WO2007122239A1 - Use of a ziegler-natta catalyst to make a polypropylene homopolymer or random copolymer having a high melt flow rate - Google Patents
Use of a ziegler-natta catalyst to make a polypropylene homopolymer or random copolymer having a high melt flow rate Download PDFInfo
- Publication number
- WO2007122239A1 WO2007122239A1 PCT/EP2007/054005 EP2007054005W WO2007122239A1 WO 2007122239 A1 WO2007122239 A1 WO 2007122239A1 EP 2007054005 W EP2007054005 W EP 2007054005W WO 2007122239 A1 WO2007122239 A1 WO 2007122239A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process according
- melt flow
- propylene polymer
- propylene
- article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/642—Component covered by group C08F4/64 with an organo-aluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/647—Catalysts containing a specific non-metal or metal-free compound
- C08F4/649—Catalysts containing a specific non-metal or metal-free compound organic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
Definitions
- the present invention relates to a process for the production of a high melt flow propylene homopolymer or random copolymer with low odor and low volatiles content, which is suitable for thin-walled injection molding applications.
- Polyolefins are well known commercial polymers, which are used for a variety of molded and extruded articles.
- polypropylene has become widely used in the field of thin-walled injection molding applications.
- polypropylenes of high fluidity i.e. of a melt flow index higher than 40 dg/min, are employed.
- Such polypropylenes allow the production of articles with very thin walls, high flow length/thickness ratios and complex geometries. They also allow the reduction of injection temperatures and pressures, thus leading to an increase in production speed and savings in energy and cost.
- Polypropylenes are produced by the polymerization of propylene and one or more optional comonomers in presence of Ziegler-Natta catalysts, i.e. transition coordination catalysts, specifically titanium halide containing catalysts, or single site catalysts.
- Ziegler-Natta catalysts i.e. transition coordination catalysts, specifically titanium halide containing catalysts, or single site catalysts.
- Such catalysts also contain internal electron donors, with phthalates being widely used.
- Ziegler-Natta catalysts with a phthalate as internal donor do not allow the direct production of polypropylenes with high melt flows, i.e. from 40 to 150 dg/min, without at least significant production penalties.
- An alternative route to such high melt flow polypropylenes is provided by visbreaking, in which usually an organic peroxide is mixed and heated together with the polypropylene, in consequence leading to a breakdown of the polymer chains.
- WO 2004-113438 relates to a process for making visbroken olefin polymers comprising: a) preparing an olefin polymer mixture comprising: I. about 0.5 to about 90.0% by weight of a reactive, peroxide-containing olefin polymer material (A); and II. about 10.0 to about 99.5% by weight of an olefin polymer material (B) selected from a propylene polymer material and a butene-1 polymer material; wherein the sum of components I + Il is equal to 100 wt%; b) extruding or compounding in molten state the olefin polymer mixture, thereby producing a melt mixture; and optionally c) pelletizing the melt mixture after it is cooled.
- WO 02/096986 is similar to the previous one. It describes a polypropylene resin composition comprising (A) 99.8 to 80 weight parts of a polypropylene resin having a melt flow rate of 0.1 to 50 dg/min and (B) 0.2 to 20 weight parts of an olefin copolymer rubber having an intrinsic viscosity of 0.5 to 4.0 dl/g and/or a polyethylene resin having a density of 0.895 to 0.945 g/cc and a melt flow rate of 0.05 to 15 dg/min, which have undergone an ionization ray-irradiation treatment and/or a treatment of adding 0.05 to 5 weight parts of an organic peroxide to 100 weight parts of the aforesaid polypropylene resin composition comprising (A) and (B) and then melting.
- the present invention relates to a process for the production of propylene polymers having a melt flow index ranging from 45 to 150 dg/min (ASTM D 1238 condition L) directly in a polymerization reactor without the subsequent use of melt flow increasing agents, said process comprising the step of polymerizing propylene and one or more comonomers in presence of a a Ziegler-Natta catalyst comprising a titanium compound having at least one titanium-halogen bond, and a diether compound as internal electron donor, both supported on a magnesium halide in active form, an organoaluminium compound in such an amount that the aluminium concentration, by weight relative to the added monomer(s), in the polymerization medium ranges from 1 to 75 ppm, an external electron donor, and - hydrogen wherein the molar ratio of organoaluminium compound to external electron donor ranges from 1 to 20.
- the present invention relates to a process for producing a article comprising the steps of
- the present invention also relates to the propylene polymer made by said process as well as the articles obtained by transformation of said propylene polymer.
- the high melt flow polypropylenes of the present invention have the following advantages:
- the polymerization of propylene and one or more optional comonomers is performed in presence of a Ziegler-Natta catalyst, an organoaluminium compound and an optional external donor.
