r 、r 、r 、r お
5 6 11 12 17 18 23 24 28 29 よび出力ポート s 、s 、s 、s 、s 、s 〜s 、s 、s 、s 、s 〜s 力 S使用されていない
1 2 4 6 8 10 14 16 18 20 22 34
[0152] 図 17は、上記 2つの波長分割多重光 WDMAおよび波長分割多重光 WDMeが入 力された場合の分波機能を示している。第 1の波長分割多重光 WDMA (波長チヤネ ル λ 八乃至え および第 3の波長分割多重光 WDMC (波長チャネルえ c〜え
21 36 21 36 c)が第 1アレイ導波路格子 AWG1の入力ポート p および p にそれぞれ入力されると
13 21
、第 1アレイ導波路格子 AWG1および第 2ァレ ィ導波路格子 AWG2を通過させら れること〖こより、たとえば図 2の (b)および (c)に示すように、第 2アレイ導波路格子 AW G2の出力ポート(s 、s 、s 、s )
9 7 5 3 からは、入力ポート p
13に入力された波長分割多重 光 WDMAにそれぞれ含まれ且つ波長軸上で 100GHz毎に隣接する連続した 4つの 波長チャネルをそれぞれ含む 4つの波長群 WBが、それぞれ出力されるとともに、出 力ポート(s 、s 、s 、s )からは、入力ポート p に入力された波長分割多重光 WD
21 19 17 15 21 MC毎にそれぞれ含まれ且つ波長軸上で 100GHz毎に隣接して連続する波長チヤ ネルをそれぞれ含む 4つの波長群 WBが、それぞれ出力される。
[0153] 本実施例の波長群光合波分波器 10では、使用しない第 2アレイ導波路格子 AWG 2の入力ポートを 2つ以上隣接 (連続)させることで、使用する第 2アレイ導波路格子 A WG2の出力ポートを隣接させず連続しな ヽようにされて!ヽる。このような入出力特性 は、光接続路 12によって相互に接続される第 1アレイ導波路格子 AWG 1の出力ポ ートの番号と第 2アレイ導波路格子 AWG2の入力ポートの番号との差が連続しない 飛び飛びの値をすること、および、使用する第 1アレイ導波路格子 AWG1の入力ポ ートを適切に選択することにより得られる。従って、それらの条件を満足する範囲で、 光接続路 12によって相互に接続されるポートや、波長分割多重光 WDMAおよび W DMCが入力されるポート等の選択は適宜変更可能である。本実施例の波長群光合 波分波器 10によれば、前述の実施例と同様の効果が得られるのに加えて、第 2ァレ ィ導波路格子 AWG2の出力ポートが隣接しな 、ようにされて 、ることからその出力ポ ートに接続される出力導波路の間隔を広くすることができる利点がある。この利点によ り、第 2アレイ導波路格子 AWG2からの出力導波路の構造を改良して、たとえば導波 路幅を広くして透過帯域を拡大できたり、或いは導波路の形状をパラボラ型にして透 過スペクトルを平坦ィヒできたりする等の効果が得られる。
実施例 12
[0154] 図 18の実施例の波長群光合波分波器 10は、入力される第 1の波長分割多重光 W DMA (波長チャネルえ A乃至え 或いは第 3の波長分割多重光 WDMe (波長チ
17 32
ャネルえ c〜え c)の波長チャネル数 16よりも多い 24個の入力ポート p
17 32 1〜p およ
24 び出力ポート q〜q を備えた波長周回性を有しない第 1アレイ導波路格子 AWG1と
1 24
、同様に波長チャネル数よりも多い 24個の入力ポート r〜r および出力ポート s
1 24 1〜s を備えた波長周回性を有しな 、第 2アレイ導波路格子 AWG2とから構成されて ヽる
24
。本実施例の波長群光合波分波器 10の光接続路 12は、たとえば光ファイバ一或い は基板 14上に形成されたクロスオーバを有する三次元光導波路力も構成され、第 1 アレイ導波路格子 A WG1の出力ポート q
1〜q
4、 q
5〜q
8、 q
9〜q
12、 q
13〜q
16、 q
17〜q 20
、 q〜q を、第 2アレイ導波路格子 AWG2の入力ポート r〜: r、 r〜: r、 r〜: r、 r 〜r 、r 〜r 、r 〜r と、相互に交差した状態で接続している。第 2アレイ導波路格
13 20 17 24 21
子 AWG2の入力ポートにおいて使用されていないものは存在せず、出力ポート s〜
1 s 、s 、s 、s 、s 、s 、s 、s 、s 〜s は使用されていない。
5 7 9 11 13 15 17 19 21 24
[0155] 図 18は、上記 2つの波長分割多重光 WDMAおよび波長分割多重光 WDMeが入 力された場合の分波機能を示している。第 1の波長分割多重光 WDMA (波長チヤネ ル λ 八乃至え および第 3の波長分割多重光 WDMC (波長チャネルえ c〜え
17 32 17 32 c)が第 1アレイ導波路格子 AWG1の入力ポート pおよび p にそれぞれ入力されると
9 17
、第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2を通過させられ ることにより、たとえば図 2の (d)および (e)に示すように、第 2アレイ導波路格子 AWG 2の出力ポート(s 、s 、s 、s )からは、入力ポート p に入力された波長分割多重光
6 8 10 12 1
WDMAに それぞれ含まれ且つ波長軸上で 100GHz毎に隣接せず不連続な 4つ の波長チャネルをそれぞれ含む 4つの波長群 WB力 それぞれ出力されるとともに、 出力ポート(s 、s 、s 、s )からは、入力ポート p に入力された波長分割多重光 W
14 16 18 20 9
DMC毎にそれぞれ含まれ且つ波長軸上で 100GHz毎に隣接せず不連続な波長チ ャネルをそれぞれ含む 4つの波長群 WB力 それぞれ出力される。
[0156] 本実施例の波長群光合波分波器 10では、使用する第 2アレイ導波路格子 AWG2 の出力ポートを隣接させることで、使用する第 2アレイ導波路格子 AWG2の出力ポー トを隣接させず連続しないようにされている。このような入出力特性は、光接続路 12 によって相互に接続される第 1アレイ導波路格子 AWG1の出力ポートの番号と第 2ァ レイ導波路格子 AWG2の入力ポートの番号との差が連続しない飛び飛びの値をす ること、および、使用する第 1アレイ導波路格子 AWG1の入力ポートを適切に選択す ることにより得られる。従って、それらの条件を満足する範囲で、光接続路 12によって 相互に接続されるポートや、波長分割多重光 WDMAおよび WDMeが入力されるポ ート等の選択は適宜変更可能である。本実施例の波長群光合波分波器 10によれば 、前述の実施例と同様の効果が得られるのに加えて、第 2アレイ導波路格子 AWG2 の出力ポートが隣接しな!、ようにされて!、ることからその出力ポートに接続される出力 導波路の間隔を広くすることができる利点がある。この利点により、第 2アレイ導波路 格子 AWG2からの出力導波路の構造を改良して、たとえば導波路幅を広くして透過 帯域を拡大できたり、或いは導波路の形状をパラボラ型にして透過スペクトルを平坦 化できたりする等の効果が得られる。
実施例 13
[0157] 図 19は、図 10および図 11の実施例に 8個の光サーキユレータ 60をカ卩えた形式の 波長群光合波分波器 10を示している。光サーキユレータ 60は、複数のポートたとえ ば第 1ポート 60a、第 2ポート 60b、第 3ポート 60cを備え、いずれかのポートから入力 された光は矢印に示す一回転方向側に隣接したポートから出力させる特性を備えた ものである。この光サーキユレータ 60は、図 20に示すように第 1アレイ導波路格子 A WG1の人力ポー卜 p 、p 、p 、p に設けられるととち〖こ、図 21〖こ示すよう〖こ第 2ァレ
1 2 9 10
ィ導波路格子 AWG2の出力ポート s 、s 、s 、s に設けられている。このため、第 2
3 4 11 12
アレイ導波路格子 AWG2の出力ポート s 、s 、s 、s に波長群分波出力が出ないよ
3 4 11 12
うに、入力される波長分割多重光 WDMA〜WDMH力 波長チャネルえ 、え 、 λ
4 8 12
、 λ を除く必要がなぐ本実施例の波長分割多重光 WDMA〜WDMHは 16個
16
の波長チャネルえ 1〜え 16を有するものである。
[0158] 本実施例の波長群光合波分波器 10によれば、図 10および図 11の実施例と同様 に、双方向の波長群光分波器および波長群光合波器として機能するとともに、無駄 なポートがなぐ波長チャネルえ 、え 、 λ 、え を除く必要がないので、一層高
4 8 12 16
い利用効率が高められる。
[0159] また、光サーキユレータ 60は、第 1アレイ導波路格子 AWG1、第 2アレイ導波路格 子 AWG2、それらを接続する光接続路 12と共に、たとえば石英若しくはシリコン製の 共通の基板 14上においてたとえば石英系の材料でクラッドおよびコアを堆積して所 定パターンの導波路を形成した石英系プレーナ光波回路 (PLC)により一体的なモノ リシック構造とすることができるので、波長群光合波分波器 10がー層小型化できる。 実施例 14
[0160] 以下の図 23乃至図 30において、前述の実施例のいずれかの波長群光合波分波 器 10を備えることにより、入力された波長分割多重光 WDMを波長群毎に分離した 後、所望の波長群の組から構成される波長多重光を任意に組立てて所望の方向へ 送信する所謂ルーティングを行う波長群選択スィッチ 60を説明する。この波長群選 択スィッチは、アレイ導波路格子 AWG1、 AWG2の持つ、入力ポートが 1つずれるこ とにより分岐された波長の出力ポートが 1つづつずれる特性を利用すること、そのァレ ィ導波路格子 AWG1および AWG2を 2度通過させること、および、さらに通過をさせ る前に、再度の 2度通過のために入力するポートを光スィッチを用いて選択すること の、 3要素により、上記アレイ導波路格子 AWG1、 AWG2の入力側ポート或いは出 力側ポートから、自由な組み合わせで多重した所望の波長群を出力することを特徴 とする。このような図 23乃至図 30の波長群選択スィッチ 60によれば、機械的な可動 部分がないので、複雑な調整が不要となって安定した波長群選択作動が得られると ともに、構造が単純で極めて小さな形状とすることができる。
