WO2016045087A1 - 阵列波导光栅及具有该阵列波导光栅的可调谐激光器 - Google Patents

阵列波导光栅及具有该阵列波导光栅的可调谐激光器 Download PDF

Info

Publication number
WO2016045087A1
WO2016045087A1 PCT/CN2014/087551 CN2014087551W WO2016045087A1 WO 2016045087 A1 WO2016045087 A1 WO 2016045087A1 CN 2014087551 W CN2014087551 W CN 2014087551W WO 2016045087 A1 WO2016045087 A1 WO 2016045087A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrayed waveguide
waveguides
waveguide grating
reflective
waveguide
Prior art date
Application number
PCT/CN2014/087551
Other languages
English (en)
French (fr)
Inventor
高磊
王寅
曹权
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480077957.4A priority Critical patent/CN106461874B/zh
Priority to PCT/CN2014/087551 priority patent/WO2016045087A1/zh
Publication of WO2016045087A1 publication Critical patent/WO2016045087A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present invention relates to the field of optical communications, and more particularly to an arrayed waveguide grating and a tunable laser having the arrayed waveguide grating.
  • an existing solution is to use a planar optical waveguide technology to fabricate core optical components in an optical module, such as a laser, a modulator, a receiver, etc., thereby achieving miniaturization and low power consumption.
  • tunable laser based on planar optical waveguide technology is one of the key technologies.
  • tunable lasers based on planar optical waveguide technology have been developed, such as tunable lasers based on array waveguide grating (AWG) structures.
  • AWG array waveguide grating
  • most of these tunable lasers have problems such as high manufacturing process requirements, high manufacturing cost, difficulty in achieving continuous wavelength tuning, and limited tuning range, which cannot meet the requirements for use.
  • an object of the present invention is to provide an arrayed waveguide grating and a tunable laser having the arrayed waveguide grating, which can be fabricated on a planar optical waveguide, has high integration, simple manufacturing process, and wavelength The adjustable range is large.
  • an arrayed waveguide grating including an input coupler, a first arrayed waveguide region, and a second arrayed waveguide region, the first arrayed waveguide region including a plurality of first waveguides, and adjacent to the first
  • the waveguide has a first optical path difference
  • the second arrayed waveguide region includes a plurality of second waveguides
  • the adjacent second waveguide has a second optical path difference, wherein the first optical path difference is not equal to The second optical path difference is described.
  • the arrayed waveguide grating further includes a first electrode, the first electrode is electrically connected to the plurality of first waves, and the first electrode is used for The plurality of first waveguides apply a voltage to modulate the first optical path difference.
  • the arrayed waveguide grating further includes a second electrode, the second electrode is electrically connected to the plurality of second waves, and the second electrode is used for The plurality of second waveguides apply a voltage to modulate the second optical path difference.
  • a tunable laser including a reflective element, a reflective transmissive element, and a gain medium, and the arrayed waveguide grating, the arrayed waveguide grating and the gain medium disposed on the reflective element and the reflective transmission Between components.
  • the one ends of the plurality of first waveguides and the plurality of second waveguides of the arrayed waveguide grating are disposed on the reflective element, and the other end is coupled to the input coupler
  • the first light beam is transmitted to the plurality of first waveguides and the plurality of second waveguides by the input coupler, and is reflected by the reflective element to the input coupler to generate the second a beam, the input coupler outputs the second beam.
  • the reflective element is comprised of a waveguide-type reflective structure integrated on the plurality of first waveguides and the plurality of second waveguides.
  • the arrayed waveguide grating further includes an output coupler, and the one end of the plurality of first waveguides and the plurality of second waveguides of the arrayed waveguide grating and the output coupler Coupling, the other end is coupled to the input coupler.
  • the tunable laser further includes a phase modulator disposed between the reflective element and the reflective transmissive element.
  • the phase modulator is configured to cover the first planar optical waveguide by covering a metal electrode on the first planar optical waveguide and applying a current on the metal electrode Refractive index obtained;
  • the phase modulator is configured to cover a metal electrode on the first planar optical waveguide, and change a refractive index of a predetermined phase-adjusting material on the phase modulator by applying a current on the metal electrode to change doping obtain.
  • the tunable laser further includes a second planar optical waveguide, and the gain medium and the reflective element are fabricated on the second planar optical waveguide, the array a waveguide grating, a phase modulator, and the reflective transmission element are fabricated on the first planar optical waveguide; or
  • the gain medium and the reflective transmission element are fabricated on the second planar optical waveguide, the array A column waveguide grating, a phase modulator, and a reflective element are fabricated on the first planar optical waveguide.
  • a lens is disposed between the first planar optical waveguide and the second planar optical waveguide.
  • the tunable laser provided by the embodiment of the present invention realizes the selection of the input first beam by designing a waveguide array grating having two different optical path differences to output a second containing only one wavelength.
  • the light beam, the wavelength of the second light beam can also be adjusted by covering the first electrode and the second electrode on the waveguide array grating, thereby achieving the effect of continuously adjusting the wavelength.
  • the tunable laser provided by the invention has the advantages of high integration, small volume, large wavelength adjustment range and low requirements on process fabrication, and can meet the advantages of large-capacity high-speed optical transmission and new The requirements for the use of a generation of optical devices.
  • FIG. 1 is a schematic structural view of a tunable laser according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the arrayed waveguide grating shown in FIG. 1.
  • FIG. 3 is a block diagram of the arrayed waveguide grating shown in FIG. 1.
  • FIG. 4 is a schematic diagram of transmission peaks of arrayed waveguide gratings under different optical path differences.
  • Figure 5 is a schematic diagram showing the coincident transmission peaks of the output of the arrayed waveguide grating of the embodiment of the present invention.
  • FIG. 6 is another schematic structural view of the tunable laser shown in FIG. 1.
  • FIG. 6 is another schematic structural view of the tunable laser shown in FIG. 1.
  • FIG. 7 is a schematic structural diagram of a tunable laser according to a second embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a tunable laser according to a third embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a tunable laser according to a fourth embodiment of the present invention.
  • FIG. 1 is a tunable laser 1000 according to a first embodiment of the present invention, which can be fabricated in a first planar optical waveguide 100.
  • the tunable laser 1000 includes a reflective element 10, a reflective transmissive element 20, an array waveguide grating (AWG) 30, and a gain medium 40.
  • the reflective element 10, the reflective transmissive element 20, the arrayed waveguide grating 30, and the gain medium 40 may each be etched, photolithographically, doped in different regions of the first planar optical waveguide 100. Obtained by cleavage, coating or ion implantation.
  • the reflective element 10 and the reflective transmissive element 20 form a resonant cavity
  • the arrayed waveguide grating 30 and the gain medium 40 are disposed in the resonant cavity.
  • the arrayed waveguide grating 30 is disposed between the reflective element 10 and the reflective transmissive element 20
  • the gain medium 40 is disposed between the reflective element 10 and the arrayed waveguide grating 30.
  • the gain medium 40 emits a first light beam comprising a plurality of wavelengths (or continuous wavelengths) under the pumping of a pump source.
  • the first light beam is incident into the arrayed waveguide grating 30, and the arrayed waveguide grating 30 demultiplexes (or filters) the first light beam to output a second light beam including only one wavelength, and outputs
  • the wavelength of the second beam can be adjusted by adjusting the refractive index of the waveguide of the arrayed waveguide grating 30.
  • the second light beam propagates back and forth within the resonant cavity formed by the reflective element 10 and the transmissive element 20 and passes through the arrayed waveguide grating 30 and the gain medium 40 during propagation.
  • the second light beam is stably transmitted within the resonant cavity when the second light beam simultaneously satisfies the amplitude condition and phase condition of the oscillation in the resonant cavity.
  • the amplitude condition requires a gain of the second beam to reciprocate once in the cavity (the gain is generated by the gain medium 40, the gain of the second beam as it passes through the gain medium 40 due to the effect of the stimulated radiation
  • the medium 40 produces a laser that is consistent with the frequency and phase of the second beam such that a gain is obtained for the second beam) no less than loss (the loss includes transmission of the second beam at the reflective element 10 and the reflective transmission element 20 The resulting loss, the loss of the second beam in the cavity due to scattering, diffraction, and other absorption losses).
  • the light transmitted by the second light beam at the reflective transmission element 20 is output light.
  • the phase condition requires that the phase change of the second light beam to and from the resonant cavity once is an integer multiple of 2 ⁇ .
