WO2007119289A1 - アンテナ装置またはその製造方法 - Google Patents

アンテナ装置またはその製造方法 Download PDF

Info

Publication number
WO2007119289A1
WO2007119289A1 PCT/JP2007/052981 JP2007052981W WO2007119289A1 WO 2007119289 A1 WO2007119289 A1 WO 2007119289A1 JP 2007052981 W JP2007052981 W JP 2007052981W WO 2007119289 A1 WO2007119289 A1 WO 2007119289A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
coupling
depth
choke
hole
Prior art date
Application number
PCT/JP2007/052981
Other languages
English (en)
French (fr)
Inventor
Shigeo Udagawa
Satoshi Yamaguchi
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to JP2007534405A priority Critical patent/JP4574679B2/ja
Priority to CN2007800008073A priority patent/CN101341629B/zh
Priority to US11/995,340 priority patent/US7928923B2/en
Priority to EP07714507A priority patent/EP2003729B1/en
Publication of WO2007119289A1 publication Critical patent/WO2007119289A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/525Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making

Definitions

  • the present invention relates to an antenna device in a millimeter wave band or a microwave band or a manufacturing method thereof.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-163737
  • the antenna device capable of reducing the coupling amount between the transmission antenna and the reception antenna as compared with the conventional structure, or a method for manufacturing the antenna device The purpose is to obtain.
  • An antenna device in a millimeter wave band or a microwave band includes a ground conductor, a first antenna disposed on the ground conductor and directly connected to a feeder line, and the ground conductor.
  • a groove is formed between the antenna 1 and the second antenna 2 to reduce the amount of electromagnetic coupling between the first antenna and the second antenna, and the depth of the groove is
  • the present invention is characterized by comprising a choke that is 0.15 times or more and less than 0.225 times the wavelength of a carrier wave.
  • An antenna device in a millimeter wave band or a microwave band includes a ground conductor, a first antenna disposed on the ground conductor and directly connected to a feeder, and the ground conductor.
  • a second antenna disposed on a body, connected to a power supply line different from the power supply line, and disposed at a distance capable of electromagnetically coupling with the first antenna;
  • a groove is formed between the antenna and the second antenna to reduce the amount of electromagnetic coupling between the first antenna and the second antenna, and the depth of the groove depends on the wavelength of the carrier wave. Therefore, the amount of electromagnetic coupling between the first antenna and the second antenna can be reduced.
  • FIG. 1 is a structural diagram showing an antenna apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the antenna device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 using the width and depth of the choke 4 as parameters in the antenna device according to the first embodiment of the present invention. It is.
  • FIG. 4 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 using the depth of the choke 4 as a parameter in the antenna device according to the first embodiment of the present invention. .
  • FIG. 5 is a structural diagram showing an antenna apparatus according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view showing the structure of the antenna device according to the second embodiment of the present invention.
  • FIG. 7 shows chokes 4a and 4b in the antenna device according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 with the width and depth as parameters.
  • FIG. 8 shows the amount of coupling between the first antenna 1 and the second antenna 2 with the depth and spacing of the chokes 4a and 4b as parameters in the antenna device according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 with the depth of the chokes 4a and 4b in the antenna device according to the second embodiment of the present invention as parameters. It is.
  • FIG. 10 is a cross-sectional view showing a case where diffusion bonding is applied to the structure of the antenna device according to the first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a case where diffusion bonding is applied to the structure of the antenna device according to the second embodiment of the present invention.
  • FIG. 1 is a structural diagram showing an antenna apparatus according to Embodiment 1 of the present invention.
  • the antenna device includes a first antenna 1, a second antenna 2, a ground conductor 3, and a choke 4 disposed between the first antenna 1 and the second antenna 2.
  • the first antenna 1 is a transmitting antenna
  • the second antenna 2 is a receiving antenna.
  • FIG. 2 is a cross-sectional view showing the structure of the antenna device according to the first embodiment of the present invention.
  • the distance between the first antenna 1 and the second antenna 2 is set to 2 when the wavelength of the carrier wave is selected. Note that the distance between the first antenna 1 and the second antenna 2 is not limited to an integral multiple of the wavelength.
  • the first antenna 1 and the second antenna 2 are electromagnetically coupled. That is, for example, a part of the radio wave transmitted from the first antenna 1 that is a transmitting antenna is directly input to the second antenna 2 that is a receiving antenna. Therefore, a choke 4 is arranged between the first antenna 1 and the second antenna 2 to reduce the amount of coupling between the first antenna 1 and the second antenna 2, and generally the depth thereof. Is 0.25 ⁇ for the carrier wave length. However, when the choke 4 is installed, the amount of coupling decreases, but it may not be sufficient depending on the product specifications.
  • the width (0.15 to 0.3 ⁇ ) and depth (0.1 to 0.3 ⁇ ) of the choke 4 were used as parameters to investigate the coupling amount.
  • FIG. 3 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 using the width and depth of the choke 4 as parameters in the antenna device according to the first embodiment of the present invention. is there.
  • the horizontal axis indicates the depth of the choke 4 and the vertical axis indicates the amount of coupling between the first antenna 1 and the second antenna 2.