[0161] 図 23は、 32本(32波長パス)の光接続路 12で 8本単位で図 7のように接続された 第 1アレイ導波路格子 AWG1および第 2アレイ導波路格子 AWG2が設けられ、第 1 アレイ導波路格子 AWG1或いは第 2アレイ導波路格子 AWG2が 4波長パス毎に束 ねた 8つの波長群 WB 1乃至 WB8に分波する場合に、 2個の 1 X 3SW型 (1入力 3出 力)の光スィッチ 62a、 62bの操作により、光スィッチ 62a、 62bに入力される第 2ァレ ィ導波路格子 AWG2から出力される各々の波長群を任意の組み合わせで 3つの出 力ポートから出力できる、 1本の入力ファイバ F および 3本の出力ファイバ F に接
IN OUT
続された 1入力 3出力機能を有するように構成された合流型の波長群選択スィッチ 6 0を説明する概念図である。図 23では、 1 X 3SW型(1入力 3出力)の光スィッチ 62a 、 62bは 2個しか接続していないが、 8つの波長群 WB1乃至 WB8が出力される 8つ の第 2アレイ導波路格子 AWG2のポートに各々接続することができる。なお、上記 32 波長パスの中で、 8波長パス毎に束ねた 4つの波長群 WB1乃至 WB4に合分波する 場合は、 1入力 7出力の合流型波長群選択スィッチ 60を構成することができる。また 、双方向のファイバを用いれば、出力ファイバの数はさらに増加する。 32波長パスの 中で、 4波長パス毎に束ねた 7つの波長群 WB1乃至 WB7に合分波する場合は、 1 入力 7出力の合流型波長群選択スィッチ 60または 1入力 3出力の 2組の合流型波長 群選択スィッチ 60を構成することができる。
[0162] 上記 1 X 3SW型(1入力 3出力)の光スィッチ 62a、 62bは、たとえば図 24に示すよ うに、共通の基板 14内において、 3個の I X 2SW型(1入力 2出力)の基本光スィッチ 64力 1個の基本光スィッチ 64の出力側に 2個の基本光スィッチ 64が並列するよう に接続されることにより、 1入力 3出力(1 X 3SW)または 1入力 4出力(1 X 4SW)の光 スィッチ 62が構成される。また、 1個の基本光スィッチ 64の出力側に 2個の基本光ス イッチ 64が並列するように接続された 3個の基本光スィッチ 64の出力側に、基本光ス イッチ 64をさらに 1個ずっ並歹 IJ接続させることにより、 1 X 5SW、 1 X 6SW、 、 1 X 7S W、 1 X 8SWが順次構成され得る。
[0163] この基本光スィッチ 64は、図 25に示すように、第 1ポート 64 から第 3ポート 64 に
pi p3 至る第 1アーム導波路 66と、第 2ポート 64 から第 4ポート 64 に至る第 2導波路 68と
p2 p4
、それら第 1導波路 66および第 2アーム導波路 68が相互に接近させられることにより 構成された 1対の 3dB方向性結合器 70および 72と、それら 1対の 3dB方向性結合器 70および 72の間において第 1アーム導波路 66および第 2アーム導波路 68上に設け られた薄膜ヒータ 74および 76とを備えている。基本光スィッチ 64では、上記第 1ァー ム導波路 66および第 2アーム導波路 68によってマツハツヱンダ干渉計が基本的に構 成されており、第 1アーム導波路 66および第 2アーム導波路 68の光路長差 A Lが零 であるときは、入力光は第 1ポート 64 から第 4ポート 64 へ、或いは第 2ポート 64 か
pi p4 p2 ら第 3ポート 64 へのクロス経路を経て出力されるが、光路長差 A Lが半波長であると
p3
きは入力光は第 1ポート 64 から第 3ポート 64 へ、或いは第 2ポート 64 から第 4ポ
pi p3 p2
ート 64 へのバー経路を経て出力される性質があるので、光路差変更器として機能 p4
する上記薄膜ヒータ 74および 76で発生させる熱による熱光学効果を用いて行路長 差 A Lを制御することにより、入力信号を第 3ポート 64 または第 4ポート 64 のいず
p3 p4 れカから出力されるように制御できるようになつている。すなわち、 1入力 2出力の光ス イッチ(1 X 2SW)が構成される。
[0164] 上記基本光スィッチ 64は、前記石英系 PLCと同様に構成される。すなわち、図 26 に示すように、 Si基板 78上に加水分解堆積法 (FHD)により石英ガラス微粒子を堆 積し、さらに電気炉中で過熱して焼結させることで数十 m程度の下部クラッド層 80 と 10 m程度のコア層 82とを形成し、フォトリソグラフィー技術および反応性イオンェ ツチング法を組合わせて用いることにより、第 1アーム導波路 66および第 2アーム導 波路 68を所定のパターンで形成し、その上に上部クラッド層 84を被覆した後、スパッ タリングおよびエッチング等を用いて、所定パターンの薄膜ヒータ 74および 76を第 1 アーム導波路 66および第 2アーム導波路 68の上に固着させる。
[0165] 上記基本光スィッチ 64から構成される光スィッチ 62a、 62bは、第 1アレイ導波路格 子 AWG1、第 2アレイ導波路格子 AWG2、それらを接続する光接続路 12と共に、た とえば石英若しくはシリコン製の共通の基板 14上にぉ 、て上記のように石英系プレ ーナ光波回路 (PLC)により一体的なモノリシック構造とされているので、波長群光選 択スィッチ 60がー層小型化される。
実施例 15
[0166] 図 27は、分散配置型の波長群が出力される形式の 1入力 X 3出力の実施例を具体 的に示している。図 27の波長群選択スィッチ 60は、図 8の実施例 4の波長群光合波 分波器 10に 4個の光スィッチ 62a、 62b、 62c、 62dをカ卩えることにより構成されてい る。この波長群選択スィッチ 60では、第 1アレイ導波路格子 AWG1の入力ポート p
5 に入力された第 1の波長分割多重光 WDMA (波長チャネル λ 八〜え 八)に含まれる
1 16
各波長チャネルのうち、第 2アレイ導波路格子 AWG2の出力ポート s力も出力される
2
波長群(λ λ λ λ 八)が光スィッチ 62aによって第 2アレイ導波路格子 A
1 5 9 13
WG2に再び入力されるポートが選択されて出力ポート s 、s 、s のうちのいずれか
1 9 10
へ入力させられ、第 2アレイ導波路格子 AWG2の出力ポート s力 出力される波長
4
群(λ A、 え A、 え 八、 え 八)が光スィッチ 62bによつ て第 2アレイ導波路格子 AW
2 6 10 14
G2に再び入力されるポートが選択されて出力ポート S 、S 、S のうちのいずれかへ
3 11 12
入力させられ、第 2アレイ導波路格子 AWG2の出力ポート s力 出力される波長群(
6
λ 八、 え A、 え 八、 え 八)が光スィッチ 62cによって第 2アレイ導波路格子 AWG2に
3 7 11 15
再び入力されるポートが選択されて出力ポート s 、s 、s のうちのいずれかへ入力さ
5 13 14
せられ、第 2アレイ導波路格子 AWG2の出力ポート s力 出力される波長群(λ Α
8 4 λ Α、 え 八、 え 八)が光スィッチ 62dによって第 2アレイ導 波路格子 AWG2に再び
8 12 16
入力されるポートが選択されて出力ポート s 、s 、s のうちのいずれかへ入力させら
7 15 16
れることにより、波長群 WB1 (A)、 WB2 (A)、 WB3 (A)、 WB4 (A)がそれぞれ第 1 アレイ導波路格子 AWG1の 3つの入力ポート p 、 p 、 p 力 任意の組み合わせで
6 13 14
出力される。これらの波長群 WBは、入力された第 1の波長分割多重光 WDMA (波 長チャネル λ 〜λ )に含まれ且つ波長軸上で 400GHz隔てた不連続の任意の
1 16
4つの波長チャネルをそれぞれ含む波長群である。
[0167] 本実施例 15の波長群選択スィッチ 60では、図 8の実施例 4の波長群光合波分波 器 10において、第 1の波長分割多重光 WDMA、第 2の波長分割多重光 WDMB、第 3の波長分割多重光 WDMe、第 4の波長分割多重光 WDMDが入力されていた入 力ポート p 、 p 、 p 、 p のうちの一部である入力ポート pが波長群光選択スィッチ入
5 6 13 14 5
力ポート (被選択波長群入力ポート)として用いられ、他の 1部である 3つの入力ポー ト p 、p 、p 力^つの選択波長群出力ポートとして用いられている。また、光スィッチ
6 13 14
62a, 62b、 62c、 62dは、上記図 8の実施例 4の波長群光合波分波器 10において、 波長群光選択スィッチ入力ポートとして用いられる入力ポート P
5に入力された第 1の 波長分割多重光 WDMAに含まれる波長(λ 八〜え 八)の光が出力される複数の出
1 16
力ポート S 、 S 、 S 、 S にそれぞれ設けられ、その出力ポート S 、 S 、 S 、 Sから出力
2 4 6 8 2 4 6 8 される波長群の各々の光を、前記他の 1部の入力ポート P 、p 、p
6 13 14に他の第 2の波 長分割多重光 WDMB、第 3の波長分割多重光 WDMe、第 4の波長分割多重光 WD MDが入力されたときにそれらの波長分割多重光に含まれる波長(λ Β〜え Β )、(