  • the reflective element 10 may pass through the first planar optical waveguide 100.
  • One end face is cleaved to obtain (the property that the mineral crystal often breaks in a certain direction after being subjected to force and produces a smooth plane is called cleavage, and the above end surface is a smooth plane), which has high reflection on the second light beam. rate.
  • a reflective film may be plated on the cleaved end surface to ensure a larger portion of the second light beam in the reflective element 10 It is reflected on it.
  • the reflective transmissive element 20 can also be obtained by cleaving the other end surface of the first planar optical waveguide 100 opposite to the reflective element 10, and the reflective transmissive element 20 can simultaneously transmit and reflect The second light beam, and the ratio of the second light beam transmitted and reflected, can be adjusted by plating a corresponding proportion of the reflective film or the transmissive film on the reflective transmission element 20 according to actual needs.
  • the reflective element 10 and the reflective lens element 20 together form a resonant cavity of the tunable laser 1000.
  • the reflective element 10 and the reflective transmissive element 20 may also adopt independent optical devices, such as reflectors or reflective transmissors made of other planar optical waveguides, or Optics such as a mirror and a reflection mirror are disposed directly at opposite ends of the first planar optical waveguide 100, and any solution that satisfies such a structural design is within the scope of the present invention, and details are not described herein again.
  • the arrayed waveguide grating 30 can be obtained by etching or photolithography in the first planar optical waveguide 100, and the arrayed waveguide grating 30 includes The input coupler 31, the output coupler 32, the first arrayed waveguide region 33, the second arrayed waveguide region 34, and the output waveguide 35.
  • the first arrayed waveguide region 33 and the second arrayed waveguide region 34 are located between the input coupler 31 and the output coupler 32, and the first arrayed waveguide region 33 includes at least two first waveguides 331.
  • the second arrayed waveguide region 34 includes at least two second waveguides 341.
  • the two first waveguides 331 adjacent to the first waveguide array region 33 have a first optical path difference n 1 * ⁇ L 1 (assuming that the first arrayed waveguide region 33 sequentially aligns adjacent first and second waveguides) And a third waveguide, if the length of the first waveguide is L, the length of the second waveguide is L- ⁇ L 1 , and the length of the third waveguide is L-2* ⁇ L 1 ), where n 1 is a group refractive index of the first beam in the first waveguide 331 (since the first beam contains a plurality of wavelengths, the refractive index of the first beam in the first waveguide 331 requires a group refractive index due to a dispersion effect Representation).
  • the two second waveguides 341 adjacent to the second arrayed waveguide region 34 have a second optical path difference n 2 * ⁇ L 2 , wherein n 2 is a group refractive index of the first light beam in the second waveguide, n 1 may be equal to n 2 or may not be equal.
  • the first light beam containing a plurality of wavelengths (or continuous wavelengths) is transmitted to the input coupler 31, and a second light beam containing only one wavelength is outputted at the output coupler 32.
  • the optical path difference of the plurality of waveguides included is n* ⁇ L, where n g is the group refractive index of the beam at the waveguide, and ⁇ L is the adjacent two waveguides.
  • the difference in length causes a beam of multiple wavelengths to be diffracted within the input coupler of the arrayed waveguide grating and coupled into each of the waveguides. Since the output ends of the plurality of waveguides are located on the circumference of the grating circle, the diffracted light generated when the light beam is diffracted in the input coupler reaches the output ends of the plurality of waveguides in the same phase.
  • the Free Spectral Range (FSR) of the transmission spectrum can be expressed by the following formula (1):
  • the FSR is determined by the length difference ⁇ L and the group refractive index n g .
  • the arrayed waveguide grating functions to demultiplex a light beam comprising a plurality of wavelengths (or continuous wavelengths) to obtain a plurality of independent transmission peaks, or the arrayed waveguide grating may be equivalent to a filter. Only the beam that satisfies the specific diffraction conditions can pass through the arrayed waveguide grating, and the wavelength transmitted through it is the wavelength of the plurality of independent transmission peaks obtained, and the other wavelengths will be filtered out.
  • the first array waveguide region 33 has a first optical path difference n 1 * ⁇ L 1 and the second array waveguide region 34 has a second optical path difference n 2 * ⁇ L 2 that is not equal. Therefore, the arrayed waveguide grating 30 can be regarded as a cascade of two conventional arrayed waveguide gratings of an arrayed waveguide grating having an optical path difference of n 1 * ⁇ L 1 and an arrayed waveguide grating having an optical path difference of n 2 * ⁇ L 2 , or A class of two equivalent filters of a filter equivalent to an arrayed waveguide grating having an optical path difference of n 1 * ⁇ L 1 and a filter equivalent to an arrayed waveguide grating having an optical path difference of n 2 * ⁇ L 2 Union.
  • Passing the first light beam through the arrayed waveguide grating 30 corresponds to filtering through the two equivalent filters at the same time, so that the wavelength of the output second light beam is the transmission peak of the first arrayed waveguide region 33 and The transmission peaks of the transmission peaks generated by the second arrayed waveguide region 34 coincide with the wavelengths.
  • FIG. 4 is a wavelength distribution diagram of a transmission peak of a conventional arrayed waveguide grating having an optical path difference of n 1 * ⁇ L 1 and a conventional arrayed waveguide grating having an optical path difference of n 2 * ⁇ L 2 , It can be seen that the wavelength of the transmission peak under the arrayed waveguide grating having an optical path difference of n 1 * ⁇ L 1 and the arrayed waveguide grating having an optical path difference of n 2 * ⁇ L 2 is approximately coincident at a wavelength of 1.564 ⁇ m, and therefore, The wavelength of the second beam output by the arrayed waveguide beam 30 is 1.564 microns, as shown in FIG.
  • the arrayed waveguide grating 30 further includes a first electrode 37 and a second electrode 38.
  • the first electrode 37 and the second electrode 38 may be fixed to the first portion by evaporation or sputtering.
  • a planar optical waveguide 100, and the first electrode 37 is electrically connected to each of the first waveguides 331 in the first arrayed waveguide region 33, and the second electrode 38 and the second arrayed waveguide region 34 are Each of the second waveguides 341 is electrically connected.
  • the first electrode 37 adjusts the refractive index of each of the first waveguides 331 of the first arrayed waveguide region 33 by applying a current or a voltage, thereby adjusting the first optical path difference (the group refractive index is generally a function of the refractive index of the material) And relating to a wavelength distribution of the first light beam; the second electrode 38 adjusts a refractive index of each of the second waveguides 341 of the second arrayed waveguide region 34 by applying a current or a voltage, thereby adjusting the second Optical path difference.
  • the arrayed waveguide grating 30 can generate different transmission peak distributions according to different first optical path differences and second optical path differences, the coincident transmission peaks also change correspondingly, and the wavelength of the output second beam also changes accordingly. A wavelength-tunable effect of the second beam is achieved.
  • the principle that the first electrode 37 and the second electrode 38 modulate the refractive indices of the first waveguide 331 and the second waveguide 341 include, but are not limited to, a thermo-optic effect, an electro-optic effect, and a load-based
  • the change of the concentration of the flow changes the effect of the refractive index, the magneto-optic effect, the piezoelectric effect or the electro-absorption effect, etc., as long as the modulation mode conforming to the design structure provided by the embodiment of the present invention is within the protection scope of the present invention, List them one by one.
  • first electrode 37 or only the second electrode 38 may be disposed, and these designs are all within the protection scope of the present invention.
  • the gain medium 40 can be obtained by immersing or lithography on the first planar optical waveguide 100, and the working medium can be used as ⁇ , ⁇ or other.
  • the gain medium 40 is configured to generate a first beam that oscillates while simultaneously gaining the second beam.
  • an external pump source pumps the gain medium 40 (which may be optically pumped or electrically pumped) such that the gain medium 40 generates a population inversion (ie, The number of particles on the high energy level is greater than the number of particles on the low energy level) and emits the first light beam, the first light beam passing through the arrayed waveguide grating 30 to generate the second light beam, the second light beam being Propagating back and forth within the cavity, and upon passing through the gain medium 40, due to the effect of the stimulated radiation, the gain medium 40 produces a laser that is consistent with the wavelength and phase of the second beam, thereby aligning the second beam Gain amplification is performed to compensate for various losses generated during propagation of the second beam within the resonant cavity.
  • a population inversion ie, The number of particles on the high energy level is greater than the number of particles on the low energy level