  • indicates that the width of choke 4 is 0.15
  • indicates the width of choke 4 is 0.225 ⁇
  • the width is 0.3 ⁇ .
  • the first depth of the choke 4 is less than the 0.25 ⁇ , which was considered to be the minimum value for the depth of force, which was not very dependent on the width.
  • the amount of coupling between the antenna 1 and the second antenna 2 is minimized.
  • the amount of coupling is smaller than the case of 0.25 ⁇ , which was conventionally considered to be the minimum value in the range from 0.15 to less than 0.25 ⁇ .
  • the present invention is effectively 0.2 The effect is below 25 ⁇ .
  • the depth is approximately 0.6 to 0.9 mm in vacuum and air.
  • first antenna 1 as a transmitting antenna and the second antenna 2 as a receiving antenna.
  • One is coupling by surface current flowing on the ground conductor 3, and the other is coupling by electromagnetic waves propagating in space.
  • the amount to cancel the coupling due to the surface current flowing on the ground conductor 3 should be smaller than when the depth of the choke 4 is 0.25 ⁇ . This is because the amount by which the coupling due to electromagnetic waves propagating in a certain force space is canceled or the combination of coupling due to surface current flowing on the ground conductor 3 and coupling due to electromagnetic waves propagating in space increases.
  • FIG. 4 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 with the depth of the choke 4 in the antenna device according to the first embodiment of the present invention as a parameter. .
  • the width of choke 4 is 0.225 mm.
  • the horizontal axis represents the normalized frequency, and the vertical axis represents the amount of coupling between the first antenna 1 and the second antenna 2.
  • indicates that the choke 4 is not provided, ⁇ is the case where the choke 4 with a depth of 0.25 is provided, and the mouth is provided with the choke 4 with a depth of 0.2!
  • a choke 4 having a depth of 0.25 is provided for a coupling amount of about 22 dB between the first antenna 1 and the second antenna 2 without the choke 4.
  • the amount of coupling between the first antenna 1 and the second antenna 2 is reduced by about 4 dB.
  • the choke 4 with a depth of 0.2 ⁇ is provided, the amount of coupling between the first antenna 1 and the second antenna 2 can be reduced by about 1 dB compared to when the choke 4 with a depth of 0.25 ⁇ is provided. There is.
  • the horizontal axis is the normalized frequency.
  • the center frequency is 76.5 GHz. Show.
  • the ground conductor 3, the first antenna 1 disposed on the ground conductor 3 and directly connected to the feed line, and the ground conductor 3 disposed on the ground conductor 3 are different from the feed line.
  • the second antenna 2 disposed at a distance that can be electromagnetically coupled to the first antenna 1 while being connected to the feeder line, A groove for reducing the electromagnetic coupling between the first antenna 1 and the second antenna 2 is formed, and the depth of the groove is not less than 0.15 times and less than 0.225 times the wave length of the carrier wave. Therefore, the amount of electromagnetic coupling between the first antenna 1 and the second antenna 2 can be reduced.
  • the force described in the case where the number of the chokes 4 between the first antenna 1 and the second antenna 2 is one.
  • the first antenna 1 and the second antenna 2 are the same.
  • the case where the number of chokes 4 between antenna 2 is two will be described.
  • the diagrams, symbols, and the like are the same as those in the first embodiment.
  • FIG. 5 is a structural diagram showing an antenna apparatus according to Embodiment 2 of the present invention.
  • the second embodiment has a force S and two chokes 4a and 4b disposed at a predetermined interval between the first antenna 1 and the second antenna 2.
  • FIG. 6 is a cross-sectional view showing the structure of the antenna device according to the second embodiment of the present invention.
  • Chokes 4 a and 4 b are arranged between the first antenna 1 and the second antenna 2 that reduce the amount of coupling between the first antenna 1 and the second antenna 2.
  • the depth is 0.25 ⁇ , where ⁇ is the wavelength of the carrier wave.
  • FIG. 7 shows the amount of coupling between the first antenna 1 and the second antenna 2 with the width and depth of the chokes 4a and 4b in the antenna device according to the second embodiment of the present invention as parameters. It is a figure.
  • the horizontal axis shows the depth of the chokes 4a and 4b
  • the vertical axis shows the first antenna 1 and the second antenna. This shows the amount of binding with Na2.
  • indicates the case where the width of the chokes 4a and 4b is 0.15 ⁇ , the ⁇ force S width of the chokes 4a and 4b S0.225 ⁇ , and the width of the rocker chokes 4a and 4b of 0.3 ⁇ .
  • the distance between the choke 4a and the choke 4b is 0.375 mm from the center force of each other.
  • the chokes 4a and 4b have a larger overall force with respect to the width of the choke 4a and 4b.
  • the amount of coupling between the first antenna 1 and the second antenna 2 is reduced.
  • the amount of coupling between the first antenna 1 and the second antenna 2 is the smallest at 0.175 ⁇ , which is not the conventional minimum value of 0.25 ⁇ .
  • the overall coupling amount between the first antenna 1 and the second antenna 2 is small.
  • the coupling amount when the depth of the chokes 4a and 4b is 0.175 is other than The value is smaller than in the case of.
  • the amount of coupling is smaller than the case of 0.25 mm, which was conventionally considered to be the minimum value in the range of 0.125 ⁇ or more to less than 0.25 ⁇ .
  • the present invention is effectively effective at 0.225 ⁇ or less.
  • the depth is about 0.5 to 0.9 mm in vacuum and air.
  • the depth is about 0.6 to 0.6 in the case of vacuum or air when considered in the millimeter wave band of 76 GHz band in the range of 0.15 to 0.2. ⁇ 0.8mm.
  • the depth force of chokes 4a and 4b is not 0.25 ⁇ , which has been considered in the past, but is 0.175. The reason is the same as in the first embodiment except that the values are different.
  • FIG. 8 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 using the depth and interval of the chokes 4a and 4b in the antenna device according to the second embodiment of the present invention as parameters. is there.