1 16
X c
1 〜え 16 c ) , ( λ
1 D〜え 16 D )の該波長群と同じ波長群が出力される複数の出力ポ ート(S 、 S 、 S )、(S 、 S 、 S )、(S 、 S 、 S )、(S 、 S 、 S )へ選択的に入力させる 1 9 10 3 11 12 5 13 14 7 15 16
実施例 16
[0168] 図 28は、連続配置型の波長群が出力される形式の 1入力 X 3出力の実施例を具体 的に示している。図 28の波長群選択スィッチ 60は、図 6の実施例 2の波長群光合波 分波器 10に 4個の 1 X 3SWの光スィッチ 62a、 62b、 62c、 62dをカロえることにより構 成されている。この波長群選択スィッチ 60では、第 1アレイ導波路格子 AWG1の入 力ポート p に入力された第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え 八)
1 1 16 に含まれる各波長チャネルのうち、第 2アレイ導波路格子 AWG2の出力ポート s力も
1 出力される波長チャネル(λ Α、 λ A、え A、え 八)のいずれかが光スィッチ 62aによ
1 2 3 4
つて選択されて出力ポート s 、s 、s のうちのいずれかへ入力させられ、第 2アレイ導
6 11 16
波路格子 AWG2の出力ポート s 力 出力される波長群(λ λ λ λ 八) が光スィッチ 62bによって第 2アレイ導波路格子 AWG2に再び入力されるポートが選 択されて出力ポート s 、s 、s のうちのいずれかへ入力させられ、第 2アレイ導波路
3 8 13
格子 AWG2の出力ポート s 力 出力される波長群(λ λ λ λ 八)が光
19 9 10 11 12 スィッチ 62c〖こ よって第 2アレイ導波路格子 AWG2に再び入力されるポートが選択 されて出力ポート s 、s 、s のうちのいずれかへ入力させられ、第 2アレイ導波路格
4 9 14
子 AWG2の出力ポート s 力 出力される波長群(λ 八、 え 八、 え 八、 え A)が光スィ
20 5 6 7 8
ツチ 62dによって第 2アレイ導波路格子 AWG2に再び入力されるポートが選択されて 出力ポート s 、s 、s のうちのいずれかへ入力させられることにより、波長群 WB1 (A
5 10 15
)、 WB2 (A)、 WB3 (A)がそれぞれ第 1アレイ導波路格子 AWG1の 3つの出力ポー ト p 、 p 、 p から任意の組み合わせで出力される。これらの波長群 WBは、入力され
2 9 13
た第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え A )に含まれ且つ波長軸
1 16
上で 100GHz隔てた連続する任意の 4つの波長チャネルをそれぞれ含む波長群で ある。
本実施例 16の波長群選択スィッチ 60では、図 6の実施例 2の波長群光合波分波 器 10において、第 1の波長分割多重光 WDMA、第 2の波長分割多重光 WDMB、第 3の波長分割多重光 WDMe、第 4の波長分割多重光 WDMDが入力されていた入 力ポート p 、 p 、 p 、 p のうちの一部である入力ポート pが波長群光選択スィッチ入
1 5 9 13 1
力ポートとして用いられ、他の 1部である 3つの入力ポート p 、p 、p 力^つの選択波
5 9 13
長群出力ポートとして用!/、られて!/、る。また、光スィッチ 62a、 62b、 62c、 62dは、上 記図 6の実施例 2の波長群光合波分波器 10において、波長群光選択スィッチ入力 ポートとして用いられる入力ポート p に入力された第 1の波長分割多重光 WDMA
1
含まれる波長(λ Α〜え 八)の光が出力される複数の出力ポート S 、S 、S 、 S に
1 16 1 18 19 20 それぞれ設けられ、その出力ポート s 、s 、s 、s 力 出力される波長群の各々の光
1 18 19 20
を、前記他の 1部の入力ポート p 、P 、P に他の第 2の波長分割多重光 WDMB、第
5 9 13
3の波長分割多重光 WDMe、第 4の波長分割多重光 WDMDが入力されたときにそ れらの波長分割多重光に含まれる波長(λ Β
1 〜え 16 、(え c
1 〜え 16 C ) , ( λ 1 D〜え1
' )の該波長群と同じ波長群が出力される複数の出力ポート (s 、s 、s )、(s 、s 、s
6 11 16 3 8
)、(s 、 s 、 s )、(s 、 s 、 s )へ選択的に入力させる。 実施例 17
[0170] 図 29は、分散配置型の波長群が出力される形式の 1入力 X 7出力の実施例を具体 的に示している。図 29の波長群選択スィッチ 60は、図 10および図 11の実施例 6の 波長群光合波分波器 10に 3個の I X 7SWの光スィッチ 62a、 62b、 62cを加えること により構成されている。この波長群選択スィッチ 60では、第 1アレイ導波路格子 AWG 1の入力ポート p に入力された第 1の波長分割多重光 WDMA (波長チャネルえ A
1 1
X A )に含まれる各波長チャネルのうち、第 2アレイ導波路格子 AWG2の出力ポート
16
s 力も出力される波長群(λ A、 え 八、 え 八、 え 八)が光スィッチ 62aによって第 2ァ
2 3 7 11 16
レイ導波路格子 AWG2または第 1アレイ導波路格子 AWG1に再び入力されるポート が選択されて第 2アレイ導波路格子 AWG2の出力ポート s 、 s 、 s、第 1アレイ導波
1 10 9
路格子 AWG1の入力ポート p 、 ρ 、 ρ 、 ρ のうちのいずれかへ入力させられ、第 2
8 7 16 15
アレイ導波路格子 AWG2の出力ポート s 力 出力される波長群(λ 八、え 八、え 八
14 1 5 9
、 λ A )が光スィッチ 62bによ つて第 2アレイ導波路格子 AWG2または第 1アレイ導
13
波路格子 AWG1に再び入力されるポートが選択されて第 2アレイ導波路格子 AWG 2の出力ポート s 、 s 、 s、第 1アレイ導波路格子 AWG1の入力ポート p 、 p 、 p 、 p
13 6 5 3 4 11 1 のうちのいずれかへ入力させられ、第 2アレイ導波路格子 AWG2の出力ポート s 力
2 16 ら出力される波長群(λ 八、え 八、え 八、え A )が光スィッチ 62Cによって第 2アレイ
2 6 10 14
導波路格子 AWG2または第 1アレイ導波路格子 AWG1に再び入力されるポートが 選択されて第 2アレイ導波路格子 AWG2の出力ポート s 、 s 、 s、第 1アレイ導波路
15 8 7
格子 AWG1の入力ポート p 、 ρ 、 ρ 、 ρ のうちのいずれかへ入力させられることによ
5 6 13 14
り、波長群 WB1 (A)、 WB2 (A)、 WB3 (A)、 WB4 (A)、 WB5 (A)、 WB6 (A)、 WB 7 (A)がそれぞれ第 1アレイ導波路格子 AWG1の 3つのポート ρ 、 ρ 、 ρ および第 2
2 9 10 アレイ導波路格子 AWG2の 4つの出力ポート s 、 s 、 s 、 s から任意の組み合わせ
3 4 11 12
で出力される。これらの波長群 WBは、入力された第 1の波長分割多重光 WDMA ( 波長チャネル λ 八〜え A )に含まれ且つ波長軸上で 400GHz隔てた不連続の任意
1 16
の 4つの波長チャネルをそれぞれ含む波長群である。
[0171] 本実施例 17の波長群選択スィッチ 60では、図 10および図 11の実施例 6の波長群 光合波分波器 10において、第 1の波長分割多重光 WDMA、第 2の波長分割多重光 WDMB、第 3の波長分割多重光 WDMe、第 4の波長分割多重光 WDMD、第 5の波 長分割多重光 WDME、第 6の波長分割多重光 WDMF、第 7の波長分割多重光 WD MG、第 8の波長分割多重光 WDMHが入力されていた入力ポート p 、p 、p 、p と、
1 2 9 10 逆方向に用いるときに第 5の波長分割 多重光 WDME、第 6の波長分割多重光 WD MF、第 7の波長分割多重光 WDMG、第 8の波長分割多重光 WDMHが入力される 入力ポート(出力ポート) s 、s 、s 、s のうちの一部である入力ポート pが波長群光
3 4 11 12 1
選択スィッチ入力ポートとして用いられ、他の 1部である 7つの入力ポート p 、p 、p
2 9 10
、 s 、 s 、 s 、 s 力^つの選択波長群出力ポートとして用いられている。また、 1 X 7S
3 4 11 12
Wの光スィッチ 62a、 62b、 62cは、上記図 10および図 11の実施例 6の波長群光合 波分波器 10において、波長群光選択スィッチ入力ポートとして用いられる入力ポート P に入力された第 1の波長分割多重光 WDMAに含まれる波長(λ 八〜え 八)の光
1 1 16 が出力される複数の出力ポート s 、s 、s にそれぞれ設けられ、その出力ポート s
2 14 16 2
、s 、s 力 出力される波長群の各々の光を、前記他の 1部の入力ポート p 、p 、p
14 16 2 9 10
、 s 、 s 、 s 、 s に他の第 2の波長分割多重光 WDMB、第 3の波長分割多重光 WD
3 4 11 12
MC、第 4の波長分割多重光 WDMD、第 5の波長分割多重光 WDME、第 6の波長 分割多重光 WDMF、第 7の波長分割多重光 WDMG、第 8の波長分割多重光 WDM Hが入力されたときにそれらの波長分割多重光に含まれる波長(λ Β
1 〜え 16 、(え 1
C〜え C ) , ( λ D〜え D )、(え E〜え 、(え F〜え F ) , ( λ G〜え 、(え H
16 1 16 1 16 1 16 1 16 1
〜え H )の該波長群と同じ波長群が出力される複数の出力ポート (s 、s 、s 、p 、p