- the Ziegler-Natta catalyst comprises a titanium compound having at least one titanium-halogen bond, and an internal donor, both supported on magnesium halide in active form.
- the internal donor of the Ziegler-Natta catalyst is a diether or comprises a diether together with a different internal donor, provided that the Ziegler-Natta catalyst comprising such a mixture of internal donors shows comparable polymerization behavior as a Ziegler-Natta catalyst with only diether as internal donor.
- a mixture of internal donors could for example comprise a diether and a phthalate.
- Ziegler-Natta catalysts comprising a diether as internal donor are well-known in the art and can for example be obtained by reaction of an anhydrous magnesium halide with an alcohol, followed by titanation with a titanium halide and reaction with a diether compound as internal donor.
- a catalyst comprises about 2.5 - 7.5 wt% of titanium, about 10 - 20 wt% of magnesium and about 5 - 30 wt% of internal donor with chlorine and solvent making up the remainder.
- diethers are 2-methyl-2-isopropyl-1 ,3- dimethoxypropane; 2,2-diisobutyl-1 ,3-dimethoxypropane; 2-isopropyl-2-cyclo- pentyl-1 ,3-dimethoxypropane; 2-isopropyl-2-isoamyl-1 ,3-dimethoxypropane; 9,9-bis(methoxymethyl)fluorene.
- Ziegler-Natta catalysts comprising a diether as internal donor are for example commercially available from Basell under the Avant ZN tradename.
- the organoaluminium compound is advantageously an Al-alkyl compound of the Al-trialkyls family, such as Al-triethyl, Al-triisobutyl, Al-tri-n-butyl, and linear or cyclic Al-alkyl compounds containing two or more Al atoms bonded to each other by way of O or N atoms, or SO 4 or SO3 groups.
- Al-triethyl is preferred.
- Suitable external donors include certain silanes, ethers, esters, amines, ketones and heterocyclic compounds. It is preferred to use a 1 ,3-diether as described above or a silane. It is most preferred to use silanes of the general formula
- R a , R b and R c can be chosen independently from one another and can be the same or different. Specific examples of such silanes are (tert-butyl) 2 Si(OCH 3 )2, (cyclohexyl)(methyl)
- a Ziegler-Natta catalyst with a diether as internal donor can be used to produce high melt flow polypropylenes without loss in production rate if the polymerization conditions are suitably modified.
- the polymerization of propylene and one or more optional comonomers can be carried out according to known techniques.
- the polymerization can for example be carried out in liquid propylene as reaction medium. It can also be carried out in a diluent, such as an inert hydrocarbon (slurry polymerization) or in the gas phase.
- the polymerization is preferably carried out in liquid propylene at temperatures in the range from 20 0 C to 100 0 C.
- temperatures are in the range from 60°C to 80 0 C.
- the pressure can be atmospheric or higher. It is preferably between 25 and 50 bar.
- the molecular weight of the polymer chains, and in consequence of the melt flow of the polypropylene, is regulated by adding hydrogen.
- the Al concentration in the polymerization medium is advantageously reduced.
- the upper limit for the Al concentration, by weight relative to the added monomer(s), in the polymerization medium is 75 ppm, preferably 50 ppm, more preferably 25 ppm, even more preferably 20 ppm, still more preferably 15 ppm, and most preferably 12 ppm.
- the lower limit for the Al conentration, by weight in the polymerization medium is 1 ppm, preferably 2 ppm, more preferably 4 ppm, even more preferably 5 ppm, still more preferably 6 ppm, and most preferably 7 ppm.
- the molar ratio of organoaluminium compound to external donor ranges advantageously between 1 and 20.
- the upper limit of the AI/ED ratio is preferably 15, more preferably 10 and most preferably 8.
- the lower limit of the AI/ED ratio is preferably 3, and more preferably 5.
- the production rate of the polymerization of the present invention is equal to or higher than 500 kg of propylene polymer per g titanium. Preferably, it is higher than 750 kg, more preferably higher than 1000 kg, even more preferably higher than 1250 kg of propylene polymer per g titanium.
- the MFI (ASTM D 1238 condition L) of the polypropylenes produced according to the present invention is between 45 to 150.
- the lower value is at least 50, preferably 55, more preferably 60, still more preferably 65, more preferably 70.
- the upper value is 120, preferably 100, more preferably 90.
- the MFI range is any combination of previous lower values and upper values. The MFI is adjusted as a function of hydrogen in the polymerization medium.
- the propylene polymers with high melt flow are directly obtained in the polymerization reaction without subsequent degradation with peroxydes or other melt flow increasing agents, i.e. no melt flow increasing agents are added to the propylene polymer once it has left the polymerization reactor.
- the polymer of the invention is a random copolymer of propylene and one or more comonomers, such as for example alpha-olefins different from propylene, such as ethylene, 1-butene, 1-pentene, 1-hexene and 1-octene.