  • the horizontal axis indicates the depth of the chokes 4a and 4b
  • the vertical axis indicates the coupling amount between the first antenna 1 and the second antenna 2.
  • indicates that the interval between the chokes 4a and 4b is 0.25
  • indicates that the interval between the chokes 4a and 4b is 0.375 ⁇
  • the interval between the chokes 4a and 4b is 0.5 ⁇ . .
  • the distance between the chokes 4a and 4b in FIG. if the depth of chokes 4a and 4b is 0.175, the distance between chokes 4a and 4b is 0.25. The amount of coupling between the first antenna 1 and the second antenna 2 was reduced.
  • FIG. 9 is a diagram showing the amount of coupling between the first antenna 1 and the second antenna 2 using the depth of the chokes 4a and 4b in the antenna device according to the second embodiment of the present invention as a parameter. is there .
  • the widths of the chokes 4a and 4b are 0.225 ⁇ and the interval is 0.25 ⁇ .
  • the horizontal axis represents the normalized frequency, and the vertical axis represents the amount of coupling between the first antenna 1 and the second antenna 2.
  • indicates that the chokes 4a and 4b are not provided, ⁇ is the case where the chokes 4a and 4b with a depth of 0.25 are provided, and the case where the chokes 4a and 4b with a depth of 0.175 are provided.
  • the choke 4a having a depth of 0.25 with respect to a coupling amount of about 22 dB between the first antenna 1 and the second antenna 2 without the chokes 4a and 4b.
  • the amount of coupling between the first antenna 1 and the second antenna 2 is reduced by about 10 dB.
  • the chokes 4a and 4b with a depth of 0.175 ⁇ are provided, the first antenna 1 and the second antenna 2 with a depth of 15 to 20dB are compared to the case with the choke 4 with a depth of 0.25 ⁇ . There is an effect of reducing the amount of coupling.
  • the horizontal axis is a normalized frequency.
  • the center frequency is 76.5 GHz. Show.
  • the electromagnetic waves between the first antenna 1 and the second antenna 2 are further increased by providing a plurality of chokes 4a and 4b in parallel to the first embodiment.
  • the amount of binding can be reduced.
  • the amount of electromagnetic coupling between the first antenna 1 and the second antenna 2 can be reduced more conspicuously by setting the distance between the chokes 4a and 4b to 0.25.
  • the frequency is 76 GHz, so the length of one wavelength is about 4 mm in vacuum or in the atmosphere.
  • the depth force O. 1 mm of the chokes 4, 4a, 4b shown in the first and second embodiments is changed, it corresponds to 0.025 ⁇ . Therefore, dimensional tolerance on the manufacturing side while keeping the amount of coupling to a minimum. Therefore, it is necessary to keep the dimensional tolerance of the depth of chokes 4, 4a and 4b below about ⁇ 0.05.
  • the antenna device having the shape of the first and second embodiments, if it is made of aluminum die casting, cutting work is required later, which causes a problem in terms of cost.
  • the dimensional error of the steel plate itself is 0.05.
  • the waveguides of the first antenna 1 and the second antenna 2 have a large leakage as electromagnetic energy and have a problem in performance. If the entire waveguide is welded or brazed, there will be problems in terms of dimensional changes and costs due to welding or brazing.
  • Diffusion bonding is a bonding method in which two members are heated and pressed to make metallographic integration using the diffusion phenomenon between the bonding surfaces. When approached, a metal bond is formed. Therefore, in principle, if two metals are brought close together, bonding becomes possible. This joint is less deformed by the joint and is metallurgically integrated so that leakage as electromagnetic energy is small even if a hole is made in the steel plate and a waveguide is formed in the stacking direction! /, Have an advantage.
  • FIG. 10 is a cross-sectional view showing a case where diffusion bonding is applied to the structure of the antenna device according to the first embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a case where diffusion bonding is applied to the structure of the antenna device according to the second embodiment of the present invention.
  • a first conductor 5a having a ground conductor 3 and a hole la of the first antenna, a hole 2a of the second antenna, and a hole 4c of the choke 4 is provided on the first steel plate 5a.
  • the second steel plate 5b provided with the hole portion la of the antenna 1 and the hole portion 2a of the second antenna is joined by diffusion bonding.
  • the depths of the chalks 4, 4 a, 4 b are formed with the thickness of one steel plate.
  • the frequency is 76 GHz
  • the plate thickness is about 0.8 mm in the first embodiment and about 0.7 mm in the second embodiment.
  • a plurality of steel plates may be stacked so as to match the optimum values of the grooves of the chokes 4, 4a, 4b.
  • the first steel plate 5a provided with the ground conductor 3, the hole portion of the first antenna 1, the hole portion of the second antenna 2, and the respective hole portions for the choke grooves 4, 4a, 4b;
  • the first steel plate is joined by diffusion bonding, and a waveguide la or a hole 1a of the first antenna 1 is provided, and a waveguide 2 other than the waveguide or a hole 2a of the second antenna 2 is provided.
  • the second steel plate 5b is provided, the first antenna 1 and the second antenna 2 are connected to the first waveguide 1 connected to the waveguide with little leakage while reducing the amount of electromagnetic coupling between the first antenna 1 and the second antenna 2.
  • An antenna 1 and a second antenna 2 can be provided.
  • the antenna device and the method for manufacturing the antenna device according to the present invention are useful as an invention that can further reduce the amount of coupling between the transmitting antenna and the receiving antenna.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 アンテナ間に配設された1つ1つの溝によるチョーク構造において、従来の構造よりも送信アンテナと受信アンテナとの結合量をより小さくすることができるアンテナ装置またはその製造方法を得ること。地導体3と、地導体3上に配設され、導波管と直接接続されている第1のアンテナ1と、地導体3上に配設され、前記導波管とは別の導波管と接続されると共に第1のアンテナ1と電磁的に結合を生じ得る距離に配設された第2のアンテナ2と、第1のアンテナ1と第2のアンテナ2との間に、第1のアンテナ1と第2のアンテナ2の電磁的な結合量を減少させる溝が形成されるとともに、前記溝の深さは搬送波の波長の0.15倍以上0.225倍未満であるチョーク4とを備えた。