16 1 10 9 8
、P 、P )、 (s 、s 、s 、p 、p 、p 、p )、 (s 、s 、s 、p 、p 、p 、p )へ選択的
7 16 15 13 6 5 3 4 11 12 15 8 7 5 6 13 14 に入力させる。
実施例 18
図 30は、分散配置型の波長群が出力される形式の 2つの 1入力 X 3出力の波長群 選択スィッチを同時に実現する場合の実施例を具体的に示している。図 30の波長群 選択スィッチ 60は、図 8の実施例 4の波長群光合波分波器 10に 6個の 1 X 3SWの光 スィッチ 62a、 62b、 62c、 62d、 62e、 62fをカロえることにより構成されて!ヽる。この波 長群選択スィッチ 60では、第 1アレイ導波路格子 AWG1の入力ポート p に入力され
5
た第 1の波長分割多重光 WDMA (波長チャネルえ 八〜え 八)に含まれる各波長チ ャネルのうち、第 2アレイ導波路格子 AWG2の出力ポート s力も出力される波長群(
2
λ 八、 え 、 え 、 え 八)が光スィッチ 62aによって第 2アレイ導波路格子 AWG2に
1 5 9 13
再び入力されるポートが選択されて出力ポート s 、s 、、sのうちのいずれかへ入力
1 10 9
させられ、第 2アレイ導波路格子 AWG2の出力ポート s力 出力される波長群(λ 八
4 2
、 え 八、 え 八、 え 八)が光スィッチ 62bによって第 2アレイ導波路格子 AWG2に再び
6 10 14
入力されるポートが選択されて出力ポート s 、s 、s のうちのいずれかへ入力させら
3 12 11
れ、第 2アレイ導波路格子 AWG2の出力ポート s力 出力される波長群(λ λ 八
6 3 7
、 え A、 え 八)が光スィッチ 62cによって第 2アレイ導波路格子 AWG2に再び入力さ
11 15
れるポートが選択されて出力ポート s 、s 、s のうちのいずれかへ入力させられること
5 14 13
により、波長群 WBl (A)、 WB2 (A)、 WB3 (A)がそれぞれ第 1アレイ導波路格子 A WG1の 3つの入力ポート p 、 p 、 p 力 任意の組み合わせで出力される。これら波
6 13 14
長群 WBは、入力された第 1の波長分割多重光 WDMA (波長チャネルえ Α〜λ 八)
1 16 に含まれ且つ波長軸上で 400GHz隔てた不連続の任意の 4つの波長チャネルをそ れぞれ含む波長群である。
[0173] さらに、第 1アレイ導波路格子 AWG1の入力ポート p力 出力される波長群(λ Α
4 3
、 え 八、 え 八、 え 八)が光スィッチ 62dによって第 1アレイ導波路格子 AWG1の入力
7 11 15
ポート p 、p 、p のいずれかに入力させられ、第 1アレイ導波路格子 AWG1の入力
3 12 11
ポート p力も出力される波長群(λ A、え 八、え 八、え 八)が光スィッチ 62eによって
8 1 5 9 13
第 1アレイ導波路格 子 AWG1の入力ポート p 、p 、p のいずれかに入力させられ
7 16 15
、第 1アレイ導波路格子 AWG1の入力ポート p 力 出力される波長群(λ λ
10 2 6 λ A、 え 八)が光スィッチ 62fによって第 1アレイ導波路格子 AWG 1の入力ポート p
10 14
、p 、p のいずれかに入力させられることにより、波長群 WB1 (E)、 WB2 (E)、 WB
9 2 1
3 (E)がそれぞれ第 2アレイ導波路格子 AWG2の 3つの出力ポート s 、s 、s 力 任
8 15 16 意の組み合わせで出力される。これらの波長群 WBは、入力された第 1の波長分割 多重光 WDME (波長チャネル λ Ε〜え Ε )に含まれ且つ波長軸上で 400GHz隔て
1 16
た不連続の任意の 4つの波長チャネルをそれぞれ含む波長群である。
[0174] 本実施例 18の波長群選択スィッチ 60では、図 8の実施例 4の波長群光合波分波 器 10において、第 1の波長分割多重光 WDMA、第 2の波長分割多重光 WDMB、第 3の波長分割多重光 WDMe、第 4の波長分割多重光 WDMDが入力されていた入 力ポート p 、p 、p 、p と、逆方向に用いるときに第 5の波長分割多重光 WDME、第
5 6 13 14
6の波長分割多重光 WDMF、第 7の波長分割多重光 WDMG、第 8の波長分割多重 光 WDMHが入力される入力ポート(出力ポート) s 、s 、s 、s のうちの一部である入
7 8 15 16
力ポート p 、s力^つの波長群光選択スィッチ入力ポートとして用いられ、他の 1部で
5 7
ある 6つの入力ポート p 、 p 、 p 、 s 、 s 、 s 力 つの選択波長群出力ポートとして用
6 13 14 8 15 16
いられている。光スィッチ 62a、 62b、 62cは、上記図 8の実施例 4の波長群光合波分 波器 10において、波長群光選択スィッチ入力ポートとして用いられる入力ポート p に
5 入力された第 1の波長分割多重光 WDMAに含まれる波長(λ 八〜え 八)の光が出
1 16
力される複数の出力ポート s 、 S 、 S に それぞれ設けられ、その出力ポート S 、 S 、
2 4 6 2 4 s力 出力される波長群の各々の光を、前記他の 1部の入力ポート p 、p 、p に他
6 6 13 14 の第 2の波長分割多重光 WDMB、第 3の波長分割多重光 WDMe、第 4の波長分割 多重光 WDMDが入力されたときにそれらの波長分割多重光に含まれる波長( λ Β
1
〜え Β ) C
16 、(え 1 〜え 16 C ) , ( λ の
1 D〜え 16 D ) 波長群と同じ波長群が出力される複数 の出力ポート(S 、 S 、 S )、(S 、 S 、 S )、(S 、 S 、 S )へ選択的に入力させる。また
1 9 10 3 11 12 5 13 14
、光スィッチ 62d、 62e、 62fは、上記図 8の実施例 4の波長群光合波分波器 10にお いて、波長群光選択スィッチ入力ポートとして用いられる入力ポート p
7に入力された 第 5の波長分割多重光 WDMEに含まれる波長(λ Ε〜え Ε )の光が出力される複
1 16
数の出力ポート ρ 、ρ 、ρ
4 8 10にそれぞれ設けられ、その出力ポート ρ 、ρ 、ρ
4 8 10から出力 される波長群の各々の光を、前記他の 1部の入力ポート s 、s 、s に他の第 6の波長
8 15 16
分割多重光 WDMF、第 7の波長分割多重光 WDMG、第 8の波長分割多重光 WDM Hが入力されたときにそれらの波長分割多重光に含まれる波長(λ
1 F〜え 16 Ρ )、(λ G
1
〜λ
16 G )、(え 1 H〜え 16 H )の波長群と同じ波長群が出力される複数の出力ポート (P
3
、p 、p )、(p 、p 、p )、(p 、p 、p )へ選択的に入力させる。
11 12 7 15 16 9 1 2
実施例 19
前述の実施例において、第 1アレイ導波路格子 AWG1および第 2アレイ導波路格 子 AWG2との間において、光ファイバ或いはクロスオーバを有する三次元光導波路 を用いて構成された光接続路 12には、たとえば図 31に示す複数個の光スィッチ 90 がそれぞれ設けられてもよい。図 32は、図 6の波長群光合波分波器に光スィッチ 90 が適用された実施例を示している。この光スィッチ 90は、 2 X 2SWの光スィッチであ り、第 1アレイ導波路格子 AWG1の出力ポート q〜q と第 2アレイ導波路格子 AWG
1 16
2の入力ポート r〜r、r〜r、r 〜r 、r 〜r との間においてそれぞれ設けられて
1 4 6 9 11 14 16 19
いるが、必要に応じて光接続路 12の一部に設けられていてもよい。光スィッチ 90は、 図 31に示すように、入力ポート 92および出力ポート 94と、出力ポート 94から出力さ せるための光信号 (add signal)を受けるアドポート 96と、入力ポート 92に入力された光 信号をドロップ(分岐)させるためのドロップポート 98とを備え、たとえば熱光学効果を 利用して、スルー状態では、 1点鎖線に示すように入力ポート 92に受けた光信号をそ のまま出力ポート 64へ通過させる力 アド'ドロップ状態では、破線に示すように、入 力ポート 92に受けた光信号をドロップポート 98からドロップし、同時に、アドポート 96 に受けた、そのドロップした光信号と同じ波長或いは異なる波長の光信号を、入力ポ ート 92に入力された光信号に代えて出力ポート 94から出力させる。この光スィッチ 9 0は、好適には、石英系平面光波回路 PLCにおいて、第 1アレイ導波路格子 AWG1 および第 2アレイ導波路格子 AWG2と共に集積化されることが可能である。
[0176] 本実施例によれば、波長分割多重光 WDMが第 1アレイ導波路格子 AWG1に入 力されたときのその出力ポート q〜q
1 16力 出力される波長群の分岐或いは特定の波 長単位の分岐や、分岐された光信号と同じ波長或いは異なる波長の光信号の挿入 を波長群単位或いは波長単位で同時に行うことが可能となる。
[0177] 以上、本発明の一実施例を図面に基づいて説明したが、本発明はその他の態様に おいても適用される。
[0178] たとえば、前述の実施例において、たとえば波長分割多重光 WDM乃至 WDM
1 i にそれぞれ含まれる、複数の波長チャネルえ 乃至え のうちの 1つの波長チャネル
1 k
は 1つの周波数力 構成されていた力 1つの波長チャネル内をさらに細力べ複数に 分割した 1群のサブチャネルを設け、 1つの波長チャネルとして 1群のサブチャネルを 一括してルーティングするようにしてもよ!、。
[0179] その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲で種々変更を 加え得るものである。