- the comonomer content is advantageously comprised, by weight, between 2 wt% and 6 wt%, preferably between 2.5 wt% and 5 wt%.
- Ethylene is the preferred comonomer.
- the ethylene content is advantageously comprised, by weight, between 2 wt% and 6 wt%, preferably between 2.5 wt% and 5 wt%.
- the xylene soluble fraction of the random copolymer according to the present comprises less than 10 wt% (with respect to the total random copolymer weight), advantageously between 5 and 8%.
- the propylene polymers produced in accordance with the present invention have a molecular weight distribution in the range from 4 to 7.
- the propylene polymers produced in accordance with the present invention show a high randomness of ethylene insertion.
- the average block length of ethylene blocks is equal to or less than 1.5 ethylene units, preferably equal to or less than 1.3 ethylene units, more preferably equal to or less than 1.2 ethylene units.
- the percentage of ethylene molecules incorporated into the polymer chain as single units is higher than 50 %, preferably higher than 60 %, even more preferably higher than 70 % and most preferably higher than 80 %.
- the isotacticity of the propylene polymers is higher than 95 % mmmm-pentades (as measured by NMR-spectroscopy), preferably higher than 96 %, more preferably higher than 97 %, even more preferably higher than 98 %.
- the polypropylene is separated from the reaction medium (liquid propylene or hydrocarbon such as, by way of example, isohexane) and unreacted gases (propylene, hydrogene and optionally alpha olefine) recovered as a powder and optionally converted to pellets.
- reaction medium liquid propylene or hydrocarbon such as, by way of example, isohexane
- unreacted gases propylene, hydrogene and optionally alpha olefine
- the polypropylene may contain additives such as, by way of example, antioxidants, light stabilizers, acid scavengers, lubricants, antistatic additives, nucleating/clarifying agents, colorants.
- additives such as, by way of example, antioxidants, light stabilizers, acid scavengers, lubricants, antistatic additives, nucleating/clarifying agents, colorants.
- the polypropylenes produced according to the present invention may be nucleated and/or clarified. They are characterised by excellent transparency.
- An overview of suitable nucleating and clarifying agents can be found in Plastics Additives Handbook, ed. H. Zweifel, 5 th edition, 2001 , Hanser Publishers, pages 949-971.
- suitable nucleating and/or clarifying agents are dibenzylidene sorbitol compounds, benzoate salts, talc, metal salts of cyclic phosphoric esters, disodium bicyclo[2.2.1]heptanedicarboxylate, or any blend of these.
- the propylene polymers obtained by the process of the present invention may be transformed into articles by a transformation method selected from the group consisting of selected from the group comprising injection molding, compression molding, injection blow molding and injection stretch blow molding, Preferably the method of transformation is injection molding.
- the articles of the present invention are selected from the group consisting of food or non-food packaging, retort packaging, housewares, cap, closure, media packaging, a medical device and pharmacopoeia package. They can also contain one or more living hinges.
- the propylene polymers are especially suited for articles with a flow length to wall thickness ratio equal to or higher than 50, preferably equal to or higher than 100, more preferably equal to or higher than 200, even more preferably equal to or higher than 250, and most preferably equal to or higher than 300.
- the articles into which the propylene polymers are transformed have a wall thickness in the range from 100 ⁇ m to 2 mm.
- the lower limit for thickness is 200 ⁇ m, more preferably it is 250 ⁇ m.
- the upper limit for thickness is 1.5 mm, even more preferably it is 1.0 mm.
- the articles may also be transparent with a haze value of equal to or less than 40 %, preferably equal to or less than 20 %, based on a thickness of 1 mm and measured on injection-molded test specimens.
- Flexural modulus was measured according to ISO 178:2001 , Izod impact strength according to ISO 180:2000.
- the melt flow (MFI) is measured according to norm ASTM D 1238, condition L.
- Haze is measured on injection-molded test specimens of 1 mm thickness. The measurement is done according to standard method.
- the polymerizations were conducted either in a pilot plant loop reactor (examples 1 and 3) or in a commercial scale loop reactor (examples 2 and 4) in liquid propylene.
- Polymerization conditions and polymer properties are given in table I. All examples were conducted using Avant ZN 126 M, a Ziegler-Natta catalyst with a diether as internal donor purchased from Basell, as polymerization catalyst.
- the temperature given in table I designates the temperature of the polymerization medium.
- External donor C denotes (cyclohexyl)(methyl) Si(OCH 3 ⁇ . Hydrogen in appropriate concentrations was used for melt flow control.