  • the second light beam is continuously and stably propagated back and forth within the resonant cavity, and when the tunable laser 1000 is stably operated, the gain effect of the gain medium 40 is exactly equal to the second light beam at the Loss generated when propagating back and forth within the cavity, wherein the loss includes loss due to transmission of the second beam at the reflective element 10 and the reflective transmission element 20, the second beam being generated in the cavity due to scattering and diffraction Loss and other absorption losses.
  • the tunable laser 1000 further includes a phase modulator 50 disposed between the arrayed waveguide grating 30 and the reflective transmission element 20.
  • the phase modulator 50 can change the first planar optical waveguide 100 or dope by fabricating or sputtering a metal electrode on the first planar optical waveguide 1000 and applying a current or voltage on the metal electrode. Obtained from the refractive indices of other materials on the phase modulator 50.
  • the phase modulator 50 is configured to maintain the stability of the output power of the second beam, such as by fine-tuning to align the longitudinal mode of the laser cavity with the wavelength of the second beam, thereby avoiding power fluctuations.
  • the positions of the arrayed waveguide grating 30 , the gain medium 40 , and the phase modulator 50 may be set in various manners, such as The phase modulator 50 is disposed between the arrayed waveguide grating 30 and the gain medium 40, or the gain medium 40 is disposed between the arrayed waveguide grating 30 and the phase modulator 50, or The arrayed waveguide grating 30 is disposed between the gain medium 40 and the phase modulator 50, and is not limited in the present invention.
  • FIG. 7 is a schematic diagram of a tunable laser 2000 according to a second embodiment of the present invention.
  • the tunable laser 2000 includes a reflective transmission element 220, an arrayed waveguide grating 230, a gain medium 240, and a phase modulator 250.
  • the reflective transmission element 220, the arrayed waveguide grating 230, the gain medium 240, and the phase modulator 250 are both made and functioned with the reflective transmission element 20, the arrayed waveguide grating 30, the gain medium 40, and the first embodiment.
  • the phase device 50 is made in the same manner and function, and will not be described here.
  • the second planar optical waveguide 2100 includes a first end surface 241 and a second end surface 242 opposite to the first end surface 241, wherein the first end surface 241 is plated with an anti-reflection film, and the second end surface 242 is solutiond.
  • a reflective surface is formed to reflect the second light beam as a reflective element.
  • the reflective surface may be plated with a reflective film.
  • a lens 260 may be disposed between the first planar optical waveguide 100 and the second planar optical waveguide 2100, and the lens 260 is used for collimating the incident light. Specifically, the second light beam transmitted by the gain medium 240 is collimated by the lens 260 and transmitted to the arrayed waveguide grating 230, or the second light beam transmitted by the arrayed waveguide grating 230 is aligned by the lens 260. Transfer to the gain medium 240.
  • the tunable laser 2000 may further include a functional unit 270, and the reflective transmissive element 220 is disposed between the functional unit 270 and the phase modulator 250.
  • the functional unit 270 includes, but is not limited to, a receiving unit, a modulating unit, or a filtering unit to perform operations such as receiving, modulating, or filtering the output second beam.
  • the relative positions of the arrayed waveguide grating 230, the gain medium 240, and the phase modulator 250 may be exchanged, for example, the phase modulator 250 may be separately disposed in the second In the planar optical waveguide 2100, the gain medium 240 and the arrayed waveguide grating 230 are disposed on the first planar optical waveguide 100, or the arrayed waveguide grating 230, the gain medium 240, and the phase modulator 250 are all disposed in the same planar optical waveguide, and these structural designs are all within the protection scope of the present invention, and details are not described herein again.
  • FIG. 8 is a schematic diagram of a tunable laser 3000 according to a third embodiment of the present invention.
  • the tunable laser 3000 includes a reflective element 310, an arrayed waveguide grating 330, a gain medium 340, and a phase modulator 350.
  • the gain medium 340 is formed on a second planar optical waveguide 3100.
  • the arrayed waveguide grating 330 and the phase modulator 350 are formed on the first planar optical waveguide 100.
  • the second planar optical waveguide 3100 includes a first end surface 341 and a second end surface 342, wherein the first end surface 341 is coated with an anti-reflection film, and the second end surface 342 is cleaved to form a smooth surface.
  • the reflective transmission element the second light beam is output through the second end surface 342.
  • a lens 360 for collimating the incident light may also be disposed.
  • the second light beam transmitted by the gain medium 340 is collimated by the lens 360 and transmitted to the arrayed waveguide grating 330, or the second light beam transmitted by the arrayed waveguide grating 330 is aligned by the lens 360. Transfer to the gain medium 340.
  • the relative positions of the arrayed waveguide grating 330, the gain medium 340, and the phase modulator 350 may be exchanged, for example, the phase modulator 350 may be separately disposed in the second In the planar optical waveguide 3100, the gain medium 340 and the arrayed waveguide grating 330 are disposed on the first planar optical waveguide 100, or the arrayed waveguide grating 330, the gain medium 340, and the phase modulator The 350 is disposed in the same planar optical waveguide, and these structural designs are all within the protection scope of the present invention, and details are not described herein again.
  • FIG. 9 is a schematic diagram of a tunable laser 4000 according to a fourth embodiment of the present invention.
  • the tunable laser 4000 includes a reflective element 410, a reflective transmissive element 420, an arrayed waveguide grating 430, a gain medium 440, and a phase modulator 450.
  • the reflective element 410 is obtained by cleaving (or cleavable and then plating a reflective film) the end surface of the first planar optical waveguide 100, and the arrayed waveguide grating 430 includes an input coupler 431 and a plurality of waveguides 436.
  • each of the waveguides 436 is coupled to the input coupler 431, and the other end is fabricated directly on the reflective element 410 (or the reflective element 410 can also be integrated with waveguide-type reflections on each of the waveguides 436).
  • the structure is implemented in such a manner that the reflective element 410 can be formed by a waveguide-type reflective structure on the waveguide 436, and the first light beam is distributed to the respective waveguides 436 via the input coupler 431, and After the transmission in the waveguide 436 reaches the reflective element 410, after being reflected by the reflective element 410, it reaches the input coupler 431 again, and outputs the second light beam, that is, the input coupler 431 is simultaneously It functions as an input coupler and an output coupler.
  • the gain medium 40 emits a first light beam including a plurality of wavelengths (or continuous wavelengths) under the pumping of a pump source, the first beam.
  • the first waveguide portion 33 and the second array waveguide region 34 of the arrayed waveguide grating 30 are diffracted by the input coupler 31, and the first waveguide 331 in the first arrayed waveguide region 33 has a first optical path difference n 1 * ⁇ L 1 , the second waveguide 341 in the second arrayed waveguide region 34 has a second optical path difference of n 2 * ⁇ L 2 , and the first arrayed waveguide region 33 outputs the first optical path difference a plurality of transmission peaks determined by n 1 * ⁇ L 1 , the second array waveguide region 34 outputs a plurality of transmission peaks determined by the second optical path difference being n 2 * ⁇ L 2 , such that the output waveguide 35 outputs A transmission peak in which the wavelengths of the plurality of transmission peaks outputted by the first
  • the second light beam propagates back and forth within the resonant cavity formed by the reflective element 10 and the transmissive element 20, and passes through the arrayed waveguide grating 30, the gain medium 40, and the phase modulator 50 during propagation.
  • the second light beam may be stably transmitted within the resonant cavity and continuously output the output light.
  • each waveguide of the first arrayed waveguide region 33 can be changed by loading a required voltage or voltage on the first electrode 37 and the second electrode 38.
  • various devices in the embodiments of the present invention such as the reflective element 10, the reflective transmissive element 20, the arrayed waveguide grating 30, the gain medium 40, and the phase modulator 50 may be fabricated on the planar optical waveguide. It may also be an independent optical device, or it may be partially fabricated on a planar optical waveguide, and partially used as an independent optical device, and these solutions are all within the scope of the present invention.
  • the tunable laser 1000 provided by the embodiment of the present invention realizes demultiplexing or filtering the input first beam by designing a waveguide array grating 30 including two length differences to output one.
  • a second light beam of only one wavelength is included, and the wavelength of the second light beam can also be adjusted by evaporation or sputtering of the first electrode 37 and the second electrode 38 on the waveguide array grating 30 to achieve continuous wavelength Adjustable effect.
  • the tunable laser 1000 provided by the invention can be integrally fabricated with a planar optical waveguide 100, thereby having the advantages of high integration, small volume, large wavelength adjustment range, and low requirements on process fabrication, and satisfies large-capacity high-speed optical transmission. And the requirements for the use of new generation optical devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种阵列波导光栅(30)及具有该阵列波导光栅(30)的可调谐激光器(1000),该阵列波导光栅(30)包括输入耦合器(31)、第一阵列波导区(33)及第二阵列波导区(34),所述第一阵列波导区(33)包括多个第一波导(331),且相邻的所述第一波导(331)具有第一光程差,所述第二阵列波导区(34)包括多个第二波导(341),且相邻的所述第二波导(341)具有第二光程差,其中,所述第一光程差不等于所述第二光程差。