Claims

請求の範囲
[1] 複数の波長チャネルをそれぞれ含む複数の波長群が合波された波長分割多重光 から予め設定された複数の波長群に分離し、分離した複数の波長群を複数の出力 側のポートからそれぞれ出力する波長群光分波器において、
前記波長分割多重光を、前記波長チャネルに対応した分解能で分波および合波 可能であり且つ入力側のポートが 1つずれることにより出力側のポートが順次 1つず つずれる特性と、入力側の一つのポートに接続された 1本のファイバに多重されてい る複数の波長チャネルの信号は出力ポート毎に重なることなく出力される特性とを有 するアレイ導波路格子を通過させ、次いで、該通過光を再び、前記波長チャネルに 対応した分解能で分波および合波可能であり且つ入力側のポートが 1つずれること により出力側のポートが順次 1つずつずれる特性を有するアレイ導波路格子を通過さ せ、その 2回の通過により、該波長分割多重光に含まれる複数の波長チャネルの一 部であって互いに異なる波長チャネルをそれぞれ含む複数の波長群を、 2回目に通 過させる単一のアレイ導波路格子の複数の出力ポートから一括して波長群毎にそれ ぞれ出力することを特徴とする波長群光分波器。
[2] 複数の波長チャネルをそれぞれ含む複数の波長群が合波された波長分割多重光 から予め設定された複数の波長群に分離し、分離した複数の波長群を複数の出力 側のポートからそれぞれ出力する波長群光分波器において、
前記波長分割多重光を、前記波長チャネルに対応した分解能で分波および合波 可能であり且つ入力側のポートが 1つずれることにより出力側のポートが順次 1つず つずれる特性と、入力側のポートの一つに接続された 1本のファイバに多重されてい る複数の波長チャネルの信号は、出力側のポート毎に波長周回性で決まる周期的な 間隔の複数の波長チャネルが同一の出力側のポートから同時に出力されることがな い特性とを有するアレイ導波路格子を通過させ、次いで該通過光を再び、前記波長 チャネルに対応した分解能で分波および合波可能であり且つ入力側のポートが 1つ ずれることにより出力側のポートが順次 1つずつずれる特性を有するアレイ導波路格 子を通過させ、その 2回通過により、該波長分割多重光に含まれる複数の波長チヤ ネルの一部であって互いに異なる波長チャネルをそれぞれ含む複数の波長群を、 2 回目に通過させる単一のアレイ導波路格子の複数の出力側のポートから一括して波 長群毎にそれぞれ出力することを特徴とする波長群光分波器。
[3] 複数の入力ポートにそれぞれ入力された互いに異なる複数の波長分割多重光に それぞれ含まれる波長群に属する波長チャネルを分光し、分光された波長チャネル を予め設定された波長群に合波し、合波した波長群を該波長群毎に異なる出力ポー トから出力することを特徴とする請求項 1または 2の波長群光分波器。
[4] 前記波長分割多重光が入力される第 1アレイ導波路格子と、前記波長群毎に異な る出力ポートから出力させる第 2アレイ導波路格子と、該第 1アレイ導波路格子の出 力ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続する光接続路とを含 むことを特徴とする請求項 1乃至 3のいずれかの波長群光分波器。
[5] 前記光接続路は、複数本の導波路が一平面上において交差なく設けられたもので ある請求項 4の波長群光分波器。
[6] 前記第 1アレイ導波路格子および第 2アレイ導波路格子は、前記波長分割多重光 に含まれる波長チャネル数と同じ数の入力ポートおよび出力ポートをそれぞれ備えた ものである請求項 4または 5の波長群光分波器。
[7] 前記第 2アレイ導波路格子の出力ポートのうち一部である 1または 2以上のポートを 入力ポートとし、該入力ポートから逆の伝播方向で入力された 1または 2以上の波長 分割多重光にそれぞれ含まれる波長群に属する波長チャネルを予め設定された波 長群に分波し、分波された波長群を波長群毎に該第 1アレイ導波路格子の入力ポー トのうち前記波長分割多重光が入力されていないポートから出力することにより、双方 向で波長分割多重光力 それに含まれる複数の波長チャネルの一部であって互い に異なる波長チャネルをそれぞれ含む複数の波長群へ合波して出力するものである 請求項 4または 5の波長群光分波器。
[8] 前記第 1アレイ導波路格子および第 2アレイ導波路格子の少なくとも一方は、複数 の入力導波路の 1つに入力した波長分割多重光の出力が、入力位置が 1つずつず れることによって出力位置が周回的に 1つずつずれる波長周回特性を備えたもので ある請求項 4乃至 7の 、ずれかの波長群光分波器。
[9] 前記波長分割多重光が一部に入力される複数の入力ポートと、波長分割多重光に 含まれる複数の波長チャネルの一部であって互いに異なる波長チャネルをそれぞれ 含む複数の波長群が一部から出力される複数の出力ポートを有する単一のアレイ導 波路格子と、
前記複数の出力ポートの他部と前記複数の入力ポートの他部とを接続し、前記一 部に入力された前記波長分割多重光が合分波されて前記複数の出力ポートの他部 から出力される複数の光信号を、前記入力ポートの他部へ入力させる折返接続路と を、含み、
前記入力ポートの一部に入力された 1又は 2以上の互いに異なる複数の波長分割 多重光を、該波長分割多重光に含まれる複数の波長群に分波し、該波長分割多重 光に含まれる複数の波長チャネルの一部であって互いに異なる波長チャネルをそれ ぞれ含む複数の波長群をそれぞれ異なる出力ポートから出力させるものであることを 特徴とする請求項 1乃至 3の 、ずれかの波長群光分波器。
[10] 前記出力ポートからそれぞれ出力される波長群は、波長軸上で連続している波長 チャネル力 構成されるものである請求項 1乃至 9のいずれかの波長群光分波器。
[11] 前記出力ポートからそれぞれ出力される波長群は、波長軸上で不連続の波長チヤ ネル力 構成されるものである請求項 1乃至 9のいずれかの波長群光分波器。
[12] 前記第 1アレイ導波路格子、前記第 2アレイ導波路格子、該第 1アレイ導波路格子 の出力ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続する光接続路 は、共通の基板上に一体に設けられたことを特徴とする請求項 4または 5の波長群光 分波器。
[13] 前記第 1アレイ導波路格子および第 2アレイ導波路格子は、
相互に光路長差を有する複数本のアレイ導波路と、
前記入力ポートに入力された波長分割多重光を分配して該複数本のアレイ導波路 の入力側端部にそれぞれ入力させる入力レンズ導波路と、
前記複数本のアレイ導波路の出力側端部力 出力された波長分割多重光に含ま れる複数の波長チャネルを前記複数本のアレイ導波路の光路長差に基づいて分離 し、前記出力ポートのうちの予め設定された出力ポートへそれぞれ分配する出力レン ズ導波路と を、それぞれ含むことを特徴とする請求項 12の波長群光分波器。
[14] 前記第 1アレイ導波路格子の出力ポートと前記第 2アレイ導波路格子の入力ポート とを相互に接続する光接続路の少なくとも 1つに光スィッチを挿入し、該第 1アレイ導 波路格子の出力ポートから出力される光を該光スィッチにおいて分岐し、該分岐した 光信号と同じ波長或いは異なる波長の他の光信号を該光スィッチ力 挿入することを 特徴とする請求項 4乃至 8、 10乃至 13のいずれかの波長群光分波器。
[15] 複数の入力側のポートから入力された、複数の波長チャネルをそれぞれ含む複数 の波長群を合波し、合波した波長分割多重光を出力 ポートから出力する波長群 光合波器であって、
前記複数の波長群を、前記波長チャネルに対応した分解能で分波および合波可 能であり且つ入力側のポートが 1つずれることにより出力側のポートが順次 1つずつ ずれる特性と、入力側のポートの一つに接続された 1本のファイバに多重されている 複数の波長チャネルの信号は出力側のポート毎に重なることなく出力される特性とを 有するアレイ導波路格子を通過させ、次いで、該通過光を再び、前記波長チャネル に対応した分解能で分波および合波可能であり且つ入力側のポートが 1つずれるこ とにより出力側のポートが順次 1つずつずれる特性を有するアレイ導波路格子を通過 させ、その 2回の通過により、前記複数の波長群に含まれる複数の波長チャネルをそ れぞれ含む複数の波長群が合波された波長分割多重光を、 2回目に通過させる単 一のアレイ導波路格子の複数の出力側のポートから一括してそれぞれ出力すること を特徴とする波長群光合波器。