- Xylene solubles are determined as follows: Between 4.5 and 5.5 g of polypropylene are weighed into a flask and 300 ml xylene are added. The xylene is heated under stirring to reflux for 45 minutes. Stirring is continued for 15 minutes exactly without heating. The flask is then placed in a thermostat bath set to 25°C +/- 1 °C for 1 hour. The solution is filtered through Whatman n° 4 filter paper and exactly 100 ml of solvent are collected. The solvent is then evaporated and the residue dried and weighed. The percentage of xylene solubles ("XS”) is then calculated according to
- the content of volatiles in the polymer was determined as follows: Polymer samples were heated in an oven to 150 0 C. Organic volatiles were purged from the oven through a Tenax absorber tube kept at -30 0 C. The organic volatiles are then injected into a gas chromatograph by reheating the absorber cartridge to 240 0 C. Analysis of the volatiles was performed on a gas chromatograph under respective standard conditions.
- Example 4 The polypropylene of example 4 was analysed for organic volatiles and compared to a prior art random copolymer of melt flow 40 dg/min, designated as example 5, which was produced by visbreaking with an organic peroxyde, and also a random copolymer of melt flow 40 produced according to the present invention, i.e. without visbreaking, designated as example 6. Results are shown in table II.
- n.d. not detected, i.e. below the detection limit of 0.5 ppm.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Wrappers (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020087025728A KR101085797B1 (ko) | 2006-04-24 | 2007-04-24 | 고 용융 유동 속도를 갖는 폴리프로필렌 동종중합체 또는 랜덤 공중합체를 제조하기 위한 지글러-나타 촉매의 용도 |
| US12/298,063 US7772338B2 (en) | 2006-04-24 | 2007-04-24 | Use of a Ziegler-Natta catalyst to make a polypropylene homopolymer or random copolymer having a high melt flow rate |
| ES07728461.0T ES2545773T3 (es) | 2006-04-24 | 2007-04-24 | Uso de un catalizador Ziegler-Natta para producir un copolímero aleatorio de polipropileno con elevada velocidad de flujo del fundido |
| DK07728461.0T DK2013249T3 (en) | 2006-04-24 | 2007-04-24 | Using a Ziegler-Natta catalyst to produce a polypropylene homopolymer or a random copolymer having a high melt index |
| JP2009507065A JP5394231B2 (ja) | 2006-04-24 | 2007-04-24 | 高い溶融流動性を有するプロピレンの単独重合体またはランダム共重合体の製造でのチーグラー‐ナッタ触媒の使用 |
| EP07728461.0A EP2013249B1 (en) | 2006-04-24 | 2007-04-24 | Use of a ziegler-natta catalyst to make a polypropylene random copolymer having a high melt flow rate |
| PL07728461T PL2013249T3 (pl) | 2006-04-24 | 2007-04-24 | Użycie katalizatora Zieglera-Natty do wytwarzania losowego kopolimeru polipropylenowego o wysokim współczynniku szybkości płynięcia |
| CN2007800149565A CN101432321B (zh) | 2006-04-24 | 2007-04-24 | 使用齐格勒-纳塔催化剂制造具有高熔体流动速率的聚丙烯均聚物或无规共聚物 |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP06113011A EP1857475A1 (en) | 2006-04-24 | 2006-04-24 | Use of Ziegler-Natta catalyst to make a polypropylene homopolymer or random copolymer having a high melt flow rate |
| EP06113011.8 | 2006-04-24 | ||
| EP06122764.1 | 2006-10-23 | ||
| EP06122764A EP1916264A1 (en) | 2006-10-23 | 2006-10-23 | Process for the production of propylene polymers having a low ash content |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2007122239A1 true WO2007122239A1 (en) | 2007-11-01 |
Family
ID=38441921
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2007/054005 Ceased WO2007122239A1 (en) | 2006-04-24 | 2007-04-24 | Use of a ziegler-natta catalyst to make a polypropylene homopolymer or random copolymer having a high melt flow rate |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US7772338B2 (enExample) |
| EP (1) | EP2013249B1 (enExample) |
| JP (1) | JP5394231B2 (enExample) |
| KR (1) | KR101085797B1 (enExample) |
| DK (1) | DK2013249T3 (enExample) |
| ES (1) | ES2545773T3 (enExample) |
| PL (1) | PL2013249T3 (enExample) |