Description

明 細 書
アンテナ装置またはその製造方法
技術分野
[0001] 本発明は、ミリ波帯またはマイクロ波帯におけるアンテナ装置またはその製造方法 に関するものである。
背景技術
[0002] アンテナとアンテナを接近させて配置するとアンテナ間に結合が発生し、アンテナ の指向性が変化するだけでなぐ上位システムの動作に支障を生じる場合がある。例 えばレーダでは、送信した電波が直接受信系に漏れ込むと目標物の検出が非常に 困難になる。そのため、送信アンテナと受信アンテナ間の結合量を減少させる必要が ある。
[0003] アンテナ間の結合量を減少させる方法として、従来力もアンテナ間にチョークとなる 溝を設ける方法が知られており、チョークのインピーダンスを無限大にするという考察 に基づいて、チョークとなる溝の深さを 0. 25えに設定していた (特許文献 1参照)。
[0004] 特許文献 1 :特開平 10— 163737号公報
発明の開示
発明が解決しょうとする課題
[0005] しかし、現実的には、チョークとなる溝の深さを 0. 25 λとしても、送信アンテナから 受信アンテナへの結合は存在する。溝によるチョークの効果を高めるには、溝の本数 を増やすことで可能だが、送信アンテナと受信アンテナとの距離が近い場合には、溝 を構成する本数も限られる。
[0006] そこで、アンテナ間に配設された 1つ 1つの溝によるチョーク構造において、従来の 構造よりも送信アンテナと受信アンテナとの結合量をより小さくすることができるアンテ ナ装置またはその製造方法を得ることを目的とする。
課題を解決するための手段
[0007] この発明に係るミリ波帯またはマイクロ波帯におけるアンテナ装置は、地導体と、前 記地導体上に配設され、給電線と直接接続されている第 1のアンテナと、前記地導 体上に配設され、前記給電線とは別の給電線と接続されると共に前記第 1のアンテ ナと電磁的に結合を生じ得る距離に配設された第 2のアンテナと、前記第 1のアンテ ナ 1と前記第 2のアンテナ 2との間に、前記第 1のアンテナと前記第 2のアンテナの電 磁的な結合量を減少させる溝が形成されるとともに、前記溝の深さは搬送波の波長 の 0. 15倍以上 0. 225倍未満であるチョークと、を備えたことを特徴とするものである 発明の効果
[0008] この発明に係るミリ波帯またはマイクロ波帯におけるアンテナ装置は、地導体と、前 記地導体上に配設され、給電線と直接接続されている第 1のアンテナと、前記地導 体上に配設され、前記給電線とは別の給電線と接続されると共に前記第 1のアンテ ナと電磁的に結合を生じ得る距離に配設された第 2のアンテナと、前記第 1のアンテ ナと前記第 2のアンテナとの間に、前記第 1のアンテナと前記第 2のアンテナの電磁 的な結合量を減少させる溝が形成されるとともに、前記溝の深さは搬送波の波長の 0 . 15倍以上 0. 225倍未満であるチョークと、を備えたことを特徴としたので、第 1のァ ンテナと第 2のアンテナとの電磁的な結合量を減少させることができる。
図面の簡単な説明
[0009] [図 1]図 1は、この発明の実施の形態 1であるアンテナ装置を示す構造図である。
[図 2]図 2は、この発明の実施の形態 1であるアンテナ装置の構造を示す断面図であ る。
[図 3]図 3は、この発明の実施の形態 1であるアンテナ装置におけるチョーク 4の幅と 深さをパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図であ る。
[図 4]図 4は、この発明の実施の形態 1であるアンテナ装置におけるチョーク 4の深さ をパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図である。
[図 5]図 5は、この発明の実施の形態 2であるアンテナ装置を示す構造図である。
[図 6]図 6は、この発明の実施の形態 2であるアンテナ装置の構造を示す断面図であ る。
[図 7]図 7は、この発明の実施の形態 2であるアンテナ装置におけるチョーク 4a、 4bの 幅と深さをパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図 である。
[図 8]図 8は、この発明の実施の形態 2であるアンテナ装置におけるチョーク 4a、 4bの 深さと間隔をパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した 図である。
[図 9]図 9は、この発明の実施の形態 2であるアンテナ装置におけるチョーク 4a、 4bの 深さをパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図であ る。
[図 10]図 10は、この発明の実施の形態 1であるアンテナ装置の構造に拡散接合を適 用した場合を示す断面図である。
[図 11]図 11は、この発明の実施の形態 2であるアンテナ装置の構造に拡散接合を適 用した場合を示す断面図である。
符号の説明
[0010] 1 第 1のアンテナ
la 第 1のアンテナの穴部
2 第 2のアンテナ
2a 第 2のアンテナの穴部
3 地導体
4 チョーク
4a チョーク
4b チョーク
4c チョーク 4の穴部
5a 第 1の鋼板
5b 第 2の鋼板
発明を実施するための最良の形態
[0011] 以下に、本発明にかかるアンテナ装置、アンテナ装置の製造方法の好適な実施の 形態を図面に基づいて詳細に説明する。なお、以下の実施の形態により本発明が限 定されるものではない。 [0012] 実施の形態 1.
図 1は、この発明の実施の形態 1であるアンテナ装置を示す構造図である。
[0013] 図 1を用いて説明する。アンテナ装置は、第 1のアンテナ 1、第 2のアンテナ 2、地導 体 3及び、第 1のアンテナ 1及び第 2のアンテナ 2との間に配設されたチョーク 4である 。実施の形態 1では第 1のアンテナ 1を送信アンテナ、第 2のアンテナ 2を受信アンテ ナとして以下、説明する。
[0014] 図 2は、この発明の実施の形態 1であるアンテナ装置の構造を示す断面図である。
第 1のアンテナ 1と第 2のアンテナ 2との間は搬送波の波長をえとすると 2えに設定す る。尚、第 1のアンテナ 1と第 2のアンテナ 2との間は波長えの整数倍に限られない。 この程度まで第 1のアンテナ 1と第 2のアンテナ 2が近接すると、第 1のアンテナ 1と第 2のアンテナ 2とが電磁的に結合する。即ち例えば送信アンテナである第 1のアンテ ナ 1から送信された電波の一部が直接、受信アンテナである第 2のアンテナ 2に入力 される。そこで、第 1のアンテナ 1と第 2のアンテナ 2との結合量を減少させるベぐ第 1 のアンテナ 1と第 2のアンテナ 2との間にチョーク 4が配置され、一般的にはその深さ は搬送波の波長をえとすると 0.25 λとなる。しかし、チョーク 4を配設すると、結合量 は減少するが、製品の仕様等によっては十分ではない場合がある。
[0015] そこで、図 2に示すように、チョーク 4の幅(0.15え〜 0.3 λ )と深さ(0.1え〜 0.3 λ ) をパラメータとしてその結合量にっ 、て調査を行った。