[16] 複数の入力側のポートから入力された、複数の波長チャネルをそれぞれ含む複数 の波長群を合波し、合波した波長分割多重光を出力側のポートから出力する波長群 光合波器であって、
前記複数の波長群を、前記波長チャネルに対応した分解能で分波および合波可 能であり且つ入力側のポートが 1つずれることにより出力側のポートが順次 1つずつ ずれる特性と、入力側のポートの一つに接続された 1本のファイバに多重されている 複数の波長チャネルの信号は、出力側のポート毎に波長周回性で決まる周期的な 間隔の複数の波長チャネルが同一の出力側のポートから同時に出力されることがな い特性とを有するアレイ導波路格子を通過させ、次いで該通過光を再び、前記波長 チャネルに対応した分解能で分波および合波可能であり且つ入力側のポートが 1つ ずれることにより出力側のポートが順次 1つずつずれる特性を有するアレイ導波路格 子を通過させ、その 2回通過により、前記複数の波長群に含まれる複数の波長チヤネ ルをそれぞれ含む複数の波長群が合波された波長分割多重光を、 2回目に通過さ せる単一のアレイ導波路格子の複数の出力側のポートから一括してそれぞれ出力す ることを特徴とする波長群光合波器。
[17] 複数の入力ポートにそれぞれ入力された波長群に属する波長チャネルを合波し、 予め設定された複数の波長群を含む複数の波長分割多重光を、複数の出力ポート 力 それぞれ出力することを特徴とする請求項 15または 16の波長群光合波器。
[18] 前記複数の波長群が入力される第 1アレイ導波路格子と、前記波長分割多重光を 出力ポートから出力させる第 2アレイ導波路格子と、該第 1アレイ導波路格子の出力 ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続する光接続路とを、含 むことを特徴とする請求項 15乃至 17の 、ずれかの波長群光合波器。
[19] 前記光接続路は、複数本の導波路が一平面上において交差なく設けられたもので ある請求項 18の波長群光合波器。
[20] 前記第 1アレイ導波路格子および第 2アレイ導波路格子は、前記波長分割多重光 に含まれる波長チャネル数と同じ数の入力ポートおよび出力ポートをそれぞれ備えた ものである請求項 18または 19の波長群光合波器。
[21] 前記第 1アレイ導波路格子および第 2アレイ導波路格子の少なくとも一方は、複数 の入力導波路の 1つに入力した波長分割多重光の出力が、入力位置が 1つずつず れることによって出力位置が周回的に 1つずつずれる波長周回特性を備えたもので ある請求項 18乃至 20の 、ずれかの波長群光合波器。
[22] 前記複数の波長チャネルの一部の波長チャネルをそれぞれ含む複数の波長群が 波長群毎に一部に入力される複数の入力ポートと、前記波長分割多重光が一部から 出力される複数の出力ポートを有する単一のアレイ導波路格子と、
前記複数の出力ポートの他部と前記複数の入力ポートの他部とを接続し、前記一 部に入力された前記複数の波長群に含まれる波長チャネルが合分波されて前記複 数の出力ポートの他部から出力される複数の光信号を、前記入力ポートの他部へ入 力させる折返接続路とを、含み、
前記入力ポートの一部に入力された前記互いに異なる波長チャネルをそれぞれ含 む複数の波長群を、互いに異なる複数の波長群を有する複数の波長分割多重光に 合波し、該複数の波長分割多重光を出力させるものであることを特徴とする請求項 1 5または 16の波長群光合波器。
[23] 前記入力ポートからそれぞれ入力される波長群は、波長軸上で連続している波長 チャネル力も構成されるものである請求項 15乃至 22のいずれかの波長群光合波器
[24] 前記入力ポートからそれぞれ入力される波長群は、波長軸上で不連続の波長チヤ ネル力も構成されるものである請求項 15乃至 22いずれかの波長群光合波器。
[25] 前記複数の波長群が入力される第 1アレイ導波路格子と、前記波長分割多重光を 出力ポートから出力させる第 2アレイ導波路格子と、該第 1アレイ導波路格子の出力 ポートと該第 2アレイ導波路格子の入力ポートとを相互に接続する光接続路とは、共 通の基板上に一体に設けられたことを特徴とする請求項 18または 19の波長群光合 波器。
[26] 前記第 1アレイ導波路格子および第 2アレイ導波路格子は、
相互に光路長差を有する複数本のアレイ導波路と、
前記入力ポートに入力された波長分割多重光を分配して該複数本のアレイ導波路 の入力側端部にそれぞれ入力させる入力レンズ導波路と、
前記複数本のアレイ導波路の出力側端部力 出力された波長分割多重光に含ま れる複数の波長チャネルを前記複数本のアレイ導波路の光路長差に基づいて分離 し、前記出力ポートのうちの予め設定された出力ポートへそれぞれ分配する出力レン ズ導波路とを含むことを特徴とする請求項 25の波長群光合波器。
[27] 前記第 1アレイ導波路格子の出力ポートと前記第 2アレイ導波路格子の入力ポート とを相互に接続する光接続路の少なくとも 1つに光スィッチを挿入し、該第 1アレイ導 波路格子の出力ポートから出力される光を該光スィッチにおいて分岐し、該分岐した 光信号と同じ波長或いは異なる波長の他の光信号を該光スィッチ力 挿入することを 特徴とする請求項 15乃至 21、 23乃至 26の 、ずれかの波長群光分波器。
[28] 請求項 1乃至 14のいずれかの波長群光分波器と、
該波長群光分波器力 出力される 1乃至複数の波長群の各々に対して前記波長 群光分波器の入力ポートまたは出力ポートのいずれかへ入力させる光スィッチとを、 含み、
該 1乃至複数の波長群の任意の組合わせを 1乃至複数の出力ポートから出力させ るようにしたことを特徴とする波長群光選択スィッチ。
[29] 前記波長群光分波器において複数の波長分割多重光をそれぞれ入力させるため に用いられる複数の入力ポートのうちの 1部を波長群光選択スィッチ入力ポートとし、 他の 1部を、該 1部の入力ポートに入力された波長分割多重光に含まれる波長群か ら選択した任意の組み合わせの波長群を出力する選択波長群出力ポートとして用い ることを特徴とする請求項 28の波長群光選択スィッチ。
[30] 前記光スィッチは、前記波長群光分波器において、前記 1部の入力ポートに入力さ れた波長分割多重光に含まれる波長群の光が出力される複数の出力ポートにそれ ぞれ設けられ、該出力ポートから出力される波長群の光を、前記他の 1部に他の波長 分割多重光が入力されたときに該他の波長分割多重光に含まれる波長群の光が出 力される複数の出力ポートへ選択的に入力させるものである請求項 29の波長群光 選択スィッチ。
[31] 前記光スィッチは、前記波長群光分波器において、前記 1部の入力ポートに入力さ れた波長分割多重光に含まれる波長群の光が出力される複数の出力ポートにそれ ぞれ設けられ、該出力ポートから出力される波長群の光を、前記他の 1部に他の波長 分割多重光が入力されたときに該他の波長分割多重光に含まれる同じ波長群の光 が出力される複数の出力ポートへ選択的に入力させるものである請求項 29の波長群 光選択スィッチ。
[32] 前記光スィッチは、前記波長群光分波器を構成する前記第 1アレイ導波路格子、 前記第 2アレイ導波路格子、および前記光接続路が設けられて!/、る前記共通の基板 上に一体に設けられていることを特徴とする請求項 28乃至 31のいずれかの波長群 光選択スィッチ。 前記光スィッチは、一方に光が入力される一対のアーム導波路と、該一対のアーム 導波路の間に局部的に形成された方向性結合器と、該一対のアーム導波路の光路 差を変化させる光路差変更器とを備え、該光路差変更器により光路差が変化させら れたことに関連して、前記一対のアーム導波路の一方に入力された光が該一対のァ ーム導波路の他方力 選択的に出力する基本光スィッチを、含むものである請求項
28乃至 32の 、ずれかの波長群光選択スィッチ。
PCT/JP2007/058447 2006-04-20 2007-04-18 波長群光分波器、波長群光合波器、および波長群光選択スイッチ WO2007123157A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008512137A JP4822141B2 (ja) 2006-04-20 2007-04-18 波長群光分波器、波長群光合波器、および波長群光選択スイッチ
US12/226,453 US8244133B2 (en) 2006-04-20 2007-04-18 Optical waveband demultiplexer, optical waveband multiplexer, and optical waveband selective switch