| WO (1) | WO2007122239A1 (enExample) |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2147939A1 (en) * | 2008-07-22 | 2010-01-27 | Borealis AG | Polypropylene composition with improved optics for film and moulding applications |
| WO2010100098A1 (en) | 2009-03-02 | 2010-09-10 | Borealis Ag | Process for the production of propylene random copolymers for injection moulding applications |
| EP2439238A1 (en) | 2010-10-06 | 2012-04-11 | Borealis AG | Polypropylene with living hinge properties |
| JP2012530170A (ja) * | 2009-06-19 | 2012-11-29 | バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ | 耐衝撃性プロピレンポリマー組成物の製造方法 |
| EP2610274A1 (en) * | 2011-12-30 | 2013-07-03 | Borealis AG | Propylene random copolymer |
| WO2014187687A1 (en) * | 2013-05-22 | 2014-11-27 | Borealis Ag | Propylene copolymer for thin-wall packaging |
| WO2015075088A1 (en) * | 2013-11-22 | 2015-05-28 | Borealis Ag | Low emission propylene homopolymer with high melt flow |
| WO2015075054A1 (en) * | 2013-11-22 | 2015-05-28 | Borealis Ag | Low emission propylene homopolymer |
| EP2898017B1 (en) | 2012-09-19 | 2017-03-29 | Ineos Europe AG | Propylene-ethylene random copolymer |
| US9637602B2 (en) | 2013-12-18 | 2017-05-02 | Borealis Ag | BOPP film with improved stiffness/toughness balance |
| US9670347B2 (en) | 2013-08-14 | 2017-06-06 | Borealis Ag | Propylene composition with improved impact resistance at low temperature |
| US9670293B2 (en) | 2013-10-29 | 2017-06-06 | Borealis Ag | Solid single site catalysts with high polymerisation activity |
| US9708481B2 (en) | 2013-10-24 | 2017-07-18 | Borealis Ag | Blow molded article based on bimodal random copolymer |
| US9777142B2 (en) | 2013-08-21 | 2017-10-03 | Borealis Ag | High flow polyolefin composition with high stiffness and toughness |
| US9802394B2 (en) | 2013-10-11 | 2017-10-31 | Borealis Ag | Machine direction oriented film for labels |
| US9828698B2 (en) | 2013-12-04 | 2017-11-28 | Borealis Ag | Phthalate-free PP homopolymers for meltblown fibers |
| US9890275B2 (en) | 2013-08-21 | 2018-02-13 | Borealis Ag | High flow polyolefin composition with high stiffness and toughness |
| US10030109B2 (en) | 2014-02-14 | 2018-07-24 | Borealis Ag | Polypropylene composite |
| US10040930B2 (en) | 2013-09-27 | 2018-08-07 | Abu Dhabi Polymers Co. Ltd (Borouge) Llc. | Polymer composition with high XS, high Tm suitable for BOPP processing |
| US10100185B2 (en) | 2014-02-06 | 2018-10-16 | Borealis Ag | Soft copolymers with high impact strength |
| US10100186B2 (en) | 2014-02-06 | 2018-10-16 | Borealis Ag | Soft and transparent impact copolymers |
| US10227427B2 (en) | 2014-01-17 | 2019-03-12 | Borealis Ag | Process for preparing propylene/1-butene copolymers |
| US10450451B2 (en) | 2014-05-20 | 2019-10-22 | Borealis Ag | Polypropylene composition for automotive interior applications |
| US10519259B2 (en) | 2013-10-24 | 2019-12-31 | Borealis Ag | Low melting PP homopolymer with high content of regioerrors and high molecular weight |
| EP3802639A4 (en) * | 2018-06-11 | 2022-06-15 | W. R. Grace & Co.-Conn. | RANDOM PROPYLENE-ETHYLENE COPOLYMERS WITH LOW XS/ET RATIO AND HIGH MFR |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104736627B (zh) * | 2012-10-03 | 2018-04-17 | 胜亚诺盟股份有限公司 | 蒸煮膜用丙烯树脂组合物 |
| US9522968B2 (en) | 2012-11-26 | 2016-12-20 | Lummus Novolen Technology Gmbh | High performance Ziegler-Natta catalyst systems, process for producing such MgCl2 based catalysts and use thereof |
| US9481741B2 (en) | 2012-11-26 | 2016-11-01 | Lummus Novolen Technology Gmbh | High performance Ziegler-Natta catalyst systems, process for producing such supported catalysts and use thereof |
| BR112015030327B1 (pt) * | 2013-06-03 | 2020-12-01 | Lummus Novolen Technology Gmbh | sistema de catalisador útil para a polimerização de propileno ou copolímeros de propileno, processos para a produção de tais sistemas catalisadores, e polímero obtido |
| US9217049B2 (en) | 2013-11-19 | 2015-12-22 | Chevron Phillips Chemical Company Lp | Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution |
| US9303109B2 (en) | 2013-11-19 | 2016-04-05 | Chevron Phillips Chemical Company Lp | Catalyst systems containing boron-bridged cyclopentadienyl-fluorenyl metallocene compounds with an alkenyl substituent |
| US9540465B2 (en) | 2013-11-19 | 2017-01-10 | Chevron Phillips Chemical Company Lp | Boron-bridged metallocene catalyst systems and polymers produced therefrom |
| US9303110B2 (en) | 2013-11-19 | 2016-04-05 | Chevron Phillips Chemical Company Lp | Boron-bridged bis-indenyl metallocene catalyst systems and polymers produced therefrom |
| KR101621001B1 (ko) | 2014-11-28 | 2016-05-13 | 롯데케미칼 주식회사 | 폴리올레핀 중합용 촉매 조성물, 고체 촉매의 제조방법, 및 이를 이용한 폴리올레핀의 제조방법 |
| CN108026680B (zh) * | 2015-10-02 | 2020-12-08 | 博里利斯股份公司 | 具有改进性能的熔喷网 |
| US10883197B2 (en) | 2016-01-12 | 2021-01-05 | Chevron Phillips Chemical Company Lp | High melt flow polypropylene homopolymers for fiber applications |
| CN110248968B (zh) | 2016-12-12 | 2022-05-27 | Sabic环球技术有限责任公司 | 制造低排放均聚物或无规聚丙烯的方法 |
| WO2019241063A1 (en) * | 2018-06-11 | 2019-12-19 | W.R. Grace & Co.-Conn. | Propylene-ethylene copolymer compositions suitable for hot fill packaging of foodstuffs |
| US20230143086A1 (en) * | 2021-11-05 | 2023-05-11 | Formosa Plastics Corporation, Usa | Catalyst components for the preparation of highly isotactactic polypropylene polymer with broad molecular weight distribution |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0903356A1 (en) * | 1996-05-27 | 1999-03-24 | Mitsui Chemicals, Inc. | Crystalline polypropylene, process for preparing the same, polypropylene composition, and thermoformed article |
| EP1223181A2 (en) * | 2001-01-12 | 2002-07-17 | Fina Technology, Inc. | Production of ultra high melt flow polypropylene resins |
| US20030027715A1 (en) * | 2000-11-29 | 2003-02-06 | Masaki Fushimi | Catalyst for the polymerization of olefins |
| WO2003085006A1 (en) * | 2002-04-04 | 2003-10-16 | Mitsui Chemicals, Inc | Solid titanium catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for olefin polymerization |
| US20040229748A1 (en) * | 2003-02-24 | 2004-11-18 | China Petroleum & Chemical Corporation | Composite carrier of catalysts for propylene polymerization, a catalyst component and a catalyst comprising the same |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0309138A3 (en) | 1987-09-21 | 1991-08-07 | Exxon Chemical Patents Inc. | Random copolymer polypropylene container and method for producing the same |
| US6403708B2 (en) * | 1996-05-27 | 2002-06-11 | Mitsui Chemicals Inc | Crystalline polypropylenes, process for preparing thereof, polypropylene compositions, and thermoformed products |
| JPH11349747A (ja) * | 1998-06-05 | 1999-12-21 | Mitsubishi Chemical Corp | プロピレン系樹脂組成物 |
| US6476172B1 (en) | 2001-07-27 | 2002-11-05 | Fina Technology, Inc. | Metallocene catalyzed propylene-α-olefin random copolymer melt spun fibers |
| JP2004002742A (ja) * | 2002-04-04 | 2004-01-08 | Mitsui Chemicals Inc | オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法 |
-
2007
- 2007-04-24 PL PL07728461T patent/PL2013249T3/pl unknown
- 2007-04-24 DK DK07728461.0T patent/DK2013249T3/en active
- 2007-04-24 US US12/298,063 patent/US7772338B2/en active Active
- 2007-04-24 JP JP2009507065A patent/JP5394231B2/ja not_active Expired - Fee Related
- 2007-04-24 KR KR1020087025728A patent/KR101085797B1/ko active Active
- 2007-04-24 EP EP07728461.0A patent/EP2013249B1/en active Active
- 2007-04-24 WO PCT/EP2007/054005 patent/WO2007122239A1/en not_active Ceased
- 2007-04-24 ES ES07728461.0T patent/ES2545773T3/es active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0903356A1 (en) * | 1996-05-27 | 1999-03-24 | Mitsui Chemicals, Inc. | Crystalline polypropylene, process for preparing the same, polypropylene composition, and thermoformed article |
| US20030027715A1 (en) * | 2000-11-29 | 2003-02-06 | Masaki Fushimi | Catalyst for the polymerization of olefins |
| EP1223181A2 (en) * | 2001-01-12 | 2002-07-17 | Fina Technology, Inc. | Production of ultra high melt flow polypropylene resins |