[0016] 図 3は、この発明の実施の形態 1であるアンテナ装置におけるチョーク 4の幅と深さ をパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図である。 横軸は、チョーク 4の深さを示し、縦軸は第 1のアンテナ 1と第 2のアンテナ 2との結合 量を示している。実線のプロットにおいて、〇がチョーク 4の幅が 0.15え、△がチョー ク 4の幅が 0.225 λ、口が幅 0.3 λの場合を示している。
[0017] すると、図 3から、チョーク 4の幅については、あまり依存性はなかった力 深さにつ いては、従来最小値となると考えられていた 0.25 λではなぐ 0.2えで第 1のアンテ ナ 1と第 2のアンテナ 2との結合量が最小となる。また、 0.15以上〜 0.25 λ未満の範 囲で従来最小値となると考えられていた 0.25 λの場合よりも結合量が小さいという効 果がある。しかし、実際には、 0.25 λ付近は公知であるので、事実上、本発明は 0.2 25 λ以下にその効果がある。 76GHz帯のミリ波帯で考えた場合は、真空や大気の 場合で、深さで約 0.6〜0.9mmとなる。
[0018] 図 3のようにチョーク 4の深さが従来考えられていた 0.25 λではなぐ 0.2えとなる理 由について説明する。
[0019] 送信アンテナである第 1のアンテナ 1と受信アンテナである第 2のアンテナ 2との結 合としては、 2通りある。 1つは、地導体 3上を流れる表面電流による結合であり、もう 1 つは、空間を伝搬する電磁波による結合である。
[0020] 従来技術であるチョーク 4の深さが 0.25 λの場合は、地導体 3上を流れる表面電流 による結合については、最も効果的に打ち消すことができるが、空間を伝搬する電磁 波による結合についてはその効果は限定的となる。
[0021] それに対して、チョーク 4の深さが 0.2 λの場合は、地導体 3上を流れる表面電流に よる結合を打ち消す量は、チョーク 4の深さが 0.25 λの場合よりも小さいはずである 力 空間を伝搬する電磁波による結合分を打ち消す量または、地導体 3上を流れる 表面電流による結合と空間を伝搬する電磁波による結合を合わせたものを打ち消す 量が大きくなるためである。
[0022] 図 4は、この発明の実施の形態 1であるアンテナ装置におけるチョーク 4の深さをパ ラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図である。尚、 チョーク 4の幅は 0.225えの場合である。横軸は正規化された周波数、縦軸は、第 1 のアンテナ 1と第 2のアンテナ 2との結合量を示している。また〇はチョーク 4を設けな 力つた場合、△は深さ 0.25えのチョーク 4を設けた場合、口は深さ 0.2えのチョーク 4 を設けた場合にっ 、て示して!/、る。
[0023] 図 4に示されている通り、チョーク 4がない場合の第 1のアンテナ 1と第 2のアンテナ 2 との結合量約一 22dBに対して、深さ 0.25えのチョーク 4を設けた場合は一 4dB程度 、第 1のアンテナ 1と第 2のアンテナ 2との結合量の削減効果がある。さらに深さ 0.2 λ のチョーク 4を設けた場合は、深さ 0.25 λのチョーク 4を設けた場合に対して一 2dB 程度の第 1のアンテナ 1と第 2のアンテナ 2との結合量の削減効果がある。
[0024] 横軸は正規化された周波数であり、例えば車載用ミリ波レーダのアンテナに適用し た際、中心周波数を 76.5GHzとした場合、約 75〜78GHzの幅で、効果があることを 示している。
[0025] したがって、地導体 3と、地導体 3上に配設され、給電線と直接接続されている第 1 のアンテナ 1と、地導体 3上に配設され、前記給電線とは別の給電線と接続されると 共に第 1のアンテナ 1と電磁的に結合を生じ得る距離に配設された第 2のアンテナ 2と 、第 1のアンテナ 1と第 2のアンテナ 2との間に、第 1のアンテナ 1と第 2のアンテナ 2の 電磁的な結合量を減少させる溝が形成されるとともに、前記溝の深さは搬送波の波 長の 0. 15倍以上 0. 225倍未満であるチョーク 4と、を備えたことを特徴としたので、 第 1のアンテナ 1と第 2のアンテナ 2との電磁的な結合量を減少させることができる。
[0026] 実施の形態 2.
実施の形態 1では、第 1のアンテナ 1と第 2のアンテナ 2との間のチョーク 4の本数が 1本の場合について説明した力 実施の形態 2においては、第 1のアンテナ 1と第 2の アンテナ 2との間のチョーク 4の本数が 2本の場合について説明する。図、符号等に ついては実施の形態 1と同様である。
[0027] 図 5は、この発明の実施の形態 2であるアンテナ装置を示す構造図である。
[0028] 図 5を用いて説明する。実施の形態 1に対して、実施の形態 2は、第 1のアンテナ 1 及び第 2のアンテナ 2との間に所定の間隔で配設された 2本のチョーク 4a、 4bと力 Sあ る。
[0029] 図 6は、この発明の実施の形態 2であるアンテナ装置の構造を示す断面図である。
第 1のアンテナ 1と第 2のアンテナ 2との結合量を減少させるベぐ第 1のアンテナ 1と 第 2のアンテナ 2との間にチョーク 4a、 4bが配置されている。一般的にはその深さは 搬送波の波長を λとすると 0.25 λとなる。
[0030] そこで、図 6に示すように、チョーク 4a、 4bの幅(0.15え〜 0.3 λ )と深さ(0.1え〜 0.
3え)、及び間隔(0.25え〜 0.5 λ )をパラメータとしてその結合量について調査を行 つた。但し、チョーク 4a、 4bの幅及び深さについては、互いに違う値とはせず、同じ値 としている。
[0031] 図 7は、この発明の実施の形態 2であるアンテナ装置におけるチョーク 4a、 4bの幅 と深さをパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図で ある。横軸は、チョーク 4a, 4bの深さを示し、縦軸は第 1のアンテナ 1と第 2のアンテ ナ 2との結合量を示している。実線のプロットにおいて、〇がチョーク 4a, 4bの幅が 0. 15 λ、 Δ力 Sチョーク 4a、 4bの幅力 S0.225 λ、ロカチョーク 4a、 4bの幅 0.3 λの場合 を示している。但し、図 7においては、チョーク 4aとチョーク 4bとの間隔は互いの中心 力ら 0.375えとした。
[0032] すると、図 7から、チョーク 4a、 4bの幅については、全体的には幅が大きい方力 第 1のアンテナ 1と第 2のアンテナ 2との結合量が小さくなることが分力つた。深さについ ては、従来最小値となると考えられていた 0.25 λではなぐ 0.175 λで第 1のアンテ ナ 1と第 2のアンテナ 2との結合量が最小となる。実施の形態 1の場合と比べて、全体 的に第 1のアンテナ 1と第 2のアンテナ 2との結合量が小さぐまた、チョーク 4a、 4bの 深さが 0.175えの場合の結合量は他の場合よりもその値が小さくなつている。
[0033] また、 0.125 λ以上〜 0.25 λ未満の範囲で従来最小値となると考えられていた 0.2 5えの場合よりも結合量が小さいという効果がある。しかし、実際には、 0.25 λ付近は 公知であるので、事実上、本発明は 0.225 λ以下にその効果がある。 76GHz帯のミ リ波帯で考えた場合は、真空や大気の場合で、深さで約 0.5〜0.9mmとなる。そして 、より結合量が小さくなる効果を得るには、 0. 15〜0. 2えの範囲で、 76GHz帯のミリ 波帯で考えた場合は、真空や大気の場合で、深さで約 0.6〜0.8mmとなる。図 7のよ うにチョーク 4a、 4bの深さ力従来考えられていた 0.25 λではなく、 0.175えとなる理 由については、値が異なることを除けば、実施の形態 1の場合と同じである。