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-117283 2006-04-20
JP2006117283 2006-04-20
JP2006-239633 2006-09-04
JP2006239633 2006-09-04

Publications (1)

Publication Number Publication Date
WO2007123157A1 true WO2007123157A1 (ja) 2007-11-01

Family

ID=38625058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058447 WO2007123157A1 (ja) 2006-04-20 2007-04-18 波長群光分波器、波長群光合波器、および波長群光選択スイッチ

Country Status (3)

Country Link
US (1) US8244133B2 (ja)
JP (1) JP4822141B2 (ja)
WO (1) WO2007123157A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066150A1 (fr) * 2006-11-30 2008-06-05 Nec Corporation Système de routage de longueur d'onde
JP2009229718A (ja) * 2008-03-21 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> 光波長群合分波回路
JP2010085424A (ja) * 2008-09-29 2010-04-15 Nippon Telegr & Teleph Corp <Ntt> 光波長合分波装置
JP2010219827A (ja) * 2009-03-16 2010-09-30 Nagoya Univ 光パスネットワークの階層化光パスクロスコネクト装置
JP2013097108A (ja) * 2011-10-31 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> 波長選択スイッチ
JP2013097107A (ja) * 2011-10-31 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> 波長選択スイッチ
JP2013182033A (ja) * 2012-02-29 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> 多波長光源装置
JP2014010437A (ja) * 2012-07-03 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> 光可変フィルタおよび光可変フィルタを用いた光信号終端装置
JP2015060125A (ja) * 2013-09-19 2015-03-30 日本電信電話株式会社 光可変フィルタ
WO2016045087A1 (zh) * 2014-09-26 2016-03-31 华为技术有限公司 阵列波导光栅及具有该阵列波导光栅的可调谐激光器
WO2023248425A1 (ja) * 2022-06-23 2023-12-28 日本電信電話株式会社 光信号処理装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130114957A1 (en) * 2011-11-03 2013-05-09 Jonathan D. HOMA Dual path wavelength selective switch
US9374185B2 (en) * 2012-01-09 2016-06-21 Alcatel Lucent Dual-polarization multi-wavelength coherent receiver frontend
KR101747453B1 (ko) * 2012-02-29 2017-06-16 한국전자통신연구원 파장 다중화 및 역다중화 기능이 통합된 배열 도파로 격자 라우터 장치
CN102742198B (zh) * 2012-04-06 2016-05-25 华为技术有限公司 波分复用器及无源光网络系统
CN114236696A (zh) * 2021-12-22 2022-03-25 上海鸿辉光通科技股份有限公司 1×n波长选择性开关