Description

阵列波导光栅及具有该阵列波导光栅的可调谐激光器 技术领域
本发明涉及光通信领域,尤其涉及一种阵列波导光栅及具有该阵列波导光栅的可调谐激光器。
背景技术
大容量高速光传输以及更为灵活的光网络结构,是光通信发展的趋势。目前,采用高阶调制以及相干接收的100G技术已经进入商用阶段,且成为业界的趋势之一。随着100G相干系统的部署,第一代标准的光模块在尺寸、功耗等性能上无法满足使用要求,已经成为提高光模块集成密度的瓶颈,因而开发具有小型化、低功耗的光模块具有重要的意义。
目前一种现有的解决方案是采用平面光波导技术来制作光模块中的核心光器件,如激光器、调制器、接收机等,从而实现小型化、低功耗。其中,基于平面光波导技术的可调谐激光器是关键技术之一。当前,业界已开发出几种基于平面光波导技术的可调谐激光器,如基于阵列波导光栅(array waveguide grating,AWG)结构的可调谐激光器。然而,这些可调谐激光器大多存在对制作工艺要求较高、制造成本昂贵、难以实现波长的连续调谐及调谐范围有限等问题,无法满足使用要求。
发明内容
有鉴于此,本发明的目的在于提供一种阵列波导光栅及具有该阵列波导光栅的可调谐激光器,所述可调谐激光器可制作于一平面光波导上,具有集成度高、制作工艺简单、波长可调范围大等优点。
第一方面,提供一种阵列波导光栅,包括输入耦合器、第一阵列波导区及第二阵列波导区,所述第一阵列波导区包括多个第一波导,且相邻的所述第一波导具有第一光程差,所述第二阵列波导区包括多个第二波导,且相邻的所述第二波导具有第二光程差,其中,所述第一光程差不等于所述第二光程差。
在第一方面的第一种可能的实现方式中,所述阵列波导光栅还包括第一电极,所述第一电极与所述多个第一波导电性连接,所述第一电极用于对所述多个第一波导施加电压,以调制所述第一光程差。
在第一方面的第二种可能的实现方式中,所述阵列波导光栅还包括第二电极,所述第二电极与所述多个第二波导电性连接,所述第二电极用于对所述多个第二波导施加电压,以调制所述第二光程差。
第二方面,提供一种可调谐激光器,包括反射元件、反射透射元件及增益介质及所述的阵列波导光栅,所述阵列波导光栅及所述增益介质设置于所述反射元件及所述反射透射元件之间。
在第二方面的第一种可能的实现方式中,所述阵列波导光栅的多个第一波导及多个第二波导的一端设置于所述反射元件上,另一端与所述输入耦合器耦合,所述第一光束经所述输入耦合器分配到所述多个第一波导及多个第二波导中传输,并被所述反射元件反射至所述输入耦合器后,生成所述第二光束,所述输入耦合器输出所述第二光束。
在第二方面的第二种可能的实现方式中,所述反射元件由在所述多个第一波导及多个第二波导上集成的波导型反射结构构成。
在第二方面的第三种可能的实现方式中,所述阵列波导光栅还包括输出耦合器,所述阵列波导光栅的多个第一波导及多个第二波导的一端与所述输出耦合器耦合,另一端与所述输入耦合器耦合。
在第二方面的第四种可能的实现方式中,所述可调谐激光器还包括调相器,所述调相器设置于所述反射元件与所述反射透射元件之间。
在第二方面的第五种可能的实现方式中,所述调相器通过在所述第一平面光波导上覆盖金属电极,并通过在金属电极上施加电流改变所述第一平面光波导的折射率获得;或者,
所述调相器通过在所述第一平面光波导上覆盖金属电极,并通过在所述金属电极上施加电流改变掺杂、制作在所述调相器上的预定的调相材料的折射率获得。
在第二方面的第六种可能的实现方式中,所述可调谐激光器还包括第二平面光波导,所述增益介质及所述反射元件制作于所述第二平面光波导上,所述阵列波导光栅、调相器及所述反射透射元件制作于所述第一平面光波导上;或者,
所述增益介质及所述反射透射元件制作于所述第二平面光波导上,所述阵 列波导光栅、调相器及反射元件制作于所述第一平面光波导上。
在第二方面的第七种可能的实现方式中,所述第一平面光波导及所述第二平面光波导之间设置有透镜。
本发明实施例提供的可调谐激光器,通过设计一个具有两个不同光程差的波导阵列光栅,实现了对输入的所述第一光束的选模,以输出一仅包含一种波长的第二光束,所述第二光束的波长还可通过覆盖与所述波导阵列光栅上的第一电极和第二电极进行调节,实现了波长连续可调的效果。本发明提供的可调谐激光器,由于可整体制作与一平面光波导上,因而具有集成度高、体积小、波长调整范围大且对工艺制作要求不高等优点,满足了大容量高速光传输及新一代光器件的使用要求。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的可调谐激光器的结构示意图。
图2是图1所示的阵列波导光栅的结构示意图。
图3是图1所示的阵列波导光栅的模块示意图。
图4是阵列波导光栅在不同光程差下的透射峰示意图。
图5是本发明实施例的阵列波导光栅输出的重合的透射峰示意图。
图6是图1所示的可调谐激光器的另一种结构示意图。
图7是本发明第二实施例提供的可调谐激光器的结构示意图。
图8是本发明第三实施例提供的可调谐激光器的结构示意图。
图9是本发明第四实施例提供的可调谐激光器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1是本发明第一实施例提供的可调谐激光器1000,其可制作于第一平面光波导100中。所述可调谐激光器1000包括反射元件10、反射透射元件20、阵列波导光栅(array waveguide grating,AWG)30及增益介质40。其中,所述反射元件10、所述反射透射元件20、所述阵列波导光栅30及所述增益介质40均可在所述第一平面光波导100的不同区域通过刻蚀、光刻、掺杂、解理、镀膜或离子注入等方法获得。
在本发明实施例中,所述反射元件10与所述反射透射元件20构成一谐振腔,所述阵列波导光栅30及所述增益介质40设置于所述谐振腔内。所述阵列波导光栅30设置于所述反射元件10与所述反射透射元件20之间,所述增益介质40设置于所述反射元件10与所述阵列波导光栅30之间。所述增益介质40在一泵浦源的泵浦下,发射一包含多种波长(或连续波长)的第一光束。所述第一光束入射进所述阵列波导光栅30,所述阵列波导光栅30对所述第一光束进行解复用(或滤波)处理后输出仅包括一种波长的第二光束,且输出的所述第二光束的波长可通过调节所述阵列波导光栅30的波导折射率进行调节。所述第二光束在所述反射元件10及透射元件20构成的谐振腔内往返传播,且在传播过程中经过所述阵列波导光栅30及增益介质40。当所述第二光束在所述谐振腔内同时满足振荡的振幅条件和相位条件时,所述第二光束可在所述谐振腔内稳定传输。其中,所述振幅条件要求所述第二光束在谐振腔往返一次的增益(增益由增益介质40产生,所述第二光束在经过所述增益介质40时,由于受激辐射效应,所述增益介质40产生与所述第二光束频率和相位一致的激光,从而对所述第二光束可获得增益)不小于损耗(所述损耗包括所述第二光束在反射元件10和反射透射元件20透射产生的损耗,所述第二光束在谐振腔中由于散射、衍射产生的损耗及其他的吸收损耗)。其中,所述第二光束在所述反射透射元件20透射的光为输出光。所述相位条件则要求所述第二光束在所述谐振腔内往返一次的相位变化为2π的整数倍。
在本发明实施例中,所述反射元件10可通过对所述第一平面光波导100 的一个端面进行解理来获得(矿物晶体受力后常沿一定方向破裂并产生光滑平面的性质称为解理,则上述端面即为光滑平面),其对所述第二光束具有高的反射率。其中,为了使所述反射元件10对所述第二光束具有较高的反射率,还可在解理后的端面镀上反射膜,从而保证较大部分的第二光束在所述反射元件10上被反射。相应地,所述反射透射元件20也可通过对所述第一平面光波导100的与所述反射元件10相对的另一端面进行解理而获得,该反射透射元件20可同时透射和反射所述第二光束,且所述第二光束被透射和反射的比例可根据实际的需要,通过在所述反射透射元件20上镀相应比例的反射膜或透射膜进行调节。所述反射元件10与所述反射透镜元件20共同构成了所述可调谐激光器1000的谐振腔。
需要说明的是,在本发明其他实施例中,所述反射元件10与所述反射透射元件20也可采用独立的光学器件,如由其他平面光波导制成的反射器或反射透射器,或者直接将反射镜及反射透射镜等光学器件设置在所述第一平面光波导100的相对两端,只要满足这种结构设计的方案均在本发明保护范围之内,在此不再赘述。
请一并参阅图2及图3,在本发明实施例中,所述阵列波导光栅30可通过在所述第一平面光波导100中刻蚀或光刻等方法获得,该阵列波导光栅30包括输入耦合器31、输出耦合器32、第一阵列波导区33、第二阵列波导区34及输出波导35。其中,所述第一阵列波导区33及第二阵列波导区34位于所述输入耦合器31、输出耦合器32之间,且所述第一阵列波导区33包括至少两条第一波导331,所述第二阵列波导区34包括至少两条第二波导341。所述第一波导阵列区33相邻的两条第一波导331具有第一光程差n1*ΔL1(假设第一阵列波导区33依次排列相邻的第一条波导、第二条波导及第三条波导,若所述第一条波导的长度为L,则第二条波导长度为L-ΔL1,第三条波导长度为L-2*ΔL1),其中,n1为所述第一波束在所述第一波导331中的群折射率(由于第一光束包含有多种波长,由于色散效应,所述第一光束在第一波导331中的折射率需用群折射率进行表示)。所述第二阵列波导区34相邻的两条第二波导341具有第二光程差n2*ΔL2,其中,n2为所述第一光束在所述第二波导的群折射率,n1可以等于n2,也可以不等。所述包含有多个波长(或连续波长)的第 一光束传输至所述输入耦合器31,并在所述输出耦合器32输出仅包含一种波长的第二光束。
具体为,对于常规的阵列波导光栅,假设其包括的多条波导的光程差为n*ΔL,其中,ng为所述光束在波导的群折射率,ΔL为相邻的两条波导的长度的差,则含有多个波长的光束在所述阵列波导光栅的输入耦合器内发生衍射,并耦合进入各条波导内。由于所述多条波导的输出端位于光栅圆的圆周上,所以光束在所述输入耦合器内发生衍射时生成的衍射光以相同的相位到达所述多条波导的输出端。由于相邻的波导保持有相同的光程差ng*ΔL,因而同一波长的衍射光具有相同的相位差,而不同波长的衍射光的相位差不同,因此,不同波长的光束在输出耦合器中发生衍射并聚焦到不同的位置。对于常规的阵列波导光栅,其透射光谱的自由光谱区(Free Spectral Range,FSR)可用如下公式(1)表示:
Figure PCTCN2014087551-appb-000001
其中,λ0是自由空间波长。由公式(1)可知,所述FSR由长度差ΔL和群折射率ng决定。所述阵列波导光栅的作用为将一包含多个波长(或连续波长)的光束进行解复用,从而获得多个独立的透射峰,或者也可将所述阵列波导光栅等效于一个滤波器,只有满足特定的衍射条件的光束才可透过所述阵列波导光栅,其透过的波长即为获得的多个独立的透射峰的波长,而其他的波长将被过滤掉。
在本发明实施例中,所述第一阵列波导区33具有的第一光程差n1*ΔL1与所述第二阵列波导区34具有的第二光程差n2*ΔL2不相等,因此可将所述阵列波导光栅30视为光程差为n1*ΔL1的阵列波导光栅和光程差为n2*ΔL2的阵列波导光栅的两个常规阵列波导光栅的级联,或者视为与光程差为n1*ΔL1的阵列波导光栅相等效的滤波器和与光程差为n2*ΔL2的阵列波导光栅相等效的滤波器的两个等效滤波器的级联。所述第一光束经过所述阵列波导光栅30则相当于同时经过这两个等效的滤波器的滤波,因而输出的第二光束的波长为所述 第一阵列波导区33产生的透射峰与所述第二阵列波导区34产生的透射峰中波长相重合的透射峰值。请一并参阅图4及图5,图4为光程差为n1*ΔL1的常规阵列波导光栅与光程差为n2*ΔL2的常规阵列波导光栅的透射峰的波长分布图,可以看出,光程差为n1*ΔL1的阵列波导光栅和光程差为n2*ΔL2的阵列波导光栅下的透射峰的波长大概在波长为1.564微米的地方重合,因此,所述阵列波导光束30输出的第二光束的波长即为1.564微米,如图5所示。
在本发明实施例中,所述阵列波导光栅30还包括第一电极37及第二电极38,所述第一电极37及第二电极38可通过蒸镀或者溅射等方式固定于所述第一平面光波导100上,且所述第一电极37与所述第一阵列波导区33内的各个第一波导331电性连接,所述第二电极38与所述第二阵列波导区34内的各个第二波导341电性连接。所述第一电极37通过施加电流或者电压调节所述第一阵列波导区33的各个第一波导331的折射率,进而调节所述第一光程差(群折射率一般为材料折射率的函数,并与所述第一光束的波长分布有关);所述第二电极38通过施加电流或者电压调节所述第二阵列波导区34的各个第二波导341的折射率,进而调节所述第二光程差。由于所述阵列波导光栅30可根据不同的第一光程差和第二光程差产生不同的透射峰分布,因而重合的透射峰值也相应变化,进而输出的第二光束的波长也相应变化,实现第二光束的波长可调的效果。其中,所述第一电极37及所述第二电极38对所述第一波导331及所述第二波导341的折射率进行调制的原理包括但不限于:热光效应、电光效应、基于载流子的浓度变化改变折射率的效应、磁光效应、压电效应或者电吸收效应等,只要符合本发明实施例提供的设计结构的调制方式均在本发明的保护范围之内,在此不一一列举赘述。
需要说明的是,在本发明的其他实施例中,也可只设置有第一电极37或只设置有第二电极38,这些设计方案均在本发明的保护范围之内。
在本发明实施例中,所述增益介质40可通过在所述第一平面光波导100上刻蚀或光刻后掺入工作介质获得,所述工作介质可为铒、镨或其他可用于作为激光器工作介质的材料。所述增益介质40用于产生起振的第一光束,并同时对所述第二光束进行增益。具体为,外部的泵浦源对所述增益介质40进行泵浦(可为光学泵浦或电学泵浦),使得所述增益介质40产生粒子数反转(即 高能级上的粒子数多于低能级上的粒子数),并发射所述第一光束,所述第一光束经所述阵列波导光栅30后产生所述第二光束,所述第二光束在谐振腔内往返传播,并且在经过所述增益介质40时,由于受激辐射效应,所述增益介质40产生与所述第二光束的波长及相位均一致的激光,从而对所述第二光束进行增益放大,以补偿所述第二光束在所述谐振腔内传播过程中产生的各种损耗。因此,所述第二光束可持续稳定的在所述谐振腔内来回传播,且当所述可调谐激光器1000稳定工作时,所述增益介质40的增益效果恰好等于所述第二光束在所述谐振腔内来回传播时产生的损耗,其中,所述损耗包括所述第二光束在反射元件10和反射透射元件20透射产生的损耗,所述第二光束在谐振腔中由于散射、衍射产生的损耗及其他的吸收损耗。
在本发明实施例中,所述可调谐激光器1000还包括调相器50,所述调相器50设置于所述阵列波导光栅30与所述反射透射元件20之间。该调相器50可通过在所述第一平面光波导1000上蒸镀或者溅射金属电极,并通过在金属电极上施加电流或者电压来改变所述第一平面光波导100或者掺杂、制作在所述调相器50上的其他材料的折射率而获得。所述调相器50用于保持所述第二光束输出光功率的稳定,如通过微调使得激光器谐振腔内纵模与所述第二光束波长对齐,从而避免产生功率波动。
请一并参阅图6,可以理解的是,在本发明的其他实施例中,所述阵列波导光栅30、增益介质40及所述调相器50的位置可有多种设置方式,如可将所述调相器50设置于所述阵列波导光栅30与所述增益介质40之间,或者将所述增益介质40设置于所述阵列波导光栅30与所述调相器50之间,或者将所述阵列波导光栅30设置于所述增益介质40与所述调相器50之间等方式,本发明不做限定。
请一并参阅图7,图7是本发明第二实施例提供的可调谐激光器2000的示意图,所述可调谐激光器2000包括反射透射元件220、阵列波导光栅230、增益介质240及调相器250,所述反射透射元件220、阵列波导光栅230、增益介质240、调相器250的制作方式及功能均与上述第一实施例中的反射透射元件20、阵列波导光栅30、增益介质40、调相器50的制作方式及功能相同,在此不再赘述。
所不同的是:所述增益介质240单独制作于一第二平面光波导2100中,所述反射透射元件220、所述阵列波导光栅230及所述调相器250则制作于所述第一平面光波导100中。所述第二平面光波导2100包括第一端面241及相对于该第一端面241的第二端面242,其中,所述第一端面241可镀增透膜,所述第二端面242则通过解理而形成一反射面,以作为反射元件反射所述第二光束。较佳地,为了获得更高的反射率,所述反射面上可镀反射膜。
需要说明的是,在本发明实施例中,在所述第一平面光波导100及所述第二平面光波导2100之间,还可设置一透镜260,该透镜260用于准直射入的光线。具体为,所述增益介质240传输的第二光束经所述透镜260准直后传输至所述阵列波导光栅230,或者所述阵列波导光栅230传输的第二光束经所述透镜260准直后传输至所述增益介质240。
需要说明的是,在本发明实施例中,所述可调谐激光器2000还可包括功能单元270,所述反射透射元件220设置于所述功能单元270及所述调相器250之间,所述功能单元270包括但不限于:接收单元、调制单元或者滤波单元,以对所述输出的第二光束进行接收、调制或者滤波等操作。
需要说明的是,在本发明实施例中,所述阵列波导光栅230、增益介质240、调相器250的相对位置可进行调换,如可将所述调相器250单独设置于所述第二平面光波导2100中,而所述增益介质240及所述阵列波导光栅230设置于所述第一平面光波导100,或者将所述阵列波导光栅230、所述增益介质240、所述调相器250均设置于同一个平面光波导中,这些结构设计方案均在本发明的保护范围之内,在此不再赘述。
请一并参阅图8,图8是本发明第三实施例提供的可调谐激光器3000的示意图。所述可调谐激光器3000包括反射元件310、阵列波导光栅330、增益介质340及调相器350。其中,所述增益介质340制作于一第二平面光波导3100上,所述阵列波导光栅330及所述调相器350则制作于所述第一平面光波导100上。所述第二平面光波导3100包括第一端面341及第二端面342,其中,所述第一端面341可镀增透膜,所述第二端面342则通过解理而形成一光滑平面,以作为反射透射元件,从而第二光束透过所述第二端面342输出。
需要说明的是,在本发明实施例中,在所述第一平面光波导100及所述第 二平面光波导3100之间,还可设置一透镜360,该透镜360用于准直射入的光线。具体为,所述增益介质340传输的第二光束经所述透镜360准直后传输至所述阵列波导光栅330,或者所述阵列波导光栅330传输的第二光束经所述透镜360准直后传输至所述增益介质340。
需要说明的是,在本发明实施例中,所述阵列波导光栅330、增益介质340、调相器350的相对位置可进行调换,如可将所述调相器350单独设置于所述第二平面光波导3100中,而所述增益介质340及所述阵列波导光栅330设置于所述第一平面光波导100,或者将所述阵列波导光栅330、所述增益介质340、所述调相器350均设置于同一个平面光波导中,这些结构设计方案均在本发明的保护范围之内,在此不再赘述。
请一并参阅图9,图9是本发明第四实施例提供的可调谐激光器4000的示意图。所述可调谐激光器4000包括反射元件410、反射透射元件420、阵列波导光栅430、增益介质440及调相器450。其中,所述反射元件410通过对所述第一平面光波导100的端面进行解理(或解理后镀反射膜)获得,所述阵列波导光栅430包括输入耦合器431及多条波导436,每个所述波导436的一端均与所述输入耦合器431耦合,另一端则直接制作在所述反射元件410上(或者所述反射元件410也可通过在每一条波导436上集成波导型反射结构的方式来实现,此时所述反射元件410即可由所述波导436上的波导型反射结构构成),所述第一光束经所述输入耦合器431分配到各条波导436上,并在所述波导436中传输后到达所述反射元件410,经所述反射元件410反射后,再次到达所述输入耦合器431,并输出所述第二光束,即此时所述输入耦合器431同时起到了输入耦合器和输出耦合器的作用。
请一并参阅图1至图9,工作时,所述增益介质40在一泵浦源的泵浦下,发射一包含有多个波长(或连续波长)的第一光束,所述第一波束经所述输入耦合器31衍射至所述阵列波导光栅30的第一阵列波导区33及第二阵列波导区34,所述第一阵列波导区33内的第一波导331具有第一光程差n1*ΔL1,所述第二阵列波导区34内的第二波导341具有第二光程差为n2*ΔL2,所述第一阵列波导区33输出由所述第一光程差n1*ΔL1决定的多个透射峰,所述第二阵列波导区34输出由所述第二光程差为n2*ΔL2决定的多个透射峰,从而所述输 出波导35输出所述第一阵列波导区33与所述第二阵列波导区34输出的多个透射峰中波长重合的透射峰值,即所述第二光束的波长为重合的透射峰的波长。所述第二光束在所述反射元件10及透射元件20构成的谐振腔内往返传播,并且在传播过程中经过所述阵列波导光栅30、增益介质40及调相器50。当所述第二光束在所述谐振腔内同时满足所述振幅条件和所述相位条件时,所述第二光束可在所述谐振腔内稳定传输,并持续输出所述输出光。当需要改变所述第二光束的波长时,只需通过在所述第一电极37及第二电极38上加载所需的电压或电压,即可改变所述第一阵列波导区33的各个波导331及第二阵列波导区34的各个波导341的折射率,即等效于调节所述第一光程差n1*ΔL1及第二光程差为n2*ΔL2,进而改变所述透射峰的波长分布,从而改变所述第二光束的波长,实现了所述第二光束的波长可调的效果。
需要说明的是,本发明实施例中的各个器件,如所述反射元件10、所述反射透射元件20、阵列波导光栅30、增益介质40及调相器50可制作在所述平面光波导上,也可是独立的光学器件,还可以是部分制作于平面光波导上,部分采用独立的光学器件,这些方案均在本发明的保护范围之内。
综上所述,本发明实施例提供的可调谐激光器1000,通过设计一个包括两个长度差的波导阵列光栅30,实现了对输入的所述第一光束的解复用或滤波,以输出一仅包含一种波长的第二光束,所述第二光束的波长还可通过蒸镀或者溅射于所述波导阵列光栅30上的第一电极37和第二电极38进行调节,实现了波长连续可调的效果。本发明提供的可调谐激光器1000,由于可整体制作与一平面光波导100上,因而具有集成度高、体积小、波长调整范围大且对工艺制作要求不高等优点,满足了大容量高速光传输及新一代光器件的使用要求。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (11)

  1. 一种阵列波导光栅,包括输入耦合器,其特征在于,所述阵列波导光栅还包括第一阵列波导区及第二阵列波导区,所述第一阵列波导区包括多个第一波导,且相邻的所述第一波导具有第一光程差,所述第二阵列波导区包括多个第二波导,且相邻的所述第二波导具有第二光程差,其中,所述第一光程差不等于所述第二光程差。
  2. 根据权利要求1所述的阵列波导光栅,其特征在于,所述阵列波导光栅还包括第一电极,所述第一电极与所述多个第一波导电性连接,所述第一电极用于对所述多个第一波导施加电压,以调制所述第一光程差。
  3. 根据权利要求1或2所述的阵列波导光栅,其特征在于,所述阵列波导光栅还包括第二电极,所述第二电极与所述多个第二波导电性连接,所述第二电极用于对所述多个第二波导施加电压,以调制所述第二光程差。
  4. 一种可调谐激光器,包括反射元件、反射透射元件及增益介质,其特征在于,还包括如权利要求1至3任意一项所述的阵列波导光栅,所述阵列波导光栅及所述增益介质设置于所述反射元件及所述反射透射元件之间。
  5. 根据权利要求4所述的可调谐激光器,其特征在于,所述阵列波导光栅的多个第一波导及多个第二波导的一端设置于所述反射元件上,另一端与所述输入耦合器耦合,所述第一光束经所述输入耦合器分配到所述多个第一波导及多个第二波导中传输,并被所述反射元件反射至所述输入耦合器后,生成所述第二光束,所述输入耦合器输出所述第二光束。
  6. 根据权利要求5所述的可调谐激光器,其特征在于,所述反射元件由在所述多个第一波导及多个第二波导上集成的波导型反射结构构成。
  7. 根据权利要求4所述的可调谐激光器,其特征在于,所述阵列波导光栅还包括输出耦合器,所述阵列波导光栅的多个第一波导及多个第二波导的一端与所述输出耦合器耦合,另一端与所述输入耦合器耦合。
  8. 根据权利要求4至7任意一项所述的可调谐激光器,其特征在于,所述可调谐激光器还包括调相器,所述调相器设置于所述反射元件与所述反射透射元件之间。
  9. 根据权利要求8所述的可调谐激光器,其特征在于,所述调相器通过 在所述第一平面光波导上覆盖金属电极,并通过在金属电极上施加电流改变所述第一平面光波导的折射率获得;或者,
    所述调相器通过在所述第一平面光波导上覆盖金属电极,并通过在所述金属电极上施加电流改变掺杂、制作在所述调相器上的预定的调相材料的折射率获得。
  10. 根据权利要求8或9所述的可调谐激光器,其特征在于,所述可调谐激光器还包括第二平面光波导,所述增益介质及所述反射元件制作于所述第二平面光波导上,所述阵列波导光栅、调相器及所述反射透射元件制作于所述第一平面光波导上;或者,
    所述增益介质及所述反射透射元件制作于所述第二平面光波导上,所述阵列波导光栅、调相器及反射元件制作于所述第一平面光波导上。
  11. 根据权利要求10所述的可调谐激光器,其特征在于,所述第一平面光波导及所述第二平面光波导之间设置有透镜。
PCT/CN2014/087551 2014-09-26 2014-09-26 阵列波导光栅及具有该阵列波导光栅的可调谐激光器 WO2016045087A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480077957.4A CN106461874B (zh) 2014-09-26 2014-09-26 阵列波导光栅及具有该阵列波导光栅的可调谐激光器
PCT/CN2014/087551 WO2016045087A1 (zh) 2014-09-26 2014-09-26 阵列波导光栅及具有该阵列波导光栅的可调谐激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087551 WO2016045087A1 (zh) 2014-09-26 2014-09-26 阵列波导光栅及具有该阵列波导光栅的可调谐激光器

Publications (1)

Publication Number Publication Date
WO2016045087A1 true WO2016045087A1 (zh) 2016-03-31

Family

ID=55580134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087551 WO2016045087A1 (zh) 2014-09-26 2014-09-26 阵列波导光栅及具有该阵列波导光栅的可调谐激光器

Country Status (2)

Country Link
CN (1) CN106461874B (zh)
WO (1) WO2016045087A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2547467A (en) * 2016-02-19 2017-08-23 Rockley Photonics Ltd Tunable laser
US9871344B2 (en) 2014-09-02 2018-01-16 Huawei Technologies Co., Ltd. Tunable laser and method for tuning a lasing mode
CN110662955A (zh) * 2016-12-26 2020-01-07 原子能和替代能源委员会 一种用于观察由物体反向散射的辐射的方法和装置
US10594109B2 (en) 2016-02-19 2020-03-17 Rockley Photonics Limited Discrete wavelength tunable laser
US11699892B2 (en) 2016-02-19 2023-07-11 Rockley Photonics Limited Discrete wavelength tunable laser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284964B (zh) * 2021-04-22 2022-06-24 北京邮电大学 一种导模光电探测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083341A (ja) * 1999-09-13 2001-03-30 Furukawa Electric Co Ltd:The アレイ導波路型回折格子
WO2007123157A1 (ja) * 2006-04-20 2007-11-01 National University Corporation Nagoya University 波長群光分波器、波長群光合波器、および波長群光選択スイッチ
EP1881572A1 (en) * 2006-07-18 2008-01-23 Electronics and Telecommunications Research Institute Long cavity single-mode laser diode
CN102204037A (zh) * 2011-05-10 2011-09-28 华为技术有限公司 自注入激光器、波分复用无源光网络系统及光线路终端
US20130011098A1 (en) * 2011-07-06 2013-01-10 Infinera Corporation Wide passband awg
CN103091783A (zh) * 2013-01-25 2013-05-08 华中科技大学 一种基于液晶波导的可调谐阵列波导光栅

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201159783Y (zh) * 2008-01-07 2008-12-03 浙江大学 偏振不敏感阵列波导光栅

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083341A (ja) * 1999-09-13 2001-03-30 Furukawa Electric Co Ltd:The アレイ導波路型回折格子
WO2007123157A1 (ja) * 2006-04-20 2007-11-01 National University Corporation Nagoya University 波長群光分波器、波長群光合波器、および波長群光選択スイッチ
EP1881572A1 (en) * 2006-07-18 2008-01-23 Electronics and Telecommunications Research Institute Long cavity single-mode laser diode
CN102204037A (zh) * 2011-05-10 2011-09-28 华为技术有限公司 自注入激光器、波分复用无源光网络系统及光线路终端
US20130011098A1 (en) * 2011-07-06 2013-01-10 Infinera Corporation Wide passband awg
CN103091783A (zh) * 2013-01-25 2013-05-08 华中科技大学 一种基于液晶波导的可调谐阵列波导光栅

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9871344B2 (en) 2014-09-02 2018-01-16 Huawei Technologies Co., Ltd. Tunable laser and method for tuning a lasing mode
GB2547467A (en) * 2016-02-19 2017-08-23 Rockley Photonics Ltd Tunable laser
US10594109B2 (en) 2016-02-19 2020-03-17 Rockley Photonics Limited Discrete wavelength tunable laser
US11177627B2 (en) 2016-02-19 2021-11-16 Rockley Photonics Limited Tunable laser
US11699892B2 (en) 2016-02-19 2023-07-11 Rockley Photonics Limited Discrete wavelength tunable laser
CN110662955A (zh) * 2016-12-26 2020-01-07 原子能和替代能源委员会 一种用于观察由物体反向散射的辐射的方法和装置

Also Published As

Publication number Publication date
CN106461874B (zh) 2019-09-27
CN106461874A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2016045087A1 (zh) 阵列波导光栅及具有该阵列波导光栅的可调谐激光器
US9575256B2 (en) Optical reflector based on a directional coupler and a coupled optical loop
US10205299B2 (en) External cavity laser comprising a photonic crystal resonator
US8885677B1 (en) Semiconductor external cavity laser with integrated planar waveguide bragg grating and wide-bandwidth frequency modulation
US20070071061A1 (en) Tunable resonant grating filters
WO2013114577A1 (ja) レーザ素子
US10126501B2 (en) Tunable reflectors based on multi-cavity interference
US9020351B1 (en) Method and system for multiplexing optical communication signals
EP3703202B1 (en) Tunable laser device and laser transmitter
CN107407776B (zh) 高折射率对比度光子器件及其应用
US6967976B2 (en) Laser with reflective etalon tuning element
EP2905851B1 (en) Optical lasing device and method for generating a lasing mode in such device
JP2013156512A (ja) グレーティング素子及び光素子
US7437037B2 (en) Optical module having gain member and partial reflection section waveguides formed on a substrate
US11733455B2 (en) Amplitude and phase light modulator based on miniature optical resonators
US6959023B1 (en) Laser with reflective etalon tuning element
CN115668016A (zh) 用于量子应用的光子对源
US20060056465A1 (en) Laser with reflective etalon tuning element
Yi-Yan et al. Two-dimensional grating unit cell demultiplexer for thin-film optical waveguides
Yao et al. A CMOS-compatible low back reflection grating coupler for on-chip laser sources integration
JP2013156517A (ja) グレーティング素子及び光素子
CN109687275A (zh) 一种波长可调谐外腔激光器
US7075955B2 (en) Integrated narrow-line tunable optical parametric oscillator
Hao Dual-Wavelength Polarization Independent Grating Coupler Design Based on Silicon-on-Insulator
CN114583541A (zh) 混合集成激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902809

Country of ref document: EP

Kind code of ref document: A1