[0034] 次に、チョーク 4a、 4bの間隔をパラメータとした場合について説明する。図 8は、こ の発明の実施の形態 2であるアンテナ装置におけるチョーク 4a、 4bの深さと間隔をパ ラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図である。横軸 は、チョーク 4a、 4bの深さを示し、縦軸は第 1のアンテナ 1と第 2のアンテナ 2との結合 量を示している。実線のプロットにおいて、〇がチョーク 4a、 4bの間隔が 0. 25え、△ がチョーク 4a、 4bの間隔が 0.375 λ、口がチョーク 4a、 4bの間隔 0. 5 λの場合を示 している。
[0035] すると、図 8力ら、チョーク 4a、 4bの間隔につ!ヽては、チョーク 4a、 4bの深さ 0. 175 λ以外の場合は、チョーク 4a、 4bの間隔にはあまり依存性はないが、チョーク 4a、 4b の深さが 0. 175えの場合は、チョーク 4a、 4bの間隔 0. 25えの場合に、際立って第 1のアンテナ 1と第 2のアンテナ 2との結合量が小さくなることが分力つた。
[0036] 図 9は、この発明の実施の形態 2であるアンテナ装置におけるチョーク 4a、 4bの深 さをパラメータとした第 1のアンテナ 1と第 2のアンテナ 2との結合量を示した図である 。尚、チョーク 4a、 4bの幅は 0.225 λ、間隔は 0. 25 λの場合である。横軸は正規ィ匕 された周波数、縦軸は、第 1のアンテナ 1と第 2のアンテナ 2との結合量を示している。 また〇はチョーク 4a、 4bを設けなかった場合、△は深さ 0.25えのチョーク 4a、 4bを 設けた場合、口は深さ 0.175えのチョーク 4a、 4bを設けた場合について示している。
[0037] 図 9に示されている通り、チョーク 4a、 4bがない場合の第 1のアンテナ 1と第 2のアン テナ 2との結合量約一 22dBに対して、深さ 0.25えのチョーク 4a、 4bを設けた場合は — 10dB程度、第 1のアンテナ 1と第 2のアンテナ 2との結合量の削減効果がある。さら に深さ 0.175 λのチョーク 4a、 4bを設けた場合は、深さ 0.25 λのチョーク 4を設けた 場合に対して— 15〜20dB程度の第 1のアンテナ 1と第 2のアンテナ 2との結合量の 削減効果がある。
[0038] 横軸は正規化された周波数であり、例えば車載用ミリ波レーダのアンテナに適用し た際、中心周波数を 76.5GHzとした場合、約 75〜78GHzの幅で、効果があることを 示している。
[0039] したがって、実施の形態 2においては、実施の形態 1に対して、チョーク 4a、 4bを各 々平行に複数設けたことによってさらに第 1のアンテナ 1と第 2のアンテナ 2との電磁 的な結合量を減少させることができる。さらに、チョーク 4a、 4bとの間隔を 0. 25えと することでより際立って第 1のアンテナ 1と第 2のアンテナ 2との電磁的な結合量を減 少させることができる。
[0040] 実施の形態 3.
実施の形態 3では、実施の形態 1や 2におけるアンテナ装置の構造及び製造方法 について説明する。尚、図、符号等については実施の形態 1及び 2と同様である。
[0041] 例えば、車載用ミリ波レーダのアンテナに適用した際、周波数は 76GHz帯であるた め、真空中あるいは大気中において 1波長の長さは約 4mmである。そして、実施の 形態 1及び 2で示したチョーク 4、 4a、 4bの深さ力 O. 1mm変化すると、それは 0. 025 λ分に相当する。従って、結合量の大きさを極小に保ちつつ、製造面での寸法公差 を考慮するとチョーク 4、 4a、 4bの深さの寸法公差を ±0. 05程度以下に抑える必要 が生ずる。
[0042] すると、実施の形態 1及び 2の形状のアンテナ装置を製造しょうとする場合、アルミ ダイカストで構成しょうとすると、後で切削加工が必要となり、コスト面で問題となる。ま た、例えばステンレスの鋼板を鋼板自体に設けた凹凸部を利用して圧入して積層し た場合や、部分的に溶接して積層した場合は、鋼板そのものの寸法誤差としては士 0. 05を満たせるが、鋼板と鋼板との間に隙間が生じるため、第 1のアンテナ 1、第 2 のアンテナ 2の導波管としては電磁エネルギーとしてのもれが大きく性能面で問題が ある。導波管内全体を溶接またはろう付けをすると、溶接またはろう付けによる寸法変 化やコスト面において問題がある。
[0043] そこで、本実施の形態にぉ 、ては、例えばステンレスの鋼板に拡散接合を用いて 接合する。拡散接合とは、 2つの部材を加熱'加圧して、接合面間に生じる拡散現象 を利用して金属学的に一体化させる接合方法であり、金属表面同士を相互に原子レ ベル程度の距離まで接近させると、金属結合が形成される。したがって原理的には 二つの金属を近づければ接合が可能になる。この接合は、接合による変形が少なく 、金属学的に一体ィ匕させているので、鋼板に穴をあけて、積層方向に導波管を形成 させても電磁エネルギーとしての洩れが少な 、と!/、う利点を持つ。
[0044] 図 10は、この発明の実施の形態 1であるアンテナ装置の構造に拡散接合を適用し た場合を示す断面図である。図 11は、この発明の実施の形態 2であるアンテナ装置 の構造に拡散接合を適用した場合を示す断面図である。
[0045] ここで、アンテナ装置の構造について説明する。図 10、図 11共、地導体 3を形成し 、かつ第 1のアンテナの穴部 la、第 2のアンテナの穴部 2a、チョーク 4の穴部 4cを設 けた第 1の鋼板 5aに、第 1のアンテナの穴部 la、第 2のアンテナの穴部 2aを設けた 第 2の鋼板 5bを拡散接合によって接合して ヽる。
[0046] 図 10、 11の場合共、チョーク 4、 4a、 4bの深さを鋼板の一層分の板厚で形成して いる。そうすることで、鋼板の重ね合わせによる誤差をなくすことができる。例えば車 載用ミリ波レーダのアンテナに適用した際、周波数は 76GHz帯であるため、その板 厚は実施の形態 1の場合は約 0. 8mm,実施の形態 2の場合は約 0. 7mmとなる。 尚、鋼板を複数枚重ねて、チョーク 4、 4a、 4bの溝の最適値に合うようにしてもよい。
[0047] 従って、地導体 3、及び第 1のアンテナ 1の穴部、第 2のアンテナ 2の穴部、チョーク 溝 4、 4a、 4b用の各々の穴部を設けた第 1の鋼板 5aと、前記第 1の鋼板と拡散接合 により接合され、導波管または第 1のアンテナ 1の穴部 la、前記導波管とは別の導波 管または第 2のアンテナ 2の穴部 2aを設けた第 2の鋼板 5bとを設けたので、第 1のァ ンテナ 1と第 2のアンテナ 2との電磁的な結合量を小さくしつつ、もれが少ない導波管 と接続される第 1のアンテナ 1及び第 2のアンテナ 2を設けることができる。
産業上の利用可能性
[0048] 以上のように、本発明に力かるアンテナ装置、アンテナ装置の製造方法は、送信ァ ンテナと受信アンテナとの結合量をより小さくすることができる発明として有用である。