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248509A (ja) * 1994-03-10 1995-09-26 Nippon Telegr & Teleph Corp <Ntt> 光周波数選択スイッチ
JPH0846569A (ja) * 1994-07-27 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> 周波数チャネル選択フィルタ
JPH08162836A (ja) * 1994-12-06 1996-06-21 Nippon Telegr & Teleph Corp <Ntt> フェーズドアレー用ビーム成形回路
JP2001337235A (ja) * 2000-05-29 2001-12-07 Kyocera Corp 光回路
JP2003195071A (ja) * 2001-12-21 2003-07-09 Nippon Telegr & Teleph Corp <Ntt> 光波長合分波モジュール
JP2006217079A (ja) * 2005-02-01 2006-08-17 Nec Corp 波長多重光信号転送装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9305977D0 (en) * 1993-03-23 1993-05-12 Northern Telecom Ltd Transmission system incorporating optical amplifiers
JPH1130730A (ja) 1997-07-11 1999-02-02 Oki Electric Ind Co Ltd 光合分波素子
JP3098235B2 (ja) * 1998-08-04 2000-10-16 日本電信電話株式会社 波長分波器、光スペクトラムアナライザおよび光バンドパスフィルタ
JP3403353B2 (ja) * 1999-04-05 2003-05-06 古河電気工業株式会社 光波長多重通信モジュール
JP2001085800A (ja) * 1999-09-09 2001-03-30 Hitachi Ltd 半導体光増幅器モジュールおよび光通信システム
JP3566918B2 (ja) * 1999-12-27 2004-09-15 古河電気工業株式会社 アレイ導波路回折格子型光合分波器
JP3630085B2 (ja) * 2000-09-14 2005-03-16 日本電気株式会社 アレイ導波路回折格子素子の製造方法およびアレイ導波路回折格子素子
US6768827B2 (en) * 2002-01-16 2004-07-27 The Regents Of The University Of California Integrated optical router
US7340175B2 (en) * 2002-01-18 2008-03-04 Nec Corporation Non-uniform optical waveband aggregator and deaggregator and hierarchical hybrid optical cross-connect system
US6792208B1 (en) * 2002-07-26 2004-09-14 The Regents Of The University Of California Method and apparatus for hierarchical optical switching
US7139455B1 (en) * 2003-03-18 2006-11-21 Luxtera Electronically controllable arrayed waveguide gratings
JP2006011345A (ja) 2004-06-28 2006-01-12 Spring Mouse:Kk 印刷物接着シート
US7505686B2 (en) * 2005-09-01 2009-03-17 Alcatel-Lucent Usa Inc. Highly scalable multi-granular node architecture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248509A (ja) * 1994-03-10 1995-09-26 Nippon Telegr & Teleph Corp <Ntt> 光周波数選択スイッチ
JPH0846569A (ja) * 1994-07-27 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> 周波数チャネル選択フィルタ
JPH08162836A (ja) * 1994-12-06 1996-06-21 Nippon Telegr & Teleph Corp <Ntt> フェーズドアレー用ビーム成形回路
JP2001337235A (ja) * 2000-05-29 2001-12-07 Kyocera Corp 光回路
JP2003195071A (ja) * 2001-12-21 2003-07-09 Nippon Telegr & Teleph Corp <Ntt> 光波長合分波モジュール
JP2006217079A (ja) * 2005-02-01 2006-08-17 Nec Corp 波長多重光信号転送装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAIFENG LI ET AL.: "Multiwavelength integrated 2x2 optical cross-connect switch and lambda-partitioner with 2xN phased-array waveguide grating in self-loopback configuration", OFC'98 TECHNICAL DIGEST, 22 February 1998 (1998-02-22), pages 79 - 80, XP003018594 *
KAKEHASHI S. ET AL.: "Array Doharo Kaisetsu Koshi o Mochiita Hachogun Gobunpaki", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, TSUSHIN 2, 7 March 2007 (2007-03-07), pages 474 + ABSTR. NO. B-12-19, XP003018595 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008066150A1 (fr) * 2006-11-30 2008-06-05 Nec Corporation Système de routage de longueur d'onde
US8315522B2 (en) 2006-11-30 2012-11-20 Nec Corporation Wavelength routing system
JP2009229718A (ja) * 2008-03-21 2009-10-08 Nippon Telegr & Teleph Corp <Ntt> 光波長群合分波回路
JP2010085424A (ja) * 2008-09-29 2010-04-15 Nippon Telegr & Teleph Corp <Ntt> 光波長合分波装置
JP2010219827A (ja) * 2009-03-16 2010-09-30 Nagoya Univ 光パスネットワークの階層化光パスクロスコネクト装置
JP2013097107A (ja) * 2011-10-31 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> 波長選択スイッチ
JP2013097108A (ja) * 2011-10-31 2013-05-20 Nippon Telegr & Teleph Corp <Ntt> 波長選択スイッチ
JP2013182033A (ja) * 2012-02-29 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> 多波長光源装置
JP2014010437A (ja) * 2012-07-03 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> 光可変フィルタおよび光可変フィルタを用いた光信号終端装置
JP2015060125A (ja) * 2013-09-19 2015-03-30 日本電信電話株式会社 光可変フィルタ
WO2016045087A1 (zh) * 2014-09-26 2016-03-31 华为技术有限公司 阵列波导光栅及具有该阵列波导光栅的可调谐激光器
CN106461874A (zh) * 2014-09-26 2017-02-22 华为技术有限公司 阵列波导光栅及具有该阵列波导光栅的可调谐激光器
CN106461874B (zh) * 2014-09-26 2019-09-27 华为技术有限公司 阵列波导光栅及具有该阵列波导光栅的可调谐激光器
WO2023248425A1 (ja) * 2022-06-23 2023-12-28 日本電信電話株式会社 光信号処理装置

Also Published As

Publication number Publication date
JP4822141B2 (ja) 2011-11-24
JPWO2007123157A1 (ja) 2009-09-03
US8244133B2 (en) 2012-08-14
US20090220234A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4822141B2 (ja) 波長群光分波器、波長群光合波器、および波長群光選択スイッチ
US5745612A (en) Wavelength sorter and its application to planarized dynamic wavelength routing
US6049640A (en) Wavelength-division-multiplexing cross-connect using angular dispersive elements and phase shifters
JP4739928B2 (ja) 波長選択光スイッチおよび波長選択光スイッチモジュール
JPH11202152A (ja) 光学マルチプレクサと光学ディマルチプレクサを有する光学デバイス
US7043123B2 (en) Integrateable band filter using waveguide grating routers
US7079728B2 (en) Wavelength multiplexing processing apparatus
JP5975300B2 (ja) 空間スイッチ装置
US6956987B2 (en) Planar lightwave wavelength blocker devices using micromachines
US20030202742A1 (en) Wavelength multiplexing/demultiplexing unit, wavelength multiplexing/demultiplexing apparatus and wavelength multiplexing/demultiplexing method
JP5526389B2 (ja) 光パスネットワークの階層化光パスクロスコネクト装置
US6754410B1 (en) Integrated wavelength-selective cross connect
EP1189476A1 (en) Multi-order optical cross-connect
US20050047722A1 (en) Wideband arrayed waveguide grating
JPWO2004077117A1 (ja) アレイ導波路型波長合分波器および光伝送装置
JP3832742B2 (ja) 光合分波装置
CN114924357B (zh) 一种基于级联马赫-曾德干涉仪结构的波分复用光延时线
JPH07248509A (ja) 光周波数選択スイッチ
JP5276045B2 (ja) 波長選択スイッチ
JP4634815B2 (ja) 光フィルタ
JPH063556A (ja) 光分岐挿入回路
JP4899822B2 (ja) 光合分波器
EP1122905A2 (en) Apparatus and method for wavelength multiplexing/demultiplexing
JP3567117B2 (ja) 光ネットワークシステム
JP2000155228A (ja) 波長ルータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741883

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008512137

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12226453

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07741883

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)