| WO2003085006A1 (en) * | 2002-04-04 | 2003-10-16 | Mitsui Chemicals, Inc | Solid titanium catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for olefin polymerization |
| US20040229748A1 (en) * | 2003-02-24 | 2004-11-18 | China Petroleum & Chemical Corporation | Composite carrier of catalysts for propylene polymerization, a catalyst component and a catalyst comprising the same |
Non-Patent Citations (1)
| Title |
|---|
| CECCHIN G ET AL: "POLYPROPENE PRODUCT INNOVATION BY REACTOR GRANULE TECHNOLOGY", MACROMOLECULAR SYMPOSIA, WILEY VCH VERLAG, WEINHEIM, DE, no. 173, June 2001 (2001-06-01), pages 195 - 209, XP001104624, ISSN: 1022-1360 * |
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010009827A1 (en) * | 2008-07-22 | 2010-01-28 | Borealis Ag | Polypropylene composition with improved optics for film and moulding applications |
| US8476395B2 (en) | 2008-07-22 | 2013-07-02 | Borealis Ag | Polypropylene composition with improved optics for film and moulding applications |
| EP2147939A1 (en) * | 2008-07-22 | 2010-01-27 | Borealis AG | Polypropylene composition with improved optics for film and moulding applications |
| WO2010100098A1 (en) | 2009-03-02 | 2010-09-10 | Borealis Ag | Process for the production of propylene random copolymers for injection moulding applications |
| EP2403883B1 (en) * | 2009-03-02 | 2015-08-12 | Borealis AG | Process for the production of propylene random copolymers for injection moulding applications |
| US8822021B2 (en) | 2009-03-02 | 2014-09-02 | Borealis Ag | Process for the production of propylene random copolymers for injection moulding applications |
| US9068028B2 (en) | 2009-06-19 | 2015-06-30 | Basell Poliolefine Italia S.R.L. | Process for the preparation of impact resistant propylene polymer compositions |
| JP2012530170A (ja) * | 2009-06-19 | 2012-11-29 | バーゼル・ポリオレフィン・イタリア・ソチエタ・ア・レスポンサビリタ・リミタータ | 耐衝撃性プロピレンポリマー組成物の製造方法 |
| EP2439238A1 (en) | 2010-10-06 | 2012-04-11 | Borealis AG | Polypropylene with living hinge properties |
| WO2012045782A1 (en) | 2010-10-06 | 2012-04-12 | Borealis Ag | Polypropylene with living hinge properties |
| US10113021B2 (en) | 2011-12-30 | 2018-10-30 | Borealis Ag | Propylene random copolymer |
| WO2013098150A1 (en) * | 2011-12-30 | 2013-07-04 | Borealis Ag | Propylene random copolymer |
| EP2610274A1 (en) * | 2011-12-30 | 2013-07-03 | Borealis AG | Propylene random copolymer |
| EP2898017B1 (en) | 2012-09-19 | 2017-03-29 | Ineos Europe AG | Propylene-ethylene random copolymer |
| WO2014187687A1 (en) * | 2013-05-22 | 2014-11-27 | Borealis Ag | Propylene copolymer for thin-wall packaging |
| RU2652110C2 (ru) * | 2013-05-22 | 2018-04-25 | Бореалис Аг | Сополимер пропилена для тонкостенных упаковок |
| US9790300B2 (en) | 2013-05-22 | 2017-10-17 | Borealis Ag | Propylene copolymer for thin-wall packaging |
| EP2999721B1 (en) | 2013-05-22 | 2017-10-04 | Borealis AG | Propylene copolymer for thin-wall packaging |
| US9670347B2 (en) | 2013-08-14 | 2017-06-06 | Borealis Ag | Propylene composition with improved impact resistance at low temperature |
| US9890275B2 (en) | 2013-08-21 | 2018-02-13 | Borealis Ag | High flow polyolefin composition with high stiffness and toughness |
| US9777142B2 (en) | 2013-08-21 | 2017-10-03 | Borealis Ag | High flow polyolefin composition with high stiffness and toughness |
| US10040930B2 (en) | 2013-09-27 | 2018-08-07 | Abu Dhabi Polymers Co. Ltd (Borouge) Llc. | Polymer composition with high XS, high Tm suitable for BOPP processing |
| US9802394B2 (en) | 2013-10-11 | 2017-10-31 | Borealis Ag | Machine direction oriented film for labels |
| US10519259B2 (en) | 2013-10-24 | 2019-12-31 | Borealis Ag | Low melting PP homopolymer with high content of regioerrors and high molecular weight |
| US9708481B2 (en) | 2013-10-24 | 2017-07-18 | Borealis Ag | Blow molded article based on bimodal random copolymer |
| US9670293B2 (en) | 2013-10-29 | 2017-06-06 | Borealis Ag | Solid single site catalysts with high polymerisation activity |
| US9751962B2 (en) | 2013-11-22 | 2017-09-05 | Borealis Ag | Low emission propylene homopolymer with high melt flow |
| EA031527B1 (ru) * | 2013-11-22 | 2019-01-31 | Бореалис Аг | Гомополимер пропилена с низкой эмиссией и с высокой скоростью течения расплава |
| WO2015075088A1 (en) * | 2013-11-22 | 2015-05-28 | Borealis Ag | Low emission propylene homopolymer with high melt flow |
| CN105722872B (zh) * | 2013-11-22 | 2017-10-13 | 博里利斯股份公司 | 具有高熔体流动的低排放丙烯均聚物 |
| US9896524B2 (en) | 2013-11-22 | 2018-02-20 | Borealis Ag | Low emission propylene homopolymer |
| JP2016537462A (ja) * | 2013-11-22 | 2016-12-01 | ボレアリス・アクチェンゲゼルシャフトBorealis Ag | 高いメルトフローを有する低排出性プロピレンホモポリマー |
| EP3071607B1 (en) | 2013-11-22 | 2018-05-09 | Borealis AG | Low emission propylene homopolymer |
| EA031440B1 (ru) * | 2013-11-22 | 2019-01-31 | Бореалис Аг | Гомополимер пропилена с низкой эмиссией |
| CN105722872A (zh) * | 2013-11-22 | 2016-06-29 | 博里利斯股份公司 | 具有高熔体流动的低排放丙烯均聚物 |
| WO2015075054A1 (en) * | 2013-11-22 | 2015-05-28 | Borealis Ag | Low emission propylene homopolymer |
| US9828698B2 (en) | 2013-12-04 | 2017-11-28 | Borealis Ag | Phthalate-free PP homopolymers for meltblown fibers |
| US9637602B2 (en) | 2013-12-18 | 2017-05-02 | Borealis Ag | BOPP film with improved stiffness/toughness balance |
| US10227427B2 (en) | 2014-01-17 | 2019-03-12 | Borealis Ag | Process for preparing propylene/1-butene copolymers |
| US10100186B2 (en) | 2014-02-06 | 2018-10-16 | Borealis Ag | Soft and transparent impact copolymers |
| US10100185B2 (en) | 2014-02-06 | 2018-10-16 | Borealis Ag | Soft copolymers with high impact strength |
| US10030109B2 (en) | 2014-02-14 | 2018-07-24 | Borealis Ag | Polypropylene composite |
| US10450451B2 (en) | 2014-05-20 | 2019-10-22 | Borealis Ag | Polypropylene composition for automotive interior applications |
| EP3802639A4 (en) * | 2018-06-11 | 2022-06-15 | W. R. Grace & Co.-Conn. | RANDOM PROPYLENE-ETHYLENE COPOLYMERS WITH LOW XS/ET RATIO AND HIGH MFR |
| US11905347B2 (en) | 2018-06-11 | 2024-02-20 | W.R. Grace & Co .- Conn. | Propylene-ethylene random copolymers with low XS/ET ratio and high MFR |
Also Published As
| Publication number | Publication date |
|---|---|
| ES2545773T3 (es) | 2015-09-15 |
| DK2013249T3 (en) | 2015-09-07 |
| JP2009534512A (ja) | 2009-09-24 |
| KR20090005025A (ko) | 2009-01-12 |
| PL2013249T3 (pl) | 2015-11-30 |
| EP2013249B1 (en) | 2015-06-03 |
| EP2013249A1 (en) | 2009-01-14 |
| JP5394231B2 (ja) | 2014-01-22 |
| US20090264607A1 (en) | 2009-10-22 |
| KR101085797B1 (ko) | 2011-11-22 |
| US7772338B2 (en) | 2010-08-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7772338B2 (en) | Use of a Ziegler-Natta catalyst to make a polypropylene homopolymer or random copolymer having a high melt flow rate | |
| CN101432321B (zh) | 使用齐格勒-纳塔催化剂制造具有高熔体流动速率的聚丙烯均聚物或无规共聚物 | |
| EP2029642B1 (en) | Catalyst composition for the copolymerization of propylene. | |
| KR101414916B1 (ko) | 프로필렌의 (공)중합용 촉매 조성물 | |
| EP2638109B1 (en) | Process for preparing heterophasic propylene copolymers with improved stiffness/impact/flowability balance | |
| KR101222344B1 (ko) | 골판형 시트 및 캐스트 필름 적용물을 위한 헤테로상 프로필렌 공중합체 | |
| CZ283090B6 (cs) | Elastoplastické polyolefinové produkty | |
| KR101224792B1 (ko) | 개선된 크리프 거동을 가진 헤테로상 프로필렌 공중합체 | |
| EP2403883A1 (en) | Process for the production of propylene random copolymers for injection moulding applications | |
| CN103492432B (zh) | 具有高热变形温度、高刚性和流动性的聚丙烯均聚物 | |
| EP2796473B1 (en) | Multistage process for producing low-temperature resistant polypropylene compositions | |
| EP2222781A1 (en) | Transparent polyolefin compositions | |
| EP1857476A1 (en) | Catalyst composition for the (co)polymerization of propylene |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07728461 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009507065 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087025728 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 200780014956.5 Country of ref document: CN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007728461 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12298063 Country of ref document: US |