Claims

請求の範囲
[1] 地導体と、
前記地導体上に配設され、給電線と直接接続されている第 1のアンテナと、 前記地導体上に配設され、前記給電線とは別の給電線と接続されると共に前記第
1のアンテナと電磁的に結合を生じ得る距離に配設された第 2のアンテナと、 前記第 1のアンテナ 1と前記第 2のアンテナ 2との間に、前記第 1のアンテナと前記 第 2のアンテナの電磁的な結合量を減少させる溝が形成されるとともに、前記溝の深 さは搬送波の波長の 0. 15倍以上 0. 225倍未満であるチョークと、
を備えたことを特徴とするミリ波帯またはマイクロ波帯におけるアンテナ装置。
[2] 前記チョークを平行に複数設けたことを特徴とする請求項 1に記載のミリ波帯または マイクロ波帯におけるアンテナ装置。
[3] 複数の前記チョークの間隔を略 0. 25 λとすることを特徴とする請求項 2に記載のミ リ波帯またはマイクロ波帯におけるアンテナ装置。
[4] 複数の前記チョークの溝の深さを搬送波の波長の 0. 15倍以上 0. 2倍以下とする ことを特徴とする請求項 2または 3に記載のミリ波帯またはマイクロ波帯におけるアン テナ装置。
[5] 地導体、及び第 1のアンテナの穴部、第 2のアンテナの穴部、チョークの穴部を設 けた第 1の金属板と、
前記第 1の金属板と拡散接合により接合され、第 1のアンテナの穴部、第 2のアンテ ナの穴部を設けた第 2の金属板と、
を備えたことを特徴とする請求項 1に記載のミリ波帯またはマイクロ波帯におけるァ ンテナ装置。
[6] 地導体を備え、搬送波の波長の 0. 15倍以上 0. 225倍未満である金属板に、第 1 のアンテナの穴部、第 2のアンテナの穴部、チョークの穴部を設けて第 1の金属板と するステップと、
前記第 1の金属板とは別の金属板に、前記第 1のアンテナの穴部、前記第 2のアン テナの穴部を設けて第 2の金属板とするステップと、
前記第 1の金属板と前記第 2の金属板とを、前記第 1のアンテナの穴部、前記第 2 のアンテナの穴部との位置を合わせて拡散接合を行うステップと、
を備えたことを特徴とするミリ波帯またはマイクロ波帯におけるアンテナ装置の製造 方法。
PCT/JP2007/052981 2006-03-16 2007-02-19 アンテナ装置またはその製造方法 WO2007119289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007534405A JP4574679B2 (ja) 2006-03-16 2007-02-19 アンテナ装置またはその製造方法
CN2007800008073A CN101341629B (zh) 2006-03-16 2007-02-19 天线装置及其制造方法
US11/995,340 US7928923B2 (en) 2006-03-16 2007-02-19 Antenna assembly and method for manufacturing the same
EP07714507A EP2003729B1 (en) 2006-03-16 2007-02-19 Antenna assembly and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006072690 2006-03-16
JP2006-072690 2006-03-16

Publications (1)

Publication Number Publication Date
WO2007119289A1 true WO2007119289A1 (ja) 2007-10-25

Family

ID=38609107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052981 WO2007119289A1 (ja) 2006-03-16 2007-02-19 アンテナ装置またはその製造方法

Country Status (5)

Country Link
US (1) US7928923B2 (ja)
EP (1) EP2003729B1 (ja)
JP (1) JP4574679B2 (ja)
CN (1) CN101341629B (ja)
WO (1) WO2007119289A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111463A (ja) * 2007-10-26 2009-05-21 Mitsubishi Electric Corp アンテナ装置
JP2014197811A (ja) * 2013-03-29 2014-10-16 富士通テン株式会社 アンテナ装置およびレーダ装置
JP2017175595A (ja) * 2016-03-17 2017-09-28 住友電気工業株式会社 アンテナおよびレーダ
JP2018519734A (ja) * 2015-06-30 2018-07-19 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アンテナアレイおよびネットワークデバイス
WO2020241631A1 (ja) * 2019-05-30 2020-12-03 株式会社ソニー・インタラクティブエンタテインメント アンテナユニット、及び通信機器

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325280B (zh) * 2008-06-13 2013-07-03 光宝电子(广州)有限公司 多输入多输出天线系统
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US8836601B2 (en) 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US9634373B2 (en) 2009-06-04 2017-04-25 Ubiquiti Networks, Inc. Antenna isolation shrouds and reflectors
US20160218406A1 (en) 2013-02-04 2016-07-28 John R. Sanford Coaxial rf dual-polarized waveguide filter and method
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9543635B2 (en) 2013-02-04 2017-01-10 Ubiquiti Networks, Inc. Operation of radio devices for long-range high-speed wireless communication
WO2014171993A2 (en) * 2013-02-04 2014-10-23 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
US9373885B2 (en) 2013-02-08 2016-06-21 Ubiquiti Networks, Inc. Radio system for high-speed wireless communication
TWI509885B (zh) * 2013-07-24 2015-11-21 Wistron Neweb Corp 功率分配器及射頻裝置
CN103441325B (zh) * 2013-08-15 2015-08-19 华为技术有限公司 一种通信天线系统
CN103474752A (zh) * 2013-08-28 2013-12-25 山东国威舜泰卫星通信有限公司 一种利用扼流槽抑制旁瓣电平的平板天线
ES2682346T3 (es) 2013-09-30 2018-09-20 Huawei Technologies Co., Ltd. Conjunto de antenas y sistema de control en fase
US9972917B2 (en) * 2013-10-03 2018-05-15 Honeywell International Inc. Digital active array radar
US9897695B2 (en) 2013-10-03 2018-02-20 Honeywell International Inc. Digital active array radar
ES2767051T3 (es) 2013-10-11 2020-06-16 Ubiquiti Inc Optimización de sistema de radio inalámbrica mediante análisis de espectro persistente
PL3114884T3 (pl) 2014-03-07 2020-05-18 Ubiquiti Inc. Uwierzytelnianie i identyfikacja urządzenia w chmurze
US20150256355A1 (en) 2014-03-07 2015-09-10 Robert J. Pera Wall-mounted interactive sensing and audio-visual node devices for networked living and work spaces
EP3120642B1 (en) 2014-03-17 2023-06-07 Ubiquiti Inc. Array antennas having a plurality of directional beams
WO2015153717A1 (en) 2014-04-01 2015-10-08 Ubiquiti Networks, Inc. Antenna assembly
US10069580B2 (en) 2014-06-30 2018-09-04 Ubiquiti Networks, Inc. Wireless radio device alignment tools and methods
CN108353232B (zh) 2015-09-11 2020-09-29 优倍快公司 紧凑型播音接入点装置
DE112016007546T5 (de) * 2016-12-26 2019-09-19 Mitsubishi Electric Corporation Radarvorrichtung
HRP20240539T1 (hr) * 2017-09-20 2024-07-19 Universitat De Barcelona Praćenje stentova
US11721892B2 (en) 2018-09-21 2023-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Surface wave reduction for antenna structures
US11217877B2 (en) 2020-01-24 2022-01-04 Motorola Mobility Llc Managing antenna module heat and RF emissions
US12015201B2 (en) * 2021-11-05 2024-06-18 Magna Electronics, Llc Waveguides and waveguide sensors with signal-improving grooves and/or slots

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163737A (ja) 1996-12-03 1998-06-19 Yagi Antenna Co Ltd 衛星受信用アンテナの一次放射器及び衛星受信用コンバータ
JPH10308628A (ja) * 1997-03-06 1998-11-17 Matsushita Electric Ind Co Ltd 複一次放射器とデュアルビームアンテナ
JP2002374120A (ja) * 2001-06-15 2002-12-26 Hitachi Kokusai Electric Inc 半円ラジアルアンテナ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU148509A1 (ru) * 1961-04-22 1961-11-30 А.Я. Каждан Устройство дл ультразвуковой сварки деталей из термопластичных полимерных материалов
JPS61256801A (ja) * 1985-05-09 1986-11-14 Mitsubishi Electric Corp 電波送受信装置
SU1483509A1 (ru) * 1987-04-16 1989-05-30 Одесский Электротехнический Институт Связи Им.А.С.Попова Устройство разв зки антенн
US5132698A (en) * 1991-08-26 1992-07-21 Trw Inc. Choke-slot ground plane and antenna system
US5426442A (en) * 1993-03-01 1995-06-20 Aerojet-General Corporation Corrugated feed horn array structure
JPH0993031A (ja) 1995-09-28 1997-04-04 N T T Ido Tsushinmo Kk アンテナ装置
FR2760131B1 (fr) * 1997-02-24 1999-03-26 Alsthom Cge Alcatel Ensemble d'antennes concentriques pour des ondes hyperfrequences
SE521407C2 (sv) * 1997-04-30 2003-10-28 Ericsson Telefon Ab L M Mikrovägantennsystem med en plan konstruktion
US6052099A (en) * 1997-10-31 2000-04-18 Yagi Antenna Co., Ltd. Multibeam antenna
FR2772519B1 (fr) * 1997-12-11 2000-01-14 Alsthom Cge Alcatel Antenne realisee selon la technique des microrubans et dispositif incluant cette antenne
US6624789B1 (en) * 2002-04-11 2003-09-23 Nokia Corporation Method and system for improving isolation in radio-frequency antennas
DE10240494A1 (de) 2002-09-03 2004-03-11 Robert Bosch Gmbh Puls-Radar-Sensor
JP3923460B2 (ja) * 2003-09-19 2007-05-30 Tdk株式会社 アンテナ装置
JP3784807B2 (ja) 2004-02-24 2006-06-14 株式会社エヌ・ティ・ティ・ドコモ マイクロストリップアンテナ
US7295165B2 (en) * 2005-04-22 2007-11-13 The Boeing Company Phased array antenna choke plate method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163737A (ja) 1996-12-03 1998-06-19 Yagi Antenna Co Ltd 衛星受信用アンテナの一次放射器及び衛星受信用コンバータ
JPH10308628A (ja) * 1997-03-06 1998-11-17 Matsushita Electric Ind Co Ltd 複一次放射器とデュアルビームアンテナ
JP2002374120A (ja) * 2001-06-15 2002-12-26 Hitachi Kokusai Electric Inc 半円ラジアルアンテナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003729A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111463A (ja) * 2007-10-26 2009-05-21 Mitsubishi Electric Corp アンテナ装置
JP2014197811A (ja) * 2013-03-29 2014-10-16 富士通テン株式会社 アンテナ装置およびレーダ装置
JP2018519734A (ja) * 2015-06-30 2018-07-19 ホアウェイ・テクノロジーズ・カンパニー・リミテッド アンテナアレイおよびネットワークデバイス
JP2017175595A (ja) * 2016-03-17 2017-09-28 住友電気工業株式会社 アンテナおよびレーダ
WO2020241631A1 (ja) * 2019-05-30 2020-12-03 株式会社ソニー・インタラクティブエンタテインメント アンテナユニット、及び通信機器
JPWO2020241631A1 (ja) * 2019-05-30 2021-10-14 株式会社ソニー・インタラクティブエンタテインメント アンテナユニット、及び通信機器
JP7098060B2 (ja) 2019-05-30 2022-07-08 株式会社ソニー・インタラクティブエンタテインメント アンテナユニット、及び通信機器
US12046814B2 (en) 2019-05-30 2024-07-23 Sony Interactive Entertainment Inc. Antenna unit and communication equipment

Also Published As

Publication number Publication date
EP2003729A9 (en) 2009-04-15
EP2003729A4 (en) 2010-04-07
JP4574679B2 (ja) 2010-11-04
US7928923B2 (en) 2011-04-19
CN101341629B (zh) 2012-07-18
CN101341629A (zh) 2009-01-07
JPWO2007119289A1 (ja) 2009-08-27
US20080224938A1 (en) 2008-09-18
EP2003729B1 (en) 2012-11-28
EP2003729A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
WO2007119289A1 (ja) アンテナ装置またはその製造方法
EP3460903B1 (en) Antenna device with direct differential input useable on an automated vehicle
EP2822095B1 (en) Antenna with fifty percent overlapped subarrays
EP2293380B1 (en) Triplate line inter-layer connector, and planar array antenna
EP1768211A1 (en) Flat-plate mimo array antenna with an isolation element
EP2251933A1 (en) Composite antenna
JP5089766B2 (ja) 導波管電力分配器及びその製造方法
US20060255875A1 (en) Apparatus and method for waveguide to microstrip transition having a reduced scale backshort
CN106716171A (zh) 用于馈给短壁开槽波导阵列的波束形成网络
JP6712613B2 (ja) アンテナ
US20020093403A1 (en) Transmission line assembly, integrated circuit, and transmitter-receiver apparatus
US20200059002A1 (en) Electromagnetic antenna
JP2006174365A (ja) アンテナ装置
WO2018130014A1 (zh) 多波束背腔式高增益天线阵
WO2017017844A1 (ja) 給電回路
JP5762162B2 (ja) マイクロストリップアンテナ及び該アンテナを使用したアレーアンテナ
WO2020110610A1 (ja) 導波管スロットアンテナ
WO2019189008A1 (ja) アンテナ
US20130010654A1 (en) Multiple connection options for a transceiver
JP6184802B2 (ja) スロットアンテナ
US7138947B2 (en) Antenna
JP2013190230A (ja) レーダ装置
JP2011171805A (ja) 送受信モジュール
JP6951934B2 (ja) 電力変換器及びこれを備えたアンテナ装置
JP2000174515A (ja) コプレーナウェーブガイド−導波管変換装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000807.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007534405

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11995340

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007714507

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE